Noname manuscript No.
(will be inserted by the editor)

The impact of Concept drift and Data leakage on
Log Level Prediction Models

Youssef Esseddiq Ouatiti - Mohammed
Sayagh - Noureddine Kerzazi - Bram
Adams - Ahmed E. Hassan

Received: date / Accepted: date

Abstract Developers insert logging statements to collect information about
the execution of their systems. Along with a logging framework (e.g., Logdj),
practitioners can decide which log statement to print or suppress by tagging
each log line with a log level. Since picking the right log level for a new logging
statement is not straightforward, machine learning models for log level pre-
diction (LLP) were proposed by prior studies. While these models show good
performances, they are still subject to the context in which they are applied,
specifically to the way practitioners decide on log levels in different phases
of the development history of their projects (e.g., debugging vs. testing). For
example, Openstack developers interchangeably increased /decreased the ver-
bosity of their logs across the history of the project in response to code changes
(e.g., before vs after fixing a new bug). Thus, the manifestation of these chang-
ing log verbosity choices across time can lead to concept drift and data leakage
issues, which we wish to quantify in this paper on LLP models. In this pa-
per, we empirically quantify the impact of data leakage and concept drift on
the performance and interpretability of LLP models in three large open-source

Youssef Esseddiq Ouatiti
Queen’s university
E-mail: youssefesseddiq.ouatitiQqueensu.ca

Mohammed Sayagh
ETS - Québec University
E-mail: mohammed.sayagh@etsmtl.ca

Noureddine Kerzazi
ENSIAS - Morocco
E-mail: nkerzazi@gmail.com

Bram Adams
Queen’s university
E-mail: bram.adams@queensu.ca

Ahmed E. Hassan
Queen’s university
E-mail: ahmed@cs.queensu.ca

2 Youssef Esseddiq Ouatiti et al.

systems. Additionally, we compare the performance and interpretability of sev-
eral time-aware approaches to tackle time-related issues. We observe that both
shallow and deep-learning-based models suffer from both time-related issues.
We also observe that training a model on just a window of the historical data
(i.e., contextual model) outperforms models that are trained on the whole his-
torical data (i.e., all-knowing model) in the case of our shallow LLP model.
Finally, we observe that contextual models exhibit a different (even contra-
dictory) model interpretability, with a (very) weak correlation between the
ranking of important features of the pairs of contextual models we compared.
Our findings suggest that data leakage and concept drift should be taken into
consideration for LLP models. We also invite practitioners to include the size
of the historical window as an additional hyperparameter to tune a suitable
contextual model instead of leveraging all-knowing models.

Keywords Machine learning - Concept drift - Data leakage - Software
logging - Log level prediction

1 Introduction

The practice of inserting logging statements is an important component of
the development activity as it provides insights about the execution of software
systems [27, 46, 55, 30, 57|, so practitioners (e.g., developers, release managers,
operators) can prevent and easily fix errors. Each logging statement requires
in addition to a message, a log level (e.g., trace, info, warn, error, fatal) that
decides the verbosity of that logging statement. Practitioners can then adjust
the log levels via a logging framework, to decide which log statements to trace
and which ones to ignore. Such a log level adjustment suppresses unneces-
sary logging statements that might cause noise and overhead to the system.
Inversely, the log level can be set to show more verbose logging statements
which provides further information during debugging tasks.

Given that choosing the suitable log level for logging statements is not a
straightforward task [37, 56] and that developers typically make initial poor
log level choices [27, 37|, prior studies [28, 29| suggested machine learning
models that leverage different metrics to predict the right log level for a logging
statement. Such metrics quantify properties about the logging statement (e.g.,
length of the logging statement), the containing block (e.g., type of block), the
containing file (e.g., number of logging statements), the change in the file (e.g.,
code churn) and the history of the file (e.g., number of revisions). Such models
achieve an average AUC performance ranging from 0.75 to 0.81 [28] and from
0.79 to 0.85 [29] across the evaluated projects.

However, neither of these studies [28, 29] takes into account that logging
practices can change over time for a variety of reasons not captured by earlier
metrics, which can impact the performance and interpretation of these mod-
els. In fact, logging strategies are unstable [21] and can change depending on
the development phase and the performance of the system. Such changes in
the logging practices reflect a global change in the logging strategy from one

The impact of Concept drift and Data leakage on Log Level Prediction Models 3

period of time to another and are not limited to the update of the log level for
certain logging statements. For instance, during debugging activities Open-
Stack developers typically opt to increase the verbosity of their logs, in order
to resolve bugs . Inversely, at another period of the history of the OpenStack
project, developers might decide to reduce the verbosity as their logs are get-
ting noisy without any abnormal system activity 2. Additionally, performance
monitoring activities can also motivate log verbosity tweaks as excessive log-
ging from a previous time period can negatively impact the performance of
systems [54].

The impact of changing logging practices can lead to two well-known time-
issues for LLPs. On the one hand, concept drift refers to the phenomenon
according to which the statistical properties of a variable (dependent or inde-
pendent) unexpectedly change over time [11, 12]. This can occur as the logging
practices on which LLP models were trained become obsolete with time (e.g.,
after the adoption of a new logging strategy). On the other hand, this drift
of continuously changing log levels also leads to a higher impact of so-called
data leakage on model performance. Data leakage refers to situations where
the usage of random train/test splits biases the model by giving it access to
future information [22]. This can occur if future logging practices (e.g., logging
data when debugging an issue in March) were used to predict past log level
decisions (e.g., when debugging an issue in January). While a known issue for
other software analytics approaches, the restless nature of log levels can be
expected to only exacerbate the impact of data leakage.

While prior studies measured the impact of concept drift and/or data leak-
age on bug prediction models [8, 4] and AIOps models [34], no prior studies
focused on the impact of these time-related issues on LLP models. In fact, given
the context-dependent nature of machine learning [2, 6], the impact of time-
related issues (i.e., concept drift and data leakage) cannot be directly deducted
from the impact on other software engineering machine learning models. For
instance, the domain of logging is different than previously studied domains
from one side, and the type of data and model are different between log level
prediction and the existing studies from another side. These last differences
are in terms of the type of data used (stream vs. batch data, in comparison
with ATIOps data) and the type of predicted outcomes (binary vs. ordinal pre-
dicted response, in comparison with defect prediction data). Lastly, while LLP
models predict decisions controlled by developers (i.e., the developers choose
the log level), prior studied models (e.g., defect prediction) are out of the de-
veloper’s control and depend mainly on the system characteristics (e.g., bug
proneness).

Due to these two differences (i.e., the domain and the type of data), differ-
ent optimization and fine-tuning routes (e.g., different hyperparameters) might
be followed to achieve the best-performing model for each domain, as sug-
gested by Agrawal et al. [2]. These problem-specific optimizations —combined

1 https://bugs.]launchpad.net/nova/+bug/1715785
2 https://github.com/openstack/swift /pull/15

4 Youssef Esseddiq Ouatiti et al.

with the domain and data differences— make software engineering models vary
significantly [59]. For example, Bennin et al. [4] reported that —even within
the context of defect prediction— some models are more robust to time-related
issues than others.

Thus, our work aims to study the impact of the phenomena of data leakage
and concept drift on log level prediction models, which are not explored yet,
and involve substantially different types of data compared to data on which
the two time issues were evaluated in the past (i.e., bug prediction and AIOps).
On the one hand, LLPs might not be as impacted as models based on stream
data (e.g., AIOps models), as logging strategy changes can be infrequent in
time (e.g., projects with long release cycle). On the other hand, one could
assume that these log level prediction models might be severely impacted by
time-related issues in case of abrupt changes in the logging practice.

Specifically, we evaluate both a state-of-the-art shallow log level predictor
(aka. Shallow-LLP) proposed by Li et al. [28] and a state-of-the-art deep log
level predictor (aka. DL-LLP) proposed by Li et al. [29]. Note that we evaluate
both models as they can have different advantages over each other. In partic-
ular, the DL-LLP can be used for its high prediction performances, while the
Shallow-LLP as it can be also used for prediction it is more importantly used
for the interpretation and explanation of the important factors related to the
selection of log levels. Furthermore, we evaluate different time-aware modeling
techniques to deal with the data leakage and concept drift observed in log level
prediction. To do so, we focus on the following research questions:

RQ1. What is the impact of data leakage on the performance of
log level prediction models?

We observe that randomly splitting the training and testing data (i.e.,
random splitting approach) overestimates the AUC performance of the
Shallow-LLP by a median® of 7% (Hadoop), 3% (Spring) and 3% (Open-
Stack). Similarly, the DL-LLP trained using a random-approach overesti-
mates the AUC performance by a median® of 9%, 2% and 3.5% for Hadoop,
Spring and OpenStack respectively. Such an overestimation can lead up to
a maximum of 17% (Shallow-LLP) and 27% (DL-LLP). We also observe
that models based on random splitting statistically significantly outper-
form the models that are based on a time-aware splitting approach in a
median® of 90% (Hadoop) , 75% (Spring) and 71% (OpenStack) of the test-
ing time frames for the Shallow-LLP, and in a median of 57% (Hadoop),
67% (Spring) and 100% (OpenStack) of the testing time frames for the
DL-LLP.

RQ2. What is the impact of concept drift on the performance of
log level prediction models?

Shallow-LLP and DL-LLP see statistically significant performance drops
occur as early as a median® of 1.5, 1 and 1 time frames (two months length)
after the end of the training period for Hadoop, Spring and OpenStack
respectively. The magnitude of this AUC performance decrease is estimated

3 Median over the time frame sizes from 4 to 24 months.

The impact of Concept drift and Data leakage on Log Level Prediction Models 5

at a median® of 3.6% (Hadoop), 5.3% (Spring), and 2.8% (OpenStack) for
the Shallow-LLP and at a median® of 4.5% (Hadoop), 8.2% (Spring) and
3.2% (OpenStack) for the DL-LLP. Across all the testing time frames of a
trained model, we observe that the median* AUC performance decreases
are 8.2% (Hadoop), 5.9% (Spring) and 3.8% (OpenStack) for the Shallow-
LLP and 7.7% (Hadoop), 8.7% (Spring) and 7.3% (OpenStack) for the
DL-LLP.

Since we observe that both log level predictors (Shallow-LLP and DL-
LLP) suffer from the data leakage and concept drift problems, we further
investigate the following RQ:

RQ3. What is the best performing time-based modeling strategy
for log level prediction models?

Shallow-LLP contextual models trained on a window of historical data
statistically significantly outperform (in terms of AUC) all-knowing models
(i.e., trained using the entire history) in a median (over different time
frame sizes) of 94%, 82% and 86% of the testing time frames (i.e., testing
datasets of a given size) for Hadoop, Spring and OpenStack respectively.
Meanwhile, we do not observe a statistically significant difference between
the performance of contextual DL-LLPs and that of the all-knowing DL-
LLP, which is likely due to the trade-off between data quality and quantity
that is more pronounced in the case of data-hungry models like the DL-
LLP. Furthermore, we find that in the context of the Shallow-LLP no
training time frame size is consistently better than the other sizes in all
testing time frames. Therefore, the size of the training data for contextual
models should be considered as a hyperparameter to tune for LLPs.
While the prior research questions evaluate the impact of time-issues on
the performance of LLPs, the following research question investigates the
impact of time on the interpretation of LLPs, as time-changing interpre-
tation can be unreliable and confusing. We only investigate Shallow-LLPs,
since they are more interpretable compared to the DL-LLPs.

RQ4. How does the interpretability of the log level prediction
models change over time?

The interpretability of Shallow-LLPs changes over time. The correlation
between the ranking of the most important features of different contextual
models is very weak to weak for a median (across different time frame sizes)
of 88%, 80% and 79% of the pairs of compared contextual models (e.g., 6
months contextual model trained on time frame T1 and 6 months contex-
tual model trained on time frame T2) for Hadoop, Spring and OpenStack,
respectively. Up to 40% (Hadoop), 30% (Spring) and 22% (OpenStack) of
the most important features that are shared between different contextual
models with the same training size can have a contradictory impact (i.e., an
important feature has a positive impact on a given contextual model while
the same feature has a negative impact on another contextual model).

