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Abstract—Software ecosystems form the heart of modern
companies’ collaboration strategies with end users, open source
developers and other companies. An ecosystem consists of a core
platform and a halo of user contributions that provide value to
a company or project. In order to sustain the level and number
of high-quality contributions, it is crucial for companies and
contributors to understand how ecosystems tend to evolve and
can be maintained successfully over time.

As a first step, this paper explores the evolution characteristics
of the statistical computing project GNU R, which is a successful,
end-user programming ecosystem. We find that the ecosystem of
user-contributed R packages has been growing steadily since R’s
conception, at a significantly faster rate than core packages, yet
each individual package remains stable in size. We also identified
differences in the way user-contributed and core packages are
able to attract an active community of users.

I. INTRODUCTION

Open source development has become a staple of modern
software projects, with open source contributors forming an
integral part of the software development workforce. Typically,
a company remains in charge of the overall direction of a
product, but tries to attract a community of open source
contributors to build significant parts of its software portfolio.
These contributors are not just low-cost labourers, they are
typically well-motivated, talented and creative, extending the
functionality of a software product in unforeseen ways. A
popular example are the explosive growth and profits of user-
developed iPhone and Android micro-apps.

To foster collaboration with open source contributors, soft-
ware projects are typically conceived as so-called “ecosys-
tems” [3], [4], [12], [17], i.e., they consist of a (relatively)
closed core that provides the basic functionality, surrounded
by an open halo of user contributions. For example, the Eclipse
project consists of a basic workbench that can be customized
into any kind of IDE or editor by means of thousands of
plugins (grouped into subprojects). Linux distributions like
Debian provide a Linux operating system kernel that can
be turned into any kind of server or workstation by means
of thousands of contributed libraries and user applications
(distributed as packages).

Given the crucial role of ecosystems, it is important for
companies and projects to sustain high-quality user contri-
butions [4]. Keeping customers and contributors happy and
productive does not only depend on effective project man-
agement, but also (and especially) on agile evolution and
maintenance of an ecosystem according to the customers’
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and contributors’ needs. Although there has been some initial
research on understanding how ecosystems are able to evolve
effectively [6], [9], [10], [34], most of this research considers
the core or the user contributions in isolation, or does not
distinguish at all between both. This is not sufficient, since
ecosystems need to reconcile different stakeholders, agendas
and development philosophies, while safeguarding product
quality and profits.

This paper studies and contrasts the evolution of the core
and user contributions (packages) of the R ecosystem [27].
We chose R as subject ecosystem because it is an immensely
popular, vibrant end-user programming ecosystem of statistical
analyses, visualizations and datasets based on a dialect of
the S statistical programming language [18]. “End-user pro-
gramming” means that the majority of contributors and core
members are not software engineers by trade, but statisticians
and scientists. This makes the success and scale of the R
ecosystem even more impressive. For these reasons, we believe
R to be an ideal subject system for exploring four research
questions related to the size, long-time evolution, structure
and community of user-contributed packages compared to core
packages:

Q1) What are the Code Characteristics of Core and User-

Contributed Packages?
We find that user-contributed packages typically are
smaller, and contain less documentation than core ones.

Q2) How do Core and User-Contributed Packages Evolve

over Time?
On average, the size of a package remains stable over
time, whether it is core or user-contributed.

Q3) What is the Dependency Structure among Core and

User-Contributed Packages?

On average, packages have few dependencies. User-
contributed packages build more on core packages than
on other user-contributed packages.

Q4) How is the Community surrounding Core and User-

Contributed Packages?

User-contributed packages are discussed less and by
less people than core packages. Building a community
around core packages takes months compared to a year
for user-contributed packages.

This paper is organized as follows. Section II presents the
GNU R ecosystem, followed by a discussion of our case study



setup (Section III). The case study results are presented in
Section IV and discussed in Section V. We conclude this
paper with a discussion of related work in Section VII and
our conclusion in Section VIIIL

II. THE GNU R ECOSYSTEM

There are many definitions of ecosystems [3], [4], [12], [17],
but here we adopt the one from Jansen et al. [12], which
defines a software ecosystem as (numbers added by us):

a set of (1) businesses functioning as a unit and
interacting with a shared market for (2) software and
services, together with (3) the relationships among
[the businesses].

