
1 23

Automated Software Engineering
An International Journal

ISSN 0928-8910
Volume 23
Number 4

Autom Softw Eng (2016) 23:619-647
DOI 10.1007/s10515-015-0183-5

Identifying and understanding header file
hotspots in C/C++ build processes

Shane McIntosh, Bram Adams,
Meiyappan Nagappan & Ahmed
E. Hassan

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Autom Softw Eng (2016) 23:619–647
DOI 10.1007/s10515-015-0183-5

Identifying and understanding header file hotspots
in C/C++ build processes

Shane McIntosh1 · Bram Adams2 ·
Meiyappan Nagappan3 · Ahmed E. Hassan4

Received: 22 July 2014 / Accepted: 10 July 2015 / Published online: 22 July 2015
© Springer Science+Business Media New York 2015

Abstract Software developers rely on a fast build system to incrementally compile
their source code changes and produce modified deliverables for testing and deploy-
ment. Header files, which tend to trigger slow rebuild processes, are most problematic
if they also change frequently during the development process, and hence, need to be
rebuilt often. In this paper, we propose an approach that analyzes the build depen-
dency graph (i.e., the data structure used to determine the minimal list of commands
that must be executed when a source code file is modified), and the change history of a
software system to pinpoint header file hotspots—header files that change frequently
and trigger long rebuild processes. Through a case study on the GLib, PostgreSQL,
Qt, and Ruby systems, we show that our approach identifies header file hotspots that,
if improved, will provide greater improvement to the total future build cost of a system
than just focusing on the files that trigger the slowest rebuild processes, change the
most frequently, or are used the most throughout the codebase. Furthermore, regres-

B Shane McIntosh
shanemcintosh@acm.org

Bram Adams
bram.adams@polymtl.ca

Meiyappan Nagappan
mei@se.rit.edu

Ahmed E. Hassan
ahmed@cs.queensu.ca

1 Department of Electrical and Computer Engineering, McGill University, Montreal, Canada

2 Lab on Maintenance, Construction, and Intelligence of Software (MCIS), Polytechnique
Montréal, Montreal, Canada

3 Department of Software Engineering, Rochester Institute of Technology, Rochester, USA

4 Software Analysis and Intelligence Lab (SAIL), Queen’s University, Kingston, Canada

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-015-0183-5&domain=pdf

620 Autom Softw Eng (2016) 23:619–647

sion models built using architectural and code properties of source files can explain
32–57 % of these hotspots, identifying subsystems that are particularly hotspot-prone
and would benefit the most from architectural refinement.

Keywords Build systems · Performance analysis · Mining software repositories

1 Introduction

Build systems specify how source code, libraries, and data files are transformed into
deliverables, such as executables that are ready for deployment. Build tools [e.g.
make (Feldman 1979)] orchestrate thousands of order-dependent commands, such as
those that compile and test source code, to ensure that deliverables are rebuilt correctly.
Such a build tool needs to be executed every time developers modify source code, and
want to test or deploy the new version of the system on their machine. Similarly,
continuous integration and release engineering infrastructures on build servers rely on
a fast build system to provide a quick feedback loop.

Since large software systems are made up of thousands of files that contain millions
of lines of code, executing a full build can be prohibitively expensive, often taking
hours, if not days to complete. For example, builds of the Firefox web browser for
the Windows operating system take more than 2.5 h on dedicated build machines.1

Certification builds of a large IBM system take more than 24 h to complete (Hassan
and Zhang 2006). In a recent survey of 250 C++ developers, more than 60 % of
respondents report that build speeds are a significant issue.2 Indeed, while developers
wait for build tools to execute the set of commands necessary to synchronize source
code with deliverables, they are effectively idle (Humble and Farley 2010).

To avoid incurring such a large build performance penalty for each build performed
by a developer, build tools such as make (Feldman 1979) provide incremental builds,
i.e., builds that calculate and execute the minimal set of commands necessary to syn-
chronize the built deliverables with any changes made to the source code. Humble and
Farley (2010) suggest that incrementally building and testing a change to the source
code should take no more than 1.5 min. Developers have even scrutinized 5-min long
incremental build processes,3 calling the process “abysmally slow.”4

To assess build performance bottlenecks in the real world, we asked developers of
the GLib and PostgreSQL systems to list the files that slowed them down the most
when rebuilding them incrementally. While the reported bottlenecks were often header
files that many other files depended upon, and thus took took a long time to rebuild,
paradoxically, there were other header files that took a longer time to rebuild, but
were not pointed out by the developers. Many of these slower header files were not
perceived to be build bottlenecks because they rarely changed over time (and hence,
rarely needed to be rebuilt incrementally by the developers).

1 http://tbpl.mozilla.org/.
2 http://mathiasdm.com/2014/01/24/a-c-questionnaire-on-build-speed-the-results-are-in/.
3 https://bugs.webkit.org/show_bug.cgi?id=32921.
4 https://bugs.webkit.org/show_bug.cgi?id=33556.

123

Author's personal copy

http://tbpl.mozilla.org/
http://mathiasdm.com/2014/01/24/a-c-questionnaire-on-build-speed-the-results-are-in/
https://bugs.webkit.org/show_bug.cgi?id=32921
https://bugs.webkit.org/show_bug.cgi?id=33556

Autom Softw Eng (2016) 23:619–647 621

Hence, the frequency of change that a header file undergoes seems to influence
how developers perceive build performance issues, even though it has been largely
overlooked by existing build optimization approaches. Our prior finding that only 10–
25 % of the source files of large systems like Linux and Mozilla change in a typical
month (McIntosh et al. 2011) suggests that traditional build profiling techniques may
miss the header files that will really make a difference in the build time during day-to-
day development. Instead, build optimization effort should be focused on header file
hotspots, i.e., header files that not only trigger slow rebuild processes, but also require
frequent maintenance.

In this paper, we study header file hotspots in four open source systems, making
two main contributions:

1. We propose an approach to detect hotspots by analyzing the build dependency
graph (BDG) and the change history of a system (Sect. 4). We evaluate our approach
by simulating the build time improvement of header file hotspots for a developer
by using historical data (Sect. 6). We find that optimization of the header files
identified by the hotspot approach would lower the total future rebuild cost more
than optimization of the header files that trigger the slowest rebuild processes,
change the most frequently, or are used the most throughout the codebase.

2. We study the characteristics of header file hotspots in the studied systems (Sect. 7).
We find that logistic regression models can explain 32–57 % of the identified
header file hotspots using the architectural and code properties of header files.
Furthermore, our GLib and Qt models identify hotspot-prone subsystems that
would benefit the most from architectural refinement.

The remainder of the paper is organized as follows. Section 2 describes the incre-
mental build process, while Sect. 3 describes how header file hotspots can impact a
development team in more detail. Section 4 presents the hotspot detection approach.
Section 5 describes the setup of our case study of four open source systems. Section 6
presents the results of our simulation experiment. Section 7 presents the results of our
study of the characteristics of header file hotspots. Section 8 discloses the threats to
the validity of our study. Section 9 surveys related work. Finally, Sect. 10 draws our
conclusions.

2 Incremental builds

The build process for a software system is typically broken down into two main
phases (Adams et al. 2008). The first phase is configuration, where the build sys-
tem selects: (1) build tools (e.g. compilers and linkers), and (2) features to include
in the build (e.g. Windows vs. Android front-end). The next phase is construction,
where relevant source code and data files are translated (compiled) into deliverables
by orchestrating several order-dependent commands. In addition, deliverables are
certified by executing suites of automated tests, and finally bundled with product
documentation and data files for delivery to end users.

Developers who make source code changes would like to quickly produce modified
deliverables in order to test their changes. Hence, the cornerstone feature of a build

123

Author's personal copy

622 Autom Softw Eng (2016) 23:619–647

deliverable2

library.a

del2_main.o

del2_main.c

util1.o util2.o

util2.cutil1.c

Compile

Archive

Link

Legend

deliverable1

del1_main.o

del1_main.c

all

Abstract

library.h

(a) Build dependency graph.

1 CC = gcc
2 LIBTOOL = libtool
3

4 .PHONY: all
5 all: deliverable1 deliverable2
6

7 deliverable1: del1_main.o library.a
8 $(CC) -o $@ $^ # recipe 1
9

10 deliverable2: del2_main.o library.a
11 $(CC) -o $@ $^ # recipe 2
12

13 library.a: util1.o util2.o
14 $(LIBTOOL) -static -o $@ $^ # recipe 3
15

16 %.o: %.c library.h
17 $(CC) -c $< # recipe 4

(b) make implementation

Fig. 1 An illustrative build dependency graph and its make implementation

system is the incremental build, which can reduce the cost of a full build dramatically.
After performing a full build that produces initial copies of the necessary deliverables,
incremental builds only execute the commands necessary to update the deliverables
(“build targets”) impacted by source code changes.