4 Median over the time frame sizes from 4 to 24 months.

6 Youssef Esseddiq Ouatiti et al.

We summarize our contribution as follows: (1) Quantifying the impact
of data leakage and concept drift on state-of-the-art LLPs. (2) Studying the
impact of time on models’ interpretation. (3) Evaluating different time-aware
modeling strategies designed to eliminate/mitigate time-related issues. Our
results suggest that log level prediction models (both Shallow-LLP and DL-
LLP) suffer from data leakage and concept drift. While such time-related issues
can be mitigated using contextual models for Shallow-LLPs, the identification
of the right window size for a contextual model should be considered as a
hyperparameter to tweak when experimenting with log level prediction models.
Furthermore, our work provides developers with insights on how to mitigate
time-related issues when leveraging existing LLPs, as well as a systematic
approach to evaluate new LLPs for potential time-related issues. Such insights
can improve the tooling efforts for future LLPs, and caution against the blind
usage of existing LLPs that might not stand the test of live-environment usage.

Paper structure: The paper is structured as follows. Section 2 presents the
background information and discusses the closest work to our study. Section 3
covers the approach used in this study. Section 4 presents our results. Section
5 discuses threats to the validity of our results. Finally, Section 6 concludes
our study.

2 Background and Related work

The goal of this section is to present background about log level predic-
tion and discuss the closest work to our paper. In particular, we discuss four
main research areas related to our paper: logging practices, the application of
machine learning to logging practices, concept drift and data leakage in ma-
chine learning models, and time-related issues detection for software analytics
models.

2.1 Background on Log level prediction

Developers insert log levels into their logging statements to describe the
severity of the recorded events (see example in Figure 1). Along with the log-
ging framework (e.g., Log4j) threshold, these log levels allow printing relevant
logging messages and suppressing unnecessary ones. For example, if the thresh-
old is set at Warning, all logging statements with a higher verbosity (i.e., Info,
Debug and Trace) will not be recorded in the log file. However, picking the
right log level for a given logging statement is not a simple task [37, 56], as
developers do not know for sure how the code will be used in the future [37].
Thus, it is not unusual that developers change the log levels of their logging
statements throughout the history of development [56].

5 https://github.com/apache/hadoop/commit/002dd6968b89ded6a77858ccb50cIb2df074c226

The impact of Concept drift and Data leakage on Log Level Prediction Models 7

} catch (Exception e) {
return; // message logged in renewDT method

LOG.error("Exception renewing token" + token + ". Not rescheduled", e);
removeFailedDelegationToken(dttr);

Fig. 1: Example of an added logging statement to the Hadoop project °

Model Features class Features description
- Length of the logging statement.
Logging statement | - Number of variables
- Frequency of tokens in the logging statements.
Shallow-LLP - Number of LOC in the containing block.
Containing block - Type of the containing block.

- Exception type (if containing block is catch block).

- Logging statement density in the file.

- Number of logging statements in the file.

- Average logging statement length in the file.

- Average number of variables in the logging statement
of the file.

- Number of logging statements in the file.

- McCabe complexity.

- Fan In.

- Code churn

- Logging statements churn.

- Portion of changed logging statements among changed
lines of code.

- Number of lines changed in the history of the containing
file.

- Number of revisions in history of the containing file.

- Number of changed logging statements in the history of
the containing file.

- Portion of changed logging statements among changed
lines if code in the history of the containing file.

- Number of revisions that change logging statements.

- The sequence of AST tree nodes containing the logging
statement (e.g., [Method Declaration , If statement,
Logging statement, Method invocation]). The beginning
of the sequence is marked by the start of the method and
the end is marked by the end of the basic block (e.g., if
block) that contains the logging statement.

- The sequence of natural language tokens in the logging
message.

* This sequence of tokens in inserted instead of the "Logging statement"
tag in the example above (i.e., [Method

declaration, If statement, startLogStmnt, this, is, a, logging, message,
endLogStmnt, Method invocation |)

Containing file

Change features

Historic features

DL-LLP Syntactic context

Logging message

Table 1: Features used to train the Shallow [28] and DL [29] LLPs

In order to assist developers with the log level decision, machine learning
models were proposed by prior research [28, 3, 29]. In this paper, we study
the state-of-the-art shallow log level predictor (aka. Shallow-LLP) suggested
by Li et al. [28], in addition to the state-of-the-art (aka. DL-LLP) log level
prediction model suggested by Li et al. [29]. Both log level predictors predict
an ordinal variable (i.e., ordered categorical variable) ranging from 1 to N,
where N is the number of log levels supported by the logging framework (e.g.,
N=6 for Log4j). Table 1 summarizes the features used by each of our studied
models to predict the appropriate log level.

8 Youssef Esseddiq Ouatiti et al.

2.2 Prior work on logging practices

Many research efforts were conducted to understand and automate logging
practices [9, 27, 40, 57]. For example, Fu et al. [9] conducted a mixed qualita-
tive and quantitative study to recommend the source code locations to which a
logging statement should be added. Yuan et al. [57] introduced LogEnhancer,
a tool to support the diagnosis of software failures by automatically infer-
ring variables that may affect whether a logging statement is relevant or not.
Pecchia et al. [40] observed that —despite having different purposes— different
product lines have similar logging styles. Li et al. [27] conducted a qualita-
tive study to analyze the benefits and costs of logging from the developers’
perspective and draw a comprehensive picture of the logging practices.

Our study is different from this line of research as we quantify the impact
of concept drift and data leakage on log level prediction models, rather than
investigating logging practices in general.

2.3 Prior work on the application of machine learning to logging practices

Another line of research focuses on leveraging statistical/machine learning
models to facilitate the logging practices for developers [28, 29, 18, 25, 26, 32,
61]. Zhu et al. [61] gathered features from code snippets, such as exception
catch blocks, and trained a model to guide developers with their logging de-
cisions. Li et al. [26] leveraged random forest models to suggest log changes
based on commit information. Liu et al. [32] trained a model that ranks the
source code variables by their likelihood of being logged. Li et al. [26] lever-
aged topic models using code snippets to infer the events that are likely to be
logged.

Our work is different from this line of research as instead of leveraging
machine learning models to support logging activities, we aim to quantify
the impact of data leakage and concept drift on log level prediction models.
Such time-related issues can occur as log level assignment patterns change
due to changing logging strategies (e.g., more verbose logs when dealing with
bugs [46]).

2.4 Prior work on time-related issues in machine learning

A large amount of research efforts studied time-related issues exhibited by
software analytics machine learning models [10, 14, 20, 31, 33, 34, 42]. For in-
stance, Lu et al. [20] surveyed the state-of-the-art knowledge on concept drift
including three main concerns: concept drift detection, concept drift under-
standing, and concept drift adaptation. The authors claim that drift detection
research should not only focus on identifying drift occurrence time accurately
but also on providing the information of drift severity and regions. Lu et al. [33]
studied the impact of noisy datasets on concept drift and proposed a two-step

The impact of Concept drift and Data leakage on Log Level Prediction Models 9

approach to handle this issue. Liu et al. [31] argued that concept drift might
take place in only some sections of the historical data and consequently, older
non-drifted data should not be dismissed. Therefore, the authors introduced
a novel metric that helps in detecting regional concept drift through investi-
gating the distribution of the nearest neighbors of the drifted data. Ramrez et
al. [42] surveyed research work on data processing aiming to react effectively
to drift.

Our work complements this line of research by investigating concept drift
and data leakage for log level prediction models that are supposed to be dif-
ferently impacted by (i.e., more impacted or less impacted) these time-related
issues, as their domain, data and model optimization strategies (e.g., hyper-
parameter tuning) are different than models studied in the past (e.g., AIOps
models).

2.5 Prior work on time-related issue detection for software analytics models

Other research efforts focused on identifying time-related issues (e.g., con-
cept drift, data leakage) in models used to assist software engineers with their
activities (e.g., defect prediction) [8, 34, 35]. For instance, Ekanayake et al. [8]
found that defect prediction models suffer from concept drift through their
evolution history. Such concept drift can be anticipated when the number
of authors modifying a studied project suddenly changes (i.e., increases, de-
creases), or when the authors themselves change. Lyu et al. [34] studied the
impact of data splitting decisions on the performance of AIOps models and
suggested that these models leverage time-aware modeling approaches in order
to mitigate the effect of data leakage. Such an effect is exhibited through the
unrealistic performance that AIOps models trained using a random train/test
split achieve compared to the performance that those same models achieve
using a time-aware train/test split (i.e., the train data is historically before
the testing data). Lyu et al. [35] studied the stability of the interpretability of
AIOps models with respect to time and reported that models trained on spe-
cific time frames or on the entire history of a project have consistent important
feature rankings.

3 Methodology

In this Section, we discuss how we train, test and interpret our models,
using a methodology similar to a large number of prior studies that leverage
machine learning techniques to assist software engineering practitioners [28,
29, 39, 34, 35, 48, 17, 23, 41, 53].

In this paper, we study the impact of concept drift and data leakage on log
level prediction models, so that we can understand how time context changes
can affect models used to assist developers with logging activities. Log level
prediction models predict the appropriate log level for a newly introduced

10 Youssef Esseddiq Ouatiti et al.

. Programming | Span of data Number of added Average
Project .
language (days) logging statements | per day
Hadoop Java 3790 16841 4.44
OpenStack Python 2368 23955 10.11
Spring Java 3207 6018 1.87

Table 2: Studied Projects historical information

oo 1 Ranking of important features
'

Ranking of

important
aln
)
74

features '
'
'
'
'
! Performance of the model
' (AUC & Brier Score)
'
1
'
'
1
'
'

Train an ordinall

g ﬂo

model

Trained model

Calculate

analysis performance

analysis
S—
Logging
data

Generate a
bootstrap
sample

Repeat 100 times

Fig. 2: An overview of the methodology for training our models. Both training
and testing datasets are further detailed in the approaches of our research
questions.

logging statement, hence they require an ordinal predictor (i.e., categorical
and ordered dependent variable) such as the ordinal logistic regression model
suggested by Li et al. [28] or the ordinal deep learning model suggested by Li et
al. [29]. For the purposes of our study, we leverage three popular, large and well-
maintained open-source projects: Hadoop is a distributed computing system,
Spring is a modular project that offers a vast pool of functionalities to Java
Developers, and OpenStack is a cloud computing platform. Each of the studied
projects has been developed and maintained for at least six years. Similar to
prior work [28, 29], we collect all the revisions from the Github repositories of
each of the studied projects. Next, we use the “git diff” command to collect
code changes between revisions. The added logging statements along with their
labels (i.e., log levels) are then obtained using a regular expression used by
prior works [28, 29]. Finally, we extract the respective features for the Shallow
and DL-LPPs following each of the approaches from prior works [28, 29]. We
summarize information about the datasets used in our study in Table 2.

To quantify concept drift and data leakage for log level prediction models,
we follow the modeling approach discussed in the remainder of this section. Our
machine learning pipeline (i.e., data preparation, modeling, testing and feature
importance) is similar to approaches followed by prior studies [28, 34, 35, 39].
While our training and testing datasets differ based on each of our experiments
(as discussed in the approach of each of our research questions), the following
training and testing steps, also shown in Figure 2, are common to all of the
case studies of our paper.

Note that we leverage the same features (see Table 1) used by Li et al. [28]
(ordinal regression) and Li et al. [29] (deep learning model) to train their
respective models.

