
Automated Approaches for Reducing

the Execution Time of Performance Tests

by

Hammam M. AlGhamdi

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

January 2017

Copyright c© Hammam M. AlGhamdi, 2017

Abstract

Performance issues are one of the primary causes of failures in today’s large-scale soft-

ware systems. Hence, performance testing has become an essential software quality

assurance tool. However, performance testing faces many challenges. One challenge

is determining how long a performance test must run. Performance tests often run

for hours or days to uncover performance issues (e.g., memory leaks). However, much

of the data that is generated during a performance test is repetitive. Performance

testers can stop their performance tests (to reduce the time to market and the costs

of performance testing) when the test no longer offers new information about the sys-

tem’s performance. Therefore, in this thesis, we propose two automated approaches

that reduce the execution time of performance tests by measuring the repetitiveness

in the performance metrics that are collected during a test.

The first approach measures repetitiveness in the values of the performance met-

ric, e.g., CPU utilization, during a performance test. Then, the approach provides

a recommendation to stop the test when the generated performance metric values

become highly repetitive and the repetitiveness is stabilized (i.e., relatively little new

information about the systems’ performance is generated). The second approach also

recommends the stopping of a performance test, by measuring the repetitiveness in

i

the inter-metrics relations. Our second approach combines the values of the perfor-

mance metrics that are generated at a given time into so-called a system state. For

instance, a system state can be the combination of a low CPU utilization value and

a high response time value. Our second approach recommends a stopping time when

the generated system states during a performance test becomes highly repetitive.

We performed experiments on three open source systems (i.e., CloudStore, Pet-

Clinic and Dell DVD Store). Our experiments show that our first approach reduces

the duration of 24-hour performance tests by up to 75% while capturing more than

91.9% of the collected performance metric values. In addition, our approach recom-

mends a stopping time that is close to the most cost-effective stopping time (i.e., the

stopping time that minimizes the duration of a test while maximizing the amount of

information about the system’s performance as provided by the performance test).

Our second approach was also evaluated using the same set of systems. We find that

the second approach saves approximately 70% of the execution time while preserv-

ing at least 95% of the collected system states during a 24-hour time period. Our

comparison of the two approaches reveals that the second approach recommends the

stopping of tests at more cost-effective times, in comparison to our first approach.

ii

Co-authorship

An earlier version of Chapter 3 was published as below:

• An Automated Approach for Recommending When to Stop Performance Tests.

Hammam M. Alghamdi, Mark D. Syer, Weiyi Shang and Ahmed E. Hassan,

32nd IEEE International Conference on Software Maintenance and Evolution

(ICSME). Raleigh, USA 2016. Oct 4-8 (acceptance rate: 37/127 (29%))

My contribution: Drafting the research plan, conducting experiments, col-

lecting the data, analyzing the data, writing and polishing the paper drafts, and

presenting the paper.

iii

Acknowledgments

I would like to express my sincerest gratitude to my supervisor, Professor Ahmed E.

Hassan, for his patience during my MSc study, as well as his unparalleled motivation

and immense knowledge, without which this thesis would not have been completed. I

would never forget my first meeting with him, during which he enlightened me right

away with just a glance at my research. His support and guidance were unwavering

during the entire course of my study. I could not have imagined having a better

supervisor and mentor for my MSc study than Professor Hassan.

My sincere thanks also go to Dr. Weiyi Shang, Dr. Cor-Paul Bezemer, and

Dr. Mark D. Syer, who afforded me the opportunity to be a part of the team.

Their dedication, commitment, and support contributed significantly to my research

achievements. What I learned from them is invaluable, and I will forever be grateful

to them.

I likewise thank my fellow lab mates for the friendship and companionship. In

particular, I express my gratitude to Ravjot who has been more than a friendhe has

been a true brother to me. He has helped me considerably, and I would forever be

indebted to him. I am also grateful to Safwat, Sami, Tariq, Suhas, Hend, Daniel, and

Sumit for the friendship and the great times together.

I also thank my parents for always being there for me. The greatest motivation

iv

that makes me continue my path toward success is seeing joy and pride in their faces.

May Allah reward you for everything you have done for us. I likewise thank my

brothers and sister for their unwavering moral support and encouragement.

Finally, I thank my dear wife, Khulud, my greatest gift from God. You are my

inspiration throughout this academic journey and my stalwart partner in life’s ups

and downs.

v

Contents

Abstract i

Co-authorship iii

Acknowledgments iv

Contents vi

List of Tables ix

List of Figures xi

Chapter 1: Introduction 1
1.1 Research Statement . 3
1.2 Thesis Overview . 4
1.3 Major Thesis Contributions . 5
1.4 Organization of Thesis . 6

Chapter 2: Background and Related Work 7
2.1 Workload Scenarios . 8

2.1.1 Covering the Source Code: . 8
2.1.2 Covering the Scenarios that are Seen in the Field: 8
2.1.3 Covering Scenarios that are Likely to Expose Performance Issues. 9

2.2 Workload Intensity . 11
2.2.1 Steady Workload: . 11
2.2.2 Step-wise Workload: . 11

2.3 Test Execution Time . 12

Chapter 3: Cost-effective Stopping of a Performance Test Using
the Repetitiveness in the Collected Performance Met-
ric Values 13

3.1 Chapter Introduction . 14

vi

3.2 A Motivating Example . 15
3.3 Our Approach for Determining a Cost-Effective Length of a Perfor-

mance Test . 18
3.3.1 Collecting Performance Test Data 19
3.3.2 Determining the Use of Raw or Delta Values of a Metric . . . 20
3.3.3 Measuring the Repetitiveness 21
3.3.4 Smoothing Likelihood of Repetitiveness 27
3.3.5 Calculating the First Derivative of Repetitiveness 27
3.3.6 Determining Whether to Stop the Test 28

3.4 Experiment Setup . 28
3.4.1 Subject Systems . 29
3.4.2 Deployment of the Subject Systems 29
3.4.3 Performance Tests . 29
3.4.4 Data collection . 30
3.4.5 Parameters of Our Approach 31
3.4.6 Leveraging Existing (Jain’s) Approach to Stop Performance Tests 32
3.4.7 Preliminary Analysis . 33

3.5 Case Study Results . 33
3.6 Threats to validity . 38

3.6.1 Threats to Internal Validity 38
3.6.2 Threats to Construct Validity 39

3.7 Chapter Conclusion . 41

Chapter 4: Cost-effective Stopping of a Performance Test Using
the Repetitiveness in the collected Inter-Metrics Rela-
tions 42

4.1 Chapter Introduction . 43
4.2 A Motivating Example . 44
4.3 Our Approach for Determining a Cost-Effective Length of a Perfor-

mance Test . 46
4.3.1 Collecting Data . 47
4.3.2 Transforming the Collected Metrics into States 48
4.3.3 Determining Whether to Stop the Test 51

4.4 Experiment Setup . 51
4.4.1 Experiment Environment . 52
4.4.2 Parameters of Our Approach 53

4.5 Case Study Results . 54
4.6 Threats to validity . 61

4.6.1 Threats to Internal Validity 62
4.6.2 Threats to External Validity 62

vii

4.6.3 Threats to Construct Validity 63
4.7 Chapter Conclusion . 63

Chapter 5: Conclusion 65
5.1 Summary . 66

5.1.1 Thesis Summary . 66
5.2 Future Work . 67

Bibliography 70

viii

List of Tables

3.1 A motivational example of our approach for stopping a test using the

repetitiveness of performance metric values 17

3.2 Wilcoxon test results for our working example 25

3.3 The stopping times that are recommended by our approach for perfor-

mance tests. The values of the stopping times are hours after the start

of the tests. 34

3.4 The percentages of the post-stopping generated data is repetitive of

the pre-stopping generated data. 37

3.5 The delay between our recommended stopping times and the most

cost-effective stopping times. 38

4.1 A motivational example of a performance issue that is missed by a test

of which the execution time is reduced using our previous approach.

As our previous approach detects repetition on metric values, period

p3 is considered repetitive (i.e., with p1 for the response time (RT)

metric and with p2 for the CPU metric). The approach presented in

this chapter does not consider any of the periods repetitive. 45

ix

4.2 An example of performance metrics and metric states. Orange cells

show the low value metric state (i.e., S1), blue cells show the medium

value metric state (i.e., S2), and yellow cells show the high value metric

state (i.e., S3) . 50

4.3 The stateunique for every 5 minutes in the example in Table 4.2 53

4.4 The recommended stopping times and the state coverage when apply-

ing our approach to the tests . 55

4.5 Comparison between the state coverage and the stopping times of our

new approach and our previous approach that is presented in Chapter 3 57

4.6 The states that are missed by our new approach and captured by the

24-hour performance tests . 60

4.7 The states that are missed by our previous approach that is presented

in Chapter 3 and captured by the 24-hour performance tests 61

4.8 The coverage-opportunity scores of our approaches. 61

x

List of Figures

3.1 An Overview of Our Approach . 19

3.2 Our Approach that Evaluates Whether the Recommended Stopping

Times is too Early . 35

4.1 An overview of our approach . 47

4.2 The MEM, 4 MEM, and RT metrics from the example in Table 4.2 . 49

4.3 Transforming the values into states for the example from Table 4.2.

The red vertical lines are the state boundaries determining the states 52

4.4 State coverage of our experiments over time. The red line is the stop-

ping time that is recommended by our proposed approach. The blue

line is the stopping time recommended by our previous approach that

is presented in Chapter 3. 56

4.5 An imaginary example showing the difference between a borderline-

state and a clearly-identified-state. A metric value that is inside the

light grey background area is considered as close to a state boundary 58

xi

1

Chapter 1

Introduction

2

The performance of large-scale software systems (e.g., Gmail and Amazon) is a

critical concern as they must concurrently support millions of users. Failures in these

systems are often due to performance issues rather than functional issues [1, 2]. Such

failures may have significant financial and reputational consequences. For example,

a failure in Yahoo mail on December 12, 2013, resulted in a service outage for a

large number of users [3]. A 25-minute service outage on August 14, 2013 (caused by

a performance issue) cost Amazon around $1.7 million [3]. Microsoft’s cloud-based

platform, Azure, experienced an outage due to a performance issue on November 20,

2014 [4, 5], which affected users worldwide for 11 hours. These performance failures

affect the competitive position and reputation of these large-scale software systems

because customers expect high performance and reliability.

To ensure the performance of large-scale software systems, performance tests are

conducted to determine whether a given system satisfies its performance requirements

(e.g., minimum throughput or maximum response time) [6]. Performance tests are

conducted by examining the system’s performance under a workload in order to gain

understanding of the system’s expected performance in the field [7]. Therefore, per-

formance tests are often carefully designed to mimic real system behaviours in the

field and uncover performance issues.

One of the challenges that is associated with designing performance tests is deter-

mining how long a performance test should last. Some performance issues (e.g., mem-

ory leaks) might only appear after a test is executed for an extended period of time.

Therefore, performance tests may potentially last for days to uncover such issues [8].

Although in practice, performance tests are often pre-defined (typically by prior expe-

rience or team convention) to last a certain execution time, there is no guarantee that

1.1. RESEARCH STATEMENT 3

all the potential performance issues would appear before the end of the tests. More-

over, performance tests are often the last step in already-delayed and over-budget

release cycles [9] and consume significant resources. Therefore, it is necessary to re-

duce the execution time of a performance test when possible, while preserving the

amount of information about the system the test reveals.

There exists a point in time at which the cost-effectiveness of the test is the highest,

i.e., if the test continues to execute after this point, the amount of new information

that is generated during the test is too minor to be beneficial. Determining the cost-

effective length of a performance test may speed up the releases cycles, i.e., reduce the

time to market, while saving testing resources, i.e., reducing the computing resources

that are required to run the test and to analyze the results.

A performance test often repeats the execution of test cases multiple times [10].

This repetition generates repetitiveness in the results of the test, i.e., performance

metrics. Therefore, in this thesis, we aim to identify the cost-effective stopping time

of a performance test by measuring the repetitiveness in the collected performance

metrics.

1.1 Research Statement

With the increase of the complexity of large-scale systems, performance testing has

become a very important phase before the deployment of any new version of these sys-

tems. Prior research studied many aspects of performance testing, including detecting

performance regression [11, 12, 13], and test workload selection [14, 15, 16]. However,

to the best of our knowledge, there exists very limited research about reducing the

execution time of performance testing [17, 18].

1.2. THESIS OVERVIEW 4

Running the tests longer or shorter than the cost-effective execution time results

in undesirable consequences (e.g., missing the identification of performance issues or

delaying release cycles). Therefore, a study of when to stop a performance test is

needed in order to avoid such undesirable consequences.

1.2 Thesis Overview

This thesis presents two approaches for recommending the stopping of a performance

test:

1. Cost-effective Stopping of a Performance Test Using the Repetitiveness in the

Collected Performance Metric Values (Chapter 3): Intuitively, performance

testers may consider stopping a performance test if they believe that 1) the

newly-generated metric values from continuing the test would likely be simi-

lar to the already-collected metric values, or 2) the trends in the performance

metric values from continuing the test would likely be similar to the already-

collected trends. Therefore, our first approach measures the repetitiveness of

performance metric values and recommends the stopping of a test when all

metric values become highly repetitive.