For example, consider the BDG depicted in Fig. 1a, which represents the depen-
dencies in the make specification of Fig. 1b. The all node in the graph is phony,
i.e., a node used to group deliverables together into abstract build phases rather than
to represent a file in the filesystem. The full build will execute four compilation com-
mands (recipe 4) to produce build targetsdel1_main.o,util1.o,util2.o, and
del2_main.o, as well as an archive command (recipe 3) to produce library.a,
and finally, two link commands (recipes 1 and 2) to produce deliverable1 and
deliverable2. If del1_main.c is modified after a full build has been per-

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 623

formed, an incremental build only needs to recompile del1_main.o and re-link
deliverable1. As software systems (and BDGs) grow, the minimizing behaviour
of incremental builds saves developers time.

3 Header file hotspots

Although incremental builds tend to save time, changes to header files often trigger
slow rebuild processes (Lakos 1996). For example, Fig. 1a shows that changes to
library.h will trigger the equivalent of a full build, since all four .c files ref-
erence library.h, and will thus need to be recompiled when it changes. In turn,
library.a will be re-archived and the two deliverables will be re-linked.

To better understand how developers are impacted by such build performance bot-
tlenecks (e.g. header files that trigger slow rebuild processes), we asked the three most
active contributors to GLib and PostgreSQL (two long-lived and rapidly evolving
open source systems) to pick five files that they believe slow them down the most
when rebuilding. Surprisingly, the files that were reported as bottlenecks were not
the ones with the worst raw build performance. In fact, of the bottlenecks reported
by the three developers, the files with the worst performance appear 61st (GLib) and
32nd (PostgreSQL) in the lists of files ordered by actual rebuild cost (i.e., the time
taken to incrementally build the system after a change to one of those files). Indeed,
the respondents seemed to have most of their build performance issues with files that
we measured to be relatively fast to rebuild. When asked why they did not select the
slower files, one GLib developer responded: “because none of these [files] change
often.”

At first glance, this insight might seem counterintuitive. However, consider the
scenario depicted in Fig. 2 with a header file hotspot and a team of four developers:
A, B, C, and D. First, changing the hotspot file impacts the original developer. For
example, if developer A modifies H, the change would trigger the slow rebuild process
of H in A’s copy of the source code. After committing the hotspot change to the
version control system, the change to the hotspot impacts other team members as
well. When developers B, C, and D update their copies of the source code and receive
A’s change to H, it will also trigger the slow rebuild process of H on their machines. If
H tends to change often, the slow rebuilds on developers’ machines keep on repeating,
accumulating a large incremental build cost over time.

Based on this insight, this paper analyzes whether the header file hotspots (i.e.,
header files that not only trigger long rebuild processes, but also tend to change fre-
quently) are better indicators of files that will slow the rebuild process in the future,
and hence should be optimized now to save developers time. In order to understand
how such reduction of rebuild cost can be achieved, we use logistic regression models
to study actionable factors that impact header file hotspot likelihood. Such factors
correspond to common source code (e.g. file fan-in) and code layout properties (e.g.
the subsystem that a file belongs to). Of course, making fewer changes to the code is
not a feasible option for reducing build activity, since after all, the software needs to
evolve to implement changing requirements.

123

Author's personal copy

624 Autom Softw Eng (2016) 23:619–647

.h

Developer A edits hotspot and needs to wait
for the long incremental rebuild process in

A's local copy of the source code.

Developer A

Developer B Developer C Developer D

Upstream
VCS

.h .h .h

Developers B, C, and D also need to wait for the long incremental rebuild process
of the edited hotspot file after updating their local copies of the source code.

Update

CommitEdit

Fig. 2 An example scenario of the impact that a header file hotspot can have on a development team

4 Hotspot analysis approach

In order to identify header file hotspots, we analyze the BDG and the change history
of a software system. Figure 3 provides an overview of our approach, which is divided
into the three steps that are described below. In this section, we describe our approach
in abstract terms, while details of the prototype implementation used in our case studies
are provided in Sect. 5.

4.1 Dependency graph construction

We first extract the BDG of the main build target of a software system (e.g. all
in Fig. 1a), which is a directed acyclic graph BDG = (T, D) with the following
properties:

– Graph nodes represent build targets T = T f ∪ Tp, where T f is the set of concrete
files produced or consumed by the build process, Tp is the set of phony targets in
the build process, and T f ∩ Tp = ∅.

– Directed edges denote dependencies d(t, t ′) ∈ D from target t to target t ′. A
dependency exists between targets t and t ′ if t must be updated when t ′ changes.
Figure 1a shows an example BDG.

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 625

Rebuild Costs
(1)

Dependency
Graph

Construction

(3)
Hotspot

Detection

Quadrant Plot

Rebuild
Cost

#R
ev

is
io

ns(2)
Rebuild Cost
Calculation

Dep. Graph
Version Control

System

Fig. 3 Overview of our hotspot analysis approach

4.2 Rebuild cost calculation

Although we are mainly interested in header files, our approach can calculate the
rebuild cost of each source file in a software system. In order to calculate the rebuild
cost of a source file, we build a cost mapCM = (Dr ,C) with the following properties:

– The set of BDG dependencies D = Dr ∪ Dg , where Dr is the set of d(t, t ′)
with recipes (i.e., build commands that must execute in order to update t when t ′
changes), Dg is the set of d(t, t ′) used to order dependencies (i.e., dependencies
without recipes), and Dr ∩ Dg = ∅.

– There is a cost C(d(t, t ′)) associated with each d(t, t ′) ∈ Dr , which is used to give
a weight to each directed edge. This cost may be measured in terms of number of
triggered commands, elapsed time, etc.

– CM contains an entry that maps each d(t, t ′) ∈ Dr to its cost C(d(t, t ′)).

The rebuild cost of a source file then is calculated by combining the file’s depen-
dencies in the BDG with the edge costs from the CM. The process is split into four
steps as described below.

4.2.1 Detect source files

Using the BDG, we detect the set of source files S = {s ∈ T f | |in(s)| > 0∧|out(s)| =
0}, where in(s) = {d(t, s) ∈ D} (i.e., dependencies that must be regenerated when s
changes) and out(s) = {d(s, t) ∈ D} (i.e., dependencies that regenerate s), and |X |
is the cardinality of the set X . In other words, S is the set of non-generated files (no
outgoing edges) that are the initial inputs for the main build target.

4.2.2 Detect triggered edges

For each source file node s ∈ S, we identify the set of edges E(s) that will be triggered
should s change by selecting all edges that transitively depend on s in the BDG. In
other words, we perform a transitive closure of d(s, t) on the BDG, and filter away
edges that are not present in the BDG.

4.2.3 Filter duplicate edges

Since the same recipe may be attached to multiple outgoing edges of a given build target
t , we count each such recipe only once by filtering out all but one of the corresponding

123

Author's personal copy

626 Autom Softw Eng (2016) 23:619–647

edges d(t, t ′) from E(s). We apply this filter to all dependencies d(t, t ′) ∈ E(s) to
obtain E ′(s).

For example, Fig. 1a shows that when either util1.o or util2.o is updated,
library.a must be re-archived. The make implementation in Fig. 1b shows that
in such a case, the re-archiving of library.a only needs to be performed once. In
this case, we would filter the edge between library.a and util2.o out of E(s)
to obtain E ′(s).

4.2.4 Aggregate cost of triggered edges

Finally, to calculate the rebuild cost of a source file s, we begin by looking up each
edge d(t, t ′) ∈ E ′(s) in the CM. Any edge that appears in E ′(s), but does not appear in
CM (e.g. d(t, t ′) ∈ Dg) is assumed to have no cost. The rebuild cost is then calculated
by summing up the costs of the edges in E ′(s) that were found in the CM.

4.3 Hotspot detection

Software systems evolve through continual change in the source code, build system,
and other artifacts. Changes to files are logged in a version control system (VCS), such
as Git. To identify hotspots, we need to calculate the rate of change of each source
file, i.e., the number of revisions of the file that are recorded in the VCS, then plot this
against the rebuild cost for each file. Similar to Khomh et al. (2011), we divide the
plot into four quadrants:

Inactive Files that rarely change and that trigger quick rebuild processes. Opti-
mizing the build for these files is unnecessary.

High churn Files that frequently change, but trigger quick rebuild processes. These
files are low-yield build optimization candidates because although they
endure heavy maintenance, they do not cost much to rebuild.

Slow build Files that rarely change, but trigger slow rebuild processes. These files
are low-yield build optimization candidates.

Hotspot Files that frequently change and trigger slow rebuild processes. These
files are high-yield build optimization candidates.