The impact of Concept drift and Data leakage on Log Level Prediction Models 11

3.1 Bootstrap Sampling

Similar to prior work [24, 52], we leverage the out-of-sample bootstrap
validation technique to train and test our models. This approach consists of
generating a sample with replacement (i.e., bootstrap sample) on which the
model is trained. The model performance is then tested using the observations
that were not selected in the bootstrap sample (i.e., out-of-bootstrap sam-
ple). This process of sampling, training and testing is repeated 100 times to
guarantee robust findings. Note that for the case of time-aware models (i.e.,
models taking into consideration the chronological order of data), our training
bootstrap samples are always coming historically before the testing datasets,
as explained in the approach section of RQ1. Note that this sampling strategy
is used for both of our evaluated models.

Note that the two following steps (3.2 and 3.3) only apply to the Shallow-LLP
trained using ordinal regression.

3.2 Correlation Analysis

For each training set, we conduct a correlation analysis to avoid erroneous
model interpretation [19, 49]. Indeed, in order to guarantee a consistent rank-
ing when interpreting models, it is recommended to discard one out of each
pair of correlated features [19]. Similar to prior work [24, 43|, our correlation
analysis leverages Spearman correlation with a threshold of 0.7. We opt for
Spearman correlation due to its resilience to non-normally distributed data.
Finally, we list our features by order of priority to guarantee a consistent corre-
lation analysis across the different bootstrap iterations. The highly prioritized
features are the ones related to exceptions (e.g., type of exception), the most
important features reported by Li et al. [28] and the features related to logging
activity (e.g., we keep log churn rather than code churn) as these features are
characteristic to the logging activity. For each pair of highly correlated features
(i.e., p > 0.7), we keep the feature with the highest priority.

3.3 Redundancy Analysis

As correlation analysis is not able to completely eliminate collinearity, we
conduct a redundancy analysis similar to prior studies [24, 41, 50]. It con-
sists of reducing the collinearity by iteratively identifying which independent
feature is explainable by the other independent features. To do so, different
preliminary models are built for each bootstrap sample, each of these models
explains one independent feature with the other ones. We exclude an indepen-
dent feature if its associated preliminary model has an R? > 0.9. We leverage
the implementation of redundancy analysis provided by the redun function
from the rms package [1].

12 Youssef Esseddiq Ouatiti et al.

3.4 Training and Testing
3.4.1 Shallow-LLP - Ordinal regression model:

Using the remaining features from the previous steps, we train our ordinal
regression models —which are an extension of logistic regression for ordinal
dependent variables— that predict the suitable log level (i.e., ordinal output
variable) for a given logging statement. These models are tested on a different
dataset, according to the specific RQ under analysis. To evaluate our model,
we consider the AUC (Area under the ROC curve) and Brier Score as two
standard performance metrics similar to prior studies [28, 41, 50]. While the
AUC measures the discrimination ability of the model (the higher above 0.5,
the better), Brier Score captures how often a model can predict the right
class. An AUC of 50% is equivalent to a random guess. The Brier score ranges
between 0 and 2 and the lower it is, the better the model is. A random guess
model has a Brier Score of 0.8. While Brier Score is designed for multi-class
evaluation, we leverage the multi-class AUC score generalization proposed by
Hand and Till [13], as it has been vastly used by prior work [28, 59, 44]
to evaluate multi-class classifiers (e.g., Human expert effort estimation), and
implemented by popular machine learning libraries (e.g., Scikit-learning © and
pROC 7).

8.4.2 DL-LLP - Ordinal deep learning model:

Using the features explained in Table 1, we train a deep learning model similar
to the approach followed by Li et al. [29]. This DL-LLP is a state-of-the-art
log level predictor, that uses the syntactic features (e.g., containing blocks)
and log message features to predict an ordinally encoded output (i.e., the log
levels). The architecture of the DL-LLP consists of an embedding layer, an
RNN and an output layer. While the embedding layer takes the input features
(i.e., contextual and log message features) and represents them in the form of
a sequential vector (i.e., the sequence of code statements within the block that
contains the logging statement), the RNN layer (Bi-LSTM) is used to train
the deep learning model. Finally, the output layer receives the output from
the RNN layer and generates an ordinal output reflecting the predicted log
level. We refer to Li et al. [29] for further details about the implementation.
We leverage the AUC score to evaluate our DL-LLPs.

Note that the approaches used to perform our empirical evaluation in RQ1,
RQ2 and RQ3 (as explained in each RQ’s approach) are the same regardless of
the model used. For instance, we quantify concept drift for the Shallow-LLP
in the same way we quantify it for the DL-LLP.

6 https://scikit-learn.org/stable/modules/generated /sklearn.metrics.rocqucscore.html
7 https://www.rdocumentation.org/packages/pROC /versions,/1.18.0

The impact of Concept drift and Data leakage on Log Level Prediction Models 13

3.5 Feature Importance:

Similar to prior work [23, 53], we use Wald’s x? to evaluate the impact of
each feature on predicting the log level. A large x? for a given feature mirrors
the large explanatory power of that feature. From each of our 100 bootstrap
iterations, we obtain a ranking of features based on importance. We then apply
a Scott-Knott [7] clustering technique on the 100 rankings, similar to previous
work [23, 41, 53], in order to aggregate those rankings into a final ranking.
The Scott-Knott approach uses a hierarchical clustering to group the means
of importance scores into groups that are statistically different. We leverage
these generated rankings to compare the interpretability of the different models
we train.

Note that for the context of our study we used approaches (i.e., analysis
of variance) aiming for the global explainability of our evaluated log level
predictor [51], which are widely used in the field of software engineering [48, 17,
23, 41, 53, 39] and are similar to how the models we evaluate were interpreted
by Lee et al. [23]. That is, we do not interpret how the model takes individual
decisions (aka., model-agnostic techniques).

4 Results

RQ1. What is the impact of data leakage on the performance of log
level prediction models?

Motivation: The goal of this research question is to quantify the impact of
data leakage on the way log level prediction models were evaluated by prior
studies [28, 29]. In fact, ML models suffering from data leakage typically of-
fer unrealistic performance that might not be replicable in a life-environment
setup. Having insights about data leakage for LLPs would help practition-
ers better evaluate their LLPs and safeguard against unrealistic performance
expectations.

Approach: To quantify the impact of data leakage on log level prediction
models, we compare the AUC and Brier Score performance of models built
using two separate approaches that are described as follows:

— The random-based model: trained using a random train/test split that is
susceptible to data leakage. The random split does not take into consider-
ation the chronological order of data, as shown in Figure 3. For example, a
model that uses the first two batches and the last batch of data for training
might suffer from data leakage when predicting on the testing batch (3rd
batch). This potential data leakage is due to the fact that the model might
gain knowledge coming from the future (4th batch) on the testing data
(3rd batch). This approach was leveraged by Li et al. [28] to train their log
level prediction models.

14 Youssef Esseddiq Ouatiti et al.

Studied time frame
e
(

Time-aware approach

-

> Time

B Trainset [] Testset

Fig. 3: Overview of the modeling approaches for a single studied time frame.

— The time-aware approach model: trained taking into consideration the
chronological order of data, as shown in Figure 3. The time-aware ap-
proach represents how the model would be used in practice (i.e., without
having access to training data from the future).

Note that the difference between the two approaches is related to the
train/test splits, while the leveraged features and the learning algorithm (i.e.,
ordinal regression) remain the same.

To train our two models, we follow the approach shown in Figure 4. In par-
ticular, we consider the following steps to compare the random-based models
and the time-aware models:

First, we split the whole history of data equally. Each part of the history is
hereafter referred to as a “time frame”. A time frame has a length of a number
of months (e.g., four-months time frame) and contains all the existing logging
statements in those months. In our paper, we evaluate different time frame
sizes that range between four and 24 months to make our results generalizable
to different time frame sizes. The lower bound that we used is a four-month
time frame, since this is long enough to train and test our models without
risking overfitting.

Then, we build both types of models:

(i) The random-based model is trained on a bootstrap sample from a time
frame (e.g., the first 4 months of a project) and tested on the out-of-
bootstrap-sample portion of the same time frame. We consider the steps
discussed in Section 3.4 to train our model. To guarantee that each time
frame has enough data to train our model, we set a threshold of 300 ob-
servations for every training time frame, in order to have 10 features per
observation [15].

(ii) For the same time frame, we train a time-aware model on a bootstrap
sample from the chronologically first 70% of the data and test that model
on the following 30% of the same time frame data. Similarly to the random
model, we consider time frames with at least 300 observations for training
a model.

We repeat the previous two steps 100 times by leveraging different boot-
strap samples to end up with a distribution of 100 performance (i.e., AUC and
Brier Score) measurements for the random-based models and another distribu-
tion of 100 measurements for the time-aware models. We statistically compare

The impact of Concept drift and Data leakage on Log Level Prediction Models 15

(i) Random approach
model

[Train an ordinall -:Q:—
H regression *
Generate a |! Correlation Redundancy model H
bootstrap f+ analysis analysis |
sample ! H &
H s Calculate H (Y h
— : set performance |} performance of the

Repeat 100 times | random approach model
“SSSU5 (AUC & Brier Score)

=——" [selecta
Logging ltime frame
data | (e rame)

) Train an ordinall

regression
model

:)
Calculate | : [,bQ
Repeat 100 times LPeO™3N% | 1 performance of the

e R time-aware model
(AUC & Brier Score)

(Generate a
bootstrap
| sample |

Split data

chronologically analysis analysis
L J

Fig. 4: An overview of the methodology for quantifying data leakage

these two distributions to identify whether they are different using a Wilcoxon
test (v = 0.01). If so, we also measure the amount of differences as well as the
magnitude of such a difference using Cohen’s d. Note that the median perfor-
mance values reported in our findings for individual models (e.g., LLP trained
on 4 months worth of data) are calculated over the 100 bootstrap samples.
Meanwhile, global findings about a given project (e.g., LLPs trained using
Hadoop data) are aggregated based on the data frame size (e.g., median over
the different time frame sizes used to train a contextual model).

We repeat the same experiments on the following time frames (e.g., the
2nd 4 months of a project) of the same size. Finally, we repeat everything for
the other time frame sizes (e.g, a time frame of 5 months), up to 24 months.

We leverage the same approach to quantify data leakage for both of our
evaluated log level predictors (i.e., Shallow and Deep learning).

Results: Random-based models overestimate the AUC performance
on the test sets by a median® that ranges between 3% and 7%
(Shallow-LLP) and between 2% and 9% (DL-LLP) compared to
time-aware models across our evaluated time frame sizes and case studies.
In fact, Hadoop’s Shallow-LLP trained using the random approach overesti-
mates the time-aware models by a median® of 2% (observed for four-month
based models) to 17% (observed for seven-month based models). The overes-
timation ranges between 1% and 14% for Spring and between 1% and 12%
for OpenStack. For example, our evaluated four-month random-based models
inflate the AUC performance compared to the four-month time-aware models
by a median® AUC of 2%, 2%, and 3% for Hadoop, Spring and OpenStack
respectively, as shown in Figure 5. We observe similar overestimation for the
DL-LLP as shown in Figure 6 for our evaluated four-month based models.
Such an overestimation indicates that one has to re-evaluate the LLP mod-
els using the time-aware approach as there is a chance that using a simple
random-data splitting approach can overestimate the performances of these

8 Median over the 100 bootstrap samples.

16 Youssef Esseddiq Ouatiti et al.

10 RRRRRRNNNRRRRRNRRRNRRNNN 10N R N N R R T N
Modeling approach Modeling approach
m Random Approach B Random Approach
0.9 [0 Time-aware Approach 0.9 [Time-aware Approach
08 0.8
o [$]
=] =)
< <
o o *} ‘? b
0.6 0.6
0.5 0.5
1234567 89101112131415161718192021222324 1 2 3 4 5 6 7 8
Testing time frame Testing time frame
(a) Hadoop (b) Spring

RRTRNRRRNTRRRRRNNR R

Modeling approach
B Random Approach
0.9 [Time-aware Approach

UL g

12 3 45 6 7 8 9 10111213 14 15 16 17 18
Testing time frame

(c) OpenStack

Fig. 5: AUC performance of the random and time-aware Shallow-LLPs on
four-month testing time frames. R indicates time frames where the random
approach is the best performing, T indicates time frames where the time-
aware approach model is the best performing and N indicates time frames
where there is no significant difference between the performance of the two
models.

models, hence mislead practitioners that might consider the model as good
when it has low performances (as close as a random guess as we observed in
the case of Hadoop Shallow-LLP with six month time frames). Note that our
observations stand for the Brier Score as well. The figures for the other time
frame sizes are available in the online appendix [38].