To evaluate our approach, we conduct 24-hour performance tests on three online

open source systems (i.e., CloudStore, PetClinic and Dell DVD Store). We find

that our approach saves up to 75% of the execution time and preserves more

than 91% of the performance metric values that are produced during the 24

hours.

2. Cost-effective Stopping of a Performance Test Using the Repetitiveness in the

1.3. MAJOR THESIS CONTRIBUTIONS 5

collected Inter-Metrics Relations (Chapter 4): Our second approach addresses

a limitation of our first approach. For example, a test generates at hour 1: low

CPU utilization values and high memory usage values, at hour 2: low CPU

utilization values and low memory usage values, and at hour 3: high CPU uti-

lization values and low memory usage values. Our first approach recommends

to stop this test at hour 3 because the CPU and memory metrics generate repet-

itive values. However, if we look at the inter-metrics relations, i.e., combination

between the CPU and memory metrics, the test does not produce any repetitive

combination.

The inter-metrics relations captures so-called a system state. Such state de-

scribes how the metrics correlate with each other, which is important for captur-

ing the complex performance behaviour of a system [19]. Our second approach

recommends to stop a performance test when it no longer produces new system

states.

We evaluate the approach using the same set of software systems. We find

that our second approach saves approximately 70% of the execution time and

preserves more than 95% of the inter-metrics relations, i.e., system states.

1.3 Major Thesis Contributions

The main contributions of this thesis are as follows:

1. We are the first work to ever study in depth the important research problem of

cost- effective stopping of a performance test.

2. We propose two approaches that automatically recommends the stopping of a

1.4. ORGANIZATION OF THESIS 6

performance test by examining the repetitiveness of performance metric values

or the inter-metrics relations.

1.4 Organization of Thesis

We proceed by discussing the background and related work of the thesis in Chapter 2.

Chapter 3 describes our first approach for recommending the cost-effective execution

time of performance tests. Chapter 4 discusses the limitation of our first approach

and describes our second approach that addresses the discussed limitation. Chapter 5

concludes the thesis and outlines avenues for future work.

7

Chapter 2

Background and Related Work

2.1. WORKLOAD SCENARIOS 8

Performance testing is the process of evaluating a system’s behaviour under a

workload [20]. The goals of performance testing are varied and include identifying

performance issues [21], verifying whether the system meets its requirements [22], and

comparing the performance of two different versions of a system [12, 13].

Performance tests need to be properly designed in order to achieve such goals [23].

There are three aspects that need to be considered when designing a performance test:

1) workload scenarios, 2) workload intensity and 3) test length. In this chapter, we

discuss prior research along these three aspects.

2.1 Workload Scenarios

The first aspect of designing a performance test is to design the workload scenarios

that will execute against the system. There are a number of strategies for designing

these scenarios. Therefore, researchers have proposed approaches to assist in the

design of workload scenarios.

2.1.1 Covering the Source Code:

A relatively näıve way of designing workload scenarios is to ensure that the scenarios

cover a certain amount of the source code [24].

2.1.2 Covering the Scenarios that are Seen in the Field:

A more advanced way of designing workload scenarios is to ensure that the scenarios

cover a certain amount of the field workload [7].

2.1. WORKLOAD SCENARIOS 9

2.1.3 Covering Scenarios that are Likely to Expose Performance Issues.

A typical test case prioritization approach is based on the number of potential faults

that the test case is likely to expose [25] or the similarity between test cases [15].

Noor et al. conducted two studies that prioritize or rank test cases. In their

first study [25], they define a new risk measure (i.e., risk-driven metric) that assigns

a risk factor to a test case. The classical prioritizing metric for test cases is based on

previously-failing test cases. A failing test case in a prior release has a high potential

to fail in the new release. Their new metric does not only rely on that factor. It

also measures the similarity between the two test cases, i.e., from the previous and

new releases. The reason behind measuring the similarity is that a new release may

introduce new modifications, which did not exist in the prior version of the system. In

their second study [15], they propose an approach (i.e., a similarity-based approach)

that prioritizes the test cases using their new metric. They rank the test cases based

on two factors: 1) whether a test case detected a failure in the previous release and 2)

the similarity between that test case and the same test case in the previous release.

Then based on the rank of the test cases, they are prioritized.

These approaches often generate workloads that are too large or complex to be

used for performance testing. Therefore, performance testers must determine the most

important aspects of the workload using a reduction approach. Several approaches

exist to reduce these workload.

Reduction based on Code Coverage as a Baseline: Avritzer et al. propose

a technique that limits the number of test cases by selecting a subset of the test

cases [26]. First, a given system is modelled as a Markov chain, which consists of a

2.1. WORKLOAD SCENARIOS 10

finite number of states (i.e., each state consists of a sequence of rules that were fired

as a result of a change in object memory). A subset of the test suite is selected to

maximize test coverage (i.e., percentage of unique states that are covered by the test

case). Jiang et al. propose a technique that is related to Avritzer’s technique [26]

in that both techniques define a set of different system states. However, Jiang et al.

use a different definition for a state, which is the active scenarios that are extracted

from the execution logs of the system under the test. Their technique reduces the

time of User Acceptance Testing by comparing the scenarios (i.e., extracted from

workload scenarios logs) of a current test and a baseline test [27]. The intuition of their

technique is to measure whether all possible combinations of workload scenarios have

already been covered in the test. The technique first identifies all the combinations

of workload scenarios from prior tests. In a new test, if most of the combinations

of workload scenarios have appeared, the test can be stopped. However, such a

technique may not be effective for a performance test. Some workload scenarios with

performance issues, such as memory leaks, would not have a large impact on system

performance if they are only executed once. Such workload scenarios need to be

repeated for a large number of times in order to unveil performance issues.

Hybrid Reduction Approaches: Several researchers have proposed reducing the

number of workload scenarios based on analyzing multiple dimensions. Mondal et

al. propose a metric to prioritize the selection of test cases that maximizes both

code coverage and diversity among the selected test cases using a multi-objective

optimization approach [16]. Shihab et al. propose an approach that prioritizes lists of

functions that are recommended for unit testing by extracting the development history

of a given system [28]. Cangussu et al. propose an approach based on an adaptive

2.2. WORKLOAD INTENSITY 11

or random selection of test cases by using polynomial curve fitting techniques [14].

Hemmati et al. evaluate the effectiveness of three metrics (i.e., coverage, diversity, and

risk) for test case prioritization [29]. Their work concludes that historical riskiness

is effective in prioritizing test case in a rapid release setting. Elbaum et al. [30]

propose a test case selection and prioritization techniques in a continuous integration

development environment. Test cases that would execute modules that are related to

newly-changed code are prioritized over other tests.

2.2 Workload Intensity

The second aspect of designing a performance test is to specify the intensity of the

workload (e.g., the rate of incoming requests or the number of concurrent requests).

There are two strategies for designing a performance test:

2.2.1 Steady Workload:

Using this strategy, the intensity remains steady throughout the test. The objective

of this strategy, for example, can be to verify the resource requirements such as CPU

and response time for a system under a test [31], or to identify performance issues

(e.g., memory leaks) [32].

2.2.2 Step-wise Workload:

Using this strategy, the intensity of a workload varies throughout the test. For ex-

ample, a system may receive light usage late at night in comparison to other peak

hours. Therefore, another strategy of designing a test is by changing usage rates

(i.e., workload intensity). The step-wise strategy refers to increasing the workload

2.3. TEST EXECUTION TIME 12

intensity periodically. This strategy may be used to evaluate the scalability of a

system [2]. Increasing the workload intensity may uncover the ability of the system

to handle heavy workloads. Furthermore, Hayes et al. [33] describe the approach of

adjusting the number of concurrent users as not realistic as it may give misleading re-

sults (i.e., any serious workload variation in the field may lead to performance-related

failures).

2.3 Test Execution Time

The third aspect of designing a performance test is to specify the duration of the

test. The chosen test cases or workload scenarios can have a finite length. During a

performance test, the execution of these test cases are repeated multiple times [34].

Jain [17] designs an approach to stop a performance test by measuring the variances

between response time observations. His approach recommends stopping the perfor-

mance test when the variance is lower than 5% of the overall mean of the response

time values. Busany et al. [18] propose an approach that can be used to reduce test

length by measuring the repetitiveness of log traces.

Intuitively, a performance tester may stop a test if the test does no longer offer

new information. Therefore, in this thesis, we propose two automated approaches

that reduce the execution time for performance tests by measuring the repetitiveness

in the performance metrics that are collected during a test.

13

Chapter 3

Cost-effective Stopping of a Performance Test

Using the Repetitiveness in the Collected

Performance Metric Values

3.1. CHAPTER INTRODUCTION 14

3.1 Chapter Introduction

In this chapter we present an approach that automatically determines when to stop

a performance test. Our approach measures the repetitiveness of the performance

metrics during a performance test. We use the raw values of these metrics to mea-

sure the repetitiveness of the metric values and we use the delta of the raw values,

i.e., the differences in the raw metric values between two consecutive observations

of these performance metrics, to measure the repetitiveness of the observed trends

in the performance metrics. To automatically determine whether it is cost-effective

to stop a test, our approach examines whether the repetitiveness has stabilized. Our

intuition is that as the test progresses, the system’s performance is increasingly repet-

itive. However, this repetitiveness eventually stabilizes at less than 100% because of

transient or unpredictable events (e.g., Java garbage collection). Our approach would

recommend stopping the test if the repetitiveness (for either raw values or delta val-

ues) stabilizes. In addition, the repetitiveness measured by our approach can be

leveraged as a reference for performance testers to subjectively determine whether to

stop a performance test or not.

To evaluate our approach, we conduct a case study on three open-source systems

(i.e., CloudStore, PetClinic and Dell DVD Store). We conducted performance tests

on these systems. We use a random workload for Dell DVD Store, and use a steady

workload for CloudStore, PetClinic. We then used our approach to recommend when

each test should stop. We measure the repetitiveness in performance metrics by

running each test for 24 hours.

We find that the data that would be generated after the recommended stopping

time is 91.9% to 100% repetitive of the data that is collected before our recommended

3.2. A MOTIVATING EXAMPLE 15

stopping time. Such results show that continuing the test after the recommended

stopping time generates mostly repetitive data, i.e., little new information about the

performance. In addition, we calculate such repetitiveness for every hour during the

test and we find that the delay between the most cost-effective stopping time and our

recommended stopping time is short, i.e., within a three-hour delay.

This chapter is organized as follows. Section 3.2 provides a motivation example

in order to give a clearer idea of where and when to use our approach. Section 3.3

explains the phases of our approach. We discuss our case study in Section 3.4, followed

by the results in Section 3.5. Then threats to the validity of our work are presented

in Section 3.6. We conclude the chapter in Section 3.7.

3.2 A Motivating Example

Eric is a performance tester for a large-scale software system. His job is to conduct

performance tests before every release of the system. The performance tests need to

finish within a short period of time, such that the system can be released on time.

In order to finish the performance tests before the release deadline, Eric needs to

know the most cost-effective length of a test. Eric usually performs the appropriate

length of a performance test based on his experience, gut feelings, and (unfortunately)

release timelines.

A performance test consists of the repeated execution of workload scenarios.

Hence, Eric develops a näıve approach that verifies whether a performance test has

executed all the scenarios. Once the test has executed all workload scenarios at least

once, the test is stopped. However, some performance issues (e.g., memory leaks) may

only appear after a large number of executions. Stopping the performance test after

3.2. A MOTIVATING EXAMPLE 16

the single execution of each workload scenario would not detect such performance

issues.

Eric uses performance metrics to analyze the system’s performance. If the per-

formance metrics become repetitive, continuing the test would not provide much

additional information. In addition, Eric found that if he observed trends of a perfor-

mance metric in the beginning of a test, he can use the trend to calculate the metric

values in the rest of the test. Table 3.1 shows an imaginary example of four perfor-

mance metrics that are generated during a performance test. During the performance

test, the memory usage has an increasing trend. Therefore, the delta between every

two consecutive memory usage values are also shown in the table.

In this example, i.e., Table 3.1, the values of the performance metrics from time

stamp 304 to 308, i.e., the time period rep1 in Table 3.1, and 310 to 314 (i.e., rep2),

are repetitive to (i.e., exactly the same values as) time stamp 326 to 330 (i.e., rep′1),

and 321 to 325 (i.e., rep′2). If the test is stopped at time stamp 321, Eric would not

miss any performance metric value from the test, while the total duration of the test

case would be reduced to 321 minutes.

Therefore, Eric re-designed his automated approach to recommend the stopping of

a performance test based on the repetitiveness of values or trends of the performance

metrics that are generated during the test. Once the data that is generated during a

performance test becomes highly repetitive, the approach recommends the stopping

of the test.

