
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

ConfigMiner: Identifying the Appropriate
Configuration Options for Config-related User

Questions by Mining Online Forums
Mohammed Sayagh, Ahmed E. Hassan

Abstract—While the behavior of a software system can be easily changed by modifying the values of a couple of configuration
options, finding one out of hundreds or thousands of available options is, unfortunately, a challenging task. Therefore, users often
spend a considerable amount of time asking and searching around for the appropriate configuration options in online forums such as
StackOverflow. In this paper, we propose ConfigMiner, an approach to automatically identify the appropriate option(s) to config-related
user questions by mining already-answered config-related questions in online forums. Our evaluation on 2,062 config-related user
questions for seven software systems shows that ConfigMiner can identify the appropriate option(s) for a median of 83% (up to 91%) of
user questions within the top-20 recommended options, improving over state-of-the-art approaches by a median of 130%. Besides,
ConfigMiner reports the relevant options at a median rank of 4, compared to a median of 16-20.5 as reported by the state-of-the-art
approaches.

Index Terms—Configuration, user questions, online forums, stackOverflow.

F

1 INTRODUCTION

Configuration options allow users to change and cus-
tomize the behavior of a software system without the
need for source code modifications. For example, one
can enable/disable the execution of javascript in Fire-
fox1 by simply switching on/off the configuration option
“javascript.enabled”2.

While configuration options make a software system
flexible, finding the appropriate set of options for a given
situation is not trivial. That is because highly configurable
software systems tend to have a vast number of config-
uration options. Firefox, as an example, has more than
2,000 configuration options, while Hadoop has 318 available
options just for its core component. Understanding the goal
and meaning of a configuration option is a challenging
task [18].

Users often ask others about appropriate configuration
options on online forums, such as StackOverflow, Server-
Fault, or even dedicated forums. However, one often must
wait a long time before getting an answer with the appro-
priate options.

Finding the appropriate options to a given situation is
an essential task to configure a software system correctly
and avoid configuration errors. These errors are perceived
to be frequent, severe, and hard to debug [31]. Recently, due
to an incorrect configuration of permission options in an
Amazon web service, data of millions of users were publicly

• Mohammed Sayagh and Ahmed E. Hassan are with the School of Com-
puting, Queens University, Canada.
E-mail: msayagh@cs.queensu.ca, ahmed@cs.queensu.ca.

1. https://www.mozilla.org/en-US/firefox/
2. https://www.technipages.com/firefox-enable-disable-javascript

exposed3. Furthermore, a misconfiguration required more
than an hour to get fixed in a Facebook outage [12].

Prior research efforts mostly focus on debugging con-
figuration errors [2], [18], [24] using source code analysis
approaches that often start from an actual error message.
However, users might not always have a clear error message
or exception trace at hand instead they might face a silent
error or a functional misbehavior. Even more, users may
not necessarily have a problem to fix, instead they might
be simply interested in exploring or learning about how to
configure a feature or the configuration of a functionality.

A few prior efforts [10], [25] explored helping users
identify appropriate options. Given a config-related user
question, Jin et al. [10] and Wen et al. [25] identify options
that are textually similar to the user question. That textual
similarity is calculated based on the number of relevant
words that each option name shares with the user question.
Such relevance is quantified using the TF-IDF technique4.
However, a config-related question does not necessarily
have to share words with its appropriate options, and it
might even share words with inappropriate option names.
We observed that option names are often not clear enough,
do not necessarily represent the feature that they are config-
uring, and maintaining a “workable naming convention for all
configuration options” is not trivial [18].

Therefore, this paper aims at gaining a deeper under-
standing of config-related user questions via a qualitative
and quantitative analysis of online user questions. Second,
this paper proposes an approach to identify the appropriate
options for a config-related question, which we evaluate
and compare to prior state of the art approaches by Jin et

3. https://www.pcworld.com/article/226033/thanks amazon
for making possible much of the internet.html

4. http://www.tfidf.com/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

al. [10] and Wen et al. [25] as well as a basic Google search
approach. We summarize our contributions as follow:

• A qualitative analysis to better understand the types
of config-related questions that users ask in forums.
We found that in addition to questions about errors
with an explicit message or exception trace, users
commonly (25% of the studied questions) ask about
how to solve misbehaviors that do not have any
associated error messages (such messages can be
used as input for existing configuration debugging
approaches, e.g., [6], [17]), and ask about how to
configure a functionality in general.

• A quantitative analysis of 2,062 configuration con-
versations to understand the elapsed time to receive
an answer with the appropriate options. We found
that one can wait for a median of around 4.75
hours before getting the appropriate answer, which
suggests that even if one might receive an accurate
answer in an online forum, waiting for an answer is
time consuming for the three types of config-related
question.

• An approach (called ConfigMiner) that identifies
the appropriate options to a config-related ques-
tion. Given a new question, ConfigMiner identifies
the already-answered config-related questions that
are similar to that new question, and recommends
any configuration options that are associated with
these already-answered questions. Our evaluation
of ConfigMiner on 2,062 online questions from 7
software systems shows that it can report the ap-
propriate options for a median of 83% of the user
questions within the top-20 recommended list of op-
tions (outperforming the state-of-the-art approaches;
PrefFinder by Jin et al. [10] and CoLUA by Wen et
al. [25] by a median of +130%).

The paper is organized as follow. Section 2 presents the
background and discusses related work. Section 3 presents
our qualitative and quantitative analysis of config-related
questions on online forums. Section 4 and Section 5 present
ConfigMiner and the baseline approaches respectively. Sec-
tion 6 reports our empirical evaluation of ConfigMiner
and its comparison to the baseline approachees. Section 8
discusses threats to the validity of our observations. Finally,
Section 9 concludes the paper.

2 BACKGROUND AND RELATED WORK

One can tailor a software system and adapt it to different
situations and contexts using configuration options. Config-
uration options are a set of key and value pairs available
to end-users, where the key is a configuration option name
and the value represents a user choice for that option. For
example, one can cache DNS lookups in Firefox by changing
the value of the “network.dnscacheexpiration” option.

Two main lines of research on software configuration
exist [18]. While the first line of research focuses on prevent-
ing configuration errors, the second line consists of tech-
niques that help debug configuration errors. Few research
efforts [10], [25] identified the appropriate configuration
options for config-related questions.

2.1 Empirical Study on Configuration Errors and their
Impacts

Configuration errors are one of the most commonly reported
errors [31]. Configuration options add more complexity
to developing and testing a highly configurable software
system [11]. As much as 59% of the performance bugs are
caused by configuration errors [8]. Moreover, configuration
options can have an impact not just on the software system
to which they belong but on other layers of a given stack
of software systems such as the LAMP stack [16], which in
turn leads to severe and time-consuming errors, referred to
as cross-stack configuration errors [17].

2.2 Debugging Configuration Errors

Prior efforts on debugging configuration errors use source
code analysis approaches that require as a starting point
an error message or a previous correct execution trace [2],
[18], [24]. For example, Attaryian et al. [3] used dynamic
control and data flow analysis to report the culprit options.
Dong et al. [6] used backward and forward slicing to find
culprit options. Zhang et al. [32], [33] proposed an approach
that compares the traces of an incorrect execution against
existing traces of correct executions to identify which op-
tions lead to execution variances. In our prior work [17], we
proposed a modular approach that combines existing source
code analysis techniques to find misconfigured options in a
stack of application layers. For more details about configura-
tion errors and existing approaches to debug them, we refer
to our previous systematic literature review [18], as well as
surveys of configuration errors [2], [24] who summarize the
existing configuration debugging approaches.

