
STUDYING DEPENDENCY MAINTENANCE PRACTICES

THROUGH THE MINING OF DATA FROM NPM PACKAGES

by

FILIPE ROSEIRO COGO

A thesis submitted to the Graduate Program in Computing

in conformity with the requirements for the

Degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

August 2020

Copyright © Filipe Roseiro Cogo, 2020

Abstract

O
PEN source software ecosystems have gained significant importance in the

last decade. In a software ecosystem, client packages can enable a depen-

dency to reuse the functionalities of a provider package. On the one hand,

the diversity of freely reusable provider packages in those ecosystems supports a fast-

paced contemporary software development. On the other hand, developers need to

cope with the overhead brought by dependency maintenance. Dependencies need to

be kept in an updated and working state, otherwise defects from provider packages can

negatively impact client packages. Notable incidents denote the importance of timely

and proper dependency maintenance. For example, in the “Equifax data breach”, a

vulnerability coming from an out-of-date dependency was explored to illegally obtain

hundreds of millions of financial customers information Also, the “left-pad incident”,

in which a package with 11-lines of code was removed from npm, caused a significant

downtime on major websites such as Facebook, Instagram and LinkedIn. Hence, proper

i

dependency maintenance contributes to the viability of both individual packages and

the whole ecosystem. In this thesis, we propose to leverage data from the npm ecosys-

tem to understand the current dependency maintenance practices and provide ac-

tionable information to practitioners. Currently, npm is the largest and most popular

open-source software ecosystem. We study three phenomena related to the depen-

dency maintenance in software ecosystems: downgrade of dependencies, same-day

releases, and releases deprecation. In this thesis, we discuss in detail the motivation

and approach to study these three phenomena. We then perform an empirical analysis

of the npm data to evaluate the driving forces behind these phenomena, as well as their

prevalence and impact in the ecosystem. Based on our empirical observations, we pro-

pose a set of informed suggestions to improve dependency maintenance practices in

npm.

ii

Acknowledgments

I am extremely grateful for pursuing my Ph.D. on the Software Analysis and Intelligence

(SAIL) lab under the supervision of Prof. Ahmed E. Hassan, to whom I would like to

express my deepest gratitude. Thanks for your guidance and support, I am a much

better researcher now than when I started this journey. I am also very fortunate to have

Dr. Gustavo Oliva as my mentor during my Ph.D., I could not think of a better person. I

am also thankful for building a true friendship with Gustavo during these 3 years. I am

also very happy for having the chance to co-author with Prof. Cor-Paul Bezemer, from

whom I learned a lot. My special thanks to all professors and staff from the School of

Computing at Queen’s University for always striving for excellence. I am very proud of

being part of this School. For my supervisory committee, Prof. Robin Dawes and Prof.

Patrick Martin, I am grateful for your guidance and advice.

I have great pride and honour to be part of the very inspiring SAIL team, where I

could be contemporary of the most clever students. It was a pleasure to be with you all.

iii

My sincere gratitude to all former SAILors that made this lab such a great place. Also,

thanks to the open-source contributors of all npm packages for making this valuable

data available, as well as the anonymous reviewers of my manuscripts for the criticism

and the push for improvement. I am also very grateful for my colleagues and friends at

UTFPR—Campo Mourão for their support and for making this PhD. a reality. Thanks

to my dear friends in Canada, Guilherme Scharlack & Andressa Oliveira, Pete & Susan

Rails, Mark Planeta & Emily Greer. Thanks Heng, Jonatas, and Safwat for the pleasur-

able walkings for a coffee and moments at the lab. Thanks my friends and relatives in

Brazil, I miss you all very much. Without good friends, life makes no sense.

Last, but more importantly, I have no words to express my gratitude to my beloved

family, my wife Riane, Clara, and Emanuel. The only reason for going through this are

you guys! I would never get here without your support and patience, and love. Thanks

mom, daddy, little and big brothers for the love and care. All this love is reciprocal.

iv

Dedication

This thesis is dedicated to my family.

v

Co-authorship

For each of the chapters and related publications of this thesis, my contributions are:

the drafting of the research idea; researching of the background material and related

work; the collection of the data; the proposal of the research methods; the analysis

of the data; and the writing of the manuscripts. My co-contributors supported me in

refining the initial research ideas; providing suggestions to refine my research meth-

ods; and providing feedback on manuscript drafts. The work presented in this thesis

is published or submitted as listed below:

• Filipe R. Cogo, Gustavo A. Oliva, and Ahmed E. Hassan. 2019. An empirical study

of dependency downgrades in the npm ecosystem. IEEE Transactions on Soft-

ware Engineering (TSE). In Press. This work is described in Chapter 4.

vi

• Filipe R. Cogo, Gustavo A. Oliva, Cor-Paul Bezemer, and Ahmed E. Hassan. 2020.

An empirical study of same-day releases of popular packages in the npm ecosys-

tem. Empirical Software Engineering Journal (EMSE). Under major review. This

work is described in Chapter 5.

• Filipe R. Cogo, Gustavo A. Oliva, and Ahmed E. Hassan. 2020. Deprecation of

packages and releases in software ecosystems: A case study on npm. IEEE Trans-

actions on Software Engineering (TSE). Under major review. This work is de-

scribed in Chapter 6.

vii

Table of Contents

Abstract i

Acknowledgments iii

Dedication v

Co-authorship vi

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Thesis statement . 4
1.2 Thesis overview . 6
1.3 Thesis contribution . 8

2 Dependency Management on npm 9

3 Literature Survey 15
3.1 Literature selection . 15
3.2 Mining data from the npm ecosystem . 17
3.3 Mining data from other software ecosystems . 20

4 An Empirical Study of Dependency Downgrades 23
4.1 Introduction . 24
4.2 Downgrade detection . 28
4.3 Data collection . 33
4.4 Results . 37
4.5 Discussion . 59
4.6 Related work . 62
4.7 Threats to validity . 64

viii

4.8 Conclusions . 66

5 An Empirical Study of Same-day Releases of Popular Packages 69
5.1 Introduction . 70
5.2 Background & Operational Definitions . 74
5.3 Data collection . 79
5.4 Preliminary study of same-day release notes content 86
5.5 Research questions . 93
5.6 Discussion . 116
5.7 Threats to validity . 121
5.8 Conclusion . 125

6 An Empirical Study of Deprecation of Packages and Releases 127
6.1 Introduction . 128
6.2 The deprecation mechanism of npm . 131
6.3 Data collection . 133
6.4 Results . 139
6.5 Discussion . 163
6.6 Related work . 169
6.7 Threats to validity . 172
6.8 Conclusion . 176

7 Conclusions and Future Work 178
7.1 Learned lessons . 179
7.2 Limitations . 180
7.3 Avenues for future research . 181

Appendices 199
A Changes introduced in same-day releases . 199
B Top 40 popular deprecated releases . 207

ix

List of Tables

2.1 Operators in the grammar of npm version range. 11

3.1 Venues from which a initial list of ten years old papers was obtained for
the literature review. 16

4.1 Proportion of major, minor, and patch downgrades that follow a major,
minor, or patch update. 52

4.2 Summary of the variables calculated in Equation 4.1. 58

5.1 Summary of the number of releases, number of same-day releases, num-
ber of clients, and number of providers for the popular packages. 83

5.2 Summary of the mLOC metric for same-day, prior-to-same-day, and reg-
ular releases. 103

5.3 Statistical difference between the change metrics for same-day releases
vs. prior-to-same-day releases. 104

5.4 Statistical difference between the change metrics for same-day releases
vs. regular releases. 104

5.5 Summary of the adoption time lag for same-day and regular releases. . . 115
5.6 Summary of the number of patch, minor, and major releases to explic-

itly adopt a same-day and a regular release. 115

6.1 Summary of the deprecation terminology used in this chapter. 134
6.2 The proportion with which each rationale is associated with the depre-

cation of a package or a release. 148
6.3 The proportion of each versioning statement type used in the adoption

of the popular deprecated releases. 158
6.4 The number of client packages that directly and transitively adopt at

least one deprecated provider releases (only client packages that adopt
a deprecated provider release are shown). 161

6.5 Descriptive statistics for the total number and the proportion of direct
providers that result in the transitive adoption of at least one deprecated
release. 162

x

6.6 Comparison between the identified rationales behind API and release
deprecation. 173

A.1 Detailed description and example quotes of the notable changes in same-
day releases. 200

B.2 Popular deprecated releases and their replacement package or release. . 208

xi

List of Figures

1.1 A dependency between a client and a provider package. 2
1.2 Dependency management cycle and the studied topics in this research

proposal. 5

4.1 Development of parallel versions in npm. 30
4.2 Numerical, chronological, and branch-based ordering to evaluate the

provider version changes over the client releases. 31
4.3 Overview of our data collection procedure. 34
4.4 Our approach to identify the rationale for downgrades. 38
4.5 Proportion of downgrades per type of versioning statement change. . . . 48
4.6 Number of downgraded providers in the same client release. 50
4.7 Number of back skipped provider versions in a minor downgrade fol-

lowing a patch update. 51
4.8 Number of back skipped provider versions in a major, minor, and patch

downgrade. 53
4.9 Downgrades preceded by explicit and implicit updates. 56
4.10 Distribution of the speedRatio(C , D). The red dotted line indicates a ra-

tio value of 1. 57
4.11 Distribution of the elapsed time between the update and the eventual

downgrade of a provider package. 59

5.1 Simplified release management pipeline. 75
5.2 The release types that are investigated in our study. 78
5.3 Overview of our data collection process. 81
5.4 Release note example of the popular package mocha. 88
5.5 Summary of the categorization of notable changes in 104 same-day re-

leases. 92
5.6 Cumulative histogram for the proportion of published same-day releases

per package. 96
5.7 The relation between the number of same-day and the number of total

releases of each popular package. 97

xii

5.8 Same-day to prior-to-same-day and same-day to regular ratios for the
mLOC metric. The red dotted line indicates a ratio of 1. 103

5.9 Same-day to prior-to-same-day and same-day to regular ratios for the
number of updated providers. The red dotted line indicates a ratio of 1. . 105

5.10 Our approach to study the modified file types in same-day and other
release types. 106

5.11 Adoption lag of a same-day release. 112
5.12 Adoption lag for same-day releases. 115
5.13 An example of a pull request created by Dependabot. The pull request

includes a list of the vulnerabilities fixed, the release notes, and commits
associated with the dependency update. Image extracted from https:
//dependabot.com. 119

6.1 An overview of our data collection method. 135
6.2 Illustration of a scenario in which the provider release is deprecated af-

ter it is adopted by the client package. 138
6.3 Older non-deprecated and replacement release of a hypothetical par-

tially deprecated package. 142
6.4 Number and proportion of deprecated releases per package (excluding

packages without deprecated releases). The dashed line shows the pro-
portion of fully deprecated packages. 144

6.5 Number of major, minor, and patch releases that are published between
the older non-deprecated release and the latest deprecated release of
packages without a replacement release. 145

6.6 Cumulative histogram for the proportion of client packages that depend
on a deprecated provider release. 157

6.7 Histogram of the deepest dependency depth of a deprecated provider
release. The dashed red line represents the median, while the blue one
represents the 90th percentile. 162

xiii

CHAPTER 1

Introduction

S
OFTWARE reuse is a central concern for Software Engineering and has been the

subject of many prior studies. The effective adoption of reuse in a software

project is linked with the improvement of quality, productivity, and cost re-

duction (Lim, 1994; Standish, 1984). As a consequence, there is a strong demand for

reusable artifacts in software projects, in particular source code components (Barros-

Justo et al., 2019). The principle behind source code reuse is that several software sys-

tems can reuse the same code component to perform a specific task. Despite the soft-

ware reuse concept being first documented as early as 1969 (McIlroy, 1969), the design,

implementation, and effective adoption of reusable source code components is an en-

deavour that still challenges software engineers (Gkortzis et al., 2019; Wasowski, 2020).

1

CHAPTER 1. INTRODUCTION 2

Client
package

Provider
package

Dependends on

Figure 1.1: A dependency between a client and a provider package.

For this reason, researchers continue to investigate best practices regarding software

reuse.

The adoption of package managers to distribute and reuse reusable artifacts (such

as source code components and pre-compiled binaries) has become quite popular

as of late. Virtually every programming language has at least one associated pack-

age manager with a centralized repository of freely reusable artifacts, maintained by

several different teams as open source projects (e.g., npm is a package manager for

JavaScript, pip for Python, and Maven for Java). In a package manager, the reusable ar-

tifact is bundled in the format of a package (other denominations include library or

module), which is installed by client packages and loaded at run-time. Such package

managers have emerged as a solution to leverage third-party source code reuse, par-

ticularly in the context of open source software development.

A software ecosystem consists of the set of interdependent packages that are de-

ployed and co-evolve by the same package manager (Manikas and Hansen, 2013). In

a software ecosystem, a client package reuses the code of a provider package (see Fig-

ure 1.1). The reuse of a provider package is enabled by a dependency that is specified by

the client package. Dependencies can be direct (e.g., when a client package explicitly

depend on a provider package) or transitive (e.g., when a client package depend on a

provider package that, in turn, depends on a third package).

CHAPTER 1. INTRODUCTION 3

Currently, the largest and most popular software ecosystem1 is npm.2 The large

number of npm packages supports the fast pace with which modern software is de-

veloped (Khomh et al., 2015; Kula et al., 2019) and contributes to the massive adoption

of the npm ecosystem. To date, more than one billion package installations from npm

are daily performed3 and more than 1.3 million packages are available in the ecosys-

tem.4 Because of the high number of applications that rely on an npm package, several

anecdotes exist to illustrate the importance of maintaining well functioning packages

and a robust ecosystem. For example, in March 2016, the author of a package with

11 lines of code called left-pad removed the package from npm, causing major websites

such as Facebook, Linkedin, and Instagram to stop functioning.5 Many of these websites

did not directly depend on the left-pad package, but rather had a transitive dependency

on it by means of the popular react package. More recently, it was reported that a defec-

tive release of a one-line-of-code package from npm affected millions of other software

projects.6

Dependency management is fundamental for maintaining well functioning pack-

ages and a robust ecosystem. Dependency management is the set of taken actions to

promote the co-evolution of client and provider packages in a software ecosystem. A

simplified dependency management cycle is depicted in Figure 1.2 and described as

follows:
1https://insights.stackoverflow.com/survey/2020
2https://npmjs.com
3https://www.businesswire.com/news/home/20180912005283/en/npm-Registry-Crosses-

Billion-Average-Daily-Downloads
4http://www.modulecounts.com
5https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-

tiny-piece-of-code/
6https://www.zdnet.com/article/another-one-line-npm-package-breaks-the-

javascript-ecosystem/

https://insights.stackoverflow.com/survey/2020
https://npmjs.com
https://www.businesswire.com/news/home/20180912005283/en/npm-Registry-Crosses-Billion-Average-Daily-Downloads
https://www.businesswire.com/news/home/20180912005283/en/npm-Registry-Crosses-Billion-Average-Daily-Downloads
http://www.modulecounts.com
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code/
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code/
https://www.zdnet.com/article/another-one-line-npm-package-breaks-the-javascript-ecosystem/
https://www.zdnet.com/article/another-one-line-npm-package-breaks-the-javascript-ecosystem/

CHAPTER 1. INTRODUCTION 4

1. Defects are discovered (such as security vulnerabilities, incompatibilities, or per-

formance degradation) and new features are required;

2. Provider packages perform improvement changes and, as a consequence, re-

lease new versions;

3. Client packages, in turn, perform the necessary changes to adopt the updated

provider version.

Nonetheless, dependency maintenance activities are performed to remedy events

that can cause failures and propagate errors throughout the ecosystem (e.g., the dis-

covery of a defect in a provider package). The grey boxes of Figure 1.2 depict the de-

pendency maintenance activities that are the focus of this thesis:

I. Provider packages use the deprecation mechanism provided by package man-

agers as a mechanism to warn client packages that the use of a certain version

should be avoided (e.g., because this provider version has a serious defect, secu-

rity vulnerability, or has become too obsolete);

II. Provider releases might contain errors that need to be addressed in the same day,

leading provider packages to publish a follow-up same-day release;

III. The update of a provider package can cause malfunctioning in client packages,

eventually compelling clients to downgrade the provider.

1.1 Thesis statement

This thesis’s overall objective is to empirically study the dependency maintenance ac-

tivities employed by client and provider packages in a software ecosystem. The specific

CHAPTER 1. INTRODUCTION 5

2. Provider
packages release

new versions

3. Client
packages update
provider versions

1. Defects are
discovered and
new features

required

II

I

Downgrades

Deprecation Same-day releases
Urgent releases are required

Updates need to be undone

Versions become obsolete

III

Figure 1.2: Dependency management cycle and the studied topics in this research pro-
posal.

goal is to understand the current practices and to provide insights that can lead to the

improvement of dependency maintenance activities, particularly those regarding the

deprecation of releases, the development of same-day releases, and the occurrence

of dependency downgrades. Improving current dependency maintenance practices is

important not only to ensure the quality of individual packages, but also the viability

of the whole ecosystem.

Empirically studying data from the npm ecosystem can provide practical insights to

package developers and package manager owners on how to improve current de-

pendency maintenance practices and ensure the viability of the whole ecosystem.

To perform our empirical studies, we collect data from the npm ecosystem. Differ-

ent characteristics of npm motivate the usage of this ecosystem as a data source:

1. Dependency maintenance in npm is crucial, since packages in the ecosystem

heavily depend on each other (Kikas et al., 2017). Consequently, a large amount

of dependency maintenance activities are performed by client and provider pack-

ages.

CHAPTER 1. INTRODUCTION 6

2. npm implements an automatic dependency update mechanism whose princi-

ples have been adopted by other software ecosystems, while questions regard-

ing the strengths & weaknesses of such a mechanism remain open (Bogart et al.,

2016; Decan and Mens, 2019; Mezzetti et al., 2018; Decan and Mens, 2019).

3. Packages in npm are continually evolving with new releases, providing a rich source

of real-world data to study modern dependency management practices.

1.2 Thesis overview

Chapter 2 of this thesis describes background information regarding dependency man-

agement in the npm ecosystem. Chapter 3 describes a literature survey regarding em-

pirical studies on software ecosystems. Chapter 4 describes an empirical study on the

downgrade of dependencies. Chapter 5 describes an empirical study of the same-day

releases of popular npm packages. Chapter 6 presents our empirical study about the

deprecation of packages and releases. Below, we summarize each of these three em-

pirical studies:

1.2.1 Dependency downgrades (Chapter 4)

Provider updates can introduce failures in the client package. When such failure-inducing

updates happen, client packages occasionally downgrade provider packages (Cogo et al.,

2019). A downgrade is a sub-optimal yet simple workaround to guarantee the proper

functioning of a package. Consequently, downgrades also contribute to the viability of

the ecosystem (in contrast with the quality of an individual package). However, little

is known about the downgrades of dependencies in software ecosystems. Our study

CHAPTER 1. INTRODUCTION 7

about dependency downgrades has the objective of evaluating the impact of down-

grades for client packages. We show that downgrades are performed because of issues

that arise from the provider, but also for preventive purposes. Downgrades are also

associated with a change to more conservative versioning of providers by client pack-

ages.

1.2.2 Same-day releases (Chapter 5)

Addressing issues in a timely manner is an important maintenance activity that assures

the viability of the software ecosystem. Although previous papers examined same-

day releases in different software distribution platforms (Lin et al., 2017; Hassan et al.,

2017; Kerzazi and Adams, 2016), no prior study examined same-day releases in soft-

ware ecosystems. With our study about same-day releases, we want to understand

and characterize the development of such time constrained releases. We observe that,

despite the short time frame within which same-day releases are developed, relevant

changes are introduced in these releases. Also, same-day releases are typically adopted

faster by client packages than regular releases, showing their importance to client pack-

ages.

1.2.3 Deprecation of packages and releases (Chapter 6)

Deprecation is used by provider packages to communicate to client packages that the

usage of a particular release should be avoided. Prior research has exhaustively stud-

ied software deprecation at the API level (Robbes et al., 2012b; Sawant et al., 2019; Brito

et al., 2016). Although many software ecosystems provide a deprecation mechanism,

CHAPTER 1. INTRODUCTION 8

no prior study examined deprecation at the release level. We propose to study the re-

lease level deprecation in software ecosystems. We study the rationale behind the dep-

recation of packages and releases and observe that withdrawal (i.e., terminating the

development of a package) is the most common rationale for deprecating all releases

of a package (49%) and a defective release is the most common rationale for deprecat-

ing a specific release (63%). We also observe that a large proportion of the deprecated

releases do not have a replacement release, i.e., a follow-up non-deprecated release.

1.3 Thesis contribution

The empirical results that are presented and discussed in this thesis demonstrate the

value of mining data from software ecosystems, providing practitioners with action-

able information to improve dependency maintenance practices. The main contribu-

tions of this thesis are:

1. We provide client package developers with information on the best practices for

dealing with the downgrade of dependencies. In particular, we discuss that client

packages should track how the adopted version of each of their providers changes

over time, so debugging of troublesome provider updates becomes easier.

2. We reason about the best practices that help provider package developers cope

with the same-day releases. In particular, we discuss the need for optimizing the

quality and timing aspects of release pipelines and improving release notes.

3. We provide package manager owners with a set of suggestions and requirements

that should be prioritized to improve the deprecation mechanism of package

managers, so that the rationale behind deprecation can be better assessed.

CHAPTER 2

Dependency Management on npm

I
N a software ecosystem, a dependency is set by a client package to enable the reuse

of the features of a provider package. In npm, dependencies are annotated in a

configuration file called package.json. Each package published in npm has its

own package.json file. An example of a hypothetical package.json file for a pack-

age called client_package with releases 1.0.0 and 1.0.1 can be seen on Listing 2.1. This

file lists, among other pieces of information, all the published releases of a package

(lines 3 and 10), a deprecation message for deprecated releases (line 8), the name of

the adopted providers in each release with the associated versioning statements (lines

5, 6, 12, and 13), and the timestamp of each release (lines 18 and 19).

To set a dependency, client packages use a versioning statement, which determines

the provider package and the respective release of that provider that is going to be

9

CHAPTER 2. DEPENDENCY MANAGEMENT ON NPM 10

1 "name": "client_package",
2 "versions": {
3 "1.0.0": {
4 "dependencies": {
5 "provider_1": "2.0.0",
6 "provider_2": ">1.2.3"
7 },
8 "deprecated": "This version contains a bug."
9 },

10 "1.0.1": {
11 "dependencies": {
12 "provider_1": "2.0.1",
13 "provider_2": ">1.3.0"
14 }
15 }
16 },
17 "time": {
18 "1.0.0": "2016-11-24T00:48:15",
19 "1.0.1": "2017-02-08T13:26:38"
20 }

Listing 2.1: A hypothetical package.json file

adopted by the client package. For example, in Listing 2.1 (line 5), the client package

client_package on version 1.0.0 depends on a provider package provider_1. In this de-

pendency, the versioning statement “provider_1”:“2.0.0” is used. As a result, when-

ever the package client_package is installed, the version 2.0.0 of package provider_1 is

also be installed (and eventually loaded at run-time) as a dependency of client_package.

When a package is installed from npm, the provider packages that are used by means

of transitive dependencies are also installed (and eventually loaded at run-time). An

example of transitive dependency is a client package c that depends on package p1

that, in turn, depends on package p2. In this example, c directly depends on p1 and

transitively depends on p2. Therefore, when c is installed from npm, p1 and p2 are also

installed.

A versioning statement can be one of two types: a specific version (e.g., “p”:“1.2.3”)

or a version range (e.g., “p”:“>1.2.3”). The specific version statement is satisfied by

CHAPTER 2. DEPENDENCY MANAGEMENT ON NPM 11

Table 2.1: Operators in the grammar of npm version range.

Operator(s) Definition Example

>, <, >=, <= Allows, respectively, any version greater, smaller,
greater or equal, or smaller or equal to a given
semantic version number.

“p”:“>1.0.0” is satisfied by any version of p
greater than 1.0.0 (e.g., 1.0.2, 1.2.0, or 2.0.0).

∼ (tilde) Allows changes to the least precedent (left-most)
level of the semantic version number. Intuitively,
the tilde operator resolves towards a patch update
of the provider.

“p”:“∼1.2.3” is satisfied by any version of p
greater than or equal to 1.2.3 and less than 1.3.0.
Still, “p”:“∼1.2” is satisfied by any version of p
greater than or equal to 1.2.0 and less than 1.3.0.

∧ (caret) Allows changes that do not modify the non-zero
least precedent level in a semantic version
number. Intuitively, the caret operator resolves
towards a minor update of the provider.

“p”: “∧1.2.3” is satisfied by any version of p
greater than or equal to 1.2.3 and less than 2.0.0.
Still, “p”:“∧0.2.3” is satisfied by any version of p
greater than or equal to 0.2.3 and less than 0.3.0.

— (hyphen) Allows an inclusive set of versions. “p”: “1.2.3—2.3.4” is satisfied by any version
greater than or equal to 1.2.3 and less than or
equal to 2.3.4.

omit a semantic
version level or
replace it by “x”

Allows changes in the omitted/replaced semantic
version level.

Both “p”:“1.x” or “p”:“1” are satisfied by any
version of p greater than or equal to 1.0.0 and less
than 2.0.0. Still, both “p”:“1.2” or “p”:“1.2.x”
are satisfied by any version greater than or equal
to 1.2.0 and less than 1.3.0.

“∗”, “latest”,
“last”, “”

Resolves to the largest version available. Both “p”:“*” or “p”:“” are satisfied by the largest
version of p.

|| Combines two or more versioning statements in a
logic ‘OR’.

“p”:“∧2.0.0 || ∼3.0.0” indicates that any of the
statements “∧2.0.0” or “∼3.0.0” are satisfied
by any version of p in accordance with the
statement definition.

a unique version of a provider, defined by the right-hand side of the versioning state-

ment (i.e., version 1.2.3). The version range statement is satisfied by a range of ver-

sions of a provider (i.e., any version greater than 1.2.3). A version range statement has

three parts: the provider to which it refers (“p”, in the previous example), an operator

(“>”, in the previous example), and a numerical part (“1.2.3”, in the previous exam-

ple). The combinations of operator and numerical part define the range of provider

versions that can be satisfied by the versioning statement. In fact, there is a grammar

for defining a version range in npm. Such a grammar relies on a set of operator whose

definitions and examples are provided on Table 2.1.1

1The grammar in Backus-Naur form can be found at https://www.npmjs.com/package/semver.

https://www.npmjs.com/package/semver

CHAPTER 2. DEPENDENCY MANAGEMENT ON NPM 12

The resolved version is the actual version of the provider package that is going to

be loaded as a dependency by the client package. When a version range is used, the

resolved version corresponds to the largest provider version that satisfies the range.

Therefore, version range statements are used when client packages wish to perform an

implicit update of the provider without having to change their versioning statement.

When a provider releases a new version that is satisfied by the existing version range

statement by a client package, this provider is implicitly updated. For example, in List-

ing 2.1 (line 6), the version range specified by client_package in version 1.0.0 will lead

to an implicit update whenever provider_2 releases a new version that is larger than

1.2.3. An implicit update contrasts with an explicit update, in the sense that the latter

requires a modification of the versioning statement by the client package so that the

resolved provider release is updated. For example, if a client package c uses a version-

ing statement “p”:”<1.2.3” and p releases version 1.2.4, then an update will only

be performed after the modification of the versioning statement to “p:”>=1.2.4” (or

any version range statement that satisfies the release 1.2.4 of p). Client packages can

also perform a downgrade of the resolved provider release by restricting the versioning

statement to an older provider release.

The release numbering of an npm package follows the semantic version specifica-

tion.2 According to this specification, a version number of a release is comprised of

three levels, namely: major, minor, and patch. For instance, in release 1.2.3, the num-

ber 1 stands for the major level, the number 2 stands for the minor level, and the num-

ber 3 stands for the patch level. The semantic version also specifies simple change-

related rules for developers to determine how one of the three levels should be incre-

mented when a release is published. In summary, a major release should be published

2https://semver.org

https://semver.org

CHAPTER 2. DEPENDENCY MANAGEMENT ON NPM 13

whenever a backward-incompatible change is introduced (e.g., an API change). A ma-

jor release must yield the increment of the major version level, for example, from 1.2.3

to 2.0.0. A minor release should be published when some new backward-compatible

change is introduced. A minor release must yield the increment of the minor level of

the version number (e.g., from 1.2.3 to 1.3.0). Finally, a patch release should be pub-

lished when a bug fix is introduced. A patch release must yield the increment of the

patch level of the version number, such as from 1.2.3 to 1.2.4. Although the adop-

tion of the semantic version specification is not mandatory, a prior study shows that,

in general, packages in npm comply with this specification (Decan and Mens, 2019).

The mechanism to resolve a provider version relies on the precedence between ver-

sion numbers, since npm needs to know if a particular version number is greater than,

less than, or equal to another version number. Similarly to decimal numbers, semantic

version numbers are compared initially by the magnitude of their major level, then by

their minor and patch levels. For example, version 3.2.1 is lower than versions 4.0.0 (by

a major), 3.3.1 (by a minor), and 3.2.2 (by a patch), but greater than versions 2.2.1 (by

a major), 3.1.1 (by a minor), and 3.2.0 (by a patch).

A client package can set a provider package as either a development or a production

dependency. A provider package that is set as a development dependency (so-called

development provider) is loaded only at the development environment (e.g., the source

code repository to which developers commit changes). Consequently, development

providers are not loaded when the client package is installed from npm. For instance,

test frameworks are generally development providers, since they need to be loaded by

the client package developers but not by the client users. As a consequence, issues

that arise from development providers do not affect the deployed client package (i.e.,

CHAPTER 2. DEPENDENCY MANAGEMENT ON NPM 14

in the production environment), making the reaction to such issues less urgent. In

turn, provider packages that are set as production dependencies (so-called production

provider) are loaded both at the production and development environments. When a

client package is installed from npm, providers that are set as production dependencies

are also installed with their respective resolved versions and are loaded at runtime.

Production and development dependencies are listed separately in the package.json

file as dependencies and devDependencies, respectively.

CHAPTER 3

Literature Survey

T
HIS thesis aims to understand and support dependency maintenance prac-

tices. Therefore, this chapter presents related literature with dependency

maintenance in software ecosystems. In particular, the chapter discusses

our literature selection process (Section 3.1) and then surveys related studies on npm

(Section 3.2) and other software ecosystems (Section 3.3).

3.1 Literature selection

Software ecosystems have gained attention from the software engineering research

community in the last decade, driven by the popularity of the package managers that

host such ecosystems. Our objective is to empirically study the current dependency

15

CHAPTER 3. LITERATURE SURVEY 16

Table 3.1: Venues from which a initial list of ten years old papers was obtained for the
literature review.

Venue type Venue name Abbreviation

Journal IEEE Transactions on Software Engineering TSE
Journal IEEE Software IEE Software
Journal Empirical Software Engineering EMSE
Journal Journal of Systems and Software JSS
Journal ACM Transactions on Software Engineering and Methodology TOSEM
Conference International Conference on Software Engineering ICSE
Conference ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering
ESEC/FSE

Conference International Conference on Automated Software Engineering ASE
Conference International Conference on Software Maintenance and Evolution ICSME
Conference International Conference on Software Analysis, Evolution, and

Reengineering
SANER

Conference International Conference on Mining Software Repositories MSR

maintenance practices of packages in software ecosystems (more specifically, ecosys-

tems that are set around packaging platforms for a programming language). To select

the related literature, we search for empirical studies about software ecosystems, de-

pendency management, and dependency maintenance that were published as full pa-

pers in the last ten years in the major software engineering venues. Table 3.1 lists the

venues from which papers were searched. To filter out irrelevant papers, we read the

abstract and remove papers that do not relate to our interest topics. From the initial

list of selected papers, we perform a forward snowballing process (Wohlin, 2014) (i.e.,

following each paper’s reference list) to include other relevant literature that is not in-

cluded in the initial list. Papers that do not directly relate to software ecosystems are

only selected if they provide relevant background on dependency maintenance.

CHAPTER 3. LITERATURE SURVEY 17

3.2 Mining data from the npm ecosystem

In this section, we survey the empirical studies that use data from the npm ecosystem.

We group related papers by their studied topic.

Dependency updates: Prior studies examine the risks and causes of failed updates in the

npm ecosystem. Decan et al. (2019) studied the dependency network of seven software

ecosystems (including npm) and concluded that developers can face issues when up-

dating providers. Because packages in those ecosystems heavily depend on each other,

the authors highlight the fact that a defect in one package can affect many others. In

a survey with developers from 18 ecosystems, Bogart et al. (2016) show that provider

packages in npm often introduce changes that require modifications in the client code,

which can impact the rate at which providers are updated. Mirhosseini and Parnin

(2017) study whether the usage of automated dependency management tools in npm

can encourage client packages to update their providers. The authors show that, on av-

erage, client packages that use such automated tools update their providers 1.6 times

as often as client packages that do not use such tooling. Decan et al. (2018) shows that,

in average, updates in npm take from 12 to 22 days, depending on whether it is a major,

minor, or patch update. Abdalkareem et al. (2017) surveyed 88 npm developers to un-

derstand the usage of “trivial packages” (packages that implement simple and trivial

tasks) in this ecosystem. Respondents of the survey (56%) point the overhead caused

by the need for updating as one of the drawbacks of using trivial npm packages. Zer-

ouali et al. (2019b) analyzed the technical lag induced by direct dependencies in npm

over seven years period. Technical lag is defined by as the extent to which the adopted

provider version by client packages are lagging behind the latest provider version. The

authors found that the median technical lag is 1 major, 1 minor, and 4 patch releases.

CHAPTER 3. LITERATURE SURVEY 18

Such technical lag should be mitigated whether client packages perform the required

updates on their provider packages. Also, Zerouali et al. (2019c) analyzed the technical

lag of outdated installed packages in Docker containers and found that the technical

lag on such containers is one to two versions.

Summary: Client packages in npm evolve not only by modifying their codebase

but also by updating their providers. However, the update of a provider version

by a client package needs to consider the tradeoff between the benefit of accessing

the latest provider features and the risk of defect-introducing changes in the new

provider version.

Semantic version adoption & backward-incompatible releases: Wittern et al. (2016) ob-

served that from 2011 to 2015, the proportion of client package that adopt at least one

provider package increased from 23% to 81% and that the semantic version specifi-

cation is not always followed by provider packages when they increment a version

number. The authors highlight that the lack of compliance with the semantic ver-

sion specification can be problematic, since backward-incompatible changes could

be introduced when minor or patch levels of the provider version are incremented.

As a consequence, these backward-incompatibilities would manifest themselves un-

expectedly on the client package side. In contrast, Decan and Mens (2019) observed

that versioning statements used by client packages generally accept implicit updates

of providers, suggesting that, although client packages are vulnerable to backward-

compatible changes, such changes are usually not introduced by provider packages.

Mezzetti et al. (2018) propose a technique called type regression that can detect backward-

incompatible changes in the provider package that cause a failure in a client package.

CHAPTER 3. LITERATURE SURVEY 19

However, this technique is only accurate when providers are used by a large num-

ber of client packages. Mujahid et al. (2020) describes a technique that leverages the

test suites of client packages that adopt the same set of providers to early discover

backward-incompatible releases of providers.

Summary: A reason that is commonly associated with failed updates is the intro-

duction of backward-incompatible changes in minor or patch releases—a scenario

for which developers disregard the semantic version specification. However, an in-

trinsic agreement between packages must exist to avoid such a scenario, otherwise

the npm ecosystem would become too unstable.

Dependency vulnerabilities: Zerouali et al. (2019a) identified that vulnerabilities are

common in official Docker containers using npm packages as dependencies. Kikas

et al. (2017) also performed a study over the dependency network of the npm, RubyGems,

and Cargo1 (for the Rust language) ecosystems. The authors identified a set of key pack-

ages that, if vulnerable, could negatively impact over 30% of the other packages in the

ecosystems. Hejderup et al. (2018) argue that tools to alert client packages regarding

the usage of vulnerable providers can be improved by considering the function call

graph of client and provider packages. Vulnerabilities in npm were also studied by Za-

pata et al. (2018). The authors also argue that a function-call analysis is needed to

improve current vulnerability checking tools. Pfretzschner and ben Othmane (2017)

catalogue four attacks that can explore dependencies in npm and how to avoid them.

Zimmermann et al. (2019) study vulnerability issues that are introduced by npm de-

pendencies and provide mitigation strategies. The authors highlight that the lack of

1https://crates.io

https://crates.io

CHAPTER 3. LITERATURE SURVEY 20

dependency maintenance can cause client packages to depended on vulnerable code

of providers.

Summary: Dependency maintenance is an important factor to avoid depending

on vulnerable code. Current dependency vulnerability tools should also consider

dependencies at the function level to improve accuracy.

3.3 Mining data from other software ecosystems

Prior empirical studies focused on the management of dependencies versioning in dif-

ferent software ecosystems. In the scope of the Android ecosystem, McDonnell et al.

(2013) analyzed the relation between the adoption of the versions an API and the sta-

bility of the API. The authors show that client packages avoid to update towards unsta-

ble APIs (i.e., APIs that change frequently). Ruiz et al. (2016) analyzed the rationale for

Android applications (client packages) to update their ad libraries (provider packages).