In practice, tests last for hours or days and hundreds or thousands of performance

metrics are generated. Therefore, performance tests need a scalable and automated

approach to determine when to stop. In the next section of this chapter, we explain

this automated approach in detail.

3.2. A MOTIVATING EXAMPLE 17

Table 3.1: A motivational example of our approach for stopping a test using the
repetitiveness of performance metric values

Time RT CPU MEM 4 MEM IO

301 82 9 86 86 90
302 26 7 113 27 3
303 80 7 135 22 70
304 81 52 182 47 77 } rep1

305 83 99 224 42 74
306 12 53 229 5 57
307 5 99 229 0 67
308 17 93 240 11 37
309 37 40 319 79 25
310 62 29 396 77 47 } rep2

311 83 61 411 15 10
312 98 69 428 17 93
313 71 22 494 66 2
314 31 79 556 62 13
315 68 15 568 12 86
316 25 26 616 48 77
317 18 65 706 90 27
318 36 53 770 64 87
319 51 1 843 73 53
320 100 93 942 99 62
321 62 29 1,019 77 47 } rep′2

322 83 61 1,034 15 10
323 98 69 1,051 17 93
324 71 22 1,117 66 2
325 31 79 1,179 62 13
326 81 52 1,226 47 77 } rep′1

327 83 99 1,268 42 74
328 12 53 1,273 5 57
329 5 99 1,273 0 67
330 17 93 1,284 11 37

3.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 18

3.3 Our Approach for Determining a Cost-Effective Length of a Perfor-

mance Test

In this section, we present our approach for determining a cost-effective length for a

performance test. Figure 3.1 presents an overview of our approach.

Table 3.1 shows a motivational example1 of performance metrics that would be

collected during a performance test. The performance metrics in Table 3.1 are col-

lected every minute. The values of the performance metrics at each time stamp are

called observations. To ease the illustration of our approach, we show a small example

with only four performance metrics (i.e., response time, CPU usage, memory usage,

and I/O traffic) and 30 observations. However, the number of performance metrics

and observations is much larger in practice.

To determine when to stop the performance test, we periodically (e.g., every

minute) collect performance metrics during the test. After collecting the metrics,

we determine whether to use the raw values or the delta values of each metric. We

then measure the likelihood of repetitiveness. Finally, we determine when repeti-

tiveness stabilizes (and the test can be stopped) using the first derivative of each

metric.

We fit a smoothing splines to the likelihood and determine whether the likelihood

of repetitiveness has stabilized using the first derivative. Our intuition is that as

the test progresses, the system’s performance is increasingly repetitive. However,

this repetitiveness eventually stabilizes at less than 100% because of transient or

unpredictable events. Therefore, we aim to identify this stabilization point. In the

rest of this section, we present our approach in detail.

1We do not use real performance data, as such data tends to contain large values, which would
hinder the readability of this chapter.

3.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 19

Figure 3.1: An Overview of Our Approach

3.3.1 Collecting Performance Test Data

The collected performance metrics are the input of our approach. Typical perfor-

mance monitoring techniques, such as PerfMon [35], allow users to examine and an-

alyze the performance metric values during the monitoring.

3.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 20

We collect both raw values of the metrics and the delta of metrics between two

consecutive observations of each metric. We design our approach such that we ei-

ther see highly repetitive values of the metrics, or repetitive trends of the metrics.

Therefore, we collect raw values of the metrics for measuring the repetitiveness of the

metric values and we collect the delta of the metrics to measure the repetitiveness of

the metric trends.

Since our approach runs periodically, in our working example, the first time when

we run our approach, we collect metrics from the beginning of the test to the time

stamp 320. The second time when we run our approach, we collect metrics from the

period of time from the beginning of the test to the 321 minute since we choose to

run our approach periodically every minute.

3.3.2 Determining the Use of Raw or Delta Values of a Metric

Performance metrics may illustrate trends during performance tests. For example,

memory usage may keep increasing when there is a memory leak. On the other

hand, some metrics do not show any trends during a performance test. In this step,

i.e., every time before we measure the repetitiveness of the generated performance

metric values, we determine for each metric, whether we should use the raw or delta

values. We leverage a statistical test (Mann-Kendall Test [36]) to examine whether the

generated values of a metric has a monotonic trend or not. The null hypothesis of the

test is that there is no monotonic trend in the values of a metric. A p-value smaller

than 0.05 means that we can reject the null hypothesis and accept the alternative

hypothesis, i.e., there exists a monotonic trend in the values of a metric. If there

exists a statistically significant trend, we would use the delta values of the metric,

3.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 21

otherwise, we would use the raw values of the metric.

For our working example, for the first time period, i.e., the 301st to the 320th,

the memory metric is the only metric that has a statistically significant trend (i.e., a

p-value that is <0.05 in the Mann-Kendall Test). Therefore, for our working example,

we use delta memory instead of raw memory values.

3.3.3 Measuring the Repetitiveness

The goal of this step is to measure the repetitiveness of the performance metrics

that have already been collected since the beginning of a performance test. The

more repetitive, the more likely that the test should be stopped, since the data to be

collected by continuing the performance test is more likely to be repetitive.

It is challenging to measure repetitiveness of performance metrics. Performance

metrics are measurements of resource utilizations. Such measurements typically do

not have exact matches. For example, two CPU usage values may be 50.1% and 50.2%.

It is hard to determine whether such differences between two performance metric

values correspond to an actual performance difference or if such differences are due to

noise [37]. Statistical tests have been used in prior research and in practice to detect

whether performance metric values from two tests reveal performance regressions [12,

38]. Therefore, we leverage statistical tests (e.g., Wilcoxon test [39]) to determine

whether the performance metric values are repetitive between two time periods. We

choose the Wilcoxon test as it does not have any assumptions on the distribution of

the data.

(I) Selecting the First Random Time Period (Periodi)

In order to measure the repetitiveness of performance metrics, we randomly

3.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 22

select a time period (Periodi) from the performance test and check whether

there is another period during the performance test that has generated similar

data. The length of the time period lenτ is a configurable parameter of our ap-

proach. In our working example, the performance test data shown in Table 3.1

has 30 observations. With a time period of 5 observations (lenτ = 5), we may

select time period Periodi from time stamp 317 to 321.

(II) Determining Whether Periodi is Repetitive

In this step, we determine whether there is another time period during the

performance test that has similar data to Periodi. First, we randomly select

another time period (Periodj). We do not consider overlapping time periods

Periodi. For example, in Table 3.1, any time period that contains observations

from time stamp 317 to 321 is not considered. Second, we compare the data

from Periodi to the data from Periodj to determine whether they are repeti-

tive. If not, another time period is randomly selected (a “new” Periodj) and

compared to Periodi. If we cannot find a time period Periodj that is similar

to Periodi, we consider Periodi as a non-repetitive time period.

(a) Calculating the Smax for Periodj: One may perform an exhaustive

search on all the possible time periods to find a time period Periodj that

generates similar data as Periodi. For our working example, since a time

period consists of five observations (configured as a parameter), there are

16 possible time periods (i.e., those do not overlap with Periodi). Usually

a long running performance test, leads to a substantial number of possible

time periods. For example, a typical performance test that runs for 48

hours and collects performance metrics every 30 seconds, would contain

3.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 23

over 5,700 possible time periods of 30 minutes. Thus, our approach would

likely take a long time to execute. Since our approach aims to stop the per-

formance test to reduce the performance test duration, we determine the

number of searches (Smax) based on a statistically representative sample

size [40].

We consider all possible time periods that do not overlap with Periodi as

a population and we select a statistical representative sample with 95%

confidence level and ±5 confidence interval as recommended by prior re-

search [40]. The confidence interval is the error margin that is included in

reporting the results of the representative samples.

For example, if we choose a confidence interval of 5, and based on a random

sample, we find that 40% of the time periods are repetitive. Such results

mean that the actual likelihood of having repetitive time periods is between

35% (40-5) and 45% (40+5). The confidence level indicates how often the

true percentage of having repetitive time periods lies within the confidence

interval. For the same previous example, there is a 95% likelihood that

the actual likelihood of having repetitive time periods is between 35% and

45%.

By selecting a statistical sample of time periods to search for Periodj, we

can reduce the number of searches as in comparison to exhaustive search.

For example, if there are 5, 000 time periods, we only need to randomly

sample 357 time periods to compare to Periodi. In our working example,

the number of random time periods to search for Periodj is 15. Because

we use a small size of data (i.e., 16) in our working motivational example,

3.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 24

the size of statistical sample does not have a large difference to the size

of the entire data. With larger data, we would have a considerably larger

reduction in the size of the statistical sample relative to the entire data.

First of all, Sample Size (SS) is determined as a constant value (i.e., 384) in

our approach because we use fixed configurations. Our configurations are

95% confident level, and a confidence interval of ±5 as Then we calculate

the representative sample, i.e., the number of random time periods to search

for Periodj, out of the total number of possible time periods Pop. To

compute that, we use the formula in [40].

Smax =
384

1 + ((384)
Pop

)
(3.1)

To compute Pop, we filter out the time periods and we eliminate the time

periods that are less than the selected time period length. To compute

Pop, we use following formula:

Pop = N − (len(τ) ∗ 3) + 1 (3.2)

Where N is the length of the performance metrics file and lenτ is the length

of selected time period. For our working example, let say that Periodi is

in the range (317,322), and our parameters stay the same (i.e., lenτ= 5

and N =30). We filter out the time periods that are in the range (313,322)

as per (1) and time periods (327,330) as per (2). Therefore, Pop as per

the Equation 3.2 will be 16.

(b) Selecting Another Random Time Period (Periodj): We select a

3.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 25

Table 3.2: Wilcoxon test results for our working example

Performance Metrics

RT CPU 4 Memory IO

p-values 0.0258 0.313 0.687 0.645

second random time period Periodj with the same length as Periodi and

determine whether Periodi and Periodj are repetitive. In our working

example, the time period (304,308) is randomly sampled as Periodj.

(c) Determining the Repetitiveness Between (Periodi) and (Periodj):

To determine whether Periodi (e.g., (317,321)) and Periodj (e.g., (304,308))

are repetitive, we determine whether there is a statistically significant dif-

ference between the performance metric values during these two time peri-

ods using a two-tailed unpaired Wilcoxon test [39]. Wilcoxon tests do not

assume a particular distribution of the population. A p − value > 0.05

means that the difference between the metric values from both time pe-

riods is not statistically significant and we cannot reject the hypothesis

(i.e., there is no statistically significant difference of the metric values be-

tween Periodi and Periodj). Failure to reject the null hypothesis means

that the difference between the metric values from two time periods is not

statistically significant. In such cases, we consider Periodi and Periodj to

be repetitive. The Wilcoxon test is applied to all metrics from both time

periods. The p-values of Wilcoxon tests for the metrics of our working

example are shown in Table 3.2.

The two time periods (Periodi and Periodj) are considered repetitive if

3.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 26

all the differences of all the metrics are not statistically significantly dif-

ferent between two time periods. For our working example, the difference

between the response time (RT) in two time periods is statistically signif-

icant. Therefore, we do not consider the two time periods as repetitive.

In this case, another random time period Periodj would be selected if the

number of search iterations is not reached.

(d) Checking Whether the Smax is Reached: If the total number of

searches for a repetitive time period for Periodi is not yet reached, our

approach will continue the search by selecting another random time period

as Periodj. Otherwise, the search will stop and Periodi will be reported

as not repetitive.

For our working example, when a random time period that consists of

observation 301 to 305 is selected as Periodj, the two time periods are

repetitive (i.e., p-values of all metrics are greater than 0.05). Thus, Periodi

is reported as repetitive.

(III) Repeating the Experiment

The entire process (i.e., randomly select Periodi and search for a repetitive

time period Periodj) is repeated for a large number of times (i.e., 1, 000 times)

to calculate the repetitiveness of the performance metrics. Bootstrap is a sta-

tistical technique that makes an inference of a data set. Efron et al., state that

when using bootstrap, 1,000 replications from a data set can make an infer-

ence [41]. Therefore, our approach repeats this process for 1,000 iterations. In

every iteration, our approach will report whether the Periodi is repetitive or

not repetitive.

3.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 27

(IV) Calculating the Likelihood of Repetitiveness

We determine the repetitiveness by calculating the likelihood that a randomly

selected Periodi is determined to be repetitive. In particular, we divide the

number of times that Periodi is reported as repetitive by 1, 000. After repeat-

ing the process in our working example 1, 000 times, the calculated likelihood

of repetitiveness is 81.1%. This means that after 1, 000 iterations, a repetitive

time period is found 811 times.

3.3.4 Smoothing Likelihood of Repetitiveness

We fit a smoothing spline to the likelihood of repetitiveness that is measured so far

while running the test to identify the overall trend in the likelihood of repetitiveness

(i.e., increasing or decreasing). The smoothing spline helps reduce the influence of

short term variations in repetitiveness and increases the influence of the long term

trends. We use the loess() function in R [42] to fit the smoothing spline.