While those approaches focus on debugging configura-
tion errors, they need a starting point that is often an error
message or a previous correct execution trace. However,
users might not always possess such an execution trace
and might not have an error message at hand. A user
might be simply facing a functional misbehavior that is
not producing any error message or exception traces. One
might also wish to simply understand how to customize a
particular behavior or what are the appropriate options to a
feature. Therefore, this paper studies the different types of
config-related user questions and proposes an approach to
identify their appropriate options.

2.3 Identifying the Appropriate Configuration Options
for Config-related Questions

A config-related user question is a question whose answer
contains a set of appropriate configuration options [10],
[25]. Figures 1 shows a user config-related questions on
StackOverflow. The user had a problem related to the cursor
shown in the text input, which required him to change the
value of the “bidi.browser.ui” option that is suggested by
the accepted answer. We consider that the “bidi.browser.ui”
option is the appropriate option for that user question.

While most prior studies focus on how to debug config-
uration errors, Jin et al. [10] and Wen et al. [25] proposed ap-
proaches for identifying the appropriate options to a config-
related question. Both of these prior approaches recommend
options whose names are textually similar to the new user

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

The accepted
answer

The appropriate option

A config-
related
question

The
question’s
tag

Fig. 1. An example of a StackOverflow question and its appropriate
option.

question. While Jin et al. [10] considered a user question
as the title of a question asked in an online forum, Wen et
al. [25] considered a user question as the title and the body
of a bug report. More details about their proposed approach
are discussed in Section 5.

We believe that approaches which identify the appro-
priate options using their constituting words can face some
limitations. As discussed earlier, an option might not nec-
essarily share words with the user question, a question
can contain words that are common with other unrelated
options, and developers may not follow a clear naming
convention such that option names expressively represent
what they configure. For example, none of the words that
constitute the appropriate option “bidi.browser.ui” exists in
the user question of Figure 1.

Already-answered questions might have previously
solved a question that is similar to the new config-related
question. Therefore, we propose an approach that learns
from already-answered questions to identify the appropriate
options for a new config-related question. Section 4 details
our approach that we evaluate and compare to PrefFinder
and CoLUA, which are the baseline approaches by Jin et
al. [10] and Wen et al. [25] in Section 6.

2.4 Duplicated Bug Reports and StackOverflow Ques-
tions

Another related line of research focuses on detecting dupli-
cated bug reports or StackOverflow questions. For example,

Zhang et al. [34] proposed an approach that predicts if a
new StackOverflow question is duplicated using a classifi-
cation algorithm and different textual similarity algorithms
(e.g., doc2vec, and topical similarity). Ahasanuzzaman et
al. [1] extended Zhang et al.’s work by considering ad-
ditional features for the classification algorithm. Fu and
Menzies [7] found that a simple method (Word embedding
using word2vec and SVM) can quickly achieve similar (and
sometimes better) results compared to a more sophisticated
approach (Word embedding and convolution neural net-
work, which was proposed by Xu et al. [29]) for identifying
the semantic link between two StackOverflow questions.
Sun et al. [21] used the IDF part of the TF-IDF technique
and a classification model to identify duplicate bug reports.
Boisselle et al. [4] used TF-IDF to identify duplicate bug
reports cross the bug repositories of related projects (e.g.,
Ubuntu and Debian).

Our paper is different from this line of work. Our goal is
not to propose a novel approach that identifies duplicate
or similar questions or bug reports. We instead evaluate
if using already-answered questions can help identify the
appropriate options for a new config-related question, while
any of the previous textual similarity approaches can be
plugged to our approach as discussed in Section 4.

3 UNDERSTANDING CONFIG-RELATED QUES-
TIONS ON ONLINE FORUMS

This section studies config-related questions on online fo-
rums, such that we can identify if there is a need for
an automated approach to identify the approrpiate option
for a config-related question then design an approach that
identifies the appropriate options for a new config-related
question. To achieve this goal, we conducted a qualitative
and quantitative analysis to understand the types of config-
related questions that users ask on online forums, and the
elapsed time before these questions receive an answer.

3.1 Data Selection
In this paper, we focus on seven software systems (listed in
Table 1) and their respective config-related questions that
are asked on StackOverflow, ServerFault, and Firefox fo-
rums. We focus on these systems since they are popular sys-
tems and have a large number of configuration options. We
study questions on StackOverflow and ServerFault given
their respective popularity among StackExchange forums5.
We also study questions on the Firefox Forum as it is a well-
structured website that we can easily crawl. We used the
following criteria to obtain config-related questions:

• Criterion 1: For StackOverflow and ServerFault, we
selected questions whose tags refer to one of the
studied software systems. For example, the question
shown in Figure 1 is tagged with “firefox”.

• Criterion 2: We selected questions whose accepted
answer contains a configuration option name, such
that we can focus on questions that are addressed
by configuration options (config-related questions).
For Firefox Forum, we selected the chosen answer

5. https://stackexchange.com/sites

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE 1
Evaluated Software Systems. SO and SF refers to StackOverflow and ServerFault respectively.

Software Description Number Number of Number Data Source
System ↓ of Discussed of

Options Options questions

Cassandra A NoSQL Database 162 64 246 SO (240) and SF (6)
Firefox A web browser 2,165 252 789 Firefox Forum (627),

SO (160), and SF (2)
Hadoop The common core of Hadoop that supports var-

ious modules such as MapReduce
318 35 175 SO (172) and SF (3)

HDFS A distributed file system 426 54 143 SO (141) and SF (2)
MapReduce A framework used to distribute the processing

of big data to multiple environment
207 60 152 SO (152) and SF (0)

Spark A distributed computing framework 217 109 426 SO (425) and SF (1)
Yarn A framework that schedules distributed jobs 397 41 131 SO (131) and SF (0)

Total 3,892 615 2,062

which is the equivalent to accepted answer in Stack-
Exchange forums. For example, “bidi.browser.ui” is
the appropriate option for the config-related question
in Figure 1 as the accepted answer mentions that
option. We used the accepted answers since they rep-
resent the best solution for a question6. Note that we
obtained the list of all available option names from
the official documentation of each of our studied
software systems.

We obtained 2,519 questions that respect the previous
criteria from the whole data set of StackOverflow, Server-
Fault, and the 24,875 last questions in Firefox forum.

In addition to considering an option as appropriate to
a question when that option is mentioned in the accepted
answer, we also applied two additional criteria on the
appropriate options for a question:

• Criterion 3: We ignore options that are mentioned
inside a long snippet of code because the answerer
can mention an option which does not specifically
address the question. Thus, we ignore snippets with
more than 20 lines of code. 82 questions are excluded
due to this criterion. 6 accepted answers mention just
a subset of the options in large code snippets.

• Criterion 4: We do not consider an option as ap-
propriate when it is mentioned in the question as
well as the accepted answer. That is because we
observed cases where users have just typos in their
configuration files and the accepted answer simply
highlights that typo. In other cases, users already
know their appropriate options but do not know
how to change their values or the location of the
configuration files. 357 config-related questions are
excluded by this criterion, where 117 questions have
some of the answers’ options within the questions.

Our final data set contains 2,062 out of 2,519 questions
with their respective appropriate option as shown in Table 1.
Similar to Xu et al. [30], we observed that users do not
discuss all the configuration options of a software system,
although the number of discussed options is not negligible
(between 35 of 252) as shown in Table 1.