The quadrant thresholds can be dynamically configured to suit the needs of the
development team. Initially, thresholds may be selected using intuition, however later
on, nonfunctional requirements could specify a maximum rebuild cost according to a
system’s common rate of file change.

5 Case study setup

We perform a case study on four open source systems in order to: (1) evaluate our
header file hotspot detection approach, and (2) study the characteristics of real-world
header file hotspots. Hence, our case study is divided into two sections accordingly,
which we motivate below:

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 627

Table 1 Characteristics of the studied systems

GLib PostgreSQL Qt Ruby

Domain build
technology

Development library
autotools

DBMS Autoconf,
make

UI framework
QMake

Programming language
autoconf, make

Version 2.36.0 9.2.4 5.0.2 1.9.3

Release date 2013-03-25 2013-04-04 2013-07-03 2011-10-31

System size
(kSLOC)

401 658 5132 1098

BDG nodes 3375 4637 38,235 1560

BDG edges 121,710 59,676 2,752,226 6240

For each studied system, we extract 2 years of historical data just prior to the release dates

Evaluation of our hotspot detection approach (Sect. 6) Since rebuild cost, rate of
change, and dependencies on other files individually can also be used to prioritize
files for build optimization, we want to evaluate whether the hotspot heuristic truly
identifies the most costly header files.
Analysis of header file hotspot characteristics (Sect. 7) Since code changes are
required to address defects or add new features, one cannot simply avoid changing
the code. Instead, build optimization effort must focus on controllable (actionable)
properties that influence header file hotspot likelihood. Hence, we set out to study
the relationship between controllable header file properties and hotspot likelihood.

The remainder of this section introduces the studied systems, provides additional
detail about our implementation of the hotspot detection approach proposed in Sect. 4,
and compares the build performance of header files to other files in the studied systems.

5.1 Studied systems

We select four long-lived, rapidly evolving open source systems in order to perform
our case study. We select systems of different sizes and domains to combat potential
bias in our conclusions. Table 1 provides an overview of the studied systems.

GLib is a core library used in several GNOME applications.5 PostgreSQL is an
object-relational database system.6 Qt is a cross-platform application and user inter-
face framework whose development is supported by the Digia corporation, however
welcomes contributions from the community-at-large.7 Ruby is an open source pro-
gramming language.8

The studied systems use different build technologies (e.g. GNU Autotools and
QMake). However, each studied build technology eventually generates make speci-
fications from higher level build specifications. The choice of studying make-based

5 https://developer.gnome.org/glib/.
6 http://www.postgresql.org/.
7 http://qt.digia.com/.
8 https://www.ruby-lang.org/.

123

Author's personal copy

https://developer.gnome.org/glib/
http://www.postgresql.org/
http://qt.digia.com/
https://www.ruby-lang.org/

628 Autom Softw Eng (2016) 23:619–647

build systems is not a coincidence, since such build systems are the de facto standard
for C/C++-based software projects (McIntosh et al. 2015), which are the projects that
typically use header files.

5.2 Implementation details

5.2.1 Dependency graph construction and rebuild cost calculation

We first perform a full build of each studied system on the Linux x64 platform with
GNU make tracing enabled to generate the necessary trace logs. Such a trace log
carefully records all of the decisions made by the build tool (e.g. is input file X newer
than output file Y?). The generated trace is then fed to the MAKAO tool (Adams et al.
2007), which parses it to produce the BDG and CM. Finally, we implemented the four
steps of Sect. 4.2 in a script and applied it to the BDG and CM to calculate the rebuild
cost of each source code file s ∈ S.

5.2.2 Edge weight metric

To give the edge weighing function C(d(t, t ′)) a meaningful concrete value, we use
elapsed time, i.e., the time spent executing build recipes. For this, we measure the
time consumed by each recipe during a full build by instrumenting the shell spawned
by the build tool for each recipe’s execution. Since varying load on our experimental
machines may influence the elapsed time measurements, we repeated the full build
process (from scratch) ten times and select the median elapsed time for each recipe.

After ten repetitions, we find that the standard deviation of the elapsed time for
any given command does not exceed 0.5 s and the median standard deviation among
the ten repetitions does not exceed 0.02 s. Thus, the variability in the elapsed time
consumed by a recipe will not substantially skew our results.

5.2.3 Quadrant threshold selection

For the purposes of our case study, we use 90 s as the threshold for rebuild cost, since
Humble and Farley suggest this as an upper-bound on the time spent on an incremental
build (Humble and Farley 2010). For the rate of change threshold, we select the median
number of revisions across all files of a system. Furthermore, to reduce the impact that
outliers have on the quadrant plots, we apply the logarithm on both rebuild cost and
rate of change values. We normalize rebuild cost and rate of change by dividing each
logarithmic value by the maximum so that the quadrant plots of different systems can
be compared.

5.3 Preliminary analysis of header file build performance

Prior to performing our case studies, we first perform a preliminary analysis to eval-
uate whether header files are truly the source of the most problematic build hotspots
in the studied systems. Indeed, while prior work has focused on header file optimiza-
tion (Dayani-Fard et al. 2005; Yu et al. 2003, 2005), it is unclear whether they are

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 629

truly the largest source of build hotspots. Since header files represent interfaces (which
ought to be more stable over time), they may not necessarily change as frequently as
regular source code files. It is conceivable that core implementation files that change
often and generate a substantial amount of link-time build activity may also be hotspots
that are worthy of optimization effort (Lakos 1996).

5.3.1 Approach

Figure 4 plots the rebuild cost of each source file s ∈ S in increasing order for each
of the studied systems. The figures in the column on the left show the rebuild costs of
header files, while the figures in the column on the right show the rebuild costs of the
other source files in each of the studied systems. In addition, we show quadrant plots
of the rebuild costs versus the number of revisions of each source file s ∈ S in Fig. 5.

5.3.2 Results

Figure 4 shows that, as expected, almost all header files trigger longer rebuild processes
than other file types do. This is primarily because when a header file is changed, all
files that #include it must be recompiled (cf. Sect. 2). The majority of GLib header
files trigger rebuild processes of more than 60 s (Fig. 4a). Several Qt header files
trigger rebuild processes of more than 15 min (900 s), with extreme cases reaching
over 2 h (Fig. 4e). In all of the studied systems, the median rebuild cost for header files
is at least 10 times larger than the median rebuild cost for the other types of files. Our
findings support the argument of Yu et al. (2003), that (false) dependencies in header
files can indeed substantially slow down the build process.

Interestingly, header files are not the only source of spikes in rebuild cost. Figure 4b,
f, and h show that a small set of other files can trigger rebuild processes of several
seconds. Many of these files are .c files, for which one would normally expect that
several subsequent linker commands may be triggered by updating the object code,
however only one compile command should be triggered.

Deeper inspection of the GLib system shows that 89 .c files in GLib in fact trigger
multiple compile commands. We found that 1 of the 89 .c files is imported through
the preprocessor into several .c files, similar to a header file. Hence, changes to the
imported .c file trigger compile commands for each .c file that includes the file.
Another 4 of the 89 multi-compiling .c files contain test code that is linked into
several test executables. However, each test binary requires the object code of the
common files to be generated with different compiler flag settings, which means that
the same .c file must be compiled once for each compiler flag setting. The remaining
84 of the 89 multi-compiling .c files are used to implement a source code generator
that produces code that is linked to several test executables. When any of the code
generator source files are changed, the tool must be rebuilt, then the generated code
must be reproduced, recompiled, and re-linked to the test executables. The GLib code
generator is an example of a “build code robot”, as was identified for GCC by Tu and
Godfrey (2001).