In particular, they found that fixing a bug and improving performance are some of the

reasons to update an ad library. Derr et al. (2017) performed a survey with Android de-

velopers to understand how they update provider packages. They observed that pre-

venting incompatibilities is the second-ranked reason as to why developers prefer to

use outdated providers. Li et al. (2018) analyzed API deprecation in the Android plat-

form.

The management of dependencies versioning was also studied in ecosystems for

packages written in Java. Bavota et al. (2015) identified bug fix as a factor that influ-

ences the update of provider packages. Also, the authors observed that packages that

have common dependencies or common developers are more likely to be updated.

CHAPTER 3. LITERATURE SURVEY 21

Kula et al. (2015) observe that client packages are becoming more inclined in adopting

the latest version of a provider package. Kula et al. (2017b) show that vulnerability and

security advisories play a role in the decision of updating a provider version. Sawant

et al. (2018c), Zhou and Walker (2016), Brito et al. (2016), and Ko et al. (2014) analyzed

the phenomenon of API deprecation on ecosystems for the Java language. Cox et al.

(2015) describe a set of metrics to evaluate the “dependency freshness” (the difference

between the resolved version and the latest version of a provider) of Java packages used

by an industrial software system. Digkas et al. (2018) performs a longitudinal analysis

on how technical debt is addressed by 75 randomly selected Java packages available in

the Apache Software Foundation Index.2

Robbes et al. (2012b) studied how changes in the API of a provider package prop-

agate back to the client package in the Pharo3 ecosystem (for the Smalltalk language).

Changing the API signature of a provider is one of the actions that cause backward-

incompatible changes. Normally, the client package cannot avoid such changes when

they are introduced in a minor or patch release of the provider. Constantinou and Mens

(2017) study the social-technical evolution of packages from the Ruby ecosystem. The

authors argue that contributors abandoning has a significant impact on the evolution

of packages in this ecosystem. Finally, Manikas (2016) perform a systematic literature

review and Manikas and Hansen (2013) a systematic literature mapping on software

ecosystems.

2https://projects.apache.org/projects.html?language#Java
3http://catalog.pharo.org

https://projects.apache.org/projects.html?language#Java
http://catalog.pharo.org

CHAPTER 3. LITERATURE SURVEY 22

Summary: Prior empirical studies demonstrate that software ecosystem depen-

dencies are a rich source of data. When properly analyzed, dependency data can

provide practitioners with actionable insights regarding the best practices for de-

pendency maintenance. Nonetheless, none of the prior studies perform an in-

depth examination of specific dependency maintenance activities, namely the

downgrade of dependencies, the publishing of same-day releases, and the depre-

cation of packages and releases.

In Sections 4.6, 5.2, and 6.6, we discuss additional related work on dependency

downgrades, same-day releases, and release deprecation. We also compare the find-

ings obtained in these related work with the findings of our empirical studies.

CHAPTER 4

An Empirical Study of Dependency Downgrades

A downgrade indicates that the adopted version of a provider package is not suitable for the
client package at a certain moment. In this chapter, we conducted an empirical study of the de-
pendency downgrades in the npm ecosystem. Our study indicates that there are two categories
of downgrades according to their rationale: reactive and preventive. The reasons behind reac-
tive downgrades are defects in a specific version of a provider, unexpected feature changes in a
provider, and incompatibilities. In turn, preventive downgrades are an attempt to avoid issues
in future releases. We also investigated how the versioning of dependencies is modified when a
downgrade occurs. We observed that client packages have the tendency to become more con-
servative regarding the update of their providers after a downgrade. Finally, we observed that
downgrades that follow an explicit update of a provider package occur faster than downgrades
that follow an implicit update. Explicit updates occur when the provider is updated by means
of an explicit change to the versioning specification (i.e., the string used by client packages to
define the provider version that they are willing to adopt). We conjecture that, due to the con-
trolled nature of explicit updates, it is easier for client packages to identify the provider that is
associated with the problem that motivated the downgrade.

An earlier version of this chapter is published in the IEEE Transactions on Software Engineering
journal (TSE) (Cogo et al., 2019).

23

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 24

I
N this chapter, we describe our study about dependency downgrades. The chap-

ter is organized as follows. Section 4.1 provides an introduction to our study

and a summary of our main findings. Section 4.2 describes our approach to de-

tect downgrades. Section 4.3 explains how we collected and processed the data from

npm. Section 4.4 presents the motivation, approach, and findings to the aforemen-

tioned RQs. Section 4.5 presents a discussion about our findings. Section 4.6 presents

the related work and Section 4.7 presents the threats to the validity. Finally, Section 4.8

concludes our study.

4.1 Introduction

Prior research shows that code reuse is related to the improvement of developers’ pro-

ductivity, software quality, and time-to-market of software products (Lim, 1994; Ab-

dalkareem et al., 2017). In the last decade, software ecosystems arose as an important

mechanism to promote and support code reuse, in particular ecosystems that are set

around packaging platforms for a programming language (Manikas and Hansen, 2013;

Serebrenik and Mens, 2015). Such platforms are built upon the notion of dependencies

between packages. A dependency relationship enables a client package to reuse a cer-

tain version of a provider package.

In several ecosystems, client packages can specify a dependency as either a depen-

dency to a specific version or a range of versions of a provider. If a range of versions

is specified, then the provider is implicitly updated whenever a new version satisfy-

ing this range is released. If a specific version is used, an update can only happen by

switching it to a newer specific version or by using an appropriate version range. In ad-

dition, packages in software ecosystems typically adopt a version numbering scheme

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 25

to communicate changes that are introduced in new releases. A popular scheme is

the Semantic Version specification, in which a version number comprises three digits

separated by a dot (e.g., 1.0.0). The first digit represents the major level of the version

number, commonly incremented whenever a backward-incompatible API change is

introduced in a new release. The second one represents the minor level, commonly in-

cremented whenever a new backward-compatible feature is introduced, and the third

one represents the patch level, commonly incremented whenever a bug fix is intro-

duced.

The benefits and drawbacks of updating providers in software ecosystems have

been extensively studied (Bavota et al., 2013; McDonnell et al., 2013; Wittern et al.,

2016; Derr et al., 2017; Kula et al., 2017a,b; Ihara et al., 2017). On the one hand, updat-

ing providers enables a client package to benefit from bug fixes, new functionalities,

security enhancements, and novel APIs. On the other hand, updating providers also

makes a client package more susceptible to potential problems in the new version of

the provider. In the latter case, client packages might end up downgrading a provider,

i.e., reverting it to an older version.

In this chapter, we study why and how downgrades occur. Our motivation is based

on the following observations:

• Downgrades naturally indicate that one or more provider versions caused prob-

lems to the client package. Despite being a natural indication of issues, down-

grades can be a simple and rapid workaround for specific issues that arise when

a provider package is updated. While prior research indicates that backward-

incompatible changes (a.k.a., breaking changes) (Salza et al., 2018), bugs (Mirhos-

seini and Parnin, 2017; Mileva et al., 2009), and vulnerabilities in the provider

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 26

package (Decan et al., 2018) motivate downgrades, the actual reasons behind

downgrades have not been thoroughly investigated. Our objective is to study

the reasons that motivate downgrades, such that practitioners can be aware of

the typical cases that lead to this type of workaround.

• Many software ecosystems platforms allow client packages to accept implicit up-

dates of provider packages. Such automatic updates can hinder the identification

of the provider package behind a certain issue. As a consequence, the down-

grade of such a provider might be delayed, or even the downgrade of unrelated

providers might occur. Moreover, we hypothesize that such an automated up-

date mechanism may lead to problematic updates which, in turn, might force

client packages to abandon automated updating altogether.

• Downgrades increase the technical lag of client packages. The technical lag rep-

resents the extent to which client packages are missing the latest features and

bug fixes from a provider. Measuring the technical lag that is introduced when

a downgrade is performed should help practitioners understand the side-effects

of this workaround.

All of the aforementioned issues raise important questions about how to reduce the

potentially adverse side-effects of a downgrade. Elucidating detailed reasons behind

downgrades, as well as how client packages perform these downgrades, would provide

a more in-depth understanding of downgrades and their consequences, ultimately fos-

tering further research and tool development to support package developers.

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 27

To conduct our study, we collected data from npm,1 the largest ecosystem support-

ing the Javascript programming language, containing more than 600K reusable pack-

ages.2 According to a survey by StackOverflow3, JavaScript was the most commonly used

programming language in 2018, with 69.8% out of more than 100K respondents affirm-

ing their use of JavaScript. In addition, managing dependencies in npm is a growing

business and a number of commercial tools to aid in this task are available (Bogart

et al., 2016; Mirhosseini and Parnin, 2017), such as dependency bots are deployed on

package’s codebase to monitor dependency updates.4 In our study about dependency

downgrades, we address the following research questions:

RQ1. Why do downgrades occur? We observed two types of downgrades: reactive

and preventive. The main reasons behind reactive downgrades are: defects in

the provider version (during build-time, run-time, or development-time), unex-

pected feature changes in the provider, and incompatibilities (between provider

versions, or with Node version). Preventive downgrades occur by pinning a provider

package to a prior version in an attempt to avoid issues in future releases of this

particular provider. Preventive downgrades can be triggered by recommenda-

tions from automated tools.

RQ2. How is the versioning of providers modified in a downgrade? Downgrades are

commonly performed by choosing a specific old version of the provider (62%) in-

stead of specifying a range of acceptable old versions (38%). In 75.5% of the client

releases containing a downgrade, only a single provider is downgraded. In 48% of

1https://npmjs.com
2On the time at which the study was performed (January–April 2019)
3https://insights.stackoverflow.com/survey/2018/
4https://dependabot.com

https://npmjs.com
https://insights.stackoverflow.com/survey/2018/
https://dependabot.com

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 28

the downgrades, the provider version is reduced by a minor level (e.g., from 2.1.0

to 2.0.0). In addition, we calculated the technical lag induced by downgrades, i.e.,

the number of releases that are back skipped when a provider is downgraded. We

observed that downgrades of major version levels (e.g., from 2.0.0 to 1.2.3) intro-

duce more technical lag than downgrades of minor and patch version levels.

RQ3. How fast do downgrades occur? Half of the downgrades are performed at a rate

that is 2.6 times as fast as the typical time-between-releases of their associated

client packages. The median time to downgrade an implicitly updated provider

is roughly 9 times higher than that for an explicitly updated provider. In specific,

only 5.6% of the downgrades are performed in within 24 hours after the update

of the provider.

Our key contribution is providing empirically-sound evidence from cross-linked

data regarding why and how downgrades occur on npm, while also discussing the im-

plications of our findings to client package developers. As an additional contribution,

we provide an algorithm to recover a branch-based ordering of releases, which may be

reused by other researchers studying downgrades (and updates) on npm. Finally, we

provide a supplementary material with the data that is used in this study 5 as a means

to bootstrap other studies in the area.

4.2 Downgrade detection

One of the requirements for a large-scale study about dependency downgrades is to au-

tomatically detect when a client package perform a downgrade of a provider package.

5https://github.com/SAILResearch/replication-npm_downgrades

https://github.com/SAILResearch/replication-npm_downgrades

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 29

A downgrade is detected whenever the resolved provider version decreases between

two adjacent client releases. More formally, a downgrade is defined as an event that

occurs between two adjacent releases 〈rC ,i−1, rC ,i 〉 of a client package C . When the re-

solved version of a provider package P in rc ,i is smaller than the resolved version of

this same provider in rC ,i−1, we say that P was downgraded by C in rc ,i . Hence, given

a list of RC releases of the client package C with the respective version numbers and

timestamps, the definition of a downgrade of a provider P by the client C depends on

the ordering of rC ,i−1 and rC ,i , ∀i ∈ {1 . . . |RC |}. To detect downgrades, we sort the re-

leases of the client packages according to a branch-based ordering algorithm, which

we motivate and describe below.

4.2.1 The problem with chronological versus numerical ordering of

client versions

Prior studies use either a chronological (Ihara et al., 2017; Salza et al., 2018) or a nu-

merical ordering (Kikas et al., 2017; Wittern et al., 2016) to recover the release history

of packages. However, assuming those orderings leads to inconsistencies in how the

resolved provider version changes from one client release to another. Below, we show

that none of these orderings are suitable to detect updates and downgrades in the re-

solved provider packages.

When analyzing the order of package releases in npm, we observed that several re-

leases can be actually maintained in parallel. Releases are developed in parallel be-

cause, even with the existence of releases with a higher numerical order, a release with

a lower numerical order might need to be patched. For example, in Figure 4.1, even

though the release 2.0.0 was already available, the release 1.1.2 had to be published in

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 30

order to patch the release 1.1.1. Hence, the version 1.1.1 is considered adjacent to both

versions 1.1.2 and 2.0.0. Because the numerical and chronological ordering are linear,

they are not suitable to represent the parallel releases of npm.

1.0.0 1.0.1
1.1.0 1.1.1 1.1.2

2.0.0 2.0.1

Tim
e

B
ranches1.0

1.1
2.0

Figure 4.1: Development of parallel versions in npm.

Applying the chronological and numerical orderings to the releases that are shown

in Figure 4.1 would yield the following results (≺ denotes a precedence relation):

Chronological:

1.0.0 ≺ 1.0.1 ≺ 1.1.0 ≺ 1.1.1 ≺ 2.0.0 ≺ 1.1.2 ≺ 2.0.1

Numerical:

1.0.0 ≺ 1.0.1 ≺ 1.1.0 ≺ 1.1.1 ≺ 1.1.2 ≺ 2.0.0 ≺ 2.0.1

Branch-based:

1.0.0 ≺ 1.0.1 ≺ 1.1.0 ≺ 1.1.1 ≺ 1.1.2
≺

2.0.0 ≺ 2.0.1

For a client package that releases according to Figure 4.1, analyzing the changes in

the resolved provider version between adjacent client releases would produce different

results, depending on the assumed ordering. Figure 4.2 illustrates the inconsistencies

that arise when assuming either the chronological or the numerical orderings to detect

downgrades or updates. The timeline at the top of the Figure depicts a sequence of

releases from the provider and the client packages. For the client package releases, the

Figure also shows the used versioning statement and the resolved provider version.

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 31

2.0.0 1.1.2

1.1.1 1.0.2

Version inconsistency

Chronological order

Resolved
provider
version

Client
version

1.1.1

Time inconsistency

Numerical order

Resolved
provider
version

Client
version 1.1.1

1.1.0 1.0.2

Consistent change

Branch-based order

Resolved
provider
version

Client
version 2.0.0 1.1.2 1.1.2

Client
releases

Provider
releases

1.1.1
"P:~1.1.0"

Time
2.0.0

"P:~1.1.0"
1.1.2

"P:~1.0.0"

1.1.1 1.0.2

1.0.2

1.1.0

Resolves to Resolves to Resolves to

Figure 4.2: Numerical, chronological, and branch-based ordering to evaluate the
provider version changes over the client releases.

When the chronological order of the client releases is assumed (see Figure 4.2), an

incorrect downgrade from version 2.0.0 to 1.1.2 is detected due to a version inconsis-

tency. Logically, version 1.1.2 does not succeed version 2.0.0, since these versions be-

long to different branches. Similarly, when the numerical order of the client releases

is assumed (see Figure 4.2), an incorrect update from version 1.1.2 to 2.0.0 is detected

due to a time inconsistency. The provider version resolved at the time that the client

version 1.1.2 was released (i.e., provider version 1.0.2) did not exist at the time of client

version 2.0.0. Hence, this update is invalid. However, when the branch-based order of

the client releases is assumed, the changes in the resolved provider version from one

client release to another are consistent regarding both version and time.

4.2.2 An algorithm for branch-based ordering

The collected data from npm records only the chronological and numerical orderings of

the package releases. Therefore, we conceive an algorithm to derive the branch-based

ordering from these two orderings, which works as follows: as the client releases are

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 32

examined in a chronological order, we check if any of the previously visited releases

are in the same branch as the current one (a branch is defined by the major and minor

levels, e.g. the 1.0 branch contains versions 1.0.0 and 1.0.1). If so, then the release with

the largest version number in the branch of the current release is deemed the predeces-

sor of the current release. Otherwise, the release visited so far with the largest version

number is deemed the predecessor of the current release. If the releases in chronolog-

ical and numerical order, shown in Figure 4.1, are given as input to our algorithm, then

the branch-based ordering of the releases (as shown in the same figure) is returned as

output.

Algorithm 1 gives the pseudo-code for the algorithm that we conceived to recover

the branch-based ordering. The parameters for the procedure BRANCH-RELEASE-ORDERING

are RTC
, the list of all releases of a client package C in chronological order, and RNC

, the

list of all releases of a client package C in numerical order. This procedure manages

sets R and U . The set R stores the pairs of adjacent releases 〈ri−1, ri 〉 that are iden-

tified. In turn, U stores the visited releases from RTC
. The procedure BRANCH(ri) re-

turns the set of releases that were added to the same branch as that of release ri . If

there are no releases that are added to a given branch, this procedure returns Ø (the

empty set). In turn, the procedure UPDATE-BRANCH(ri , Rb) adds a release ri to its re-

spective branch (Rb). The procedure LARGEST-VERSION-SMALLER-THAN takes a release

ri and a set L of release versions and returns the largest release version r j ∈ L that is

smaller than ri . In case there is no version smaller than ri in L , the procedure returns a

null reference. A given release ri with a null reference as its predecessor means that ri

has no release preceding it. The procedure LARGEST-VERSION-SMALLER-THAN obtains

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 33

the precedence between the version number of the releases from the numerical order

(RNC
).

Algorithm 1 Sort releases according to a branch-based ordering

Input: Releases in chronological (RTC
) and numerical (RNC

) orders
Output: Releases in branch-based order

procedure BRANCH-RELEASE-ORDERING(RTC
, RNC

)
R ←Ø
U ←Ø
for all ri ∈RTC

do
APPEND(U , ri)
Rb ← BRANCH(ri)
if Rb ̸= then

ri−1← LARGEST-VERSION-SMALLER-THAN(ri , Rb , RNC
)

else
ri−1← LARGEST-VERSION-SMALLER-THAN(ri ,U , RNC

)

APPEND(R , 〈ri−1, ri 〉) ▷ Store ri−1 as the predecessor of ri

UPDATE-BRANCH(ri , Rb)
return R

Algorithm 1: Branch-based release ordering algorithm.

4.3 Data collection

To empirical study on dependency downgrades, we collected data from all packages

that were deployed in the npm registry during the period of December 20, 2010 to July

01, 2017. Also, we obtained data from the Version Control System (i.e., the codebase) of

a representative sample of packages that perform a downgrade. Four main steps were

performed in our data collection procedure: collection of package metadata, analysis

of package dependencies, detection of dependency downgrades, and identification of

artifacts associated with downgrades. Figure 5.3 depicts an overview of our data col-

lection procedure.

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 34

Obtain
package.json

files

Collect package metadata

npm

Analyze package dependencies

Parse
versioning
statements

Detect dependency downgrades
Compare the resolved
provider versions from

adjacent client
releases

List of 461,548
package.json

files

Identify artifacts that are
associated with downgrades

Resolve
providers

version

List of 19,651
provider version

downgrades

RQ2: How is the
versioning of

providers modified in
a downgrade?

RQ3: How fast do
downgrades

occur?

RQ1: Why do
downgrades

occur?

Resolved
provider
versions

ITS & VCS

Link ITS & VCS
artifacts to

releases with
downgrades

Commits/issues/
release notes of

downgrades

Figure 4.3: Overview of our data collection procedure.

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 35

4.3.1 Collect package metadata

Obtain package.json files: We crawled the registry6 of npm and obtained the pack-

age.json metadata file of 461,548 packages. The metadata file of each package lists,

among other pieces of information, all the published releases by a client package, the

name of the used providers in each release, the associated versioning statements with

the providers in each client release, and the timestamp of each release. An example of

a package.json file can be seen on Chapter 2.

4.3.2 Analyze package dependencies

Parse versioning statements: We parsed the versioning statement of all dependencies

in the package.json files according to the adopted grammar by npm (see Chapter 2

for a description of such a grammar). Two types of dependencies were considered:

(i) production dependencies, which are required for the installation of a package and

that are loaded at runtime and (ii) development dependencies, which are not required

for the installation of a package and that are loaded only at development time (see

Chapter 2 for a description of production and development dependencies).

Resolve providers version: The package.json file contains the date on which the re-

leases of a package were published on npm. Given a client package release and the

name of a provider that is used in such a release, we initially obtained the list of pub-

lished versions by the provider before the client release date. Subsequently, we de-

termined the resolved version of each provider according to the versioning statement

used by the client in that release (see Chapter 2 for a description of how a provider ver-

sion is resolved). Dependencies with a versioning statement that did not satisfy any

6https://github.com/npm/registry-follower-tutorial

https://github.com/npm/registry-follower-tutorial

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 36

provider version were discarded. The output of this step is the resolved provider ver-

sion for all client dependencies to providers.

4.3.3 Detect dependency downgrades

Compare the resolved provider versions from adjacent client releases: We sorted the

releases of the client packages according to the branch-based ordering algorithm that

we discussed in Section 4.2 (see Algorithm 1). Afterwards, we detected downgrades by

comparing the resolved provider versions from adjacent client releases. The output of

this step is a list of 19,651 downgrades, which were used as input to our RQs. Of all de-

tected downgrades, 48% are from development providers and 52% are from production

providers.

4.3.4 Identify artifacts that are associated with downgrades

Link ITS & VCS artifacts to releases with downgrades: From the list of downgrades,

it is possible to identify the releases of a client package in which at least one down-

grade occurred. In particular, for the packages whose Version Control System (VCS)

and Issue Tracker System (ITS) were publicly available, one can also identify which arti-

facts (e.g., committed files, commit messages) were produced during the releases with

downgrades. We identified and examined the artifacts of a statistically-representative

sample of client releases with downgrades (more details in Section 4.4.1). The output

of this process is thus a list of commits, issues, and release notes that are associated

with a sample of the releases that contain at least one downgrade of a provider.

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 37

4.4 Results

This section presents the results for each of our RQs. For each RQ, we discuss its moti-

vation, the method that we used to address the RQ, and our findings.

4.4.1 RQ1. Why do downgrades occur?

Motivation: Downgrades indicate that one or more provider versions caused some

problem to the client package. Prior studies have only provided limited explanation

regarding what these problems are. Therefore, in this RQ, we investigate the rationale

behind downgrades.

Approach: We manually examined a statistically representative random sample of client

releases in which a provider downgrade occurred. We studied the various artifacts (e.g.,

release notes, commit messages, and modified files) associated with a client and its re-

lease in search for explicit mentions of the rationale for a downgrade. For example, in

a commit message that says “gulp-strip-comment 1.1.1 is broken. force to use an old

version”, the rationale for the downgrade is that the package gulp-strip-comment at

version 1.1.1 caused a failure in the client package.

Figure 4.4 depicts the approach that we used to identify the rationale for down-

grades. We initially grouped the list of 19,651 downgrades into the 10,967 client releases

in which at least one downgrade occurred. The reason for grouping the downgrades

by the client releases is that the distribution of the number of downgrades per client

release is skewed: 52% of the downgrades occur in 20% of the client releases with down-

grades. Hence, a simple random sampling of the downgrades would be biased towards

client releases with many downgrades.

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 38

Manually analyze
artifacts

(open coding)

Rationale for downgrades

Yes

List of 19,651
downgrades

Group by
client releases

Sample client release
with at least one

downgrade

Identify releases with downgrades

Sample releases with downgrades

VCS

No

Localize artifacts

Identify the rationale for downgrades

10,967 client
releases with
downgrade

371 client
releases with
downgrades

Commits

Issues

Release notes

GitHub

VCS available
& downgrade commit

found?

Figure 4.4: Our approach to identify the rationale for downgrades.

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 39

After grouping the downgrades by the client releases, we drew a statistically repre-

sentative sample (95% confidence level and ±5% confidence interval) from these re-

leases (371 cases out of 10,967). For each client package release in our sample of client

releases with at least one downgrade, we checked whether the VCS that is used by the

package was available and whether the exact commit in which the downgrade was per-

formed could be identified. Whenever an observation in our sample did not meet any

of these two requirements, we randomly drew another observation from the popula-

tion of client releases containing downgrades.

Finally, we manually analyzed the sampled releases in order to identify the ratio-

nale for downgrades. The examined artifacts were obtained from the VCS and ITS of

each client package. More than 98% of the examined packages used GitHub7 as their

ITS. We performed a thorough examination of the modified artifacts in a commit in

which a downgrade was performed. The following artifacts were examined:

• Commit message;

• Artifacts that are modified in the commit, particularly the package.json file and

the release notes (if available);

• Issues that reference the commit (if available);

• Pull requests that reference the commit (if available).

We performed an open coding (Stol et al., 2016) over the examined artifacts to cat-

egorize the rationale for the downgrades. An open coding is a qualitative method to

induce general principles that explain a particular instance of a data set. The method

generates a set of codes that describes the observed data instances.

7http://www.github.com

http://www.github.com

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 40

Observation 4.1) Downgrades are performed by client packages either to cope with an

issue in a specific provider version or in an attempt to avoid potential future issues.

This observation led us to separate downgrades in two categories, according to their

rationale: reactive and preventive. The motivation for reactive downgrades is to cope

with an issue in a specific provider version that negatively affected the client package.

Reactive downgrades are captured by quotes such as “tar@2.2.1 breaks build”, “Blue-

birds 2.9.x branch has proven to be rather buggy and introduces more issues than it fixes,

so lets stick with the stable version”. On the other hand, preventive downgrades are

performed to avoid issues from recent provider releases. This latter category is repre-

sented by quotes such as “Locks down package.json dependency versions to avoid build

inconsistencies and variation across systems”, or “We should consider pinning all de-

pendencies to prevent issues like this in the future”.

Observation 4.2) There are three issues that motivate a reactive downgrade: defect in

the provider version, unexpected feature changes in a provider, and incompatibilities.

In the following, we describe each of these issues.

Issue 1: Defect in the provider version: The resolved provider version contains a de-

fect that leads to a failure in the client package. The failure can manifest itself at three

different times:

a) Build-time – occurs when the client package fails while it is being installed/built:

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 41

“tar@2.2.1 breaks build.” [commit message from pull request #103 of

package urllib],

“The most recent 0.1.x (0.1.15) broke the build, hence pin it to 0.1.13 for

now until it is fixed.” [message on commit #2b23764 of package

noise-search],

“This library currently yield a warning on install” [discussion on issue

#28 of package ua-parser-json],

“Fix version range for devDependencies (...) fixes #28” [message on

commit #2dec1a8 of package ua-parser-json]

b) Run-time – occurs when the client package fails while it is running:

“The update has some breaking changes in how the CircularProgress is

rendenred [sic] (...)” [message on commit #3273dae of package d2-ui],

“lock dependencies so specs run” [message on commit #1dfad5e of

package wunderbits.db when downgrading provider karma],

“The way tokens are exposed seems to have changed fundamentally,

which broke parsing.” [message on pull request #832 of package witheve

when downgrading provider chevrotain]

c) Development-time – occurs when the failure manifests itself during the development

and in-house testing of the client package:

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 42

“fix versions of things in package.json to original known working versions

(trying to get react datum tests working again)” [message on commit

#7397630 of package bumble-test],

“Fixed package.json which for some reason was not allowing webpack

and karma validate for my tests.” [message on commit #5d10a53 of

package karma-styluspreprocessor]

The defect in the provider might also occur due to degradation of non-functional

requirements. The actually resolved provider version is not able to fully adhere to a

non-functional requirement of the client package:

“Downgrade css-loader to 0.14.5 to address superslow HMR builds (...)”

[message on commit #67bec17 of package brokerjs],

“Rollback the Karma dependency version. ‘karma‘ was taking a long time

(∼30s) to exit the test suites (...)” [message on commit #6f49232 of

package packery-angular],

“Freeze dependencies version to better use cache on Travis (...)” [message

on commit #0d4633d of package ember-cli-foreigner]

Issue 2: Unexpected feature changes: The current provider version behaves in an un-

expected and/or undesired way compared to some prior version (however, the provider’s

behaviour is not considered defective).

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 43

“Reverting mysql to 2.1.1 (...) Unfortunately mysql has changed the way it

handles the charset setting (...) We need to revert this upgrade until the

issue is fixed or we have a way to handle it nicely for our users.” [message

on commit #1f17d5b of package ghost],

“Downgraded esdoc to 0.4.3 because they got rid of CLI options” [message

on commit #67bec17 of package brokerjs]

Issue 3: Incompatibilities: An incompatibility prevents the client package from oper-

ating properly. We identified two sources of incompatibilities.

a) Incompatibilities between provider versions – it occurs when the version of two (or

more) providers that are used by the client package are not compatible with each other:

“release 1.3.2 fix fs-extras compability [sic].” [message on commit

#3f0f6c4 of package yog2-kernel],

“Package version modification for compatibility.” [message on commit

#d3f42 of package mozaik-ext-jira-2 when downgrading package

superagent],

“reverted jquery version to 2 for jquery-ui compatability [sic].” [message

on commit #926653a of package yasgui-yasr]

b) Incompatibilities with Node version – it occurs when the resolved provider version

requires a specific Node version, which in turn is incompatible with the Node version

that is used by the client. Node is the run-time engine for JavaScript, which is the lan-

guage in which npm packages are written:

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 44

“npm versions changed to run the project with node 5.4 (...)” [message on

commit #ee5c524 of package d3-composite-projections],

“Fix npm error on node 0.8.x.” [message on commit #d5d3078 of package

grunt-wget],

“remove caret to allow compatibility with node 0.8” [message on commit

#f0b57e4 of package nodo],

“(...) lock to very specific version that works on node 0.10” [message on

commit #76de1c0 of package stack-utils-node-internals]

Observation 4.3) A preventive downgrade is performed to avoid potential issues from

future releases of the provider. This preventive action is often referred to in the ex-

amined commit messages as “pinning” or “locking” the provider version. It is done to

avoid potential failures that might arise when a provider is updated to a new version.

When pinning a provider version, the developer of the client package typically removes

the range operator from a version range statement. Such a modification to the version-

ing statement might lead to a downgrade. For example, if the versioning statement is

modified from “P”: “>=2.0.0” to “P”: “2.0.0” and the newest version of the provider

P is 2.0.1, then this provider will be downgraded from 2.0.1 to 2.0.0 when the range op-

erator “>=” is removed. The following excerpts are examples that we observed in the

manually examined downgrades:

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 45

“We have now had 2 issues where a “patch” upgrade in a dependency

broke Parse Server. (...) We should consider pinning all dependencies to

prevent issues like this in the future.” [discussion on issue #2040 of

package parse-server],

“Locks down package.json dependency versions to avoid build

inconsistencies and variation across systems.” [message on pull request

#82 of package lightstep-tracer-javascript],

“Use exact versions in package.json: Because some of the new ones caused

issue when calling npm install.” [message on commit #c1e12fe of

package atom-keymap],

“Lock broccoli-funnel to prevent rebuild error (...)” [message on pull

request #237 of package ember-engines],

“please pin the moment dependency: By using >= you expose anyone

using your package and installing via npm install to different versions of

the package being installed.” [discussion on issue #55 of package

emailjs],

“Lock broccoli-funnel to prevent rebuild error (...)” [message on pull

request #237 of package ember-engines]

Observation 4.4) Preventive downgrades can be triggered by recommendations from

automated tools. Automated tools that manage dependency versioning can recom-

mend that a client package converts all version ranges to specific versions. These rec-

ommendations are deployed through automatically created pull requests that simply

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 46

remove the range operator from all the versioning statements listed in the client’s pack-

age.json file.

“Hello! We’re all trying to keep our software up to date, yet stable at the

same time. This is the first in a series of automatic PRs to help you achieve

this goal. It pins all of the dependencies in your package.json, so you have

complete control over the exact state of your software.” [message in pull

request #16 of package noflo-core]

RQ1: Why do downgrades occur?

• Downgrades occur either as a reaction to a defect in the downgraded provider

version or as a prevention to potential issues in future versions of this provider.

• Downgrades usually occur by “pinning” dependencies, i.e., by changing a version

range by a specific version statement.

4.4.2 RQ2. How is the versioning of providers modified in a down-

grade?

In this RQ, we investigate how the versioning of providers is modified when a provider

is downgraded. Our investigation contemplates three different angles, namely: in Sec-

tion 4.4.2.1, we analyze how the versioning statements are modified in releases con-

taining a downgrade, in Section 4.4.2.2, we study how many providers are downgraded

in a release containing a downgrade, and in Section 4.4.2.3 we analyze how the resolved

provider version changes when a downgrade occurs.

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 47

4.4.2.1 Modification of versioning statements

Motivation: From a client package perspective, using version range statements has

the advantage of reducing the overhead of keeping its providers up-to-date. On the

other hand, the adoption of version range statements makes the client package sus-

ceptible to bugs in provider versions that are implicitly updated. We hypothesize that

downgrades are associated with a transition from version range statements to specific

versions, specially when a problematic implicit update triggers the downgrade. An ev-

idence of such an association is the occurrence of preventive downgrades and the ac-

tion of “pinning” dependencies, as we observed in RQ1. In fact, practitioners often ad-

vocate against the adoption of version range statements due to the possibility of being

caught by surprise by a newly introduced bug in a provider version (Bevacqua, 2015;

Draper, 2017; Dodds, 2015). In this RQ, we investigate how downgrades are associated

with changes in the versioning statements.

Approach: We calculate the proportion of downgrades that resulted from replacing

a version range statement with a specific version and vice-versa. In addition, for the

cases in which a version range remains being used after a downgrade, we investigate

how the operators and numerical part of the versioning statement are modified.

Observation 4.5) Almost half (49%) of the downgrades occur due to a replacement of

a version range statement with a specific version. Figure 4.5 shows the proportion of

downgrades per type of versioning statement change. The most common type of ver-

sioning statement change in downgrades (49%) is from range to specific (of which 49%

are from production providers). In this subgroup, 68% of the cases were performed

simply by removing the range operator and keeping the numerical part. As we ob-

served in RQ1, this is how preventive downgrades are typically performed: instead of

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 48

37%

13%

49%

1%
0

2500

5000

7500

10000

Remains
as range

Remains
as specific

From range
to specific

From specific
to range

Versioning statement at downgrade

N
um

be
r

of
 o

cc
ur

re
nc

es

Replace caret with tilde operator? Yes No

Figure 4.5: Proportion of downgrades per type of versioning statement change.

carefully choosing a provider version, developers simply remove the version range op-

erator from versioning statements. Also, when the versioning statement remains as

specific, the proportion of downgrades that are from production providers is 61%. In

turn, the same proportion is 48% when the versioning statement changes from specific

to range.

As also shown in Figure 4.5, the versioning statement remains as a range in 37%

of the downgrades (of which 51% are from production providers). In this subgroup,

21.8% of the cases involved replacing a caret (∧) operator with a tilde (∼) operator. The

tilde operator resolves towards a patch update of the provider, while the caret opera-

tor resolves towards a minor update. In 58.1% of the caret-to-tilde replacements, the

numerical part of the version range did not change. As a consequence, the range of

provider versions that are accepted by the client is narrowed down. There are no cases

for which the change from caret to tilde would be effectless (i.e., downgrades in which

the versioning statement change from “∧0.x.y” to “∼0.x.y”).

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 49

4.4.2.2 Number of providers that are downgraded in a release

Motivation: When one or more providers cause an issue, client package developers

might perform a reactive downgrade. However, detecting the specific troublesome

provider might not be trivial and developers might end up downgrading unrelated

providers. In addition, “pinning” a large number of providers might result in down-

grading many providers at once. Hence, in this research question we investigate how

localized downgrades are.

Approach: We categorize all client releases with downgrades as having one, two, three,

four, five, and more than five providers downgraded. Afterwards, we count the number

of client releases with downgrades that fit these categories. For each client release with

a downgrade in one of these categories, we verified the proportion of providers (from

the total number of used providers) that were downgraded.

Observation 4.6) In 75.5% of the client releases containing a downgrade, only a sin-

gle provider is downgraded in these releases. This observation is depicted in Figure

4.6. In 58.3% of the releases in which a single provider was downgraded, more than

10 providers were being used by the client package (black portion of left-most stacked

bar). On the other hand, in only 2.5% of all releases with downgrades all providers were

downgraded at once (sum of lightest gray portion over all stacked bars). These results

thus indicate that downgrades are often localized.

4.4.2.3 Introduced technical lag

Motivation: When a client package performs a downgrade, there is an increase in the

technical lag regarding the resolved provider version (Gonzalez-Barahona et al., 2017;

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 50

0%

20%

40%

60%

80%

100%

1 2 3 4 5 >5
Number of downgraded providers

P
ro

po
rt

io
n

of
 c

lie
nt

re
le

as
es

 w
ith

 d
ow

ng
ra

de

Proportion
of providers

Less than 10%

10% or more and
less than 50%

50% or more and
less than 100%

100%

Figure 4.6: Number of downgraded providers in the same client release.