6. https://stackoverflow.com/help/someone-answers

3.1.1 Data Selection for the Qualitative Analysis
Our qualitative study focuses on 298 config-related ques-
tions and their accepted answers. Initially, we selected a
representative random and weighted (by the number of
questions for each case study) sample of 324 from the 2,062
questions (confidence level = 95%; confidence interval =
5%)7, from which we manually filtered out 26 questions
that are not related to configuration, ending up with 298
config-related questions. The accepted answers of those 26
questions do mention an option, but it is not appropriate
to the question. That said that our data selection approach
has an accuracy of 92%± 5% (298/324) for automatically
identifying config-related questions. Section 3.2 provides
and discusses the results of this manual analysis.

3.1.2 Data Selection for the Quantitative Analysis
The goal of our quantitative analysis is to measure the
elapsed time to receive the appropriate option(s) to a config-
related question with the goal to evaluate whether receiving
an answer from an online forum is time-consuming and
whether the types of config-related questions (identified in
the qualitative study) are as time-consuming as each other
and require similar attention. Concretely, we measure the
time between the creation date of the question and the
creation date of its accepted answer. Our analysis considers
the 2,062 questions as well as the 298 manually studied
questions.

We also compare if there are any differences between
the elapsed time to receive the accepted answer cross the
7 different case studies, StackExchange forums, and types
of config-related questions using the Wilcoxon test. It is
a nonparametric statistical test that compares whether the
distributions of two groups are statistically different. A
small p-value (lower than α) in this context indicates that
the probability that the two distributions are similar is low.
Hence, if the p-value is lower than α, we conclude that the
two distributions are statistically different [19].

7. Confidence level and confidence interval indicate how confident
one can be about the statistical results that he obtained from a sample.
In a simple way, if we repeat the same experiment on 95% (Confidence
level) of the possible samples, we obtain the same statistical results with
a margin-error of ±5% (Confidence interval) [19].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Title: Page scrolling is not smooth in firefox
Body:When I use Fierfox I have noticed when I’m using my mouse
to scroll the page I’m on the page tends to stick or not move for a
moment. I just tried IE and no problem there. I was even on the
same page and Firefox still trends to hang up. Anyone can help
me out?
Note that the website is mad with classic asp.

Fig. 2. An example of an error without any explicit message.

36%

31%

25%

8%
Errors with an
explicit message

How to do
questions

Errors without an
explicit message

Unknown type of
errors

Fig. 3. The distribution of the types of config-related questions.

3.2 Types of Config-related Questions

Users ask different types of config-related questions
that are not necessarily addressable by state of the art
techniques that use source code analysis techniques. We
observe from our qualitative analysis on 298 config-related
questions that the most common category (69%) of questions
are errors, which we further classified into two subcate-
gories. As shown in Figure 3, the largest (36%) type of
errors are those for which the asker have an explicit error
messages, warnings, or exception traces. The second largest
category (25%) are errors for which the asker did not have
any explicit error message, warning, or exception trace. 87%
of this last type of config-related questions are related to
functional misbehavior and 13% are related to performance
degradation. Figure 2 shows a concrete example of a Firefox
misbehavior question, which did not have any particular
error message. Note that we were not able to classify 23 (8%)
errors in these two categories from their textual descriptions.

We found a significant number of config-related ques-
tions (31%) that are not problems, but simply inquiries
about how to configure a functionality, or enable/disable
a feature. Figure 4 shows a concrete example in which the
asker inquiries about how to disable the drop-down menu
in the address bar of Firefox.

3.3 Elapsed Time for the Accepted Answer for a
Config-related Question

Config-related questions receive their accepted answer in
4.75 hours (median) based on our analysis to our 2,062
config-related questions. This median ranges from 2.96 to
17 hours for Firefox and Yarn questions. Besides, we did
not observe any statistically significant differences between
the elapsed time to get the appropriate option through all
the 7 case studies (Wilcoxon test; p-value > 0.019; α = 0.01).
However, one might receive a faster answer via Firefox
forum compared to StackOverflow (2.67 and 9.17 hours
respectively). Note that this last difference is statistically
significant (Wilcoxon test; p-value = 4.824e-05; α = 0.01).

Prior research efforts studied configuration errors with
an explicit message, while the two other types of config-

Title: How to completely disable the drop-down menu in the
address bar?
Body: I’d like Mozilla to not show me anything when I use the
address bar, other than what I type into it.

Fig. 4. An example of “how-to-do” config-related question.

ConfigMiner:
Calculates the textual
similarity between the
new and the already-
answered config-
related questions.

Already-answered
config-related

questions.

Output: a list of
configuration
options sorted from
the most to the less
relevant options to
the new config-
related question.

Input: A new
config-related

question. PrefFinder and CoLUA:
Calculates the textual
similarity between the
new config-related
question and each of
the configuration
option names.

List of configuration
option names (from

system
documentation).

Fig. 5. The differences between ConfigMiner and the baseline ap-
proaches (PrefFinder and CoLUA).

related questions are also as common and as time-
consuming as that first type of config-related questions.
Our investigation on the 298 manually studied questions
shows that all three types of config-related questions re-
quire similar elapsed time to receive their accepted answer
(Wilcoxon test, p-value > 0.5; α = 0.01). Surprisingly, we did
not find any statistically significant difference between the
time required to identify the appropriate option for errors
with an explicit message and errors without an explicit
message (Wilcoxon test, p-value = 0.5; α = 0.01), although
one would intuitively expect that an explicit message would
help users find the appropriate option faster. We also ob-
serve that errors with an explicit message are as time-
consuming as how-to-do type of questions (Wilcoxon test,
p-value = 0.6; α = 0.01). That suggest that even if one might
receive an accurate answer in an online forum, it is still time-
consuming for the three types of config-related questions.

There are three types of config-related questions, two
(errors with explicit message and how-to-do questions) of
which might not be addressed by a source code analysis
approach. These two categories are common and require
similar amount of time to be correctly answered com-
pared to errors with explicit message.

4 OUR APPROACH FOR IDENTIFYING THE APPRO-
PRIATE OPTIONS TO A CONFIG-RELATED QUESTION

We propose an approach that learns from already-answered
config-related questions to identify the appropriate options
for a new config-related question. We refer to our approach
as ConfigMiner, which we discuss in this section first before
presenting our baseline approaches in the next Section.

4.1 ConfigMiner
ConfigMiner follows three main steps to recommend the
appropriate options for a config-related question, as shown
in Figure 5. ConfigMiner textually compares a new config-
related question (the input), which consists of a title and a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

New config-related question:

Title: How do I suppress the pop up notification "Firefox is full screen"?
Body: I know it is full screen, I want it full screen, I know how to exit full screen, I simply
don't want a reminder to constantly flash up each time I access a control near the top of
the screen. Actually website support has told me it is a common complaint they have
been asked multiple times, and requested I share any solution I find. […]

Question 1:

Title: how do i turn off the request to
confirm navigation away from this page
Body: How does one disable the
annoying confirm navigation request?
Options: dom.disable_beforeunload

Question 3:

Title: Kaspersky is the Very Best
Security on the Internet, and You Will
Not let me use it on Firefox ??
Body: Kaspersky is the Very Best
Security you can get!! Norton
(Symantec) and Checkpoint
(ZoneAlarm) are junk - They both load
down your HDD with cache files
forever, and Do Not let you delete
them! […]
Options: xpinstall.signatures.required

A set of three already-answered
questions with their respective
appropriate options.