Figure 4g and h show that the Ruby project has no file that exceeds the 90-s threshold
that we selected for header file hotspots. This is likely due to the size of the system

123

Author's personal copy

630 Autom Softw Eng (2016) 23:619–647

0 50 100 150 200 250 300 350

0
50

10
0

15
0

File ID

B
ui

ld
 T

im
e

(s
)

(a) GLib headers

0 100 200 300 400 500 600

0
2

4
6

8
10

File ID

B
ui

ld
 T

im
e

(s
)

(b) GLib others

0 100 200 300 400 500

0
50

10
0

15
0

File ID

B
ui

ld
 T

im
e

(s
)

(c) PostgreSQL headers

0 200 400 600 800 1000

0
2

4
6

8
10

File ID

B
ui

ld
 T

im
e

(s
)

(d) PostgreSQL others

0 1000 2000 3000 4000

0
20

00
60

00

File ID

B
ui

ld
 T

im
e

(s
)

(e) Qt headers

0 2000 4000 6000 8000 12000

0
50

10
0

15
0

File ID

B
ui

ld
 T

im
e

(s
)

(f) Qt others

0 10 20 30 40 50 60

0
10

20
30

40
50

File ID

B
ui

ld
 T

im
e

(s
)

(g) Ruby headers

0 50 100 150 200 250

0
1

2
3

4
5

File ID

B
ui

ld
 T

im
e

(s
)

(h) Ruby others

Fig. 4 The rebuild cost of the header and other (primarily source) files in the studied systems

and its BDG, which, as shown in Table 1, has almost an order of magnitude fewer
edges than the next smallest system (PostgreSQL). Although Ruby may be free of
90-s header file hotspots, developers of such a small system may be accustomed to a
very quick rebuild cycle, and may have a lower threshold for frustration. In a study of

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 631

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Rebuild Cost (Normalized)

F

ile
 R

ev
is

io
ns

 (
N

or
m

al
iz

ed
)

(a) GLib

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Rebuild Cost (Normalized)

F
ile

 R
ev

is
io

ns
 (

N
or

m
al

iz
ed

)
(b) PostgreSQL

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Rebuild Cost (Normalized)

F

ile
 R

ev
is

io
ns

 (
N

or
m

al
iz

ed
)

(c) Qt

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Rebuild Cost (Normalized)

F

ile
 R

ev
is

io
ns

 (
N

or
m

al
iz

ed
)

(d) Ruby

Fig. 5 Quadrant plot of rate of change and rebuild cost. Hotspots are shown in the top-right (red) quadrant.
The shaded circles indicate header files, while plus (+) symbols indicate non-header files. Non-header file
hotspots are circled in red (Color figure online)

time delay, Fischer et al. (2005) find that user satisfaction degrades linearly as delay
increases from 0 to 10 s. We, therefore, set the threshold for Ruby hotspots to 10 s for
the remainder of the paper.

Non-header files do not generate enough build activity to be of concern for hotspot
detection. Figure 5 shows the source files that land in each of the four quadrants.
Header files are plotted using shaded circles, while other files are plotted using plus
(+) signs. Files that land on quadrant borders are conservatively mapped to the lower
quadrant.

The quadrant plots in Fig. 5 show that only two non-header files appear in the
hotspot quadrant. The first is a Bison grammar file parse.y in the Ruby system.
Changing the grammar file causes both parse.c and parse.h to be regenerated,

123

Author's personal copy

632 Autom Softw Eng (2016) 23:619–647

which in turn triggers several recompilations. The second non-header file hotspot is
a Qt file qtdeclarative/tests/auto/shared/util.cpp, which contains
the testing utility code that causes several test binaries to be re-linked. Although each
change to the test utility implementation triggers a rebuild process of 159 s, Fig. 4e
shows that there are several Qt header files that, when they change, trigger rebuild
processes that take hours.

Although some implementation files take a long time to rebuild, themedian rebuild
cost for header files is at least ten times larger than the median rebuild cost for
the other types of files. For this reason, while our hotspot detection approach
is generic enough to be applied to any source file, the remainder of this paper
focuses on header file hotspots.

6 Case study 1: evaluation of the hotspot detection approach

While our quadrant plots can identify header file hotspots, it is not clear whether
build optimization effort that is focused on such hotspots would yield a substantially
larger reduction in future build cost than other hotspot detection approaches. In this
section, we discuss a case study that we have performed in order to evaluate our hotspot
heuristic.

6.1 Approach

In order to evaluate our hotspot heuristic, we compare its decrease in future rebuild
cost when prioritizing files for build optimization to the decrease in future rebuild cost
when using heuristics based on the following:

Individual rebuild cost Header files that trigger slow rebuild processes are likely
to be costly.
Rate of change Header files that are changing frequently are likely to be costly.
File fan-in Prior header file optimization approaches focus on header files that
have the highest file fan-in (Yu et al. 2003, 2005), i.e., number of modules that use
the functionality defined or declared in the header. These approaches implicitly
assume that header files with the highest file fan-in trigger the most build activity.

In order to perform this comparison, we perform a simulation exercise using 2 years
of historical data from each studied system, which we divide into training and testing
corpora. Figure 6 provides an overview of the steps in our simulation exercise. We
describe each step in the simulation below.

6.1.1 Extract historical data

We allocate the year of historical data just prior to the studied releases shown in
Table 1 to the testing corpus. Then, we allocate the year prior to the testing corpus to
the training corpus. We do so because we want to evaluate the approaches on a time

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 633

VCS

Training
corpus

Testing
corpus

(2)
Select Files for
Optimization

(3)
Calculate Total Cost
Improvement (TCI)

lh
lr

lc
lf

TCI Curves

File ID

T
C

I

+ + + +

(1)
Extract Historical Data

Year 1 Year 2

Studied
release

Fig. 6 Overview of our simulation exercise

period where we are sure that developers would be rebuilding the system frequently.
The period leading up to a release is guaranteed to require frequent rebuilds due to
active development.

The build cost and build changes are calculated differently. Build change is mea-
sured twice—once in the training corpus, and again in the testing corpus. This makes
the data representative for changes in each corpus. On the other hand, we measure
rebuild cost on the actual release instead of on an intermediate version released in
between the training and testing period. We do so out of convenience, since measuring
rebuild cost and extracting the build dependency graph requires a buildable version
of the whole system, whereas intermediate versions more often than not are broken
in several subsystems (especially in large systems like Qt). Although our evaluation
hence combines rebuild cost measurements with change data that is 1 year older, in
practice the mismatch is quite limited, as shown by our results.

6.1.2 Select files for optimization

For each of the four approaches, we identify the top N header files that should be
optimized for build speed based on analysis of the training corpus. Depending on the
heuristic, the top N corresponds to the header files that occupy the hotspot quadrant
(lh), or the N files with the highest individual rebuild cost (lr), rate of change (lc), or
file fan-in (l f).

6.1.3 Calculate total cost improvement (TCI)

To evaluate the impact of improving the top N header files in the testing corpus
suggested by a particular heuristic calculated in the training corpus, we calculate the
Total Cost Improvement (TCI). This is the percentage of reduction in the Total Rebuild
Cost (TRC, i.e., the sum of the rebuild cost of all header files h modified across the
changes in the testing corpus) that would be achieved when replaying all required
builds of the testing corpus if the individual rebuild costs of each header file in lh , lr ,
lc, or l f (i.e., the top N header files of each of the four approaches) were reduced by
10 %9 prior to entering the testing corpus.

9 The simulation was repeated for 20 and 50 % improvements, which yielded similar results.

123

Author's personal copy

634 Autom Softw Eng (2016) 23:619–647

(a) (b)

(c) (d)

Fig. 7 Cumulative curves comparing the four approaches for selecting header files for build performance
optimization. The total cost improvement (TCI) measures the reduction of time spent rebuilding in the
future (testing corpus) when the performance of the selected header files are improved by 10 %

For example, we first calculate the total rebuild cost in the testing corpus, and then,
if a particular heuristic suggests that we optimize header files A, B, and C based on the
training corpus, we recalculate the hypothetical total rebuild cost assuming that the
individual rebuild costs of header files A, B, and C were reduced by 10 %. Then, the
TCI for the heuristic is calculated as: TC I = T RCactual−T RChypothetical

T RCactual
. Note that in this

paper, we consider a reduction of 10 % in individual build cost, independent of specific
approaches (e.g. refactorings) that can be used to obtain a 10 % reduction (Dayani-Fard
et al. 2005).

Figure 7 compares the TCI of lh , lr , lc, and l f for each of the studied systems.
These curves are cumulative, meaning that, for instance, the TCI shown for file #2 in
each curve is the TCI in which the top two files (#1 and #2) have been improved. The
maximum number N for which we calculate TCI corresponds to the total number of
header files in the hotspot quadrant of lh .

6.2 Results

The TCI of the hotspot heuristic exceeds the TCI of files with the highest individual
rebuild cost, rate of change, or file fan-in. Indeed, Fig. 7 shows that the TCI of lh

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 635

exceeds those of lr , lc and l f in three of the four studied systems. In the Ruby system,
simply ordering files by their change frequency yields the highest TCI. Individual
rebuild cost does not help to select the files that will yield a high TCI because most
Ruby header files rebuild quickly (cf. Sect. 5).

We performed a Kruskal–Wallis rank sum test to check whether there is a statis-
tically significant difference between the TCI values of lh , lr , l f and lc (α = 0.05).
The test results for the GLib, PostgreSQL, and Qt systems show that the differences
in TCI are significant (p � 0.05), indicating that the hotspot analysis selects more
costly header files than just considering the file fan-in, the individual rebuild cost, or
the rate of change of a header file separately. In the case of Ruby, a Wilcoxon signed
rank test indicates that the hotspot analysis (lh) performs significantly worse than the
rate of change (lc).

