Noname manuscript No.
(will be inserted by the editor)

A Large-Scale Exploratory Study on the Proxy Pattern
in Ethereum

Amir M. Ebrahimi - Bram Adams -
Gustavo A. Oliva - Ahmed E. Hassan

Received: date / Accepted: date

Abstract The proxy pattern is a well-known design pattern with numerous
use cases in several sectors of the software industry (e.g., network applications,
microservices, and I0T). As such, the use of the proxy pattern is also a common
approach in the development of complex decentralized applications (DApps) on
the Ethereum blockchain. A contract that implements the proxy pattern (proxy
contract) acts as a layer between the clients and the target contract, enabling
greater flexibility (e.g., data validation checks) and upgradeability (e.g., online
smart contract replacement with zero downtime) in DApp development. Despite the
importance of proxy contracts, little is known about (i) how their prevalence changed
over time, (ii) the ways in which developers integrate proxies in the design of DApps,
and (iil) what proxy types are being most commonly leveraged by developers. In this
paper, we present a large-scale exploratory study on the use of the proxy pattern
in Ethereum. We analyze a dataset of all Ethereum smart contracts as of Sep. 2022
containing 50M smart contracts and 1.6B transactions, and apply both quantitative
and qualitative methods in order to (i) determine the prevalence of proxy contracts,
(ii) understand the ways they are deployed and integrated into applications, and
(iii) uncover the prevalence of different types of proxy contracts. Our findings reveal
that 14.2% of all deployed smart contracts are proxy contracts. We show that proxy
contracts are being more actively used than non-proxy contracts. Also, the usage
of proxy contracts in various contexts, transactions involving proxy contracts, and
adoption of proxy contracts by users have shown an upward trend over time, peaking
at the end of our study period. They are either deployed through off-chain scripts or

Amir M. Ebrahimi, Gustavo A. Oliva, Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL), School of Computing
Queen’s University, Kingston, Ontario, Canada

E-mail: {amir.ebrahimi,gustavo,ahmed}@cs.queensu.ca

Bram Adams

Lab on Maintenance, Construction and Intelligence of Software (MCIS), School of Computing
Queen’s University, Kingston, Ontario, Canada

E-mail: {bram.adams}@cs.queensu.ca

2 Amir M. Ebrahimi et al.

on-chain factory contracts, with the former and latter being employed in 39.1% and
60.9% of identified usage contexts in turn. We found that while the majority (67.8%)
of proxies act as an interceptor, 32.2% enables upgradeability. Proxy contracts
are typically (79%) implemented based on known reference implementations with
29.4% being of type ERC-1167, a class of proxies that aims to cheaply reuse and
clone contracts’ functionality. Our evaluation shows that our proposed behavioral
proxy detection method has a precision and recall of 100% in detecting active
proxies. Finally, we derive a set of practical recommendations for developers and
introduce open research questions to guide future research on the topic.

Keywords Proxy Pattern - Proxy - Maintenance - Smart Contracts - Ethereum -
Blockchain

1 Introduction

A proxy is fundamentally an entity that acts as an intermediary between two ob-
jects (Gamma et al., [1995)). It serves as a representative for a target object—whether
it is a network connection, a large memory object, a file, or other resource-intensive
entities—without altering its interface. Hence, for a client, interacting with a proxy
feels akin to using the actual object (Gamma et al.l |1995)).

Proxies play a crucial role in software design, evidenced by their inclusion as
one of the twenty-three standard design pattern (Gamma et al. [1995). They
find applications across various software domains, including the internet, mi-
croservices (Richardson, 2018), IoT (Bloom et al., |2018, |Ngaogate, 2019), and
blockchain (Wohrer and Zdun, [2018). Proxies enhance modularity and encapsu-
lation while offering functionalities like caching for resource-intensive operations,
precondition checks, and access control to the real object’s operations.

Previous studies have emphasized the significance of the proxy pattern in
programmable blockchains, especially Ethereum (Rajasekar et al., 2020, [Wohrer
and Zdun, |2018| [Xu et al., 2021). Ethereum, a leading blockchain platform, enables
the deployment of smart contracts, typically written in Solidity. In the remainder
of this paper, the term smart contract will be used to refer to deployed contracts.
Once these contracts are deployed, they become immutable, meaning they cannot
be altered post-deployment. However, like all software, smart contracts need main-
tenance. Proxies provide a method for seamless upgrades to these contracts. When
a logic contract (a.k.a., the actual serving object) requires an upgrade, a fresh
version is deployed, and the proxy contract is adjusted to point to this new version,
ensuring continuous interaction without any service disruption. This redirection
is achieved by updating the proxy’s reference to the new logic contract, allowing
clients to maintain interaction without altering their existing setups.

While the benefits of proxies are well-established in traditional applications,
their merits in blockchain applications remain under exploration. Existing smart
contract literature indicates that proxies can reduce deployment costs and facilitate
maintenance (Jorge Izquierdol 2018, [Kannengieser et al., 2022, |Rajasekar et al.
2020, \Worley and Skjelluml |2019b, [Wohrer and Zdun, [2018} [Xu et al., |2021)). Never-
theless, it remains unclear i) how widely proxies are used in blockchain applications,

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 3

ii) how developers effectively integrate proxies into existing applications, and iii)
what types of proxies are most commonly used in practice.

Furthermore, tracking proxies is crucial for the security of many blockchain appli-
cations (Santiago Palladino, [2019). Since the upgrade process involves modifying the
code, it must be done in a secure and controlled manner to prevent any unintended
consequences. This activity enables developers, auditors, and clients to monitor
smart contract evolution, ensuring changes are conducted securely and transparently,
which is vital for critical or high-value contracts. Currently, however, there is a lack
of techniques that can effectively detect proxies at scale and in a timely manner.

The aforementioned challenges underscore the imperative for in-depth explo-
ration in this domain. Thus, we set out to conduct a large-scale exploratory study
to dissect the proxy pattern in smart contracts. Our study encompasses the entire
Ethereum lifespan as of Sep-01-2022 with 50,845,833 deployed smart contracts and
1,695,517,186 performed transactions. In particular, we designed an approach that
effectively and efficiently mines all active proxy contracts based on their behavior,
after which we addressed the following research questions:

Motivation-study. Is the proxy pattern a relevant practice in the domain
of smart contracts?

RQ1. How prevalent is the proxy mechanism in the Ethereum ecosystem?

RQ2. What are the different creational patterns for deploying proxy
contracts?

RQ3. What are the different types and properties of proxy contracts?

Contributions. To the best of our knowledge, this is the first in-depth, large-scale
exploratory study of the proxy pattern in smart contracts. In highlighting our con-
tributions, we emphasize that the value of our work lies not just in its findings and
implications, but also in its adaptable methodology and the new research questions
it introduces for future exploration. More specifically, our key contributions are as
follows: (i) proposing an efficient and accurate method for detecting active proxies,
(ii) illustrating the prevalence of the proxy pattern and their role in the blockchain
context from various perspectives, (iii) mining different creational patterns for
deploying proxies and shedding light on the main practices, (iv) analyzing the
prevalence of different proxy types in terms of their purpose and implementation
types, (v) publishing four ground truth datasets for evaluating proxy detection,
and proxy type detection methods, (vi) analyzing the practical application of the
proxy pattern in the real-world decentralized applications (DApps), and (vii) a
detailed discussion on the pros and cons of the proxy pattern and different proxy
deployment styles, and the ensuing research challenges and practical implications.