Decan et al., 2018). As such, downgrades naturally prevent client packages from lever-

aging the benefits brought by newer releases, including bug fixes, vulnerabilities fixes,

and new features (Bavota et al., 2015; Cox et al., 2015; Derr et al., 2017). Thus, it is gen-

erally advised that client packages keep their providers up-to-date. The technical lag

introduced in a downgrade can not only affect the client package itself, but also af-

fect transitive dependencies. For this reason, it is important to evaluate the impact of

downgrades in other packages in the ecosystem. In this RQ, we measure the impact of

downgrades on the technical lag and the extent to which the introduced technical lag

can impact client packages that use a release with downgrade. Finally, Zerouali et al.

(2019b) show that there is a difference between the technical lag of development and

production providers. Therefore, we study whether the technical lag introduced in a

downgrade differs between these two types of providers.

Approach: We calculate the proportion of provider versions that were reduced by a ma-

jor, minor, and patch level in a downgrade. In addition, we compare the increased tech-

nical lag when a downgrade occurs with the decreased technical lag when the prior up-

date occurred. The increase (or decrease) in technical lag is measured by the number of

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 51

Client release

Provider release

Patch update

Minor downgrade

1.0.0 1.1.0 1.1.1 1.1.2

Update from
1.1.1 to 1.1.2

Downgrade from
1.1.2 to 1.0.0

Resolved version
1.1.1 of provider

Figure 4.7: Number of back skipped provider versions in a minor downgrade following
a patch update.

already published provider versions that are back (or forward) skipped in a downgrade

(or update), according to the numerical ordering. Figure 4.7 depicts this calculation.

The figure shows an update followed by a downgrade. A patch update changes the re-

solved provider version from 1.1.1 to 1.1.2, decreasing the technical lag by one patch

release. On the next client release, the fourth version (1.1.2) of the provider is down-

graded towards the first version (1.0.0). In this example, the downgrade back skipped

three versions (1.1.2, 1.1.1, and 1.1.0). Hence, we say that the technical lag was in-

creased by three versions (or two patch and one minor release).

We verify if the distribution of the number of backskipped major, minor, and patch

releases is different between downgrades of development and production providers.

To compare the distributions, we test the null hypothesis that both distributions do

not differ from each other using the Wilcoxon Rank Sum test (α = 0.05) (Bauer, 1972)

and assess the magnitude of the difference with the Cliffs Delta (d) estimator of effect

size (Cliff, 1996). To classify the effect size, we use the following thresholds (Romano

et al., 2006): negligible for |d | ≤ 0.147, small for 0.147 < |d | ≤ 0.33, medium for 0.33 <

|d | ≤ 0.474, and large otherwise.

Observation 4.7) 13% of the downgrades induce an unnecessary increase in the tech-

nical lag. Table 4.1 shows the proportion of patch, minor, and major downgrades that

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 52

Table 4.1: Proportion of major, minor, and patch downgrades that follow a major, mi-
nor, or patch update.

Update that precedes the downgrade

Patch Minor Major

D
ow

n
gr

ad
ed

ve
rs

io
n

le
ve

l

Patch (27%) 95% 3% 2%

Minor (48%) 18% 80% 2%

Major (25%) 9% 9% 82%

follow a patch, minor, and major update. Downgraded version levels that are larger

than the updated version level are shown in grey filled cells. Almost one fifth of the

minor downgrades (18%) follow a patch update and a total of 18% of the major down-

grades follow a patch or a minor update. For such cases, the downgrade not only nul-

lifies the benefits of the prior update, but also increases the technical lag.

In 48% of the downgrades, the provider package version is reduced by a minor level.

Patch and major downgrades represent, respectively, 27% and 25% of the downgrades.

Interestingly, these proportions do not correspond to the proportion of patch, minor,

and major releases of downgraded packages which are, respectively, 72%, 23%, and

5%. In addition, almost one fifth (19.4%) of the releases containing a downgrade have

at least one client package, representing cases in which the technical lag can affect

transitive dependencies.

Observation 4.8) Major downgrades back skip a median of 1 major, 1 minor, and 3

patch releases. Figure 4.8 shows the increase in technical lag for each modified version

level in a downgrade. In 65% of the major downgrades, at least one minor release is also

back skipped, while in 91% a patch release is also back skipped (59% back skip both

minor and patch releases). Also, we verified that 85% of the minor downgrades back

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 53

●● ●●●● ●● ●●● ●● ● ●● ●●●

●● ●● ●●●●●●●●●●●● ● ●●●● ●●●

●● ● ●● ●● ●●●● ●● ● ●●●● ●● ●● ●●● ●●●● ●●●●●●●●●●●●● ●●● ●● ● ●●●●● ●●● ● ●● ●●●●● ●● ● ● ●●●●●●●●● ●

●● ●●● ● ● ●●●●●● ●● ●● ●●●● ●●●●● ●● ●●● ●●●● ●●●●● ● ● ● ●●●● ●● ● ● ● ●●● ●●● ●● ●● ●●●●●● ●

●●● ●● ●● ●●●●● ●● ●● ●●●●● ●●● ●● ●● ●●● ●●●●●● ●●● ●● ●● ●● ●●●●●● ●●● ●●● ●●●●●●●● ●●● ●● ● ●●●●● ●●● ●● ●● ●●●●● ● ●● ●●● ●●●●● ● ●● ●●● ●● ● ●●● ●● ●● ●● ● ●●●● ●●● ●●● ●●● ●●● ●●● ●●● ● ●● ●● ●● ●● ●●●●●● ●● ● ●●●●●

●●● ●●● ●●● ●● ●● ●● ● ●●●● ● ●● ●●● ●●●● ●●●● ●●● ●●●●●●● ● ●●●● ●●●●● ●●● ● ●●●●●● ●● ● ●● ●●● ●● ● ●● ●● ●●● ● ●● ●● ●●● ●● ●● ●●● ●● ●● ● ●● ●●● ●●● ●●●● ●●● ●●●●● ●●●●●● ●● ●●● ●● ●●● ●●● ●●

Patch downgrade

Minor downgrade

Major downgrade

0 1 10 100

0 1 10 100

0 1 10 100

Patch
Minor
Major

Patch

Minor

Patch

Number of back skipped versions

B
ac

k
sk

ip
pe

d
ve

rs
io

n
le

ve
l

Figure 4.8: Number of back skipped provider versions in a major, minor, and patch
downgrade.

skip at least one patch release. Comparing downgrades of development and produc-

tion providers, the difference between the distribution of the number of backskipped

major and patch releases is not statistically significant (p -value> 0.05). While the dif-

ference for the number of back skipped minors is statistically significant, the effect size

is negligible (|d |= 0.114).

Major downgrades represent one quarter of all downgrades and typically follow a

pattern. 82% of the major downgrades are preceded by a major update. Also, 75% of

the updates preceding a major downgrade are explicit, indicating that the versioning

statement used at the update time generally does not satisfy the new major releases of

the provider and that major updates tend to be a well-thought-out decision. Finally,

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 54

70% of the major downgrades are rollbacks (i.e., the target of the downgrade is the ver-

sion that was originally used by the client package). These observations suggest that

major downgrades are likely the result of a failed attempt to update to a major version.

In 88% of the major updates that precede a major downgrade, the update was ex-

plicit. This observation shows that the majority of the major updates that precede a

major downgrade are deliberated, suggesting that many issues that arise after a ma-

jor update of a provider manifest themselves in-field (i.e., after deployment) but not

in-house (i.e., at the development environment).

RQ2: How is the versioning of providers modified in a downgrade?

• Downgrades are associated with a shift into more conservative versioning of

providers: 49% of the downgrades replace a version range by a specific version

of the provider.

• Downgrades are generally localized: In 75% of the client releases containing a

downgrade, a single provider is downgraded.

• 13% of the downgrades induce an unnecessary increase in the technical lag.

4.4.3 RQ3. How fast are downgrades performed?

Motivation: A downgrade indicates that one or more providers caused some issue

to the client package. In particular, when the provider is implicitly updated (i.e., be-

cause the new provider version satisfies the specified version range), these issues can

manifest themselves in a sudden manner, making it challenging to rapidly identify the

provider that is associated with the issue. In fact, prior research has shown how unex-

pected defects impact the quality of a software product (Shihab et al., 2011). Measuring

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 55

the time between the update of a provider version and the consequent downgrade can

thus help to understand how fast client packages are able to react to the issues behind

downgrades. Furthermore, client packages can react to issues that arise from develop-

ment and production providers with a different degree of urgency. For example, issues

from development providers should not impact the deployed client package and the

contingency of such issues can be delayed without affecting the client package’s users.

In this RQ we also differentiate between the time to downgrade development and pro-

duction providers.

Approach: To determine how fast a downgrade is performed, we calculate the ratio

shown in Equation 4.1. The ratio is a means to compare the taken time to perform a

given downgrade with the typical time between two releases of a client package. Val-

ues larger than 1 indicate that a downgrade D takes more time to occur than a typical

release of the client package C . A typical time between releases of a client package

C is calculated by timeRel(C) in Equation 4.1. We verify whether there is statistical

difference between the speedRatio(C , D) of development and production providers.

To do so, we used the Wilcoxon Rank Sum test (α = 0.05) and the Cliff’s Delta esti-

mator of effect size. To classify the effect size, we use the following thresholds (Ro-

mano et al., 2006): negligible for |d | ≤ 0.147, small for 0.147 < |d | ≤ 0.33, medium for

0.33< |d | ≤ 0.474, and large otherwise.

speedRatio(C , D) =
time(D)

rel(D)× timeRel(C)
(4.1)

where:

• time(D) is the elapsed time (in days) between the update and the eventual down-

grade D .

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 56

Client release:
Versioning

statement change

Provider release:
Version 2.0.1

"P": "2.0.0" to
"P": "2.0.1"

Time

Explicit update

Client release:
Downgraded version

2.0.1 of provider

Client release:
No versioning

statement change

Provider release:
Version 2.0.1

"P": ">=2.0.0"
Time

Implicit update

Client release:
Downgraded version

2.0.1 of provider

Figure 4.9: Downgrades preceded by explicit and implicit updates.

• rel(D) is the number of spanned client releases between the update and the even-

tual downgrade D (inclusive).

• timeRel(C) is the median elapsed time between the last half releases of a client

package C (in days per release).

We also investigate whether downgrades of implicit updates take longer than down-

grades of explicit updates. Given a downgrade, we determine the timestamp of the

preceding update based on how this update occurred. When an update is explicit, i.e.,

it occurs because the versioning statement was modified, the timestamp is the date at

which the client package publishes a release with the updated provider (depicted as

a shaded dot in the timeline on the left-hand side of Figure 4.9). On the other hand,

when an update is implicit, i.e., it occurs because the actual version range satisfies the

new version of the provider, the update timestamp is the date at which the provider

released the version that was eventually downgraded (depicted as a shaded diamond

in the timeline on the right-hand side of Figure 4.9).

We compare the distribution of the elapsed time between an explicit update and its

eventual downgrade with the distribution of the elapsed time between an implicit up-

date and the eventual downgrade. This comparison is controlled by the downgraded

version level (i.e., whether it is a patch, minor, or major downgrade). We compared the

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 57

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105

speedRatio(C, D)

Provider type Production Development

Figure 4.10: Distribution of the speedRatio(C , D). The red dotted line indicates a ratio
value of 1.

distributions using the Wilcoxon Rank Sum test (α= 0.05) and the Cliff’s Delta estima-

tor of effect size (see Section 4.4.2.3 for a classification of the effect size).

Observation 4.9) 50% of the downgrades are performed 2.6 times slower than k typi-

cal releases, where k is the number of releases taken for the downgrade to occur. Fig-

ure 4.10 shows the distribution of the speedRatio(C , D) (Equation 1) for development

and production providers. The difference between the two distributions is statistical

significant (p < 0.05) with a negligible effect size (|d | = 0.026). The first quartile of

both distributions is greater than 1, indicating that more than 75% of the client re-

leases published during the update and following downgrade of a provider are slower

than the typical releases of the client package. In addition, Table 4.2 shows the median,

mean, first, and third quartile for the variables used in Equation 4.1. The median time

for a downgrade to occur is 34.8 days and 50% of the downgrades occur in one or two

releases after the update of the provider.

Observation 4.10) Downgrades of an implicit update generally take longer than down-

grades of an explicit update. The observed difference can be explained by the fact that

implicit updates are not controlled by client package developers. Hence, an issue that

arises after the provider is updated can appear unexpectedly. Thus, developers might

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 58

Table 4.2: Summary of the variables calculated in Equation 4.1.

1st quart. Median Mean 3rd quart.

speedRatio(C , D) 1.02 2.63 191.59 10.78

time(D) 10.73 34.84 79.76 95.86

rel(D) 1.00 2.00 5.05 4.00

timeRel(C) 1.24 5.55 19.14 18.14

need additional time to identify the provider(s) that is(are) associated with the issue

that concerns the downgrade. On the other hand, when performing an explicit update,

developers are aware of which providers were modified, making it easier to identify a

provider that eventually needs to be downgraded.

Considering explicit updates that precede a downgrade, the median time to down-

grade a provider is 35 days for major downgrades, 37 days for minor downgrades, and

46 days for patch downgrades. Considering implicit updates, the median time is, re-

spectively, 36, 48, and 35 days for major, minor, and patch downgrades. Figure 4.11

depicts the distributions. All pairwise differences between the downgraded version

levels (grouped by implicit and explicit updates) are statistically significant, but have

negligible effect size. In turn, comparing the update types (implicit vs. explicit) for

major, minor, and patch downgrades, we obtain, respectively, a statistically significant

difference with large effect size (|d |= 0.474), medium effect size (|d |= 0.454), and large

effect size (|d |= 0.477).

Observation 4.11) Urgent downgrades occur more often after an explicitly update

than after an implicit update. Urgent downgrades refer to downgrades that occurred

in less than one day after the update of the provider. Figure 4.11 depicts this obser-

vation. We found that 5.6% of all downgrades are performed in an urgent manner.

Also, 37.1% of the downgrades of explicit updates are urgent downgrades. In contrast,

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 59

Major

Minor

Patch

10−3 10−2 10−1 100 101 102 103

Time between update and downgrade (days)

D
ow

ng
ra

de
d

ve
rs

io
n

le
ve

l

Update type Explicit Implicit

Figure 4.11: Distribution of the elapsed time between the update and the eventual
downgrade of a provider package.

only 3.8% of the downgrades of implicit updates are urgent updates. This observa-

tion corroborates our conjecture that, because explicit updates are controlled by the

client packages, developers are more likely to react fast to the issues that were brought

by these updates. In addition, 67% of the urgent downgrades are from production

providers.

RQ3: How fast are downgrades performed?

• At least 75% of the releases with a downgrade are slower than the typical release

• 37% of the explicit updates are downgraded within 24 hours

• Downgrades of implicit updates are slower than downgrades of explicit updates

4.5 Discussion

In this section, we discuss the implications that derive from the results of our RQs. The

general learned lesson from our empirical findings is that package developers should

improve the management of their dependencies. In particular, package developers should

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 60

keep track of their dependencies over time and be cautious with provider updates. Ul-

timately, these practices should optimize the debug of troublesome updates (conse-

quently reducing the time to fix issues that affect the client packages) and reduce the

technical lag that is introduced when a downgrade occurs. In the following, we present

specific implications to help practitioners manage dependencies.

Implication 4.1) Package developers can use automated tools to support early dis-

covery of provider issues and thus decrease the time taken to downgrade. The is-

sue that motivates a downgrade can take some time to manifest itself. In particu-

lar, downgrades associated with implicit updates take longer to occur (c.f., Observa-

tion 10), thus delaying the provision of the fix to the packages’ users. Several tool-

assisted approaches can be employed to support the early detection of troublesome

provider updates. A simple approach can be employed using three different tools: (i)

latest-version8 checks what the latest version of a provider package is, (ii) next-update9

runs the client’s test suites, and (iii) npm-check-updates10 automatically updates the ver-

sioning statements in the package.json file A step further in the degree of automation

involves the usage of bots to manage dependency updates, such as Greenkeeper11 and

Renovate12. These bots interact with client package developers through the package’s

ITS (e.g., GitHub). The following workflow is generally implemented: (i) the bot identi-

fies an opportunity for an implicit update of a provider, (ii) the implicit update is per-

formed in an isolated branch, (iii) the bot runs a suite of automated tests and attempts

8https://www.npmjs.com/package/latest-version
9https://www.npmjs.com/package/next-update

10https://www.npmjs.com/package/npm-check-updates
11https://greenkeeper.io
12https://renovatebot.com

https://www.npmjs.com/package/latest-version
https://www.npmjs.com/package/next-update
https://www.npmjs.com/package/npm-check-updates
https://greenkeeper.io
https://renovatebot.com

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 61

to rebuild the package, (iv) in case the test suite or the build fails, the bot opens an issue

report with recommended actions.

Implication 4.2) Client packages can log their dependency tree to debug troublesome

providers. While the approach described in Lesson learned 1 ensures that tests pass

and the build does not break, it is still possible that a provider package might lead to

a problem. For instance, incompatibilities or a performance regression might not be

captured by the packages test suite. In this scenario, package developers might need to

debug the troublesome update. A lightweight approach would consist of simply keep-

ing a log file containing the state of the client package’s dependency tree (i.e., all the

provider versions that are loaded at a given time). With such log files, developers can

trace back the state of the dependency tree at a given time and determine the exact

updates that potentially led to the problem. Logging updates can be achieved by set-

ting an automated background routine that uses simple commands provided by npm

and the VCS. Such a routine can be implemented by: 1) using the npm-update com-

mand in an isolated environment (e.g., in a new branch or within any folder created

to this end), such that this isolated environment contains the client package with its

providers updated to the latest version that satisfies the versioning statements, 2) us-

ing the npm-ls command to produce a report of the dependency tree with the loaded

provider versions, 3) committing the dependency tree state on a daily basis to the VCS,

and 4) using some VCS’s tool (e.g., blame13 from Git) to identify the update of a given

provider. This workflow can be automated by setting a periodic routine that performs

the four aforementioned steps.

Implication 4.3) Client packages using a flexible dependency versioning strategy (i.e.,

extensive use of range statements) should emphasize testing the functionalities that

13https://git-scm.com/book/it/v2/Git-Tools-Debugging-with-Git

https://git-scm.com/book/it/v2/Git-Tools-Debugging-with-Git

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 62

involve provider packages. Reactive downgrades are caused by issues coming from

the provider packages. Therefore, testing functionalities that rely on the providers

should be intensified. In addition, testing corner cases for the provided functionali-

ties by the providers can safeguard client packages, especially when those function-

alities are not fully tested by the provider itself. Moreover, due to incompatibilities,

client packages should, if possible, test scenarios where multiple providers are used

together.

Implication 4.4) Client packages should be mindful of the latest working provider

version when pinning a dependency. Almost half (49%) of the downgrades are per-

formed by pinning the provider version. Pinning is typically (68%) performed by re-

moving the range operator and keeping the numerical part of the range statement (c.f.,

Observation 5). However, this downgrade pattern can lead to the adoption of a version

of the provider that is older than the latest working provider version (thus increasing

technical lag). Therefore, client packages should consider the latest working version of

the provider instead of simply removing the version range operator from the version-

ing statement. In fact, the own package manager could detect the removal of a version

range operator and warn developers of its side effects (e.g., unnecessary technical lag

being introduced).

4.6 Related work

In this section, we describe related work concerning dependency downgrades. Two

prior studies mention the phenomenon of downgrades in the npm ecosystem. Decan

et al. (2018) analyzed the impact of security vulnerabilities in npm dependencies. The

authors highlight that vulnerable providers impact the quality of their client packages.

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 63

The authors also claim that vulnerability issues can be solved by “rolling back to an ear-

lier version” of a provider. When analyzing a representative sample of the downgrade

cases (Section 4.4.1), we did not identify any explicit mentions to downgrades being

performed because of vulnerabilities in a provider. However, we did identify that one

of the rationales for downgrades is the presence of defects in the provider. In this sense,

it is possible that these defects encompass vulnerabilities issues.

Mirhosseini and Parnin (2017) studied the effectiveness of automated tools (e.g.,

bots) to manage dependencies in npm. The authors show that providers are updated

1.6 times more often and 1.3 times faster when client packages use such bots, com-

pared to clients that do not. By means of a survey, the authors demonstrate that the

three most common developers concerns regarding the update of providers are backward-

incompatible changes, understanding of the implications of changes, and migration

effort. Furthermore, 24% of the builds fail when some provider version is changed. The

authors also found that several provider updates performed by bots were downgraded

in 2 or 3 days after being merged. In this thesis, we found that defects in the provider,

in particular the ones that affect the client package build, motivate downgrades. In ad-

dition, we identified that bot recommendation is one of the reasons behind preventive

downgrades of a provider.

A few other papers approach the subject of downgrades in software ecosystems

other than npm, such as the Apache14 and the Android15 ecosystems. Mileva et al. (2009)

performed an empirical study of over 250 Apache projects with the goal of understand-

ing how the popularity of a package relates to its quality. They propose that the number

14https://www.apache.org
15https://developer.android.com

https://www.apache.org
https://developer.android.com

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 64

of downgrades of a given provider is an indicator of the (lack of) quality of that package.

Our findings corroborate this proposition.

Salza et al. (2018) analyzed the categories of provider packages that were down-

graded in mobile apps. They found that Graphical User Interfaces (GUI) and Utilities

are the categories of providers with the highest number of downgrades. The authors

show evidence that client packages want to follow look and feel tendencies, which ex-

plains the high number of updates of GUI-related providers. Also, utility packages sup-

port the development of applications in the ecosystem and are highly popular. Despite

the high number of packages that depend on those providers in mobile apps, the au-

thors did not explain why downgrades of these providers are often performed.

4.7 Threats to validity

Internal validity: When identifying the reasons for a downgrade, we searched for the

specific commit in which the provider versioning was changed in the package.json file.

However, it is possible that the downgrade reason was revealed in some prior commit.

We likely missed those cases in our analysis. Furthermore, in our manual analysis, we

did not inspect every file in the commit but merely searched for an explicit mention

for a downgrade in the examined artifacts (see method in Section 4.4.1). Also, we ac-

knowledge that different classifications of the downgrades (e.g., based on prior theo-

ries about maintenance categories or derived from interviews with developers) would

likely yield a complementary view to our results.

The proportion of published major, minor, and patch releases are different across

npm packages. Such non-uniform distribution of releases types has an impact on the

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 65

interpretation of our results. We mitigate this threat by controlling for release type (i.e.,

major, minor, and patch) when appropriate (Sections 4.4.2 and 4.4.3).

External validity: Because we collected data exclusively from npm, our findings might

not be generalizable to other ecosystems. Although npm is representative in size, in

fact, each software ecosystem has its own intrinsic characteristics. The goal of this

study is not to build theories around downgrades that would apply to all software ecosys-

tems. Rather, our study is only a first step towards a deeper understanding of why

and how packages are downgraded. Therefore, we acknowledge that additional studies

are required in order to further generalize our results. Nonetheless, to the best of our

knowledge, this is the first study to thoroughly investigate the phenomenon of down-

grades. In addition, our approach can be replicated in other ecosystems. Structures

similar to versioning statements (i.e., that allows one to set a specific version or a range

of versions to a given provider) and version numbering schemes can be found in sev-

eral other software ecosystems, such as Bundler (for Ruby), Cabal (for Haskell), pip (for

Python) and Maven (for Java). Downgrades of provider versions can also be found in all

those ecosystems platforms.

Construct validity: We identified the downgrades in npm based on a heuristic for or-

dering the client releases, which we call branch-based order (see Section 4.2). How-

ever, although this heuristic is a best-effort to capture the logical ordering of the re-

leases, the actual ordering adopted by a package can be arbitrary. Therefore, it is not

guaranteed that the use of such heuristic captures all downgrades performed in npm.

Nevertheless, we consider that, with respect to the identification of the downgrades,

the branch-based ordering represents the actual order of releases more accurately than

either the numerical or chronological orderings. The reasons for this consideration are

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 66

explained in Section 4.2. Furthermore, our manual analysis served as a sanity-check

for the reliability of our approach to detect downgrades. Finally, in Section 4.4.3, we

calculate the typical inter-release time of a package as the median time between the

last half releases. Although considering the last half releases is an arbitrary decision,

this is a reasonable form of representing the current inter-release time of packages that

have different release schedules.

Swanson (1976) proposes four dimensions of maintenance activities, namely cor-

rective, adaptive, perfective, and preventive. The classification of downgrades into re-

active and preventive (RQ1) is related with the dimensions of maintenance proposed

by Swanson (1976). Conceptually, reactive downgrades can be understood as a com-

bined form of corrective, adaptive, and perfective maintenance, while preventive down-

grades can be understood as a preventive maintenance activity. However, for some of

the manually investigated cases, it was impossible to determine, given the available ev-

idence, whether a reactive downgrade was corrective, adaptive, or perfective. Hence,

driven by the constraints of the data that we investigated, we simply classify down-

grades into reactive and preventive.

4.8 Conclusions

The benefits of having up-to-date provider versions is extensively studied in the litera-

ture (Bavota et al., 2013; Ruiz et al., 2016; Kula et al., 2017b). Prior studies also point to

the reasons why developers might prefer not to update provider packages (Kula et al.,

2015; Bavota et al., 2015; Derr et al., 2017). On the other hand, only a few papers ex-

amine aspects related to downgrades in software ecosystems (Mileva et al., 2009; Salza

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 67

et al., 2018; Decan et al., 2018). Using historical data from package releases, we empir-

ically investigate downgrades in npm. In particular, we study why provider packages

are downgraded, how they are downgraded, and how fast the downgrade occurs. Our

results show that downgrades are a facet of the management of dependencies in soft-

ware ecosystems, being used as a workaround to deal with issues coming from provider

packages. In Section 4.5 we discuss a set of procedures that practitioners can imple-

ment to better cope with the need for downgrading a provider. We make the following

observations:

• Downgrades are performed because of issues that arise from the provider, but are

also performed for preventive purpose. We identified two types of downgrades as

reactive and preventive (Observation 1). Three issues motivate reactive down-

grades, namely defects in the provider version (during build-time, run-time, or

development-time), sudden feature changes in the provider, and incompatibil-

ities (between provider versions, or with Node version) (Observation 2). On the

other hand, preventive downgrades are originated from the preventive action of-

ten called by client developers as “pinning” the provider version (Observation 3).

Also, preventive downgrades can be triggered by bot recommendations (Obser-

vation 4).

• Downgrades are associated with a change to a more conservative versioning of

providers. We observed that 49% of the downgrades change the versioning state-

ment from range-to-specific. In addition, when the versioning statement re-

mains as range after a downgrade, the range of acceptable versions is often nar-

rowed down (Observation 5). In 75.5% of the client releases with downgrade, a

single provider is downgraded (Observation 6). 13% of the downgrades induce an

CHAPTER 4. AN EMPIRICAL STUDY OF DEPENDENCY DOWNGRADES 68

unnecessary increase in the technical lag (Observation 7). Nonetheless, down-

grades of major versions also occur and they normally introduce a larger tech-

nical lag on the client package compared to minor and patch downgrades (Ob-

servation 8). An explanation is that client packages often delay the integration of

major releases of a provider due to its inherent increased difficulty compared to

minors and patches.

• The speed with which a downgrade occurs is associated with how the provider was

formerly updated. Client releases published between the update and the follow-

ing downgrade of a provider take 2.6 times longer than the typical time-between-

releases of the same client package (Observation 9). More than half of the down-

grades that follow an explicit update are performed almost 10 times faster than

half of the downgrades following an implicit update (Observation 10). Also, we

observed the occurrence of urgent downgrades, i.e., those that occur up to 24

hours after the prior downgrade. There are almost 9 times more urgent down-

grades following an explicit update (36%) than urgent downgrades following an

implicit update (3.8%) (Observation 11).

Our observations contribute to advancing the research concerning dependency

management in software ecosystems. In particular, our observations complement prior

studies that relate downgrades to issues in the provider packages, but that did not de-

scribe the nature of those issues. Based on the identified causes for downgrades and on

the understanding of how downgrades are commonly performed, we derived a set of

learnt lessons to help client packages mitigate the side-effects of downgrades. Lastly,

we outline future research opportunities.

CHAPTER 5

An Empirical Study of Same-day Releases of Popular Packages

In a software ecosystem, where a large number of dependencies between client and provider
packages exist, a problematic release of a popular provider package can affect a large num-
ber of clients. When detected early, such problematic releases can lead to the development
of a same-day release (a time-constrained corrective release published in the same day as the
previous releases). In this study, we consider same-day releases that are published in the npm
ecosystem by popular packages (i.e., packages with a significantly large number of client pack-
ages than others). We found that 20% of the patch releases of popular packages are same-day.
Almost one-quarter of such same-day releases modify more lines of code than the regular re-
leases of the same package. In general, although the rate at which same-day releases are ex-
plicitly updated by client package is comparable to the update rate of regular releases, explicit
updates to same-day releases are significantly faster than updates to regular releases. The re-
sults presented in this study can help development teams, in particular release managers, to
make informed decisions regarding their same-day releases.

An earlier version of this chapter is under major review in the Empirical Software Engineering
Journal (EMSE).

69

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 70

I
N this chapter, we describe our study about same-day releases in npm. Section 5.1

introduces and motivates our study. Section 5.2 presents background and re-

lated work regarding same-day releases. Section 5.3 explains our data collec-

tion methodology. Section 5.4 presents our preliminary study of changes introduced

in same-day releases by analyzing same-day release notes. Section 5.5 presents the re-

sults of our research questions. Section 5.6 discusses the implications of our findings

and draws a set of actionable insights for development teams. Section 5.7 discusses the

threats to the validity of our study. Finally, Section 5.8 states the conclusion remarks.

5.1 Introduction

Occasionally, multiple releases of a software project need to be published on the same

day. Prior studies associate those same-day releases with a time constrained response

to an issue that was caused by the prior release. For instance, Adams et al. (2015)

present that release engineers in Firefox publish “zero-day fixes” in response to failed

releases. Similarly, Kerzazi and Adams (2016) study the releases of a web-based com-

mercial system that fail “a few minutes” after being published, consequently requiring

the development team to timely react to the issue. In a software ecosystem, code reuse

is enabled by means of dependencies between packages. If a package c specifies a de-

pendency Dc ,p on another package p , then c can reuse the code of p . In this study,

we refer to c as a client package and p as a provider package, respectively. Same-day

releases are especially relevant in software ecosystem platforms, where many client

packages may depend on specific releases of a provider package. For example, mocha

is a popular package in the npm ecosystem, with more than 120K client packages and

4M weekly installations. Version 2.5.0 of mocha was released with a defect caused by a

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 71

specific dependency,1 preventing the installation of version 2.5.0 of the mocha package

by any of its clients. On the same day, version 2.5.1 was released to fix the dependency

issue. Another example is the defect caused by a typo introduced in version 2.4.0 of the

also popular debug package (Mezzetti et al., 2018).2 The defect affected a large num-

ber of client packages and a same-day release was published to address the problem.

Such examples denote the importance of same-day releases for maintaining a stable

ecosystem.

The time available to revise, test, build, and document same-day releases is re-

stricted compared to releases published within a regular schedule. When the defect

on version 2.5.0 of the mocha package was identified and fixed, the build time was a

concern, as expressed by a client package developer in an issue report: “How long for

build? Can one check progress somewhere?”. A time related concern could also be ob-

served when the typo in the debug package was reported: “Please tone it down, every-

body. Mistakes happen. Its been about 30–40 minutes, and its being worked on right

now.” As a consequence of the inherent time constraint of same-day releases, devel-

opers might need to prioritize specific activities (such as testing or building specific

parts of the system). For example, Castelluccio et al. (2019) study the practice of patch

uplifting by the Firefox development team. The authors observe that, occasionally, a

well-established release schedule needs to be disturbed by an urgent release that con-

tains critical fixes. Such urgent releases are “uplifted” from a development to a stable

channel without being thoroughly checked. Therefore, the appropriate management

of same-day releases is an important aspect to be considered by developers.

1https://github.com/mochajs/mocha/issues/2276
2https://github.com/visionmedia/debug/issues/347

https://github.com/mochajs/mocha/issues/2276
https://github.com/visionmedia/debug/issues/347

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 72

Although prior studies examined related phenomena with same-day releases, the

software ecosystem context was never considered in such studies. Same-day releases

are particularly relevant in software ecosystems because there is an ever-changing net-

work of dependencies among packages. In particular, many client packages start adopt-

ing a provider’s release automatically, due to the usage of version range statements (i.e.,

the default npm versioning mechanism, which allows a client package to set a range

of provider versions that are automatically updated). By automatically adopting new

provider versions, client packages can be caught off-guard when failures appear. Nev-

ertheless, basic information about same-day releases is still unknown, such as the fre-

quency with which same-day releases occur, how same-day releases are documented,

what the typical changes in same-day releases are, and how they impact client pack-

ages. In this chapter, we empirically investigate the occurrence and adoption of same-

day releases in the npm ecosystem. We focus on the following research questions:

Preliminary study. To understand the characteristics of the introduced changes in

same-day releases, we perform a qualitative analysis over a random sample of

same-day release notes. Our analysis resulted in a fine-grained set of categories

that describe introduced changes in same-day releases, ultimately revealing their

characteristics and scope. We observed that the contents of the same-day re-

lease notes point to relevant changes, mainly bug fixes. The introduced changes

in same-day releases can be related to the package’s own business logic or to

the integration with other provider packages. We also observed that introduced

changes address critical issues, such as crashes, UI failures, and performance

degradation.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 73

RQ1. How often do same-day releases occur? Same-day releases represent 26% of all

studied releases and are published at least once by 93% of the studied packages

in npm. Same-day releases are more common for a specific set of the studied

packages: 66% of all studied same-day releases are published by 25% of these

packages. Also, more than one-third (39%) of the studied same-day releases are

followed by another same-day release.

RQ2. What are the performed code changes in same-day releases? We observed

that 32% of the same-day releases modify more lines of code compared with its

prior release. We also observed that, even with the inherent time constraint,

provider packages are updated in same-day releases. By manually investigat-

ing such provider updates, we observed that they are prevalent when client and

provider packages are hosted in the same codebase.

RQ3. How do client packages adopt same-day releases? We observed that the rate

at which same-day releases are adopted by client packages is comparable with

the adoption rate of regular releases. Yet, the speed at which same-day releases

are adopted is significantly higher than the adoption speed of regular releases.

Based on our empirical investigation, we discuss implications for npm package de-

velopers to reason about the best practices regarding same-day releases. In specific,

we discuss that the important trade-off between the value of a same-day release and its

potential risks should be carefully evaluated by client packages, as well as how current

automated dependency management tools can help in this sense. Also, the high rate of

same-day releases suggests that popular packages should strive for optimized release

pipelines. Finally, we discuss why provider packages should improve the awareness of

how their releases impact client packages.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 74

Our study presents substantial contributions in addition to prior studies about same-

day releases. In summary:

• We show that the number of same-day releases in npm is higher than in prior

studied systems. Packages in the npm ecosystem publish a significant larger

number of same-day releases compared to other studied systems (Hassan et al.,

2017; Lin et al., 2017). Therefore, our study is performed over a data set with

characteristics different from prior studies.

• We are the first to study the source code of same-day releases. Our results rely

on historical data from the source code of the deployed files by npm packages,

providing novel information regarding the changes that are performed in same-

day releases.

• We show that same-day releases are particularly relevant in the npm ecosys-

tem. This is the first study to discuss the impact of same-day releases on the

dependencies of a software ecosystem. In particular, we investigate how client

packages adopt same-day releases of their providers.

5.2 Background & Operational Definitions

In this section we present background information and related work on same-day re-

leases. We initially present related work to release management and same-day re-

leases (Section 5.2.1). Next, we present our operational definition of same-day, prior-

to-same-day, and regular releases (Section 5.2.2).

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 75

Revision Integration Deployment

Source
code

Final
product

- Branching
- Merging

- Testing
- Building

- Field-testing
- Publishing

Figure 5.1: Simplified release management pipeline.

5.2.1 Release management

Release management is the set of processes that produces a final deliverable product

from the source code. Software projects can adopt different activities for managing

their releases (Mäntylä et al., 2015; Adams et al., 2015; Van der Hoek and Wolf, 2003;

Erenkrantz, 2003) and complementary release management models were proposed

in the literature (Kajko-Mattsson and Yulong, 2005; Adams and McIntosh, 2016). Fig-

ure 5.1 depicts a simplified release management pipeline. The simplified pipeline does

not cover all possible phases and activities performed in the release management of a

software project, but does explain the most common phases and activities that are rel-

evant for the scope of our study. Essentially, our simplified pipeline synthesizes the

release management models as proposed by Adams and McIntosh (2016), Lahtela and

Jäntti (2011), Kajko-Mattsson and Yulong (2005), and Erenkrantz (2003). In the follow-

ing, we describe each of the three phases in this pipeline.

Revision. In this phase, the source code that is generated by developers is committed

to different active branches in the VCS and eventually merged into a produc-

tion branch (the master branch). Branching is the process of managing different

branches (or codelines) in the VCS, each one containing a version of the source

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 76

code that complies with different levels of quality assurance. Merging is the pro-

cess of combining the contents of a branch with the contents of another branch

(e.g., merging a review with a master branch).

Integration. After a source code change is committed, a build process is started. In the

build process, dependencies are linked and an executable artifact is generated.