Figure 7 shows that Qt achieves the largest TCI rates, with lh reaching a peak of
9.3 % and lr reaching 8.7 %. Note that TCI values in this simulation are theoretically
constrained to a maximum of 10 %, since this is the amount that the individual rebuild
cost of the selected header files were improved by. Moreover, TCI values of 8.7 and 9.3
% equate to a total rebuild cost savings of 8.4 and 8.9 days respectively—on average,
a savings of 3.3 and 3.7 min of rebuild cost per change. GLib and PostgreSQL both
achieve maximum TCI values of 4.9 %, which equate to a savings of 49.0 and 7.4
min, or 4.0 and 1.4 s per change respectively. Although Ruby achieves a high TCI
value of 7.6 % by optimizing the most frequently changing files, due to the rapid
speed of the Ruby build process, this only equates to a total savings of 38.7 or 0.16
s per change. Large and complex systems like Qt can really lower rebuild costs with
carefully focused build optimization.

The hotspot heuristic tends to select more costly header files that yield a higher
total cost improvement than other header file selection heuristics, especially in
larger systems with more complex build dependency graphs.

6.3 Discussion

It is important to note that TCI is an under-approximation for the true total rebuild cost
for two reasons. First, TCI assumes that each change will only be rebuilt once, when
in reality, a build will run several times by the developer making the change, and by
the other developers of the system (cf. Sect. 2). Since the number of times a build was
executed for a particular change is typically not recorded, we assume the minimum
case (i.e., just once). Second, TCI assumes that rebuild cost improvements to header
files are independent, i.e., by improving the rebuild cost of a header file A, we do
not improve the rebuild cost of another header file B in our simulation. In reality, due
to overlapping dependencies, this assumption likely will not hold. In both cases, our
reported TCI values correspond to a lower bound of the actual TCI—the actual cost
savings will be higher in practice.

123

Author's personal copy

636 Autom Softw Eng (2016) 23:619–647

7 Case study 2: hotspot characteristic analysis

To help practitioners avoid creating header file hotspots or find opportunities for refac-
toring, we analyze whether header file properties could give concrete indications of
hotspot likelihood. To do so, we build logistic regression models and measure the
effect that each property has on hotspot likelihood.

When selecting explanatory variables for our models, we discarded change fre-
quency, since it is not an actionable factor, i.e., changes that fix defects and add
features cannot be avoided. Instead, build optimization effort must focus on reducing
the rebuild cost of a header file by either: (1) shrinking the set of triggered edges
E ′(s), or (2) reducing the complexity of the header file itself (to reduce its individual
compilation time). The latter suggests that header file size and complexity metrics
should be added to our models, while the former suggests that we should consider
code layout (i.e., architecture) as well.

7.1 Approach

We build logistic regression models to check for a relationship between header file
properties and hotspot likelihood. A logistic regression model will predict a binary
outcome variable (whether or not a header file appears in the hotspot quadrant of
Fig. 5) based on the values of a given set of explanatory variables.

Table 2 lists the code content and layout properties that we considered, and provides
our rationale for selecting them. Each metric is measured using the released versions
of the studied systems presented in Table 1. Code layout metrics are derived from the
pathname of each source file. Directory and file fan-in are calculated based on code
dependency information extracted using the Understand static code analysis tool.10

Source lines of code are counted using the SLOCCount tool.11 Number of includes
is calculated using common UNIX tools to select #include lines that refer to files
within each software system.

Since our goal is to understand the relationship between the explanatory variables
(code layout and content properties) and the dependent variable (hotspot likelihood),
which is similar to prior work of Mockus (2010) and others (Cataldo et al. 2009;
Shihab et al. 2010), we adopt a similar model construction approach. Moreover, since
we do not intend to use the models for prediction, but rather for explanation, we do
not split the datasets into training and testing corpora as was done in Sect. 6, but rather
build models using both years of the historical data together. To lessen the impact of
skew, we log-transform the SLOC, number of includes, depth, and file and directory
fan-in variables. We build models for each studied system separately.

7.1.1 Data preparation and model construction

We check for variables that are highly correlated with one another prior to building our
models, and also check for variables that introduce multicollinearity into preliminary

10 http://www.scitools.com/index.php.
11 http://www.dwheeler.com/sloccount/.

123

Author's personal copy

http://www.scitools.com/index.php
http://www.dwheeler.com/sloccount/

Autom Softw Eng (2016) 23:619–647 637

Table 2 Source code properties used to build logistic regression models that explain header file hotspot
likelihood

Property Description Rationale

Code layout

Subsystem The top-level directory in the path of
a header file

Certain subsystems have a more
central role and thus may be more
susceptible to header file hotspots

Depth The number of subdirectories in the
header file’s path relative to the top
directory of the system

Since header files that appear in
deeper directory paths are likely
more specialized and hence impact
fewer deliverables than header files
at shallower directory paths, they
likely have a smaller impact on the
build process, and are thus less
likely to be hotspots

Directory fan-in The number of other directories
whose source files refer to code
within this header file

Header files with code dependencies
that are more broadly used
throughout the codebase are likely
to have a higher rebuild cost, and
thus are more likely to be hotspots

Code content

File fan-in The number of other source files
referring to code within this header
file

The more source files that rely on a
header file, the more likely it is to
be a hotspot

Source lines of code The number of non-whitespace,
non-comment lines

Larger header files are more likely
hotspots

Number of includes The number of distinct imported
interface files, i.e., #include
statements

Yu et al. suggest that including
several interface files bloats the
build process (Yu et al. 2003).
Hence, we suspect that importing
many other header files will
increase hotspot likelihood

models. We use Spearman rank correlation (ρ) to check for highly correlated variables
instead of other types of correlation (e.g. Pearson) because rank correlation does not
require normally distributed data. After constructing preliminary models, we check
them for multicollinearity using the variance inflation factor (VIF) score. A VIF score
is calculated for each explanatory variable used by a preliminary model. A VIF score
of one indicates that no collinearity is introduced by the variable, while values greater
than one indicate the ratio of inflation in the variance explained due to collinearity. As
suggested by Fox (2008), we select a VIF score threshold of five. Neither correlation
nor VIF analysis identified any variables that are problematic for our models (|ρ| ≥ 0.6
or VIF ≥ 5).

Finally, to decide whether an explanatory variable is a significant contributor to the
fit of our models, we perform drop-one tests (Chambers and Hastie 1992) using the
implementation provided by the core stats package of R (R Core Team 2013). The
test measures the impact of an explanatory variable on the model by measuring the
deviance explained (i.e., the percentage of deviance that the model covers) of models

123

Author's personal copy

638 Autom Softw Eng (2016) 23:619–647

consisting of: (1) all explanatory variables (the full model), and (2) all explanatory
variables except for the one under test (the dropped model). A χ2 likelihood ratio
test is applied to the resulting values to indicate whether each explanatory variable
improves the deviance explained by the full model to a statistically significant degree
(α = 0.05). We discard those variables that do not improve the deviance explained by
a significant amount.

7.1.2 Model analysis

In order to compare the effect that each statistically significant header file property
has on hotspot likelihood, we extend the approach of Cataldo et al. (2009). First,
a typical header file is imitated by setting all explanatory numeric variables to their
median values and categorical/binary values to their mode (most frequently occurring)
category. The model is then applied to the typical header file to calculate its predicted
probability, i.e., the likelihood that the typical header file is a hotspot, which we call
the standard median model (SMM). One by one, we then modify each explanatory
variable of the typical header file in one of two ways:

Numeric variable We add one standard deviation to the median value and recal-
culate the predicted probability.
Categorical/binary variable The predicted probability is recalculated for each
category except for the mode.

The recalculated predicted probabilities are referred to as the increased median
model (IMM) values. Note that the SMM is a fixed value while IMM is calculated for
each explanatory variable. The Effect Size ES of an explanatory variable X is then
calculated as:

ES(X) = I MM(X) − SMM

SMM
(1)

Variables can have positive or negative ES values indicating an increase or decrease
in hotspot likelihood relative to SMM respectively. The farther the value of ES(X) is
from zero, the larger the impact that X has on our models. For example, an ES value
of 0.51 means that the IMM is 51 % higher than the SMM.

7.2 Results

Tables 3 and 4 shows that our complete models achieve between 32 % (Ruby) and
57 % (GLib) deviance explained. Our models could be likely improved by adding
additional header file properties, or even properties extracted from the build system.
However, we believe that these models provide a sound starting point for explaining
header file hotspot likelihood.

Tables 3 and 4 also shows the change in deviance explained reported by the drop-
one test (�DE) for each variable. The �DE measures the percentage of the deviance
explained by the model that can only be explained by a particular variable. Since
multiple variables may explain the same header file hotspots, the �DE values do not
sum up to the total deviance explained by the full model.