3.3.5 Calculating the First Derivative of Repetitiveness

To identify the time point at which the likelihood of repetitiveness stabilizes, we calcu-

late the first derivative. These derivatives quantify the difference between successive

likelihoods. When a derivative reaches ∼ 0, the test can be stopped. A derivative is

calculated as follows:

Derivative =
likelihoodcurrent − likelihoodprevious

Periodicallydiff
(3.3)

Where the Periodicallydiff shows the number of minutes between the last time

stamp at which the previous likelihood is calculated, and the last time stamp at

3.4. EXPERIMENT SETUP 28

which the current likelihood is calculated in minutes. For our working example, the

difference between calculating a likelihood and another is one minute.

3.3.6 Determining Whether to Stop the Test

In the final phase, we identify two parameters as configurations of our approach: 1)

the threshold of first derivatives of repetitiveness (Threshold) and 2) the length of

time that the first derivative of repetitiveness is below the threshold (Duration). If

the first derivatives of repetitiveness is below the Threshold for equal or more than

the Duration, our approach would recommend stopping the test. Moreover, Duration

not only checks for the Threshold, but it also makes sure that the type of data of

every metric does not change, i.e., every metric should stick with the same type of

data (either raw data or delta data).

For our working example, a Threshold and a Duration are determined (i.e., as 0.1

and 3-minute, respectively). Therefore, the test can be stopped at the 326 minute

because its first derivative is 0.031, the two following (i.e., 0.037 and 0.093) are less

than our Threshold (i.e., 0.01), and the type of data does not change.

3.4 Experiment Setup

We evaluate our approach for determining when to stop a performance test, using

three different large systems, i.e., CloudStore [43], PetClinic [44] and Dell DVD Store

(DS2) [45]. In this section, we present the subject systems, the workloads that are

applied to them, and our experimental environment.

3.4. EXPERIMENT SETUP 29

3.4.1 Subject Systems

CloudStore [43] is an open-source e-commerce system, which follows the TPC-W

performance benchmark standard [46]. CloudStore is built for performance bench-

marking.

PetClinic [44] is an open-source web system providing a simple yet realistic design

of a web system. PetClinic was used in prior performance engineering studies [1, 11,

47].

Dell DVD store (DS2) is an open-source web system [45] that benchmarks new

hardware system installations by simulating an electronic commerce system. DS2 was

also used in prior performance engineering research [12, 13].

3.4.2 Deployment of the Subject Systems

We deploy the three subject systems in the same experimental environment, which

consists of 2 Intel CORE i7 servers running Windows 8 with 16G of RAM. One server

is used to deploy the systems and the other server is used to run the load driver. For all

subject systems, we use Tomcat [48] 7.0.57 as our web system server and MySQL [49]

5.6.21 as our database.

3.4.3 Performance Tests

To test our subject system, we use the workloads that mimic the real-life usage of the

system under the test, and cover all of the common features [50]. The workloads of

CloudStore and PetClinic are generated using Apache JMeter [51]. We used a work-

load that was used in performance engineering research studies: for PetClinic [47],

and for CloudStore [52]. The DS2 system has its own load generator, which generates

3.4. EXPERIMENT SETUP 30

a workload. The performance tests of all three subject systems are run for 24 hours.

We used two different types of load intensities: random and steady. During DS2 test,

the load intensity is randomly changed every 10 minutes, while we used steady load

for CloudStore and PetClinic. This way, we evaluate our approach using two different

types of load intensities.

3.4.4 Data collection

We collect two types of performances metrics during the execution of the performance

tests.

Physical metrics. The physical performance metrics capture the performance of

the execution environment during the performance tests. In particular, we use a per-

formance monitoring system, PerfMon [35], to collect physical performance metrics.

In this experiment, we collect the CPU utilization, memory usage, and disk usage

(I/O) of the processes of our subject systems.

Domain metric. The domain performance metrics capture the performance of the

system from the users’ perspective. We collected the average response time (RT) as

our domain performance metric. RT measures the average time that a request takes

to execute, from the moment that a user sends a request to the time the user receives

the response. RT is used in prior performance engineering studies to measure the per-

formance of a system [53, 54]. In our experiment, the DS2 load driver automatically

calculates RT during the tests. We calculate RT in the CloudStore and PetClinic

experiments by analyzing log files that are generated by JMeter during the tests.

It is challenging to analyze performance metrics that are generated from different

sources. Because of the clock skew [38], the data that is generated from PerfMon,

3.4. EXPERIMENT SETUP 31

JMeter log files, and the DS2’s load generator may not be generated at exactly the

same time. Those resources generate the performance metric measurements at every

10 seconds. To address this challenge, we calculate the average value of every three

consecutive measurements. Hence, every 30 seconds we take the average of the metric

values at 10, 20, and 30 seconds. For example, PerfMon may record the CPU uti-

lization at 12:01 (i.e., 12 minutes and 1 second), 12:11 and 12:21, while the response

time measurements are generated at 12:05, 12:15 and 12:25. When joining the two

metrics, we use the average values of the metric as the value at 12:30.

3.4.5 Parameters of Our Approach

To determine when to stop a performance test, we apply our approach on the perfor-

mance metrics of the subject systems. Our approach requires three parameters to be

configured: 1) the length of a time period (lenτ), 2) the threshold of the first deriva-

tive of repetitiveness (Threshold) and 3) the length of time that the first derivative

of repetitiveness is below the threshold (Duration).

We choose three values of each parameter in order to evaluate the sensitivity of

our approach with different parameters. For the length of a time period, we choose

two values including 15 minutes and 30 minutes. For the threshold of derivatives of

repetitiveness, we choose 0.1, 0.05 and 0.01. Finally, for the length of time that the

first derivative of repetitiveness is below the threshold, we choose 30 minutes, 40 min-

utes and 50 minutes. Therefore, we have 18 different combinations of configurations

for each subject system to evaluate our approach. In addition, our approach needs to

run periodically with the performance test. In our case study, we choose to run our

approach every 10 minutes in order to get frequent feedback on the repetitiveness of

3.4. EXPERIMENT SETUP 32

the performance metrics.

3.4.6 Leveraging Existing (Jain’s) Approach to Stop Performance Tests

Jain proposes an approach to stop a performance test by measuring the variances

between response time observations [17]. We benchmark our approach by comparing

the recommended stopping time of our approach to the recommended stopping time

of Jain’s approach. First, we group every consecutive number of response time obser-

vations into a number of batches. To determine the optimal size of batches, we keep

increasing the size of batches and measure the mean of variance. The optimal size of

a batch is the size before the mean variance drops [17]. In our experiments, we find

the optimal sizes of batches are 1.5 minutes for CloudStore and 2 minutes for both

DS2 and PetClinic. We then calculate the means of response time observations for

every batch along with the overall means of response time values. Using the variances

among the means of every batch, we calculate the confidence interval of the batch

means of response time observations. During the test, the moment the confidence

interval drops less than 5% of the overall means, the approach stops the test.

Jain’s approach recommends extremely early stopping time. We find

that Jain’s approach recommends stopping our tests shortly after starting the test.

The recommended stopping times are 7.5 minutes, 6 minutes and 20 minutes for

CloudStore, DS2 and PetClinic, respectively. Intuitively, such extremely early stop-

ping times cannot be used in practice since many performance issues, e.g., memory

leak, can only appear after running the system for a long period of time.

3.5. CASE STUDY RESULTS 33

3.4.7 Preliminary Analysis

The assumption and the most important intuition of our approach is that the perfor-

mance tests results are highly repetitive. Therefore, before evaluating our approach,

we perform a preliminary analysis to examine whether the performance tests results

are repetitive. We measure the repetitiveness of the performance metrics that are

collected during a 24-hour performance test.

All performance tests from the three subject systems are highly repet-

itive. The repetitiveness of PetClinic and DS2 is close to 100% and repetitiveness

of CloudStore is between 92% to 98%. Such results mean that if we randomly pick

performance metrics from a 15 or 30 minutes lenτ period from the performance tests,

there is an over 92% likelihood that we can find another time period during the per-

formance tests that either generates similar performance metric values or shows a

similar trend. Such a high repetitiveness confirms that our approach may be able to

stop the test within a much smaller amount of time.

3.5 Case Study Results

In this section, we present the results of evaluating our approach. Table 3.3 shows

when our approach recommends that the performance test be stopped with different

parameters. An undesired stopping time may be ether too early or too late. If a

performance test stops too early, important behaviour may be missed. On the other

hand, one may design an approach that stops the tests very late to ensure that

there is no new information (not repeated data) is generated after the stopping time.

However, stopping the tests late is against our purpose of reducing the length of a

performance test.

3.5. CASE STUDY RESULTS 34

Table 3.3: The stopping times that are recommended by our approach for
performance tests. The values of the stopping times are hours after the

start of the tests.

Duration 30 minutes 40 minutes 50 minutes

Threshold 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

CloudStore
15 minutes 5:10 6:20 7:10 5:10 6:20 7:10 5:10 6:20 7:10
30 minutes 5:30 6:10 11:20 5:30 6:10 14:10 5:30 6:10 18:20

DS2
15 minutes 7:50 7:50 9:10 7:50 7:50 9:10 7:50 7:50 9:10
30 minutes 8:10 8:20 9:40 8:10 8:20 9:40 8:10 8:20 9:40

PetClinic
15 minutes 4:20 4:30 9:30 4:20 4:30 9:30 4:20 4:30 9:30
30 minutes 4:20 6:20 7:30 4:20 6:20 7:30 4:20 6:20 7:30

To evaluate whether our recommended stopping time is too early, we measure how

much of the generated data after our recommended stopping time is repetitive of the

generated data before our recommended stopping time. The repetitiveness captures

how much behaviour is missed when we stop the test early. To evaluate whether our

recommended stopping time is too late, we evaluate how long is the delay between

the recommended stopping time and and the cost-effective stopping time.

Evaluating whether the recommended stopping time is too early. We run a

performance test for 24 hours. We note the time when our approach recommends that

the test be stopped. We then divide the data that is generated from the test into data

generated before the stopping time (i.e., pre-stopping data and (a) in Figure 3.2) and

data generated after the stopping time (i.e., post-stopping data and (b) in Figure 3.2).

We follow a similar approach as described in Section 3.3 to measure the repetitive-

ness between the pre-stopping data and the post-stopping data. First, we first select

a random time period (Periodi) from the post-stopping data. Second, we determine

whether Periodi is repetitive by searching for a Periodj with performance metric

data that is not statistically significantly different from Periodi. Third, we repeat

3.5. CASE STUDY RESULTS 35

Figure 3.2: Our Approach that Evaluates Whether the Recommended Stopping
Times is too Early

this process, i.e., selecting random Periodi from (b) in Figure 3.2), and Periodj from

(a), 1, 000 times. Finally, we calculate the likelihood that we can find a repetitive

time period between the pre-stopping data and the post-stopping data.

To compute the likelihood that we can find a repetitive time period (i.e., the

repetitiveness likelihood), we assume that B is the set of time periods before the

stopping time, and A is the set of time periods after the stopping time. Ā ⊂ A where

∀ ā ∈ Ā there exists a b ∈ B that is repetitive of ā ∈ Ā. Therefore, the repetitiveness

likelihood is the size of Ā divided by the size of A.

A very high repetitiveness likelihood indicates that continuing the test is not

likely to reveal much new information about the system’s behaviour. When the

repetitiveness likelihood is high, then our approach recommended a cost-effective

time to stop the test. Conversely, when the repetitiveness likelihood is low, then our

approach recommended stopping the test too early (i.e., we stopped the test before

all of the system’s behaviour could be observed). Therefore, the higher repetitiveness

likelihood, the better (i.e., more cost-effective) our decision to stop the test.

Evaluating whether the recommended stopping time is too late. First,

we identify the most cost-effective stopping time. In particular, we calculate the

repetitiveness likelihood if we näıvely stopped the test at the end of every hour during

3.5. CASE STUDY RESULTS 36

the test. Then at every hour, we calculate EffectivenessScore using the following

formula:

EffectivenessScore = (Rh −Rh−1)− (Rh+1 −Rh) (3.4)

where R is a repetitiveness likelihood at the hour h. We use the EffectivenessScore

to find the hour during the test that has maximum increase of repetitiveness before the

hour and minimum increase of repetitiveness after the hour. The hour with highest

score is considered the most cost-effective stopping time. Finally, we measure the

delay between the recommended stopping time and the most cost-effective stopping

time.

Note that, one cannot know such most cost-effective time before finishing the test

to gather the complete data set. We use the most cost-effective stopping time to

evaluate whether our approach is able to recommend the stopping of the test with

minimal delay.

For example, if we find that a sequence of likelihood of repetitiveness from the

1st hour to the 6th is (12%, 16%, 89%, 92%, 97%, 97.5%), and the recommended

stopping time is at the 6th hour. We first calculate the EffectivenessScore, and they

are from the 2nd to the 5th hour as follows: (-69, 70, -2, -4.5). Therefore, the most

cost-effective stopping time is the 3th hour, and the delay is 3 hours.