Question 2:
Title: how does one disable the full screen
message in firefox v56.0.1
Body: When entering full screen mode,
one is prompted with a message alerting
that you have entered full screen mode.
How does one disable this message.
Options: full-screen-api.warning.delay
and full-screen-api.warning.timeout

Fig. 6. Example of a new question and a sample of three already-
answered questions with their respective appropriate options (solution).
In this example, the most similar question to the new question is
Question 2. Therefore, we first recommend its appropriate options (“full-
screen-api.warning.delay” and “full-screen-api.warning.timeout”).

body, to a set of already-answered config-related questions.
It sorts these questions based on their textual similarities to
the new question. Finally, it outputs a set of appropriate
option(s) to the new question. The list of options respects
the same order of their respective questions.

Figure 6 shows an example of a new question and a
sample of already-answered config-related questions with
their respective solutions (i.e., appropriate options). The
question and each of the three questions is represented by
a title and the body of the question. Furthermore, each
of these three questions is associated with its appropriate
option(s). For example, the “dom.disable beforeunload” option
is appropriate to Question 1.

For the same example and based on a textual similar-
ity between that new config-related question and each of
the already-answered config-related questions, ConfigMiner
finds that Question 2 is the most similar to the new question.
Indeed, they are both about how to disable the full-screen
warning message. Therefore, the two options of Question 2
are recommended to address the new question.

A.1. Data Collection: We collected the config-related
questions by following the same approach and the four
criteria that we discussed in Section 3.

A.2. Textual Similarity: ConfigMiner uses natural lan-
guage processing (NLP) techniques to calculate the textual
similarity between a new config-related question and the
already-answered config-related questions (note that Con-
figMiner considers both the title and body of a config-
related question). While one can calculate textual similarity
using different techniques, we opted for using the TF-IDF
technique to calculate the textual similarity in this paper
for two main reasons. (1) As noted by Fu and Menzies [7]
and Liu et al. [14], one should evaluate simple techniques
first, since they can report the same (and sometimes bet-
ter) results compared to more sophisticated techniques. In
fact, we evaluated as two additional textual state-of-the-

art embedding techniques (the doc2vec [13] and the uni-
versal sentence encoder techniques [5]) and TF-IDF out-
performed both of these techniques. (2) In addition, using
TF-IDF to measure the similarity enables us to perform a
more systematic comparison of our approaches performance
relative to our baseline approaches (which both use TF-
IDF). Hence, we are able to evaluate one variance (using
the already-answered questions versus the configuration
options names), as shown in Figure 5. Finally, we note
that one can plugin any existing or new textual similarity
techniques to our approach.

a. Preprocessing Data: Our first preprocessing step con-
sists of removing stop-words such as “and”, “I”, or “does” as
well as large source code snippets (at least 20 lines of code).

After removing stop-words, we stemmed all the tokens
such that TF-IDF does not consider similar words as differ-
ent tokens. As a word can be used in different forms, we
stemmed all the tokens of our conversations. For example,
“disabled”, “disables”, and “disabling” refer to the same word,
which is “disable”. Therefore, the stemming transforms all
the previous four words to a single token that is “disabl”.

b. Embedding: TF-IDF first transforms a document to a
set of words, each of which has a weight that depends on
its frequency in the whole corpus of documents, such that
frequent words have less importance compared to particular
words to a given conversation. For example, a token like
“browser” is not appropriate to a specific conversation in
Firefox questions as it might appear in a large number
of questions, while a token like “Kaspersky” can be more
specific to a particular Firefox question. Thus, TF-IDF gives
a high weight to “Kaspersky” and a low weight to “browser”
using the following equation:

idfterm = log(N
dfterm

) + 1 (1)

where N refers to the number of documents (forum
questions) and dfterm (i.e., document frequency) to the number
of questions that contain “term”.

Furthermore, for a given document TF-IDF gives more
weight to a term that is mentioned multiple times and
less weight to infrequent terms in a given document “d”
following this equation:

tidfterm,d = tfterm,d × idfterm (2)

Finally, TF-IDF normalizes the weight of a token based
on the length of a document using this equation:

weightterm,d =
tfidfterm,d√∑
tfidf2

termi,d

(3)

Thereby, each document (i.e., question) is embedded
into a numerical vector that represents its tokens with their
respective weights.

c. Calculating the Similarities: Finally, the similarity
score between a config-related question and each of the
already-answered questions is the cosine similarity between
their two respective vectors, which is defined as:

similarity(d1, d2) = d1·d2
||d1||·||d2|| (4)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

5 THE BASELINE APPROACHES

We consider PrefFinder [10] and CoLUA [25] as well as a
Google based search as baseline approaches.

5.1 PrefFinder and CoLUA

While ConfigMiner compares a question to already-
answered config-related questions, PrefFinder [10] and
CoLUA [25] compare the textual similarity between a
question and each of the existing configuration option
names, as shown in Figure 5. The baseline approaches do
not consider the already-answered questions. They consider
that the more an option name is similar to the question, the
more appropriate that option is to that question. In other
words, a TF-IDF document for the baseline approaches is an
option name, while our TF-IDF document is a question or
an already-answered question for ConfigMiner.

Apart, the baseline approaches follow the same TF-IDF
technique that we described before with some additional
data preprocessing and using a different similarity equation,
which we detail in the remaining of this subsection.

While PrefFinder considers just the title of questions,
CoLUA considers the title as well as the body.

a. Prepocessing Data: While our approach compares the
similarity between a question and already-answered ques-
tions, the baseline approaches compare the question and
each of the existing option names. That said, an option name
should be represented by a vector based on the constituting
words of that configuration option name.

A typical option name is a set of attached words (1) sepa-
rated by a delimiter such as dot(.), dash(-), or underscore(),
(2) follows a camel case, or (3) attached without any explicit
separator. While a simple split algorithm can easily split
the first two patterns, the third one is not straightforward.
For example, “browser.warnOnQuit” can be easily split to
“browser warn On Quit” considering the delimiter (dot)
and the camel case. However, the token “beforeunload” in
the configuration option name “dom.disable beforeunload” is
difficult to split to “before unload”.

To address such cases, Jin et al. [10] adopted the “back-
ward greedy algorithm”, which shows accurate splitting re-
sults [9]. We refer to the work of Jin et al. [9] for more details
about the algorithm and its evaluation.

Similarly to our approach, we also performed stop-
words removal, large snippets of code removal, and stem-
ming of option tokens as well for the question.

b. Embedding: The baseline approaches use the same
embedding approach that ConfigMiner uses, however on
option names and their tokens (that are obtained from the
prepossessing step) and not on the config-related question
as our approach does.

c. Calculating the Similarities: Jin et al. [10] and Wen et
al. [25] compare a question to configuration option names
based on this equation:

sim(q, o) =
∑
weightti,o × occ(ti, q) (5)

where occ refers to the number of occurrences of a term
in the input question.

Wen et al. [25] considers the title and the body of a
bug report (config-related question) so they can maximize

the chances of finding the appropriate option, while Jin
et al. [10] used just a config-related questions title and
extended it with the synonyms of each word of that title by
using WordNet [15]. Besides, Jin et al. [10] scale down the
impact of these synonyms by slightly changing the previous
equation as follow:

sim(q, o) =
∑
scale× weightti,o × occ(ti, q) (6)

where scale = 1 for the original words of the question and
scale = 0.4 for synonyms of these words. Jin et al. [10] have
explored different values for that scale and found that scale
of 0.4 reports the best results.