Across the different time frame sizes, a median of 90%, 75%, and
71% (Shallow-LLP) and a median of 57%, 67%, and 100% (DL-LLP)
of our evaluated random-based models are statistically significantly
(Wilcoxon test; o = 0.01) better-performing than our evaluated time-
based models for Hadoop, Spring and OpenStack respectively. For
example, we observe that 67%, 37% and 67% of the four-month random-based
Shallow-LLPs statistically significantly (Wilcoxon test; a = 0.01) outperform
the four-month time-aware models for Hadoop, Spring and OpenStack re-
spectively. Similarly, we observe that 91%, 50% and 55% of the four-month
random-based DL-LLPs statistically significantly (Wilcoxon test; a = 0.01)
outperform the four-month time-aware models for Hadoop, Spring and Open-

The impact of Concept drift and Data leakage on Log Level Prediction Models 17

10 RRRRRRRRRRRTRRRRRRRRRNRR 10 R N R N R T T R
Modeling approach Modeling approach
EEE Random approach EEE Random approach
0.9 [0 Time-aware approach 0.9 [0 Time-aware approach
1 110 % 1
08 Fl 0.8 -®
o b [$]
=] =)
< p <
0.7 g b 0.7
0.6 0.6
0.5 0.5
1234567 89101112131415161718192021222324 1 2 3 4 5 6 7 8
Testing time frame Testing time frame
(a) Hadoop (b) Spring

RRNRNRRTTRNNTRNRRR R

Modeling approach
BN Random approach
0.9 [0 Time-aware approach

i '{Lf

12 3 45 6 7 8 9 10111213 14 15 16 17 18
Testing time frame

(c) OpenStack

Fig. 6: AUC performance of the random and time-aware DL-LLPs on four-
month testing time frames. R indicates time frames where the random ap-
proach is the best performing, T indicates time frames where the time-aware
approach model is the best performing and N indicates time frames where
there is no significant difference between the performance of the two models.

Stack respectively. All of these differences have a large effect size (Cohen’s
d, d > 0.7). On the other hand, only a median (over different time frame
sizes) of 0%, 0% and 14% of the time-aware Shallow-LLPs statistically signif-
icantly outperform the random-based models. We observe similar results for
the DL-LLPs, as only a median (over different time frame sizes) of 0%, 0%
and 0% of the time-aware DL-LLPs statistically significantly outperform the
random-based models.

These findings can be explained by the fact that the distributions of the
independent features are different between the training and test sets that are
leveraged for our time-aware models. We observe that a median of eight to
13 (depending on the evaluated time frame size) features are statistically sig-
nificantly different (Wilcoxon test, @ = 0.01) between the training and test
datasets that are used for our Hadoop time-aware models. This median num-
ber of statistically different features ranges between 8 and 14 for Spring and
five and nine for OpenStack. For example, our four-month based model has a
median” of nine, 11 and seven features (out of 25) that are statistically signifi-

9 Median over the 100 bootstrap samples.

18 Youssef Esseddiq Ouatiti et al.

cantly different between the training and testing sets of the time-aware model
trained on Hadoop, Spring and OpenStack respectively. Note that the Open-
Stack project, which has the most time frames in which the time-aware model
outperforms the corresponding random-based model (median of 14%), is also
associated with the lowest number of significantly different features between
the training and testing sets used by the time-aware model.

Summary of RQ1

Log level prediction models trained using the random approach can
overestimate the expected performance of a time-aware log level pre-
dictor by a median AUC up to 17% (Shallow-LLP) and 27% (DL-LLP)
higher. Our findings suggest leveraging time-aware approaches
for shallow and DL LLPs for more realistic performance esti-
mations.

RQ2. What is the impact of concept drift on the performance of
log level prediction models?
Motivation: The goal of this research question is to quantify concept drift
on log level prediction models. While log choice strategies might vary from
one time period to another (e.g., when debugging vs. after fix), it is not clear
whether a concept drift caused performance decrease exists for LLPs, and if
such a performance decrease exists, how soon after the end of the training
dataset the concept drift can be manifested. Such insights would warn practi-
tioners on the importance of updating their models so they can better maintain
their LLPs (e.g., plan for updates).

Approach: To quantify the impact of concept drift on log level prediction
models, we train a model (Deep and shallow LLPs) on a selected time frame
and test that model on each of the following time frames, as described in the
following steps and illustrated in Figure 7.

We split the whole existing data into equal time frames. For each time
frame (TF), we perform the following:

— We train a model on a bootstrap sample from the first 70% of the obser-
vations of TF.

— We test our model on the remaining 30% of the observations to obtain a
baseline performance.

— We test our model on each two-month time frame that chronologically
follows TF and compare the obtained performance to the baseline perfor-
mance. The two-month testing time frame guarantees enough observations
(i.e., at least 50 observations) to have statistically significant findings. Note
that we implement Bonferroni correction [16], as we are performing multi-
ple comparison tests.

We repeat the same analysis with 99 other bootstrap samples from the
chronologically first 70% of the observations of TF. We end up with 100 base-

The impact of Concept drift and Data leakage on Log Level Prediction Models 19

Training 7 Testing set for the . Testing time
- dataset z baseline performance ™ | frames (2 months)

70% 30%

)

Time Frame
i } Time

Fig. 7: Overview of model evaluation under concept drift for a specific time
frame size.

line performance measurements and 100 performance measurements for each
of the two month testing time frames.

We then repeat all previous steps with a different training window size.

Starting with a time frame of four months (first 70% for training and remaining
30% to measure the baseline evaluation) up to 24 months, with an increment
of two months.
Results: Across the different time frame sizes, the performance of
our evaluated LLPs (Shallow and deep) drops significantly a me-
dian of 1.5 (Hadoop) or one (Spring and OpenStack) testing time
frame after the end of the training data period. For example, we observe
that the Shallow-LLP trained using four-month time frames (i.e., four-month
based Shallow-LLP) takes a median'" of 1.5, 1 and 1 testing time frames
to drop statistically significantly (Wilcoxon test; o = 0.01) below the baseline
performance in terms of AUC for Hadoop, Spring and OpenStack respectively.
Meanwhile, the four-month based DL-LLP takes a median'? of one, one and
1.5 time frames to drop below the baseline performance.

Furthermore, the performance of our Shallow-LLP is statistically signifi-
cantly (Wilcoxon test; o = 0.01) lower than the baseline performance in a
median'? of 56% (observed for 24-month based Shallow-LLPs) to 85% (ob-
served for 10-month based Shallow-LLPs) of the testing time frames for Hadoop.
The same median'? percentage ranges from 60% to 96% and 30% to 81% for
Spring and OpenStack respectively. Figures 8, 9 and 10 highlight the concept
drift for our evaluated four-month based Shallow-LLPs. We observe similar
findings for our DL-LLPs (shown in Figures 11, 12 and 13), as the perfor-
mance on testing time frames is statistically below the baseline performance
in a median'? of 78% (observed for four month based DL-LLPs) to 100% (ob-
served for eight-month based DL-LLPs) of the testing time frames of Hadoop.
Such a median'? of time frames in which the DL-LLPs perform statistically
significantly below the baseline ranges between 79% and 98% and between
89% and 100% for the respective DL-LLPs of Spring and OpenStack. Finally,
we observe that the performance of our models (Shallow and DL) statistically
significantly exceeds the baseline performance in a median'' time ranging from

10 Median over the 100 bootstrap samples.
11 Median over the 100 bootstrap samples.

20 Youssef Esseddiq Ouatiti et al.

1.0 1.0
0.9 0.9
08l . I cos @ L LT
o[gETE_, - = & o g+ 2000 g Te_a s E i - =
SEE TISSRL L P e N ALy Te T
0.6 $E T g 1t 1t & 0.6 B é* a
0.5 0.5
123456 78 910111213141516171819202122232425262728293031 12345678 91011121314151617181920212223242526272829
Time frames Time frames
(a) Four-month frame - 1 (b) Four-month frame - 2

"ﬁL — o7l —f F— =
Rl vy

05 0.5
1234567 8 9101112131415161718192021222324252627 1234567 8910111213141516171819202122232425
Time frames Time frames
(¢) Four-month frame - 3 (d) Four-month frame - 4
1.0 1.0
0.9 0.9
008 | - i 1 0 0.8 !
207 = TE=— He +, .+ == 201" = : _—
LI e . T —B L= - T - =
05[:]... B &, e * é $ 06 T $"'**'E - i +
05 05]
12345678 91011121314151617181920212223 123456 7 8 91011121314151617 18192021
Time frames Time frames
(e) Four-month frame - 5 (f) Four-month frame - 6

Fig. 8: AUC performance of Hadoop’s Shallow-LLPs across time. the lines rep-
resent the 1st quantile, median and 3rd quantile for the baseline AUC perfor-
mance. Red boxplots show time frames with a performance statistically below
the baseline, blue boxplots show no statistical difference and green boxplots
show time frames with a performance statistically better than the baseline.

0% to 8%, 0% to 13% and 0% to 40% (Shallow-LLP) and in 0% to 0%, 0% to
50% and 0% to 0% (DL-LLP) of the testing time frames of Hadoop, Spring
and OpenStack respectively. This range depends on the size of the training
time frame.

The diminishing performance of the LLPs can be explained by the fast
increase in the number of statistically different independent features between
the baseline model data and the future test sets. In fact, we observe that at
least 50% of the features leveraged by the Shallow-LLP model, including those
features related to the log message and the context of the logging statement
(used to train the DL-LLP) showed statistically significant differences between
the baseline data and the data of the testing time frames, after a median'?
time ranging between one and three (Hadoop), 1 and 1.5 (Spring) and 1 and
5.5 (OpenStack) time frames.

Additionally, we observe that 52%, 56% and 34% of the features of adja-
cent testing time frames of Hadoop, Spring and OpenStack are statistically
significantly different (Wilcoxon, «=0.01). For example, the churn of logging
statements for the OpenStack project in the time frame between August and
October 2014 (a median of 36) is statistically significantly different (Wilcoxon

12 Median over time frame sizes from 4 to 24.

The impact of Concept drift and Data leakage on Log Level Prediction Models 21

1.0
0.9

008
2

0.6
0.5

EmmmE L
<°’$é¢?$$4“9+$*§¢%EE??#+%++%?#ff

1234567 891011121314151617181920212223242526272829
Time frames

(a) Four-month frame - 1
1.0
QZZ L % S N Ll
O BT AL PR T

12345678 91011121314151617181920212223
Time frames

1.0
0.9

008, ,, B . L [
dor g8 T T3 g9 AT L K
Z:ﬁ;# LRI LIAT I AL

12345678 9101112131415161718192021222324252627
Time frames

(b) Four-month frame - 2
1.0
0.9

008 - =
LTI T e g 1T

123456 78 91011121314151617 18192021
Time frames

(¢) Four-month frame - 3
1.0 1.0
0.9 0.9

008 = ‘ gos8

207_._$ + ‘ —ﬂ= 1 T <07 —_— : -"- : +
i =é=;’ $ oe$ == ? $

(d) Four-month frame - 4

0.6

0.5 0.5
1 2 3 4 5 6 7 8 9 2 3 4
Time frames Time frames

7

(e) Four-month frame - 5 (f) Four-month frame - 6

Fig. 9: AUC performance of Spring’s Shallow-LLPs across time. the lines rep-
resent the 1st quantile, median and 3rd quantile for the baseline AUC perfor-
mance. Red boxplots show time frames with a performance statistically below
the baseline, blue boxplots show no statistical difference and green boxplots
show time frames with a performance statistically better than the baseline.

test; & = 0.01) than the churn for the logging statements of the same project
(i.e., OpenStack) in the following time frame (a median of 31). In fact, main-
tainers of OpenStack conducted a number of logging maintenance'?® activities
(e.g., changing verbosity of logs) in the period between August and October
2014, which resulted in a higher churn for logging statements in that period
(median 36) compared to the next time frame (median churn 31) as well as
the previous time frame (median churn 21). Only 0%, 1% and 2% of the ad-
jacent testing time frames had the same distribution for Hadoop, Spring and
OpenStack, respectively.