For example, the micro-app ecosystems of Apple and
Google have (1) as stakeholders Apple/Google, thousands
of 3rd party developers and millions of users worldwide.
These stakeholders leverage (2) the iOS and Android mobile
operating systems, SDKs and APIs, and thousands of 3rd party
mobile applications. Users and 3rd party developers depend
on (3) the massive App Store and Google Market distribution
platforms to buy and sell their micro-apps, for a nominal fee
or a small share of the profits.

Although ecosystems have been around for more than a
decade, little research has been performed on them [3], [12].
Most of the existing research focuses on formally modeling
ecosystems [5], [20], migrating a project into an ecosystem [3],
[4], [11], and managing the huge volumes of knowledge
spread across the stakeholders of an ecosystem [7], [29]. The
majority of this work considers levels (1) and (3), and targets
ecosystems on web and mobile platforms.

Existing work on desktop ecosystems has primarily focused
on operating system-centric ecosystems like the Linux ker-
nel [9] and Debian ecosystem [10], and developer-centric
ecosystems like the Eclipse ecosystem [6], [15], [16], [28],
[34]. Desktop ecosystems for end-user programming have seen
almost no research. These ecosystems, featuring the likes of
Microsoft Excel and high-level database report generators,
are based around a (typically domain-specific) language that
enables non-software engineering users with a good domain
understanding to quickly build their own custom applications.
As such, these ecosystems are hugely popular and are believed
to be “the holy grail of software platforms” [3].

In order to understand how end-user programming ecosys-
tems evolve, this paper studies the evolution of the libre GNU
R desktop ecosystem [27], at the software level (2). Studying
this ecosystem at levels (1) and (3) is future work. R’s business
is statistics and data analytics, with as major stakeholders
companies, researchers and governments. The ecosystem is
built around the R statistical programming language [18]
(which is based on the S language) and nine repositories
hosting 4,338 (March 2011 [19]) user-contributed packages
that enhance the basic R with advanced statistical analyses,
visualization toolkits and comprehensive data sets. In addition
to the standard, libre GNU R, the R ecosystem comprises
various commercial offerings (e.g., [24], [26]) that provide
advanced graphical user interfaces or enhanced scalability.
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Fig. 1. Breakdown of the different kinds of R packages. The grey packages
are the core packages of R, i.e., they are shipped with the basic installation.

We chose the R ecosystem for our case study since it is
one of the most successful end-user programming ecosystems
for statistical analysis [19], [25], developed primarily by non-
software engineers. In March 2011, R was the 27th most
popular programming language in the world [31] and it was
estimated to be used by 43% of all data miners worldwide [25].
Furthermore, R has a flourishing community of developers
and users, which communicate through hundreds of mailing
lists, fora, web blogs and books. The R mailing list traffic
almost doubles the corresponding traffic of its commercial
competitors [19]. To facilitate development, the R ecosystem
uses the R-Forge development infrastructure, which provides
version control, defect management, and other features similar
to those of SourceForge [30].

III. SETUP OF THE CASE STUDY

This paper performs an empirical study on the R ecosystem
to explore how a successful ecosystem is able to evolve accord-
ing to the conflicting requirements of different stakeholders,
while maintaining its quality. Our study considers the source
code, churn, dependency and community dimensions of R in
order to understand the scale of user-contributed packages
(Q1), the long-term evolution of such packages (Q2), how the
user-contributed packages fit into the core system (Q3) and
how a community is formed around user-contributed packages
(Q4). This section explains the R data that we are using as well
as how we extracted this data.

A. R Package data

R consists of a small kernel, complemented by so-called
“packages” that extend the basic functionality of R. There are
four different sets of packages. These are described in Table I,
and their relationship is illustrated in Figure 1. Similar subsets
of packages exist in other ecosystems, like I&EX and Perl.

We mirrored the src subdirectory of the CRAN R reposi-
tory (http://cran.r-project.org/, which is the largest R package

TABLE I
SETS OF R PACKAGES USED IN THIS STUDY.
Dev. by  Set Size  Description
R team Base 13 Core pkg. Installed by default.
Users Recommended 15  Core pkg. Installed by default.
Popular 179  Found to be commonly installed
by a sample of users. Does not
include Recommended, nor Base.
Contributed 2,733 Rest of user-developed pkgs.




repository, amounting to 16 GB of data or roughly two thirds
of all currently existing R packages [19]. The src subdirectory
of the R repository is divided into three parts: the source code
of the releases of the R system kernel (base subdirectory),
the user-contributed packages (contrib subdirectory), and a
pre-release of R (base-prerelease subdirectory, not used
in our study). The base directory contains every release of R,
from version 0.49 (April 23, 1997) to the latest version, i.e.,
2.12.2 (Feb. 25, 2011), for a total of 80 versions.