Although unit tests are likely run at development-time, automated integration

processes also run a set of tests, including regression and integration tests.

Deployment. In the deployment phase, a release is field-tested and made available to

the users. Publishing is the process of rolling out a release and making it available

to the users. The published final product can be deployed and distributed to

users by different means, such as package managers, web services, or mobile

app stores.

Occasionally, a release needs to be expedited throughout the release management

pipeline (Fox, 2002; Hamilton, 2007; Kerzazi and Adams, 2016; Hassan et al., 2017; Lin

et al., 2017; Castelluccio et al., 2019). For example, Lahtela and Jäntti (2011) propose

a model for release management that explicitly suggests publishing “urgent releases”

when they are needed. In this scenario, developers might eventually publish a follow-

up release in the same day of the previous release. Same-day releases indicate a new

version that is developed and published within a restricted time-frame, regardless of

the motivation behind expediting the release. The following interview excerpt illus-

trates the usage of same-day releases by the Mozilla development team (Adams et al.,

2015):

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 77

“If there were a serious problem, like a huge number of crashes on a certain

release (...) we would do a point release so that users wouldnt get the last

release and would be automatically updated to the newer release (...) We

call this a zero-day fix.”

Kerzazi and Adams (2016) studied the “botched releases” of a commercial web app.

Botched releases are defined as releases that present a malfunction shortly after (“in

a few minutes”) being published. The authors identified that 72 out of 320 studied

releases (22.5%) are botched—a non-negligible proportion of all releases. In a study

about urgent releases in the Google Play Store3 (Hassan et al., 2017), five different pat-

terns of urgent releases were identified, of which three have a median time to repair of

one day. Urgent releases were also studied on the Steam platform4 for games distribu-

tion. Lin et al. (2017) found that 80% of the studied games publish at least one urgent

release and that the major reasons for urgent releases are feature malfunctions, crash-

ing, and visual bugs. Lin et al. (2017) also observed that the occurrence of same-day

releases in the Steam platform is associated with urgent releases.

Same-day releases are especially important in software ecosystems because pack-

ages heavily depend on each other. Prior studies show that the interdependency of

npm packages makes the release of a popular package to impact many other packages

that directly or indirectly depend on the former (Kikas et al., 2017; Wittern et al., 2016;

Decan et al., 2017). For example, Kikas et al. (2017) show that the removal of some

npm packages can impact up to 30% of other packages in the ecosystem. Anecdotal

evidence of this potential problem exists. For example, recently a failure in a popular

3https://play.google.com/store/apps
4https://store.steampowered.com

https://play.google.com/store/apps
https://store.steampowered.com

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 78

Package release
24 hours timeframe

Regular
release

Prior-to-same-
day release

Same-day
release

Adjacent
releases

Figure 5.2: The release types that are investigated in our study.

package5 with a single line of code caused a massive downtime on the npm ecosys-

tem and a same-day release was published to solve the issue. Another well-known

example is the “left-pad incident”,6 in which a package was removed from npm and led

many packages in the ecosystem to fail. Within a few hours, a follow-up replacement

package was published in npm and the ecosystem stability was recovered. In those two

incidents, many package failures occurred because of transitive dependencies (i.e., a

failure in a popular package propagated throughout the ecosystem), which denotes

the risk brought by the dense interdependency of npm packages. Therefore, same-day

releases of popular packages in large software ecosystems deserve proper attention.

To the best of our knowledge, this is the first empirical study about same-day releases

in a software ecosystem.

5.2.2 Same-day, prior-to-same-day, and regular releases

We classify adjacent releases into three types depending on the time at which they are

published, namely same-day, prior-to-same-day, or regular release. Figure 5.2 illus-

trates the three release types.

5https://www.zdnet.com/article/another-one-line-npm-package-breaks-the-
javascript-ecosystem/

6https://www.theregister.com/2016/03/23/npm_left_pad_chaos/

https://www.zdnet.com/article/another-one-line-npm-package-breaks-the-javascript-ecosystem/
https://www.zdnet.com/article/another-one-line-npm-package-breaks-the-javascript-ecosystem/
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 79

A same-day release is a package release that is published in npm in less than 24 hours

after the previous release of the same package (according to npm’s timezone). The pre-

decessor of a same-day release is called a prior-to-same-day release (which is, by def-

inition, published in npm less than 24 hours from the following same-day release). A

prior-to-same-day release can also be a same-day release. For example, suppose that

release r2 of a package p is published in less than 24 hours after release r1 and that re-

lease r3 is published in less than 24 hours after release r2. In this example, release r2 of

package p is both a same-day and a prior-to-same-day release. Throughout this paper,

when a distinction between same-day and prior-to-same-day releases is needed (e.g.,

when we compare metrics for same-day with the same metrics for prior-to-same-day

releases), we prioritize the classification of a release as same-day. We call releases that

are published after another same-day release as back-to-back same-day releases. Con-

sidering our previous example, the release r3 is a back-to-back same-day release (since

it was published after the same-day release r2). Finally, releases that are not same-day

nor prior-to-same-day are classified as regular releases.

5.3 Data collection

Our general goal is to understand the prevalence, code changes, and adoption of the

same-day releases that are published in the npm ecosystem. The reason for choosing

this ecosystem is that it is the largest and most popular software ecosystem to date.7

Consequently, the npm ecosystem is inherently relevant in practice and provides rich

data for studying same-day releases.

7https://insights.stackoverflow.com/survey/2019

https://insights.stackoverflow.com/survey/2019

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 80

To accomplish our goal, we mine several pieces of data from the npm registry. Fig-

ure 5.3 depicts our data collection process. Four steps were employed in our data col-

lection. The first step is performed to collect the package.json files from npm packages

(Section 5.3.1). The second step selects packages for our study (Section 5.3.2). In the

third step, we select the patch releases, identify same-day and prior-to-same-day re-

leases, as well as identify dependencies in which the provider is updated (Section 5.3.3).

Finally, the fourth step is to analyze how the deployed files change between adjacent

npm releases (Section 5.3.4).

5.3.1 Collecting data from npm packages

In this step we collect meta-data about the packages that were published in npm be-

tween December 20, 2010 and May 13, 2019. We process the data as follows:

Obtain package.json files from npm packages. We fetch the package.json files of

all published packages in the npm registry. The package.json file contains metadata

about about all releases of a package, including the release version number and times-

tamp, as well as the adopted provider packages with their respective versioning state-

ments. The fetched package.json files are limited to packages within the npm ecosys-

tem and, therefore, do not include information about external applications that de-

pend on an npm package.

Extract metadata from the package.json files of each package. We extracted the fol-

lowing information about the packages: the release version number, the release times-

tamp, the dependencies and the respective versioning statements that are used in each

release. In total, we obtained the package.json file of 976,631 npm packages.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 81

Collecting data from npm packages

npm

Obtain
package.json

files from all npm
packages

Extract metadata from
package.json files
for each package

Data from
npm packages

Analyzing dependencies and releases

Selecting packages for our study

Select packages
with more than

100 clients

Select packages
with more than

10 releases

Packages selected for
studying

same-day releases

Select packages
with less than

50% of same-day
releases

Identify updated
dependencies

of client
packages

Select patch
releases

RQ3. How do
client packages
adopt same-day

releases?

RQ2. How are
the performed

code changes in
same-day
releases?

RQ1. How often
do same-day

releases occur?

Identify same-
day and prior-to-

same-day
releases

Extracting npm packages content

Fetch deployed
packages content

Same-day releases
and dependency

updates

Analyzed files that are
deployed by popular

packages

Analyze differences
between pairs
of releases

Preliminary
study

Manual analysis
of same-day
release notes

npm

Figure 5.3: Overview of our data collection process.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 82

5.3.2 Selecting packages for our study

We are interested in understanding the same-day releases of popular packages in the

npm ecosystem. Hence, in this step, we adopt a set of selection criteria that ensure that

noise is filtered out and the phenomenon of interest is reliably captured. The following

criteria were adopted:

Select packages with more than 100 clients. A specific goal of our research is to focus

on releases that can potentially affect a large portion of the ecosystem as, for exam-

ple, releases of a provider package that is adopted by many client packages. For this

reason, we decide to select only releases of the popular npm packages, i.e., top-ranked

packages by the number of client packages. Our definition of popular package is based

on the number of client packages that a certain provider package has within the ecosys-

tem. In particular, we study packages with more than 100 clients. This threshold was

selected after inspecting the distribution of the total number of clients per provider

package. We observed that provider packages with more than 100 clients lie in the

outliers of this distribution and, therefore, are representative of provider packages that

accumulate more client packages than the majority of the other provider packages in

the ecosystem.

Select packages with more than 10 releases. This criterion aims at filtering out pack-

ages that rarely publish a release or that do not have a release history yet.

Select packages with less than 50% of same-day releases. We filter out packages that

regularly publish same-day releases, since the development process adopted by those

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 83

Table 5.1: Summary of the number of releases, number of same-day releases, number
of clients, and number of providers for the popular packages.

Popular packages Min. Q1 Median Mean Q3 Max.

Number of
patch releases

10 16 26 37.62 44 460

Number of
same-day releases

0 3 6 9.89 12 138

Number of
clients

100 158 306 2,034 928 128,999

Number of
providers

1 10 18 26.29 34 200

packages inherently deals with releases developed within a 24 hours period (i.e., same-

day releases are not unusual to them). In other words, same-day releases that are pub-

lished as part of a regular schedule will not reflect the effects of time constraint that we

are interested in observing.

The output of this step is a set of 1,893 packages. We refer to such packages as popu-

lar packages. Whenever we mention a same-day release in the remainder of our study,

we refer to a release of a popular package. The clients and providers of the popular

packages were also included in our data set, since in our study we analyze the number

of providers of the packages that publish same-day releases, as well as how the clients

of such packages react to their releases. By including the clients and providers of the

popular packages, a total of 504,983 packages are kept in our data set. Table 5.1 de-

scribes statistics of the selected packages from which same-day releases are analyzed.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 84

5.3.3 Analyzing dependencies and releases

We analyzed the dependencies and releases of the popular packages to generate data

that could be used to answer our RQs. The data was generated by the following pro-

cesses:

Select patch releases. Releases in npm can be developed in parallel branches. As a

consequence, major and minor same-day releases can be identified (e.g., versions 1.0.1

and 2.0.0 being released on the same-day). However, in such cases, it is clear that the

same-day release (2.0.0 in the previous example) is not a patch for the 1.0.1 release.

To reduce such noisy same-day releases from our analysis, we selected only the patch

releases (e.g., from 1.0.0 to 1.0.1) of each studied package.

Packages in npm can publish either patch, minor, and major releases. Moreover,

such releases can be interleaved, for example, when a release 1.2.3 is published as a

patch to release 1.2.2 while the release 2.0.0 is already published. The occurrence of

interleaved releases can misrepresent same-day releases. For example, if releases are

sorted by the version number, then the releases 1.0.1 and 2.0.0 are considered adjacent

releases. If those two releases are published within 24 hours, the release 2.0.0 might

be considered a same-day release. However, in this case, it is clear that 2.0.0 is not

patching release 1.0.1. To deal with such versioning related challenges, we select only

patch releases for our study.

Identify same-day and prior-to-same-day releases. We identified all releases that were

published in less than 24 hours after the prior release. Also, we identified the releases

that are prior-to-same-day or regular releases (see Section 5.2.2).

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 85

Identify updated dependencies of client packages. For each client package release,

we identified the providers that were updated in that release. To determine the up-

dates of providers, we resolved the version of each provider according to the version-

ing statement used by the client package in each release and the provider versions that

were released up to the date of each client release (see Chapter 2). More formally, let

dc ,p ,r represent a dependency from the client package c on the provider package p in

release r of c . The resolved provider version is the latest version of p that satisfies the

versioning statement used by c in r . Versioning statements are parsed using our own

parser,8 which fully adheres to the npm grammar.

The output of this step is a data set containing all the releases (with the identified

patch same-day releases) and the dependencies of the client packages (with the iden-

tified updates) from the popular npm packages.

5.3.4 Extracting npm packages’ contents

To understand the changes that are performed in same-day releases, we rely on data

associated with the published source files by npm packages. When developers publish a

release in npm, they use the npm publish tool,9 which packs all public files of a package

in a tarball and deploys the contents in npm. We obtain and analyze the deployed files

of all releases of the popular npm packages.

Fetch deployed package contents. For each i -th release rp ,i of a popular npm package

p , we used the npm pack tool10 to obtain its respective deployed tarball. This tarball

contains all public files that are deployed in npm for a given release of a package.

8https://github.com/SAILResearch/replication-npm_downgrades
9https://docs.npmjs.com/cli/publish

10https://docs.npmjs.com/cli-commands/pack.html

 https://github.com/SAILResearch/replication-npm_downgrades
https://docs.npmjs.com/cli/publish
https://docs.npmjs.com/cli-commands/pack.html

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 86

Analyze differences between pairs of releases. After obtaining the tarballs, we ex-

tract their contents and analyze the difference between all files of two adjacent releases

〈rp ,i−1, rp ,i 〉 of a package p . This analysis calculates the number of inserted and deleted

lines, as well as the contents of the added and deleted lines.

The output of this step is the analysis of the differences between the deployed files

of each pair of adjacent releases.

5.4 Preliminary study of same-day release notes content

In this section, we present our preliminary study on the contents of the same-day re-

lease notes. The objective of our preliminary study is to better understanding the no-

table changes that are reported in same-day releases.

Motivation. Same-day releases are occasionally published to address issues that im-

pact client packages in an ecosystem. Reported incidents show that the open-source

community is usually able to timely react to failures in one package that end up impact-

ing a large portion of the ecosystem (e.g., a failure in a release of a provider package that

is directly and indirectly adopted by many client packages). Also, prior research shows

that addressing time-sensitive issues is a common development practice (Kerzazi and

Adams, 2016; Lin et al., 2017; Hassan et al., 2017; Castelluccio et al., 2019; Adams et al.,

2015). However, the characteristics of the changes that are introduced in same-day re-

leases is still an open question. For example, it is not clear whether same-day releases

in fact introduce important changes (e.g., bug fixes) or are simply a result of a routine

task (e.g., merging a commit). Hence, in this preliminary study we characterize the

changes that are introduced in same-day releases. Also, we investigate whether the

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 87

proportion of same-day releases that have an associated release note is different from

the proportion of prior-to-same-day and regular releases.

Approach. To understand the documented changes introduced in same-day releases,

we perform an analysis of the same-day release notes. Release notes document the no-

table changes that are introduced in a new release compared to the previous release.

Typically, a release note contains: 1) a list of notable changes grouped by the type of

change (e.g., bug fixes, new features, documentation change, etc.), 2) the release ver-

sion and the respective timestamp, and 3) links to Issue Tracking System (ITS) artifacts

(such as issue reports, pull-requests, commits, or contributors). Some release notes

do not include the release timestamp or any link to an ITS artifact, but all release notes

have at least a list of notable changes and the respective release version. Figure 5.4

shows the release notes for release 5.0.1 of the popular mocha package.

As new releases of a package are published, the release notes are appended to a

unique changelog file that is kept in the package’s codebase repository and distributed

with each release. Commonly, npm packages name their changelog files as “CHANGELOG.md”.

However, we also identified release notes in files that are named “HISTORY.md”, “CHANGES.md”,

“RELEASE-NOTES.md”, and “RELEASE.md”, among other variations (e.g., files with

HTML or txt extensions, or files with lower-case names). Hence, to identify changelog

files of the popular npm packages, we search for files whose lower-cased name matches

the following regular expression:11

(change* | history* | release*).(md | html | txt)

After identifying the changelog files, we estimate the proportion of same-day re-

leases that have an associated release note. To establish a baseline, we also calculate
11In our regular expression notation, the | operator is a logical OR and the * operator is a non-greed

zero-or-more matcher of any character. All other symbols are literal characters.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 88

Figure 5.4: Release note example of the popular package mocha.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 89

the proportion of prior-to-same-day and regular releases that have an associated re-

lease note. We used the Fisher’s Exact Test (α = 0.05) with Holm-Bonferroni correc-

tion to determine whether there is any relation between the type of release (same-day,

prior-to-same-day, and regular) and the publication of a release note. More formally,

let SDRp , PSDRp , and REGp be, respectively, the set of same-day, prior-to-same-day,

and regular releases of a package p . We tested two null hypotheses: H0 : PRN(SDRp) =

PRN(PSDRp),∀p ∈ P and H0 : PRN(SDRp) = PRN(REGp),∀p ∈ P , where PRN is the propor-

tion of releases that have a release note. The magnitude of the differences (effect size)

is calculated as the difference between the proportions.

Next, we proceed with a manual analysis of the same-day release notes (i.e., the

release notes of same-day releases). We thoroughly read the same-day release notes’

contents as well as the ITS artifacts that are linked in the release notes. During our

reading process, we seek for deriving a detailed description of the notable changes of

same-day releases. In particular, we carry out an open coding process (Stol et al., 2016),

resulting in a set of categories that describe the typical changes that are introduced in

same-day releases. During our open coding process, we achieved saturation after an-

alyzing a random sample of 104 same-day release notes. Afterwards, we compare our

categorization with a pre-existent categorization schema as proposed by Moreno et al.

(2014). Therefore, in a next step, we also categorize the 104 same-day release notes

with Moreno’s categorization schema. The categories derived from our open coding

process differs from the categories as proposed by Moreno et al. (2014) with respect to

the level of detail. For example, the content of a release note can be categorized as a bug

fix according to the categorization schema as proposed by Moreno et al. (2014), while

our categorization denotes the type of change employed to fix the bug (e.g., changing

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 90

the business logic) or, even, the type of bug that drove the change (e.g., fixing a memory

leak).

We use an infographic (Lex et al., 2014) to visualize the occurrence and co-occurrence

frequencies of the categories found in same-day release notes. In this infographic,

the axis labelled “occurrence frequency” represents the total number of same-day re-

lease notes whose content was categorized with a certain category. In turn, the axis

labelled “co-occurrence frequency” represents the number of same-day release notes

of which the content was categorized into one, two, or three categories at once. The

co-occurrent categories are identified by a dot matrix shown in the inforgraphic. A

column-wise filled dots in the matrix represent the categories that co-occur in a same-

day release note (exclusive categories appear as a single filled dot).

Observation 5.1) 32% of the same-day releases have an associated release note. In

turn, 34% of the prior-to-same-day releases and 37% of the regular releases have a re-

lease note. The difference between the proportion of same-day and prior-to-same-day,

as well as between same-day and regular releases that have a release note is statistically

significant (p -value < 0.05, Holm-Bonferroni corrected). Nonetheless, the largest dif-

ference is only 5% between same-day and regular releases. The negligible effect size

shows that the existence of release notes does not seem to be related to the release

type. Hence, we can conclude that the time constraint of same-day releases is not as-

sociated with publishing release notes. Nevertheless, the proportion of releases that

have a release note is relatively low (approximately one third of all releases). The lack

of release notes can be problematic for client packages, since they become unable to

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 91

know which changes were introduced in a release and, therefore, cannot assess the

impact of the introduced changes.

Observation 5.2) The analyzed same-day release notes typically refer to a fixed bug.

In Figure 5.5, we summarize the categorization of the studied release notes according

to the categorization schema as proposed by Moreno et al. (2014). The category “fixed

bugs” occurred in more than 60 same-day release notes. Also, the content of 45 same-

day release notes was categorized exclusively as “fixed bugs” (see the first column of

the dot matrix), whereas the content of 4 same-day release notes was categorized with

both “fixed bugs” and “changes to configuration files” categories (see the fifth column

of the dot matrix). Despite the plurality of categories and co-occurrence of categories

shown in Figure 5.5, we can observe that fixed bugs are more prevalent than any other

category.

Observation 5.3) The most common changes in the studied same-day releases are to

business logic, to correct the integration of a provider package, or to avoid an unre-

coverable failure. In Table A.1 (Appendix A), we describe in details the 28 categories of

changes that were introduced in same-day releases. While “changes in business logic”

suggest that many changes introduced in same-day releases rely on the behaviour of

the popular package itself (i.e., the package that publishes the same-day release), “cor-

rectly integrate provider” suggests that the changes introduced in same-day releases

rely on the interaction between the popular package and its providers. Also, “avoid

crashing” and “fix UI error” suggest that the changes introduced in same-day releases

solve serious issues that affect client packages.

During our manual analysis, we observed that even routine tasks such as those cat-

egorized as “VCS chores” or “Fix typo” can address relevant issues. For example, release

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 92

45

7

5 5
4 4

3 3 3
2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0

10

20

30

40

50

C
o−

oc
cu

rr
en

ce
 fr

eq
ue

nc
y

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

Fixed bugs
New features

Upgraded library dep.
Refactoring operations

Modified features
Changes to documentation

Changes to config. files
Modified code components

New code components
Deprecated code components

Known issues
Changes to test suite

0204060
Ocurrence frequency

Figure 5.5: Summary of the categorization of notable changes in 104 same-day re-
leases.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 93

0.4.20 of the config package was published to address an issue caused by a non-merged

commit. The following dialogue was captured in issue report #47 of the config package:

– “Unfortunately this was the last commit using the old philosophy (com-

mit to version branches vs. master), and it got missed.”

– “(...) Fix of _diffDeep function was critical for me.”

Another issue report exemplifies simple yet serious issues that are addressed in

same-day releases. A failure caused by an improperly placed comment in a CSS file

was fixed in a same-day release:

– “This CSS: (...) Produces this error (...) This is kicked because of the

comment.” (Issue report #163 of package postcss-import@8.0.2)

We also observed a same-day release note categorized as “Improve documenta-

tion” that admits the introduction of technical debt:

“Ideally the plugin would check for permissions and raise a more helpful

error, but a note in the readme should help until then” (Issue report #13037

of package gatsby@2.3.6)

Summary: A manual analysis of a random sample of same-day release notes re-

veals that simple yet important changes are introduced in same-day releases, pri-

marily bug fixing changes.

5.5 Research questions

In this section, we present the motivation, approach, and results for each of our RQs.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 94

5.5.1 RQ1: How often do same-day releases occur?

Motivation. The inherent time constraint of same-day releases can compel developers

to expedite typical release activities. However, the extent to which development teams

of packages in npm need to publish same-day releases is not understood. Quantifying

the phenomenon of same-day releases is a first step towards determining how impor-

tant it is for package development teams to adopt a suitable strategy to manage such

releases.

Approach. To investigate how often same-day releases are published by popular npm

packages, we first calculate the proportion of all releases that are same-day releases

and the proportion of popular packages that publish at least one same-day release.

More formally, let PP be the set of all popular packages, SDRp the set of same-day re-

leases of a package p , and Rp the set of all releases of a package p . Also, let the propor-

tion of all releases of a package p that are same-day releases be denoted by PSD(Rp). We

analyze the distribution of the following values:

PSD(Rp) =
|SDRp |
|Rp | ,∀p ∈ PP

In turn, let the proportion of all popular packages that publish at least one same-

day release be denoted by P1SD(PP). We analyze the distribution of the following values:

P1SD(PP) =
|{p : PSD(Rp)> 0}|

|PP| ,∀p ∈ PP

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 95

We also investigate whether some popular packages publish more same-day re-

leases than others. To this end, we analyze a cumulative histogram showing the pro-

portion of packages that publish a given proportion of same-day releases. We also cal-

culate the proportion of back-to-back same-day releases (i.e., same-day releases fol-

lowed by another), as well as the proportion of packages that publish back-to-back

same-day releases at least once.

We check whether there is an association between the number of same-day releases

and the number of overall releases of the popular packages. We calculate the Spear-

man’s ρ measure of correlation between those two variables. The choice of a rank-

based measure of correlation is due to the skewness and the presence of outliers in

both variables. Also, we interpret the correlation measure according to the following

classification (Schober et al., 2018):

Correlation=



negligible, if 0≤ |ρ| ≤ 0.1

weak, if 0.1< |ρ| ≤ 0.39

moderate, if 0.39< |ρ| ≤ 0.69

strong, if 0.69< |ρ| ≤ 0.89

very strong, if 0.89< |ρ| ≤ 1

Observation 5.4) The large majority of the popular packages (96%) published at least

one same-day release. Also, 26% of the studied releases are same-day releases. Based

on this result, developers of a popular package can expect high odds of a release be-

ing followed by a same-day release, suggesting that activities aimed at managing such

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 96

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
Proportion of same−day releases

P
ro

po
rt

io
n

of
 p

ac
ka

ge
s

Figure 5.6: Cumulative histogram for the proportion of published same-day releases
per package.

same-day releases (e.g., having an optimized pipeline for same-day releases) can be

beneficial to popular packages.

Observation 5.5) Same-day releases are more prominent for a particular set of pop-

ular packages. Figure 5.6 depicts the proportion of packages that publish a given pro-

portion of same-day releases. We can observe that the number of same-day releases

per package is fairly skewed. In particular, 25% of all studied popular packages publish

65% of all studied same-day releases.

Observation 5.6) Same-day releases are commonly followed by another same-day re-

lease. 39% of the same-day releases are back-to-back and 70% of the popular packages

publish at least one back-to-back same-day release. This observation shows that devel-

opers should strive for adopting rigorous and optimized process to deal with same-day

releases. Also, a small set of the popular packages (25%) publish a large proportion of

the back-to-back same-day releases (76%).

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 97

●
● ●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●●●●
●

●

●●

●

●●

●

●●

●

● ●

●

●

●
●

●
●

●

●●●
●

●
●

●●● ●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

● ●

●
●

●●
●

●

●

●

●

●●

●

●

●● ●

●

●
●

●●
●●

● ●
●

●●●
●

●
●●

●

●
●

●
●
●●

●

●
●●

● ●●
●

●●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●
● ●●

●●●
●

●

●

●

●

●

●

●
●

● ●

●
●

●●

●

● ●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

● ● ●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●●
●

●

●
●●

●●
●
●●
●

●
●

●

●
●

●

●

●
●

●
●●
●

●

●

●

●

●●

●● ●

●

●●
●

●
●●●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●●●●

●

●●

●●●

●

●●●●
●

●
●●●

●

●●●

●

●●

●

●
●
●

●

●

●
●

●

●
●●

●

●

●
●●

●
●●

●
●●●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●
●●

●
● ●● ●

●

●

●

●

●

●

●●

●●
●●
●

●
●
●
●

●

●●
●●

●

● ●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●
●

●
●
●

●

●

●

●

●
●●

●
●●

●
●

●●

●

●
●●

●●

●
●

●
●
●

●
●

●

●
●

●
●

● ●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●●

●●●

●
●●● ●●● ●

●
●●

●
● ●●●

●

●

●
●

●
●

●
●

●
●

●
●

●●

●

●

●

●
●

●

●
●

●
●●●

● ●

●
●

●

● ●

●

●

●

●

●
●

●●●

●

●

●

●
●●

●●
●● ●

●●
●

●
●

●
●●

●
● ●

●●
●● ●●

●

● ●

●●

●

●
●

●

●
●

●
●●

●●●
●

●●
●

●
●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●
●

●
●
● ●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●

●
●●

●

● ● ●

●

●

●
●

●
●
●

●

●

●

●

●
●●●
●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●●● ●●

●

●●
●●

●● ●
●

●●● ●
● ●

●

●

●

●
● ●

●
● ●

●

●

●
●●

●

●
●

●●
● ●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●●

●
●

●

●●
● ● ●

●●

●

●

●
●●●●●●●●●● ●●● ●●●●●●●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●● ●
●●●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●● ●●● ● ●

●

●●
●

●

●

●● ●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●●

●

●

●

●

●

●● ●●
●

●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

● ●
●

●
●

●
● ●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●●
●

●

●
●

●

●
●

●

●

● ●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
● ●

●●●
●

●
●

●

●
●

●

● ●

●

●

●●
●

●●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●
● ●

●

●

●

●

●
●

●

●
●

●●●

●
●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●●●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●●● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●●●●

●

●

●

●

●

●

●●
●

●

●●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●●
●

●
●

●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●

●●

●

●

●●●
●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

● ●

●

●●
●

●

●

●
● ●

●

●

● ●●

●

●

●
●

●

●
●

● ● ●●
●

●
●

●

●
●●

●
●

●

●
●

●

●

●
●
●

●●
●

●

●
●

●

●

●
●

●
●

●
●●

●

● ●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●
● ●

●
●

●

●

●

●●●
● ●●●●●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

0

50

100

0 100 200 300 400
Number of releases

N
um

be
r

of
 s

am
e−

da
y

re
le

as
es

Figure 5.7: The relation between the number of same-day and the number of total re-
leases of each popular package.

Observation 5.7) The number of same-day releases and the number of releases of the

popular packages are strongly correlated. For the majority of the popular packages,

as the number of releases of a package increases, the number of same-day releases

also increases. The relation between the number of releases and the number of same-

day releases is shown in Figure 5.7. There is a strong monotonic relation between the

number of releases and the number of same-day releases of a package (Spearman’sρ =

0.73, p -value < 0.05). The monotonic relation between the number of releases and

the number of back-to-back same-day releases is also strong (Spearman’s ρ = 0.85,

p -value< 0.05).

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 98

RQ1: How often do same-day releases occur?

• Same-day releases are more than one-quarter (26%) of all releases of a popular

package.

• 25% of all popular packages publish 65% of all same-day releases.

• More than one-third (39%) of the same-day releases are followed by another

same-day release.

5.5.2 RQ2: How are the performed code changes in same-day releases?

In this section, we describe the differences between the code changes performed in

same-day and other release types. We focus on two main aspects of the code changes.

In Section 5.5.2.1, we study a set of change metrics for same-day releases. In Section 5.5.2.2,

we study the modified file types in same-day releases. We adopt the performed changes

in other release types (prior-to-same-day and regular releases) as a baseline for study-

ing the performed changes in same-day releases.

5.5.2.1 Change metrics

Motivation. Change metrics are generally associated with software quality (Graves

et al., 2000; Nagappan and Ball, 2005; Moser et al., 2008) and maintainability (Eski and

Buzluca, 2011). The larger the changes performed in a release, the larger the probabil-

ity of introducing issues. The analysis of change metrics can reveal the extent to which

the development of same-day releases is more prone to introducing issues than other

release types.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 99

Approach. We calculate and compare a set of change metrics for same-day and other

release types. The following metrics were calculated for all popular package releases:

Number of modified lines of code (mLOC): We calculate how many lines of code are

modified (inserted or deleted) in the files that are deployed on npm as part of

a package’s release (see Section 5.3.4 for a description of how such files are ob-

tained). More formally, for each i -th release rp ,i of a package p , mLOCrp ,i
is the

number of modified lines of code in the files associated with rp ,i (in comparison

with the previous release rp ,i−1).

Number of modified source code files: The analysis of the number of modified source

code files in a release reveals how much change occurs in source code files in-

stead of other files related to, for example, configuration or documentation. Hence,

this metric measures the extent to which a change introduces modifications in

the behaviour of a package. The behaviour of an npm package is embedded into

JavaScript source code files. However, two other popular languages in npm that

are compiled to JavaScript (and, therefore also embed packages behaviour) are

TypeScript and CoffeeScript. We identify source code files by using a regular ex-

pression that captures file names with the extension “.js” (for JavaScript), “.ts”

(for TypeScript), or “.coffee” (for CoffeeScript) within a “test”, “src”, “lib” or root

directory.

Number of updated providers: Updating a provider package requires a migration ef-

fort that, in many cases, involves understanding the implications of the intro-

duced changes in the new provider version. Understanding such implications

can require time from developers, which could be scarce for same-day releases.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 100

Thus, this metric can help understand the extent to which developers are ded-

icating their effort to update providers in a release. To calculate this metric, we

sum the number of provider packages that are updated in a release. To detect

whether a provider package p is updated in a release rc ,i of a client package c ,

we resolve the version of p that is used by c in the releases rc ,i−1 and rc ,i . If the

resolved version of p in rc ,i−1 is smaller than the resolved version of p in rc ,i , then

an update of p is accounted for in rc ,i .

We compare the value for the aforementioned metrics between different release

types of the popular packages. Our objective is to perform pair-wise comparisons

between same-day releases and the other release types of one package. To perform

such paired comparisons, we calculate the distribution of each metric per release (for

all same-day and prior-to-same-day releases) and the distribution of the median of

each metric per package (for same-day and prior-to-same-day releases of all pack-

ages). More formally, let PP be the set of all popular packages. Also, let SDRp , PSDRp ,

and REGp be, respectively, the set of same-day, prior-to-same-day, and regular releases

of a package p . Now let m (rp ,i) denote the calculation of a metric m at the i -th release

rp ,i of a package p . To compare same-day releases with prior-to-same-day releases for

a metric m , we use Wilcoxon Signed-rank (α= 0.05) (Bauer, 1972) to test the following

null hypothesis (for all popular package p ∈ PP):

H0 : m (rp ,i) =m (rp ,i−1),∀i : rp ,i ∈ SDRp ∧ rp ,i−1 ∈ PSDRp

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 101

In addition, to compare same-day releases with regular releases for a metric m ,

we use Wilcoxon Signed-rank (α = 0.05) to test the following null hypothesis (for all

popular package p ∈ PP):

H0 : Median(m (rp ,i)) =Median(m (rp , j)),∀i , j : rp ,i ∈ SDRp ∧ rp , j ∈REGp

The calculated p -values are corrected with the Holm method for multiple compar-

isons (same-day vs. prior-to-same-day and regular releases). The magnitude of the

difference between the distributions is assessed using the Cliff’s Delta d estimator of

effect size (Cliff, 1996). We interpret the value of d according to the following thresh-

olds (Romano et al., 2006):

Effect size=



negligible, if 0≤ |d | ≤ 0.147

small, if 0.147< |d | ≤ 0.33

medium, if 0.33< |d | ≤ 0.474

large, if 0.474< |d | ≤ 1

For each metric m whose difference across release types has a non-negligible effect

size, we visualize the distribution of two ratios: same-day to prior-to-same-day for a

metric m and the same-day to regular for the median of a metric m. Letting m (rp ,i)

denote the calculation of a metric m at the i -th release rp ,i of a package p , the ratios

are defined as follows:

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 102

Same-day to prior-to-same-day ratio for a metric m : The same-day to prior-to-same-

day ratio SP (rp ,i , m) for a metric m at a same-day release rp ,i is:

SP (rp ,i , m) =
m (rp ,i)

m (rp ,i−1)
,∀i : rp ,i ∈ SDRp ∧ rp ,i−1 ∈ PSDRp

Same-day to regular ratio for the median of a metric m : The same-day to regular

ratio SR (p , m) for the metric m of a package p is given by:

SR (p , m) =
Median(m (rp ,i))

Median(m (rp , j))
,∀i , j : rp ,i ∈ SDRp ∧ rp , j ∈REGp

Observation 5.8) In 32% of the same-day releases, the number of modified lines of

code is larger than in their associated prior-to-same-day releases. Also, for 24% of

the popular packages, the median number of modified lines of code (median mLOC)

is larger in same-day releases than in regular releases. Table 5.2 shows that the me-

dian mLOC for same-day, prior-to-same-day, and regular releases is respectively 14,

34, and 32. In addition, Tables 5.3 and 5.4 show that the difference of the number of

mLOC between same-day releases and the other release types is statistically significant

(p -value < 0.05, Holm-corrected), with a small (|d | = 0.323) and medium (|d | = 0.366)

effect sizes for prior-to-same-day and regular releases, respectively. The distributions

of the same-day to prior-to-same-day ratio and the same-day to regular ratio for the

number of modified lines of code are shown in Figure 5.8. We also observe that the

difference between the number of modified source code files in same-day releases

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 103

0.46

0.54

10−4 10−3 10−2 10−1 100 101 102 103 104

Ratio value

Ratio Same−day to prior−to−same−day Same−day to regular

Figure 5.8: Same-day to prior-to-same-day and same-day to regular ratios for the
mLOC metric. The red dotted line indicates a ratio of 1.

Table 5.2: Summary of the mLOC metric for same-day, prior-to-same-day, and regular
releases.

Release type Min. Q1 Median Mean Q3 Max.

Same-day 2.0 6.0 14.0 243.2 42.0 178,314.0

Prior-to-same-day 1.0 11.0 34.0 544.4 126.0 483,987.0

Regular 2.0 11.0 32.0 602.1 117.0 679,894.0

and other release types is statistically significant with a negligible effect size (see Ta-

bles 5.3 and 5.4). For the number of modified source code files, both the median same-

day to regular ratio and the median same-day to regular ratio is equal to 1.

Observation 5.9) Despite the short time window, 17% of the same-day releases up-

date at least one provider. In turn, 62% of the prior-to-same-day releases have at

least one provider updated. The difference between the distributions of the number of

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 104

Table 5.3: Statistical difference between the change metrics for same-day releases vs.
prior-to-same-day releases.

Metric Significant? Effect size

Number of modified lines of code Yes Small (d =−0.323)

Number of modified source code files Yes Negligible (d =−0.142)

Number of updated providers Yes Large (d =−0.521)

Table 5.4: Statistical difference between the change metrics for same-day releases vs.
regular releases.