Paper structure. Section 2] discusses key relevant terminologies and concepts
used across the paper. Section [3] discusses our data collection. Section [4] describes a
preliminary analysis to further enforce the study of the proxy pattern in Ethereum.
Section [5] introduces our proxy detection method and its evaluation. Sections [6]
[7] and [§] describe our motivation, approach, and findings for each of our three
research questions, respectively. Section [J] compares and describes the benefits and
drawbacks of adopting the proxy pattern and its two deployment styles. Next,

4 Amir M. Ebrahimi et al.

the implications of our findings as well as opportunities for future research are
described. Section [T0]lists the threats to the validity of our study. Section [[T]surveys
the relevant literature. Finally, Section [I2] concludes our study.

2 Background

Blockchain. A blockchain is a distributed ledger managed by nodes in a peer-to-
peer network. Notable platforms include Bitcoin, Ethereum, EOS, POA, Nxt, and
Hyperledger Fabric. Ethereum stands out as a leading programmable blockchain,
facilitating the hosting and execution of smart contracts through its Ethereum
Virtual Machine (EVM).

Smart contract. A smart contract is a program executed on a blockchain, com-
monly written in Solidity, a language with syntax akin to JavaScript. Once compiled,
the bytecode is deployed to platforms like Ethereum, which typically do not store
the contract’s source code. In this study, the term "smart contract" refers to this
bytecode. On the Ethereum blockchain, each deployed contract is assigned a unique
address for identification. A wverified smart contract has its source code publicly
accessible on Etherscarll for review.

Decentralized Application (DApp). A decentralized application operates on
programmable blockchains like Ethereum, which offers a secure and transparent
platform. These DApps utilize smart contracts to manage transactions, ensuring
their back-end code remains open-source and not controlled by any single entity.
The Ethereum network verifies and processes all transactions, providing resistance
to censorship, fraud, and downtime. DApps have diverse applications such as
decentralized finance (DeF1i), gaming, gambling, etc.

Account types. The Ethereum platform supports two types of accounts, namely
externally owned accounts (EOA) and contract accounts (CA). An EOA contains
the following fields: an address (40-digit hexadecimal ID), a transaction counter,
and the ETH balance (ETH is the official Ethereum cryptocurrency). A contract
account, in turn, holds the bytecode of a smart contract in addition to the previously
mentioned fields.

Transactions and contract deployment. In Ethereum, transactions facilitate
interactions and are exclusively initiated by EOAs. EOAs transfer cryptocurrency
(Ether) to other EOAs or send transactions to deploy or invoke functions in con-
tracts. Notably, contracts can also engage with other contracts, a feature facilitated
by internal transactions, hereafter referred to as traces. A trace encapsulates details
of an operation that took place during transaction execution, including its type,
involved addresses, execution state, calldata, output data, transferred Ether amount,
and gas consumption.

Figure|1| depicts a trace table for an example transactiorﬂ T. For the purpose of
readability, we labeled the EOA, involved contracts and each trace with appropriate

L 'https:/ /etherscan.io/contractsVerified

2 |https:/ /etherscan.io/tx/0x650e7876a7742194b14544bcTed2e9b8h9a6386 1624f83e9bd3eedd92673fa5 /
advanced#internal

https://etherscan.io/contractsVerified
https://etherscan.io/tx/0x650e7876a7742194b14544bc7ed2e9b8fb9a63861e24f83e9bd3ee4d92673fa5/advanced#internal
https://etherscan.io/tx/0x650e7876a7742194b14544bc7ed2e9b8fb9a63861e24f83e9bd3ee4d92673fa5/advanced#internal

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 5

Overview Internal Txns Logs (1) State Comments More v

EOA c1
E= The contract call From 0xbC2eE4...299612D9 To 0x9689Df...2c262E49 produced 3 Internal Transactions @ ADVANCED MoDE: @D

Type Trace Address From To Value Gas Limit
™ c1 Cc2

@ create 0 0x9689Df...2c262E49 - =)[E0x9D163E...97380613 0ETH 143,472
T2 c1 c2

@ call_1 0x9689Df...2c262E49 - =) 0x9D163E...97380613 0ETH 96,627
T3 Cc2 C3

@ delegatecall_1_0 0x9D163E...97380613 - =) 0x55FEC5...43DdDd0C 0ETH 93,573

0% A transaction is a cryptographically signed instruction that changes the blockchain state. Block explorers track the details of all transactions in the network. Learn
more about transactions in our Knowledge Base

Fig. 1: The trace table of an example transactior2 T.

T1T2
T3

Fig. 2: The call graph for an example transaction? T.

abbreviations denoted by different colors in Figure [I} As shown, as a result of
a call from the EOA to the contract C1, three traces, namely T1, T2, and T,
were executed. In particular, C1 creates another contract C2 (i.e., T1). Then, C1
makes a call to C2 (i.e., T2), which resulted in another child trace (i.e., T8), where
C2 delegated a call to C3. Thus, a trace can have child sub-traces. Figure [2| shows
the call graph for transaction 7, denoting the precedence of traces against each
other. The direction of the arrows indicates the parent-child relationship between
traces. For instance, trace T3 is a child of trace T2; thus, T2 precedes T3.
Finally, when a contract is deployed by an EOA, it often means that an entity
(commonly a developer) deployed the contract to Ethereum. When a contract C2
is deployed by another contract C1, it means that C1 deployed C2 at runtime as
a result of a transaction T sent to C1. The definition of C2 can be either given to
C1 (e.g., as part of the calldata field contained in T') or created dynamically by C1.

Transaction payment (gas system). To successfully conduct a transaction
on Ethereum, an EOA must pay a transaction fee. This fee is a function of (i)
the number and type of smart contract instructions that are executed during
runtime (a.k.a., the gas used) and (ii) a financial incentive for miners to process
the transaction (a.k.a., gas price). More details about the gas system can be found
in the work of |Oliva and Hassan| (2021).

6 Amir M. Ebrahimi et al.

. method_call() method_call()_|

g Proxy Contract g Logic Contract
«——— <
return_data \) return_data

User

Fig. 3: The basic proxy contract design.

Cross-contract method calls. The Solidity language supports four types of
cross-contract method calls, namely call, callcode, staticcall, and delegatecall. To
explain the differences among these types, take Alice, Bob, and Charlie as three
contracts. When Alice does a call to Bob, the code runs in the context of Bob;
thus, Bob’s storage is prone to change. The staticcall was a security update that
allows calling another contract while prohibiting any state changes during the call
(and its sub-calls). When Alice calls Bob and Bob does callcode to Charlie, the
code runs in the context of Bob, which means Charlie can change Bob’s storage.
Here, Charlie sees Bob as the message sender. The delegatecall is often seen as a
bug fix for callcode, since the latter does not preserve the message sender. This
means that Charlie sees Alice instead of Bob as the message sender if we replace
callcode with delegatecall in the previous scenario.

Ethereum Request for Comments (ERCs). An ERC (Ethereum Request for
Comment) is a proposal in the Ethereum community that describes application-level
standards and conventions for the Ethereum platform.