Core packages can be divided into two types: Base pack-
ages, maintained by the R team, and Recommended packages,
which are preselected user-contributed packages of which
hand-picked versions are included in the library/ subdi-
rectory of a particular R release. The source code of the
Recommended packages is shipped as .tar.gz files that need
to be further decompressed and built. The latest release of R
contains 13 Base packages, and 15 Recommended packages.
To access the source code of earlier versions of Base packages,
we downloaded all historical R releases.

The contrib subdirectory of the CRAN R repository
contains the latest release of all user-contributed pack-
ages distributed via CRAN (including all versions of Rec-
ommended packages), as well as all older releases (in
contrib/Archive). The 2,927 different user-contributed
packages on CRAN occupy 15 GB of data and include
19,593 archived releases. We used these archived releases
for our historical analysis of non-Base packages. The first
user-contributed package is dated Oct. 8, 1997 (ratetables,
version 1.0-2), and the last one March 27, 2011 (spi, v1.0).
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Fig. 2. Bean plots showing the distribution of the number of Contributed
packages installed per user (52 users). The left side contains all installed
Contributed packages (1,879 different ones), whereas the right side contains
only the Popular packages, i.e., those packages installed by at least 20% of the
52 users (194 different packages). The horizontal lines represent the quantiles.

It is very likely that not all 2,927 user-contributed packages
are frequently downloaded and installed. To account for this,
we also considered a subset of user-contributed packages that
are Popular packages, i.e., packages that are installed by a
significant number of users. To determine the set of Popular
packages, we use statistics of the packages installed by 52
users, data that was compiled for an official competition
to predict what packages a user would likely install [35].
Gonzalez et al. [10] used a similar approach to define Popular

packages in Debian, while for IATEX various lists of Popular
packages can be found online.

The distribution of the number of user-contributed packages
installed by each of the 52 users is presented in Figure 2. This
Figure contains two beanplots [13]. A beanplot is a boxplot
that also plots the density of a distribution instead of just a
box, making the plot more informative. As can be observed
on the left bean plot, the median number of installed packages
was 94.5, with a minimum of 10, and maximum of 1,879
installed by one user. To avoid such outliers, we decided
to only keep those user-contributed packages that had been
installed by at least 20% of the 52 users (10). The resulting
set contains 194 different packages. After removing the 15
Recommended packages, we name the remaining 179 packages
Popular packages. All other user-contributed packages are
called Contributed packages. Figure 1 and Table I show how
these two sets of packages relate to the core packages.

B. Mailing List Data

To analyze the user and developer community in the R
ecosystem, we studied the main mailing lists of the R project,
i.e., the R-help (users) and R-devel (developers) lists. We did
not include the low-volume R-announce and R-packages lists,
nor the 21 “Special Interest Groups”, such as R-sig-DB and
R-sig-teaching. The latter focus on specific scientific fields,
which would bias our data.

We downloaded the mailing list archives of R-help [22] and
R-devel [21] for the period 1997-2010, and converted them to
the standard mbox format using a Perl script. We then used the
MailboxMiner tool [2] to extract individual emails from the
mbox files, group emails into threads, resolve email aliases and
store the resulting data into a relational database. Attachments
were ignored.

We used R and Perl scripts to analyze the extracted data. In
particular, we linked emails to packages using a lightweight,
case-sensitive regular expression search [1] for the packages’
names in the email bodies:

(?<![a-zA-Z0-9]) ${PACKAGE} (?![a-zA-Z0-9])

This expression requires the package name to be free-
standing, i.e., not preceded or followed by a letter or digit.
Furthermore, some package names, such as “its” and “graph”,
clash with regular English words, but since their effect is
constant across time, we did not exclude them from our data.

For each package, we only searched through those emails
that were sent after the first release of the package. We did
not exclude emails sent after the demise of dead packages,
since people can still discuss those afterwards. We did not
remove quoted email text, since we are not interested in the
raw number of occurrences of a package name in an email,
but rather whether or not an email (semantically) talks about
a particular package.



IV. EMPIRICAL CASE STUDY

Q1. What are the Code Characteristics of Core and User-
Contributed Packages?