Metric Significant? Effect size

Median of modified lines of code Yes Medium (d =−0.366)

Median of modified source code files Yes Negligible (d =−0.138)

Median number of updated providers Yes Large (d =−0.749)

provider updates in same-day releases and the other release types is statistically signif-

icant and the effect size is large (see Tables 5.3 and 5.4). The distributions of the same-

day to prior-to-same-day ratio and the same-day to regular ratio for the number of up-

dated providers are shown in Figure 5.9. Also, we observe that 18% of the providers that

were updated in the prior-to-same-day release are the same as the providers that were

updated in the same-day release. By manually analyzing such cases, we found that

they are predominant in packages that are maintained in monolithic repositories (Jas-

pan et al., 2018) (i.e., a single repository that hosts multiple packages), as for example

the popular angular12, babel13, and react14 packages. Such packages are part of a main

project that maintains several independent packages in the same repository. Each in-

dependent package is used as dependency by other packages in the main project (in

12https://github.com/angular/angular/tree/master/modules
13https://github.com/babel/babel/tree/master/packages
14https://github.com/facebook/react/tree/master/packages

https://github.com/angular/angular/tree/master/modules
https://github.com/babel/babel/tree/master/packages
https://github.com/facebook/react/tree/master/packages

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 105

10−1 100

Ratio value

Ratio Same−day to prior−to−same−day Same−day to regular

Figure 5.9: Same-day to prior-to-same-day and same-day to regular ratios for the num-
ber of updated providers. The red dotted line indicates a ratio of 1.

turn, such packages can be reused by other packages in npm). This result suggests that,

although packages pertaining to the same main project are independently maintained,

there is an association between the releases of such packages that can drive same-day

releases. For example, perhaps the changes in a provider package propagates to client

packages that are maintained in the same monolithic repository. In this case, client

packages should consider refactoring to avoid such a change propagation.

5.5.2.2 Modified file type

Motivation. In Section 5.5.2.1, we analyzed how the values of change metrics from

same-day releases compare those to those from prior-to-same-day and regular releases.

However, changes can be performed in different portions of a software package. For ex-

ample, releases that modify the source code (e.g., files that control the package’s busi-

ness logic) are likely to be either more important or impactful to client packages than

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 106

1. Determine files
that are modified
by each package

2. Categorize the
directories that contain

each modified file

P1 test/mod1.js
P1 index.html

P2 src/index.js

test/mod1.js
index.html
test/mod3.js

"test"
"doc"
"lib"

"test"
"test"

66%
33%

P1 test/mod3.js

P2 doc/changes.md

P1
P1

Pkg File File Cat.
Rel.
type
SD
Reg.
Prior

3. Calculate the
proportion of each

categorized directory

P1
P1
P2

Pkg Cat.Pkg
Cat.
prop.

Rel.
type
SD
Reg.

.

.

.

.

.

.

"test" 50%P1 Prior

Figure 5.10: Our approach to study the modified file types in same-day and other re-
lease types.

those releases that modify documentation-related files. In this RQ, we want to deter-

mine whether the time constraint of same-day releases has any effect on the locations

of changes. By answering this RQ, we provide complementary evidence regarding the

source code changes that are performed in same-day releases, beyond the scope of the

change metric measurement performed in Section 5.5.2.1.

Approach. Specific file types are stored in specific directories within the directory

structure of npm packages. For example, a folder named test is likely to store test-

related files. We studied the structure of the directories that store the modified files in

same-day and other release types. Figure 5.10 depicts our approach:

1. Determine files that are modified by each package: To determine which files are

modified in each release of a popular package, we rely on the deployed files that

are published with each package release (see Section 5.3.4). For each deployed

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 107

file of a popular package p , we calculate the differences (per line) in the file con-

tents between release rp ,i−1 and release rp ,i (considering that release rp ,i−1 is ad-

jacent to release rp ,i). We consider that a file is modified between two adjacent

releases whether the difference of the content is non-empty.

2. Categorize the directories that contain each modified file: To categorize the di-

rectories that contain each modified file, we initially manually inspect the di-

rectory structure of a representative random sample (95% C.L., ±5% C.I.) of the

popular npm packages. As a result of this manual inspection, we describe a set

of directory types that are typically found in the directory structure of popular

npm packages. Each directory type clearly separates files by their role (e.g., test-

related files are stored in a different directory than documentation-related files).

We also derive a set of regular expressions that are able to identify each directory

type within the directory structure of a package. After identifying each directory

type, we performed a sanity check to determine the accuracy of our method to

categorize the packages’ directories. In our sanity check, we verify whether the

directories were correctly categorized according to the regular expressions. We

observed that our regular expressions are able to accurately identify the directory

types. For the sake of simplicity, we refer to files that are contained in a certain

directory category as related files to that category. For example, we refer to files

that are contained in a directory categorized as “test” as “test-related files”. We

used regular expressions to categorize the directory structure according to the

following categories:

test Directory containing test-related files. Any directory whose name contains

the string “test”, “tests”, “spec”, or “specs” is deemed as a test directory.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 108

lib Directory containing library-related files. Any directory whose name con-

tains the string “lib” or “libs” is deemed as a library directory.

src Directory containing production-related files. Any directory whose name

contains the string “src” is deemed as a production directory.

examples Directory with files containing examples of the package’s usage. Any

directory whose name contains the string “example” or “examples” is deemed

as an example directory.

doc Directory containing package’s documentation. Any directory whose name

contains the string “doc*” (such as “doc”, “docs” or “documentation’) is deemed

as a documentation directory.

build Directory containing build-related files. Any directory whose name con-

tains the string “build” or “ci” (for “continuous integration”) is deemed as a

build directory.

others Directories that do not fit in the prior categories, or contain files from a

wide variety of file types, including the root directory.

3. Calculate the proportion of each categorized directory: For each release type, we

calculate the proportion of releases that modify files that are stored in each direc-

tory category. More formally, we define Pdc
(SDRp), Pdc

(PSDRp), and Pdc
(REGp) as

the proportion of same-day, prior-to-same-day, and regular releases of a package

p that modifies a file in a directory categorized as dc , respectively. For example, a

package p1 can modify test-related files in 66% of its same-day releases. Similarly,

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 109

p1 can modify test-related files in 33% and 50% of its regular and prior-to-same-

day releases, respectively. In this case, P“test”(SDRp1
) = 0.66, P“test”(PSDRp1

) = 0.33,

and P“test”(REGp1
) = 0.5.

We use the Wilcoxon Signed Rank (α= 0.05) to test the null hypothesis that the pro-

portion of same-day releases that modify files in a certain directory category is equal

to the proportion in prior-to-same-day and regular releases. The comparisons were

paired per package, i.e., the proportion of same-day releases that modify a certain file

type is compared with the proportion of prior-to-same-day and regular releases of the

same package that modify that file type. For example, for the directory category “test”,

we test the null hypotheses H0 : P“test”(SDRp) = P“test”(PSDRp), where P“test”(SDRp) and

P“test”(PSDRp) are, respectively, the proportion of test-related files that are modified in

SDRp (the set of all same-day releases of a package p) and PSDRp (the set of all prior-

to-same-day releases of a package p). We use the Holm correction method to correct

the obtained p -values for multiple comparisons (across combinations of directory cat-

egories and release types).

Observation 5.10) The proportion of modified file types between same-day releases

and other release types are statistically significant but the effect sizes are negligible.

Despite the difference in change size between same-day releases and other release

types (see Section 5.5.2.1), the type of files that are modified are essentially the same

regardless of the release type. In particular, we observe that, for all directory categories,

with the exception of the “doc” directory for same-day vs. prior-to-same-day releases

(p -value= 0.334, Holm corrected), the differences are all statistically significant. How-

ever, for the statistically significant differences, the effect size is negligible. This obser-

vation reinforces the importance of same-day releases since, in general, they modify

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 110

the same amount of each file type compared with prior-to-same-day and regular re-

leases.

RQ2: How are the performed code changes in same-day releases?

• 32% of the same-day release modify more lines of code than their associated

prior-to-same-day releases.

• 17% of the same-day releases update at least one provider. Such updates are pre-

dominant for provider packages that are maintained in monolithic repository as

the client package.

• Although the difference on the proportion of modified file types between same-

day releases and other release types is statistically significant, the effect sizes are

all negligible.

5.5.3 RQ3: How do client packages adopt same-day releases?

Motivation. In a software ecosystem environment, same-day releases have an impor-

tant role, since problematic releases of a popular package can cause issues in a large

proportion of its client packages. Development teams that need to publish a same-day

release can benefit from knowing how client packages adopt such releases. Therefore,

same-day releases can target the right set of client packages and the adoption of such

releases can be maximized. In fact, a prior study that surveyed software ecosystem

developers shows that two-thirds of the provider developers are interested in knowing

whether their client packages adopt the latest release (Haenni et al., 2014). Therefore,

it is important to understand the frequency and the speed with which client packages

adopt same-day releases.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 111

Approach. In this RQ, we study two aspects regarding the adoption of same-day re-

leases by client packages, namely the adoption frequency and the adoption lag. To es-

tablish a baseline, we also study the adoption frequency and the adoption lag of prior-

to-same-day and regular releases.

Adoption Frequency: To study the adoption frequency, we calculate the proportion of

same-day, prior-to-same-day, and regular releases of the popular provider pack-

ages that are explicitly adopted by a client package. In our adoption frequency

analysis, we focus on explicit adoption only. Explicit adoptions require the ver-

sioning statement to be changed by the client package (see Chapter 2). An ex-

plicit adoption represents a deliberate decision of the client to update the provider

to a newer version. We use Fisher’s Exact Test with Holm-Bonferroni correction

to determine whether the difference in the proportion of same-day releases that

are explicitly adopted is independent of the proportion of prior-to-same-day and

regular releases. In addition, we study the proportion of adoptions of prior-to-

same-day releases that occur when the same-day release is already published.

Our objective with this latter analysis is to determine whether provider packages

need to improve the communication of same-day releases to client packages.

Adoption Lag: We study the adoption lag of same-day and regular releases. The adop-

tion lag lp ,c ,i is defined as the period spanned between the adoption of a release

rp ,i of the provider package p and the explicit update from the release rp ,i−1 to

the release rp ,i by a client package c , where rp ,i−1 is the provider release that pre-

cedes rp ,i (see Figure 5.11). In essence, the adoption lag measures the length of

the period during which a client package remains using the previous provider’s

release after the next provider release is published. If the introduced changes

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 112

Time

Client release

Provider release
Ad

op
te

d
pr

ov
id

er
ve

rs
io

ns

R
el

ea
se

d
pr

ov
id

er
ve

rs
io

ns

1.0.1 1.0.2

Update from
1.0.1 to 1.0.2

Adoption lag lp,c,i

Same-day or regular
release (rp,i)

Prior release (rp,i-1)

Update from any
version to 1.0.1

Explicit
adoption of
release rp,iAdoption of

release rp,i-1

Figure 5.11: Adoption lag of a same-day release.

in same-day releases are important to client packages, we should observe a fast

adoption of such releases. The reason for accounting for explicit adoption only

is that implicit adoptions occur automatically right after the provider release is

published. Also, explicit adoption is a well-thought action from the client pack-

age, which suggests that client packages have a clear interest in the explicitly

adopted provider release. For example, supposing a client package c that ex-

plicitly adopts version 1.2.2 of a provider package p , the following sequence of

actions needs to be performed for an explicit update:

1. Provider p publishes a release in npm (e.g., version p @1.2.3)

2. Client package c updates the versioning statement (e.g. from “p”: “1.2.2”

to “p”: “1.2.3”)

3. Client package c publishes a new release in npm.

We measure the adoption lag in terms of the number of hours elapsed (time lag)

and the number of client releases (release lag). For example, we can either measure the

elapsed time between the release rp ,i and the adoption of rp ,i or, alternatively, we can

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 113

measure the number of client releases that are published in the meantime between

the release rp ,i and the adoption of rp ,i . In addition, the release lag is measured in

terms of major, minor, and patch releases of the client package (see Chapter 2). In our

calculation of major, minor, and patch releases, we account only for the higher-level

releases (major, minor, and patch). For example, if the client package publishes the

release 1.2.3, 1.2.4 (patch), and 1.3.0 (minor) before the explicit provider update, we

only account for the higher-level minor release (1.2.4 to 1.3.0). To evaluate the differ-

ence between the adoption lag of same-day and regular releases, we use the Wilcoxon

Signed-rank test (α= 0.05). We assessed the magnitude of the difference with the Cliff’s

Delta estimator of effect size.

Observation 5.11) The explicit adoption rate of same-day releases is 18% lower than

that of regular releases. While 39% of the same-day releases are explicitly adopted

by a client package, 30% of the prior-to-same-day and 57% of the regular releases are

explicitly adopted. The differences are both statistically significant (p -value< 0.05 for

Fisher’s Test, Holm-Bonferroni corrected). Moreover, we observe that client packages

might be inadvertently adopting the prior-to-same-day when, in fact, the same-day

release is already published. In total, 14% of the explicit adoptions of a prior-to-same-

day release occurs when the same-day release is already published, suggesting a lack

of communication regarding the changes and importance of same-day releases. As

the difference in the number of same-day, prior-to-same-day, and regular releases that

have a release note is at most 5%, we conjecture whether popular packages use other

means to signal to client packages that a same-day release is available. In particular,

we investigate whether prior-to-same-day releases are annotated with a deprecation

message. We observed that only 3% of the prior-to-same-day releases that are adopted

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 114

when a same-day release is already published are flagged as deprecated. In fact, a

closer look reveals that only 7% of all prior-to-same-day releases are ever flagged as

deprecated. We thus conclude that development teams of popular packages should

make an effort to signal to client packages that there is a same-day release that ad-

dresses issues in the prior-to-same-day release (e.g., by improving release notes and

deprecating the prior-to-same-day releases)

Observation 5.12) Same-day releases are explicitly adopted faster than regular re-

leases. The median adoption time lag for same-day releases (9 hours) is approximately

25 times smaller than the median for regular releases (224 hours). Figure 5.12 shows the

distribution of the time lag for same-day and regular releases and Table 5.5 summarizes

its values. The difference in the distribution between same-day and regular releases

is statistically significant (p -value < 0.05, Holm-Bonferroni corrected) and the effect

size is large (|d | = 0.626). We also observed that 61% of the explicit adoption of same-

day releases occurs in less than 24 hours, which shows that many explicit adoptions of

same-day releases are performed relatively fast in comparison to regular releases (the

overall median explicit adoption time lag is 1,102 hours). We conjecture that such fast

adoptions are driven by the bug fixes that are incorporated in same-day releases (see

Section 5.4).

In terms of release lag to adopt same-day or regular releases, the difference be-

tween same-day and regular releases is not statistically significant for patch releases

(p -value < 0.05, Holm-Bonferroni corrected). For minor and major releases, the dif-

ferences are statistically significant (p -value < 0.05, Holm-Bonferroni corrected) and

the effect sizes are negligible (|d |= 0.055) and small (|d |= 0.192), respectively. The me-

dian adoption lag for both same-day and regular releases is one release (see Table 5.6).

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 115

10−4 10−1 102 105

Adoption time lag (hours)

Release type Same−day Regular

Figure 5.12: Adoption lag for same-day releases.

Table 5.5: Summary of the adoption time lag for same-day and regular releases.

Release type Min. Q1 Median Mean Q3 Max.

Same-day < 0.01 0.03 8.77 173.08 76.75 33,684.56

Regular < 0.01 65.20 224.40 693.70 714.50 43,546.10

Table 5.6: Summary of the number of patch, minor, and major releases to explicitly
adopt a same-day and a regular release.

Release level
(client)

Release type
(provider)

Min. Q1 Median Mean Q3 Max.

Patch Same-day 1.0 1.0 1.0 1.2 1.0 22.0
Regular 1.0 1.0 1.0 1.4 1.0 453.0

Minor Same-day 1.0 1.0 1.0 1.2 1.0 9.0
Regular 1.0 1.0 1.0 1.1 1.0 80.0

Major Same-day 1.0 1.0 1.0 1.1 1.0 8.0
Regular 1.0 1.0 1.0 1.2 1.0 25.0

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 116

RQ3: How do client packages adopt same-day releases?

• The explicit adoption rate of same-day releases is 18% lower than that of regular

releases.

• The median adoption time lag for same-day releases (9 hours) is approximately

25 times smaller than the median for regular releases (224 hours).

5.6 Discussion

In this section, we discuss the findings presented in Section 5.5. We first discuss the

need for client packages to better evaluate the trade-off between the value and risk of

same-day releases and how this task is currently being automated. Next, we discuss

that popular package developers should plan for publishing same-day releases. We

finally discuss the need for provider packages to improve the awareness of how their

releases will impact client packages.

Implication 5.1) Third-party tools that support the automation of dependency man-

agement (e.g., Dependabot) should consider explicitly flagging same-day releases,

such that client package developers become aware of the inherent trade-off between

the value and risks associated with such same-day releases. Our preliminary study

shows that same-day releases that are accompanied by release notes frequently con-

tain important bug fixes. It is reasonable to assume that when developers fix a bug,

document the fix, and publish a new release in less than 24 hours, they wish that this

release will be absorbed by client packages as soon as possible. On the other hand,

such a quickly implemented bug fix might have been complex, involving several code

changes, thus rendering the new release particularly error prone (Nagappan and Ball,

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 117

2005). Indeed, we observed that 39% of the same-day releases have a higher code churn

compared to their associated prior-to-same-day release. We also observed that 32%

of the same-day releases are even followed by another same-day release. Hence, the

important trade-off between the value of a same-day release (e.g., the bug fix) and its

potential risks (e.g., the chances of having new bugs) should be carefully evaluated by

client packages. However, in order to do so, client packages need to be able to distin-

guish same-day releases from regular patch releases. Given the size of the npm ecosys-

tem and the frequent use of version range statements, it is difficult for client packages

to keep track of provider updates and the introduced changes in these updates. This

challenge has led to the development of tools such as Dependabot,15 which automates

dependency management. Dependabot, which has been recently acquired by GitHub,

inspects the list of dependencies of a project, searches for outdated dependencies, and

automatically opens individual pull requests to update each dependency (Figure 5.13).

Developers of tools such as Dependabot should consider explicitly signaling same-day

releases to client packages (especially if the code churn is large). This signaling would

highlight the need for client packages to carefully evaluate the aforementioned trade-

off between release value and risk. Dependabot, in particular, also shows the release

notes associated with a dependency update. In our preliminary study, we often needed

to read further documentation (e.g., issue reports) in order to fully understand the

changes introduced in the same-day release. Therefore, we encourage developers of

same-day releases to strive for more cohesive and clear release notes. If time pressure

is too strong, developers of same-day releases can include a pointer to an external URL

(e.g., GitHub or the package’s website) where release notes can be carefully written after

the release. The better the release notes, the easier it is for client package developers to

15https://dependabot.com

 https://dependabot.com

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 118

decide whether to upgrade to a same-day release or not. Finally, if a same-day release

fixes a critical bug, then we recommend developers to deprecate the prior-to-same-day

release in order to encourage users to perform the update.

Implication 5.2) Popular packages should strive for optimized release pipelines. In

RQ1, we observed that the vast majority (96%) of the popular npm packages publish

at least one same-day release and that 26% of all releases of the popular packages are

same-day. Therefore, popular npm packages will benefit from being able to quickly

publish releases. Although the adoption of release automation tools is a well-established

software engineering practice, traditional automation tools like TravisCI16 do not tackle

ecosystem-specific problems. For instance, the constant updating of provider pack-

ages and configuration files by client packages can prevent build mechanisms to take

full advantage of caching, since new provider versions or new configurations need to

be reloaded. In response to this problem, npm has developed and improved upon

the npm ci functionality17, which aims to speed up build processes by skipping sev-

eral user-oriented features that are part of the npm install functionality. Moreover,

the npm ci functionality avoids updates to configuration files and individual depen-

dencies during builds, as dependencies are deemed frozen and read from either the

package-lock.json or npm-shrinkwrap.json file. Therefore, we encourage popular

npm packages to have optimized release pipelines for rapid releases and to consider

the use of the npm ci functionality.

Implication 5.3) Provider packages should improve the awareness of how their re-

leases impact client packages. In RQ3, we observed that, although the adoption rates

16https://travis-ci.org
17https://blog.npmjs.org/post/171556855892/introducing-npm-ci-for-faster-more-

reliable

https://travis-ci.org
 https://blog.npmjs.org/post/171556855892/introducing-npm-ci-for-faster-more-reliable
 https://blog.npmjs.org/post/171556855892/introducing-npm-ci-for-faster-more-reliable

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 119

Figure 5.13: An example of a pull request created by Dependabot. The pull request in-
cludes a list of the vulnerabilities fixed, the release notes, and commits associated with
the dependency update. Image extracted from https://dependabot.com.

https://dependabot.com.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 120

of same-day releases are smaller than the adoption rates of regular releases, same-

day releases are adopted significantly faster. In fact, 61% of the explicit adoption of

a same-day release occurs in less than 24 hours after the same-day release was pub-

lished. Since same-day releases are quickly adopted by client packages (either implic-

itly by the usage of version range statements or even by explicit updates), it is important

for popular provider packages to understand how certain code changes will impact

client packages. By combining the assessment of the importance of a same-day re-

lease to client packages and how client packages are impacted by the current changes,

popular provider packages can make a more informed decision about when exactly

to release (or even whether field testing should be emphasized for that release). Cur-

rently, the support for assessing the impact of a provider release on its client packages

is limited and the existing solutions (e.g., regularly crawling the npm registry) are not

sufficient for a precise and timely assessment. Developers will, therefore, benefit from

research endeavours to develop and evaluate just-in-time tools to obtain early feed-

back on whether (and how) their changes will propagate to client packages. Ideally,

such just-in-time tools should allow provider developers to assess the impact of their

changes on client packages while changes are being implemented. We also observed

that updates in same-day releases often occur when both client and provider pack-

ages are maintained in the same codebase (e.g., monolithic repository), suggesting

that coupling between packages can play a role in the occurrence of same-day releases.

For packages maintained in the same codebase, just-in-time change propagation tools

should highlight changes in the provider that drive a client package release.

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 121

5.7 Threats to validity

Construct validity. Extraction of npm packages content: In the preliminary study and

RQ2, we analyze the files that are associated with each package release. To obtain these

files, we use the npm pack tool, which gives us the exact files that were deployed in npm

with a package release. Considering the release pipeline depicted in Figure 5.1, the files

that are obtained in our data collection procedure are the files that are generated in the

deployment phase. The advantage of this approach to obtain the associated files with a

package release is that the file-release association is undoubtedly correct. A disadvan-

tage is that file changes are measured in a coarse-grained, release-oriented view (Ger-

man and Hindle, 2005). An alternative approach to obtaining the files associated with

each package release is to collect the data from the packages’ codebases (e.g., Version

Control System repositories, such as Git). In this case, the obtained files correspond to

the files that are generated in the revision phase. An advantage of this alternative ap-

proach is that file changes are measured in a fine-grained, commit-oriented view. In

turn, as a disadvantage, the creation of parallel branches causes the commits for dif-

ferent releases to be chronologically interleaved (i.e., when the numerical order of a re-

lease disagrees with the chronological order). As a result, erroneously linking between

an npm release and a Git commit can happen (e.g., when a timestamp-based heuristic

to link npm releases and Git commits is adopted). Since our RQs are release-oriented,

erroneously linking a file with a release introduces more threats to the validity of our

study than assuming a coarse-grained perspective of the changes.

Identification of release notes: In our preliminary study, we identify release notes by

matching file names with a regular expression. Our manual analysis allowed us to val-

idate the correctness of this method to identify changelog files (i.e., files that contain

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 122

release notes). In particular, we observed that all sampled files were correctly identi-

fied as a changelog file and are associated with the correct release. Although correct,

we cannot ensure that our method has perfect recall. For instance, it is possible that

certain projects use an unconventional naming scheme for their changelog files, which

will not be captured by our regular expression. In addition, certain projects might de-

cide to store release notes exclusively on external locations (e.g., a GitHub repository

or project website with documentation).

We also verified whether release notes are stored in files of which the names start

with the “readme” or “README” strings. We manually analyzed the content of a ran-

dom sample of such files. Although we observed that a small fraction of such files do

store release notes information, those files typically contain information that is related

to the package’s documentation (e.g., package description, installation and usage in-

structions), deprecation notices, and information on build status and test coverage.

Therefore, we are concerned that, by considering such files as changelog files, we in-

troduce more noise than that we enrich our data. For this reason, we do not consider

the release notes that can occasionally be found in those files.

Operational definition of same-days: Packages that are published in a software ecosys-

tem have different release schedules. Some packages publish releases on a time basis

(e.g., releases are periodically published based on fixed deadlines). Other packages

can publish releases on a feature basis (e.g., releases are published whenever a new

feature or bug fix is implemented). For this reason, it is not trivial to define what a

time-constrained release is. As an effort to provide such a definition, prior research fo-

cused on releases whose time-since-previous-release is a lower outlier in the package’s

time-between-releases distribution (Lin et al., 2017; Hassan et al., 2017). However, this

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 123

operational definition can include long-lived releases, such as releases from packages

that have a large mean time-between-releases (e.g., many months). These long-lived

releases do not necessarily represent time-constrained releases. Therefore, we adopt

a fixed-time approach to define time-constrained releases: releases that are published

within a 24 hours time window.

In our data selection process, we select packages that have less than 50% of all re-

leases as same-day releases. By applying such a selection criterion, our objective is to

exclude from our analyses those same-day releases that are part of a regular release

schedule. Same-day releases that are part of a regular release schedule resemble reg-

ular releases and, therefore, may not reflect the effects of a time restriction that we

are interested in studying. Nonetheless, a different proportion other than 50% can be

chosen as a threshold value to this selection criterion, depending on how conserva-

tive the definition of regular release schedule is. In specific, by assuming a 45% and a

55% threshold value as a selection criteria, we observed a difference of 100 (3%) and

216 (7%) selected packages compared with the number of selected packages using the

50% threshold value.

Operational definition of popularity: In this chapter, we focused on popular pack-

ages. Our definition of popular package is based on the number of client packages that

a certain provider package has within the ecosystem. In particular, we study packages

with more than 100 clients. This threshold was selected after inspecting the distribu-

tion of the total number of clients per provider package. Other measures of popularity

can be considered, in particular the download count as provided by npm and the usage

of npm packages by external projects to npm (e.g., open-source projects). However, the

download count data that is provided by npm might not properly reflect the importance

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 124

of the same-day releases of a provider package to client packages in the ecosystem (Dey

and Mockus, 2018).18 Similarly, accounting for the usage of an npm package by exter-

nal projects would require a completely different research design and data collection

procedures (e.g., it would require defining the external projects to be crawled, which

could bias our results).

External Validity. The scope of our analysis is limited to the data from packages

within the npm ecosystem (i.e., packages that are deployed in the npm registry) and

thus do not include data from external applications that use an npm package. The rea-

son for limiting our analysis to packages within the ecosystem is that new releases are

directly published to and obtained from the package manager. That is, the npm reg-

istry constitutes a reliable data source that provides a ground truth instance of the re-

leased versions by each package. Although external applications also depend on npm

packages, it is difficult to accurately trace the state of these external applications. In

particular, a key challenge is to determine when those external applications perform

a release and which version of the provider package they are using at a certain given

time.

Because we collected data exclusively from npm, our findings may or may not gen-

eralize to other ecosystems. Although npm is representative in size, each software ecosys-

tem has its intrinsic characteristics. We note that the goal of this study is not to build

theories around same-day releases that would apply to all software ecosystems. Rather,

our study is an important first step towards a deeper understanding of how packages

in the npm ecosystem publish same-day releases. Therefore, we acknowledge that ad-

ditional studies are required in order to further generalize our results.

18https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-
download-counts

https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 125

5.8 Conclusion

Same-day releases are important to maintain the ecosystem in a functional state. Al-

though prior studies investigated the occurrence of same-day releases (Kerzazi and

Adams, 2016; Lin et al., 2017; Hassan et al., 2017), this is the first study about same-

day releases in a software ecosystem platform. We used data from the npm ecosystem

to understand how often same-day releases are published, the changes that are per-

formed in such releases, and how client packages react to the same-day releases of their

providers. Based on our empirical observations, we provide implications that can help

development teams to reason about the time constraint of same-day releases and to

improve the management of development activities in such releases.

We observed that, despite the restricted time frame within which same-day releases

are developed, these releases introduce important changes. Also, 96% of the popu-

lar packages published at least one same-day release. A non-negligible proportion of

the same-day releases modify more lines of code compared with prior-to-same-day

and regular releases. Finally, many same-day releases are usually promptly adopted

by client packages (i.e., in a few hours or in the next client release).

Our findings yield three main implications. First, large changes implemented in

a quick manner can render some same-day releases particularly error prone. Indeed,

same-day releases are often patched: 39% of the same-day releases are followed by

another same-day release. Hence, client packages need proper support to assess the

trade-off between the value and the risk of adopting a same-day release. Second, the

high rate of same-day releases in npm suggests that it is unavoidable to popular provider

packages to eventually publish a same-day releases. Hence, popular packages will ben-

efit from having a release pipeline that is able to process same-day releases, which

CHAPTER 5. AN EMPIRICAL STUDY OF SAME-DAY RELEASES OF POPULAR
PACKAGES 126

might require specific configurations and tooling. Finally, since same-day releases are

generally quickly adopted by client packages, provider packages will benefit to timely

understand how the implemented changes impact their client packages. Our empiri-

cal observations contribute to the advance of the research concerning release manage-

ment in software ecosystems. In particular, our study complements prior studies that

relate same-day releases with releases that address urgent issues in the prior release.

CHAPTER 6

An Empirical Study of Deprecation of Packages and Releases

Deprecation is used by developers to discourage the usage of certain features of a software
system. Prior studies have focused on the deprecation of source code features, such as API
methods. With the advent of software ecosystems, package managers started to allow devel-
opers to deprecate higher-level features, such as package releases. This study examines how
the deprecation mechanism offered by the npm package manager is used to deprecate releases
that are published in the ecosystem. We observea that the proportion of packages that have at
least one deprecated release is 3.7% and that 66% of such packages have deprecated all their re-
leases, preventing client packages to migrate from a deprecated to a replacement release. Also,
31% of the partially deprecated packages do not have any replacement release. In addition,
we investigate the content of the deprecation messages and identify five rationales behind the
deprecation of releases, namely: withdrawal, supersede, defect, test, and incompatibility. We
also found that, at the time of our data collection, 27% of all client packages directly adopt at
least one deprecated release and that 54% of all client packages transitively adopt at least one
deprecated release. The direct adoption of deprecated releases is highly skewed, with the top 40
popular deprecated releases accounting for more than half of all deprecated releases adoption.

An earlier version of this chapter is under major review in the IEEE Transactions on Software En-
gineering journal (TSE).

127

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 128

I
N this chapter, we describe our study about deprecation of packages and releases

in npm. Section 6.1 introduces and motivates our study. Section 6.2 presents the

key concepts employed throughout our study about deprecation of releases in

npm. Section 6.3 explains the data collection procedures that we followed to conduct

our study. Section 6.4 presents the motivation, approach, and findings from our two

research questions. Section 6.5 discusses the implications of our findings. Section 6.6

presents the different perspectives from which prior research has investigated the no-

tion of deprecation. Section 6.7 discusses threats to the validity of our study. Finally,

Section 6.8 concludes the chapter by summarizing our observations.

6.1 Introduction

Deprecation is a mechanism used by developers to communicate that a software’s fea-

ture is obsolete and its usage should be avoided (Zhou and Walker, 2016). Tradition-

ally, deprecation is done at the source code level, allowing developers to deprecate

any function from an API (Sawant et al., 2018a). When a function is deprecated, a

compile-time warning is typically issued whenever a call to such a function is per-

formed (Robbes et al., 2012a). In the context of software ecosystems, in which client

packages depend on a specific release of a provider package, deprecation can be of-

fered at the release level by a package manager. Therefore, developers can deprecate

the entire release of a package in a software ecosystem. In such cases, an install-time

warning is issued whenever a client package installs a deprecated provider release us-

ing the package manager.

Although many different aspects of API deprecation have been studied (Sawant

et al., 2019; Li et al., 2018; Hora et al., 2018; Sawant et al., 2018b,a; Brito et al., 2016),

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 129

the deprecation of releases in a software ecosystem was never studied. Simple charac-

teristics such as the frequency with which releases are deprecated remain unknown.

The complex network of package dependencies typically found in software ecosys-

tems raises important concerns, such as how often deprecated releases are adopted

and whether such an adoption occurs directly (by means of direct dependencies) or

indirectly (by means of transitive dependencies). Client packages that directly depend

on a deprecated provider release can migrate to a replacement release, i.e., update the

provider to a newer version that is not deprecated. Nevertheless, this migration is not

always straightforward, since replacement releases might not always exist or be easily

discoverable. Indeed, the provision of a proper replacement release and its communi-

cation depend entirely on the maintainers of provider packages. Furthermore, when a

deprecated provider releases is transitively adopted, the client package has no control

over the migration to a replacement release. When client packages decide to continue

using a deprecated release (e.g., because a migration to replacement release would in-

cur a costly change to the codebase or lead to some incompatibility), they should be

aware of the risks of doing so. For instance, a release might be marked as deprecated

because it contains a defect. Yet, the rationale behind release deprecations in a soft-

ware ecosystem has not been investigated by prior literature

In this chapter we study the deprecation of releases in the npm ecosystem, which is

the largest software ecosystem to date.1 In the following, we list our research questions

and the key results that we obtained:

RQ1. How often are releases deprecated? Deprecation is performed by almost 4%

of the packages in npm, with two-thirds of these packages being fully deprecated

1https://insights.stackoverflow.com/survey/2019#technology

https://insights.stackoverflow.com/survey/2019#technology

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 130

(i.e., all their releases are deprecated). Almost one-third (31%) of the partially

deprecated packages do not offer any follow-up replacement release and 15% of

the existing follow-up replacement releases are major releases. Also, withdrawal

(i.e., terminating the development of the deprecated package) is the most com-

mon rationale for fully deprecating a package (49%) and defect is the most com-

mon rationale for deprecating a specific release (63%).

RQ2. How do client packages adopt deprecated releases? At the time of our data col-

lection, 27% of all client packages in npm directly adopt at least one deprecated

release. Half of these adoptions target a specific set of 40 provider releases. All

these 40 deprecated releases report a replacement release in their deprecation

message. In addition, more than half (54%) of all client packages in the ecosys-

tem transitively adopt at least one deprecated release. The median number of

direct provider packages that result in the transitive adoption of at least one dep-

recated release is 1.

The main contribution of this study is to build a body of knowledge and provide

insights into how releases are deprecated in a large software ecosystem, as well as into

how client packages adopt such deprecated releases. Our results provide information

to client packages regarding how often deprecated releases are published and the com-

mon reasons for deprecation, which help in understanding the associated risks with

adopting a deprecated release. Also, client packages will find relevant information re-

garding the identification of transitively adopted deprecated releases and the associ-

ated challenges with migrating away from deprecated releases. Finally, we highlight

the rudimentary aspect of the deprecation mechanism employed by npm and recom-

mend a set of improvements to this mechanism. Our recommended improvements

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 131

aim to support client packages in detecting and reasoning about deprecated releases.

A supplementary package with our preprocessed data is available online.2

6.2 The deprecation mechanism of npm

Provider packages use the deprecation mechanism to maintain backward compatibil-

ity of prior releases. Instead of removing the deprecated release and causing a failure

in the client packages that adopt the removed release, provider package developers

opt for the deprecation. In contrast with the deprecation mechanism offered by pro-

gramming languages, in which a certain method can be deprecated, the deprecation

mechanism offered by a package manager allows developers to deprecate an entire re-

lease. For instance, to deprecate release 1.2.3 of a package P in npm, a developer can

use the following command:3 npm deprecate P@1.2.3 “this release contains a

bug that is fixed in version 1.2.4”. When a release is deprecated, the npm reg-

istry is modified and the release is recorded as being deprecated (to date, the times-

tamp at which the deprecation is performed is not recorded in npm, making it impos-

sible to analyze the deprecation history of a package). The deprecation mechanism

adopted by npm also allows one to deprecate a range of versions or, alternatively, the

entire package (which essentially deprecates all versions of the package). In such cases,

the installation of any version that satisfies the deprecated version range will issue a

deprecation warning.

Information about the deprecation of a release can be stated in the deprecation

message. In the prior example, the deprecation message states that the reason for the

2https://bit.ly/2wKO3se.
3https://docs.npmjs.com/cli/deprecate

https://bit.ly/2wKO3se
https://docs.npmjs.com/cli/deprecate

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 132

deprecation is the presence of a bug in release 1.2.3. Whenever a deprecated release is

installed by some user, a warning is issued (at the installation time) and the depreca-

tion message is displayed. For example, when the command npm install P@1.2.34

is used to install release 1.2.3 of package P , the installation will succeed and the depre-

cation message will be displayed. Whenever a client package that adopt a deprecated

provider release is installed, a warning is issued and the provider’s deprecation mes-

sage is displayed. For example, suppose that a client package C adopts the deprecated

release 1.2.3 of provider P . Whenever the command npm install C@latest is used

to install the latest release of package C , a warning with the deprecation message of

release 1.2.3 of package P will be displayed.