Proxy contract. A proxy contract, commonly known as a dispatcher, embodies the
proxy pattern, as shown in Figure[3] An external entity (either an EOA or a CA) ini-
tiates a function call to the proxy. The proxy, in turn, utilizes a delegatecall to redirect
this call to the logic contract, which houses the operational code. This logic contract’s
reference is maintained within the proxy’s storage. The outcome is relayed back to
the caller through the proxy. The main point in the proxy design is that, from the ex-
ternal entity’s perspective, talking to the proxy must resemble talking to the actual
logic contract. Therefore, the proxy and its logic must follow a similar interface. This
mandates that function selectorﬂ in both contracts align. Thus, two distinguishing
features of proxy contracts emerge: i) the use of delegatecall for interactions and ii) a
shared interface with its logic contract. These features guide our proxy contract iden-
tification in Section [5.1} Proxies can function as either a forwarder or an upgradeabil-
ity proxy. The former retains a fixed reference to its logic contract post-deployment,
while the latter permits reference updates to new logic contracts without downtime.

Proxy pattern standards in Ethereum. The Ethereum community has been
proactive in devising standards for proxy contract implementation and management.
ERC-897 introduced an interface that standardizes operations across diverse proxy
types, highlighting two primary kinds: the forwarder proxy and the upgradeability
proxy (Jorge Izquierdo, 2018). Concurrently, ERC-1967 responded to the need
for secure proxy and logic contract address tracking, proposing standard storage
slots for both the logic contract’s address and the proxy’s administration. This

3 Defined as the initial four bytes of the keccak256 hash of a function’s signature.

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 7

standardization effort aimed to boost tool compatibility across the platform (Sans
tiago Palladino, 2019).

Complementing these initiatives, ERC-1167 proposed the "Minimal Proxy Con-
tract" to enable the cost-effective cloning of contract functionalities (Peter Murray,
2018), while ERC-1822’s Universal Upgradeability Proxy Standard (UUPS) stream-
lined the developer experience in managing proxy and logic contracts, vesting
the upgrade initiation in the logic contract(Gabriel Barros, 2019). The Diamonds
standard further introduced a flexible structure, allowing for multiple facets and
the addition or replacement of multiple functions in a single transaction (Mudge,
2020). Additionally, novel approaches like the Beacon Proxy Pattern (Dharmaj
2019) and OpenZeppelin’s Transparent Proxy Pattern emerged (OpenZeppelin,
2017)), addressing collective upgrade challenges and selector clashing issues, respec-
tively. These advancements underscore the Ethereum community’s recognition of
the significance of proxy contracts and their critical role in ensuring flexibility,
upgradeability, and security within decentralized applications.

Alternative smart contract upgradeability techniques. In the realm of smart
contract upgradeability, various strategies exist. The Data Separation method
decouples data and logic, maintaining data in a consistent contract and updating
only the logic when needed, exemplified by Eternal storage (Ethereum, 2023).
The Create2 mechanism leverages the CREATE2 method to pre-determine contract
addresses and allows re-deployment at the same address under certain conditions,
ensuring continuity [Feist et al.| (2019). Data migration involves deploying a new
contract version and transferring existing data, demanding meticulous management
to prevent data inconsistencies (Qasse et al.;|2023)). The Strategy pattern, borrowed
from object-oriented programming, offers a modular approach by encapsulating al-
gorithms that can be swapped without altering the core contract (Ethereum) [2023).
Lastly, the SelfDestruct mechanism in Solidity enables contracts to be destroyed
and subsequently replaced, though it poses challenges in data migration and irre-
versible actions, making it a less favored approach (Chen et al.| [2021)). Among these,
the proxy pattern (Figure [3)) stands out as the most popular due to its versatility
and efficiency in maintaining contracts (OpenZeppelin, |2023b, [Salehi et al.| [2022]).

Proxy Storage Slots. To ensure the integrity of data between a proxy and its
implementation contract, it is crucial to avoid storage conflicts. Potential issues
arise when both the proxy and implementation contracts, unknowingly, use the
same storage slot for different purposes. Several standards have been proposed to
standardize the storage designs of these contracts, reducing storage collision risks.
Key among these are the ERC-1967 Proxy Storage Slot (Santiago Palladino, 2019),
which prescribes specific locations for proxies to store addresses; the Inherited Stor-
age Proxy, emphasizing the synchronization of storage structures between proxy and
implementation contracts (OpenZeppelin, 2018); the Eternal Storage Proxy, which
establishes a consistent storage schema across contract versions(OpenZeppelin,
2018)); and the Unstructured Storage Proxy, which uses a constant variable hashing
approach to define storage slots, ensuring that successor versions remain compatible
with their predecessors (OpenZeppelin, 2018)).

8 Amir M. Ebrahimi et al.

3 Data Collection

Our study requires data about Ethereum smart contracts and their associated
transactional activities. We collected this data using Google BigQuery, a fully
managed, cloud-native data warehouse offered by the Google Cloud Platform.
Google BigQuery is maintained by Google and is a paid service, although they offer
a free tier with limited capabilities. We used a free tier account to collect our datasets.
More specifically, we extracted data from the crypto_ ethereum dataset. This
dataset, which is part of the BigQuery Public Datasets program, records information
about transactions, contracts, blocks, events, tokens, and token holders. Users can
extract data from this dataset using SQL-like queries, which can be executed directly
within the BigQuery Console or by making API calls using the BigQuery API.

To conduct our empirical analyses, we extracted data from the contractﬁ and
trace tables. While the former contains information regarding the deployed smart
contracts (e.g., address, bytecode, creation timestamp, etc.), the latter records
detailed information about smart contract transactions (e.g., transaction hash,
input, output, etc.).

Our empirical analyses were performed on a snapshot of the aforementioned
tables, which comprised data from Aug-07-2015 to Sep-01-2022 (i.e., the time when
we started our experiments). Specifically, the contracts table contains records of
50,845,833 distinct smart contracts, whereas the traces table contains information
about 1,695,517,186 distinct transactions as well as 5,503,071,306 traces as of the
mentioned data collection date.

Throughout our paper (Sections and [8)), we applied Cochran’s sample
size formula to accurately determine the needed sample size for representative
results (Nanjundeswaraswamy and Divakaral [2021). The inputs to this formula are
confidence level and confidence interval (a.k.a., margin of error). In empirical soft-
ware engineering research, a sample size is typically deemed representative (enough)
when its associated confidence level and interval are 95% and 5 respectively (Lin
et al 2023, [Pacheco et al.; 2022, Tagra et al.l [2022).

4 Motivation study: Is the proxy pattern a relevant practice in the
domain of smart contracts?

Motivation. To motivate our exploratory study of the proxy pattern, we first per-
form a preliminary study to examine if there is any sign of proxies in smart contracts.

Approach. Given the importance of proxies in enhancing software system mod-
ularity and encapsulation (Shapiro, |1986), we aimed to identify signs of modularity
by studying contract transactions that reflect the distribution of roles and re-
sponsibilities among various contracts. To achieve this, we queried the “traces”
table. Specifically, we computed the monthly ratio of transactions that featured
at least one cross-contract call between two different smart contracts (Figure {4)).