Finally, we sort options based on the textual similarity
between each of these options’ names and the question.

5.2 Google Based Search
In addition to the previous two baseline approaches, we also
compare ConfigMiner to a basic Google search. We simulate
a user asking his question by writing a couple of keywords
on Google. We use for each of the 2,046 config-related
questions the following keywords for Google searches:

• The title of each question.
• The first 15 non-stop and unique keywords.
• The first 32 non-stop and unique keywords. Note

that we cannot use the whole question since Google
search has a limit of 32 keywords.

We limit our search results to StackOverflow for each
of our seven case studies, while we use StackOverflow and
Firefox forum websites for Firefox config-related questions.
We select the top 20 search results that do not point to the
question itself.

Once the StackOverflow and Firefox forum links are
obtained, we crawl Firefox pages and extract StackOverflow
questions. Then, we associate to each obtained question its
appropriate options using the same approach of Section 3.1.
Note that the rank of an option corresponds to the rank
at which Google reports the link to the StackOverflow (or
Firefox forum) thread whose accepted answer mentions that
option. For example, an option has a rank of 3 if Google
reports its associated StackOverflow or Firefox forum link
at rank 3.

6 EMPIRICAL EVALUATION

We evaluate ConfigMiner on the 2,062 config-related ques-
tions (Dataset 1) that are shown in Table 1. For our
evaluation, we used the preprocessed title of a question
and its words synonyms for PrefFinder while we use the
preprocessed title and body of questions for CoLUA and
ConfigMiner. In addition, we evaluate ConfigMiner and
the baseline approaches on the 275 config-related questions
(Dataset 2) that we were able to manually classify into one
of three types of questions (Section 3.2). We structured our
evaluation using the following research questions:

RQ1 How accurate is ConfigMiner compared to the base-
line approaches on identifying at least one appropri-
ate option?

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

RQ2 How much does ConfigMiner’s accuracy vary across
the three types of config-related questions?

RQ3 How much time is ConfigMiner likely to save?

6.1 Results:

RQ1 How accurate is ConfigMiner compared to the base-
line approaches on identifying at least one appropri-
ate option?

Motivation: We aim to evaluate the effectiveness of Con-
figMiner in identifying at least one appropriate compared to
our baseline approaches.

Approach: Our evaluation consists of identifying how
many questions (in Dataset 1) for which ConfigMiner is
able to identify the appropriate options. Since our approach
assumes the existence of a database of already-answered
config-related questions, we treat, in our evaluation, each
of the already-answered config-related questions of a case
study as a new question and calculates its similarity to the
rest of the questions using the ConfigMiner approach. For
example, for each of the 789 Firefox questions, our approach
calculates its similarity to each of the remaining 788 ques-
tions to recommend their respective solutions. Concretely,
we evaluate our approach using the following metrics:

- Accuracy at 1, 5, 10, and 20: We first calculate the
percentage of questions for which ConfigMiner and the
baseline approaches identify at least one appropriate option
within the top 5 identified options (i.e, accuracy at 5). For
example, ConfigMiner can have an accuracy at 5 of 80% if
it is able to identify one appropriate option for 80% of the
config-related questions within the top-5 identified options.
We similarly obtain the accuracy at 1, 10, and 20.

- Bootstrap sampling: We calculate the accuracy at 1, 5,
10, and 20 on 2,000 different bootstrap samples to mitigate
the errors within the 2,062 config-related questions and
to produce statistically robust conclusions similar to prior
work [20], [22], since bootstrap resampling produces more
accurate estimates [23]. The errors within our dataset consist
of questions that are not related to configuration but that
were accidentally selected using the approach of Section 3.
To mitigate this problem, we calculate the accuracy of Con-
figMiner and the baseline approaches using 2,000 bootstrap
samples. We use the following steps:

• We select a bootstrap sample whose size is equal to
the number of questions of a given case study (e.g.,
a bootstrap sample of 789 Firefox questions).

• We calculate the accuracy at 1, 5, 10, and 20 of that
obtained sample using Google search, PrefFinder,
CoLUA, and ConfigMiner.

• We repeat the same process 2,000 times to obtain at
the end an accuracy distribution, for which we report
the median of the accuracies obtained.

We measure the overall improvement of our approach
over the baseline approaches using the following equation:

The median accuracy of ConfigMiner
The median accuracy of the best performing baseline approach − 1 (7)

- Rank at which the appropriate options are reported:
While the previous accuracy measure evaluates the number

of questions for which we are able to identify the appropri-
ate option within the top 1, 5, 10, and 20 identified options,
we also evaluate the ranks at which these appropriate
options are reported. If an already-answered question has
more than one appropriate option, ConfigMiner reports all
of them in a random order. Note that we do not report the
rank at which the Google approach identifies an option since
our search is limited to just the top 20 websites.

To mitigate the risk of errors on config-related questions,
we also followed a bootstrap approach to calculate the
ranks. Mainly, we use the following steps:

• We select a bootstrap sample whose size is equal to
the number of a case study questions.

• We calculate the statistically significant difference
between the ranks that ConfigMiner, PrefFinder, and
CoLUA found (using Wilcoxon test). We also calcu-
late the median rank obtained by each of the three
approaches.

• We repeat the same process 2,000 times.
• We see if our findings are consistent by counting

how often the differences between the rank that are
reported by the three approaches were significant.

Results: ConfigMiner outperforms prior approaches by
a median of 130% (for the accuracy at 20) for identify-
ing at least one appropriate option for a config-related
question. As shown in Table 2, ConfigMiner outperforms
the baseline approaches on the evaluated accuracy at 1, 5,
10, and 20. Furthermore, ConfigMiner is statistically more
accurate compared to the baseline approaches on all the
config-related questions of the 7 case studies (Wilcoxon
test; p-values < 2.2e-16; α = 0.01). Note that we calculated
the statistically significant differences between the accuracy
distribution that we obtained using bootstrap samples.

ConfigMiner significantly improves the rank at which
the appropriate options are reported for the questions that
are related to five and six out of seven software systems
compared to PrefFinder and CoLUA respectively. While
we did not find any case study for which one of the two
baseline approaches outperforms ConfigMiner, we were not
able to improve the rank for Cassandra and MapReduce,
as shown in Table 3, although ConfigMiner is still more
accurate compared to both baselines on these case studies.

ConfigMiner reports the appropriate options at a median
rank of 4, compared to a median rank of 17 and 20 that are
reported by PrefFinder and CoLUA. As shown in Table 4,
our approach improves the median rank from 16 to 4 and
from 111.5 and 75 to just 5 for Yarn questions compared to
CoLUA and PrefFinder respectively.

ConfigMiner is more accurate compared to the baseline
approaches and reports options at a lower median rank
of just 4.

RQ2 How much does ConfigMiner’s accuracy vary across
the three types of config-related questions?

Motivation: The goal of this research question is to eval-
uate if the accuracy of ConfigMiner is consistent through the
three types of config-related questions.

Approach: We evaluate the effectiveness of ConfigMiner
and the baseline approaches on the 275 config-related ques-
tions (Dataset 2) that we manually classified as one of three

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 2
The Accuracy of ConfigMiner Compared to the Baseline Approaches. Note that we report just on the best Google search strategy.