Motivation — Since different stakeholders are involved with
the development of different types of packages, it is important
to compare the packages across the four sets in terms of
characteristics like size and documentation to understand the
volume and size of contributions that one might expect in an
ecosystem.

Approach — With respect to the number and size of packages
and documentation, we present two metrics: the number of
files per package, and the file length (in SLOCs for source
code, and raw number of lines for documentation files). We
concentrate on documentation files (extension .rd — displayed
when a user requests help within R), R source code (.r), and
aggregated C/C++ files (.c,.cpp, .h, and .hpp — we call them C
for brevity). All metrics for Base packages are calculated in
terms of the latest version of R (version 2.12.2), and for the
other packages in terms of their latest version.

Results — Packages are composed of many different types
of files. Figure 3 shows that the distribution of file types across
the four sets of packages is fairly similar: documentation files
dominate (.rd), followed by R, C, and .rda (R data files).
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Fig. 3. Proportion of files per file extension across the four sets of packages.
The extensions shown correspond to 95% of all files. Packages are dominated
by documentation files (.rd), followed by R source code (.r). After that, the
most common language is C/C++, followed by Fortran. R data files (.rda) are
also very dominant. Base and Recommended packages have a slightly larger
proportion of documentation files.

Packages are extensively documented, with user-
contributed packages having less than core packages. In
all sets of packages, the proportion of .rd files is the largest
(the median of the ratio of rd files to source ones is 1.5, 1.25,
0.89 and 1). As depicted in figure 4, these files account for
a median of 5.3k, 3.6k, 1.7k, and 0.6k lines (for the sake of
brevity, when reporting four values, they will correspond to
Base, Recommended, Popular and Contributed respectively).
The high percentage of documentation files to any other type
suggests that packages are extensively documented.

User-contributed packages have significantly less source
code than core packages. As can be observed in Figure 5, the
core packages have more code than user-contributed packages.
Their median sizes are 13.1k, 6.2k, 3.2k, and 0.9k SLOC.

Packages are implemented primarily in R, distantly
followed by C. As shown in Figure 5, R code dominates,
with median sizes of 7.3k, 3.5k, 1.8k, and 0.7k SLOC. C has
a bimodal distribution, with core packages using C more than
user-contributed (median sizes of 184, 850, 0, and 0 SLOC).
Given R’s target audience, the R language itself is the preferred
way of extending functionality.
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Fig. 4.  Size of documentation files per package. The number of lines of

documentation decreases from Popular to Contributed packages (statistically
significant with p < 0.01). The differences in size between the other three
sets of packages are not statistically significant (p > 0.01).

For each analyzed metric (length of documentation, and
SLOC of all/C/R source code), Base packages are larger
than Recommended packages, which are larger than Popular
packages, which are larger than Contributed packages, i.e.,
user-contributed packages are smaller than core packages. All
packages contain a large proportion of documentation files.

Q2. How do Core and User-Contributed Packages Evolve over
Time?

Motivation — If we consider one release of the R ecosystem,
question one has shown that there are clear differences be-
tween core and user-contributed packages in terms of code and
documentation characteristics. Question two considers how
core and user-contributed packages have evolved over time
to analyze whether those packages are one-off releases or
whether they are actively maintained over time. For example,
how does the design of the ecosystem and packages evolve?
Do the same files or packages keep on growing or are
new files or packages continuously added? How well is the
documentation maintained, and how does the change rate of
documentation compare to the change rate of source code?

Approach — For Base packages, we analyzed all versions
included in the official R releases, for the other packages (in-
cluding Recommended packages) we used the releases found
in the Archive section of the CRAN repository. For each
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Size of source code per package, in SLOCs. The only difference that is statistically significant is that Contributed packages are smaller than

Recommended packages, and that they contain less R and C/C++ code (p < 0.01).
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Fig. 6. Number of packages over time. Contributed packages are growing

faster. Popular and Base packages have remained stable since 2005.

version of every package, we measured the number of files,
the number of lines of source code (in particular the size of R
and C/C++ code) and the number of lines of documentation
files (.rd).

Results — Fast growth of user-contributed packages, with
a small, stable core. From Figure 6, we can see that the
community is adding more Contributed packages every year,
i.e., the number of packages follows a super-linear trend (note
that the Y axis is in log-scale) [19]. On the other hand, new
packages are not gaining popularity (becoming Popular) as
fast as they are added, nor are they easily added as part of the
distribution (Recommended).