4 bigquery-public-data.crypto_ethereum.contracts
5 bigquery-public-data.crypto_ethereum.traces

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 9
35
% 1007 _. call
---- callcode a1,
25 801 delegatecall N
= R USRS staticcall
20 X 60
o o
e 8 40
10
20
0 0 -
5 o A 2 o Q N v Ho &) Q N 2
S S TP R A SRS TP v e P A
O I R I DT AT AT DT DT T A

[92)

tudy Period (Monthly basis) Study Period (Monthly basis)

Fig. 4: The monthly ratio of multi- Fig. 5: The monthly ratio of multi-
contract transactions. contract transactions with different
types of calls.

These transactions are referred to as “multi-contract transactions”. It is worth
noting that a multi-contract transaction can involve an arbitrary number of calls,
all utilizing Solidity cross-contract call types (Section . Since proxy contracts
typically employ the delegatecall type of calls in their design (OpenZeppelin,
2018]), we assessed the monthly ratio of multi-contract transactions using each of
the four cross-contract call types. This analysis helped us gauge the trend in the
adoption of delegatecall. To verify whether a proxy contract was genuinely in-
volved, we leveraged Etherscan’s Proxy Veriﬁcatiorﬂ We automatically analyzed a
statistically representative sample of multi-contract transactions containing at least
one delegatecall operation. In cases where a multi-contract transaction featured
multiple delegatecall operations, we randomly selected one. Our sample size
determination was based on a 95% confidence level and a confidence interval of 5.

Findings. Observation 1) Multi-contract transactions are becoming
more widespread, with almost one-third of transactions involving at
least two contracts in 2022. Figure [illustrates a notable rise in the ratio
of multi-contract transactions. Initially, in 2015, multi-contract transactions were
virtually non-existent, but a dramatic surge was seen by the end of the year,
with December hitting a notable 16.54% ratio. Throughout 2016 to 2019, the
ratio meandered between 4% to 17%, reflecting some fluctuations but a general
acceptance and steady usage of multi-contract transactions. However, 2020 marked
a significant year with an average ratio soaring past 25%, and by August reaching
an astonishing 32.91%. This uptrend persisted into 2021, maintaining an average
above 30%. As of the recent data in 2022, the trend continues to hover around 30%,
suggesting a consistent adoption rate and reliance on multi-contract transactions
in the Ethereum ecosystem. This long-term observation underscores the growing
complexity and interconnectedness of contracts on the platform over the years.

6 |https://etherscan.io/proxyContractChecker

https://etherscan.io/proxyContractChecker

10 Amir M. Ebrahimi et al.

Observation 2) The prevalence of multi-contract transactions with a
delegatecall operation (i.e., the primary signature of proxy contracts) is
exhibiting a notable upward trajectory. As applications grow in complexity
and modularity, developers may find it impractical to hardcode all communications
(i.e., regular calls) among contracts. Solidity’s management of contracts’ states
during interactions further underscores this challenge. For instance, while regular
calls typically alter the state of the callee contract, some applications necessitate
changes to the caller’s state or none of the contracts’ states in a call chain. This
necessitated the introduction of different cross-contract method calls (Section [2).
Figure [f] illustrates the monthly ratio of multi-contract transactions using one of
the four call types. More specifically, from Aug. 2015 to Sep. 2022, a shift in the
multi-contract transaction call types was observed. While the call type began
with a strong preference, hovering above 85% in 2015 and persisting through 2017,
its use diminished by 2022, stabilizing around the mid-70s. In contrast, the del-
egatecall type witnessed a substantial rise, remaining negligible until May 2016
but surging consistently thereafter, surpassing 70% by the end of the study period.
The staticcall was initially introduced in Oct. 2017 and, remained dormant
until mid-2018 but later gained traction rapidly and remained prevalent until Sep.
022. On the other hand, the callcode type saw an initial spike in 2015, but its
utilization dwindled significantly, becoming almost negligible from 2017 onwards,
indicating a decreasing inclination towards this call type.

Observation 3) 98.4% of multi-contract transactions with delegatecall
operations involve a proxy contract. The increasing use of delegatecall
operations prompted our investigation. From a dataset of 190,493,052 multi-contract
transactions containing at least one delegatecall, we drew a statistically rep-
resentative random sample. Using a confidence level and interval of 95% of 5
respectively (sampling parameters), we obtained 385 delegatecall operations.
For each delegatecall, we identified the contract that initiated it, referred to as
the “caller” (e.g., in the third trace of Figure[ll C2 is the caller). We categorized the
caller as either “proxy” or “non-proxy” using Etherscan’s Proxy Verification service.
We found that proxy contracts are predominant (98.4%), with the remaining 1.6%
involving no proxy contracts. This high prevalence of proxies motivates us to
conduct a more comprehensive study, exploring their prevalence, creation patterns,
and types in further detail (Sections[6} [7] and [8).

m)

Motivational study: Is the proxy pattern a relevant practice in the domain of
smart contracts?

An analysis of smart contracts at the transaction level has revealed an increasing trend of
up to 33% monthly in the ratio of transactions with multiple contracts. A closer look at
the type of calls in these multi-contract transactions indicates an increasing relevance of
the delegatecall type of call. Most importantly, 98.4% of multi-contract transactions with
delegatecalls involve a proxy contract.

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 11

5 Proxy Detection Approach & Evaluation

In this section, we introduce our proxy detection approach (Section and
subsequently evaluate its performance (Section [5.2).

5.1 Detection approach

In our preliminary study (Section , we initially used Etherscan’s Proxy Verifi-
cation service to identify proxies. However, as we scaled up our analyses for the
remainder of this paper, we found this service to be impractical. Consequently, we
adopted a more efficient behavioral approach.

Specifically, considering the operational characteristics of proxy contracts (Sec-
tion , we leveraged delegatecall traces to identify proxies based on their runtime
behavior. We termed the contract initiating a delegatecall trace as the “candidate
proxy”. For instance, in trace T3 from Figure [T} C2 serves as the candidate proxy.
To confirm whether a candidate proxy is indeed a proxy, we analyzed the preceding
trace (T2 in this example) to check if its function selector (the four bytes of the
trace’s calldata) matched that of the delegatecall trace. A match indicated that
the proxy was calling the same function as its caller, thus confirming it as a proxy;
otherwise, it was discarded.

We operationalized this procedure into a BigQuery SQL query and applied it
to assess the behavior of 50,845,833 smart contracts deployed on Ethereum as of
Sep. 2022 via Google BigQuery console. It is important to note that our proposed
behavioral approach relies on a contract’s transactional activities (runtime behavior)
to determine its proxy status. Consequently, it may not identify a proxy that has
never been utilized post-deployment (Section . However, this approach offers
the advantage of not relying on a contract’s source code or bytecode representation,
making it more versatile and applicable to a broader range of scenarios.

5.2 Evaluation

To evaluate our proxy detection approach, we followed these key steps. Initially,
we created a ground truth dataset by selecting a statistically representative sample
from a pool of 50 million deployed contracts as of September 2022. The sample size,
determined with a 95% confidence level and a confidence interval of 5, amounted
ton = 385.