Accuracy at 1 Accuracy at 5 Accuracy at 10 Accuracy at 20
Pref- CoLUA Google Config- Pref- CoLUA Google Config- Pref- CoLUA Google Config- Pref- CoLUA Google Config-

Finder Miner Finder Miner Finder Miner Finder Miner

Firefox 4% 5% 6% 35% 10% 12% 16% 59% 14% 16% 19% 69% 18% 22% 23% 76%
HDFS 6% 12% 1% 28% 15% 25% 6% 61% 18% 32% 8% 73% 22% 40% 14% 79%
Yarn 4% 5% 8% 20% 10% 18% 15% 58% 13% 24% 20% 73% 18% 36% 28% 85%
Hadoop 1% 2% 1% 34% 6% 10% 7% 85% 7% 14% 11% 89% 9% 19% 16% 91%
Spark 9% 14% 3% 20% 23% 36% 12% 57% 33% 49% 17% 72% 46% 63% 23% 83%
MapReduce 11% 16% 3% 22% 23% 32% 7% 53% 30% 44% 9% 68% 33% 54% 16% 80%
Cassandra 4% 8% 4% 32% 12% 18% 12% 66% 13% 25% 15% 76% 14% 32% 19% 88%

Median 4% 8% 3% 28% 12% 18% 15% 59% 14% 25% 15% 73% 18% 36% 19% 83%

TABLE 3
The percentage of bootstrap samples that shows a statistically

significant differences (using Wilcoxon test) between ConfigMiner and
each of the two baseline approaches. Note that we did not observe in

any of the 14,000 samples that one of the baseline approaches
outperforms ConfigMiner’s ranking results.

ConfigMiner ConfigMiner
vs PrefFinder vs CoLUA

Cassandra 0.8% 49%
Firefox 100% 100%
Hadoop 100% 100%
HDFS 96% 100%
MapReduce 47% 100%
Spark 100% 100%
Yarn 100% 100%

TABLE 4
Median rank at which appropriate options are reported.

PrefFinder CoLUA ConfigMiner

Cassandra 3 6 4
Firefox 16 24 3
Hadoop 29 41 2
HDFS 8.5 20.5 3
MapReduce 7 12 5
Spark 22 15 6
Yarn 111.5 75 5

Median 16 20.5 4

types of config-related questions: questions about how to fix
an error with an explicit error message, questions on how to
fix errors without any explicit message, and how-to-do type
of questions. Similarly to RQ1, we evaluate ConfigMiner,
PrefFinder, CoLUA, and a Google based search using the 4
types of accuracy: Accuracy at 1, 5, 10, and 20.

Results: ConfigMiner outperfrorms the baseline ap-
proaches on identifying the appropriate options for all
of the three types of config-related questions. We found
that ConfigMiner outperforms the baseline approaches to
find the appropriate options for questions that ask about
how to fix an error with an explicit message, an error
without explicit message, and how-to-do type of questions
(as shown in Table 1, Table 2, and Table 3 in the Appendix).
That improvement ranges between 64% and 228% for the
accuracy at 20 and compared to CoLUA, whose results
outperform PrefFinder and Google search’s accuracy at 20.

The rank at which the appropriate options are reported
is consistent across the three types of config-related ques-
tions, as shown in Figure 7. Indeed, we did not find any

0

2

4

cassandra firefox hadoop hdfs mapreduce spark yarn

lo
g(

ra
nk

)

Type: How−to−do No explicit message With explicit error message

Fig. 7. Rank (In log scale) at which ConfigMiner reports the appropriate
options for each of the 3 categories of questions.

statistically significant differences between the three types of
config-related questions related to each of the 7 case studies.

ConfigMiner accuracy and ranks are consistent through
the three types of config-related questions.

RQ3 How much time is ConfigMiner likely to save?

Motivation: The goal of this research question is to
evaluate the amount of time that is required by users on
each identified configuration option by ConfigMiner until
finding the appropriate one, such that ConfigMiner still
outperforms asking the question in an online forum.

Approach: We used the “break even (BE)” metric that
was proposed by Jin et al. [10]. It consists of measuring how
much time does a user need to spend on investigating on
each reported option (e.g., finding the possible values or un-
derstanding the descriptions) before finding the appropriate
option. BE is defined as:

BE =
Time to receive the accepted answer

Rank of the appropriate option (8)

Similarly to RQ1, we calculate the BE over bootstrap
samples to mitigate the risk of errors on our dataset of
questions. Concretely, we follow these steps:

• We select a bootstrap sample similarly to RQ1.
• We calculate the BE metric for each question in the

sample, and we select the median BE.
• We repeat the same process 2,000 times. Then, we

report on the median of the whole samples.

To better understand the efforts required to type a whole
question, we measure the textual length of our evaluated
questions and their association with the rank at which
ConfigMiner reports the appropriate option. Note that we
use Dataset 1 questions in this research question.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 5
The break even metric for questions for which the appropriate option is

reported at each of the following rank range. For example, if a user
spend 95 minutes on each option before finding the appropriate option

(which is reported at a rank between 2 and 5), our approach is still
better than asking the question online.

Any rank [1,1] [2,5] [6,10] [11,20]
Cassandra 119 317 95 35 28
Firefox 52 115 86 20 31
Hadoop 172 250 159 10 44
HDFS 131 235 137 53 194
MapReduce 109 180 213 26 91
Spark 69 307 93 49 31
Yarn 149 833 396 84 97

Median 119 250 137 35 44

Results: Even if a user spend a median of 119 minutes
on each reported option by ConfigMiner, our approach can
be still valuable, as shown in Table 5. For example, if a user
spend a median of 35 minutes on each option until finding
the appropriate option that is reported at a rank that ranges
between 6 and 10, our approach can still outperform asking
the question in an online forum. Note that our analysis does
not consider options that ConfigMiner is not able to report
at any rank (7%). In addition, our analysis considers just the
delay required to receive the accepted answer in an online
forum, while users still need to spend further efforts on
that accepted answer, such as understanding the answer or
testing the suggested options.

Finally, there is no correlation (Spearman correlation of
0.02) between the length of a config-related question and
the rank at which the appropriate option is reported by
ConfigMiner. Our evaluated config-related questions have
a median of 85 words (the source code snippets are not
considered), out of which 41 are just stop-words. We also
observe that ConfigMiner reports the appropriate option
with a median rank of 2 for config-related questions that
are less than 20 non-stop words. Therefore, we believe that
typing a median of 44 non-stop words is more practical than
waiting for an answer in StackOverflow for a median of 4.75
hours (as discussed in Section 3.3).

While the goal of our paper is to show that using the
already-answered questions is more accurate than textually
comparing a question to option names, future work should
investigate how to improve the usability of ConfigMiner
(e.g., how to leverage the already-answered config-related
questions to provide a richer context to the suggested op-
tion). In addition, the documentation of a suggested option
can be shown to help users better understand the suggested
options, as proposed by Jin et al. [10].

Even if a user spend a median of 119 minutes on each
option until finding the appropriate option, Config-
Miner is still better than asking a question in an online
forum and waiting for the answer.

7 DISCUSSION

While ConfigMiner is not able to identify the appropriate
options for 7% of the config-related questions, the baseline

Title: No 4K resulution on youtube
Body: Some videos on youtube don't show the 4k resolution
option under firefox and the only go up to 1080P but on chrome
they show all the resolutions:
example video https://youtu.be/WU-NrfB8Kd4
I have flash installed as well
The appropriate option: media.mediasource.webm.enabled

A config-related question that is not resolved by the baseline
approaches:

Fig. 8. A real example of a user-question that was not resolved by the
baseline approaches.

approaches missed a median of 67% and 29% of the
config-related questions. ConfigMiner is not able to identify
options if they were never previously appropriate for any
already-answered question, the number of such questions
that ConfigMiner cannot address is 7% from the 17% of
config-related questions for which ConfigMiner is not able
to identify the appropriate option within the top-20. The
accuracy of our approach might be improved by expanding
our data set of config-related questions using other data
sources (e.g., mailing lists or other forums).