Figure 7 shows how the size of Contributed packages
is growing super-linearly, the size of Popular packages is
growing more slowly, and the size of core packages remains
more or less stable (0.15M, 0.15M, 1.5M, and 8.3M SLOC
today). If we consider that the source code of the latest release
of R is 0.5M SLOCs, user-created packages are contributing
a large amount of functionality to the R ecosystem.

The less core a package is, the less releases it has.
The number of releases per package, as depicted in Figure 8
shows that more widely used or core packages generally have
more releases. Base packages are not shown, since they are
versioned with the actual R releases (i.e. had up to 81 releases).

The size of an average package remains stable. The
evolution of the size of source code (Figure 9) shows that
the only packages that have shown some growth are the
Base ones, but only during their first years. On the other
hand, user-contributed packages show a larger variance (the
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Fig. 7. Evolution of the overall size of all packages’ source code. User-

contributed packages account for almost 10M SLOC (20 times larger than
the basic R).
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Fig. 8. The proportion of releases per package is larger for Recommended

packages, followed by Popular packages.

smallest packages contain only a handful of lines of code).
The evolution of documentation is similar source code’s.
Recommended packages are the oldest, while Popu-
lar packages are older than Contributed packages; most
packages are well-maintained. Recommended and Popular
packages are older than Contributed packages. Recommended
packages have been growing very slowly (Figure 10), most
of them dating back to the same period in 2000-2001, with
only a handful of packages from the period 2001-2009. This
suggests that R developers are conservative in their decisions
to add new packages to the R release. Most packages have
been updated in the last year (see Figure 11), suggesting that
Contributed packages are not a cemetery of code, but rather
full of continuous activity. It appears that R developers monitor
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Fig. 11. Last date of a package’s release. More than 95% of packages have

been updated in the last 2 years. Recommended packages are slightly more
recent than the other packages.

the packages frequently. If the packages break (either during
compilation or testing) and their maintainer does not fix the
problem, the package is removed (55 packages to date).

T

Packages are typically well-maintained. Over time, most pack-
ages have remained fairly stable in size, while the number of
packages increases.

Q3. What is the Dependency Structure among Core and User-
Contributed Packages?

Motivation — As suggested by Figure 1, Contributed and
Popular packages are built on the core R system, requiring
the functionality provided by the Base and Recommended
packages. Previous studies on other ecosystems [4], [10] have
shown that the dependency structure of an ecosystem, in
particular between the core and Contributed packages, can be
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Evolution of the size of source code of packages. Median package size has remained stable over time. User-contributed packages have a larger

very complicated. Similar to API evolution [36], changes to
a core package can cause defects that propagate to possibly
dozens of dependent Contributed packages. Furthermore, the
more dependencies a package has, the more complicated its
deployment becomes and the more advanced package man-
agement systems need to be. In this question, we analyze the
dependency structure of the R project to understand how the
project is able to reduce change and defect propagation.

Approach — In R, each package is expected to contain a file
called DESCRIPTION similar to the control and spec files
used to describe packages in Debian and RedHat Linux distri-
bution respectively. The Requires entry in the DESCRIPTION
file lists all packages that are needed before the package can
be installed. By extracting the Requires entries of all the R
packages, we built a complete inter-dependency graph of the
packages, similar to that of Linux distributions [8]. This graph
permits to understand how packages build on the features
of others. Unfortunately, Base packages are not listed in the
Requires field, hence we did not analyze how these packages
are built upon.

Results — The number of dependencies per package is
consistently low across all package sets. Figure 12 shows
the number of dependencies per package, that is, the number
of packages required by a given package to be installed. As can
be observed, almost 1/3 of all packages have no dependencies,
and 73% have less than 2 (for reference, Debian 4.0 had a
median of 3 dependencies per package [10]). A Wilcoxon rank
sum test shows that the three distributions in the Figure are
not statistically different (i.e., the number of dependencies is
independent of the package’s set).

The less core a package is, the less packages depend
on it. Figure 13 shows the number of dependents per package
(i.e., the number of packages that require the package). As can
be observed, 72% of the Contributed packages are not required
by any other package (similar to Debian 4.0 packages [10]).
On the other hand, Popular packages (median of 6 depen-
dents) and Recommended packages in particular (median of
30 dependents) are significantly likely to be required by other
packages. As expected, packages closer to the core tend to
perform lower-level functionality needed by user-contributed
packages. For example, Recommended packages like lattice
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Fig. 12. The number of dependencies per package in R, i.e., the number
of packages that is required to be installed by each package. Most packages
have few dependencies (1 out of 3 have none).

and MASS provide extremely popular data visualization and
general statistical functions, respectively.
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Fig. 13. Number of dependents per package, i.e., the number of packages

that require (depend on) a particular package. Most packages do not have de-
pendents. As expected, popular packages have significantly more dependents.