Any deprecated provider release that is adopted by means of a transitive depen-

dency also yields a warning. Deprecation warnings that come from a transitive depen-

dency are difficult to trace,5 since the issued warning does not explicitly indicate the

dependency depth. By dependency depth, we mean the number of downstream de-

pendencies from one client package to a transitively adopted provider. For example,

if a client package C depends on a provider P1 that, in turn, depends on a provider P2,

then the transitive dependency between C and P2 has a depth of 2.

Client packages might want to migrate away from a deprecated provider release

towards some replacement release (i.e., a non-deprecated provider release that follows

the deprecated one). Client packages that set a dependency using a version range

statement will eventually perform an implicit update to the replacement release, as

long as the version range is satisfied by the replacement release. Nevertheless, in many

4https://docs.npmjs.com/cli/install
5https://stackoverflow.com/questions/36329944/how-to-determine-path-to-deep-

outdated-deprecated-packages-npm

https://docs.npmjs.com/cli/install
https://stackoverflow.com/questions/36329944/how-to-determine-path-to-deep-outdated-deprecated-packages-npm
https://stackoverflow.com/questions/36329944/how-to-determine-path-to-deep-outdated-deprecated-packages-npm

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 133

cases, the migration to a replacement release requires modifying the versioning state-

ment. Because the installation of a client package yields the installation of all transi-

tive dependencies, updating a deprecated provider package that is transitively adopted

can also be desired.6 However, identifying whether the transitively adopted depre-

cated release has a follow-up replacement release (and should consequently be up-

dated) might not be trivial. In particular, npm provides the npm outdated7 tool that

checks which providers can be updated. To check transitive dependencies, this tool re-

quires an argument that determines the maximum dependencies depth to be checked.

For example, npm outdated –-depth 1 will check whether the providers of the direct

providers can be updated. To date, the value for this argument needs to be determined

by a trial-and-error approach, i.e., iteratively increasing the value of the –-depth argu-

ment until all transitive dependencies are checked.

In Table 6.1, we summarize the deprecation-related terms that are used throughout

this thesis.

6.3 Data collection

In this section, we describe how we collected data from npm to our study about

releases deprecation. Figure 6.1 depicts an overview of our data collection method.

Three main steps are performed: collect package metadata (Section 6.3.1), analyze

package releases (Section 6.3.2), and analyze package dependencies (Section 6.3.3).

In the following, we discuss each of these steps.

6https://stackoverflow.com/questions/35236735/npm-warn-message-about-
deprecated-package/36341065

7https://docs.npmjs.com/cli/outdated.html

https://stackoverflow.com/questions/35236735/npm-warn-message-about-deprecated-package/36341065
https://stackoverflow.com/questions/35236735/npm-warn-message-about-deprecated-package/36341065
https://docs.npmjs.com/cli/outdated.html

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 134

Table 6.1: Summary of the deprecation terminology used in this chapter.

Term Definition

Deprecated release A package release that is deprecated at the time of
our data collection.

Non-deprecated release A package release that is not deprecated at the time
of our data collection.

Deprecation message A message that is warned to client packages when
they install a deprecated release. The message is
provided by the developer of the deprecated pack-
age

Newest deprecated release The deprecated package release with the largest ver-
sion number within the sequence of package re-
leases.

Older non-deprecated release The non-deprecated replacement release with the
largest version number that is smaller than the
newest deprecated release version number.

Fully deprecated package A package with all of its releases deemed as depre-
cated.

Partially deprecated package A package that has some of its releases as depre-
cated, but not all releases.

Replacement release A non-deprecated release that can replace a depre-
cated release. For partially deprecated packages, a
replacement release can be automatically identified
as the release whose version number is the next af-
ter the newest deprecated release.

Replacement package A package deemed as a replacement for a fully dep-
recated package.

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 135

Obtain
package.json

files

Collect package metadata

npm

Analyze package dependencies

Select latest
client release
dependencies

Resolve
providers
release

RQ1: How often are releases
deprecated?

List of
6,178,019

dependencies

RQ2: How are deprecated
releases adopted by client

packages?

Analyze package releases

Sort adjacent
releases

Determine
version

number level
change

List of
7,829,362
releases

List of 976,631
package.json

files

Figure 6.1: An overview of our data collection method.

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 136

6.3.1 Collect package metadata

In this step, we collect the metadata of npm packages from the package.json files (see

Chapter 2 for an explanation of the package.json file).

Obtain package.json files: We obtained all package.json files that were stored in

the npm registry as of May, 2019. The package.json file of a given package P contains

release-related metadata for all releases of P . The release-related metadata include the

release version number, the timestamp at which the release was published, the depen-

dencies that are set in the release (i.e., the provider package name and the respective

versioning statement), and the deprecation message in case the release is deprecated.

The output of this procedure is a list of 976,631 package.json files.

When the release of a package P is deprecated, the package.json file of P contains

a deprecated field that stores the deprecation message that is associated to that re-

lease (in contrast, non-deprecated releases do not have such a field). We observed that

8% of all deprecated releases have the “False” string as a deprecation message. After

performing a manual analysis (see Section 6.4.2 for further details about this analysis),

we decided to classify such releases as non-deprecated. Also, 1% of the deprecated re-

leases have an empty deprecation message. According to the npm documentation on

deprecation,8 a developer can remove the deprecation of a release by setting the dep-

recation message to an empty string. Therefore, releases whose deprecation message

is an empty string were classified as non-deprecated.

8https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-
versions

https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-versions
https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-versions

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 137

6.3.2 Analyze package releases

In this step, we sort the adjacent package releases and determine how the version num-

bers change between two adjacent releases (e.g., whether the latter release is a major,

minor, or patch release). See Chapter 2 for a definition of the release version levels.

Sort adjacent releases: We sort the releases of a package according to a branch-based

ordering (in contrast with a chronological- or numerical-based ordering) as described

in Section 4.2. The motivation for using a branch-based ordering is the adoption of par-

allel development branches by some packages, for which chronologically interleaved

releases are published (e.g., release 1.2.3, a patch for release 1.2.2, being published af-

ter the existence of release 2.0.0). With a chronological-based ordering, release 2.0.0

would be considered the predecessor of release 1.2.3, which is incongruous from the

numerical point of view. Similarly, with a numerical-based ordering, release 1.2.3 would

be considered the predecessor of release 2.0.0, which is incongruous from the chrono-

logical point of view (after all, release 1.2.3 was published after release 2.0.0). A branch-

based ordering schema allows a release to be considered the predecessor of more than

one release. In our example, release 1.2.2 would be considered the predecessor of both

releases 1.2.3 and 2.0.0.

Determine version level change: After sorting the releases of a package according to

our branch-based ordering, we analyze how the version level changes between two ad-

jacent releases. For each pair of adjacent releases, we classify the version level change

into a major, minor, or patch release. For example, if release 1.2.2 is considered the

predecessor of release 2.0.0, then release 2.0.0 is classified as a major release. Simi-

larly, if release 1.2.2 is considered the predecessor of release 1.2.3, then release 1.2.3 is

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 138

Provider
release

Client release
(adoption date)

Deprecation of
provider release

Data
collection

Time

Incorrect assumption of
deprecated release adoption

Correct assumption of
deprecated release adoption

Figure 6.2: Illustration of a scenario in which the provider release is deprecated after it
is adopted by the client package.

classified as a patch release. The same logic applies to minor releases. The output of

this procedure is a list of 7,829,364 release changes.

6.3.3 Analyze package dependencies

In this step, we select a subset of all dependencies, namely the dependencies that are

set in the latest client release. We also resolve the release of the providers that are used

by each client package (see Chapter 2 for a description of how a provider version is

resolved).

Select latest client release dependencies: The date at which a provider package re-

lease was deprecated is not available in the npm registry. This limitation in the npm

data prevents an analysis about the adoption history of deprecated releases by client

packages. For example, Figure 6.2 depicts a scenario in which the provider release is

deprecated after it is adopted by a client package. In such case, we can only correctly

assume that the client package is using a deprecated provider release at our data collec-

tion date (since the deprecation date is unknown). Therefore, we select only the latest

client release (i.e., the current client release at our data collection date) to analyze how

deprecated provider releases are adopted by client packages.

Resolve providers release: We resolve the release of the providers that are used in the

latest release of each client package. For the latest release of each client package, we

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 139

parse the used versioning statements according to the grammar provided by npm (see

Chapter 2 for a description of this grammar). The resolved release is the latest provider

release (at the time of the client release) that is satisfied by the versioning statement.

For instance, suppose that a client package C , in its 2.0.0 release, sets a dependency

using the versioning statement “P: > 1.2.3”. In this case, the resolved provider release

will be the latest release of P (the provider package) that is greater or equal 1.2.3 and

that is published before the client package release 2.0.0. Invalid versioning statements

or versioning statements that do not satisfy any existing provider release are ignored.

The output of this procedure is a list of 6,178,019 dependencies that are set in the latest

client release with the respective resolved release of each provider.

6.4 Results

In this section, we present the results of our two RQs. For each RQ, we discuss its mo-

tivation, the approach that we used to address it, and the results that we obtained.

6.4.1 RQ1: How often are releases deprecated?

In this RQ, we investigate the frequency with which releases are deprecated. We also

investigate the reasons behind the deprecation of a package or a release and estimate

how often each reason is stated in a deprecation message.

6.4.1.1 Deprecation frequency

Below, we describe the motivation, approach, and results for our study about depreca-

tion frequency.

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 140

Motivation. Deprecation can occur at different levels of granularity within a software

system. Traditionally, prior studies focus on API deprecation, which typically operate

at the function level (Li et al., 2018; Hora et al., 2018; Sawant et al., 2018c; Zhou and

Walker, 2016; Robbes et al., 2012a). However, the offered deprecation mechanism by

the npm package manager operates at a higher level, allowing one to deprecate either

a release, a range of releases, or the entire package (i.e., all releases of the package). To

the best of our knowledge, no prior studies have investigated how often deprecation

occurs at the release-level within a software ecosystem. Therefore, client packages will

benefit from understanding the reasons behind deprecation, as well as the frequency

with which releases are deprecated for each of such reasons.

Ideally, the deprecation of a release should occur after a replacement release is pub-

lished (i.e., some newer release that is not deprecated). In such cases, client packages

that are using a deprecated provider release can perform an update targeting the re-

placement release. Therefore, it is important for client packages to know how often

follow-up replacement releases are available. Also, client packages would benefit from

having an estimate of the needed effort to perform an update to a replacement re-

lease (i.e., knowing whether replacement releases are patch, minor, or major releases).

Nonetheless, when a replacement release is not available, client packages that want

to migrate away from a deprecated release need to perform a downgrade (i.e., migrate

to an older release that is not deprecated). The drawback of performing a downgrade

is that client packages can miss new features and bug fixes from newer releases (Cogo

et al., 2019; Decan et al., 2018). Hence, it is interesting for client packages to understand

how many patch, minor, and major releases are back skipped when a downgrade from

a deprecated release to an older non-deprecated release is performed. For example, a

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 141

downgrade that changes the resolved provider release from 1.0.1 to 1.0.0 is back skip-

ping one patch release.

Approach. To determine the prevalence of release deprecation in npm, we calculate the

proportion of packages that have at least one deprecated release and the proportion of

all releases that are deprecated in the ecosystem. We also determine the prevalence of

packages that are fully deprecated (i.e., all releases are marked as deprecated) or par-

tially deprecated (i.e., some releases are marked as deprecated, but not all). To this

end, for each package, we calculate the proportion of deprecated releases over all its

published releases.

Next, we study how often deprecated releases have a follow-up replacement release.

More specifically, we calculate the proportion of partially deprecated packages that

have some non-deprecated release that follows the latest deprecated release (i.e., the

deprecated release with the largest version number within a package’s sequence of

releases). We focus on the latest deprecated release because we want to understand

the availability of replacement releases as of the data collection date (since we do not

have historical deprecation information). As an example, Figure 6.3 shows a hypothet-

ical sequence of releases of a partially deprecated package with a replacement release.

The 2.1.1 release is the latest deprecated release and the following 3.0.0 release is the

replacement release. Furthermore, when a replacement release is not made available

by a partially deprecated provider package (i.e., the provider package has deprecated

its latest release), client packages can downgrade the provider package by adopting

an older non-deprecated release to replace the deprecated release. In our approach,

the older non-deprecated release is the largest non-deprecated release whose version

number is smaller than the latest deprecated release (see Figure 6.3).

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 142

1.1.0 1.1.1 1.1.2 2.0.0 2.0.1 2.0.2 2.1.0 2.1.1 3.0.01.0.1

Latest
deprecated

release

Non-deprecated release

Deprecated release

1.0.0

Replacement
release

Older
non-deprecated

release

Figure 6.3: Older non-deprecated and replacement release of a hypothetical partially
deprecated package.

We estimate the technical lag (Zerouali et al., 2019b) that is induced when client

packages downgrade from the latest deprecated provider release to the older non-dep-

recated release (e.g., downgrading the adopted provider release from 2.1.1 to 1.1.2 in

the example of Figure 6.3). Such an estimation is done by counting the number of ma-

jor, minor, or patch releases that are back skipped when the downgrade occurs. More

specifically, we determine the highest version level among the releases that are pub-

lished in between the older non-deprecated release and the latest deprecated release

(i.e., either major, minor, patch levels) and then we count how many releases of such

level were published during this time frame. For example, in Figure 6.3, in between the

older non-deprecated release and the latest deprecated release, one major release is

published (2.0.0), one minor release is published (2.1.0), and three patch releases are

published (2.0.1, 2.0.2, 2.1.1). In this scenario, if a client package that adopts the lat-

est deprecated release decides to downgrade to the older non-deprecated release, this

client will back skip one major provider release.

Finally, we calculate the proportion of replacement releases that are major, minor,

or patch releases (in the example shown in Figure 6.3, the replacement release is a ma-

jor release).

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 143

Observation 6.1) 3.7% of the npm packages have at least one deprecated release. There

are 253,501 deprecated releases in npm (3.2% of all releases) and 31,810 packages with

at least one deprecated release in npm, representing 3.7% of all packages in the ecosys-

tem. Two-thirds (66%) of the packages with a deprecated release are fully deprecated

(i.e., have deprecated all releases). Figure 6.4 shows the proportion and the total num-

ber of deprecated releases per package with at least one deprecated release. A total of

29% of the fully deprecated packages have a single release (represented by the darkest

portion of the largest bar in Figure 6.4) and 20% have ten or more deprecated releases

(represented by the sum of the two lightest portions of the largest bar in Figure 6.4).

Among the partially deprecated packages, 69% have more than one deprecated release.

That is, partially deprecated packages tend to either deprecate a range of releases or

apply the deprecation mechanism more than once over time. We cannot distinguish

between these two cases because the package.json files do not record historical in-

formation about deprecation (i.e., one can only know whether a certain release is dep-

recated or not).

Observation 6.2) 31% of the partially deprecated packages do not have a replace-

ment release. When a follow-up replacement release is not available, client pack-

ages can only migrate away from deprecated releases by downgrading the adopted

provider. Figure 6.5 shows the number of major, minor, and patch releases between

the older non-deprecated release and the latest deprecated release. In total, 20% of

the partially deprecated packages published one or more major release between the

older non-deprecated and the latest deprecated release. In turn, 40% of such packages

published one or more minors (but no majors) between the older non-deprecated and

the latest deprecated release. Finally, 40% of these packages have one or more patches

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 144

0%

20%

40%

60%
66%

80%

100%

(0%,20%) [20%,40%) [40%,60%) [60%,80%) [80%,100%) 100%
Proportion of deprecated releases

P
ro

po
rt

io
n

of
 p

ac
ka

ge
s Number of

deprecated
releases

1

[2,5)

[5,10)

[10,100)

100 or more

Figure 6.4: Number and proportion of deprecated releases per package (excluding
packages without deprecated releases). The dashed line shows the proportion of fully
deprecated packages.

(but no majors or minors) between the older non-deprecated and the latest deprecated

release. As shown in Figure 6.5, the median is one for the three release levels.

Observation 6.3) 68% of the replacement releases are patch releases, 17% are minors,

and 15% are majors. Although the majority of the replacement releases introduce

simpler changes (patch and minor releases), a non-negligible number of the replace-

ment releases introduce more complex changes (i.e., major releases, which might in-

troduce backward incompatible changes). Client packages must be aware of the pos-

sibility of having to integrate major releases of the providers when they are willing to

adopt a replacement release. Our analysis shows that even client packages that set a

restrictive range for their versioning statements (e.g., version ranges that accept only

patch updates) will likely perform an implicit update to the replacement release.

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 145

●● ● ● ● ●

●● ● ● ●● ● ● ● ● ●●●●● ●●

●● ●● ●● ●● ● ●● ● ● ●● ●●
M

aj
or

M
in

or
P

at
ch

1 10 100
Number of releases

R
el

ea
se

 le
ve

l

Figure 6.5: Number of major, minor, and patch releases that are published between the
older non-deprecated release and the latest deprecated release of packages without a
replacement release.

6.4.1.2 Rationales for deprecation

Below, we describe the motivation, approach, and results for our study about the ra-

tionales behind deprecation of packages and releases.

Motivation. Documentation is an important aspect of deprecation. With proper dep-

recation messages, client packages can understand the reason for the deprecation and

evaluate the risk of adopting a given deprecated release. Furthermore, it is important

that deprecation messages report the replacement packages and releases, therefore

client packages can perform an easier migration.

Approach. We manually analyzed a statistically representative sample (95% confi-

dence level, with ±5% confidence interval) of the deprecation messages used by npm

packages. We sampled a total of 381 out of the 44,112 unique deprecation messages

used by different packages. The performed analysis resulted in a categorization of the

rationale behind the deprecation of a release, as well as an estimate of the proportion

of deprecation messages that report a replacement package or release. We performed

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 146

an open coding (Stol et al., 2016) to categorize the rationale behind release-level dep-

recation. We also classify the deprecation messages between messages that refer to a

deprecated package (e.g., “This package is no longer supported”) from messages that

refer to a specific release of the deprecated package (e.g., “This version has a bug. Use

version 1.0.1 instead”). We perform such a classification to calculate how often each

identified rationale is associated with the deprecation of all releases of a package (full

deprecation), in contrast to the deprecation of a specific release of a package (partial

deprecation). Finally, we calculate how often a deprecation message reports a replace-

ment package or a replacement release.

Observation 6.4) Almost two-thirds (64%) of the deprecation messages report the ra-

tionale behind the deprecation of a package or release. This observation shows that,

when installing a deprecated package or release, client packages in many cases will be

able to evaluate the risk of adopting a deprecated release. From the deprecation mes-

sages that report the rationale behind the deprecation, 86% are a customized message

(i.e., they are different from the standard message that is provided by npm).9 This lat-

ter observation suggests that the typical rationale for the deprecation of a package or

release goes far beyond the rationale stated in the standard message (which is “Pack-

age no longer supported. Contact support@npmjs.com for more info.” at the time this

thesis was written).

We also note that a total of 8% of all deprecation messages are the string “False”.

To understand the usage of the “False” string as a deprecation message, we manu-

ally analyzed the revisions (i.e., the history of versions) of the package.json files from

packages with such deprecation message. We identified that some packages have the

9https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-
versions

https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-versions
https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-versions

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 147

“False” deprecation messages since its creation, having never been in fact deprecated.

We hypothesize that some developers might not understand the meaning of the deprecated

field in the package.json file. In such cases, the developer manually edit the package.json

file and set the deprecated field as “False”, with the intent of communicating that the

release is not deprecated. This observation suggests that the deprecation mechanism

is not intuitive, leading some package developers to misunderstand how the mecha-

nism works.

Observation 6.5) Withdrawal is the most common rationale for the deprecation of

a package (49%) and defect is the most common rationale for the deprecation of a

release (63%). Five rationales behind the deprecation of a package or release can be

identified: withdrawal (e.g., the development of a package is no longer maintained in

npm), supersede (e.g., a deprecated release is replaced by a newer, improved release),

defect (e.g., a certain functionality is discovered to be buggy), test (e.g., package is pub-

lished for test purposes only), and incompatibility (e.g., dependency incompatibility).

The proportion with which a given rationale is associated with the deprecation of either

a package or release is shown in Table 6.2. In total, 80% of the deprecation messages are

for deprecated packages, whereas 20% of the deprecation messages are for deprecated

releases. In the deprecation messages for deprecated packages, 51% report a replace-

ment package. Similarly, in the deprecation messages for replacement releases, 51%

report a replacement release.

Below, we describe in details each of the identified rationales behind deprecation.

Rationale 1) Withdrawal: The deprecation message indicates that the package or re-

lease was deprecated because its development was terminated. However, the package

is left on the registry, such that the actual client packages are not affected. An analysis

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 148

Table 6.2: The proportion with which each rationale is associated with the deprecation
of a package or a release.

Rationale for
deprecation

Package
deprecation
(80%)

Release
deprecation
(20%)

Withdrawal 49.0% 12.0%

Supersede 45.0% 20.0%

Defect 0.5% 63.0%

Test 5.0% 2.5%

Incompatibility 0.5% 2.5%

of such deprecation messages shows that withdrawals occur for different reasons. The

following deprecation messages indicate that the withdrawal might occur because the

package/release is no longer maintained in npm:

“This module is no longer maintained.” [deprecation message of package

kilt],

“This project is no longer a npm-package. Checkt [sic] our github

at https://github.com/Server-Eye/bucket-collector” [deprecation message of

package bucket-collector],

“Package unsupported. Please use the rws-compile-sass package instead.”

[deprecation message of package custom-rws-compile-sass]

The following deprecation messages indicate that the withdrawal might occur because

the package/release is a dependency that is no longer required (e.g., its features were

incorporated into another package/release):

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 149

“Deprecated as it’s now the default reporter in ESLint.” [deprecation message

of package eslint-stylish],

“This is a stub types definition. p-limit provides its own type defini-

tions, so you do not need this installed.” [deprecation message of package

@types/p-limit],

“No longer needed for grunt-vows-runner. Use grunt-vows-runner instead.”

[deprecation message of package vows-reporters]

Also, as shown in the following deprecation messages, the withdrawal might occur be-

cause the package/release became obsolete.

“Very old and unmaintained module. Don’t recommend using this anymore.”

[deprecation message of package grunt-copy-mate],

“Since Catberry@4 this package is not supported due to architecture changes.”

[deprecation message of package catberry-lazy-loader],

“Do not use this package to update globally installed CLIs anymore.” [depreca-

tion message of package npm-update-module]

Rationale 2: Supersede: The deprecation message indicates that the deprecated pack-

age or release was replaced by another one. The following deprecation messages indi-

cate that the deprecated release was replaced by a newer, improved release:

“Version 1.x branch of Iridium has been superseded by v2.x.” [deprecation mes-

sage of package iridium],

“Still using old declarative binding syntax? Please, update to its latest version:

0.5.102.” [deprecation message of package pacem],

“API changed: then() to on(), catch() to onerror(), finally() to oncancel().” [dep-

recation message of package rnr]

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 150

In addition, the following deprecation messages indicate that the deprecated package

features were incorporated into another package:

“This has been merged back into express-batch, which you should now use.”

[deprecation message of package express-batch-deep],

“This module is now a part of babel-preset-steelbrain@2.x.x.” [deprecation

message of package babel-preset-steelbrain-async],

“@appnest/focus-trap has moved to @a11y/focus-trap. Please uninstall this

package and install @a11y/focus-trap instead.” [deprecation message of pack-

age @appnest/focus-trap],

“All Pivotal UI components & styles have been moved to the ’pivotal-ui’ package.

Install that package for all future updates.” [deprecation message of package

pui-react-checkbox],

“This library has been renamed to flum. Please install flum to get the lastest [sic]

version.” [deprecation message of package react-basic-forms]

Rationale 3: Defect: The deprecation message indicates that the package or release

was deprecated due to the presence of a known defect. An analysis of such deprecation

messages shows that the source of defect can be either in the source code or in the

deployed artifact (built package). The following deprecation messages indicate that

the package or release was deprecated due to a defect in the source code:

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 151

“This patch version has breaking changes. Please use 0.23.0 instead.” [depre-

cation message of package @devexperts/react-kit],

“Buggy implementation of class mixins.” [deprecation message of package

@zenparsing/skert],

“windows posix socket bug” [deprecation message of package node-ipc],

“Sending Blob body using XMLHttpRequest polyfill may cause incorrect result

with this version, please use 0.9.1 instead.” [deprecation message of package

react-native-fetch-blob]
Also, the following deprecation messages indicate that the package or release was dep-

recated due to a defect in the built package:

“wrong build.” [deprecation message of package dc-webapi],

“critical dir missing.” [deprecation message of package angular-html5],

“incorrect main field in package.json, fixed in 1.0.1” [deprecation message of

package eslint-config-r29],

“error in version number.” [deprecation message of package

react-native-aerogear-ups],

“Main script path incorrect. Only ES6 module is working.” [deprecation

message of package defy]

Rationale 4: Test: The deprecation message indicates that the deprecation occurs be-

cause the package or release was published for test purposes or by accident:

“This is package is just for testing. don’t install it.” [deprecation message of

package reactmanishbot],

“Not a usable package.” [deprecation message of package glarce-combo],

“not meant to be published sorry.” [deprecation message of package

chat-engine]

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 152

The following deprecation messages indicate that pre-releases, which are used for in-

field testing, are also deprecated:

“Development versions have been deprecated.” [deprecation message of pack-

age @servicensw/page],

“outdated prerelease.” [deprecation message of package @dandi/common],

“Use version 1.0.0, this was a prerelease and is no longer maintained.” [depre-

cation message of package vue-cli-plugin-git-describe],

“still in beta.” [deprecation message of package chat-engine]

Rationale 5: Incompatibility: The deprecation message indicates that the package or

release was deprecated due to incompatibility. The following deprecation messages

indicate incompatibility between client and provider packages (dependency incom-

patibility):

“Old versions not compatible with sqb >0.7.0.” [deprecation message of pack-

age sqb-serializer-oracle]

Also, the following deprecation messages indicate incompatibility between the pack-

age and some specific browser version:

“Incompatible with modern browsers.” [deprecation message of package

yahoo-shapes]

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 153

RQ1: How often are releases deprecated?

• More than 3% of all studied releases are deprecated, with almost 4% of all pack-

ages having at least one deprecated release.

• 66% of the packages with a deprecated release are fully deprecated.

• 31% of the partially deprecated packages do not have a replacement release.

• The most common reason to fully deprecated a package is abandoning its devel-

opment (49%), whereas the most common reason to deprecate a specific release

is a bug in this release (63%).

6.4.2 RQ2: How do client packages adopt deprecated releases?

In this RQ, we investigate how client packages adopt deprecated releases. We differ-

entiate between direct and transitive adoptions (see Chapter 2 for a definition of di-

rect and transitive dependencies). Direct adoptions are under the control of the client

package, since they originate from direct dependencies (i.e., those specified in the

package.json file). For these direct adoptions, we determine the frequency with which

they happen and how they relate to the type of versioning statements that are em-

ployed by the client packages. Transitive adoptions of deprecated releases happen in-

directly and thus are not under the control of client packages. As part of this RQ, we also

determine the frequency with which clients transitively adopt deprecated releases, as

well as how deep these adoptions happen in the dependency tree. Direct adoptions are

discussed in Section 6.4.2.1 and transitive adoptions are discussed in Section 6.4.2.2.

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 154

6.4.2.1 Direct adoption of deprecated releases

Motivation. Deprecation mechanisms are employed to discourage the usage of a cer-

tain piece of code. Investigating how frequently client packages directly adopt depre-

cated releases will provide insights into how effective the deprecation mechanism is in

avoiding client packages from adopting deprecated provider releases. In particular, it

is important to understand whether there are deprecated releases that are still adopted

by a large number of clients and whether a replacement release (or replacement pack-

age) exists for them. The latter is particularly relevant for client packages that value

keeping their providers up-to-date.

Approach. We calculate the proportion of client packages that directly adopt at least

one deprecated provider release. We then investigate whether there are deprecated

releases that are adopted by more client packages than other deprecated releases. To

this end, for each deprecated release d , we calculate ad , which is the number of times

that d is directly adopted by a client package. We then divide ad by the total number

of direct adoptions of deprecated releases, obtaining the proportion pd of direct adop-

tions of the deprecated release d . We define a popular deprecated release as any release

d that belongs to the smallest subset of deprecated releases for which pd sums up to

50% (i.e., the deprecated releases that concentrate half of all adoptions). The adop-

tion of deprecated provider releases was assessed only at the latest client release and,

as a consequence, our observations are based in adoptions that occur at the time of

our data collection (see Section 6.3). For the sake of simplicity, we will refer to a “client

package release” simply as a “client package” (implicitly referring to the latest client

package release).

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 155

Next, we determine how often popular deprecated releases have a replacement re-

lease. Because a popular deprecated release can be a release of either a partially or a

fully deprecated package (see Section 6.4.1), we employ a different method for those

two cases. Basically, for popular deprecated releases of fully deprecated packages, we

search for a replacement package instead of a replacement release. In the following, we

describe the two employed methods:

• Partially deprecated packages: To determine whether a popular deprecated re-

lease of a partially deprecated package has a replacement release, we search for

the existence of any non-deprecated release whose version number is larger than

the newest deprecated release (see Figure 6.3).

• Fully deprecated packages: To determine whether a popular deprecated release

of a fully deprecated package has a replacement package, we perform a manual

analysis over the deprecation messages. We search for replacement packages

by reading the deprecation message of the popular deprecated releases and any

documentation that is mentioned in such deprecation messages (e.g., tutorials

that explain how client packages should perform changes to migrate away from

the deprecated release).

After determining the replacement releases and packages, we estimate the date at

which a popular deprecated release was deprecated. Such an estimate is performed to

safeguard the validity of our analysis, since a given deprecated release might be mas-

sively used because client packages did not have enough time to migrate away from

this release (e.g., for releases that were deprecated at a date that is close to our data col-

lection). We estimate the deprecation date by gathering two pieces of evidence. First,

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 156

we verify whether any mentioned documentation in the deprecation message includes

the date at which the release was deprecated or some event that drove the deprecation

and whose date can be obtained (e.g., the first stable release of a reported replacement

package). Second, when none of these pieces of information are reported in the exist-

ing documentation, we assume that the deprecation occurred at the package’s latest

release date.

Finally, to understand how the versioning statements used by client packages relate

to the adoption of a deprecated release, we analyze how client packages of the popular

deprecated releases set their versioning statements. We calculate the proportion of

specific version and version range statements that are used by the client packages. For

version range statements, we calculate how often the tilde, caret, or the latest operator

are used (see Chapter 2 for a description of the operators).

Observation 6.6) 27% of the client packages directly adopt at least one deprecated

provider release. In RQ1, we observed that only a small proportion of npm packages

(3.7%) deprecated at least one release. Yet, when analyzing client adoption of depre-

cated releases, we note that 27% of all client packages in npm adopt at least one depre-

cated release.

Observation 6.7) A remarkably small proportion of the deprecated releases are mas-

sively adopted by client packages. More specifically, 75% of all adoptions of depre-

cated releases concentrate on only 2.6% of all deprecated releases (Figure 6.6). The

top 40 most frequently adopted deprecated releases account for 50% of all adoptions

of deprecated releases. We call these 40 deprecated releases as popular deprecated re-

leases. In total, 80% (32 out of 40) of the popular deprecated releases are from a fully

deprecated package and 20% (8 out of 40) are from a partially deprecated package.

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 157

0%

25%

50%

75%

100%

0.
0%

2.
6%

25
.0

%
50

.0
%

75
.0

%

10
0.

0%

Proportion of deprecated releases

P
ro

po
rt

io
n

of
 a

do
pt

io
ns

Figure 6.6: Cumulative histogram for the proportion of client packages that depend on
a deprecated provider release.

Observation 6.8) All popular deprecated releases have a deprecation message that

indicates a replacement package or release. This obseration indicates that popular

provider package developers always support clients in determining candidate releases

(or packages) to be migrated to in face of release deprecation. Furthermore, we es-

timate that all popular deprecated releases have been marked as such for at least 6

months since our data collection date, showing that client packages had a reasonable

amount of time to migrate away from them. In Table B.2 (Appendix B), we list all the

40 popular deprecated releases, their respective replacement release or package, and

our estimate of their deprecation date.

Observation 6.9) Client packages set a version range statement in 91% of the adop-

tions of a popular deprecated release. However, the majority (80%) of the popular

deprecated releases provide a replacement package (not a replacement release), which

suggests that many client packages do not want to pay the cost to integrate a replace-

ment package (i.e., replacing the deprecated provider by a whole different provider

package). For these cases, the versioning statement that is used by the client package

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 158

Table 6.3: The proportion of each versioning statement type used in the adoption of
the popular deprecated releases.

Versioning statement type Proportion

Range Caret (∧) 84.0%

Tilde (∼) 3.5%

Latest (*, latest, >, or >=) 2.5%

Others 1.0%

Specific 9.0%

does not make any difference regarding the adoption of a replacement package. Ta-

ble 6.3 shows the proportion of each used version range operator in the version range

statements when a popular deprecated release is adopted. The large majority of the

versioning statements (84%) use a caret operator, implicitly updating any patch re-

lease that is equal to or larger than 0.1.0 or any minor release that is equal to or larger

than 1.0.0. Hence, in many cases, the usage of version range statements that satisfy

minor and patch provider releases is not sufficient to implicitly migrate to a replace-

ment release. In other words, unless clients modify their versioning statement, they

will not migrate away from the deprecated release. Indeed, only 2.5% of the versioning

statements implicitly accept major updates of the provider.

6.4.2.2 Transitive adoption of deprecated releases

Motivation. While client packages can choose the provider packages that are directly

adopted, provider packages that are transitively adopted are out of the scope of client

packages. As a consequence, tracking the transitive adoption of a deprecated release

can be challenging to client packages. Even when providers that are transitively adopted

can be tracked, the provided tools by npm that help client packages to check whether

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 159

such providers can be updated require the specification of the dependency depth pa-

rameter (see Section 6.2), which is usually unknown. Also, there is no trivial approach

to update transitive providers. These issues show how challenging dealing with the

transitive adoption of deprecated provider releases is. By knowing how often depre-

cated provider releases are transitively adopted, client packages can estimate the like-

lihood of having to deal with a transitively adopted deprecated release. Also, transitive

providers can be updated as a consequence of the update of a direct provider. Hence,

client packages can benefit from estimating how often a directly adopted provider pack-

age results in the transitive adoption of a deprecated release. In this RQ, we determine

how often client packages transitively adopt a deprecated provider release, what the

typical dependency depth is, and how often a provider that is directly adopted results

in the transitive adoption of a deprecated release.

Approach. We study the transitive adoption of deprecated releases by analyzing the de-

pendency tree of the latest release of client packages. Such dependency trees contain

the provider package releases that are directly and transitively adopted by each client

in their latest release. To obtain these dependency trees, we run the npm install com-

mand (to install the client package release and its dependencies) followed by the npm

ls command (to obtain the dependency tree in a parsable format). The dependency

trees represent the resolved provider releases at the time that we run the npm install

tool (February 2020), whereas the timestamp of the latest client package releases were

obtained from our data set (which was collected on May 2019). For simplicity, in this

subsection we refer to the “latest client package release” simply as a “client package”.

Similarly, we refer to the provider releases that are directly and transitively adopted

by the client packages as “provider packages”. Furthermore, given the total number of

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 160

client packages to be analyzed (595,052), we draw a statistically representative random

sample of size 16,641 (99% confidence level, ±1% confidence interval). In total, the

studied dependency trees have 71,663 installed packages (among client and provider

packages) and 5,796,506 dependencies.

After obtaining the dependency trees, we estimate the proportion of client pack-

ages that transitively adopt at least one deprecated provider release. In addition, to

understand the relation between the direct and transitive adoptions of deprecated re-

leases, we calculate how often client packages that directly adopt at least one depre-

cated provider release also transitively adopt at least one deprecated provider release

(and vice-versa).

We also calculate the distribution of the deepest dependency depth of a deprecated

provider release for each client package. The deepest dependency depth of a depre-

cated provider release is the largest distance from the client package to any adopted

deprecated release in the dependency tree. For instance, suppose that a client pack-

age C transitively adopts a deprecated provider release at depths 2 (i.e., the provider of

a provider is deprecated) and 3. For client package C , the deepest dependency depth

of a deprecated provider is 3.

Finally, we analyze the distribution of the number and the proportion of directly

adopted providers that result in the transitive adoption of at least one deprecated re-

lease. As an example, suppose that a client package C directly adopts three providers,

namely P1, P2, and P3. Suppose that adopting P1 results in the transitive adoption of

deprecated release d1 and that adopting P2 results in the transitive adoption of depre-

cated releases d2 and d3. In such hypothetical scenario, the number of directly adopted

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 161

Table 6.4: The number of client packages that directly and transitively adopt at
least one deprecated provider releases (only client packages that adopt a deprecated
provider release are shown).

Client packages
Directly adopt
deprecated releases?

No Yes

Transitively adopt
deprecated releases?

No – 1,107 (11%)

Yes 5,406 (54%) 3,461 (35%)

providers of C that result in the transitive adoption of at least one deprecated release

is 2 (P1 and P2), while the proportion is 66% (2 out of 3 directly adopted providers).