Second, we conducted an analysis of the decompiled bytecode of the sampled
contracts to categorize them as either “proxy” or “other”. To achieve this, we man-
ually inspected the decompiled bytecode rather than relying on runtime behavior.
Specifically, we obtained the bytecode for all sampled contracts from the Ethereum
public dataset’s ‘contracts’ table. Subsequently, we employed the Panoramixﬂ tool
for bytecode decompilation. In identifying proxy contracts, we first focused on the
presence of the delegatecall statement, a distinctive characteristic of proxies

7 |https://github.com/palkeo/panoramix

https://github.com/palkeo/panoramix

12 Amir M. Ebrahimi et al.

1| def storage:

2 stor0 is addr at storage O

3

4| def _fallback() payable: # default function

5 delegate stor0 with: # 1) delegatecall

6 funct call.datal[0 len 4] # 2) similar interface
7 gas gas_remaining wei

8 args call.data[4 len calldata.size - 4]

9 if not delegate.return_code:

10 revert with ext_call.return_data[0 len return_data.size]
11 return ext_call.return_datal[0 len return_data.sizel

Listing 1: An example of a proxy contract’s decompiled bytecode.

(Section . Contracts lacking this statement were categorized as other, resulting
in 290 such contracts. For the remaining 95 sample contracts, we analyzed the
delegatecall statement to determine if the function being called via delegation
exhibited a similar function selector to the function where the delegatecall
statement was originally found in the sample contract. We accomplished this by
examining the use of the first four bytes (i.e., the function selector) of the calldata.
Contracts where this condition was met were labeled as proxy (90 instances) while
those that did not meet this criterion were labeled as other (5 instances). Listing
shows an example of a proxy contract’s bytecodeﬂ Line 5 shows the presence of
the delegatecall statement, while line 6 shows that the call uses the first four bytes
of the input calldata. Our ground truth contains 90 (23.4%) proxy contracts and
295 (76.6%) other contracts. Further details about our ground truth dataset can
be found in our supplementary material package.

We applied our proxy detection method to our ground truth dataset and evalu-
ated its accuracy using precision, recall, and the F1-measure (Table . Our approach
achieved perfect precision (100%), but its recall was 68.1%, indicating that we
missed detecting 28 out of 90 proxies. A closer look at these cases revealed a common
pattern: In 26 cases, the contract’s source code indicated the presence of a proxy con-
tract, but it had not been involved in any transactions. In other words, the proxy had
never received any subsequent transactions since its creation. In the remaining two
cases, although they received one more transaction each, these transactions did not
trigger the proxy’s functionality. Since our proxy detection method relies on proxies’
runtime behavior, these cases went undetected. The F1-measure for proxy detection
was 81.6%, and for non-proxy cases, it was 95.5%. It is worth noting that our ap-
proach demonstrated 100% precision and recall in detecting active proxy contracts.

We conducted a comparative analysis of our detection approach with a related
study by Salehi et al. (Salehi et al.| |2022). Salehi et al.| identified 1,427,215 proxies
between Sep-05-2020 and Jul-20-2021. In contrast, our approach detected 1,723,309
proxies within the same time frame, marking a difference of 296,094 additional
proxies detected by our method. Unfortunately, due to the unavailability of Salehi

8 |https://etherscan.io/bytecode-decompiler?a=0x7f2722741F997c63133e656a70aE5Ae0614aD7f5

https://etherscan.io/bytecode-decompiler?a=0x7f2722741F997c63133e656a70aE5Ae0614aD7f5

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 13

Table 1: The performance of our proxy detection approach.

Precision Recall Fl-measure
Proxy 100% 68.9% 81.6%
Other 91.3% 100% 95.5%

et al.’s proxy dataset, we couldn’t perform a direct one-to-one comparison. Both
approaches rely on behavioral patterns of contracts for proxy detection, meaning
neither can identify inactive proxies. Nonetheless, our previous evaluation, based
on a ground truth dataset of 385 contracts and the high precision achieved, instills
confidence in the effectiveness of our approach.

Proxy Detection Approach & Evaluation

We introduced an approach to identify proxy contracts based on their runtime behavior. Our
evaluation, using a ground truth dataset of active proxy contracts, shows that our method
achieves perfect precision with a 68.9% recall rate. Our focus in this study was on active
proxy contracts, those with at least one instance of proxy functionality usage, resulting in
both perfect precision and recall for our proposed approach.

6 RQ1: How prevalent is the proxy mechanism in the Ethereum ecosystem?

Motivation. In our initial investigation (Section , we observed a growing trend
of transactions involving multiple contracts, with proxy contracts playing a central
role. To gain deeper insights into the usage of the proxy pattern in the blockchain
context, we now conduct a comprehensive study to track its prevalence since the
inception of Ethereum.

Approach. To detect proxies, we analyze the runtime behavior of over 50 million
smart contracts collected in Section [3] using the method outlined in Section [5.1]
After identifying the general prevalence of proxy contract instances, we conducted
three separate analyses to examine their prevalence from different perspectives.

e Activity level viewpoint. The goal of this analysis is to determine the activity
level of proxy contracts. We also compared the activity levels of proxy contracts
with non-proxy contracts (i.e., any contract that is not a proxy). We considered
the number of inbound transactions to measure contract activity level. Then,
we used the Complementary Cumulative Distribution Function (CCDF) to
compare the number of inbound transactions per proxy contract and non-proxy
contract as of Sep. 2022. In a CCDF graph, the y-axis represents the percentage
of data points at or above a specific value, while the x-axis represents the vari-
able of interest, in this case, the Number of Inbound Transactions. To further
assess if the distribution of the number of inbound transactions for the proxy
category is indeed greater than the latter non-proxy type, we employed the
non-parametric one-tailed Mann-Whitney U test («¢=0.05) and assessed the
effect size using Cliff’s Delta (). The interpretation of § is based on thresholds

14

Amir M. Ebrahimi et al.

from (Romano et al., 2006)): negligible if |6] <0.147, small for 0.147 < 6] <0.33,
medium for 0.33<|6|<0.474, and large for greater values.

Usage context viewpoint.The goal of this analysis is to determine the
distinct usage contexts in which proxy contracts are utilized. More specifically,
we analyzed the monthly count of such usage contexts. To identify distinct usage
contexts, we performed the following seven steps: i) for each detected proxy
contract, we extracted its deployer address, also known as the caller address of
the proxy creation trace (e.g., C1 in Figure. This deployer address signifies the
entity (e.g., either a developer or a smart contract on behalf of the developer)
responsible for deploying the proxy contract. ii) We collected the proxy’s
associated logic contracts. This inclusion is necessary because developers, even
within the same organization, may clone proxy contracts for different purposes.
To account for these variations in purpose, we incorporated the addresses of
the logic contracts to which proxy contracts have ever delegated calls since the
logic contract defines the underlying logic behind the proxy. iii) using the proxy
address, proxy bytecode, logic contracts, and deployer address, we clustered
proxy contracts based on their bytecode and deployer address. This allowed us
to identify similar proxies created by the same entity. iv) within each cluster,
we constructed a graph where the nodes represent proxy contract addresses
(proxy nodes) and their associated logic contract addresses (logic nodes). An
edge exists between a proxy node and a logic node if the proxy delegates calls
to the logic contract. v) we identified connected components within the graph.
Each component represents a unique usage context, representing a set of similar
proxy contracts deployed by a single entity for a similar purpose. vi) within each
context, we retained the oldest proxy contract, recorded its creation timestamp
as the starting time of the context, and excluded any other duplicates. vii)
finally, we computed the monthly count of contexts.