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 639

Ta
bl
e
3

L
og

is
tic

re
gr

es
si

on
m

od
el

st
at

is
tic

s
fo

r
th

e
la

rg
er

st
ud

ie
d

sy
st

em
s

(i
.e

.,
G

L
ib

an
d

Q
t)

G
L

ib
Q

t

D
ev

ia
nc

e
ex

pl
ai

ne
d

57
%

D
ev

ia
nc

e
ex

pl
ai

ne
d

49
%

M
et

ri
c

Su
bd

ir.
�
D
E

(%
)

E
S(
X

)
M

et
ri

c
Su

bd
ir.

�
D
E

(%
)

E
S(
X

)

Su
bs

ys
te

m
gi

o
28

∗∗
∗

†
Su

bs
ys

te
m

qt
w

eb
ki

t
23

∗∗
∗

†

te
st

s
2.

91
qt

im
ag

ef
or

m
at

s
−0

.6
9

gm
od

ul
e

4.
73

qt
ac

tiv
eq

t
−0

.5
2

bu
ild

49
.9

4
qt

sv
g

−0
.0

7

./
15

8.
62

qt
do

c
0.

43

go
bj

ec
t

>
1,

00
0

qt
gr

ap
hi

ca
le

ff
ec

ts
0.

43

gl
ib

>
1,

00
0

qt
sc

ri
pt

(+
7

ot
he

rs
)

>
1,

00
0

D
ep

th
�

D
ep

th
5∗

∗∗
−0

.5
8

D
ir

ec
to

ry
fa

n-
in

1∗
4.

11
D

ir
ec

to
ry

fa
n-

in
1∗

∗∗
0.

98

Fi
le

fa
n-

in
5∗

∗∗
1.

10
Fi

le
fa

n-
in

13
∗∗

∗
2.

53

SL
O

C
1∗

0.
39

SL
O

C
1∗

∗∗
0.

44

In
cl

ud
es

�
In

cl
ud

es
1∗

∗∗
−1

.0

D
ev

ia
nc

e
ex

pl
ai

ne
d

(D
E

)
in

di
ca

te
s

ho
w

w
el

l
th

e
m

od
el

ex
pl

ai
ns

th
e

bu
ild

ho
ts

po
t

da
ta

.
�
D
E

m
ea

su
re

s
th

e
im

pa
ct

of
dr

op
pi

ng
a

va
ri

ab
le

fr
om

th
e

m
od

el
,

w
hi

le
E
S(
X

)

m
ea

su
re

s
th

e
ef

fe
ct

si
ze

(s
ee

E
q.

1)
,i

.e
.,

th
e

im
pa

ct
of

ex
pl

an
at

or
y

va
ri

ab
le

s
on

m
od

el
pr

ed
ic

tio
n

†
M

od
e

va
lu

es
of

ca
te

go
ri

ca
lv

ar
ia

bl
es

ar
e

pa
rt

of
th

e
SM

M
ca

lc
ul

at
io

n
an

d
he

nc
e

ca
nn

ot
be

ca
lc

ul
at

ed
us

in
g

IM
M

St
at

is
tic

al
si

gn
ifi

ca
nc

e
of

ex
pl

an
at

or
y

po
w

er
ac

co
rd

in
g

to
D

ro
p

O
ne

an
al

ys
is

:�
p

≥
0.

05
;∗

p
<

0.
05

;∗
∗
p

<
0.

01
;∗

∗∗
p

<
0.

00
1

123

Author's personal copy

640 Autom Softw Eng (2016) 23:619–647

Table 4 Logistic regression model statistics for the smaller studied systems (i.e., PostgreSQL and Ruby)

PostgreSQL Ruby

Deviance explained 47 % 32 %

Metric �DE ES(X) �DE ES(X)

Subsystem � �
Depth � �
Directory fan-in � �
File fan-in 47 %∗∗∗ 8.75 32 %∗∗∗ 3.38

SLOC � �
Includes � �
Deviance explained (DE) indicates how well the model explains the build hotspot data. �DE measures the
impact of dropping a variable from the model, while ES(X) measures the effect size (see Eq. 1), i.e., the
impact of explanatory variables on model prediction
Statistical significance of explanatory power according to Drop One analysis: � p ≥ 0.05; ∗ p < 0.05;
∗∗ p < 0.01; ∗∗∗ p < 0.001

In the larger studied systems, header file hotspots are more closely related to code
layout than to the content of a file. Table 3 shows that there is a drop in deviance
explained of 28 and 23 % in the GLib and Qt systems respectively when the subsystem
explanatory variable is excluded from the model. Furthermore, although the impact
is small, directory fan-in explains a statistically significant amount of deviance in the
GLib and Qt systems. On the other hand, in those systems, file size and number of
includes offer little explanatory power, and although GLib and Qt models without file
fan-in drop in explanatory power by 5 and 13 % respectively, the decrease is smaller
than that of the subsystem variable. Hence, most of the explanatory power of the GLib
and Qt models is derived from code layout properties, such as the subsystem of a file.

Filesystem depth provides additional explanatory power (5 %) in Qt, which is the
largest studied system. The negative effect size indicates that as we move deeper into
the filesystem hierarchy, hotspot likelihood decreases, suggesting that more central
header files (located at shallower filesystem locations) are more prone to build perfor-
mance issues.

On the other hand, for the smaller systems, code layout properties offer little hotspot
explanatory power. Table 4 shows that the subsystem variable does not contribute a
significant amount of explanatory power to the PostgreSQL and Ruby models. More-
over, despite the fact that 93 % of the PostgreSQL hotspots reside in the include
subsystem, this corresponds to 79 % of all PostgreSQL header files, making this a less
distinguishing variable.

Furthermore, filesystem depth is not a significant contributor to our PostgreSQL
and Ruby models. The vast majority of hotspots in the PostgreSQL and Ruby systems
are found in their include and top directory subsystems respectively, which do not
have complex subdirectory structures within them. On the other hand, hotspots are
more evenly distributed among subsystems in the Qt system, and hence the depth
metric provides additional explanatory power there.

File fan-in provides all of the explanatory power in the smaller studied systems.
Although file fan-in provides a significant amount of explanatory power to all of the

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 641

models, file fan-in impacts the performance of the smaller PostgreSQL and Ruby sys-
tem models the most. File fan-in calculates the source files that are directly depending
on the functionality provided within the header file. In this sense, file fan-in provides
an optimistic (minimal) perspective of dependencies among code files. In smaller sys-
tems, this optimistic perspective is sufficient, whereas in larger systems with many
subsystems (and a complex interplay between them) where architectural decay has
introduced false dependencies among files (Yu et al. 2003), file fan-in no longer accu-
rately estimates the actual set of build dependencies. Spearman rank correlation tests
indicate that there is a stronger correlation between the file fan-in and individual rebuild
cost of header files in the smaller studied systems (ρPostgreSQL = 0.87, ρRuby = 0.62)
than in the larger ones (ρQt = 0.28, ρGLib = 0.48). Indeed, in larger systems with
a more complex interplay between system components, most of the files including
a header file will likely be other header files. Since this additional layer of header
file indirection introduces an additional set of unpredictable, but necessary compile
dependencies, file fan-in by itself tends to lose its hotspot explanatory power as systems
grow.

Yet, even in the smaller PostgreSQL and Ruby systems where file fan-in provides
all of the explanatory power, it does not provide a highly accurate estimate of hotspot
likelihood. The reason for this discrepancy is twofold. First, while file fan-in provides
an optimistic estimate of the compile commands that would be required should the
header file change, it can offer little information about the link commands that would
be required. For example, two header files with an identical amount of file fan-in may
trigger very different amounts of link activity, which would greatly impact the rebuild
cost of the header files. Second, being a metric that is calculated based at the code
level, file fan-in cannot estimate how frequently a header file will change.

Our models explain 32–57% of identified hotspots. Architectural properties offer
much of the explanatory power in the larger systems, suggesting that as systems
grow, header file hotspots havemore to dowith code layout thanwith code content
properties like file fan-in.

7.3 Discussion

The explanatory power of the code layout metrics indicates that there are areas of the
larger studied systems that are especially susceptible to header file hotspots (Table 3).
Although our regression models seem to suggest that one should simply redistribute
header files from subsystems with high hotspot likelihood to the subsystems with lower
hotspot likelihood, such a course of action is impractical. Instead, our results should be
interpreted as pinpointing the problematic subsystems that would benefit most from
architectural refinement, such as a focused refactoring impetus. For example, one
could identify the three most hotspot-prone subsystems, and split them into multiple
components, or apply the build refactorings of Yu et al. (2003, 2005) or Morgenthaler
et al. (2012). Moreover, the impact that code metrics have on our regression models
suggests that optimization of the header files in the hotspot-prone subsystems will

123

Author's personal copy

642 Autom Softw Eng (2016) 23:619–647

yield better results if the focus of such optimization is on the reduction of file fan-in,
rather than of header file size or the number of includes.