Most packages have few or no dependencies. On the other
hand, Popular and Recommended packages are more likely to
be required by other packages.

Q4. How is the Community surrounding Core and User-
Contributed Packages?

Motivation — Since ecosystems rely on the involvement of a
community of users and developers [4], user contributed pack-
ages are generally developed by stakeholders external to the
core system’s company or project. Hence, the main channels
of communication with those stakeholders are mailing lists
and IRC chats, in addition to irregular gatherings, such as the
yearly useR! conference for R stakeholders [32]. This means
that we can use email and IRC traffic to quantify the degree
of interest of users and developers into the ecosystem, as well
as the active maintenance and development areas.

Approach — First, we measure the number of email messages
and senders in the R-help and R-devel mailing lists across
the four sets of packages. The R-help mailing list is a
measure of community participation and interest, whereas the
R-devel mailing list, which is aimed at developers of packages,
measures development and maintenance activity. Second, for
each package we calculate the total number of messages and
the time from the first version of a package to the first, tenth,
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Fig. 14. Number of messages per set of packages per year (R-help).

hundredth and thousandth message, to measure how fast a
community builds up around a new package.

Results — Mailing list traffic is dominated by Contributed
and Popular packages. Figures 14 and 15 plot the total
number of messages to respectively the R-help and R-devel
mailing lists, broken down across the four sets of packages.
The majority of traffic on both lists targets Contributed pack-
ages. Since 2003, this traffic has seen a continuous growth on
the R-help list, but it has stagnated on the R-devel list from
2006, except for a peak in 2009.

Traffic on Base and Recommended packages has stagnated
on both mailing lists since 2005. Although Base packages are
still the second largest source of traffic on the R-devel mailing
list, their traffic used to be near that of Contributed packages
(until 2004 in R-help and 2006 in R-devel). Whereas the traffic
of Contributed (and later Popular) packages boomed, the Base
and Recommended traffic stopped growing or even reclined.
The last five years, the core packages have seen an almost
stable volume of traffic.

The user communities of R packages grow unbounded,
whereas developer communities stagnate. Figures 14 and 15
correlate strongly with the number of people sending messages
each year (plots not shown), with a Spearman correlation of
more than 0.93. Since 2005, the number of people participating
in the development communities of the R-devel mailing list has
remained more or less stable, in contrast to the ever growing
yearly number of users participating on the R-help mailing list.
The maximum number of active message senders is around
3,000 for the R-help mailing list (2010) compared to 500 for
the R-devel list (2009).

The less core a package is, the lower its concentration
of messages and message senders. Figure 16 plots for each
package set the distribution of the number of R-help messages
per package. The corresponding plot of the number of message
senders, and the plots for the R-devel mailing lists are similar,
and hence not shown. Whereas the total volume of traffic
of Contributed and Popular packages was the highest over
time (Figures 14 and 15), their traffic per package is relatively
low, i.e., many packages have to share the spotlight. On the
other hand, the steady flow of messages about core packages
focuses entirely on a small set of packages, leading to a
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Fig. 16. Distribution of the number of messages per package and set (R-help).

high concentration of messages per package. Similarly, the
core packages are discussed by more message senders than
Contributed packages.

It appears to take one year (median) to start up a community
for Popular and Contributed packages, whereas core packages
only take a couple of months. Figure 17 plots for each set
of packages the distribution of the time to the first, tenth,
hundredth and thousandth message of each package (R-help;
the beanplots for R-devel are similar). Core packages have
the lowest start-up time. The median time to the first and
tenth message of a Base package is only 1 week and 82 days
respectively, compared to 31 days and 369.5 days for Popular
packages. As found earlier for Q2, new Contributed packages
need to face fierce competition to receive more popularity.

It is also interesting to compare Popular packages to Con-
tributed packages, since the former were successful at gaining
momentum, whereas the latter failed to do so. Figure 17
suggests that Popular packages in general took less time to
build up a community than the other contributed packages.
The latter take two months longer to their first message, and 5
months longer to their tenth message. In other words, popular
contributed packages seem to be picked up sooner.