The baseline approaches cannot find an appropriate op-
tion for a config-related question if they do not share any
word with the question’s title and body. The appropriate
options for 67% and 29% config-related questions are not
reported at any rank (even higher than 20) by PrefFinder
and CoLUA respectively. The titles of the 67% config-related
questions as well as their synonyms do not share any
words with their appropriate options. Similarly, the title and
body of the 29% config-related questions that are missed
by CoLUA do not share any word with their appropriate
options. Thus, the similarity between each of these missed
config-related questions and their appropriate options is
equal to zero. Figure 8 shows a concrete example of a config-
related question that is missed by both baseline approaches,
as neither the title nor the body share any word with the
appropriate option “media.mediasource.webm.enabled”, while
ConfigMiner identifies that option at the first rank.

The baseline approaches are not accurate on the config-
related questions for which ConfigMiner did not find the
appropriate options. For the 7% of config-related questions
for which ConfigMiner is not able to identify the appropriate
options, PrefFinder and CoLUA show an accuracy at 20 of
just 28% and 42%.

Therefore, we believe that a direct combination of our
approach and the baseline approaches might not be able
to improve the accuracy of identifying the appropriate op-
tions. While extending our database of already-answered
questions might improve the accuracy of our approach,
the baseline approaches might be more appropriate for
questions related to a new software system. While the
most straightforward way to enrich that database is to use
online forums, we can still leverage other sources such
as bug reports, mailing lists, or relying on users feedback
on ConfigMiner suggestions. Furthermore, even with few
occurrences of an option in our database we are still able
to identify the appropriate option since we observe a weak
Spearman correlation (-0.23) between the popularity of an
option (the number of questions for which an option is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

appropriate) and the rank at which ConfigMiner reports it.
The effectiveness of the baseline approaches is also

penalized by the number of words that a config-related
question shares with false positive options. The baseline
approaches identify the appropriate options for a median
of 15% and 35% of the config-related questions outside
the top-20 identified options because these questions share
more words with false positive options than the appropriate
options. For the same reason, PrefFinder is not able to
find the appropriate options for any Yarn and Hadoop
config-related questions within the top-10, while it is able
to identify the appropriate options for 20% of Yarn config-
related questions until the top-20 identified list of options
(Table 2 in the Appendix). For example, PrefFinder reports
the appropriate option for a Yarn config-related question at
the 228th rank, because that question and its appropriate
option share just the word “yarn”. Furthermore, that “yarn”
word has a low TF-IDF weight as it is frequently used by
Yarn’s configuration options (396 out of 397 Yarn options use
that word), which makes the similarity score between that
question and its appropriate option low compared to the
other 227 options that share more words with the question.
Note that ConfigMiner is able to identify that option at the
second rank.

8 THREATS TO VALIDITY

A threat to external validity concerns the generalizability
of our results. Our evaluation considers 7 case studies and
questions from three forums. We cannot generalize our
results to other systems nor to other forums. However,
our studied software systems are popular and have a large
number of configuration options. We do not consider bug
reports since our approach requires a mapping between
each bug report and its appropriate option, which we can-
not automatically identify. However, our evaluation shows
motivating results that can be replicated on bug reports.

An internal threat to validity concerns the collection of
our evaluated questions. As we automatically collected the
evaluated questions using the approach of Section 3, some of
the obtained questions might not be related to configuration.
To mitigate this risk, we used four different heuristics that
show a good accuracy of 92%± 5% and we evaluate our
approach on a large number of bootstrap samples. Our
data selection might also miss config-related questions for
which the accepted answer misspells a configuration option
name. Future work should consider additional heuristics to
identify more config-related questions.

A second internal threat to validity concerns the com-
pleteness of the list of options that we used. We used the
list of options that are mentioned in the documentation of
the studied systems, since such a list is the official source of
options, although it might also be incomplete and outdated.
Future work should investigate other sources of options.

Another internal threat to validity concerns the mis-
classification of an option as appropriate for a question,
which can influence our evaluation. For example, other an-
swers than the accepted one might mention better solutions
(aka more appropriate options). To mitigate this risk, we
consider just the options that are mentioned in the accepted
answer since it is supposed to be the best solution for a

question8. Future work should identify more heuristics to
identify the most appropriate option for a question.

A final internal threat to validity concerns the qualitative
analysis. Although the process might be subjective and
represents a threat to internal validity, it was a straightfor-
ward (but time-consuming) task since we had to classify
each question into three distinct high-level categories of
questions. Therefore, we did not cross-validate our manual
analysis.

Prior work on recommending configuration options [10],
[33] as well as our work have the same threats of knowing
first whether a question is related to configuration or not.
Prior work by Bowen et al. [28], Wen et al. [25], and Xia et
al. [26] tackle this pre-step by determining whether a bug
report is related to a configuration, while prior approach
address the following step of identifying the appropriate
values of a configuration option by Xiong et al. [27].

9 CONCLUSION

This paper studies the different types of config-related ques-
tions and proposes an automated approach, ConfigMiner, to
identify their appropriate configuration options. We observe
that users ask three types of config-related questions: they
ask about configuration options to fix an error with an
explicit message, an error without any explicit message,
and how-to-do type of questions. While the first type of
config-related questions are addressed by a large body of
prior work, few approaches can address the second and
third types of config-related questions, even if they are as
important as configuration errors with an explicit message
since these two types of config-related questions are com-
mon (56% of config-related questions) and require a similar
amount of time to be correctly answered.

Two prior approaches exist to identify the appropriate
options for a config-related questions [10], [25]. They rely
on the textual similarity between a config-related question
and the option names. However, config-related questions do
not necessarily share words with their appropriate options.

Consequently, we propose an approach that leverages
already-answered config-related questions and their associ-
ated answers to identify the appropriate configuration op-
tions for new question. Our empirical evaluation shows that
ConfigMiner is more accurate compared to the two baseline
approaches. In fact, ConfigMiner improves the state-of-the-
art approaches by a median of 130%. Finally, using the
history of config-related questions shows better results than
using just option names.