Across the different training time frame sizes, the performance of
27% (Hadoop), 63% (Spring) and 72% (OpenStack) of our Shallow-
LLPs exceeds the baseline performance after dropping below it. In
fact, our Shallow-LLPs statistically significantly (Wilcoxon test; o = 0.01)
exceed the baseline performance on a median'* of 0% (observed for the four-
month based models) to 4.1% (observed for the 18-month based models) of the
testing time frames for Hadoop. Similarly, this occurs on a median'® of 0% to
13% and 0% to 44% of the testing time frames of Spring and OpenStack respec-

13 https://github.com/openstack/openstack/commit/56cc320240c983742c467f7afd 7cc6b11dde8625
14 Median over the 100 bootstrap samples.
15 Median over the 100 bootstrap samples.

22 Youssef Esseddiq Ouatiti et al.

1.0 1.0
0.9 0.9

008 | T e e Tl S A L -

QO T e Toa=T _LatE g S - —
o7 - = = - = == STaTH <077 T T [T T+ B
0.6 0.6
0.5 0.5
123456 78 910111213141516171819202122232425262728293031 12345678 91011121314151617181920212223242526272829
Time frames Time frames
(a) Four-month frame - 1 (b) Four-month frame - 2
1.0 1.0
0.9 0.9
©08f— _— e— Q08T S [y =5
=1 T L = LB L = =) - =T T —+ $=
Ro7le = ETE- AT Tl FeL T 27 =T &7 o
0.6 0.6
05 0.5
1234567 8 9101112131415161718192021222324252627 1234567 8910111213141516171819202122232425
Time frames Time frames
(¢) Four-month frame - 3 (d) Four-month frame - 4
1.0 1.0
0.9 0.9
Oog-T—-':_—=_ e 008 2 — =_— T]
2 + - = = o S =, e —— == e
207] " I= T $EE:|¢| 207 L~ H= ED-!- Rl
0.6 0.6
0.5 0.5
12345678 91011121314151617181920212223 123456 7 8 91011121314151617 1819 20 21
Time frames Time frames
(e) Four-month frame - 5 (f) Four-month frame - 6

Fig. 10: AUC performance of OpenStack’s Shallow-LLPs across time. the lines
represent the 1st quantile, median and 3rd quantile for the baseline AUC per-
formance. Red boxplots show time frames with a performance statistically
below the baseline, blue boxplots show no statistical difference and green box-
plots show time frames with a performance statistically better than the base-
line.

tively. For example, the four-month based model for all our evaluated projects
statistically significantly exceeds the baseline performance in a median'® 0%
of the testing time frames, as shown in Figures &, 9 and 10.

Concept drift might be a more serious problem for DL-LLPs, as
their performance typically never becomes as good as the baseline
performance after dropping below it. In fact, we observe that the per-
formance of a median of 0% (Hadoop), 50% (Spring) and 0% (OpenStack)
of the DL-LLPs (depending on the training frame size) exceeds the baseline
performance after dropping below it, which indicates that DL-LLPs are less
likely to re-exceed the baseline performance compared to Shallow-LLPs.

The impact of Concept drift and Data leakage on Log Level Prediction Models 23

'
oo ' [

i LI H L] +
08 ¢ ! [} L

- . 1 [1
= = w*$$*w+ ""éﬁ

9 - T e g =
207$ TETT - - $*$**¢ *$ 207 == -
b = + +
== il == -+
0.6 0.6
0.5 0.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 12 3 456 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25
Time frames Time frames
(a) Four-month frame - 1 (b) Four-month frame - 2
10 10
os | | o | |
i L H P - 0 . .
o8l ! :_II‘III"|!|| 0s .||| ,i|i|=.l|:
S [T et - g8 == et
2o T - TOTLTEELT T FTT e T T T
0.6 - n 0.6 - +
0.5 0.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Time frames Time frames
(¢) Four-month frame - 3 (d) Four-month frame - 4
10 10
os I 0 I
T 7 1 { [| R S i
08 - — [~y = T S I = > —t
2 - - 1 2 - =
o7 - e N 2 . T T e
- -
0.6 - 0.6 ==
0.5 0.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time frames Time frames
(e) Four-month frame - 5 (f) Four-month frame - 6

Fig. 11: AUC performance of Hadoop’s DL-LLPs across time. the lines repre-
sent the 1st quantile, median and 3rd quantile for the baseline AUC perfor-
mance. Red boxplots show time frames with a performance statistically below
the baseline, blue boxplots show no statistical difference and green boxplots
show time frames with a performance statistically better than the baseline.

Summary of RQ2

Log level prediction models suffer from concept drift as their AUC per-
formance drops on future testing time frames after a median® of just
1.5, 1 and 1 testing time frames for Hadoop, Spring and OpenStack re-
spectively. The effect of concept drift is more severe on the DL-LLPs,
for which the performance drops significantly below the baseline per-
formance in 22% (Hadoop), 19% (Spring) and 59% (OpenStack) more
testing time frames than the Shallow-LLP. Our results suggest the
need for continuous concept drift tracking and frequent up-
dates to the LLPs, especially the DL-LLP, whose performance
is less stable throughout time compared to the Shallow-LLP.

% Median over the time frame sizes from 4 to 24 months.

RQ3. What is the best performing time-based modeling strategy
for log level prediction models?
Motivation: Since previous research questions suggest using time-aware ap-
proaches, we explore different strategies to train time-aware models as an

24 Youssef Esseddiq Ouatiti et al.

10 10

09

08

53?ﬁﬁﬁﬁgﬁ?gmﬁi'ﬁmﬁmgﬂimm R R T

0 Pt 1! [

AUC

05 05
123 4 5 6 7 8 6 101112 13 14 15 16 17 18 19 20 21 22 i 23 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22
Time frames Time frames

(a) Four-month frame - 1 (b) Four-month frame - 2
0s E i ﬁ o ﬁ ﬁ
(¢) Four-month frame - 3 (d) Four-month frame - 4

_— | !

e

i 2 3 a s 6
Time frames Time frames

(e) Four-month frame - 5 (f) Four-month frame - 6

Fig. 12: AUC performance of Spring’s DL-LLPs across time. the lines represent
the 1st quantile, median and 3rd quantile for the baseline AUC performance.
Red boxplots show time frames with a performance statistically below the
baseline, blue boxplots show no statistical difference and green boxplots show
time frames with a performance statistically better than the baseline.

approach to mitigate the impact of concept drift. Specifically, we evaluate
two time-aware modeling strategies in this research question: contextual model
that leverages recent data and all-knowing-model that leverages the whole his-
tory of data. In particular, leveraging just the most recent data in a contextual
model might not benefit from recurring events that exist throughout the whole
history of data. On the other hand, leveraging the whole available historical
data in an all-knowing-model might contain noisy data that are drifting from
the current data. In this research question, we quantify such a trade-off by
comparing the two approaches for both the Shallow-LLP and the DL-LLP to
identify which of the two approaches better fits the log level prediction models..

Approach: To compare the two time-aware models, we split the whole history
of the available data into two-month time frames, which are used as testing
time frames. We compare on each of these testing time frames how our two
evaluated types of models perform. We train and test our two types of models
as discussed below:

— All-knowing model: We train a model that leverages all the existing data
prior to each of our testing time frames. For example, we train a model

The impact of Concept drift and Data leakage on Log Level Prediction Models 25

e i < TAAMNaAAaT g

123456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 i 23456 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25

(a) Four-month frame - 1 (b) Four-month frame - 2
10 10
os o
gog ————————————————————————— g” ********************** +
T Tor i oo
...... 1 | e e e e
06 06 t
0.5 0.5
12 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 12 3 456 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25
(¢) Four-month frame - 3 (d) Four-month frame - 4
10 10
osl__ ool
e e
gnﬁ ——————————— gna T T e e e
T Lo o7 Yo,
....... I e,
0.6 0.6
0.5 0.5
12 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time frames
(e) Four-month frame - 5 (f) Four-month frame - 6

Fig. 13: AUC performance of OpenStack’s DL-LLPs across time. the lines rep-
resent the 1st quantile, median and 3rd quantile for the baseline AUC perfor-
mance. Red boxplots show time frames with a performance statistically below
the baseline, blue boxplots show no statistical difference and green boxplots
show time frames with a performance statistically better than the baseline.

on data from the first three years for a testing time frame that covers the
37th and 38th months of a project.

— Contextual models: We train a contextual model on data that belongs to
N months prior to each of our testing time frames. For our experiment,
we evaluated different time frame sizes (i.e., N) that range from four to
24 months, with two months increment, to train our contextual models.
In other words, we train a four-month, six-month, eight-month, and up to
24-month based models for each of our testing time frames. For the early
testing time frames, we train contextual models based on the amount of
existing data. For example, we train a four-month to 12-month models for
the testing time frame that covers the 13th and 14th months of a project.
Note that we consider the 12-month model, in our example, as the all-
knowing model since it is trained on the whole available data.

For both types of models, we evaluate 100 models, each on a different boot-
strap sample such that we obtain for each model 100 performance measure-
ments to use for a statistically robust comparison. Note that the comparison
of two models is performed on the same test time frame. In other words, we
do not compare two models on different testing time frames, as shown in Fig-

26 Youssef Esseddiq Ouatiti et al.
Contextual
24 months
Testing time
Contextual frames
6 months ’e

r Rl

4 months

All-knowing model ‘

p...

Fig. 14: Comparison of contextual and all-knowing models. We compare the
models shown in the figure just on their first following testing time frame. We
train new contextual and all-knowing models for each testing time frame.

ure 14. Note that the same approach is followed for both the Shallow-LLP and
the DL-LLP.

Results: We observe that at least one contextual Shallow-LLP sta-
tistically significantly outperforms the all-knowing Shallow-LLP on
94%, 82% and 86% of testing time frames for Hadoop, Spring and
OpenStack respectively. We also observe that the all-knowing Shallow-
LLPs statistically outperform all the contextual Shallow-LLPs in only 5%,
8%, and 0% of our Hadoop, Spring and OpenStack testing time frames, re-
spectively.

While 51%, 31% and 22% of the cases in which the contextual Shallow-
LLP outperforms the all-knowing model have a large effect size (Cohen’s d) for
Hadoop, Spring and OpenStack respectively, we observe that 0% of the cases in
which the all-knowing Shallow-LLP outperforms the contextual Shallow-LLPs
with a large effect size for both Hadoop and Spring projects.

Furthermore, across the different testing time frames, we observe a me-
dian of one, three and three contextual Shallow-LLPs that outperform the all-
knowing Shallow-LLP for Hadoop, Spring and OpenStack respectively . For
example, three Spring contextual models (6-month, 8-month, and 10-month
based contextual models) outperform the all-knowing model on the nineteenth
testing time frame, while the all-knowing model outperforms the 22-month and
24-month based contextual model on the same testing time frame.