Results. There is a low likelihood of encountering new data after our rec-

ommended stopping times. Table 3.4 shows the stopping time and the likelihood

of having repetitive data after the stopping time. We find that the likelihood of see-

ing repetitive data after the stopping time is between 91.9% to 100%. Therefore, the

results of our approach are not overly impacted by choosing different values for the

3.5. CASE STUDY RESULTS 37

Table 3.4: The percentages of the post-stopping generated data is repetitive of the
pre-stopping generated data.

Duration 30 minutes 40 minutes 50 minutes

Threshold 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

CloudStore
15 minutes 100 100 100 100 100 100 100 100 100
30 minutes 100 100 100 100 100 100 100 100 100

DS2
15 minutes 97 97 100 97 98 100 98 97 99.9
30 minutes 91 98 99 94 97 99 92 98 100

PetClinic
15 minutes 100 100 100 100 100 100 100 100 100
30 minutes 100 100 100 100 100 100 100 100 100

parameters.

There is a short delay between the most cost-effective stopping times

and the stopping times that are recommended by our approach. Table 3.5

shows the delay of our approach to find cost-effective stopping times for the tests.

Out of 54 stopping times in Table 3.5, 27 are under three hours away from the

most cost-effective stopping times. Whereas, only six of the stopping times that are

recommended by our approach are more than six hours away from the cost-effective

times.

The measurement of repetitiveness can be used by stakeholders to sub-

jectively decide when to stop a performance test. Our approach recommends

when to stop a performance test and measures the repetitiveness of the performance

metrics, during the performance test. Such measurements quantify the risk that is

associated with stopping a test early. Performance testers and other stakeholders

(e.g., project managers and release engineers) can leverage such information to sub-

jectively decide whether they are willing to take the risk of stopping a the test early

(i.e., comfort level).

3.6. THREATS TO VALIDITY 38

Table 3.5: The delay between our recommended stopping times and the most
cost-effective stopping times.

Duration 30 minutes 40 minutes 50 minutes

Threshold 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

CloudStore
15 minutes 1:10 2:20 3:10 1:10 2:20 3:10 1:10 2:20 3:10
30 minutes 0:30 1:10 6:20 0:30 1:10 9:10 0:30 1:10 13:20

DS2
15 minutes 3:50 3:50 5:10 3:50 3:50 5:10 3:50 3:50 5:10
30 minutes 5:10 5:20 6:40 5:10 5:20 6:40 5:10 5:20 6:40

PetClinic
15 minutes 0:20 0:30 5:30 0:20 0:30 5:30 0:20 0:30 5:30
30 minutes 0:00 1:20 2:30 0:00 1:20 2:30 0:00 1:20 2:30

�

�

�

�

The post-stopping data is highly repetitive (91.9% to 100%) rela-

tive to the pre-stopping data. There is only a short delay between

the recommended stopping times by our approach and the most

cost-effective stopping times. In 27 out of 54 cases, the delay is

under 3 hours away from the optimal stopping times.

3.6 Threats to validity

In this section, we discuss the threats to the validity of our first study.

3.6.1 Threats to Internal Validity

Statistical Tests. Our approach leverages two statistical tests. Wilcoxon tests

are used to determine whether two time periods are repetitive, and Mann-Kendall

tests are used to determine whether to use either deltas or raw data. Our use of

statistical tests poses a threat to validity in that the choices of the tests (whether

the time periods are repetitive, or whether to use delta or raw data) is determined

by a threshold of p-value (i.e., p <0.05). However, such a threshold may be too

3.6. THREATS TO VALIDITY 39

lenient or too stringent. For example, Mann-Kendall tests may cause Type I error

(i.e., accepting the null hypothesis, when it is true) or Type II error (i.e., rejecting

the null hypothesis, when it is false) [55].

Choices of Thresholds. Our approach requires three parameters as thresholds to

determine whether to stop a performance test. To evaluate the sensitivity of our

approach against different thresholds, we chose different settings for each threshold.

Then, we re-evaluate our approach with the combinations of the different settings.

We find that the choices of two parameters (i.e., lenτ and Threshold) impact our

recommended stopping time, while the choice of Duration does not impact our rec-

ommended stopping time.

Randomness in the Approach. Our time periods, i.e., Periodi and Periodj, are

selected randomly. The choice of making random selection was made to speed up our

approach. Also, to avoid the negative effect of this random selection, we repeat this

selection process for 1,000 iterations. Future studies may consider more evaluation of

this randomness by running our approach multiple times.

3.6.2 Threats to Construct Validity

The Length of the Performance Test. To conduct an evaluation of our approach

we did not stop our tests at the time when our approach recommends to stop. As it

is impossible to run the test forever to know all the possible system states that a test

may generate, we chose to run our experiments for 24-hour. However, conducting

longer test length may lead to different conclusions.

Determining Repetitiveness. In our approach, we consider two time periods to

be repetitive only if none of the performance metrics are statistically significantly

3.6. THREATS TO VALIDITY 40

different between two time periods. In practice, domain experts may consider two

time periods repetitive even if some of the performance metrics are not statistically

significantly different. However, our approach uses a stricter rule to make sure that the

two time periods are repetitive to ensure that performance testers will have confidence

in our recommendations. Performance testers may choose to use a less strict rule for

repetitiveness based on the subject systems and their level of comfort.

Measuring Trends in Performance Metrics. We use the Mann-Kendall Test to

determine whether a performance metric has a monotonic trend since the beginning of

the test and we use delta values of every two consecutive observations of a performance

metrics to measure the trend. However, there might exist other ways to measure

trends. For example, one may check the effect size of a trend by calculating the

correlation between the raw values and time. In addition, a performance metric may

exhibit more complex (e.g., sinusoid trends) trends or the trends may not start at the

beginning of the examined test.

The Duration of our Approach. Our approach needs to run periodically during a

performance test in order to determine the cost-effective time to stop the test. In our

evaluation, we run our approach every 10 minutes. Running our approach more often

may have a more accurate data about the repetitiveness of the performance metrics.

However, our approach may not be able to finish analysis in time if we run it too often

(e.g., every half a minute). However, our approach is scalable since all the iterations

for calculating the repetitiveness (see Section 3.3) can be calculated in parallel. In

addition, we chose to iterate 1,000 times to calculate the repetitiveness. In practice,

one may choose more or fewer number of iterations based on the frequency of running

our approach during the test.

3.7. CHAPTER CONCLUSION 41

3.7 Chapter Conclusion

Performance testing is critical for ensuring the performance of large-scale software

systems. Determining the cost-effective length of a performance test is challenging,

yet important task for performance testers. Therefore, we propose an approach to

automatically recommend when to stop a performance test. Our approach measures

the repetitiveness of the performance metric values that are generated since the start

of a performance test. Repetitiveness of the performance metrics is due to repeating

values or repeating trends in the metrics. If the repetitiveness of performance metrics

stabilizes, our approach recommends the stopping time of the test.

The highlights of this chapter are:

• We propose an approach to measure the repetitiveness of performance metrics.

• We propose an approach to automatically recommend when to stop a perfor-

mance test based on the repetitiveness of performance metrics.

• Our approach recommends a stopping time that is close to the most cost-

effective stopping time (i.e., the stopping time that minimize the duration of the

test and maximizes the amount of information about the system’s performance

provided by performance testing).

42

Chapter 4

Cost-effective Stopping of a Performance Test

Using the Repetitiveness in the collected

Inter-Metrics Relations

4.1. CHAPTER INTRODUCTION 43

4.1 Chapter Introduction

In Chapter 3, we propose an approach that attempts to reduce the time that is

required to run a performance test, by recommending to stop when performance

metric values that are monitored during a test become repetitive. The disadvantage

of this approach is that it discards the inter-metrics relations, i.e., the combinations

of the metrics at a given time during the test. Such a combination shows the relation

between the metrics, which is significantly helpful to understand the performance

behaviour of a system under a test [19].

Therefore, in this chapter, we revisit our previous approach in Chapter 3 by fo-

cusing on the inter-metrics relations, i.e., so-called a system state. Throughout the

execution of a performance test, the system goes through a variety of system states.

A system state is a unique combination of performance metric states. For example, a

system state can be the combination of low CPU utilization and high memory usage.

Intuitively, as the execution of the test progresses, it exercises system states that are

already exercised at an earlier stage of the test. Hence, the longer the test is execut-

ing, the less likely it becomes that new system states are being exercised. As a result,

the cost-effectiveness of a performance test, i.e., the number of new states that are

exercised in a time frame, goes down as the test progresses.

Our proposed approach periodically monitors how many new system states a per-

formance test exercises. Our approach recommends to stop the test when the number

of new system states no longer increases. We evaluate our approach by applying it to

the same experiments of our three open source systems (CloudStore, PetClinic and

Dell DVD Store), in which we use our approach to reduce the execution time of a

24-hour performance test. We find that our approach recommends the stopping of

4.2. A MOTIVATING EXAMPLE 44

the tests within 8 hours, which is a reduction of approximately 70% of the original

24-hour execution time. At the recommended stopping times, the tests were able to

exercise more than 95% of the system states that are exercised by the 24-hour test.

In summary, the main contributions of our paper are:

1. An approach for reducing the execution time of a performance test, based on

checking when a test no longer exercises new system states.

2. A comparison in which we show that our new approach recommends more cost-

effective stopping times than our previous approach.

This chapter is organized as follows. Section 4.2 presents a motivational example

for our approach. Section 4.3 describes our approach. Section 4.4 describes our exper-

imental setup, followed by the results of our experiments in Section 4.5. Section 4.6

discusses threats to the validity. We conclude the chapter in Section 4.7.

4.2 A Motivating Example

Eric is a performance engineer who works for a large software company. Eric’s task

is to ensure that every new version of a software product satisfies the performance

requirements. However, the company uses continuous delivery to deploy several new

versions of the product a day. One major challenge that Eric faces is how to conduct

performance tests in the small time-frame that is available between the deployment

of two versions of the product.

To make more efficient use of the time that is available for testing, Eric uses

our previous approach in Chapter 3 to reduce the execution time of the existing

performance tests. However, Eric notices that some performance issues are missed by

4.2. A MOTIVATING EXAMPLE 45

the tests. Table 4.1 shows parts of the performance metrics that are collected during

the execution of the performance test.

Table 4.1: A motivational example of a performance issue that is missed by a test of
which the execution time is reduced using our previous approach. As our

previous approach detects repetition on metric values, period p3 is
considered repetitive (i.e., with p1 for the response time (RT) metric and

with p2 for the CPU metric). The approach presented in this chapter
does not consider any of the periods repetitive.

Time RT CPU

100 11 (S1) 10 (S1)
}

period p1, low load100 10 (S1) 12 (S1)
101 10 (S1) 10 (S1)

...
...

...
149 49 (S2) 100 (S2)

}
period p2, high load150 50 (S2) 100 (S2)

151 50 (S2) 100 (S2)
...

...
...

199 11 (S1) 100 (S2)
}

period p3, overload200 10 (S1) 100 (S2)
201 10 (S1) 100 (S2)

The table highlights three periods p1, p2 and p3, which represent the system state,

under low load, high load and being overloaded. Using our previous approach in

Chapter 3, which searches for repetitiveness in the metric values, p3 would be consid-

ered repetitive and therefore redundant, as the observed response time is similar to

that of p1 and the observed CPU utilization is similar to that of p2.

However, p3 clearly represents a state of the system, i.e., an overloaded state, that

is not observed earlier in the test. Table 4.1 shows that studying the repetitiveness

based on the individual metric is not enough. Studying the combination between

metrics can give more information about the test, such as the load type, e.g., high or

4.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 46

low load.

Therefore, Eric transforms the observed metrics into the metric states S1 (Low)

and S2 (High) and studies the combination in which the states occur. Eric concludes

that our previous approach stops the test too early, as the system state S1 for RT and

S2 for CPU is not covered. Instead, Eric now stops the performance test when there

are no new states that are exercised by the test anymore, i.e., most of the exercised

states are repetitive.

In the remainder of this chapter, we present our approach for determining when

to stop a performance test based on the number of observed new system states.

4.3 Our Approach for Determining a Cost-Effective Length of a Perfor-

mance Test

Intuitively, during the execution of a long-running performance test, there exists a

point in time after which the test no longer provides new information about the

performance of the system under test. Hence, the performance test can be stopped

at that point in time. The goal of our approach is to find this point in time after

which the performance test becomes repetitive.

In this section, we present our approach for determining when to stop a perfor-

mance test. Figure 4.1 gives an overview of our approach, whose steps are detailed

in this section. First, we collect performance metrics from the system under test.

We transform the collected metrics into metric states. We define a system state as

the combination of metric states at a given time. Finally, we monitor the number

of newly-exercised system states during the test execution. Once the approach finds

that the test no longer exercises new system states, it recommends to stop the test.

4.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 47

In the rest of this section, we explain our approach in detail.