8 Limitations and threats to validity

In this section, we discuss the limitations and the threats to the validity of our study.

8.1 Limitations

Our approach focuses on the detection and prioritization of header file hotspots,
but does not suggest automatic hotspot refactorings. In this respect, our approach
is similar to defect prediction, which is used to focus quality assurance effort on the
most defect-prone modules. Furthermore, automatically proposing fixes for hotspots
requires domain-specific expertise. For example, an automatically generated build
dependency graph refactoring may fix hotspots in theory, but in practice may require
an infeasibly complex restructuring of the system, reducing other desirable proper-
ties of a software system like understandability and maintainability. Further work is
needed to find a balance between these forces.

An experienced developer may have an intuition about which header files are
hotspots, but such a view would be coloured by his or her individual perspective. More-
over, our hotspot detection approach provides automated support to ground developers’
intuition with data and through routine (re)application of our approach, a development
team can monitor improvement or deterioration of hotspots over time.

8.2 Construct validity

Since build systems evolve (Adams et al. 2008; McIntosh et al. 2012), the BDG itself
will change as a software system ages, which may cause the rebuild cost of each file
to fluctuate. For the sake of simplicity, our simulation experiment in Sect. 6 projects a
constant build cost for each change. Nonetheless, our technique is lightweight enough
to recalculate rebuild costs after each change to the build system.

8.3 Internal validity

Since one can only execute a build system for a concrete configuration, we only
study a single configuration for each studied system. Unfortunately, once a target
configuration is selected, areas of the code that are not related to the selected software
features will not be exercised by the build process. For example, since we focus on the
Linux environment, Windows-specific code will be omitted during the build process.
A static analysis of build specifications, such as that of Tamrawi et al. (2012) could
be used to derive BDGs (and could easily be plugged into our approach), however
appropriate edge weights need to be defined and calculated for them.

The header file hotspot heuristic assumes that header files that have a high rebuild
cost only become build performance problems when they change frequently. Poor

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 643

build performance in infrequently changing header files still poses a lingering threat
to build performance. However, the approach allows practitioners to configure the
hotspot quadrant thresholds to match their build performance requirements.

8.4 External validity

We focus our case study on four open source systems, which threatens the gener-
alizability of our case study results. However, we studied a variety of systems with
different sizes and domain to combat potential bias.

The build systems of the studied systems rely on make specifications, which may
bias our case study results towards such technologies. However, our approach is agnos-
tic of the underlying build system, operating on a build dependency graph, which can
be extracted from any build system. Furthermore, our study focuses on header file
hotspots, which are a property of C/C++ systems for which make-based build sys-
tems are the de facto standard (McIntosh et al. 2015).

The thresholds that we selected for the quadrant plots threaten the reliability of our
case study results. Use of different thresholds will produce different quadrants, and
thus, different header file hotspots. However, we believe that our selected elapsed time
thresholds are representative, since the values were derived from the literature (Fischer
et al. 2005; Humble and Farley 2010). Moreover, we use the median for the rate of
change threshold—a metric that is resilient to outliers.

9 Related work

Developers rely on the maintainability, correctness, and speed of the build system. We
discuss the related work with respect to these dimensions below.

9.1 Maintainability

Prior work shows that keeping the build system in sync with the source code generates
substantial project maintenance overhead. Kumfert and Epperly (2002) and Hochstein
and Jiao (2011) find that there is a “hidden overhead” associated with maintaining build
systems. In our prior work, we show that build systems tend to co-evolve with source
code from release to release (Adams et al. 2008; McIntosh et al. 2012). We have
also shown that build system evolution imposes a non-trivial overhead on software
development (McIntosh et al. 2011), e.g. up to 27 % of source code changes require
accompanying build changes. In this work, we study build performance, which is
another tangible form of build system overhead on software development.

9.2 Correctness

Neglecting build maintenance when it is necessary can generate lingering inconsisten-
cies in the build process. Nadi et al. (2013) find that Linux kernel variability anomalies,
i.e., inconsistencies between source code, configuration, and build specifications are
rarely caused by trivial, typo-related issues, but more often caused by incomplete
changes, e.g. changes to configuration files that are not properly reflected in the source

123

Author's personal copy

644 Autom Softw Eng (2016) 23:619–647

code. Furthermore, these variability anomalies tend to linger for six Linux releases
before getting fixed. Neitsch et al. (2012) find that abstractions and concepts tend
to leak between source code and build system. Complementing their work, we find
that architectural decay lowers the explanatory power that code properties provide to
models built to explain hotspot likelihood.

Prior research has proposed several tools to assist developers in maintaining correct-
ness in the build system. Adams et al. (2007) develop the MAKAO tool to visualize and
reason about build dependencies. Tamrawi et al. (2012) propose a technique for visual-
izing and verifying build dependencies using symbolic dependency graphs. Al-Kofahi
et al. (2012) extract the semantics of build specification changes using MkDiff. Nadi
and Holt (2011, 2012) develop a technique for reporting anomalies between source
code and build system as likely defects in Linux. We propose an automatable approach
that establishes the basis for a tool capable of detecting header file hotspots.

When the build system fails, it causes build breakage, which can slow development
progress. Hassan and Zhang (2006) use decision trees to predict whether a build
will pass a lengthy (occasionally day-long) build certification process. Wolf et al.
(2009) use social network analysis to show that team communication can predict
broken builds. Kwan et al. (2011) show that socio-technical congruence, i.e., the
agreement between technical dependencies and social alignment of a software team
can also predict broken builds. Van der Storm (2008) uses a backtracking algorithm
to prevent continuous integration builds from impacting developers. Similar to our
rebuild cost metric, van der Storm (2007) defines a build penalty metric to measure the
cost of interface changes in component-based software systems. While these studies
focus on troublesome broken builds that cost developers time, our approach narrows
build optimization focus to frequently changing header files that trigger slow rebuild
processes.

9.3 Speed

Prior work also examines how build processes can be accelerated. Adams et al. (1994)
achieve up to 80 % improvement in build performance through intelligent recompi-
lation algorithms and elimination of unused environment symbols. Yu et al. improve
both incremental and full build speed by automatically removing unnecessary depen-
dencies between files (Yu et al. 2005) and redundant code from C header files (Yu
et al. 2003). Dayani-Fard et al. (2005) semi-automatically propose architectural refac-
torings that will improve build performance. Our work complements the prior studies
by narrowing optimization focus to the most costly header file hotspots that can be
targeted individually, rather than all at once.

Recent work has also explored the applicability of refactoring techniques to build
specifications themselves. For example, Vakilian et al. (2015) devise a technique to
detect and refactor underutilized targets, i.e., build targets that are only partially used
by the targets that depend upon them. Underutilized targets may trigger updates to
those targets that depend upon them, even if those updates are not strictly necessary.
By dividing underutilized targets into smaller, independent ones, Vakilian et al. (2015)
are able to improve build performance. We believe that our approach is complementary

123

Author's personal copy

Autom Softw Eng (2016) 23:619–647 645

to the approach of Vakilian et al. (2015) in two ways: (1) our technique includes the
change frequency dimension, which could be used to reduce the scope of the target
refactoring to those targets that really make a difference in day-to-day development,
and (2) applying the notion of decomposing underutilized targets to hotspot files may
be an interesting way to address build hotspots. Furthermore, while the approach of
Vakilian et al. (2015) focuses on refactoring build specifications, our technique focuses
on files, components, and subsystems that would benefit from build optimization effort.

10 Conclusions

Developers rely on the build system to produce testable deliverables in a timely fashion.
A fast build system is at the heart of modern software development. However, software
systems are large and complex, often being composed of thousands of source code
files that must be carefully translated into deliverables in a timely fashion by the
build system. As software projects age, their build systems tend to grow in size and
complexity, making build profiling and performance analysis challenging.

In this paper, we propose an approach for pinpointing header file hotspots in C/C++
systems by analyzing both the build dependency graph and the change history of a
software system. Our approach can be used to prioritize build optimization effort,
allowing teams to focus effort on the header files that will deliver the most value in
return. By continuously (re)applying our approach, development teams can verify that
build optimization effort has indeed had an impact. Through a case study on four open
source systems, we show that:

– The header file hotspot approach highlights header files that, if optimized, yield
more improvement in the future total rebuild cost than just the header files that
trigger the slowest rebuild processes, change the most frequently, or are used the
most throughout the codebase (Sect. 6).

– Regression models are capable of explaining between 32 and 57 % of the detected
hotspots using code layout and content properties of the header files (Sect. 7).

– In large projects, build optimization benefits more from architectural refinement
than from acting on code properties like header file fan-in alone (Sect. 7).