As for the DL-LLPs, we do not observe a significant performance
improvement when comparing the all-knowing and the best con-
textual approach, as shown in Figure 16. In fact, the AUC performance
difference between the best contextual DL-LLP and the all-knowing DL-LLP
is negligible on 83%, 82% and 92% of the testing time frames of Hadoop, Spring
and OpenStack respectively. One reason why contextual DL-LLPs are not per-
forming as well as the Shallow-LLPs compared to their respective all-knowing
LLPs might have to do with the data quality vs. quantity trade-off [5]. In
fact, the contextual DL-LLPs are trained on good quality data (i.e., avoiding
noise of irrelevant past data) but that data might not be large enough for a
data-hungry model such as the DL-LLP.

The impact of Concept drift and Data leakage on Log Level Prediction Models 27

B Contextual - 4 M B8 Contextual - 10 M E3 Contextual - 16 M E3 Contextual - 22 M
B3 Contextual - 6 M B3 Contextual - 12 M B8 Contextual - 18 M E3 Contextual - 24 M
M = M E3 M

E3 Contextual - 8 Contextual - 14 Contextual — 20 All-knowing
1.0
0.9 .
0.8 H Tg-
oy . ° M H ° . [P . T
S - Siased v oL 0 S ' oyl e N |?_L *
<07 ﬁ*ﬁ#ﬁ? HTH#* M#h; ™ wﬂh’+
06 . . N .
0.5 I I I I I
31 32 33 34 35
Time frames (2 Month)
(a) Hadoop
B Contextual - 4 M B8 Contextual - 10 M E3 Contextual - 16 M E3 Contextual — 22 M
B3 Contextual - 6 M E3 Contextual - 12 M E3 Contextual - 18 M E3 Contextual - 24 M
E3 Contextual— 8 M B Contextual - 14 M E3 Contextual - 20 M B All-knowing
1.0
0.9
Qo8] ﬁ%" i Vo
. 3
Tor Wit et w!% - *
0.6 : .
0.5 I I I I I
19 20 21 22 23
Time frames (2 Month)
(b) Spring
B Contextual - 4 M B8 Contextual - 10 M E3 Contextual - 16 M E3 Contextual - 22 M
E3 Contextual - 6 M E3 Contextual - 12 M E3 Contextual - 18 M E3 Contextual - 24 M
E3 Contextual - 8 M B8 Contextual - 14 M E3 Contextual - 20 M #8 All-knowing
1.0
0.9
008 ° f ; NP . S
or| #ETTT i i I s
i :
0.6 el .
0.5

17 18 19 20 21
Time frames (2 Month)

(c) OpenStack

Fig. 15: The AUC Performance of contextual and all-knowing Shallow-LLPs
on a selection of testing time frames (two-month long) - The remaining time
frames (e.g., 1 to 35 for Hadoop) are available in the appendix.

As we do not observe a statistical difference between the performance of
all-knowing and contextual DL-LLPs, we focus in the remainder of this RQ
on contextual Shallow-LLPs for which we consistently observe at least one
contextual model that exceeds the performance of the all-knowing Shallow-
LLP.

28 Youssef Esseddiq Ouatiti et al.

All-knowing I Contextual [ll No sig. stat. difference

SRy

Hadioop OpeniStack SpFing
Projects

u ~
o (&2

N
a

% testing time frames

Fig. 16: Percentage of testing time frames in which one of our time-aware
DL-LLPs (i.e., contextual or All-knowing) is the statistically significantly best
performing model in terms of AUC.

No contextual Shallow-LLP consistently performs the best on all
of our evaluated testing time frames, as shown in Figure 17. In fact, we do
not observe a clear pattern about contextual models that perform the best, as
six, seven and eight different contextual models perform the best on at least
one testing time frame of Hadoop, Spring and OpenStack respectively. For
example, the best Hadoop contextual model for the 33rd testing time frame
is the four-month based-model, while it is the 16-month based model for the
34th testing time frame.

Despite performing well on some testing time frames, a contextual model
can poorly perform on other time frames. For example, the four-month based
contextual model of Hadoop has a median'® AUC of 0.86 on the 33rd testing
time frame as shown in Figure 15, while the same contextual model has a
median'® AUC performance of just 0.72 on the 34th time frame.

Additionally, we observe that the size of the contextual model (i.e., number
of months used to train it) has a negligible to moderate correlation with the
performance of our evaluated contextual models, as Spearman’s correlation
between the size and performance of our contextual models is -0.05, -0.3 and
0.47 for Hadoop, Spring and OpenStack respectively.

We also investigate ML modeling techniques aiming to improve the per-
formance our time-aware Shallow-LLPs. Specifically, we implement two ML
models that take advantage of the nature of our evaluated time-aware ap-
proaches. While the first is an ensemble model [60] in which our contextual
Shallow-LLPs vote for the appropriate log level across all frame sizes, the vary-
ing model leverages a subset of features to train an all-knowing Shallow-LLP.
We chose a threshold of six features for our varying models (i.e., a maximum
of six most varying features can be removed), in order to guarantee enough

16 Median over the 100 bootstrap samples.

The impact of Concept drift and Data leakage on Log Level Prediction Models 29

- Contextual - 4 M - Contextual - 10 M |:| Contextual - 16 M |:| Contextual - 22 M

Contextual - 6 M Contextual - 12 M Contextual — 18 M Contextual - 24 M
Contextual - 8 M Contextual - 14 M Contextual - 20 M All-Knowing

[N) w N
=] [=] =]

N
o

% of testing time frames

o

Hadioop OpeniSIack Spriing
Projects

Fig. 17: Percentage of testing time frames in which the contextual Shallow-
LLPs perform the best in terms of AUC.

features for training representative varying models (i.e., avoid issues merely
due to lack of features).

We observe that the ensemble learning approach does not bring any signifi-
cant improvement to the performance. In fact, the best performing contextual
Shallow-LLP outperforms the ensemble learning model in 95%, 95% and 82%
of the testing time frames. Additionally, the improvement (if any) brought by
the ensemble learning approach to the best performing time-aware Shallow-
LLP on a given time frame is negligible for all of our studied projects except
for one time frame for Hadoop project.

As for our all-knowing varying Shallow-LLPs (shown in Figure 18), we
do not observe a significant difference between the performance of the model
trained using all features and the performance of models trained using all fea-
tures except the n features (n from 1 to 6) that vary the most. Specifically,
we observe that the models omitting most varying features (one or more) out-
perform the model that uses all features in only 25% (Hadoop), 43% (Spring)
and 55% (OpenStack) of our testing time frames.

Summary of RQ3

While there is no difference in terms of performance between the con-
textual and all-knowing DL-LLPs, at least one contextual Shallow-LLP
statistically outperforms the all-knowing Shallow-LLP on our evaluated
testing time frames. Our results suggest including the size of the
contextual model as a hyperparameter to tune when experi-
menting with contextual LLPs.

RQ4. How does the interpretability of the log level prediction
models change over time?

30 Youssef Esseddiq Ouatiti et al.

B With all features E3 Without 2 features E3 Without 4 features E3 Without 6 features
B3 Without 1 feature BE Without 3 features B8 Without 5 features

1.0
0.9
08 r E
O
=)
w me % W B T P e
... . ﬂ ..
0.6 i |
0.5 S S S S S S S S S S S
12 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435
Time frames
(a) Hadoop

B With all features E3 Without 2 features E3 Without 4 features E3 Without 6 features
B3 Without 1 feature BE Without 3 features B8 Without 5 features

1.0
0.9
008 M o . W
= W . Y ° . . o [0
06{ .] %'i M i i W‘W . o
05 ‘
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time frames
(b) Spring

B With all features E3 Without 2 features B3 Without 4 features E3 Without 6 features
E3 Without 1 feature B8 Without 3 features B8 Without 5 features

1.0
0.9
0.8 1] . - . e T P
<y i T T
0.7 . I
0.5 |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time frames
(¢) Spring

Fig. 18: The AUC Performance of the varying all-knowing Shallow-LLP on all
testing time frames (two-month long)

Motivation: The goal of this research question is to quantify how the inter-
pretability changes over time for Shallow-LLPs (which our previous RQ indi-
cates as the more fitting for handling time-related issues), so that practitioners
can better understand what impacts logging level decisions in a particular time
period. In fact, previous findings also indicate that the performance of Shallow-
LLPs trained using a time-aware approach can change significantly from one

The impact of Concept drift and Data leakage on Log Level Prediction Models 31

time frame to the other (regardless of the training time frame size). Such
changes can be due to changing logging patterns across time. Therefore, we
investigate if the change in performance is accompanied with an interpretabil-
ity change, so updating models is important for understanding the important
factors related to log level prediction. The interpretability is relevant (espe-
cially for models not leveraging deep learning such as the Shallow-LLP) for
practitioners in their decision making such that shifting or conflicting feature
importance rankings might be confusing for practitioners.

Approach: To investigate log level prediction models interpretability across
time, we train time-aware Shallow-LLPs following the steps below, which are
highlighted in Figure 19.

We split the history of our studied project into equal time frames (TF) of
size S (e.g., four months). For each time frame, we train 100 log level prediction
models using 100 bootstrap samples, similarly to the other research questions.

We then extract a ranking of important features from each of the 100
models, as well as the positive or negative impact each of these features can
have on the log level prediction, similar to prior work [47, 45]. For instance, a
feature can have a positive impact on the prediction if increasing the value of
that feature increases the prediction probability and vice-versa. To determine
if a feature F' has a positive or negative effect on a log level L, we first calculate
the probability (P1) of predicting L using features that are set at their median
values. Next, we increase the value of the feature F' by one standard deviation
from its median while keeping the other features at their median values, and
re-predict the probability (P2) of the log level L. The two probabilities P1 and
P2 are then compared to determine the type of impact feature F' has on log
level L.

Since each model has a different ranking of features, we cluster the 100
rankings using the Scott-Knott clustering algorithm into a single ranking.
Similarly, we summarize the impact of a feature as a vote. A feature has a
positive impact if that feature has a positive impact on the majority of our
100 trained models. Note that we rarely observe different impacts of the same
feature on the 100 models that are trained on the same time frame.

We repeat the same analysis on each of the following time frames to obtain
a ranking as well as the impact of each important feature.

We then statistically compare each pair of the obtained rankings, as well as
the rankings of the pair of successive time frames using Spearman Correlation.
Since we are conducting multiple comparison tests, we additionally leverage
Bonferroni’s correction [16]. Note that a ranking correlation ranging between 0
and 0.4 is considered weak to very weak, a ranking correlation ranging between
0.4 and 0.6 is considered moderate, and a ranking correlation higher than 0.6
is considered strong to very strong. Additionally, we leverage the information
about features’ impact in order to detect contradictory features (i.e., features
with different impact across two or more time frames). Specifically, we compare
whether a feature has a positive impact on the models of a given time frame,
while it has a negative impact on the models of another time frame.

32 Youssef Esseddiq Ouatiti et al.
Calculate correlation
for each pair
Select all possible pairs of rankings
e.g., ranking 1 and ranking 3

[N N I
Important feature Important feature

* * * *
ranking 1 .E. .E. .H. .?. ranking N

Model 1 "\y /O /< '@:‘ ':@:' Model N
=z

2 [Tt | . TFn

L Time

Fig. 19: Overview for comparison of interpretability across time

We repeat the same analysis with different time frame sizes, starting from
four and up to 24 months similarly to the previous research questions. Note
that this research question focuses on contextual Shallow-LLPs, as they out-
perform the all-knowing Shallow-LLP (according to our findings of RQ3).
Results: Across different time frame sizes, a median of 88%, 80%
and 79% of the model pairs exhibit a very weak to weak correlation
in terms of feature rankings for Hadoop, Spring and OpenStack re-
spectively. For instance, we observe 90%, 87% and 79% of model pairs trained
on a six-month time frame exhibit a very weak to weak important features cor-
relation. Furthermore, we report a median (across different time frame sizes)
of 12%, 20% and 27% of model pairs that have a strong to very strong correla-
tion in terms of important features ranking. For example, only 14%, 20% and
20% of the six months-based model pairs have strong to very strong important
features correlation for Hadoop, Spring and OpenStack, respectively.