Figure 4.1: An overview of our approach

4.3.1 Collecting Data

We start the performance test and collect performance metrics every s seconds dur-

ing the execution of the test. Our approach has no limitation on the number and

selection of performance metrics that are collected. In this chapter, we demonstrate

our approach using the following metrics:

• Response time (RT): The average response time of the requests that were han-

dled in the last s seconds.

• CPU utilization (CPU): The average CPU utilization in the last s seconds.

• Memory usage (MEM): The memory usage in the last s seconds.

• Disk I/O (IO): The average number of bytes that are read and written in the

last s seconds.

4.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 48

Table 4.2 contains an example of metric values that are collected during 30 minutes

of an imaginary performance test. We will use the example in Table 4.2 throughout

this section to demonstrate our approach.

4.3.2 Transforming the Collected Metrics into States

When testing performance at the system level, we are not particularly interested in

exercising the precise performance values. Instead, we are interested in exercising a

range of values. For example, the difference between 75% and 76% CPU utilization

is minor, while the difference between 15% and 75% usage is relevant. Therefore, we

transforme the performance metrics values into metric states, i.e., ranges of values.

The combination of these metric states at a given time represents a system state.

Handling Metrics with Upward/Downward trends

In some cases, a performance metric may show a trend, in which the exercised values

are monotonically increasing or decreasing during the test. Such a monotonic increase

or decrease in the values of a so-called trended metric has the consequence that the

system is exercised with new performance behaviour throughout the test. However,

if the rate with which the metric increases or decreases is repetitive, the test exercises

repetitive behaviour, and therefore we can stop the test.

To capture repetitiveness in the trend of a metric, we calculate the delta (4)

values. The4 value of a metric is the difference between the current and the previous

value of a metric. Figure 4.2 shows the raw and4 values for the memory usage metric

from the example in Table 4.2, together with a non-trended metric (RT) for reference.

To determine whether to use the raw or delta values of a metric, we calculate

4.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 49

0 5 10 15 20 25 30

0
20
0

40
0

60
0

80
0

10
00

12
00

Time

M
et

ric
 v

al
ue

s

MEM
Δ MEM
RT

Figure 4.2: The MEM, 4 MEM, and RT metrics from the example in Table 4.2

the Spearman correlation between the metric values and the time [56]. We calculate

Spearman correlation by using the cor() function in R. If the metric is significantly

correlated with the time (i.e., |correlation value| > 0.5 and p-value < 0.05), we use the

4 metric values. Otherwise, we use the raw metric values. For our working example

4.3. OUR APPROACH FOR DETERMINING A COST-EFFECTIVE
LENGTH OF A PERFORMANCE TEST 50

in Table 4.2, the memory metric has |correlation value| = 1.00 and p-value < 0.05.

Therefore, we use the 4 values for the memory metric, whereas for the other metrics

we use raw values.

Table 4.2: An example of performance metrics and metric states. Orange cells show
the low value metric state (i.e., S1), blue cells show the medium value

metric state (i.e., S2), and yellow cells show the high value metric state
(i.e., S3)

t Performance metric values Metric state System state

(mins) RT CPU MEM 4 MEM IO RT CPU 4
MEM

IO exercised earlier?

1 47 43 46 46 69 S3 S2 S3 S2

2 78 59 140 94 41 S3 S2 S2 S3

3 36 32 193 53 12 S2 S2 S1 S2

4 23 56 208 15 94 S2 S2 S3 S2

5 39 10 302 94 13 S2 S1 S1 S3

6 38 50 321 19 78 S2 S2 S3 S2 X
7 16 100 330 9 36 S1 S3 S2 S1

8 21 83 340 10 48 S1 S3 S2 S1 X
9 2 13 354 14 75 S1 S1 S3 S1

10 81 42 378 24 35 S3 S2 S1 S2

11 16 88 391 13 66 S1 S3 S3 S1

12 53 80 464 73 15 S3 S3 S1 S3

13 63 23 561 97 48 S3 S1 S2 S3

14 8 27 565 4 20 S1 S1 S1 S1

15 36 64 640 75 92 S2 S3 S3 S3

16 22 84 651 11 47 S1 S3 S2 S1 X
17 87 84 704 53 61 S3 S3 S2 S2

18 40 9 799 95 12 S2 S1 S1 S3 X
19 18 89 813 14 65 S1 S3 S2 S1 X
20 84 41 829 16 50 S3 S2 S2 S2

21 7 28 834 5 21 S1 S1 S1 S1 X
22 79 60 886 52 42 S3 S3 S2 S2 X
23 38 31 944 58 13 S2 S1 S1 S3 X
24 40 11 1039 95 14 S2 S1 S1 S3 X
25 9 29 1044 5 19 S1 S1 S1 S1 X
26 64 24 1140 96 49 S3 S1 S2 S3 X
27 46 45 1187 47 70 S2 S2 S3 S2 X
28 17 89 1201 14 67 S1 S3 S3 S1 X
29 25 57 1217 16 93 S2 S2 S3 S2 X
30 46 45 1260 43 70 S2 S2 S3 S2 X

4.4. EXPERIMENT SETUP 51

Transforming the Metric Values into States

We use a binning algorithm (using the bins() function in R [57]) to transforme the

metric values into n states. A well-known usage of this algorithm is by the histogram

(hist()) function, which uses the binning algorithm to divide a data set into bins to

visualize its distribution. Figure 4.3 shows the division of metrics from the example

in Table 4.2 into 3 states. The state boundaries of the states are the red vertical lines

in the graphs.

4.3.3 Determining Whether to Stop the Test

We count the number of unique system states stateunique that the test has exercised

every τ minutes. Early in the test, stateunique increases rapidly. However, as the test

progresses, the exercised system states become repetitive, and stateunique stabilizes.

Our approach recommends to stop the test when stateunique no longer increases.

Table 4.3 shows stateunique of the example in Table 4.2 for τ = 5. stateunique grows

rapidly at the early minutes but stabilizes after t = 20. Our approach waits for

the stateunique for d minutes. For our working example, d = 5 minutes. Therefore,

our approach recommends to stop the test at 25 minutes, as stateunique did not change

for 5 minutes.

4.4 Experiment Setup

We conduct an experiment to evaluate our new approach for reducing the execution

time of a performance test.

4.4. EXPERIMENT SETUP 52

RT

values

Fr
eq
ue
nc
y

0 20 40 60 80

0
1

2
3

4
5

6
7

CPU

values
Fr
eq
ue
nc
y

0 20 40 60 80 100

0
1

2
3

4
5

6
Δ MEM

values

Fr
eq
ue
nc
y

0 20 40 60 80 100

0
2

4
6

8

IO

values

Fr
eq
ue
nc
y

20 40 60 80 100

0
2

4
6

8

Figure 4.3: Transforming the values into states for the example from Table 4.2. The
red vertical lines are the state boundaries determining the states

4.4.1 Experiment Environment

In order to conduct an evaluation between our two approaches, we used the same

performance test metric data generated from the experiment in Chapter 3. The ex-

periment consists of three online open source systems: CloudStore [43], PetClinic [44]

4.4. EXPERIMENT SETUP 53

Table 4.3: The stateunique for every 5 minutes in the example in Table 4.2

t stateunique

5 5
10 8
15 13
20 15
25 15
30 15

and Dell DVD Store 2 (DS2) [45]. The workloads of CloudStore and PetClinic are

based on Apache JMeter [51]. While, we run DS2 using its own load generator. We

collect the same four performance metrics from Chapter 3:

Physical metrics. We collect the CPU utilization, memory usage, and (I/O) usage.

Domain metric. We collect response time.

4.4.2 Parameters of Our Approach

During the experiment, we configure our approach with the following parameters:

1. n: The number of states in which we transform the metrics. In our experiments,

we use n = 3: S1, S2, and S3.

2. τ : The number of minutes, after which we measure stateunique during the exe-

cution of the tests. We use τ = 10.

3. d: The length of time that we wait for the test not exercising new system states.

We use d = 40 minutes.

4.5. CASE STUDY RESULTS 54

4.5 Case Study Results

In this section, we present the results of the experiments that we conducted to evaluate

our approach. In addition, we compare our approach with our previous approach

that is presented in Chapter 3 that recommends to stop a performance test based

on repetitiveness at the performance metric level. In this section, we evaluate our

approach by answering two research questions:

• RQ1: What is the state coverage at the stopping times that are recommended

by our approach?

• RQ2: What is the relevance of the states that are not covered when stopping a

performance test early?

RQ1: What is the state coverage at the stopping times that are recom-

mended by our approach?

Motivation. The goal of our approach is to reduce the execution time of a performance

test without reducing the information that the test provides. Stopping a test later

increases the chance of receiving more information from the test, i.e., as it covers

more system states, but comes at the cost of increased execution time of the test. On

the other hand, stopping a test too early results in missing useful information about

the systems’ performance.

Our approach recommends to stop the execution of a performance test when it

stops providing new information for d minutes. In this RQ, we evaluate the state

coverage at the recommended stopping times.

Approach. We use the data of the 24-hour test executions to evaluate the cost-

effectiveness of the recommended stopping times. We calculate the state coverage by

4.5. CASE STUDY RESULTS 55

Table 4.4: The recommended stopping times and the state coverage when applying
our approach to the tests

Subject systems # of Covered states1 Stopping time2 Coverage3 Duration4

CloudStore 81 7:30 96% 31%
PetClinic 81 8:10 98% 34%
DS2 66 5:30 95% 23%

1 the number of states that are covered by the 24-hour tests.
2 reported as hours : minutes.
3 percentage of all states that are exercised by the test at the stopping time.
4 percentage of the full execution time, i.e., 24 hours.

dividing stateunique at the stopping time by stateunique after exercising the tests for

24 hours. In addition, we compare the state coverage at the stopping times that are

recommended by our new and previous approach.

Results. Our approach reduces the execution time of the test by 70% while

covering more than 95% of the system states. Table 4.4 shows the stopping

times that are recommended by our approach and the state coverage at those times.

Table 4.4 shows that running the tests as long as the recommended stopping times

will only yield 5% additional state coverage.

Once the number of unique states that are covered stabilizes, it stabi-

lizes throughout the test. Figure 4.4 shows the stateunique as the tests progress. In

these graphs, the x-axis shows the percentage of time, and the y-axis shows the state

coverage. Overall, while the tests running, the increase rate of stateunique decelerates

over the time, until it stabilizes. We find that once the state coverage is stabilized, it

remains stabilized until the end of the test.

Our previous approach misses information about the interaction be-

tween the metrics for PetClinic and CloudStore. When stopping the test

using our previous approach, some information that our newly proposed approach

4.5. CASE STUDY RESULTS 56

0 5 10 15 20

20
40

60
80

CloudStore

Time (hours)

S
ta

te
 c

ov
er

ag
e

(%
)

0 5 10 15 20 25

20
40

60
80

10
0

PetClinic

Time (hours)

S
ta

te
 c

ov
er

ag
e

(%
)

0 5 10 15 20

20
40

60
80

DS2

Time (hours)

S
ta

te
 c

ov
er

ag
e

(%
)

Figure 4.4: State coverage of our experiments over time. The red line is the
stopping time that is recommended by our proposed approach. The blue
line is the stopping time recommended by our previous approach that is

presented in Chapter 3.

4.5. CASE STUDY RESULTS 57

Table 4.5: Comparison between the state coverage and the stopping times of our
new approach and our previous approach that is presented in Chapter 3

New approach Previous approach

Subject systems Stopping times State coverage Stopping times State coverage

CloudStore 7:30 96% 5:10 (earlier) 89%
PetClinic 8:10 98% 4:20 (earlier) 75%
DS2 5:30 95% 7:50 (later) 95%

discovers is missed. Table 4.5 shows that stopping the tests at the stopping times

that are recommended by our previous approach for CloudStore and PetClinic cover

only 89% and 75% of the states, compared to 95% and 98% in our new approach. The

stopping time that is recommended by our previous approach for DS2 covers exactly

the same amount of information that the stopping time of our proposed approach

does, i.e., 95%, but with a delay of more than two hours.�

�

�

�

Our approach is capable of reducing the execution time of a 24-

hour performance test for the three subject systems by 23−34%,

while preserving a state coverage of at least 95%.

RQ2: What is the relevance of the states that are not covered when stop-

ping a performance test early?

Motivation. Although our new approach recommends early stopping times at which

a test achieves a high state coverage (more than 95%), there are still states that

are missed by our approach but captured by the 24-hour performance tests. In this

research question, we study the relevance of these missed states.