References

Adams, B., De Schutter, K., Tromp, H., Meuter, W.: Design recovery and maintenance of build systems.
In: Proceedings of the 23rd International Conference on Software Maintenance (ICSM), pp. 114–123
(2007)

Adams, B., Schutter, KD., Tromp, H., Meuter, WD.: The evolution of the linux build system. In: Electronic
Communications of the ECEASST 8 (2008)

Adams, R., Tichy, W., Weinert, A.: The cost of selective recompilation and environment processing. Trans.
Softw. Eng. Methodol. (TOSEM) 3(1), 3–28 (1994)

Al-Kofahi, J.M., Nguyen, H.V., Nguyen, A.T., Nguyen, T.T., Nguyen, T.N.: Detecting semantic changes in
makefile build code. In: Proceedings of the 28th International Conference on Software Maintenance
(ICSM), pp. 150–159 (2012)

Cataldo, M., Mockus, A., Roberts, J.A., Herbsleb, J.D.: Software dependencies, work dependencies, and
their impact on failures. Trans. Softw. Eng. (TSE) 35(6), 864–878 (2009)

123

Author's personal copy

646 Autom Softw Eng (2016) 23:619–647

Chambers, J.M., Hastie, T.J. (eds.): Statistical Models in S, vol. 4. Wadsworth and Brooks/Cole, Pacific
Grove (1992)

Dayani-Fard, H., Yu, Y., Mylopoulos, J., Andritsos, P.: Improving the build architecture of legacy C/C++
Software systems. In: Proceedings of the 8th International Conference on Fundamental Approaches
to Software Engineering (FASE), pp. 96–110 (2005)

Feldman, S.: Make: a program for maintaining computer programs. Software 9(4), 255–265 (1979)
Fischer, A.R.H., Blommaert, F.J.J., Midden, C.J.H.: Monitoring and evaluation of time delay. Int. J. Hum.

Comput. Interact. 19(2), 163–180 (2005)
Fox, J.: Applied Regression Analysis and Generalized Linear Models, 2nd edn. Sage Publications, Thousand

Oaks (2008)
Hassan, A.E., Zhang, K.: Using decision trees to predict the certification result of a build. In: Proceedings

of the 21st International Conference on Automated Software Engineering (ASE), pp. 189–198 (2006)
Hochstein, L., Jiao, Y.: The cost of the build tax in scientific software. In: Proceedings of the 5th International

Symposium on Empirical Software Engineering and Measurement (ESEM), pp. 384–387 (2011)
Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build, Test, and Deploy-

ment Automation. Addison-Wesley, New Jersey (2010)
Khomh, F., Chan, B., Zou, Y., Hassan, A.E.: An Entropy evaluation approach for triaging field crashes: a

case study of mozilla firefox. In: Proceedings of the 18th Working Conference on Reverse Engineering
(WCRE), pp. 261–270 (2011)

Kumfert, G., Epperly, T.: Software in the DOE: the hidden overhead of “The Build”. Techical Report
UCRL-ID-147343, Lawrence Livermore National Laboratory, CA, USA (2002)

Kwan, I., Schröter, A., Damian, D.: Does socio-technical congruence have an effect on software build
success? A study of coordination in a software project? Trans. Softw. Eng. (TSE) 37(3), 307–324
(2011)

Lakos, J.: Large-Scale C++ Software Design. Addison-Wesley, New Jersey (1996)
McIntosh, S., Adams, B., Nguyen, T.H.D., Kamei, Y., Hassan, A.E.: An empirical study of build maintenance

effort. In: Proceedings of the 33rd International Conference on Software Engineering (ICSE), pp. 141–
150 (2011)

McIntosh, S., Adams, B., Hassan, A.E.: The evolution of Java build systems. Empir. Softw. Eng. 17(4–5),
578–608 (2012)

McIntosh, S., Nagappan, M., Adams, B., Mockus, A., Hassan, A.E.: A large-scale empirical study of the
relationship between build technology and build maintenance. Empir. Softw. Eng. (2015)

Mockus, A.: Organizational volatility and its effects on software defects. In: Proceedings of the 18th
Symposium on the Foundations of Software Engineering (FSE), pp. 117–126 (2010)

Morgenthaler, J.D., Gridnev, M., Sauciuc, R., Bhansali, S.: Searching for build debt: experiences managing
technical debt at google. In: Proceedings of the 3rd International Workshop on Managing Technical
Debt (MTD), pp. 1–6 (2012)

Nadi, S., Holt, R.: Make it or break it: mining anomalies in linux kbuild. In: Proceedings of the 18th Working
Conference on Reverse Engineering (WCRE), pp. 315–324 (2011)

Nadi, S., Holt, R.: Mining Kbuild to detect variability anomalies in linux. In: Proceedings of the 16th
European Conference on Software Maintenance and Reengineering (CSMR), pp. 107–116 (2012)

Nadi, S., Dietrich, C., Tartler, R., Holt, R.C., Lohmann, D.: Linux variability anomalies: what causes them
and how do they get fixed? In: Proceedings of the 10th Working Conference on Mining Software
Repositories (MSR), pp. 111–120 (2013)

Neitsch, A., Wong, K., Godfrey, M.W.: Build system issues in multilanguage software. In: Proceedings of
the 28th International Conference on Software Maintenance, pp. 140–149 (2012)

R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna. http://www.R-project.org/

Shihab, E., Jiang, Z.M., Ibrahim, W.M., Adams, B., Hassan, A.E.: Understanding the Impact of code and
process metrics on post-release defects: a case study on the eclipse project. In: Proceedings of the 4th
International Symposium on Empirical Software Engineering and Measurement (ESEM), pp. 1–10
(2010)

van der Storm, T.: Component-based configuration, integration and delivery. Ph.D Thesis, University of
Amsterdam (2007)

van der Storm, T.: Backtracking incremental continuous integration. In: Proceedings of the 12th European
Conference on Software Maintenance and Reengineering (CSMR), pp. 233–242 (2008)

123

Author's personal copy

http://www.R-project.org/

Autom Softw Eng (2016) 23:619–647 647

Tamrawi, A., Nguyen, H.A., Nguyen, H.V., Nguyen, T.: Build Code analysis with symbolic evaluation.
In: Proceedings of the 34th International Conference on Software Engineering (ICSE), pp. 650–660
(2012)

Tu, Q., Godfrey, M.W.: The build-time software architecture view. In: Proceedings of the 17th International
Conference on Software Maintenance (ICSM), pp. 398–407 (2001)

Vakilian, M., Sauciuc, R., Morgenthaler, J.D., Mirrokni, V.: Automated decomposition of build targets.
In: Proceedings of the 37th International Conference on Software Engineering (ICSE), pp. 123–133
(2015)

Wolf, T., Schröter, A., Damian, D., Nguyen, T.: Predicting build failures using social network analysis on
developer communication. In: Procedings of the 31st International Conference on Software Engineer-
ing (ICSE), pp. 1–11. Washington, DC (2009)

Yu, Y., Dayani-Fard, H., Mylopoulos, J.: Removing false code dependencies to speedup software build
processes. In: Proceedings of the 13th IBM Centre for Advanced Studies Conference (CASCON), pp.
343–352 (2003)

Yu, Y., Dayani-Fard, H., Mylopoulos, J., Andritsos, P.: Reducing build time through precompilations for
evolving large software. In: Proceedings of the 21st International Conference on Software Maintenance
(ICSM), pp. 59–68 (2005)

123

Author's personal copy

	Identifying and understanding header file hotspots in C/C++ build processes
	Abstract
	1 Introduction
	2 Incremental builds
	3 Header file hotspots
	4 Hotspot analysis approach
	4.1 Dependency graph construction
	4.2 Rebuild cost calculation
	4.2.1 Detect source files
	4.2.2 Detect triggered edges
	4.2.3 Filter duplicate edges
	4.2.4 Aggregate cost of triggered edges

	4.3 Hotspot detection

	5 Case study setup
	5.1 Studied systems
	5.2 Implementation details
	5.2.1 Dependency graph construction and rebuild cost calculation
	5.2.2 Edge weight metric
	5.2.3 Quadrant threshold selection

	5.3 Preliminary analysis of header file build performance
	5.3.1 Approach
	5.3.2 Results

	6 Case study 1: evaluation of the hotspot detection approach
	6.1 Approach
	6.1.1 Extract historical data
	6.1.2 Select files for optimization
	6.1.3 Calculate total cost improvement (TCI)

	6.2 Results
	6.3 Discussion

	7 Case study 2: hotspot characteristic analysis
	7.1 Approach
	7.1.1 Data preparation and model construction
	7.1.2 Model analysis

	7.2 Results
	7.3 Discussion

	8 Limitations and threats to validity
	8.1 Limitations
	8.2 Construct validity
	8.3 Internal validity
	8.4 External validity

	9 Related work
	9.1 Maintainability
	9.2 Correctness
	9.3 Speed

	10 Conclusions
	References