Note that not all packages are discussed one thousand, one
hundred or even ten times. Table II shows that the probability
of reaching 1, 10, 100 or 1,000 messages on a mailing list
decreases the less core a package is. For example, only 0.52%
of the Contributed packages (9 packages) on R-help and 0.1%
(1 package) on R-devel reach 1,000 messages, compared to
69.2% (9 packages) and 23.1% (3 packages) of the Base
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Fig. 17. Distribution of the time to the 1st/10th/100th/1000th message of a
package per set in the R-help mailing list (R-devel is similar).

TABLE II
PERCENTAGE OF Base, Recommended, Popular AND Contributed PACKAGES
REACHING 1, 10, 100 OR 1,000 MESSAGES ON THE MAILING LISTS.

R-devel
10 [ 100 [ 1,000

R-help

1| 10 | 100 | 1,000 | 1 |

base 100 | 100 100 69.2 100 | 100 | 92.3 23.1
recomm. 100 | 100 | 86.7 | 33.3 100 | 933 | 53.3 0
pop. 100 | 97.7 | 449 2.3 100 | 585 | 4.0 0.6
contrib. 100 | 31.2 | 6.5 0.52 100 | 11.1 1.3 0.1

packages. These numbers confirm the findings of Figure 16.

User-contributed packages are discussed by less people than
core packages. Communities are build around core packages
in months compared to a year for user-contributed packages.

V. DISCUSSION

The results of our case study are summarized in Table III.
Many of these results are obvious (e.g., core packages are
more documented, are older and have more dependents than
user-contributed). Others are not: the size of packages is
similar among all, most all well maintained and most have few
dependencies. We believe that this is due to the infrastructure
created by R to provide an efficient and automatic dependency
management system that frees the end-user from the complex-
ities of dependencies between packages (all the user has to
do is install.package ("name")). The R ecosystem also
strongly relies on conventions and best practices, for example
regarding documentation, release continuity and mailing list
traffic. Packages are tested nightly. If their tests fail (packages
must have tests) their are quarantined, and eventually removed
if not fixed. The policies, documentation and infrastructure
provided by the R ecosystem appears to increase both the
number of contributors and user productivity, and improve its
success. However, these are hypotheses that should be tested
with further research.

Regarding the R community, we found that user contribu-
tions need to fight for attention. It is not clear, however, how
users deal with this. What are their motivations to create and
contribute packages? What is the typical evolution and main-
tenance process of a user-contributed package? How much
effort is invested in creating and maintaining an R package?



TABLE III
SUMMARY OF OUR ANALYSIS RESULTS.

l I

core [ user-contributed |

#documentation and code more less
#packages || low and stable super-linear
age older younger
# releases more less
#dependents more less
total traffic less more
traffic per package more less
community start-up time months year
average size stable
maintenance well-maintained
#dependencies low
communities user growing, developer stable

How many people participate? How important are the features
of R-Forge to the success of a package? And perhaps most
importantly, the R ecosystem provides an interesting case
study on how non-software engineers build and maintain
software systems. An area that we have not touched on is
the social and socio-technical networks created by contributors
and how they relate to the evolution and success of R. Future
work should concentrate on them.

We have seen how each set of packages evolves over time
in terms of size and maintenance, and that it can take a long
time for packages to build up a community. Yet, how does
a package go from being created to being Popular, and how
are Popular packages promoted to Recommended packages?
This problem is similar to the problem of determining which
packages to include on the first CD of a Linux distribution.
In the R ecosystem, blogging seems to have a large impact
on package popularity. Aggregators like R-bloggers [23] high-
light sites around the Web that use R, frequently presenting
demonstrations of what R is capable of doing, including source
code. Similarly, books teaching R introduce users to packages
(or have their own accompanying packages), and have a direct
impact on what users use. Being an open source project, the
success of R is likely to be driven by its users (and the media
attention created around it, such as [33]).

The above discussion highlights many of the different facets
of ecosystems that are as yet unexplored. We believe our paper
to be a first exploratory step towards unraveling the secrets of
software ecosystems.

VI. THREATS TO VALIDITY

Threats to construct validity [37] relate to whether our mea-
surements quantify what we intended them to. Our definition
of Popular packages depends on the results of a poll [35],
however informal discussions with fellow researchers learns
that the results are representative. The mailing list analysis is
based on regular expressions, and might lead to false positives.
We did not analyze dependencies on Base packages, since this
information was not provided in the package specification files.
We plan to use static source code analysis techniques for this.