Furthermore, successive pairs of models do not have consistent rankings
of the most important features. We observe that the ranking of important
features for a median (across different time frame sizes) of 31%, 40% and 0%
of the successive training time frames is weak to very weak for Hadoop, Spring
and OpenStack respectively. For instance, the percentage of successive frames
with weakly correlated ranking of important features when considering six-
month based models is 33%, 29% and 50%. Meanwhile, the percentage for
successive time frames with strongly correlated features is 13%, 42% and 21%
for Hadoop, Spring and OpenStack respectively.

Additionally, we observe that the median (over our evaluated time frame
sizes) percentage of important features that are common across all models
is 40%, 54% and 44% for Hadoop, Spring, and OpenStack. That percentage
increases as the size of the frame gets smaller, as the correlation between
the size of the time frame and the number of different features is strongly
negatively correlated (Spearman’s p=-0.9, -0.93 and -0.97 for Hadoop, Spring

The impact of Concept drift and Data leakage on Log Level Prediction Models 33

and OpenStack respectively). For example, while the percentage of common
features for Hadoop models that are trained on six months time frames is 26%,
that percentage is 94% for models trained on frames with a size of 48 months.
We think that training models on small time frames (assuming enough data
points for training) allows to unveil specific patterns to those time periods
(reflected by the highly different feature importance results), as opposed to
models trained on larger time frames for which feature importance becomes
similar. For example, OpenStack’s three models that are trained on 24 months
time frames have 17 out of 18 of their important features in common.

Despite observing models trained on different time frames with
common important features, these features can have a contradic-
tory effect. In fact, the median percentage of contradictory features over
shared features between a pair of models ranges from 0% to 40% (depending
on the evaluated time frame size), 0% to 30% and 0% to 22% for Hadoop,
Spring and OpenStack, respectively. For example, we observe that while hav-
ing more variables in a logging statement increases the probability of that
logging statement to have the Info log level according to Hadoop’s six-month
based-models trained between May and November 2012, the opposite is ob-
served for the model trained on the next six months time frame, as increasing
the number of variables within a logging statement reduces the probability of
predicting the log level Info.

We observe that the percentage of important features that remain im-
portant after retraining a log level prediction model later in time (aka., fea-
ture survival rate) exhibits a different pattern than models studied by a prior
study [36]. While brown test (i.e., tests that trigger false positive build fail-
ures) prediction models studied by Olewicki et al. [36] show a monotonically
decreasing feature survival rate, our log level prediction models show a fluctu-
ating feature survival rate, as shown in Figure 20. Across the different training
sizes, the median feature survival rate ranges from 60% to 70%, 55% to 65%
and 60% to 80% for Hadoop, Spring and OpenStack respectively.

Summary of RQ4

The interpretability of log level prediction models changes across time,
as the important features are different across a median of 88%, 80%
and 79% of the model pairs for Hadoop, Spring, and OpenStack re-
spectively. The smaller the time frame, the more unique its models’
interpretability. Our results suggest the use of recently trained
models for more accurate interpretability.

o
©
o
@

=)
3

~ 4-Months
6-Months

34 Youssef Esseddiq Ouatiti et al.
\/ J = 8-Months
0.6
0.5

~ 4-Months
6-Months
\/ — 8-Months

10 20 30 40 50 10 20 30 40 50

o
IS

Feature survival rate
e o
[Y

Feature survival rate
o o
3 ©

I
w

Age of the model (Months) Age of the model (Months)
(a) Hadoop (b) Spring
0.9
)
3 0.8
K]
s
g 07 — 4-Months
@ |
©06 6-Months
El — 8-Months
©
Los
0.4
20 40 60

Age of the model (Months)

(c) OpenStack

Fig. 20: Feature survival rate for log level prediction models. For clarity pur-
pose, we only show the four, six and eight months based models.

Implications
Data leakage:

Our findings suggest leveraging time-aware approaches for shallow and DL-
LLPs for more realistic performance estimations. Log level prediction models
trained using the random training/testing data splitting approach can over-
estimate the expected performance of a time-aware log level predictor by a
median AUC up to 17% (Shallow-LLP) and 27% (DL-LLP). The existence of
data leakage in the state-of-the-art LLPs indicates that performances reported
in literature might not be achievable when practitioners integrate LLPs into
their environments. Therefore, when training LLPs on their own data, practi-
tioners need to take into consideration data leakage. Specifically we recommend
evaluating both Shallow and DL LLPs using a time-aware approach. Specif-
ically, the train dataset needs to be chronologically before the testing and
validation datasets. As for the size of the time frame of training, we recom-
mend that practitioners include that size into the hyperparameter they tune
when searching for the optimal LLP. Such a time frame size has an impact on
the performance, especially for Shallow-LLP.

Action steps: Implement a chronological split strategy rather than a random
one, when sampling LLP data to mirror real-live use cases (i.e., the training
data should always be before the testing data). Our paper describes how one
can evaluate time-aware strategies (e.g., contextual LLPs) to optimize their
own LLP’s performance while ensuring it is free from data leakage.

The impact of Concept drift and Data leakage on Log Level Prediction Models 35

Important Important
features ranking features ranking

o
h h

1 month W Get initial Update

feature feature
r—ﬁ interpretation interpretation
Strategy 1 | [[Training dataset | | LLP V1.0 LLPv2.0
Strategy 2 l I I I Training dataset I M @ Future @ Future
data data
x Strategy 3 l Training dataset I I I l T ‘ ‘ ‘ T ‘ ‘ ‘ N
L J

~ ‘ ‘ Time
Historical L
Train initial Update
data _—> LLP it

the LLP
Add to

train data

Fig. 21: Concept drift mitigation approach

Concept drift:

Our results suggest the need for continuous concept drift tracking and frequent
updates to the LLPs (both Shallow-LLP and DL-LLP). Log level prediction
models suffer from concept drift as their AUC performance drops on future
testing time frames after a median of just 1.5, 1 and 1 testing time frames for
Hadoop, Spring and OpenStack respectively. The existence of concept drift
in LLPs imposes the necessity of updating them frequently in order to avoid
obsolete models. While it is not possible to completely eliminate concept drift,
our findings indicate that concept drift does not become significant until 2
months after the training dataset for both Shallow and DL LL.Ps. Therefore, for
training an initial LLP we propose to use historical data that ends two months
at most before the testing phase, as shown in Figure 21. For instance, if one
wishes to use an LLP to predict log levels starting March 2024, the end date of
the data leveraged for training the model should not be older than December
2023. Furthermore, the trained LLP should be updated every two months.
For example, the model trained in March 2024 will need to be updated come
May 2024, with data from the March and April months added to the training
dataset. Note that retraining the LLPs frequently can be costly (especially for
the DL-LLPs), yet, we believe that the benefit brought by having an LLP that
is robust to logging changes outweighs the efforts for model maintenance (e.g.,
the periodic LLP retrain could be automated).

Action steps: (1) Update the training data for LLPs at intervals dictated
by our concept drift detection methodology (e.g., intervals of less than two
months, as a rule of thumb based on our empirical findings) to mitigate concept
drift impact. (2) Continuously monitor LLPs’ performance over time and
adjust the retrain frequency based on observed performance changes.

36 Youssef Esseddiq Ouatiti et al.

Time-aware models:

We advise practitioners to leverage contextual models (i.e., time-aware models
trained on a subset of the available data), rather than the all-knowing mod-
els (i.e., time-aware models that leverage all available data), as the former
option shows (1) better performances for Shallow-LLPs, (2) at least as good
as the all-knowing model in terms of performance for the DL-LLP, and it is
easier to retrain (especially for DL-LLPs) which makes model updates and
hyperparameter tuning activities easier.

We also recommend that practitioners update the ranking of important
features whenever they update the LLP, as shown in Figure 21. The feature
importance ranking for time-aware models is typically different. Thus, when
opting for a best time-aware performing model (i.e., either a contextual model
or all-knowing model), practitioners should consider regenerating the most im-
portant features.

Action steps: (1) Leverage contextual LLPs to guarantee optimal performance
and facilitate easier retraining (crucial for concept drift mitigation) and hy-
perparameter tuning. (2) Update the feature importance rankings each time
the LLP is retrained to maintain the relevancy of the LLP interpretability in
light of new data.

5 Threats to validity
5.1 External validity

One external threat to the validity of our work concerns the generaliza-
tion of our results to other software systems as well as models. Even if our
study covers three popular, large software projects maintained for a long pe-
riod, and our experiments targeted different time frames and time frame sizes,
we do not generalize our results to other software systems or other machine
learning models. We also encourage future studies to replicate our study on
other software engineering models as well as software systems.

5.2 Internal validity

One internal threat to the validity of our work regards the time frame sizes
used to train and test our models. For instance, leveraging a different time-
frame size can show a different result. To mitigate this threat, we leverage
different time-frame sizes ranging from four to 24 months and we leverage 100
bootstrap samples for each trained model to make our analysis statistically
robust. Similarly, our comparison between the all-knowing models and the
contextual ones can be different with different contextual models sizes. To
mitigate this threat, we also compared the all-knowing models to different

The impact of Concept drift and Data leakage on Log Level Prediction Models 37

contextual models, each of which is trained on a different sample size of four
to 24 months. Another internal threat to validity regards the quality of the log
levels selected by developers. In fact, developers can introduce inaccurate log
level choice which can impact the overall quality of our datasets. However, we
observe that the logging statements in our datasets are not changed frequently
(3.8% to 7.5% of the logging statements across our evaluated projects).

6 Conclusion

Log level prediction models proposed by prior work [28, 29| leverage a
set of metrics to predict the appropriate log level for a logging statement.
While their models (Shallow-LLP and DL-LLP) show a good performance, the
way these are evaluated can suffer from data leakage and concept drift, i.e.,
two time-related issues. Due to the change in log level choice decisions across
time as well as the context differences (e.g., domain, data) between the LLPs
and previously studied models (i.e., defect prediction and AIOps models),
one might be unclear whether LLPs are less impacted by data leakage and
concept drift (e.g., stagnant logging practices), or whether they can be severely
impacted by time-related issues (e.g., abrupt changes to logging strategy).

Since prior work [58, 4] indicates that time-related issues (e.g., concept
drift) impact software engineering models differently. Therefore, in this paper,
we quantify the impact of data leakage and concept drift on the performance
and interpretability of log level prediction models.

Our findings indicate that a data leakage risk exists for both the Shallow
and DL-LLPs. Furthermore, we found that LLPs (especially DL-LLPs) need
to be updated frequently as they can suffer from concept drift as soon as a
couple of months post training.

As a means of mitigating time-related issues, we evaluated two types of
time-aware models: a) contextual models that leverage data from a time frame
of the history, and b) the all-knowing model that leverages all the data avail-
able at the moment of its creation. Through the comparison of the performance
of these time-aware models, we observe that the all-knowing Shallow-LLP —
despite using more data— can perform significantly worse than some contextual
Shallow-LLPs. Yet, no specific contextual Shallow-LLP consistently outper-
forms all the other contextual Shallow-LLLPs. Therefore, we encourage con-
sidering the size of the contextual model as a hyperparameter to tune when
training log level prediction models spanning through time.

Finally, we investigated how the important features for log level prediction
change for a time-aware model. We observe that while some features are shared
between all the contextual models, a larger portion (i.e., up to 40%) of the
features are exclusive to a set of the contextual models. Furthermore, even
when two contextual models share some important features, they may have
contradictory effect on the prediction of a specific log level.