Observation 6.10) 54% of all client packages transitively adopt at least one depre-

cated release. For client packages that adopt a deprecated provider release, the ma-

jority of such adoptions is exclusively transitive (see Table 6.4). In particular, the num-

ber of client packages that adopt only transitive deprecated providers (5,406) is almost

5 times larger than the number of client packages that adopt only direct deprecated

providers (1,107).

Observation 6.11) In 90% of the cases where a deprecated provider release is adopted,

the deepest dependency depth is no larger than 6. Figure 6.7 depicts an histogram for

the deepest dependency depth of a deprecated provider release. The median value,

as represented by the red dashed line, is 4. The 90th percentile, as represented by the

blue dash line, is 6. This analysis indicates that a relevant proportion of client packages

adopt deprecated releases that are fairly deep in their dependency tree.

Observation 6.12) The median number of direct providers that result in the transitive

adoption of at least one deprecated release by a client package is 1. In other words,

for 50% of the client packages, one single direct provider would need to be updated

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 162

Median 90th percentile

0%

5%

10%

15%

20%

25%

0 1 2 3 4 5 6 7 8 9 10 11

Deepest dependency depth of a deprecated provider release

P
ro

po
rt

io
n

of
 c

lie
nt

 p
ac

ka
ge

s

Figure 6.7: Histogram of the deepest dependency depth of a deprecated provider re-
lease. The dashed red line represents the median, while the blue one represents the
90th percentile.

Table 6.5: Descriptive statistics for the total number and the proportion of direct
providers that result in the transitive adoption of at least one deprecated release.

Providers Min. Q1 Median Mean Q3 Max.

Total 1.0 1.0 1.0 1.98 2.0 60.0

Proportion 2.0% 16.6% 25.0% 32.5% 42.8% 100.0%

or replaced as an effort to cease the transitive adoption of a deprecated release. In

addition, Table 6.5 shows that the median proportion of direct providers that account

for the transitive adoption of at least one deprecated release is 25%.

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 163

RQ2: How do client packages adopt deprecated releases?

• The direct adoption of deprecated releases is highly skewed, with the top 40 pop-

ular deprecated releases accounting for more than half of all deprecated releases

adoption.

• All the top 40 popular deprecated releases have a deprecation message that re-

ports a replacement package or release, which eases the migration from such

deprecated releases.

• 54% of all client packages transitively adopt at least one deprecated release.

• In 90% of the cases where a deprecated release is adopted, the deepest depen-

dency depth is no larger than 6.

• A median of one in each four providers that are directly adopted result in the

transitive adoption of at least one deprecated release.

6.5 Discussion

In this section, we discuss the findings presented in Section 6.4. We divide our discus-

sion in two topics: in Section 6.5.1, we discuss the improvements to the npm depre-

cation mechanism. In Section 6.5.2, we assess the impact of deprecated releases on

client packages.

6.5.1 Improving the deprecation mechanism

Although a small proportion of npm packages make use of the deprecation mechanism

(Observation 1), a noteworthy proportion of client packages directly adopt deprecated

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 164

releases (Observation 6). Therefore, we consider release-level deprecation to be a rel-

evant aspect of the npm ecosystem. Despite such relevance, the deprecation mecha-

nism provided by npm is fairly rudimentary (see Section 6.2 for a description on how

the npm deprecation mechanism works). In the following, based on our observations

from Section 6.4, we propose specific improvements to the deprecation mechanism.

Implication 6.1) The deprecation mechanism should encourage developers to pro-

vide more meaningful deprecation messages. The rationale for the deprecation is

not reported in 36% of the deprecation messages (Observation 5). Informing the ratio-

nale behind a deprecation allows client packages to assess the trade-off between the

risk of adopting the deprecated release and the effort to migrate away from this release.

Therefore, npm should encourage developers to provide better reasons for the depre-

cation of a release (e.g., by providing standardized deprecation messages based on the

five identified rationales for deprecation).

In addition, the replacement release is not reported in approximately half (49%)

of the deprecation messages (Observation 5). Reporting a replacement release allows

client packages to easily migrate away from the deprecated release, in case they decide

to. Hence, we argue that the npm deprecation mechanism should support package

developers in informing what the replacement release is (e.g., by automatically detect-

ing the existence of a newer non-deprecated release and, also, by warning developers

when the latest package release is being deprecated). In addition, the npm deprecation

mechanism should record a deprecation timestamp (to date, this information is not

recorded in the npm registry) and a severity level for the deprecation. These informa-

tion would help client packages on 1) evaluating for how long a release is considered

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 165

deprecated and 2) assessing the risks of adopting a deprecated release, based on the

perspective of the developer of the provider package.

Implication 6.2) The deprecation mechanism should interactively prompt for contex-

tual information about the deprecation. The provision of contextual information by

package developers should be encouraged by enhancing the interaction between the

npm deprecation tool and its users. Instead of requiring only the deprecation message

and the package release (or range of releases) to be deprecated as parameters, the dep-

recation tool could interactively prompt its users to input: 1) the rationale behind the

deprecation, 2) a pointer to the replacement release, 3) a link to documentation con-

taining instructions on what should be considered when migrating to the replacement

release (e.g., the introduced changes in the replacement release), and 4) a deprecation

severity level. In addition, to supporting better automated analyses, such contextual

information should be recorded in proper fields in the package.json file.

Implication 6.3) The deprecation mechanism should periodically warn client pack-

ages about the adoption of a deprecated provider release. Even though all popular

deprecated releases report a replacement release in their deprecation message (Obser-

vation 8), such releases are still massively adopted by client packages (on their latest

release, as of our data collection date) (Observation 7). We theorize that such adop-

tions happen because the deprecation messages are displayed only when a deprecated

provider release is installed. When the provider release is deprecated while it is already

installed, the client package does not become aware of such a deprecation. In fact, this

issue has been a subject of discussion in several issue reports.10,11 We argue that npm

should provide an easy way for client packages to check the adoption of a deprecated

10https://github.com/npm/npm/issues/15536
11https://github.com/npm/npm/issues/18023

https://github.com/npm/npm/issues/15536
https://github.com/npm/npm/issues/18023

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 166

provider release. Preferably, the deprecation mechanism should proactively (and pe-

riodically) warn client packages when a deprecated release is adopted.

6.5.2 Assessing the impact of deprecated releases

Although the migration away from a deprecated release depends on the client pack-

age’s willingness, we found evidences that such a migration might not be trivial (e.g.,

by the lack of a replacement release or the need to perform changes to migrate). For

this reason, client packages that are willing to migrate away from deprecated releases

can benefit from understanding whether a replacement release is available and how

difficult such a migration typically is. In turn, client packages that still adopting a dep-

recated provider release should evaluate the impact and risks associated with such an

adoption. In the following, we discuss the risks that client packages can face when

adopting a deprecated release, as well as the challenges to migrate away from a depre-

cated release.

Implication 6.4) Client packages should be especially careful about the usage of dep-

recated releases of partially deprecated packages. The deprecation of a release can

occur for different reasons. The most common reason for the deprecation of all re-

leases of a package in npm is withdrawal (i.e., terminating the maintenance of a pack-

age), whereas the deprecation of one or more specific releases of a package usually oc-

curs due to a defect (Observation 5). Although the usage of provider packages that are

no longer maintained should be avoided, the usage of defective provider releases might

be considerably more risky and should be addressed with proper attention by client

packages (e.g., by migrating away from the deprecated release). Another common rea-

son for deprecation is when a release is superseded. This rationale for deprecation does

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 167

not indicate any issue that needs to be urgently addressed, however provider packages

can have some specific reason (e.g., the deprecated release use some obsolete feature)

to communicate a deprecation to client packages instead of simply publishing a newer

release. Therefore, client packages should update a superseded provider release when-

ever it is possible, especially when the newer provider release is backward compatible

with the deprecated release. Incompatibility is also identified as a rationale for the

deprecation of a package’s release, however the deprecation of a release for this reason

is significantly less common than for other reasons. Nevertheless, client packages are

exposed to incompatibilities in very specific circumstances (i.e., when incompatible

versions of two providers are used at once).

Implication 6.5) Client packages should be prepared for the lack of replacement re-

leases. A total of 31% of the partially deprecated packages do not have a follow-up

replacement release, giving client packages no option other than downgrading their

adopted provider version (Observation 2). Also, the deprecation mechanism is used

primarily (66%) for the deprecation of all releases of a package (Observation 1), which

gives client packages no other option besides replacing the whole provider package.

Implication 6.6) Client packages should be aware that migrating to a replacement

package or release might be a costly operation. 80% of the popular deprecated re-

leases belong to fully deprecated packages that only provide a replacement package (in

lieu of a replacement release) (Observation 9). The migration to a replacement pack-

age requires the adoption of a different provider package, potentially requiring client

packages to perform changes in order to cope with a new design implemented by this

provider (e.g., new APIs). When a replacement release is available, in 15% of the cases

client packages will need to integrate a major provider release (Observation 3), which

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 168

is assumed to be backward incompatible with the deprecated release, likely requiring

client packages to perform changes to integrate the new major provider release. Also,

in Observation 9 we show that 91% of the client packages set a version range statement

when adopting a deprecated provider release. Even though, such client packages are

still adopting a deprecated release, which suggests that a modification of the version

range statement might be required to migrate to a replacement release.

Implication 6.7) Client packages should be attentive to the transitive adoption of

deprecated provider releases. More than half (54%) of the client packages in the

ecosystem transitively adopt at least one deprecated release. Interestingly, the ma-

jority of these client packages (54%) do not directly adopt deprecated releases (Ob-

servation 10). Hence, client packages that want to avoid the adoption of deprecated

releases by all means should be attentive to their transitive providers. When a depre-

cated release is transitively adopted, client packages have two main options to cease

the adoption:

1) Updating the direct provider that is responsible for the transitive adoption of a dep-

recated release. This option does not necessarily guarantee that the adoption of the

deprecated release will cease, however it serves as a best-effort approach. We verified

that the median number of direct providers that result in the transitive adoption of

at least one deprecated releases is 1 (Observation 12). This number thus serves as an

estimate of how many direct providers would need to be updated for this best-effort

approach.

2) Performing workarounds. The deeper a transitively adopted deprecated release is

in the dependency tree of a client package, the less control the client package has over

such an adoption. Indeed, we verified that the median of the deepest dependency

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 169

depth of a deprecated provider release is 4 (Observation 11), showing that, in general,

client packages need to cope with the transitive adoption of deprecated provider re-

leases that are far down the dependency tree. To manually update transitive adoptions,

client packages often rely on workarounds, such as manually modifying build files that

are automatically generated and reinstalling all provider packages.12,13.

6.6 Related work

In this section, we describe prior studies about deprecation in software ecosystems.

We initially present related work that discusses how client packages use deprecated

APIs and how such clients react to the deprecation of these APIs (Section 6.6.1). Then,

we discuss studies that report how often deprecation messages report a replacement

API (Section 6.6.2). Finally, we discuss studies that describe the rationale behind the

deprecation of APIs (Section 6.6.3). All the presented related work discusses the phe-

nomenon of API deprecation, whereas this thesis is the first to present a study about

release deprecation in a software ecosystem. Therefore, in this section we also compare

prior results regarding the API deprecation with our results about release deprecation.

6.6.1 Usage of and migration away from deprecated releases

Henkel and Diwan (2005) discuss that the usage of a certain provider’s API by client

packages can have an impact on the decision of deprecating this API. The authors argue

that provider packages do not want to drive complex changes in the client packages

12https://stackoverflow.com/questions/56634474/npm-how-to-update-upgrade-
transitive-dependencies

13https://stackoverflow.com/questions/15806152/how-do-i-override-nested-npm-
dependency-versions

https://stackoverflow.com/questions/56634474/npm-how-to-update-upgrade-transitive-dependencies
https://stackoverflow.com/questions/56634474/npm-how-to-update-upgrade-transitive-dependencies
https://stackoverflow.com/questions/15806152/how-do-i-override-nested-npm-dependency-versions
https://stackoverflow.com/questions/15806152/how-do-i-override-nested-npm-dependency-versions

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 170

and the decision about the deprecation of an API should consider this assumption.

Robbes et al. (2012a) analyzed the deprecation of packages’ API in the Pharo ecosystem

(for the Smalltalk language) and found that a small proportion (14%) of the deprecated

methods triggered a client package reaction (e.g., a method replacement). Sawant et al.

(2018c) analyze the reaction of clients to the deprecation of Java APIs and found that

a small proportion of the client packages migrate away from the deprecated methods.

The authors found that the majority of the client packages do not use any deprecated

provider API. In a follow-on study, Sawant et al. (2019) derive the following patterns

of reaction to Java API deprecation: deletion of call to deprecated API, replacement by

third-party API, replacement by in-house API, and downgrade of API version. Although

the authors also found that the majority of the client packages do not migrate away

from the deprecated methods, when the migration takes place client packages usually

replace the deprecated method with a call to another third-party API. Li et al. (2018)

report that 38% of a random sample of 10,000 Android apps are using a deprecated API.

Our results show that 27% of all client packages in the ecosystem adopt a deprecated

release.

Prior studies show that the rate at which client packages replace an adopted depre-

cated API is low. In contrast, we found that 85% of the replacement releases in npm

are patch and minor releases, which are often implicitly adopted by client packages.

6.6.2 Replacement releases in deprecation messages.

Zhou and Walker (2016) found that 51% of the studied packages in the Maven ecosys-

tem (for the Java language) have a deprecation message that reports a replacement

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 171

API. Brito et al. (2016) show that 59.5% of the API elements (types, fields, and meth-

ods) of 661 Java projects are deprecated with a message that reports a replacement API

element. Ko et al. (2014) reveal that 61% of 260 deprecation messages of eight Java

packages have a replacement API. In turn, Li et al. (2018) found that, among a set of

20 Android releases, the median proportion of deprecated APIs that do not report a re-

placement on the deprecation message is approximately 30%. In a study about API

deprecation messages of the top 50 most popular client packages in npm, Nascimento

et al. (2020) points that 67% of the deprecation messages report a replacement API.

Our results show that 51% of the deprecation messages in npm report a replacement

release.

In general, the difference between the proportion of API and release deprecation

messages that report a replacement is at most 16%.

6.6.3 Rationale behind deprecation

According to a survey by Sawant et al. (2018a), there are seven rationales for the us-

age of the deprecation mechanism by client developers in Java. Their study examined

deprecation at the method level (i.e., API deprecation). With the exception of one out

of the seven stated rationales (namely “old interface encourages bad practices”), all of

them have commonalities with the rationales for the deprecation of a release in npm

(see Table 6.6). In turn, Sawant et al. (2018b) manually investigate the deprecation

messages of 374 Java APIs and propose 12 categories for the rationale of deprecation.

Even focusing on Java API deprecation, many of the proposed categories agree with

the rationales for the deprecation of npm packages and releases. Mirian et al. (2019)

studied the reasons for the deprecation of APIs provided by the Chrome web browser.

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 172

The authors identified six different categories for the rationale behind the deprecation

of an API. Four out of the six categories are related with the identified rationales for

the deprecation of a release in npm. The “inconsistent implementation” and “security”

categories by Mirian et al. (2019) are related with defects, the “updated standard” cat-

egory is related with supersede, and the “removed from standard” category is related

with withdrawal. Raemaekers et al. (2014) studied the Maven ecosystem and found

that deprecation is rarely used to communicate that a given API has introduced back-

ward incompatible changes (a.k.a breaking changes). Decan et al. (2018) suggest that

package developers in npm should deprecate releases that can potentially suffer from

vulnerabilities.

There are a number of commonalities between the rationale for deprecating an API

and a release. All rationales for release deprecation can also be associated with API

deprecation, although the opposite does not hold.

6.7 Threats to validity

In this section, we discuss the threats to the validity of our study about release depre-

cation in npm. We discuss the threats related to construct validity, internal validity, and

external validity.

Construct Validity. The npm registry does not record the date of a release deprecation.

Therefore, when our data was collected from the npm registry, we only knew that a given

release was deprecated some time before our data collection. The lack of knowledge

about the deprecation date makes it impossible for us to perform a reliable historical

analysis about the adoption of deprecated releases. To mitigate this threat, we do not

perform any historical analysis of deprecated releases adoption (e.g., an analysis on

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 173

Table 6.6: Comparison between the identified rationales behind API and release dep-
recation.

Reference Identified rationales for
method deprecation

Identified
rationales for
release
deprecation

Sawant et al. (2018a) Feature is unnecessary; no
longer provide a feature

Withdrawal

New feature supersedes existing one Supersede

Functional issue; non-functional issue Defect

Mark as beta Test

Old interface encourages bad practices —

Sawant et al. (2018b) Redundant methods; re-
naming of feature

Withdrawal

Merged to existing method;
new feature introduced;
separation of concerns

Supersede

Functional defects; security
flaws

Defect

Temporary feature; dis-
suade usage

Test

No dependency support Incompatibility

Avoid bad coding practices;
design pattern

—

Mirian et al. (2019) Removed from standard Withdrawal

Updated standard Supersede

Security; inconsistent implementation Defect

Clean experience; never standardized —

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 174

how client packages migrate away from deprecated releases). Rather, we consider how

deprecated releases were adopted at the latest client release (i.e., at the snapshot of

our data collection). Even though, we can still rely on cases for which the provider re-

lease was deprecated at the time of our data collection, but was not deprecated when

the client package started adopting this release. Also, when analyzing the adoption of

the top 40 popular deprecated releases (Section 6.4.2), we manually analyze any doc-

umentation that allows us to estimate the deprecation date. With such an analysis, we

can reveal the amount of time that client packages had to migrate away from a popular

deprecated release.

In Section 6.4.2, we studied the transitive adoption of deprecated releases. To do

so, we installed the client packages using the npm install and captured their depen-

dency trees using the npm ls tools. We set a 10 minutes timeout for the installation of

the client package. Therefore, packages that took more than 10 minutes to be installed

were skipped from our analysis.

Internal validity. To understand the rationales behind the deprecation of a release

(Section 6.4.1), we manually analyzed a representative sample of unique deprecation

messages. We choose to sample unique deprecation messages instead of unique depre-

cated releases because each package has a different number of releases and the same

package can deprecate a range of releases (perhaps all releases) with the same mes-

sage. Therefore, by sampling unique deprecation messages instead of unique depre-

cated releases, we are avoiding a selection bias towards packages with a large number

of deprecated releases. Our sample size ensures a confidence level of 95% and a confi-

dence interval of ±5%. Therefore, the reported prevalence for each rationale is bound

to the properties of such sample. Also, we might have not sampled messages that refer

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 175

to rationales that rarely appear. For example, prior studies indicate that vulnerabili-

ties can potentially drive a deprecation (Decan et al., 2018), however our sample did

not include any deprecation messages that explicitly refers to a vulnerability (although

vulnerabilities would be part of the defect category).

External Validity. Our study is limited to data from the npm ecosystem, therefore our

results might not be generalized to other ecosystems. Our study is the first to analyze

the deprecation phenomenon at the release- and package-levels in a software ecosys-

tem and to provide knowledge about such a phenomena. Nevertheless, we identified

that the rationales for the deprecation of releases have commonalities with the depre-

cation of APIs.

Our study does not have the objective of elucidating general theories about the dep-

recation phenomenon and further research is needed to provide more comparisons

and an eventual generalization. Furthermore, release-level deprecation mechanisms

are provided by other package managers ecosystems (e.g., Packagist for the PHP lan-

guage or Nuget for .NET) and our approach can be replicated in those other ecosystems.

Although the deprecation mechanisms of different ecosystems have different charac-

teristics, the learned lessons discussed in Section 6.5 can be useful to reason about

release-level deprecation in other ecosystems.14,15,16

14https://devblogs.microsoft.com/nuget/deprecating-packages-on-nuget-org/
15https://www.tomasvotruba.com/blog/2017/07/03/how-to-deprecate-php-package-

without-leaving-anyone-behind/
16https://api.rubyonrails.org/classes/ActiveSupport/Deprecation.html

https://devblogs.microsoft.com/nuget/deprecating-packages-on-nuget-org/
https://www.tomasvotruba.com/blog/2017/07/03/how-to-deprecate-php-package-without-leaving-anyone-behind/
https://www.tomasvotruba.com/blog/2017/07/03/how-to-deprecate-php-package-without-leaving-anyone-behind/
https://api.rubyonrails.org/classes/ActiveSupport/Deprecation.html

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 176

6.8 Conclusion

Deprecation is a mechanism employed by software developers to discourage the use

of a particular piece of code. Prior empirical studies focused on the deprecation of

API elements (e.g., methods and functions) and investigated several topics, such as

how frequently deprecated APIs are adopted by clients (Robbes et al., 2012a; Sawant

et al., 2018c), the provisions of replacement APIs (Zhou and Walker, 2016; Li et al., 2018;

Nascimento et al., 2020), and the rationales behind the deprecation of APIs (Sawant

et al., 2018a,b; Mirian et al., 2019). In this chapter, we study deprecation from a soft-

ware ecosystem perspective, which entails the deprecation of releases. More specifi-

cally, we conducted a case study of release deprecation in npm.

To understand the relevance of the deprecation mechanism in npm, we analyzed

how often releases are deprecated by provider package developers and the impact of

the deprecated releases over the client packages. We found that the rate at which the

deprecation mechanism is used by provider packages is small, with approximately 3%

of the releases being deprecated. However, 27% of the client packages directly adopt at

least one deprecated release and 54% of all client packages transitively adopt at least

one deprecated release in their latest release. We assessed the risks brought by the us-

age of deprecated releases by studying the rationales behind the deprecation. We ver-

ified that the deprecation of all releases of a package is usually associated with with-

drawals (i.e., terminating the package maintenance) and supersede (i.e., the substi-

tution of a release by another). Also, we verified that the deprecation of one specific

package release is usually associated with the presence of defects in that release.

CHAPTER 6. AN EMPIRICAL STUDY OF DEPRECATION OF PACKAGES AND
RELEASES 177

Based on our observations, we conclude that, despite the importance of the dep-

recation mechanism to the npm ecosystem, such a mechanism is still fairly rudimen-

tary. For instance, to date, there is no simple approach that enable client packages

to check whether any installed provider release is deprecated. We propose a series

of improvements to the npm deprecation mechanism. We also conclude that it is not

straightforward for client package to assess the impact (e.g., risk) of using a deprecated

release. For instance, the rationale behind a deprecation is not always provided and

client packages can unwittingly adopt deprecated releases by means of transitive de-

pendencies. We propose ways in which client packages can better assess the impact of

using deprecated releases.

CHAPTER 7

Conclusions and Future Work

S
OFTWARE ecosystems continue to gain popularity as a viable mechanism to

enable large scale source code reuse. On the one hand, the large and diverse

code base typically associated with those ecosystems supports the fast-paced

contemporary software development. On the other hand, the overhead brought by de-

pendency maintenance can become a burden to developers. In this thesis, we propose

to leverage data from the npm ecosystem to help practitioners (software developers and

package manager owners) to make informed decisions regarding dependency mainte-

nance. Our goal is to study three specific phenomena: downgrades of dependencies,

same-day releases, and release deprecation. To accomplish our goal, we 1) mine evo-

lutionary data from the dependencies of the npm ecosystem to understand how and

why downgrades are performed; 2) mine historical data from npm package releases and

178

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 179

their deployed files to study the phenomenon of same-day releases; 3) mine data from

a comprehensive snapshot of the releases and dependencies of the npm ecosystem to

understand the prevalence and adoption of deprecated releases. We then perform an

empirical analysis of such data to evaluate the driving forces behind these phenomena,

as well as their prevalence and impact in the ecosystem.

7.1 Learned lessons

Based on our empirical observations, we propose a set of suggestions to improve de-

pendency maintenance practices in npm. We summarize these suggestions in the form

of a set of learned lessons, which are described below:

1. Monitoring dependency updates to perform better downgrades. In Chapter 4,

we observed that downgrades of implicit updates generally take longer to occur,

indicating that the issues that motivate these downgrades are harder to debug or

the associated providers with such issues are harder to localize. For this reason,

tools to assist the localization of troublesome providers should be provided to

client packages. In particular, these tools should facilitate tracing the history of

updates of a provider. Emphasizing testing of providers’ functionalities can also

help in this matter. Also, we observed that some downgrades can lead the adop-

tion of a provider version that is older than the latest working version. Tooling

for making developers aware of those cases would be helpful to client packages.

2. Embracing the need for same-day releases. In Chapter 5, we observed that, al-

though developed in very rapid fashion, same-day releases introduce relevant

and even considerably large-sized changes. Moreover, same-day releases are

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 180

adopted relatively fast by client packages, evidencing their importance on the

ecosystem. Based on such observations, we argue that popular provider pack-

ages should ensure that same-day releases receive proper attention and that,

even under such a rapid release pipelines, perform all essential quality assurance

checks. We encourage popular npm packages to optimize their release pipelines

and strive to cope with the rapid nature of same-day releases. In addition, we

note that the documentation of same-day releases by means of release notes

should be improved.

3. Towards a comprehensible deprecation mechanism. In Chapter 6, we observed

that more than one-third of the deprecation messages do not inform the ratio-

nale behind the deprecation and almost half do not report a replacement re-

lease. Considering the importance of understanding the reasons for a depre-

cation, as well as whether a replacement release exists, we encourage package

manager owners to design deprecation mechanisms that better support devel-

opers in providing such information. In addition, the current support of the dep-

recation mechanism for identifying the adoption of deprecated releases is still

limited and should be improved.

7.2 Limitations

One of the limitations of our studies is that we study data exclusive from the npm ecosys-

tem. As a consequence, so we are not able to verify whether our observations hold in

other software ecosystems. Another limitation related to the data source is that we

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 181

restrict our study to the set of dependencies within the npm ecosystem, while exter-

nal projects can also depend on any npm package. Data collection challenges that are

beyond the scope of this thesis need to be overcame first to allow a sound analysis of

the dependencies of external projects on npm packages. In particular, it is difficult to

accurately trace the state of these external applications, to determine when those ex-

ternal applications perform a release, and which version of the provider package they

are using at a certain given time.

7.3 Avenues for future research

In the following, we list future research that can be leveraged from our results.

• Further research must be carried out to understand how downgrades affect pack-

ages throughout the dependency network. Although we observed that only 19%

of the releases with downgrade have at least one client package, downgrades can

still transitively impact packages in the ecosystem. For instance, a package a can

depend on a package b which, in turn, might depend on a package c . Therefore,

package a can transitively depend on some feature of package c . If c is down-

graded by b , a will transitively depend on a downgraded version of c . However,

in this thesis, we do not investigate the impact of downgrades on transitive de-

pendencies.

• Further research is necessary to understand why downgrades tend to take a long

tome to occur. We conjecture that either the problem that triggered the down-

grade takes long to manifest or tracing a problem back to a certain provider ver-

sion is not trivial. Also, we conjecture that, due to the controlled nature of explicit

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 182

updates, it is easier for client packages to identify the provider that is associated

with the problem that motivated the downgrade.

• Further research should be performed to understand the extent to which vulnera-

bility and security advisories might be influencing client developers to downgrade

a provider. Different studies show the relevance of security vulnerabilities to the

decision of updating a given provider (Decan et al., 2018; Zerouali et al., 2019a).

However, after manually analyzing a representative sample of downgrades (see

Section 4.4.1), we did not find any explicit mention of security vulnerabilities.

We conjecture that client packages tend to wait for a vulnerability fix instead of

performing a downgrade.

• Further research should be performed to understand the role of automated tools

for dependency management. Although prior work examined whether the adop-

tion of “dependency bots” (i.e., automated tools that interacts with the code to

perform early testing of new provider versions) encourage developers to updat-

ing their providers (Mirhosseini and Parnin, 2017), it is still not clear how often

npm client packages use these tooling and how effective these are in preventing

the adoption of problematic provider releases. For example, Dey et al. (2019)

studied the commits history of 4,433 npm packages and found that 400 of such

packages (less than 10%) have any commit from a dependency bot.

• Further research should study historical deprecation data. Due to the lack of dep-

recation timestamp on data from npm, our study of release and package depre-

cation does not take historical information into consideration. A feasible way of

overcoming this data limitation is to periodically fetch and store data from the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 183

npm registry (e.g., daily snapshots), eventually combining each individual mea-

surement on a time series. We leave such complimentary yet important aspect

of deprecation for future research endeavours.

Bibliography

Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S., and Shihab, E. (2017). Why do

developers use trivial packages? An empirical case study on npm. In Proceedings of

the 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’17), pages

385–395.

Adams, B., Bellomo, S., Bird, C., Marshall-Keim, T., Khomh, F., and Moir, K. (2015).

The practice and future of release engineering: A roundtable with three release en-

gineers. Software, IEEE, 32:42–49.

Adams, B. and McIntosh, S. (2016). Modern Release Engineering in a Nutshell – Why

Researchers Should Care. In Proceedings of the 2016 IEEE 23rd International Confer-

ence on Software Analysis, Evolution, and Reengineering (SANER’16), pages 78–90.

184

BIBLIOGRAPHY 185

Barros-Justo, J., Olivieri, D., and Pinciroli, F. (2019). An exploratory study of the stan-

dard reuse practice in a medium sized software development firm. Computer Stan-

dards & Interfaces, 61:137–146.

Bauer, D. F. (1972). Constructing confidence sets using rank statistics. Journal of the

American Statistical Association, 67(339):687–690.

Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., and Panichella, S. (2015). How the

Apache community upgrades dependencies: an evolutionary study. Empirical Soft-

ware Engineering, 20(5):1275–1317.

Bavota, G., Canfora, G., Penta, M. D., Oliveto, R., and Panichella, S. (2013). The

evolution of project inter-dependencies in a software ecosystem: The case of

Apache. In Proceedings of the IEEE International Conference on Software Mainte-

nance (ICSM’13), pages 280–289.

Bevacqua, N. (2015). Keeping your npm dependencies immutable. https://ponyfoo.

com/articles/immutable-npm-dependencies. Accessed: 2018-01-07.

Bogart, C., Kästner, C., Herbsleb, J., and Thung, F. (2016). How to break an api: Cost

negotiation and community values in three software ecosystems. In Proceedings of

the 24th ACM SIGSOFT International Symposium on Foundations of Software Engi-

neering (FSE’16), pages 109–120.

Brito, G., Hora, A., Valente, M. T., and Robbes, R. (2016). Do developers deprecate APIs

with replacement messages? A large-scale analysis on java systems. In Proceedings of

the 23rd International Conference on Software Analysis, Evolution, and Reengineering

(SANER’16), pages 360–369.

https://ponyfoo.com/articles/immutable-npm-dependencies
https://ponyfoo.com/articles/immutable-npm-dependencies

BIBLIOGRAPHY 186

Castelluccio, M., An, L., and Khomh, F. (2019). An empirical study of patch uplift in

rapid release development pipelines. Empirical Software Engineering, 24(5):3008–

3044.

Cliff, N. (1996). Ordinal methods for behavioral data analysis. Psychology Press, New-

York, USA.

Cogo, F. R., Oliva, G. A., and Hassan, A. E. (2019). An empirical study of dependency

downgrades in the npm ecosystem. IEEE Transactions on Software Engineering.

Preprint.

Constantinou, E. and Mens, T. (2017). Socio-technical evolution of the ruby ecosys-

tem in github. In Proceedings of the IEEE 24th International Conference on Software

Analysis, Evolution and Reengineering (SANER’17), pages 34–44.

Cox, J., Bouwers, E., v. Eekelen, M., and Visser, J. (2015). Measuring dependency fresh-

ness in software systems. In Proceedings of the IEEE/ACM 37th International Confer-

ence on Software Engineering (ICSE-SEIP’15), pages 109–118.

Decan, A. and Mens, T. (2019). What do package dependencies tell us about semantic

versioning? IEEE Transactions on Software Engineering, pages 1–15.

Decan, A., Mens, T., and Claes, M. (2017). An empirical comparison of dependency

issues in OSS packaging ecosystems. In Proceedings of the24th International Confer-

ence on Software Analysis, Evolution, and Reengineering (SANER’2017), pages 2–12.

Decan, A., Mens, T., and Constantinou, E. (2018). On the evolution of technical lag

in the npm package dependency network. In Proceedings of the 34th International

Conference on Software Maintenance and Evolution (ICSME’18), pages 404–414.

BIBLIOGRAPHY 187

Decan, A., Mens, T., and Constantinou, E. (2018). On the impact of security vulnerabil-

ities in the npm package dependency network. In Proceedings of the 15th Interna-

tional Conference on Mining Software Repositories (MSR’18), pages 181–191.

Decan, A., Mens, T., and Grosjean, P. (2019). An empirical comparison of dependency

network evolution in seven software packaging ecosystems. Empirical Software En-

gineering, 24(1):381–416.

Derr, E., Bugiel, S., Fahl, S., Acar, Y., and Backes, M. (2017). Keep me updated: An

empirical study of third-party library updatability on Android. In Proceedings of the

ACM Conference on Computer and Communications Security (CCS ’17), pages 2187–

2200.

Dey, T., Ma, Y., and Mockus, A. (2019). Patterns of effort contribution and demand and

user classification based on participation patterns in npm ecosystem. In Proceed-

ings of the 15th International Conference on Predictive Models and Data Analytics in

Software Engineering (PROMISE’19), page 3645.

Dey, T. and Mockus, A. (2018). Are software dependency supply chain metrics useful in

predicting change of popularity of npm packages? In Proceedings of the 14th Inter-

national Conference on Predictive Models and Data Analytics in Software Engineering

(PROMISE18), page 6669.

Digkas, G., Lungu, M., Avgeriou, P., Chatzigeorgiou, A., and Ampatzoglou, A. (2018).

How do developers fix issues and pay back technical debt in the apache ecosystem?

In Proceedings of the 25th IEEE International Conference on Software Analysis, Evo-

lution and Reengineering (SANER’18), pages 153–163.

BIBLIOGRAPHY 188

Dodds, K. C. (2015). Why semver ranges are literally the worst? https:

//blog.kentcdodds.com/why-semver-ranges-are-literally-the-worst-

817cdcb09277. Accessed: 2018-01-07.

Draper, P. (2017). Package management: Stop using version ranges. https:

//www.lucidchart.com/techblog/2017/03/15/package-management-stop-

using-version-ranges/. Accessed: 2018-05-28.

Erenkrantz, J. R. (2003). Release management within open source projects. In Pro-

ceedings of the 3rd Workshop on Open Source Software Engineering (OSS’03), pages

1–5.

Eski, S. and Buzluca, F. (2011). An empirical study on object-oriented metrics and soft-

ware evolution in order to reduce testing costs by predicting change-prone classes.

In Proceedings of the IEEE 4th International Conference on Software Testing, Verifica-

tion and Validation Workshops (ICSTW’11), pages 566–571.

Fox, A. (2002). Toward recovery-oriented computing. In Proceedings of the 28th Inter-

national Conference on Very Large Databases (VLDB’02), pages 873–876.

German, D. M. and Hindle, A. (2005). Measuring fine-grained change in software: To-

wards modification-aware change metrics. In Proceedings of the 11th IEEE Interna-

tional Software Metrics Symposium (METRICS’05), pages 10–28.

Gkortzis, A., Feitosa, D., and Spinellis, D. (2019). A double-edged sword? Software reuse

and potential security vulnerabilities. In Reuse in the Big Data Era, pages 187–203.

Gonzalez-Barahona, J. M., Sherwood, P., Robles, G., and Izquierdo, D. (2017). Techni-

cal lag in software compilations: Measuring how outdated a software deployment is.

https://blog.kentcdodds.com/why-semver-ranges-are-literally-the-worst-817cdcb09277
https://blog.kentcdodds.com/why-semver-ranges-are-literally-the-worst-817cdcb09277
https://blog.kentcdodds.com/why-semver-ranges-are-literally-the-worst-817cdcb09277
https://www.lucidchart.com/techblog/2017/03/15/package-management-stop-using-version-ranges/
https://www.lucidchart.com/techblog/2017/03/15/package-management-stop-using-version-ranges/
https://www.lucidchart.com/techblog/2017/03/15/package-management-stop-using-version-ranges/

BIBLIOGRAPHY 189

In Open Source Systems: Towards Robust Practices, pages 182–192. Springer Interna-

tional Publishing.

Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. (2000). Predicting fault incidence using

software change history. IEEE Transactions on Software Engineering, 26(7):653–661.

Haenni, N., Lungu, M., Schwarz, N., and Nierstrasz, O. (2014). A quantitative analysis

of developer information needs in software ecosystems. In Proceedings of the 2014

European Conference on Software Architecture Workshops (ECSAW ’14), pages 1–6.

Hamilton, J. (2007). On designing and deploying internet-scale services. In Proceed-

ings of the 21st Conference on Large Installation System Administration Conference

(LISA’07), pages 1–12.

Hassan, S., Shang, W., and Hassan, A. E. (2017). An empirical study of emergency up-

dates for top android mobile apps. Empirical Software Engineering, 22(1):505–546.

Hejderup, J., v. Deursen, A., and Gousios, G. (2018). Software ecosystem call graph

for dependency management. In Proceedings of the IEEE/ACM 40th International

Conference on Software Engineering: New Ideas and Emerging Technologies Results

(ICSE-NIER’18), pages 101–104.

Henkel, J. and Diwan, A. (2005). Catchup! Capturing and replaying refactorings to sup-

port API evolution. In Proceedings of the 27th International Conference on Software

Engineering (ICSE’05)., pages 274–283.