Threats to internal validity concern rival hypotheses that can
explain our findings. We assume that mailing list popularity
is an indicator of community building. However, it might just
be an indicator of fault-proneness or complexity of a package

(i.e., many questions about it). Also, we only studied mailing
list communication, no instant messaging or blogs.

External validity relates to the generalization of our study
results. We only studied one major end user-programming
ecosystem, which is open source. Hence, we need to perform
similar case studies on related ecosystems like ISTEX, Perl and
PHP, as well as analyze closed source systems.

VII. RELATED WORK

As mentioned in Section II, the closest related work is the
research on the software evolution and community of operating
system- and application-centric desktop ecosystems.

Research on operating system-centric desktop ecosystems
has especially focused on the Linux kernel [9] and the Debian
Linux distribution [8], [10], which consists of the Linux kernel
and thousands of libraries and end user applications. The
Linux kernel ecosystem, just like R, grows at a super-linear
rate, especially because of the massive contributions of device
drivers. Contrary to R contributions, those drivers are typically
cloned and customized [14], rapidly increasing the kernel code
size. Legacy drivers tend to linger around, whereas R promptly
removes unused packages.

Debian is built around a sophisticated, dependency-aware
package management system and a number of large package
repositories, similar to R. The size of the Debian ecosystem
doubles in size every 2 years, totaling over 300 MLOC in
2007 [10]. This growth is caused by the continuous growth
of the larger packages and addition of small, new packages.
The latter is facilitated by the high degree of reuse of core
libraries, rapidly increasing the number of dependencies be-
tween packages. Still, large portions of the code did not change
in a period of 9 years.

We found that the growth rate of R approaches that of
Debian: overall, the size of user-contributed packages has
doubled in the last two years, primarily because many new
packages are added. The number of dependencies per package
is similar to that of Debian packages.

The ecosystem of Eclipse has been widely studied. Wer-
melinger et al. [34] identified a stable core of Eclipse plugins
whose dependencies have remained stable over time. This
definition of core is different from ours, which is based on the
conceptual architectural of R (not its evolution). Furthermore,
the number of Eclipse plugins has grown by a factor of five
over a period of 6 years. In contrast, the number of R packages
has doubled in the last three years, with 25% of the current
packages being created in the last 15 months.

Two studies analyze whether the evolution of Eclipse’s
core [16] (roughly equivalent to our Base and Recommended
packages) and 3rd party Eclipse plugins [6] (equivalent to our
Popular and Contributed packages) follow Lehman’s laws of
software evolution. The core Eclipse plugins adhere to the
laws of continuing change and growth, but not of increasing
complexity [16]. The number of Base and Recommended
Eclipse plugins has tripled over time, growing on average
260 kLOC per major release. Businge et al. [6] found support



for Lehman’s laws of continuing change, self-regulation and
continuing growth for the evolution of 21 3rd-party plugins.

The studies mentioned thus far do not consider the com-
munity aspect of ecosystems, like documentation, bug reports
or mailing list traffic. Schackmann et al. [28] performed an
empirical study of the change request process of the Base and
Recommended Eclipse plugins. They found that the quality
of change requests and the time to triage a request vary
significantly across plugins. Kidane et al. [15] analyzed the
development mailing lists and bug repositories of 33 Eclipse
subprojects (collections of plugins). They found that adding
new features slows down the bug fix process and that more
distributed social networks foster the development of new
features. Finally, Yu studied the mailing lists of the Linux
kernel to analyze different ecosystem collaboration patterns
between companies [38]. We analyzed the R-help and R-devel
mailing lists to measure the size, growth and dynamics of the
R ecosystem community.

VIII. CONCLUSION

In this exploratory empirical study, we have shown that R
is a flourishing ecosystem of user-contributed packages that is
growing super-linearly, with a strong set of core packages.

In these ecosystems, it becomes impossible to separate
the evolution of the underlying system from the evolution
of its community of users and contributions. After all, the
power of R is in the features that user-contributed packages
implement. Hence, ensuring a healthy community around
contributions of high quality (size and documentation) and
well-maintained (new releases and collaboration) packages is
essential according to our findings. In future work, we plan to
continue studying the factors that facilitate healthy evolution in
other ecosystems, both end-user as other kinds of ecosystems.
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