Our results suggest paying attention to time-related issues when leveraging
log level prediction models. To mitigate the effect of these time-related issues,

38 Youssef Esseddiq Ouatiti et al.

we recommend using contextual models that are time-aware (i.e., not suscepti-
ble to data leakage), easier to train than the global model and —given the right
window size— perform at least as good as the global models. While finding the
best performing shallow model is relatively fast (i.e., real-time retraining), we
seek to develop in future work an approach to find the best contextual model
for DL-LLPs.

Acknowledgements: We would like to thank the anonymous reviewers for
their insightful comments.

Data Availability Statement: The datasets generated during and/or anal-
ysed during the current study are available online [38].

Declarations:

Conflicts of Interests: The authors declare that they have no conflict of
interest.

References

1. rms: Regression Modeling Strategies.

2. A. Agrawal and T. Menzies. Is ai different for se? NC State Univ., 12
2019.

3. H. Anu, J. Chen, W. Shi, J. Hou, B. Liang, and B. Qin. An approach to
recommendation of verbosity log levels based on logging intention. In 2019
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2019.

4. K. E. Bennin, N. bin Ali, J. Borstler, and X. Yu. Revisiting the impact
of concept drift on just-in-time quality assurance. 2020 IEEE 20th Int.
Conf. on Software Quality, Reliability and Security (QRS), 2020.

5. T. Bertram, J. Fiirnkranz, and M. Miiller. Quantity vs quality: Investi-
gating the trade-off between sample size and label reliability, 2022.

6. R. Chahar and D. Kaur. A systematic review of the machine learning algo-
rithms for the computational analysis in different domains. International
Journal of Advanced Technology and Engineering Exploration, 7(71):147,
2020.

7. Chakkrit Tantithamthavorn. ScottKnottESD: The Scott-Knott Effect Size
Difference (ESD) Test, 2018.

8. J. B. Ekanayake, J. Tappolet, H. C. Gall, and A. Bernstein. Tracking
concept drift of software projects using defect prediction quality. 2009 6th
IEEE Int. Working Conference on Mining Software Repositories, pages
51-60, 20009.

9. Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie.
Where do developers log? an empirical study on logging practices in in-
dustry. In Proceedings of the 36th International Conference on Software
Engineering(ICSE’14), page 24-33, 2014.

The impact of Concept drift and Data leakage on Log Level Prediction Models 39

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift
detection. volume 8, pages 286295, 09 2004.

J. a. Gama, I. Zliobaitundefined, A. Bifet, M. Pechenizkiy, and
A. Bouchachia. A survey on concept drift adaptation. ACM Comput-
ing Surveys, 46(4):1-37, 2014.

G.Ditzler, M.Roveri, C.Alippi, and R.Polikar. Learning in nonstation-
ary environments: A survey. IEEE Computational Intelligence Magazine,
10(4):12-25, 2015.

D. J. Hand and R. J. Till. A simple generalisation of the area under
the roc curve for multiple class classification problems. Mach. Learn.,
45(2):171-186, 2001.

M. Harel, K. Crammer, R. El-Yaniv, and S. Mannor. Concept drift de-
tection through resampling. In Proceedings of the 31st International Con-
ference on International Conference on Machine Learning - Volume 32,
ICML’14, page 11-1009-11-1017. JMLR.org, 2014.

F. E. Harrell. Regression Modeling Strategies. Springer International Pub-
lishing, 2001.

W. Haynes. Bonferroni Correction, pages 154-154. Springer New York,
2013.

J. Herbsleb and A. Mockus. An empirical study of speed and communica-
tion in globally distributed software development. IEEE Transactions on
Software Engineering, 2003.

Z. Jia, S. Li, X. Liu, X. Liao, and Y. Liu. Smartlog: Place error log
statement by deep understanding of log intention. In 2018 IEEE 25th In-
ternational Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 61-71, 2018.

J. Jiarpakdee, C. Tantithamthavorn, and A. E. Hassan. The impact of
correlated metrics on defect models. arXiv preprint arXiv:1801.10271,
2018.

J.Lu, A.Liu, F.Dong, F.Gu, J.Gama, and G.Zhang. Learning under con-
cept drift: A review. IEEFE Transactions on Knowledge and Data Engi-
neering, 31(12):2346-2363, 2019.

S. Kabinna, W. Shang, C. Bezemer, and A. E. Hassan. Examining the
stabity of logging statements. In Proceedings of the 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 326-337, 2016.

S. Kaufman, S. Rosset, and C. Perlich. Leakage in data mining: Formula-
tion, detection, and avoidance. volume 6, pages 556-563, 01 2011.

D. Lee, G. K. Rajbahadur, D. Lin, M. Sayagh, C.-P. Bezemer, and A. E.
Hassan. An empirical study of the characteristics of popular minecraft
mods. Empirical Software Engineering, pages 1-23, 2019.

D. Lee, G. K. Rajbahadur, D. Lin, M. Sayagh, C.-P. Bezemer, and A. E.
Hassan. An empirical study of the characteristics of popular minecraft
mods. Empirical Software Engineering, 09 2020.

H. Li, T.-H. P. Chen, W. Shang, and A. E. Hassan. Studying soft-
ware logging using topic models. Empirical Software Enggineering,

40

Youssef Esseddiq Ouatiti et al.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

23(5):2655-2694, 2018.

H. Li, T.-H. P. Chen, W. Shang, and A. E. Hassan. Studying software
logging using topic models. Empirical Softw. Engg., 23(5):2655-2694, Oct.
2018.

H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan. A qualitative
study of the benefits and costs of logging from developers’ perspectives.
IEEE Transactions on Software Engineering, pages 1-1, 2020.

H. Li, W. Shang, and A. Hassan. Which log level should developers
choose for a new logging statement? Empirical Software Engineering, page
1684-1716, 2017.

Z.Li, H. Li, T.-H. Chen, and W. Shang. Deeplv: Suggesting log levels using
ordinal based neural networks. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pages 1461-1472, 2021.

Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G. Lou, C. Li,
Y. Wu, R. Yao, M. Chintalapati, and D. Zhang. Predicting node failure
in cloud service systems. In Proceedings of the 2018 26th ACM Joint
Meeting on Furopean Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2018, page 480-490,
New York, NY, USA, 2018. Association for Computing Machinery.

A. Liu, Y. Song, G. Zhang, and J. Lu. Regional concept drift detection
and density synchronized drift adaptation. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, IJCAT’17.

Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Which variables
should i log? IEEFE Transactions on Software Engineering, pages 1-1,
2019.

N. Lu, J. Lu, G. Zhang, and R. Lopez de Mantaras. A con-
cept drift-tolerant case-base editing technique. Artificial Intelligence,
230(C):108-133, 2016.

Y. Lyu, H. Li, M. Sayagh, Z. Jiang, and A. E. Hassan. An empirical
study of the impact of data splitting decisions on the performance of aiops
solutions. ACM Transactions on Software Engineering and Methodology,
01 2021.

Y. Lyu, G. K. Rajbahadur, D. Lin, B. Chen, and Z. M. J. Jiang. Towards
a consistent interpretation of aiops models. 31(1), 2021.

N. M. Olewicki, Doriane and B. Adams. Towards language-independent
brown build detection. In Proc. of the 44th Int. Conf. on Software Engi-
neering(ICSE’22), 2022.

A. Oliner, A. Ganapathi, and W. Xu. Advances and challenges in log
analysis. Communications of the ACM, page 55-61, 2012.

Y. E. Ouatiti. The impact of concept drift and data leakage on log level
prediction models - appendix. https://zenodo.org/records/10898284,
2024.

Y. E. Ouatiti, M. Sayagh, N. Kerzazi, and A. E. Hassan. An empirical
study on log level prediction for multi-component systems. IEEE Trans-
actions on Software Engineering, 2023.

https://zenodo.org/records/10898284

The impact of Concept drift and Data leakage on Log Level Prediction Models 41

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

92.

53.

A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo. Industry practices
and event logging: Assessment of a critical software development process.
In Proceedings of the 37th International Conference on Software Engineer-
ing, volume 2, pages 169-178, 2015.

G. K. Rajbahadur, S. Wang, G. Ansaldi, Y. Kamei, and A. E. Hassan.
The impact of feature importance methods on the interpretation of defect
classifiers. IEEFE Transactions on Software Engineering, pages 1-1, 2021.
S. Ramrez-Gallego, B. Krawczyk, S. Garca, M. Woniak, and F. Herrera.
A survey on data preprocessing for data stream mining. Neurocomput.,
239(C):39-57, 2017.

B. A. S. MclIntosh, Y. Kamei and A. E. Hassan. The impact of code review
coverage and code review participation on software quality. In Proceedings
of the Working Conference on Mining Software Repositories (MSR), page
292-201, 2014.

F. Sarro, R. Moussa, A. Petrozziello, and M. Harman. Learning from
mistakes: Machine learning enhanced human expert effort estimates. IEEE
Transactions on Software Engineering, 2022.

M. Sayagh, Z. Dong, A. Andrzejak, and B. Adams. Does the choice of
configuration framework matter for developers? empirical study on 11 java
configuration frameworks. In 2017 IEEE 17th International Working Con-
ference on Source Code Analysis and Manipulation (SCAM), 2017.

W. Shang, M. Nagappan, and A. E. Hassan. Studying the relationship
between logging characteristics and the code quality of platform software.
Empirical Software Enggineering, 20(1):1-27, 2015.

E. Shihab, Y. Kamei, B. Adams, and A. E. Hassan. Is lines of code a
good measure of effort in effort-aware models? Information and Software
Technology, 2013.

R. Subramanyam and M. Krishnan. Empirical analysis of ck metrics for
object-oriented design complexity: implications for software defects. IEEE
Transactions on Software Engineering, 2003.

C. Tantithamthavorn and A. E. Hassan. An experience report on defect
modelling in practice: Pitfalls and challenges. In Proceedings of the In-
ternational Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP’18), page To Appear, 2018.

C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto. The impact
of class rebalancing techniques on the performance and interpretation of
defect prediction models, 2018.

C. Tantithamthavorn, J. Jiarpakdee, and J. Grundy. Actionable analytics:
Stop telling me what it is; please tell me what to do. IEEFE Software, 2021.
C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. The
impact of automated parameter optimization on defect prediction models.
IEEE Transactions on Software Engineering, 45(07):683-711, 2019.

P. Thongtanunam and A. Hassan. Review dynamics and its impact on
software quality. IEEFE Transactions on Software Engineering, pages 1—
13, 2018.

42

Youssef Esseddiq Ouatiti et al.

54

55.

56.

o7.

58.

99.

60.

61.

. D. Yuan, Y. D., Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang,
P. U. Jain, and M. Stumm. Simple testing can prevent most critical fail-
ures: An analysis of production failures in distributed data-intensive sys-
tems. In Proceedings of the 11th Conference on Operating Systems Design
and Implementation, Systems Design and Implementation, pages 249-265,
2014.

D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou, and
S. Savage. Be conservative: Enhancing failure diagnosis with proactive
logging. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12.

D. Yuan, S. Park, and Y. Zhou. Characterizing logging practices in open-
source software. In Proceedings of the 34th International Conference on
Software Engineering(ICSE’12), pages 102-112, 2012.

D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving software
diagnosability via log enhancement. In Proceedings of the Sixteenth Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, page 3-14. Association for Computing Machinery,
2011.

D. Zhang and J. Tsai. Machine learning and software engineering. 2002.

J. Zhang, V. S. Sheng, J. Wu, and X. Wu. Multi-class ground truth infer-
ence in crowdsourcing with clustering. IEEE Transactions on Knowledge
and Data Engineering, 2016.

Z.-H. Zhou. Ensemble Methods: Foundations and Algorithms. Chapman
amp; Hall/CRC, 2012.

J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang. Learning to
log: Helping developers make informed logging decisions. In Proceedings
of the 37th International Conference on Software Engineering - Volume 1,
ICSE’15, pages 415-425, 2015.

	Introduction
	Background and Related work
	Methodology
	Results
	Threats to validity
	Conclusion