Stakeholder adoption viewpoint. The goal of this analysis is to determine
the engagement of EOAs (a.k.a., stakeholders) in creating proxy contracts. We
analyzed the count and the ratio of EOAs who initiated a proxy creation transac-
tion as of each month. An EOA can either directly deploy a proxy or a proxy can
be deployed upon the EOA’s request to a third-party contract (e.g., a proxy fac-
tory contract). In either case, the EOA initiates a creation transaction through
which we can identify its unique address. More specifically, for a given i*” month,
we counted the total number of EOAs who initiated a proxy contract creation
transaction between Aug-07-2015 to the end of i*® month. Additionally, we
collected the general number of EOAs who initiated any contract creation trans-
action as of the " month. Then, we computed the ratio of EOAs who initiated a
proxy contract as of each month by dividing the former figure by the latter one.

Proxy utilization viewpoint. The goal of this analysis is to shed light on
the usage of proxy contracts through analyzing smart contract transactions.
While we showed earlier that 98.4% of a sample of multi-call transactions with
a delegatecall involves a proxy contract (Sectio, we did not investigate
how proxy usage evolved over time due to limitations in applying Etherscan’s
Proxy Verification at scale. Our proposed proxy detection approach overcomes

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 15

this issue. Hence, we set out to conduct this evolutionary analysis in this RQ.
We first studied the monthly ratio of transactions in which proxies are used.
Next, focusing on the monthly ratio of multi-call transactions (Sectiot@, we
calculated a new monthly ratio of transactions in which at least one proxy
participated. Since transactions represent how contracts interact, this metric
highlights the extent to which proxies are being used in the design of contracts.

Findings. Observation 4) Over 14% of all instantiated smart contracts
are proxies. 50,845,833 contracts were deployed to Ethereum as of Sep. 2022. Out
of these, 7,241,339 (14.2%) are active proxy contracts. Each such proxy is paired with
at least one logic contract. A proxy can be associated with multiple logic contracts
throughout its life, adjusting for contract upgrades and evolving needs. Some proxies
also function as routers, directing requests to the appropriate logic contract, as seen
in setups like the Diamond Proxy Pattern (Mudge, 2020) where they interact with
several facet contracts. We found 7,296,032 pairs of proxy and logic contracts. Figure
[6] depicts the CCDF of the number of logic contracts that a proxy has ever interfaced
with per proxy contract. Analysis of the graph reveals that the vast majority of proxy
contracts (99.56%) are linked to a single logic contract. Furthermore, as we progress
towards the tail end of the distribution, the probability of proxy contracts having
multiple logic contracts experiences a sharp decline, reaching below 107%% at N =
100, where it undergoes a sudden dip that continues until the end of the distribution.
In the extreme case, the proxy contract with 141 logic contracts is BZxProxyﬂ
owned by the bZx Protocoﬂ This contract holds a mapping of services to target
logic contracts where each service is implemented. Then, depending on the requested
service it delegates the call to a proper logic contract. Therefore, it acts as a router.

Observation 5) [ACTIVITY LEVEL] The distribution of the number
of inbound transactions per proxy is statistically greater than the distri-
bution underlying non-prozy contracts. Figure [7]illustrates the CCDF of the
number of inbound transactions per proxy contract, represented by the black line.
The graph shows a long tail, indicating that a small proportion of proxy contracts
receive many transactions, while most have very few transactions. When comparing
the CCDFs of the proxy and non-proxy contracts, it is evident that proxy contracts
are more likely to have a higher number of inbound transactions (N) compared
to non-proxy contracts for 1 <= N <= 256 (initial range). However, for larger
values of transaction counts (N > 256), non-proxy contracts start to surpass proxy
contracts in terms of likelihood, although it is important to note that the proportion
of contracts with a large number of inbound transactions in this range remains
relatively small for both proxy and non-proxy contracts. In the extreme tail of the
distribution (i.e., outliers), it becomes evident that the highest number of inbound
transactions is associated with non-proxy contracts. A one-tailed Mann-Whitney
test confirms this distributional difference as statistically significant (p-value <
0.05). The Cliff’s Delta calculation further reveals a medium effect size (6 = 0.34).
Thus, proxy contracts are utilized more than non-proxy contracts. This underscores
the paramount importance of proxy contracts.

9 |https://etherscan.io/address/0x1cf226e9413addaf22412a2e182f9c0ded4af002
10 https://b0x.network/

https://etherscan.io/address/0x1cf226e9413addaf22412a2e182f9c0de44af002
https://b0x.network/

16 Amir M. Ebrahimi et al.

1024 100 —— Proxy contracts
—=- Non-proxy contracts
1]
10 80
0]
5 10 _—
o 10-1 &
g10 S
S
.(%10*Z @ 40
= 10-3]
20
1074
10754 0
0 20 40 60 80 100 120 140 20 23 26 29 212 15 218 221 24 27
Number of logic contracts (N) Number of inbound transactions (N)

Fig. 6: The CCDFs of the number of Fig. 7: The monthly number of distinct
inbound transactions per proxy and usage contexts.
non-proxy contracts.

Observation 6) [USAGE CONTEXT] There is a clear increasing trend
in the creation of distinct usage contexts in practice, reaching just below
80K distinct contexts by Sep. 2022. Figure [§ illustrates a noticeable trend of
increasing usage contexts over the years, with a significant surge in activity observed
from 2017 onwards. While the initial years (2015-2016) show minimal activity, sub-
sequent, years demonstrate consistent growth, reaching its peak in Aug. 2022 with
over 2'3 usage contexts. Notable fluctuations occur on a monthly basis, with certain
months experiencing exceptionally high levels of usage. Indeed, since each distinct
usage context is a different use case, we can claim that proxies are becoming increas-
ingly popular in different contexts. In addition, the graph reveals that the idea of the
proxy pattern has been around since the early days of Ethereum. The first usage con-
text for proxy contracts emerged in mid-2016, just 10 months after Ethereum went
live. Finally, we identified 79,171 distinct usage contexts over the studied period.

Observation 7) [STAKEHOLDER ADOPTION] There is an upward
trend in the number of EOAs who initiated a proxy contract transaction,
surpassing two-thirds of all EOAs who instantiated any contract in 2022.
As evidenced by Figure[d] the number of EOAs that instantiated at least one contract
(the red line) has gradually increased each month, peaking at 3,636,192 at the end of
the study period. In addition, the figure implies that EOAs started employing proxy
contracts in mid-2016 (black line), when the first proxy contract was instantiated
(Observation @ Since then, this figure has witnessed rapid growth, peaking at
2,487,994 as of Sep. 2022. The gray area between the red and black lines shows that,
while the gap between the number of EOAs who instantiated a smart contract and
those who instantiated an instance of a proxy contract was large at the beginning,
the area significantly narrowed down towards the end of the study period, indicating
a higher tendency for instantiating proxy contracts among the EOAs. Additionally,
Figure [10| shows that the ratio of EOAs initiated a proxy contracts transaction
has been more or less stable with marginal growth until mid-2019. After this, the
figure experienced notable linear growth up to 68.4%, where it plateaued at the

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 17

22
213 2% EOAs who deployed a contract —
S 219 — EOAs who deployed a proxy contract
16
q 20 a2
2 g0
= 27 =
€ ? €
3 2 32"
o o
23 27
21 24
6 © A % o o N o A B 9 0 N
HO DY Q7 QY QY HIY 3\ > v v
DT AT DT AT AT AR DA DT AT AT DT AT P AP
Study period (Monthly basis) Study period (monthly basis)

Fig. 8: The monthly number of distinct Fig. 9: The number of EOAs instantiated

usage contexts. a (proxy) contract as of each month.
70
60 20
50
- 154
L0 g
h=} 2
+® 30 +© 104
o o
20
10 5
0 0 .
9.0 A > o Q N 2 »H.o A J S Q N v
S A S AP P G R AR MY D DD
DR A S S S A A A AN
Study period (monthly basis) Study period (monthly basis)

Fig. 10: The ratio of EOAs instantiated Fig. 11: The monthly ratio of transac-
a proxy contract as of each month. tions that involve at least one proxy
contract.

end of the study period. This implies that as of September 2022, at least one proxy
contract was instantiated by 68.4% of EOAs that instantiated smart contracts.