Hora, A., Robbes, R., Valente, M. T., Anquetil, N., Etien, A., and Ducasse, S. (2018). How

do developers react to API evolution? A large-scale empirical study. Software Quality

Journal, 26(1):161–191.

BIBLIOGRAPHY 190

Ihara, A., Fujibayashi, D., Suwa, H., Kula, R. G., and Matsumoto, K. (2017). Understand-

ing when to adopt a library: A case study on ASF projects, pages 128–138. Springer

International Publishing, Cham.

Jaspan, C., Jorde, M., Knight, A., Sadowski, C., Smith, E. K., Winter, C., and Murphy-Hill,

E. (2018). Advantages and disadvantages of a monolithic repository: A case study at

google. In Proceedings of the 40th International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP’18), pages 225–234.

Kajko-Mattsson, M. and Yulong, F. (2005). Outlining a model of a release management

process. Journal of Integrated Design and Process Science, 9(4):13–25.

Kerzazi, N. and Adams, B. (2016). Botched Releases: Do We Need to Roll Back? Em-

pirical Study on a Commercial Web App. In IEEE 23rd International Conference on

Software Analysis, Evolution, and Reengineering (SANER’16), pages 574–583.

Khomh, F., Adams, B., Dhaliwal, T., and Zou, Y. (2015). Understanding the impact of

rapid releases on software quality. Empirical Software Engineering, 20(2):336–373.

Kikas, R., Gousios, G., Dumas, M., and Pfahl, D. (2017). Structure and evolution of

package dependency networks. In IEEE International Working Conference on Mining

Software Repositories (MSR’17), pages 102–112.

Ko, D., Ma, K., Park, S., Kim, S., Kim, D., and Traon, Y. L. (2014). API document quality

for resolving deprecated APIs. In Proceedings of the 21st Asia-Pacific Software Engi-

neering Conference (APSEC’14), volume 2, pages 27–30.

Kula, E., Rastogi, A., Huijgens, H., Deursen, A. v., and Gousios, G. (2019). Releasing

fast and slow: An exploratory case study at ing. In Proceedings of the 27th ACM Joint

BIBLIOGRAPHY 191

Meeting on European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (FSE’19), pages 785–795.

Kula, R. G., German, D. M., Ishio, T., and Inoue, K. (2015). Trusting a library: A study of

the latency to adopt the latest Maven release. In Proceedings of the IEEE 22nd Inter-

national Conference on Software Analysis, Evolution, and Reengineering, (SANER’15),

pages 520–524.

Kula, R. G., German, D. M., Ishio, T., Ouni, A., and Inoue, K. (2017a). An exploratory

study on library aging by monitoring client usage in a software ecosystem. In Pro-

ceedings of the 24th IEEE International Conference on Software Analysis, Evolution,

and Reengineering (SANER’17), pages 407–411.

Kula, R. G., German, D. M., Ouni, A., Ishio, T., and Inoue, K. (2017b). Do developers

update their library dependencies?: An empirical study on the impact of security

advisories on library migration. Empirical Software Engineering, pages 1–34.

Lahtela, A. and Jäntti, M. (2011). Challenges and problems in release management

process: A case study. In Proceedings of the 2nd IEEE International Conference on

Software Engineering and Service Science (ICSESS’11), pages 10–13.

Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., and Pfister, H. (2014). Upset: Vi-

sualization of intersecting sets. IEEE Transactions on Visualization and Computer

Graphics, 20(12):1983–1992.

Li, L., Gao, J., Bissyandé, T. F., Ma, L., Xia, X., and Klein, J. (2018). Characterising dep-

recated android APIs. In Proceedings of the 15th International Conference on Mining

Software Repositories (MSR’18), pages 254–264.

BIBLIOGRAPHY 192

Lim, W. C. (1994). Effects of reuse on quality, productivity, and economics. IEEE Soft-

ware, 11(5):23–30.

Lin, D., Bezemer, C. P., and Hassan, A. E. (2017). Studying the urgent updates of popular

games on the Steam platform. Empirical Software Engineering, 22(4):2095–2126.

Manikas, K. (2016). Revisiting software ecosystems research. Journal of Systems and

Software, 117(C):84–103.

Manikas, K. and Hansen, K. M. (2013). Software ecosystems – a systematic literature

review. Journal of Systems and Software, 86(5):1294 – 1306.

Mäntylä, M. V., Adams, B., Khomh, F., Engström, E., and Petersen, K. (2015). On rapid

releases and software testing: a case study and a semi-systematic literature review.

Empirical Software Engineering, 20(5):1384–1425.

McDonnell, T., Ray, B., and Kim, M. (2013). An empirical study of API stability and

adoption in the Android ecosystem. In Proceedings of the IEEE International Confer-

ence on Software Maintenance (ICSM’13), pages 70–79.

McIlroy, M. D. (1969). “Mass produced” software components. In Naur, P. and Ran-

dell, B., editors, Software Engineering, pages 138–155, Brussels. Scientific Affairs Di-

vision, NATO. Report of a conference sponsored by the NATO Science Committee,

Garmisch, Germany, 7th to 11th October 1968.

Mezzetti, G., Møller, A., and Torp, M. T. (2018). Type regression testing to detect break-

ing changes in node.js libraries. In 32nd European Conference on Object-Oriented

Programming (ECOOP 2018).

BIBLIOGRAPHY 193

Mileva, Y. M., Dallmeier, V., Burger, M., and Zeller, A. (2009). Mining trends of library

usage. In Proceedings of the Joint International and Annual ERCIM Workshops on

Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops

(IWPSE-Evol’09), pages 57–62.

Mirhosseini, S. and Parnin, C. (2017). Can automated pull requests encourage soft-

ware developers to upgrade out-of-date dependencies? In Proceedings of the 32Nd

IEEE/ACM International Conference on Automated Software Engineering (ASE’17),

pages 84–94.

Mirian, A., Bhagat, N., Sadowski, C., Porter Felt, A., Savage, S., and M. Voelker, G. (2019).

Web feature deprecation: A case study for Chrome. In Proceedings of the 41st Interna-

tional Conference on Software Engineering: Software Engineering in Practice (ICSE-

SEIP’19), pages 302–311.

Moreno, L., Bavota, G., Di Penta, M., Oliveto, R., Marcus, A., and Canfora, G. (2014).

Automatic generation of release notes. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE’14), pages

484–495.

Moser, R., Pedrycz, W., and Succi, G. (2008). A comparative analysis of the efficiency of

change metrics and static code attributes for defect prediction. In Proceedings of the

30th International Conference on Software Engineering (ICSE’08), pages 181–190.

Mujahid, S., Abdalkareem, R., Shihab, E., and McIntosh, S. (2020). Using Others’ Tests

to Identify Breaking Updates. In Proceedings of the International Conference on Min-

ing Software Repositories (MSR’20), page To appear.

BIBLIOGRAPHY 194

Nagappan, N. and Ball, T. (2005). Use of relative code churn measures to predict sys-

tem defect density. In Proceedings of the 27th International Conference on Software

Engineering (ICSE’05), pages 284–292.

Nascimento, R., Brito, A., Hora, A., and Figueiredo, E. (2020). Javascript API depreca-

tion in the wild: A first assessment. In Proceedings of the 27th IEEE International

Conference on Software Analysis, Evolution and Reengineering (SANER’2020).

Pfretzschner, B. and ben Othmane, L. (2017). Identification of dependency-based at-

tacks on node.js. In Proceedings of the 12th International Conference on Availability,

Reliability and Security (ARES’17), pages 1–6.

Raemaekers, S., van Deursen, A., and Visser, J. (2014). Semantic versioning versus

breaking changes: A study of the Maven repository. In Proceedings of the 14th Inter-

national Working Conference on Source Code Analysis and Manipulation (SCAM’14),

pages 215–224.

Robbes, R., Lungu, M., and Röthlisberger, D. (2012a). How do developers react to API

deprecation? The case of a Smalltalk ecosystem. In Proceedings of the 20th Interna-

tional Symposium on the Foundations of Software Engineering (FSE’12), pages 1–11.

Robbes, R., Lungu, M., and Rothlisberger, D. (2012b). How do developers react to API

deprecation? The case of Smalltalk ecosystem. In Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software Engineering (FSE’12),

pages 1–11.

Romano, J., Kromrey, J., Coraggio, J., and Skowronek, J. (2006). Appropriate statistics

for ordinal level data: Should we really be using t-test and Cohen’s d for evaluating

BIBLIOGRAPHY 195

group differences on the NSSE and other surveys? In Annual Meeting of the Florida

Association of Institutional Research.

Ruiz, I. J. M., Nagappan, M., Adams, B., Berger, T., Dienst, S., and Hassan, A. E. (2016).

Analyzing ad library updates in android apps. IEEE Software, 33(2):74–80.

Salza, P., Palomba, F., Di Nucci, D., D’Uva, C., De Lucia, A., and Ferrucci, F. (2018). Do

developers update third-party libraries in mobile apps? In Proceedings of the 26th

Conference on Program Comprehension (ICPC’18), pages 255–265.

Sawant, A. A., Aniche, M., van Deursen, A., and Bacchelli, A. (2018a). Understanding

developers’ needs on deprecation as a language feature. In Proceedings of the 40th

International Conference on Software Engineering (ICSE’18), pages 561–571.

Sawant, A. A., Huang, G., Vilen, G., Stojkovski, S., and Bacchelli, A. (2018b). Why are

features deprecated? An investigation into the motivation behind deprecation. In

Proceedings of the 34th International Conference on Software Maintenance and Evo-

lution (ICSME’18), pages 13–24.

Sawant, A. A., Robbes, R., and Bacchelli, A. (2018c). On the reaction to deprecation

of clients of 4+1 popular java APIs and the JDK. Empirical Software Engineering,

23(4):2158–2197.

Sawant, A. A., Robbes, R., and Bacchelli, A. (2019). To react, or not to react: Patterns of

reaction to API deprecation. Empirical Software Engineering, 24(6):3824–3870.

Schober, P., Boer, C., and A. Schwarte, L. (2018). Correlation coefficients: Appropriate

use and interpretation. Anesthesia & Analgesia, 126(5).

BIBLIOGRAPHY 196

Serebrenik, A. and Mens, T. (2015). Challenges in software ecosystems research. In Pro-

ceedings of the 2015 European Conference on Software Architecture Workshops (EC-

SAW’15), pages 1–6.

Shihab, E., Mockus, A., Kamei, Y., Adams, B., and Hassan, A. E. (2011). High-impact

defects: A study of breakage and surprise defects. In Proceedings of the 19th ACM

SIGSOFT Symposium and the 13th European Conference on Foundations of Software

Engineering (ESEC/FSE’11), pages 300–310.

Standish, T. A. (1984). An essay on software reuse. IEEE Transactions on Software En-

gineering, (5):494–497.

Stol, K.-J., Ralph, P., and Fitzgerald, B. (2016). Grounded theory in software engineering

research: A critical review and guidelines. In Proceedings of the 38th International

Conference on Software Engineering (ICSE’16), pages 120–131.

Swanson, E. B. (1976). The dimensions of maintenance. In Proceedings of the 2nd

International Conference on Software Engineering (ICSE’76), pages 492–497.

Van der Hoek, A. and Wolf, A. L. (2003). Software release management for component-

based software. Software - Practice and Experience, 33(1):77–98.

Wasowski, A. (2020). Dependency bugs: The dark side of variability, reuse and mod-

ularity. In Proceedings of the 14th International Working Conference on Variability

Modelling of Software-Intensive Systems (VAMOS’20), pages 1–3.

Wittern, E., Suter, P., and Rajagopalan, S. (2016). A look at the dynamics of the JavaScript

package ecosystem. In Proceedings of the 13th International Workshop on Mining

Software Repositories (MSR ’16), pages 351–361.

BIBLIOGRAPHY 197

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a

replication in software engineering. In Proceedings of the 18th International Confer-

ence on Evaluation and Assessment in Software Engineering (EASE’14), pages 1–10.

Zapata, R. E., Kula, R. G., Chinthanet, B., Ishio, T., Matsumoto, K., and Ihara, A. (2018).

Towards smoother library migrations: A look at vulnerable dependency migrations

at function level for npm javascript packages. In IEEE International Conference on

Software Maintenance and Evolution (ICSME’18), pages 559–563.

Zerouali, A., Cosentino, V., Mens, T., Robles, G., and Gonzalez-Barahona, J. M. (2019a).

On the impact of outdated and vulnerable javascript packages in docker images. In

IEEE 26th International Conference on Software Analysis, Evolution and Reengineer-

ing (SANER’19), pages 619–623.

Zerouali, A., Mens, T., Gonzalez-Barahona, J., Decan, A., Constantinou, E., and Robles,

G. (2019b). A formal framework for measuring technical lag in component reposito-

ries and its application to npm. Journal of Software: Evolution and Process.

Zerouali, A., Mens, T., Robles, G., and Gonzalez-Barahona, J. M. (2019c). On the relation

between outdated docker containers, severity vulnerabilities, and bugs. In Proceed-

ings of the IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER’19), pages 491–501.

Zhou, J. and Walker, R. J. (2016). API deprecation: A retrospective analysis and detec-

tion method for code examples on the web. In Proceedings of the 24th International

Symposium on Foundations of Software Engineering (FSE’16), pages 266–277.

BIBLIOGRAPHY 198

Zimmermann, M., Staicu, C.-A., Tenny, C., and Pradel, M. (2019). Smallworld with high

risks: A study of security threats in the npm ecosystem. In Proceedings of the 28th

USENIX Conference on Security Symposium (SEC’19), pages 995–1010.

Appendices

A Changes introduced in same-day releases

In Table A.1 of this appendix, we provide a detailed description of each of the identified

notable changes in the same-day release notes. See Section 5.4 for a detailed descrip-

tion of our manual analysis of same-day release notes.

199

BIBLIOGRAPHY 200

Table A.1: Detailed description and example quotes of the notable changes in same-
day releases.

Category Description Example quotes

Change

business

logic (18%)

The package’s

behaviour is

modified so

that the correct

business rules

are followed.

“Start webserver and browsers after preprocessing

completed" (release note of karma@0.12.35)

“changing attributes on ‘<option>‘ elements will

now have the correct consequences” (release note

of jsdom@1.3.1)

“Fix: ‘no-return-wrap‘ rule missing from index.js”

(release note of eslint-plugin-promise@3.2.1)

“‘inspect()‘ checksum of empty file is now ‘null‘.”

(release note of fs-jetpack@0.5.2)

Correctly

integrate

provider

(8%)

A provider pack-

age is correctly

integrated into

the client pack-

age.

“properly add pnp plugins” (release note of

poi@12.4.2)

“When ipfs-api runs inside Electron (...) the request

logging is breaks [sic] the lib. It will be better to

check whether res.req is set instead of relying on

detect-node" (pull-request of ipfs-api@22.2.1)

“Corrected CSSO API usage” (commit #df6f48 of

package svgo@0.6.6)

BIBLIOGRAPHY 201

Category Description Example quotes

Avoid crash-

ing (7%)

A change is per-

formed to avoid

unrecoverable

failures.

“Fixed: ‘declaration-block-no-ignored-properties‘

now longer crashes on nested rules.” (release note

of stylelint@6.3.1)

“Fix bug where using ‘Object.create(null)‘ as a rejec-

tion reason would crash bluebird” (release note of

bluebird@2.5.2)

Refactoring

(7%)

A refactoring

operation is

performed.

“Tidy up build process” (release note of bu-

ble@0.4.23)

“rename ’startBytes’ to ’inBytes’ and ’endBytes’ to

’outBytes”’ (release note of svgo@0.1.2)

Add new

feature (6%)

A new feature is

made available

in the release.

“add a clean command to wipe out local dirs” (re-

lease note of gatsby@2.1.8)

“src: add SET_SIZEOF and SET_ALIGNOF macros”

(release note of ref@0.3.5)

Change con-

figuration

option (5%)

The set of val-

ues for a config-

uration option is

modified.

“add altNames + csrConfigFile options to create-

Certificate” (release note of pem@1.14.1)

“Fixed validation of ‘webpack.styles‘ config to allow

it to be set to ‘false‘” (release note of nwb@0.16.2)

“Add "–host" flag to ‘firebase experimen-

tal:functions:shell‘ (...)” (release note of

gatsby@2.2.1)

BIBLIOGRAPHY 202

Category Description Example quotes

Fix UI error

(5%)

A change is

performed to

fix a failure that

causes a User

Interface (IU)

malfunctioning.

“The previous Chrome deprecation fixes broke

spatial positioning in Safari” (release note of

howler@2.0.12)

“UI now responds to touch events, and works on

mobile devicesUI now responds to touch events,

and works on mobile devices” (release note of

react-select@0.2.12)

Revert pre-

vious release

(5%)

The release is

published in

an explicit at-

tempt to revert

a change intro-

duced in the

previous release

“Incorrectly published the previous version from

the wrong branch. That version doesn’t contain all

the work that is [sic] was supposed to. You shold

[sic] use this version instead.” (release note of

bookshelf@0.14.1)

“please ignore 0.20.0 (...)” (release note of re-

work@0.20.1)

“Fix package publish” (release note of vue-

awesome@3.0.2)

Improve

build (4%)

A change to im-

prove the build

process is intro-

duced

“Remove source maps from build” (release note of

zoroaster@3.6.1)

“Tidy up build processTidy up build process” (re-

lease note of buble@0.4.23)

“Reduce size of distributed build” (release note of ra-

dium@0.12.2)

BIBLIOGRAPHY 203

Category Description Example quotes

Improve

documenta-

tion (4%)

A change to

improve the

package’s doc-

umentation is

introduced

“README.md link to "popular projects" pre-

sets doesn’t work” (closed issue #285 of package

standard-changelog@1.0.17)

“Add note about API permissions (...) Without the

correct permissions you’ll get an error (...) Ideally

the plugin would check for permissions and raise

a more helpful error, but a note in the readme

should help until then” (closed issue report #13037

of package gatsby@2.3.6)

Version con-

trol chore

(4%)

A VCS operation

(such as a branch

merging) is per-

formed.

“Merged _diffDeep fix” (release note of package con-

fig@0.4.20)

“fix(release): cherry-pick the release commit to

master on success” (commit #6830e of package

sweetalert2@7.26.19)

“Merged a branch that needed to be merged” (re-

lease note of package saasdoc@1.3.1)

Fix bug

caused by

provider

(3%)

A bug intro-

duced by a

provider pack-

age is fixed.

“update bili [one of the package’s dependencies] to

fix a transpilation bug” (commit #5e4c8 of package

rollup-plugin-postcss@1.2.1)

“It seems a rollup-pluginutils [one of the package’s

dependencies] failure” (issue report #303 of rollup-

plugin-commonjs@9.3.2)

BIBLIOGRAPHY 204

Category Description Example quotes

Fix typo (3%) An incidental

typing error is

fixed.

“Skip comments between imports” (pull request

#164 of package postcss-import@8.0.2)

“Fix version number in CHANGELOG.md” (release

note of package ecstatic@2.2.1)

Optimize

perfor-

mance (3%)

A performance

optimization

change is intro-

duced.

“improve json parser speed” (release notes of body-

parser@1.1.2)

“(...) overhaul to LiveReload backend to make it

faster and more robust” (release note of package

budo@10.0.3)

Update

provider

package

(3%)

A provider pack-

age is updated to

a newer version.

“Update libphonenumber@8.10.1” (release note of

package google-libphonenumber@3.2.1)

“Update Tippex to ∧2.1.1” (release note of package

rollup-plugin-typescript@0.7.3)

Address

failed bug fix

(2.5%)

A failed attempt

to fix a known

bug drives a

new attempt,

which results in

a release.

“The bug it still there after updating to 1.1.9, please

take care to do tests before closing issues (...)” (issue

#1093 of package ng2-bootstrap@1.1.14)

“Same memory leak fixes as 0.4.1, properly applied

to batch() operations too” (release note of package

leveldown@0.4.2)

BIBLIOGRAPHY 205

Category Description Example quotes

Deprecated

package’s

feature

(2.5%)

A package’s

feature is depre-

cated.

“inform user that ‘start-selenium‘ is deprecated”

(release notes of selenium-standalone@3.0.3)

“Deprecated - When using ‘<include>‘ with body

content, nested body content is now passed in as

‘String‘ property named ‘body‘ (...)” (release note of

package marko@2.0.4)

Add missing

file (2%)

The release add

an important file

that was missing

on the previous

release.

“include missing file in publishing” (release note of

conventional-recommended-bump@2.0.1)

“Fix bug where deploying functions resulted in the

error message "npm ERR! missing script: build"

(...)” (release note of package firebase-tools@3.17.1)

Add newer

runtime

support

(1.5%)

A change for

supporting a

new runtime

environment

(Node) is per-

formed

“Support Node.js 0.10.16” (release note of package

ioredis@1.3.6)

Add

provider

package

(1.5%)

A new provider

package is intro-

duced

“add ‘ignore‘ dep” (release note of package

now@0.24.1)

“Use rollup-babelUse rollup-babel” (release note of

package sorcery@0.6.5)

BIBLIOGRAPHY 206

Category Description Example quotes

Fix de-

pendency

failure

(1.5%)

A change to cope

with a failure

in a depen-

dency loading is

introduced.

“When installing the last version via NPM (...)

signal-exit module seems to be missing.” (pull-

request #3186 of package stylelint@9.1.1)

“Fix AMD-related failures first appearing in v3.5.1”

(release note of package mocha@3.5.2)

Fix lint error

(1.5%)

A change to ad-

just static analy-

sis error is intro-

duced.

“fix linting errors” (release note of package svg-

sprite-loader@3.7.3)

Add back-

ward com-

patibility

(1%)

A change to

add backward

compatibility

support for a

feature is intro-

duced.

“Support prefixing for old flexbox implementa-

tions” (release note of package radium@0.12.2)

Add hard-

ware sup-

port (1%)

A change to add

a new hardware

support is intro-

duced.

“There were a few different issues with these

"helpers": ‘data.key‘ didn’t account for interna-

tional keyboards (...)” (release note of package slate-

react@0.5.4)

BIBLIOGRAPHY 207

Category Description Example quotes

Address

security

vulnerability

(1%)

A change to ad-

dress a security

vulnerability is

introduced.

“Fixed more security vulnerabilities” (release note

of package mathjs@3.11.1)

Fix memory

leak (1%)

A change to ad-

dress a memory

leak defect is in-

troduced.

“Fix memory leak caused when passing String ob-

jects in as keys and values (...)” (release note of

package leveldown@0.4.2)

Prevent

error (1%)

A change is

introduced to

prevent some

defect.

“Prevent error when destructured [sic] path is not

in known globals” (release note of package eslint-

plugin-ember@5.0.1)

B Top 40 popular deprecated releases

In this appendix, we provide information regarding the popular (top-40 frequently used)

deprecated releases (see Section 6.4.2 to more details about the popular deprecated

releases). Table B.2 shows the popular deprecated releases in npm at the time of our

data collection. The column “Replacement package or release” shows the name of the

replacement package, when the deprecation message provides a replacement pack-

age (e.g., babel-preset-env), or the replacement release, when the deprecation message

provides a replacement release (e.g., gulp@>= 4).

BIBLIOGRAPHY 208

Ta
b

le
B

.2
:P

o
p

u
la

r
d

ep
re

ca
te

d
re

le
as

es
an

d
th

ei
r

re
p

la
ce

m
en

tp
ac

ka
ge

o
r

re
le

as
e.

P
ac

ka
ge

n
am

e
D

ep
re

ca
te

d

re
le

as
e

R
ep

la
ce

m
en

t
p

ac
k-

ag
e

o
r

re
le

as
e

D
ep

re
ca

ti
o

n

d
at

e
es

ti
m

at
e

E
vi

d
en

ce
fo

r
d

at
e

es
ti

m
at

e

b
ab

el
-p

re
se

t-

es
20

15

6.
24

.1
,

6.
18

.0
,

6.
9.

0,
6.

6.
0,

6.
22

.0
,

6.
3.

13
,

6.
14

.0
,

6.
24

.0
,

6.
16

.0
,

6.
13

.2
,

6.
5.

0

b
ab

el
-p

re
se

t-
en

v
D

ec
em

b
er

,2
01

6
D

o
cu

m
en

ta
ti

o
n

re
p

o
rt

s1
th

at

d
ep

re
ca

ti
o

n
o

f
b

ab
el

-p
re

se
t-

es
20

15
o

cc
u

rr
ed

af
te

r
re

le
as

e

1.
0.

0
o

fb
ab

el
-p

re
se

t-
en

v
(D

e-

ce
m

b
er

9,
20

16
).

is
ta

n
b

u
l

0.
4.

5,
0.

3.
22

,

0.
4.

2,
0.

4.
3,

0.
4.

4

n
yc

M
ay

,2
01

5
Is

ta
n

b
u

l
an

d
n

yc
p

ac
ka

ge
s

w
er

e
m

er
ge

d
w

h
en

n
yc

re
le

as
ed

ve
rs

io
n

2.
0.

0.
2

1
ht

tp
s:

//
gi

th
ub

.c
om

/b
ab

el
/b

ab
el

-p
re

se
t-

en
v/

pu
ll

/6
5

2
ht

tp
s:

//
gi

th
ub

.c
om

/i
st

an
bu

lj
s/

ny
c/

is
su

es
/5

24
#i

ss
ue

co
mm

en
t-

28
09

79
37

2

https://github.com/babel/babel-preset-env/pull/65
https://github.com/istanbuljs/nyc/issues/524#issuecomment-280979372

BIBLIOGRAPHY 209

P
ac

ka
ge

n
am

e
D

ep
re

ca
te

d

re
le

as
e

R
ep

la
ce

m
en

t
p

ac
k-

ag
e

o
r

re
le

as
e

D
ep

re
ca

ti
o

n

d
at

e
es

ti
m

at
e

E
vi

d
en

ce
fo

r
d

at
e

es
ti

m
at

e

gu
lp

-u
ti

l
3.

0.
8,

3.
0.

7,
3.

0.
6

vi
n

yl
,

re
p

la
ce

-e
xt

,

an
si

-c
o

lo
rs

,
d

at
e-

fo
rm

at
,

fa
n

cy
-l

o
g,

lo
d

as
h

.t
em

p
la

te
,

m
in

im
is

t,
b

ee
p

er
,

th
ro

u
gh

2,
m

u
lt

i-

p
ip

e,
lis

t-
st

re
am

,

p
lu

gi
n

-e
rr

o
r

D
ec

em
b

er
,2

01
7

D
ep

re
ca

ti
o

n
m

es
sa

ge
re

p
o

rt
s

d
o

cu
m

en
ta

ti
o

n
w

it
h

d
ep

re
ca

-

ti
o

n
d

at
e

in
fo

rm
at

io
n

.3

b
ab

el
6.

23
.0

,6
.5

.2
b

ab
el

-c
li

Fe
b

ru
ar

y,
20

17
D

ep
re

ca
ti

o
n

m
es

sa
ge

re
p

o
rt

s

th
at

d
ep

re
ca

ti
o

n
o

cc
u

rs
o

n
re

-

le
as

e
“6

.x
”.

W
e

as
su

m
e

th
e

d
at

e
o

ft
h

e
la

te
st

re
le

as
e

o
n

6.
x

b
ra

n
ch

(6
.2

3.
0)

.

3
ht

tp
s:

//
me

di
um

.c
om

/g
ul

pj
s/

gu
lp

-u
ti

l-
ca

3b
1f

9f
9a

c5

https://medium.com/gulpjs/gulp-util-ca3b1f9f9ac5

BIBLIOGRAPHY 210

P
ac

ka
ge

n
am

e
D

ep
re

ca
te

d

re
le

as
e

R
ep

la
ce

m
en

t
p

ac
k-

ag
e

o
r

re
le

as
e

D
ep

re
ca

ti
o

n

d
at

e
es

ti
m

at
e

E
vi

d
en

ce
fo

r
d

at
e

es
ti

m
at

e

re
ac

t-
d

o
m

16
.2

.0
re

ac
t-

d
o

m
@
>
=

16
.2

.1

A
u

gu
st

,2
01

8
V

u
ln

er
ab

ili
ty

th
at

d
ro

ve
d

ep
-

re
ca

ti
o

n
w

as
re

p
o

rt
ed

o
n

A
u

-

gu
st

01
,2

01
8.

4

co
re

-j
s

2.
4.

1,
2.

5.
1

co
re

-j
s@

la
te

st
o

r

co
re

-j
s@
>
=

3

Fe
b

ru
ar

y,
20

19
D

ep
re

ca
ti

o
n

m
es

sa
ge

re
p

o
rt

s

th
at

d
ep

re
ca

ti
o

n
o

cc
u

rs
at

re
-

le
as

e
2.

6.
5.

co
ff

ee
-s

cr
ip

t
1.

10
.0

,
1.

6.
3,

1.
7.

1,
1.

8.
0

co
ff

ee
sc

ri
p

t
Fe

b
ru

ar
y,

20
17

La
te

st
p

ac
ka

ge
re

le
as

e
an

d

re
le

as
e

1.
0.

0
o

f
re

p
la

ce
m

en
t

p
ac

ka
ge

.

re
ac

t-
d

o
m

16
.4

.1
re

ac
t-

d
o

m
@
>
=

16
.4

.2

A
u

gu
st

,2
01

8
V

u
ln

er
ab

ili
ty

th
at

d
ro

ve
d

ep
-

re
ca

ti
o

n
w

as
re

p
o

rt
ed

o
n

A
u

-

gu
st

01
,2

01
8.

5

4
ht

tp
s:

//
re

ac
tj

s.
or

g/
bl

og
/2

01
8/

08
/0

1/
re

ac
t-

v-
16

-4
-2

.h
tm

l
5
ht

tp
s:

//
re

ac
tj

s.
or

g/
bl

og
/2

01
8/

08
/0

1/
re

ac
t-

v-
16

-4
-2

.h
tm

l

https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html
https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html

BIBLIOGRAPHY 211

P
ac

ka
ge

n
am

e
D

ep
re

ca
te

d

re
le

as
e

R
ep

la
ce

m
en

t
p

ac
k-

ag
e

o
r

re
le

as
e

D
ep

re
ca

ti
o

n

d
at

e
es

ti
m

at
e

E
vi

d
en

ce
fo

r
d

at
e

es
ti

m
at

e

co
re

-j
s

2.
5.

7
co

re
-j

s@
la

te
st

o
r

co
re

-j
s@
>
=

3

Fe
b

ru
ar

y,
20

19
D

ep
re

ca
ti

o
n

m
es

sa
ge

re
p

o
rt

s

th
at

d
ep

re
ca

ti
o

n
o

cc
u

rs
at

re
-

le
as

e
2.

6.
5

ja
d

e
1.

11
.0

p
u

g
A

p
ri

l,
20

16
ja

d
e

b
ec

o
m

es
p

u
g

o
n

ve
r-

si
o

n
2.

0.
0,

re
le

as
ed

o
n

A
p

ri
l1

,

20
16

.6
,7

re
ac

t-
d

o
m

16
.3

.2
re

ac
t-

d
o

m
@

16
.3

.3
A

u
gu

st
,2

01
8

V
u

ln
er

ab
ili

ty
th

at
d

ro
ve

d
ep

-

re
ca

ti
o

n
w

as
re

p
o

rt
ed

o
n

A
u

-

gu
st

01
,2

01
8.

8

va
li

d
at

e-

co
m

m
it

-m
sg

2.
14

.0
co

m
m

it
lin

t
O

ct
o

b
er

,2
01

7
La

te
st

p
ac

ka
ge

re
le

as
e

an
d

re
-

le
as

e
4.

2.
0

(fi
rs

t
re

le
as

e)
o

f
re

-

p
la

ce
m

en
tp

ac
ka

ge
.

6
ht

tp
s:

//
ww

w.
np

mj
s.

co
m/

pa
ck

ag
e/

pu
g

7
ht

tp
s:

//
gi

th
ub

.c
om

/p
ug

js
/p

ug
/c

om
mi

t/
ab

26
40

4b
88

0a
1d

b0
b4

42
69

35
4d

11
d9

c5
5a

b4
86

2f
8
ht

tp
s:

//
re

ac
tj

s.
or

g/
bl

og
/2

01
8/

08
/0

1/
re

ac
t-

v-
16

-4
-2

.h
tm

l

https://www.npmjs.com/package/pug
https://github.com/pugjs/pug/commit/ab26404b880a1db0b44269354d11d9c55ab4862f
https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html

BIBLIOGRAPHY 212

P
ac

ka
ge

n
am

e
D

ep
re

ca
te

d

re
le

as
e

R
ep

la
ce

m
en

t
p

ac
k-

ag
e

o
r

re
le

as
e

D
ep

re
ca

ti
o

n

d
at

e
es

ti
m

at
e

E
vi

d
en

ce
fo

r
d

at
e

es
ti

m
at

e

b
ab

el
-p

re
se

t-

es
20

17

6.
24

.1
b

ab
el

-p
re

se
t-

en
v

Se
p

te
m

b
er

,2
01

7
La

te
st

p
ac

ka
ge

re
le

as
e.

n
o

d
e-

u
u

id
1.

4.
7

u
u

id
M

ar
ch

,2
01

7
La

te
st

p
ac

ka
ge

re
le

as
e.

co
re

-j
s

2.
5.

3
co

re
-j

s@
la

te
st

o
r

co
re

-j
s@
>
=

3

Fe
b

ru
ar

y,
20

19
D

ep
re

ca
ti

o
n

m
es

sa
ge

re
p

o
rt

s

th
at

d
ep

re
ca

ti
o

n
o

cc
u

rs
at

re
-

le
as

e
2.

6.
5.

ro
llu

p
-w

at
ch

4.
3.

1
ro

llu
p

A
u

gu
st

,2
01

7
D

o
cu

m
en

ta
ti

o
n

re
p

o
rt

s
th

at

ro
llu

p
-w

at
ch

p
ac

ka
ge

w
as

d
ep

re
ca

te
d

at
re

le
as

e
0.

46
.0

o
f

ro
llu

p
p

ac
ka

ge
(A

u
gu

st
11

,

20
17

).
9

is
p

ar
ta

-l
o

ad
er

2.
0.

0
is

ta
n

b
u

l-

in
st

ru
m

en
te

r-
lo

ad
er

N
ov

em
b

er
,2

01
1

La
te

st
p

ac
ka

ge
re

le
as

e.

9
ht

tp
s:

//
gi

th
ub

.c
om

/r
ol

lu
p/

ro
ll

up
-w

at
ch

https://github.com/rollup/rollup-watch

BIBLIOGRAPHY 213

P
ac

ka
ge

n
am

e
D

ep
re

ca
te

d

re
le

as
e

R
ep

la
ce

m
en

t
p

ac
k-

ag
e

o
r

re
le

as
e

D
ep

re
ca

ti
o

n

d
at

e
es

ti
m

at
e

E
vi

d
en

ce
fo

r
d

at
e

es
ti

m
at

e

gu
lp

-m
in

if
y-

cs
s

1.
2.

4
gu

lp
-c

le
an

-c
ss

D
ec

em
b

er
,2

01
5

Pa
ck

ag
e

h
as

d
ep

re
ca

ti
o

n

co
m

m
it

.10

re
ac

t-
d

o
m

16
.0

.0
re

ac
t-

d
o

m
@
>
=

16
.0

.1

A
u

gu
st

,2
01

8
V

u
ln

er
ab

ili
ty

th
at

d
ro

ve
d

ep
-

re
ca

ti
o

n
w

as
re

p
o

rt
ed

o
n

A
u

-

gu
st

01
,2

01
8.

11

10
ht

tp
s:

//
gi

th
ub

.c
om

/s
cn

ir
o/

gu
lp

-c
le

an
-c

ss
/c

om
mi

t/
43

8a
4f

af
27

f1
34

c3
0e

3e
94

02
4a

83
95

1c
21

fd
c5

cc
11

ht
tp

s:
//

re
ac

tj
s.

or
g/

bl
og

/2
01

8/
08

/0
1/

re
ac

t-
v-

16
-4

-2
.h

tm
l

https://github.com/scniro/gulp-clean-css/commit/438a4faf27f134c30e3e94024a83951c21fdc5cc
https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html

	Abstract
	Acknowledgments
	Dedication
	Co-authorship
	List of Tables
	List of Figures
	Introduction
	Thesis statement
	Thesis overview
	Thesis contribution

	Dependency Management on npm
	Literature Survey
	Literature selection
	Mining data from the npm ecosystem
	Mining data from other software ecosystems

	An Empirical Study of Dependency Downgrades
	Introduction
	Downgrade detection
	Data collection
	Results
	Discussion
	Related work
	Threats to validity
	Conclusions

	An Empirical Study of Same-day Releases of Popular Packages
	Introduction
	Background & Operational Definitions
	Data collection
	Preliminary study of same-day release notes content
	Research questions
	Discussion
	Threats to validity
	Conclusion

	An Empirical Study of Deprecation of Packages and Releases
	Introduction
	The deprecation mechanism of npm
	Data collection
	Results
	Discussion
	Related work
	Threats to validity
	Conclusion

	Conclusions and Future Work
	Learned lessons
	Limitations
	Avenues for future research

	Appendices
	Changes introduced in same-day releases
	Top 40 popular deprecated releases