REFERENCES

[1] Ahasanuzzaman, M., Asaduzzaman, M., Roy, C.K., Schneider,
K.A.: Mining duplicate questions in stack overflow. In: Proceed-
ings of the 13th International Conference on Mining Software
Repositories, pp. 402–412. ACM (2016)

[2] Andrzejak, A., Friedrich, G., Wotawa, F.: Software configuration
diagnosis-a survey of existing methods and open challenges. In:
ConfWS, pp. 85–92 (2018)

[3] Attariyan, M., Flinn, J.: Automating configuration troubleshooting
with dynamic information flow analysis. In: Proceedings of the
9th Usenix Symposium on Operating Systems Design and Imple-
mentation (OSDI), pp. 1–14 (2010)

8. https://stackoverflow.com/help/someone-answers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[4] Boisselle, V., Adams, B.: The impact of cross-distribution bug
duplicates, empirical study on debian and ubuntu. In: Proceedings
of the 15th IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM), pp. 131–140 (2015)

[5] Cer, D.M., Yang, Y., yi Kong, S., Hua, N., Limtiaco, N., John,
R.S., Constant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., Sung,
Y.H., Strope, B., Kurzweil, R.: Universal sentence encoder. ArXiv
abs/1803.11175 (2018)

[6] Dong, Z., Andrzejak, A., Shao, K.: Practical and accurate pinpoint-
ing of configuration errors using static analysis. In: Proceedings
of the 31st International Conference on Software Maintenance and
Evolution, ICSME’15, pp. 171–180 (2015)

[7] Fu, W., Menzies, T.: Easy over hard: A case study on deep learning.
In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pp. 49–60. ACM (2017)

[8] Han, X., Yu, T.: An empirical study on performance bugs for
highly configurable software systems. In: Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, p. 23. ACM (2016)

[9] Jin, D.: Improving preference recommendation and customization
in real world highly configurable software systems (2014)

[10] Jin, D., Cohen, M.B., Qu, X., Robinson, B.: Preffinder: getting the
right preference in configurable software systems. In: Proceedings
of the 29th ACM/IEEE international conference on Automated
software engineering, pp. 151–162. ACM (2014)

[11] Jin, D., Qu, X., Cohen, M.B., Robinson, B.: Configurations every-
where: Implications for testing and debugging in practice. In:
Proceedings of the 36th International Conference on Software
Engineering, ICSE’14, pp. 215–224 (2014)

[12] Johnson, R.: More details on today’s outage.
MathWorld–A Wolfram Web Resource (2010).
Https://www.facebook.com/notes/facebook-engineering/more-
details-on-todays-outage/431441338919/

[13] Le, Q., Mikolov, T.: Distributed representations of sentences and
documents. In: International conference on machine learning, pp.
1188–1196 (2014)

[14] Liu, Z., Xia, X., Hassan, A.E., Lo, D., Xing, Z., Wang, X.: Neural-
machine-translation-based commit message generation: how far
are we? In: Proceedings of the 33rd International Conference on
Automated Software Engineering, pp. 373–384. ACM (2018)

[15] Miller, G.: WordNet: An electronic lexical database. MIT press
(1998)

[16] Sayagh, M., Adams, B.: Multi-layer software configuration: Empir-
ical study on wordpress. In: 2015 IEEE 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM),
pp. 31–40. IEEE (2015)

[17] Sayagh, M., Kerzazi, N., Adams, B.: On cross-stack configuration
errors. In: Proceedings of the 39th International Conference on
Software Engineering, pp. 255–265. IEEE (2017)

[18] Sayagh, M., Kerzazi, N., Adams, B., Petrillo, F.: Software configu-
ration engineering in practice: Interviews, survey, and systematic
literature review. IEEE Transactions on Software Engineering
(2018)

[19] Sheskin, D.J.: Handbook of Parametric and Nonparametric Statis-
tical Procedures, 4 edn. Chapman Hall/CRC (2007)

[20] Shimagaki, J., Kamei, Y., McIntosh, S., Hassan, A.E., Ubayashi, N.:
A study of the quality-impacting practices of modern code review
at sony mobile. In: 38th International Conference on Software
Engineering Companion (ICSE-C), pp. 212–221. IEEE (2016)

[21] Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S.C.: A discriminative
model approach for accurate duplicate bug report retrieval. In:
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, pp. 45–54. ACM (2010)

[22] Tantithamthavorn, C., Hassan, A.E., Matsumoto, K.: The impact
of class rebalancing techniques on the performance and interpre-
tation of defect prediction models. IEEE Transactions on Software
Engineering (2018)

[23] Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto,
K.: An empirical comparison of model validation techniques for
defect prediction models. IEEE Transactions on Software Engi-
neering (2016)

[24] Tianyin, X., Yuanyuan, Z.: Systems approaches to tackling config-
uration errors: a survey. ACM Computing Surveys pp. 1–41 (2015)

[25] Wen, W., Yu, T., Hayes, J.H.: Colua: Automatically predicting
configuration bug reports and extracting configuration options.
In: Proceedings of the 27th International Symposium on Software
Reliability Engineering, pp. 150–161 (2016)

[26] Xia, X., Lo, D., Qiu, W., Wang, X., Zhou, B.: Automated configu-
ration bug report prediction using text mining. In: Proceedings
of the 38th Annual IEEE Computer Software and Applications
Conference, pp. 107–116 (2014)

[27] Xiong, Y., Zhang, H., Hubaux, A., She, S., Wang, J., Czarnecki, K.:
Range fixes: Interactive error resolution for software configuration.
IEEE Transactions on Software Engineering 41(6), 603–619 (2015)

[28] Xu, B., Lo, D., Xia, X., Sureka, A., Li, S.: Efspredictor: Predicting
configuration bugs with ensemble feature selection. In: Asia-
Pacific Software Engineering Conference, pp. 206–213. IEEE (2015)

[29] Xu, B., Ye, D., Xing, Z., Xia, X., Chen, G., Li, S.: Predicting semanti-
cally linkable knowledge in developer online forums via convolu-
tional neural network. In: Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering,
ASE 2016, pp. 51–62. ACM (2016)

[30] Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., Talwadker, R.:
Hey, you have given me too many knobs!: understanding and
dealing with over-designed configuration in system software. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pp. 307–319. ACM (2015)

[31] Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L.N., Pa-
supathy, S.: An empirical study on configuration errors in com-
mercial and open source systems. In: Proceedings of the 23rd
Symposium on Operating Systems Principles, pp. 159–172. ACM
(2011)

[32] Zhang, S.: Confdiagnoser: An automated configuration error di-
agnosis tool for java software. In: Proceedings of the 35th Interna-
tional Conference on Software Engineering, pp. 1438–1440 (2013)

[33] Zhang, S., Ernst, M.D.: Which configuration option should i
change? In: Proceedings of the 36th International Conference on
Software Engineering (ICSE’14), pp. 152–163 (2014)

[34] Zhang, W.E., Sheng, Q.Z., Lau, J.H., Abebe, E.: Detecting dupli-
cate posts in programming qa communities via latent semantics
and association rules. In: Proceedings of the 26th International
Conference on World Wide Web, pp. 1221–1229 (2017)

Mohammed Sayagh is a postdoctoral fellow
in the Software Analysis and Intelligence Lab
(SAIL) in Queens University. He obtained his
PhD from the Lab on Maintenance, Construc-
tion, and Intelligence of Software (MCIS) in
Ecole Polytechnique Montreal (Canada). His re-
search interests include multi-component and
multi-layer software systems, software configu-
ration engineering, as well as source code anal-
ysis. More details about his work is available on
“http://sailhome.cs.queensu.ca/˜msayagh”.

Ahmed E. Hassan is a Canada Research
Chair in Software Analytics and the
NSERC/Blackberry Industrial Research
Chair with the School of Computing, Queens
University, Kingston, ON, Canada. His industrial
experience includes helping architect the
Blackberry wireless platform, and working for
IBM Research at the Almaden Research Lab
and the Computer Research Lab at Nortel
Networks. Early tools and techniques developed
by his team are already integrated into products

used by millions of users worldwide. He is the named inventor of patents
at several jurisdictions around the world including the United States,
Europe, India, Canada, and Japan. Dr. Hassan serves on the editorial
board of the IEEE Transactions on Software Engineering, the Journal
of Empirical Software Engineering, and PeerJ Computer Science. He
spearheaded the organization and creation of the Mining Software
Repositories (MSR) conference and its research community.