Figure 4.5 shows an example of the distribution of the performance metrics. In

each distribution, two missed system states, i.e., m1 and m2 are indicated by the

blue lines. The MEM value for m1 is close to a state boundary, i.e., inside the light

4.5. CASE STUDY RESULTS 58

Borderline-state	(m1):	RT:s2,	CPU:s1,	MEM:s2,	and	IO:s1	
Clearly-iden?fied-state	(m2):	RT:s1,	CPU:s2,	MEM:s2,	and	IO:s3					

RT	 CPU	

MEM	 IO	

5%	of	
std	

S1	
S2	

S3	 S1	
S2	

S3	

S1	 S2	 S3	 S1	 S2	 S3	

c1	 c2	m2	 m2	

m2	 m2	m1	

m1	

m1	

m1	 c1	 c2	

c1	 c2	 c1	 c2	

Fr
eq

ue
nc
y	

Fr
eq

ue
nc
y	

Fr
eq

ue
nc
y	

Fr
eq

ue
nc
y	

Figure 4.5: An imaginary example showing the difference between a borderline-state
and a clearly-identified-state. A metric value that is inside the light grey

background area is considered as close to a state boundary

grey background area. The state, into which a metric value that is close to a state

boundary is indicated, might be affected by a few outliers of metric values as such

outliers can slightly change the state boundaries. Therefore, such borderline values

might be less relevant if one of the states that the value is close to is already covered.

Approach. To check the relevance of the missed states, we categorize them into two

types of states:

• Borderline-states : states of which at least one of their metric values is close to

a state boundary.

4.5. CASE STUDY RESULTS 59

• Clearly-identified-states : states of which none of their values is close to a state

boundary.

We consider a metric value close to a state boundary when the difference between

the value and the state boundary is less than 5% of the standard deviation (std) of the

entire metric distribution. The solid red lines in Figure 4.5 are the state boundaries

for the metrics, which transform the metric values into states. The dashed red lines

indicate 5% of the std around the state boundaries, which we use to categorize the

missed states into either borderline-states or clearly-identified-states. Because the

MEM value of m1 is close to one of the state boundaries, we categorize m1 as a

borderline-state. We categorize m2 as a clearly-identified-state, because none of its

metric values are close to a state boundary.

Furthermore, a borderline-state is considered relevant, if the borderline-state con-

tains new information about the test. The example borderline-state in Figure 4.5 can

represent two system states, depending on the state boundaries:

• RT:S2, CPU:S1, MEM:S3, and IO:S1, or

• RT:S2, CPU:S1, MEM:S2, and IO:S1

If none of these two system states are covered by the test before the recommended

stopping time, we consider the borderline-state as a relevant-borderline-state, because

the state contains new information that our approach misses to capture, regardless

of the state boundary of the MEM metric.

We compare our two approaches using the coverage-opportunity score. Coverage-

opportunity is measured in the number of new relevant states (clearly-identified-states

or relevant-borderline-states) that can be covered by running the test longer. We

4.5. CASE STUDY RESULTS 60

calculate and compare the coverage-opportunity scores of the three subject systems

at the stopping times that are recommended by our two approaches. The coverage-

opportunity score is calculated as follows:

coverage-opportunity =
missed-clearly-identified + missed-relevant-borderline

required-execution-time
(4.1)

Where the required-execution-time is the duration of time (in hours) the test

requires to cover the missed states. If the coverage-opportunity is small, it is not

cost-effective to run the test longer.

Results.

A small number of relevant states are missed by our new approach in

comparison to the 24-hour performance tests. Table 4.6 shows that our new

approach misses 1 relevant state out of 3 missed states for CloudStore, 2 relevant

states out of 2 missed states for PetClinic, and 1 relevant state out 3 missed states

for DS2.

Table 4.6: The states that are missed by our new approach and captured by the
24-hour performance tests

Missed states Borderline-states Relevant-borderline Clearly-identified

CloudStore 3 2 1 0
PetClinic 2 0 0 2
DS2 3 2 1 0

Most of states that are missed by our previous approach and captured

by the 24-hour tests are relevant. Table 4.7 shows that our previous approach

misses 3 relevant states out of 9 missed states for CloudStore, 20 relevant states out

of 20 missed states for PetClinic, and 2 relevant states out 3 missed states for DS2.

4.6. THREATS TO VALIDITY 61

Table 4.7: The states that are missed by our previous approach that is presented in
Chapter 3 and captured by the 24-hour performance tests

Missed states Borderline-states Relevant-borderline Clearly-identified

CloudStore 9 7 2 1
PetClinic 20 0 0 20
DS2 3 2 1 0

For all subject systems, the coverage-opportunity scores for our new

approach is smaller than our previous approach. Table 4.8 shows the coverage-

opportunity scores for all three subject systems. Table 4.8 shows that the stopping

times that are recommended by our new approach are more cost-effective than the

stopping times that are recommended by our previous approach.

Table 4.8: The coverage-opportunity scores of our approaches.

Coverage-opportunity score

Previous approach New approach

CloudStore 0.6 0.4
PetClinic 3.2 0.8
DS2 0.4 0.2

�

�

�

�

Our new approach misses a small number of relevant states for

all subject systems. The coverage-opportunity scores for the ap-

proach that is presented in this chapter are smaller across all

system than the coverage-opportunity scores for our previous ap-

proach, which indicates that our new approach recommends more

cost-effective stopping times.

4.6 Threats to validity

This section discusses the threats to the validity of our study.

4.6. THREATS TO VALIDITY 62

4.6.1 Threats to Internal Validity

Determining the System States. In our approach, every state is represented by

a range of values for a metric. We determine a state by calculating cutting lines for

each metric. These cutting lines might be too stringent. For example, if high CPU

utilization is between 100% and 75%, and the test generates two consecutive values

for the CPU metric of 74% and 76%, they are transformed into two different states,

even though their difference is small.

4.6.2 Threats to External Validity

Our Subject Systems. We used three open-source e-commence systems (i.e., Cloud-

Store, PetClinic, and DS2) to evaluate our approach. The programming language used

for DS2 is PHP, while Java language is used for both CloudStore and PetClinic. Our

approach may not have similar results when applied to other systems. However, the

goal of this chapter is not to recommend a universal “stopping time”, but to pro-

pose an approach that helps performance testers determine a cost-effective stopping

time for their performance tests. More case studies on additional software systems

(e.g., commercial systems) in additional domains and additional tests are needed to

comprehensively evaluate our approach.

Our Performance Tests. Our approach assumes that the system’s performance

eventually becomes repetitive. However, our approach is agnostic to whether this

repetition occurs when the system is performing well, experiencing performance issues

or encountering a performance bottleneck. We evaluate our approach by running the

two commonly-used types of load intensities: random and steady. In the performance

tests of DS2, the load drivers periodically send pre-defined combinations of requests

4.7. CHAPTER CONCLUSION 63

to the systems to evaluate performance. However, large software system may leverage

different types of load intensities (e.g., step-wise workload) of performance tests.

4.6.3 Threats to Construct Validity

The Quality of Performance Metrics. In our case study, we leverage PerfMon

and load drivers (i.e., JMeter and DS2 driver) to provide performance metrics. In

particular, the response time provided by our load drivers is an average value of re-

sponse time of all the requests that are responded during a time period. However, by

calculating the average response time, we may fail to identify extreme values. Simi-

larly, the CPU usage, Memory usage and I/O traffic are also calculated by averaging

their values over a small time period.

The Choice of Our Performance Metrics. In our experimental case study,

four performance metrics are used. During conducting a typical performance test,

hundreds of performance metrics are collected, most of which are highly correlated

[8], and fit under a limited number of categories. When conducting our experimental

study we use only four metrics but from different categories. However, our approach is

not constrained to a specific number or types of metrics. Future studies may consider

evaluating our approach with different sets of metrics.

4.7 Chapter Conclusion

Conducting a proper performance test before releasing a software system is critical,

as such a test helps to ensure the performance of the system in the field. However,

the time that is available to conduct a performance test is usually limited. In our

previous approach that is presented in Chapter 3, we proposed an approach that

4.7. CHAPTER CONCLUSION 64

recommends when to stop a performance test based on repetitiveness in observed

metric values. In this chapter, we propose an improved approach that considers the

interactions between performance metrics as well.

Our approach measures the number of new system states, i.e., the combinations

of metric value states, that a test exercises. Once a test no longer exercises new

system states, our approach recommends to stop the test. We evaluate our approach

in experiments on three open source systems (i.e., CloudStore, PetClinic and Dell

DVD Store). The most important results of our experiments are:

1. Our proposed approach stops our performance tests on average within 8 hours,

while covering at least 95% of the system states that are covered by the original

24-hour performance tests.

2. Our proposed approach recommends more cost-effective stopping times than

our previous approach that is presented in Chapter 3.

Testers can use our approach to reduce the execution time of their performance

tests, thereby taking a step towards more cost-effective performance testing.

65

Chapter 5

Conclusion

5.1. SUMMARY 66

This chapter concludes the thesis. The findings, that are presented throughout

this thesis, are summarized and possible directions for future work are presented

below.

5.1 Summary

Conducting performance tests before the deployment of every new version of a system

is important. Performance tests help to evaluate the expected performance and to

catch potential performance issues. However, performance testing itself is associated

with challenges, one of which is determining the cost-effective length of a test. Too

long tests consume resources, such as machine time, and might lead to miss release

deadlines. One way to avoid the cost of performance tests is by running shorter

tests. However, shorter tests might miss identifying performance issues. Therefore,

performance testers are in need for approaches that assist them to determine the

cost-effective length of performance tests.

In this thesis, we present two approaches that recommend to stop performance

tests at cost-effective execution timing.

5.1.1 Thesis Summary

• Cost-effective Stopping of a Performance Test Using the Repetitive-

ness in the Collected Performance Metric Values (Chapter 3):

We propose our first approach that measures the repetitiveness of performance

metric values. During a performance test, the approach collects the values

of the metric that is so-far generated. After that, it measures the likelihood

of repetitiveness. Our approach recommends to stop the test when the test

5.2. FUTURE WORK 67

generates too little new information, i.e., performance metric values.

We conduct an experiment of three 24-hour performance tests to evaluate the

approach. We find that our approach is able to stop the tests at early stopping

times, i.e., saving up to 75% of the original 24-hour length, while preserving

more than 91% of the performance metric values.

• Cost-effective Stopping of a Performance Test Using the Repetitive-

ness in the collected Inter-Metrics Relations (Chapter 4):

One limitation of our first approach is that it disregards the inter-metrics re-

lations (i.e., system states), which may miss important information about the

performance of a system [19]. Therefore, we design another approach that re-

duces the execution time of a performance test by detecting whether a test no

longer exercises new system states.

We evaluate our second approach using the same experiment of the first ap-

proach. We find that our approach reduces the the execution time of the test

to less than 8.5 hours, while preserving a coverage of at least 95% of the system

states that are observed during the 24-hour tests. In addition, we find that the

second approach recommends to stop at better cost-effective times, compared

to the first approach.

5.2 Future Work

We believe that our thesis makes a major contribution towards determining the cost-

effective execution time of performance tests. However, there remains many other

5.2. FUTURE WORK 68

open challenges and opportunities for further improvements. In this section we high-

light some of these opportunities.

• We evaluate our approach by conducting an experiment on three online open

source systems. However, open source systems may not reflect industrial soft-

ware systems. Therefore, evaluating our approach with large industrial systems

is needed to provide a better understanding of whether the approach can be

adopted in practice. Moreover, we leveraged Apache JMeter and DS2’s load

generator. However, industrial systems often use their own load generators.

Hence, using other load generators may also provide a better understanding of

the generality of our proposed approaches.

• Our approaches require a pre-configuration of their parameters. We find that

different configurations can impact our approaches. Therefore, further studies

should consider automatically optimizing the configurations of our approaches.

• In our experiment, due to the fact that performance metrics are highly corre-

lated [8], we constrain the metric selection to only four metrics, each of which

captures a different performance aspect (i.e., disk I/O verses CPU utilization).

Different metric selection may provide a better understanding of our approaches.

Thus, future studies should consider other types of performance metrics.

• To evaluate whether the next hours of the test, after the recommended stopping

times, provide new information, we did not stop the tests when our approaches

recommended so. The initial execution time of the tests are predefined, i.e., 24-

hour. Future evaluations of our approach against different initial test lengths

can lead to different conclusions.

5.2. FUTURE WORK 69

• In the second approach, i.e., presented in Chapter 4, a few outliers can slightly

change the state boundaries, which may affect the division of metric values

to states. For example, if low CPU utilization is between 10% and 35%, and

the test generates two consecutive values for the CPU metric of 34% and 36%,

they are transformed into two different states, even though their difference is

small. Therefore, future studies should consider improving our approach that is

presented in Chapter 4, thereby finding other techniques that define less strict

(i.e., fuzzy) state boundaries.

BIBLIOGRAPHY 70

Bibliography

[1] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora.

Automated performance analysis of load tests. In Proceedings of the International

Conference on Software Maintenance, pages 125–134. IEEE, 2009.

[2] Elaine J Weyuker and Filippos I Vokolos. Experience with performance testing

of software systems: Issues, an approach, and case study. IEEE Transactions on

Software Engineering, 26(12):1147–1156, 2000.

[3] Yahoo outage and amazon loss. http://blog.smartbear.com/performance/

top-10-web-outages-of-2013/. last visited: Dec 12 2016.

[4] Azure outage 1. http://www.entrepreneur.com/article/240029. last visited:

Dec 12 2016.