Observation 8) [PROXY UTILIZATION] Over 20% of transactions
in 2022 involve a proxy contract. Figure shows the monthly ratio of
transactions in which a proxy played a role. This indicates that, from a behavioral
perspective, the role of proxies in carrying out smart contracts’ functionalities has
become more important over time. For instance, proxies were involved in over
20% of all transactions that occurred after 2022. The role of proxies becomes
even bolder when applications’ designs become more fine-grained and modularized.
Figure [12] indicates the monthly ratio of multi-call transactions in which a proxy
contract participated. The graph shows that despite fluctuation, proxy contracts
are becoming remarkably critical in the modular era of software with almost 70%
of multi-call transactions using at least one proxy contract in 2022.

18 Amir M. Ebrahimi et al.

u o0
o O o

Ratio (%)
N
o

301
20/
10/
ol
'L&?,&b 'LQO w&% ’LQ@ 'L&Q '190 '»69

Study period (monthly basis)

Fig. 12: The monthly ratio of multi-
contract transactions that involve at
least one proxy contract.

RQ1: How prevalent is the proxy mechanism in the Ethereum ecosystem?

Our assessment from the four viewpoints of activity level, usage context, stakeholder
adoption, and proxy utilization shows that the tendency to use proxy contracts is growing.
We also confirm the substantial relevance of proxies in modular application designs.

7 RQ2: What are the different creational patterns for deploying proxy
contracts?

Motivation. In Observation [4] we found that over 7.2M (14%) of all deployed
contracts are proxies. Given this high ratio, we wish to understand how proxies
are deployed into DApps in practice. Such an investigation should provide insights
into the design of modern modular DApps.

Approach. To identify various patterns of deploying proxies, we conducted a min-
ing process to trace the deployment infrastructure involved. In particular, for each
proxy, we accessed its creation transaction and examined its trace table (Section
to pinpoint the trace relevant to the proxy’s creation. This specific trace had
to meet two criteria: its type had to be “create”, and the callee address had to
match the proxy contract’s address (step 1). We then retrieved the trace’s caller
address, which we referred to as the “deployer address” (step 2). Subsequently, we
determined whether the deployer address belonged to an EOA or a CA (step 3).
We accomplished this by cross-referencing the deployer address with the list of
all CAs, obtained by querying the “contracts” table from the Ethereum public
dataset. If the deployer address belonged to a CA, we recorded it and iteratively
applied the same process to the CA until we identified the root EOA who is in
charge of deploying the first contract of the proxy deployment infrastructure (step

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 19

4). Alternatively, if the deployer address belonged to an EOA, we recorded it as
the entity that directly deployed the proxy contract (step 5). Once the root EOA
was identified, we established a sequence of contract creations, starting with a root
EOA address and concluding with the proxy contract address.

Finally, to extract patterns, we assigned labels to all nodes within a given
sequence (step 6). Specifically, the initial node of every sequence, being a root EOA,
was designated as such. An intermediary node was labeled as a factory (FA), indicat-
ing its role in spawning another contract during runtime. If the intermediary factory
node also represented a proxy contract, it was labeled as a proxy factory (PF). Proxy
factories typically wrap a factory contract and are used to either efficiently clone the
factory contract’s functionality or enable upgrades to the factory. The concluding
node of the sequence was consistently labeled as a proxy (P). This sequence of labeled
nodes illustrated how a proxy was deployed, referred to as a “proxy creational pat-
tern”. For example, consider the scenario where Bob (the root EOA) created a factory
contract C1, and C1, in turn, created a proxy contract C2. Figure [13(a)| and
depict the sequence of contract creations and its labeled version for this example.

After obtaining the creational patterns, we performed a series of analyses.
Initially, we examined the distinct proxy creational patterns and developed a meta-
model using a UML class diagram. This metamodel succinctly communicates the
various methods employed for proxy deployment. Subsequently, we analyzed the
extent to which each creational pattern was used in different contexts. We used our
method for detecting usage contexts (Section |§[) and applied it to identify different
usage contexts under each creational pattern.

Furthermore, we conducted a comparison between off-chain and on-chain deploy-
ment styles regarding the number of deployed proxy contracts per usage context. For
each of the 79,171 identified usage contexts (Section@, we categorized them as either
off-chain or on-chain based on the deployment style used for their proxy contracts
and computed their size in terms of the number of proxy contracts. Subsequently,
we performed a comparison of the CCDFs of the number of proxy contracts per
usage context between these two styles. Additionally, a one-tailed Mann—Whitney
U test (a=0.05) was employed to evaluate whether the distribution of the number
of proxy contracts per usage context is greater for the on-chain style compared to
the off-chain style. Furthermore, we extended this analysis to the creational pattern
level, focusing on the top-5 on-chain patterns (in terms of proxy contract count)
and the sole off-chain pattern. We applied the same aforementioned methodology
to compare on-chain and off-chain patterns. Finally, we categorized usage contexts
under each style based on their size into either singleton (N=1) or non-singleton
(N>1). Then, we performed a chi-square test to assess if there is any relationship
between the size of usage contexts and the deployment style. We measured the effect
size magnitude using the standard Phi (¢) measure and interpreted it as follows:
small if 0.0<|p|<0.3, medium for 0.3<|p|<0.5, and large for greater values.

Findings. Observation 9) We found 12 different creational patterns
for deploying proxy contracts. The 7.2M proxies are deployed through 12
creational patterns. The creational patterns in Table 2] read from left to right. The
“>" operator shows a deployment relationship where the left and right operands

20 Amir M. Ebrahimi et al.

@ Create 6 Create ‘

(a) The sequence of contract creations. (b) The labeled sequence of contract creations.

Fig. 13: A sequence of contract creations and its labeled version.

Table 2: Overview of the 12 detected proxy contract creational patterns sorted
based on the category and the proxy instance count.