[5] Azure outage 2. http://www.gallop.net/blog/

top-10-mega-software-failures-of-2014/. last visited: Dec 12 2016.

[6] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early performance

testing of distributed software applications. In Proceedings of the 4th Interna-

tional Workshop on Software and Performance, WOSP ’04, pages 94–103, New

York, NY, USA, 2004. ACM.

[7] Mark D Syer, Zhen Ming Jiang, Meiyappan Nagappan, Ahmed E. Hassan, Mo-

hamed Nasser, and Parminder Flora. Continuous validation of load test suites. In

http://blog.smartbear.com/performance/top-10-web-outages-of-2013/
http://blog.smartbear.com/performance/top-10-web-outages-of-2013/
http://www.entrepreneur.com/article/240029
http://www.gallop.net/blog/top-10-mega-software-failures-of-2014/
http://www.gallop.net/blog/top-10-mega-software-failures-of-2014/

BIBLIOGRAPHY 71

Proceedings of the International Conference on Performance Engineering, pages

259–270. ACM, 2014.

[8] Haroon Malik, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Parminder

Flora, and Gilbert Hamann. Automatic comparison of load tests to support the

performance analysis of large enterprise systems. In Proceedings of the European

Conference on Software Maintenance and Reengineering, pages 222–231. IEEE,

2010.

[9] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora.

Automatic identification of load testing problems. In Proceedings of the Inter-

national Conference on Software Maintenance, pages 307–316. IEEE, 2008.

[10] Stefan Berner, Roland Weber, and Rudolf K Keller. Observations and lessons

learned from automated testing. In Proceedings of the International Conference

on Software Engineering, pages 571–579. ACM, 2005.

[11] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Ying Zou,

and Parminder Flora. An industrial case study on the automated detection of

performance regressions in heterogeneous environments. In Proceedings of the

37th International Conference on Software Engineering - Volume 2, ICSE ’15,

pages 159–168, Piscataway, NJ, USA, 2015. IEEE Press.

[12] Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora. Auto-

mated detection of performance regressions using regression models on clustered

performance counters. In Proceedings of the International Conference on Per-

formance Engineering, pages 15–26. ACM, 2015.

BIBLIOGRAPHY 72

[13] Thanh HD Nguyen, Bram Adams, Zhen Ming Jiang, Ahmed E. Hassan, Mo-

hamed Nasser, and Parminder Flora. Automated detection of performance re-

gressions using statistical process control techniques. In Proceedings of the Inter-

national Conference on Performance Engineering, pages 299–310. ACM, 2012.

[14] Joao W Cangussu, Kendra Cooper, and W Eric Wong. Reducing the number

of test cases for performance evaluation of components. In Proceedings of the

International Conference on Software Engineering and Knowledge Engineering,

pages 145–150, 2007.

[15] Tanzeem Bin Noor and Hadi Hemmati. A similarity-based approach for test case

prioritization using historical failure data. In Proceedings of the International

Symposium on Software Reliability Engineering, pages 58–68. IEEE, 2015.

[16] Debajyoti Mondal, Hadi Hemmati, and Stephane Durocher. Exploring test suite

diversification and code coverage in multi-objective test case selection. In Pro-

ceedings of the International Conference on Software Testing, Verification and

Validation, pages 1–10. IEEE, 2015.

[17] Raj Jain. The art of computer systems performance analysis, techniques for

experimental design, measurement, simulation and modeling, 1992.

[18] Nimrod Busany and Shahar Maoz. Behavioral log analysis with statistical guar-

antees. In Proceedings of the International Conference on Software Engineering,

pages 877–887. ACM, 2016.

[19] Ira Cohen, Jeffrey S Chase, Moises Goldszmidt, Terence Kelly, and Julie Symons.

Correlating instrumentation data to system states: A building block for auto-

mated diagnosis and control. In Proceedings of the Symposium on Operating

Systems Design and Implementation, volume 4, pages 16–16, 2004.

BIBLIOGRAPHY 73

[20] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. Autonomic load-testing

framework. In Proceedings of the International Conference on Autonomic Com-

puting, pages 91–100. ACM, 2011.

[21] Mark D Syer, Zhen Ming Jiang, Meiyappan Nagappan, Ahmed E. Hassan, Mo-

hamed Nasser, and Parminder Flora. Leveraging performance counters and ex-

ecution logs to diagnose memory-related ppmance issues. In Proceedings of the

International Conference on Software Maintenance, pages 110–119. IEEE, 2013.

[22] BA Pozin and Igor V Galakhov. Models in performance testing. Programming

and Computer Software, 37(1):15–25, 2011.

[23] Zhen Ming Jiang and Ahmed E. Hassan. A survey on load testing of large-scale

software systems. IEEE Transactions on Software Engineering, 41(11):1091–

1118, 2015.

[24] David Leon and Andy Podgurski. A comparison of coverage-based and

distribution-based techniques for filtering and prioritizing test cases. pages 442–

453, 2003.

[25] Tanzeem Noor and Hadi Hemmati. Test case analytics: Mining test case traces

to improve risk-driven testing. In Proceedings of the International Workshop on

Software Analytics, pages 13–16. IEEE, 2015.

[26] Alberto Avritzer, Johannes P. Ros, and Elaine J. Weyuker. Reliability testing of

rule-based systems. IEEE Softw., 13(5):76–82, September 1996.

[27] Zhen Ming Jiang, Alberto Avritzer, Emad Shihab, Ahmed E. Hassan, and Par-

minder Flora. An industrial case study on speeding up user acceptance testing by

mining execution logs. In Proceedings of the International Conference on Secure

Software Integration and Reliability Improvement, pages 131–140. IEEE, 2010.

BIBLIOGRAPHY 74

[28] Emad Shihab, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, and Robert

Bowerman. Prioritizing the creation of unit tests in legacy software systems.

Software: Practice and Experience, 41(10):1027–1048, 2011.

[29] Hadi Hemmati, Zhihan Fang, and Mika V Mantyla. Prioritizing manual test cases

in traditional and rapid release environments. In Proceedings of the International

Conference on Software Testing, Verification and Validation, pages 1–10. IEEE,

2015.

[30] Sebastian Elbaum, Gregg Rothermel, and John Penix. Techniques for improv-

ing regression testing in continuous integration development environments. In

Proceedings of the International Symposium on Foundations of Software Engi-

neering, pages 235–245. ACM, 2014.

[31] Niclas Snellma, Adnan Ashraf, and Ivan Porres. Towards automatic performance

and scalability testing of rich internet applications in the cloud. In Proceedings

of the International Conference on Software Engineering and Advanced Applica-

tions, pages 161–169. IEEE, 2011.

[32] André B Bondi. Automating the analysis of load test results to assess the scala-

bility and stability of a component. In Proceedings of the Computer Management

Group Conference, pages 133–146, 2007.

[33] Roger Hayes and Alberto Savoia. How to load test e-commerce applications.

In Proceedings of the Computer Management Group Conference, pages 275–282.

Citeseer, 2000.

[34] Elfriede Dustin, Jeff Rashka, and John Paul. Automated Software Testing: In-

troduction, Management, and Performance. Addison-Wesley Professional, 1999.

[35] PerfMon. http://technet.microsoft.com/en-us/library/bb490957.aspx.

http://technet.microsoft.com/en-us/library/bb490957.aspx

BIBLIOGRAPHY 75

last visited: Dec 12 2016.

[36] Henry B Mann. Nonparametric tests against trend. Econometrica: Journal of

the Econometric Society, pages 245–259, 1945.

[37] Tomas Kalibera and Richard Jones. Rigorous benchmarking in reasonable time.

ACM SIGPLAN Notices, 48(11):63–74, 2013.

[38] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Ying Zou,

and Parminder Flora. Mining performance regression testing repositories for

automated performance analysis. In Proceedings of the International Conference

on Quality Software, pages 32–41. IEEE, 2010.

[39] Edmund A Gehan. A generalized two-sample Wilcoxon test for doubly censored

data. Biometrika, pages 650–653, 1965.

[40] JWKJW Kotrlik and CCHCC Higgins. Organizational research: Determining

appropriate sample size in survey research appropriate sample size in survey

research. Information technology, learning, and performance journal, 19:43, 2001.

[41] Bradley Efron and Robert J Tibshirani. An Introduction to the Bootstrap. CRC

press, 1994.

[42] Fitting function. https://stat.ethz.ch/R-manual/R-devel/library/stats/

html/loess.html. last visited: Dec 12 2016.

[43] Spring CloudStore. http://github.com/cloudstore/cloudstore. last visited:

Dec 12 2016.

[44] Spring PetClinic. http://docs.spring.io/docs/petclinic.html. last visited:

Dec 12 2016.

[45] Dell DVD store. http://linux.dell.com/dvdstore. last visited: Dec 12 2016.

[46] Transaction processing performance council. http://www.tpc.org/tpcw/. last

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/loess.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/loess.html
http://github.com/cloudstore/cloudstore
http://docs.spring.io/docs/petclinic.html
http://linux.dell.com/dvdstore
http://www.tpc.org/tpcw/

BIBLIOGRAPHY 76

visited: Dec 12 2016.

[47] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed

Nasser, and Parminder Flora. Detecting performance anti-patterns for applica-

tions developed using object-relational mapping. In Proceedings of the Interna-

tional Conference on Software Engineering, pages 1001–1012. ACM, 2014.

[48] Apache Tomcat. http://tomcat.apache.org. last visited: Dec 12 2016.

[49] MySQL. http://www.mysql.com. last visited: Dec 12 2016.

[50] Robert Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools.

Addison-Wesley Professional, 2000.

[51] Apache JMeter. http://jmeter.apache.org. last visited: Dec 12 2016.

[52] Tse-Hsun Chen, S Weiyi, Ahmed E. Hassan, Mohamed Nasser, and Parminder

Flora. Cacheoptimizer: Helping developers configure caching frameworks for

hibernate-based database-centric web applications. In Proceedings of the Inter-

national Symposium on the Foundations of Software Engineering, 2016.

[53] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and

Armando Fox. Capturing, indexing, clustering, and retrieving system history. In

Proceedings of the Symposium on Operating systems principles, volume 39, pages

105–118. ACM, 2005.

[54] Pengcheng Xiong, Calton Pu, Xiaoyun Zhu, and Rean Griffith. vPerfGuard:

an automated model-driven framework for application performance diagnosis in

consolidated cloud environments. In Proceedings of the International Conference

on Performance Engineering, pages 271–282. ACM, 2013.

[55] Sheng Yue, Paul Pilon, and George Cavadias. Power of the Mann-Kendall and

http://tomcat.apache.org
http://www.mysql.com
http://jmeter.apache.org

BIBLIOGRAPHY 77

Spearman’s rho tests for detecting monotonic trends in hydrological series. Jour-

nal of Hydrology, 259(1):254–271, 2002.

[56] Thomas D Gautheir. Detecting trends using spearman’s rank correlation coeffi-

cient. Environmental forensics, 2(4):359–362, 2001.

[57] Binning algorithm. https://cran.r-project.org/web/packages/binr/binr.

pdf.

https://cran.r-project.org/web/packages/binr/binr.pdf
https://cran.r-project.org/web/packages/binr/binr.pdf

	Abstract
	Co-authorship
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Research Statement
	Thesis Overview
	Major Thesis Contributions
	Organization of Thesis

	Background and Related Work
	Workload Scenarios
	Covering the Source Code:
	Covering the Scenarios that are Seen in the Field:
	Covering Scenarios that are Likely to Expose Performance Issues.

	Workload Intensity
	Steady Workload:
	Step-wise Workload:

	Test Execution Time

	Cost-effective Stopping of a Performance Test Using the Repetitiveness in the Collected Performance Metric Values
	Chapter Introduction
	A Motivating Example
	Our Approach for Determining a Cost-Effective Length of a Performance Test
	Collecting Performance Test Data
	Determining the Use of Raw or Delta Values of a Metric
	Measuring the Repetitiveness
	Smoothing Likelihood of Repetitiveness
	Calculating the First Derivative of Repetitiveness
	Determining Whether to Stop the Test

	Experiment Setup
	Subject Systems
	Deployment of the Subject Systems
	Performance Tests
	Data collection
	Parameters of Our Approach
	Leveraging Existing (Jain's) Approach to Stop Performance Tests
	Preliminary Analysis

	Case Study Results
	Threats to validity
	Threats to Internal Validity
	Threats to Construct Validity

	Chapter Conclusion

	Cost-effective Stopping of a Performance Test Using the Repetitiveness in the collected Inter-Metrics Relations
	Chapter Introduction
	A Motivating Example
	Our Approach for Determining a Cost-Effective Length of a Performance Test
	Collecting Data
	Transforming the Collected Metrics into States
	Determining Whether to Stop the Test

	Experiment Setup
	Experiment Environment
	Parameters of Our Approach

	Case Study Results
	Threats to validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Construct Validity

	Chapter Conclusion

	Conclusion
	Summary
	Thesis Summary

	Future Work

	Bibliography