Id Creational Pattern Category Usage Context Count Proxy Instance Count

1 EOA>P Off-chain 30,933 (39.07%) 50,174 (0.69%)
2 EOA>FA>P On-chain 31,520 (39 81%) 6,618,012 (91.39%)
3 EOA >PF>P On-chain 565 (0.71%) 379,293 (5.24%)
4 EOA >FA >FA>P On-chain 182 (0 23%) 123,349 (1.70%)
5 EOA >FA >FA >FA >FA>P On-chain 7 (0%) 35,764 (0.49%)
6 EOA >FA >PF >P On-chain 15,627 (19.74%) 31,586 (0.44%)
7 EOA >PF >PF >P On-chain 138 (0.17%) 1,968 (0.03%)
8 EOA >FA>PF>PF>P On-chain 183 (0.23%) 589 (0.01%)
9 EOA >FA >FA>TFA>P On-chain 11 (0.01%) 599 (0.01%)
10 EOA >FA >FA >PF > P On-chain 3 (0 01%) 3 (0.00%)
11 EOA >FA >FA >PF >PF > P On-chain 1 (0%) 1 (0.00%)
12 EOA >FA >FA > PF > PF > PF > P On-chain 1 (0%) 1 (0.00%)

represent the deployer and deployee type in a pattern, respectively. Figure [I4] shows
a metamodel that summarizes the 12 detected creational patterns using a UML
class diagram. All patterns are initiated by an EOA, since Ethereum transactions
can only be initiated by an EOA (Section . More specifically, an EOA can either
directly deploy instances of prozy contracts (P) or deploy a factory contract (FA). A
factory contract is able to deploy (clones of) a certain template contract at runtime.
Inspired by the composite design pattern, the metamodel shows that a factory (i.e.,
the composite) can deploy other factory contracts or proxy contracts (i.e., the leaf).
Furthermore, there is another class of factory contract, namely prozy factory (PF),
where the factory itself is a proxy too. This type of factory can enable developers
to create upgradeable factories, allowing them to alter factories’ behavior and
configuration (e.g., changing the hard-coded template contract) if deemed necessary.

Observation 10) The 12 proxy creational patterns can be classified into
two magor styles: i) on-chain and ii) off-chain deployment. On-chain de-
ployment is a style through which proxy instances are deployed by smart contracts
at runtime, covering 11 of the patterns. On the other hand, off-chain deployment
is a style in which proxy instances are deployed by an EOA through deployment
scripts that are maintained outside the blockchain. While proxy instances of both
styles are eventually deployed to the Ethereum blockchain, the main difference
between these two styles is concerned with where their deployment infrastructure
1s operating. In the off-chain deployment, scripts for deploying proxies operate
outside the blockchain in a centralized fashion. On the other hand, in the on-chain
deployment style, proxy instance creation is performed by smart contracts that
operate on the blockchain in a decentralized fashion. The latter ensures that every

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 21

Externally Owned Account

(EOA)
depl :
eploys L
Smart Contract
| Extends Extends |
Factory Contract Proxy
(FA) (P)
Extends Extends

Proxy Factory
(PF)

Fig. 14: A metamodel that summarizes our proxy creational patterns.

instantiation of a proxy (and the way in which this happens) will always be traceable
and recorded in the blockchain. Therefore, despite the increased complexity of
on-chain deployment, such a style provides better traceability. See Sections [0.3] [0-4]
and Appendix [B] for a detailed discussion of these two deployment styles.

Observation 11) There is a significantly higher diversity of deployment
scenarios, as evidenced by the wider range of usage contexts for the
on-chain style (60.9%) than the off-chain style (39.1%). When assessing
deployment scenarios and their diversity, an essential metric to consider is the ratio
of usage contexts (Section |§[) Our analysis reveals a noteworthy dichotomy between
on-chain and off-chain categories. Specifically, a majority, encompassing 60.9% of
the examined usage contexts, aligns with the on-chain paradigm. In contrast, 30.1%
are affiliated with off-chain categories. This distribution emphasizes the prominence
of on-chain deployments within the blockchain ecosystem. The two most prevalent
patterns in terms of usage contexts are FOA > FA > P, accounting for 39.81%
of the observed contexts, closely followed by FOA > P, which comprises 39.07%.

Observation 12) The majority of proxy instances (99.3%) are systemat-
ically deployed via the on-chain style. 7,191,165 (99.3%) proxies are deployed
using the 11 on-chain creational patterns, whereas the 50,174 (0.69%) proxies that
are deployed using the off-chain style. Out of 11 the on-chain creational patterns,
the second (i.e., EOA > FA > P) and third (EOA > PF > P) patterns are the
top-2 most used ones in terms of the number of deployed proxy contracts. The
remaining 9 on-chain patterns are a specialization of the third and second patterns,
albeit they are longer. While longer patterns advocate higher reusability and inter-
operability among contracts, we observe that simpler patterns are typically more
common in terms of both usage context count metric and proxy instance count.
As the top-5 on-chain patterns comprising 99.26% of deployed proxy contracts, we
systematically identified and analyzed a large DApp for each of them (see Appendix
|§| for examples of the usage of longer on-chain patterns in DApps).

22 Amir M. Ebrahimi et al.

Table 3: The number of usage contexts per deployment style and the usage context
size.

Number of proxy contracts (IN) Deployment Style
On-chain Off-chain
N>1 19,547 (40.5%) 1,140 (3.7%)
N = 1 (Singleton) 28,691 (59.5%) 29,793 (96.3%)
Total 48,238 30,933

Observation 13) On-chain deployment styles have larger usage contexts
compared to the off-chain style. Figure[15|shows our comparison of deployment
styles. It is evident that the CCDF of on-chain styles constantly stays above that of
the off-chain style, indicating that the likelihood of observing larger usage contexts
is consistently higher for the on-chain style. The Mann-Whitney U test shows that
the distribution of the size of usage contexts for the on-chain style is greater than
that of the off-chain style (p-value < 0.05) with Cliff’s Delta showing a medium
effect size (6 =0.37). Finally, Figure [16| compares the CCDF for top-5 on-chain
patterns and the off-chain ones. It is evident that on-chain patterns typically
exhibit a higher probability when compared to the off-chain pattern (i.e., red line).
Furthermore, the CCDF curve of on-chain patterns has a slower decrease rate.
This indicates that larger usage contexts (i.e., those with more proxy contracts) in
on-chain patterns are more frequently encountered. In contrast, the only off-chain
pattern (i.e., EOA > P) displays a CCDF curve that drops more rapidly, indicating
a lower probability of encountering higher values within its distribution. Finally,
Table [3] compares the number of singleton usage contexts and non-singleton per
deployment style. In particular, we found that the likelihood that usage contexts
of the on-chain style will have more than one proxy contract is approximately ten
times higher than that of the off-chain style (40.4% versus 3.7%, respectively. The
chi-square test revealed that there is a relationship between larger usage contexts
and the choice of deployment style with a medium effect size (0.4).

RQ2: What are the different creational patterns for deploying proxy contracts?

We found 12 creational patterns with a clear distinction between on-chain and off-chain
deployment styles. The on-chain style, encompassing 11 of these patterns and accounting
for 99.3% of the proxy instances, is marked by its complexity and enhanced traceability.
The on-chain EOA > FA > P and the off-chain FOA > P emerge as the most prominent,
dominating both in terms of usage contexts. Notably, on-chain deployments are characterized
by greater diversity and a higher probability of larger usage contexts, whereas the off-chain
pattern is more likely to be used in smaller contexts.

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 23

1004 —.— Off-chain 100 —— EOA>FASP
90 ---- On-chain 90 o Egt;ﬁ:;w
801 80 s EOA>P
- EOA>FASFASFASFASP
70 70 A —-- EOA>FA>PF>P
R 60/ K 60 ‘
© 501 o 50
T . ©
& 40+ E g 40
309 "1 30
201 20
10 “\\\ 10
O e e T ——— e 0 P IT I ITyes
10° 10' 102 10® 10* 10° 10° 10 10' 10?2 103 10* 10> 10°
Number of proxy contracts per usage context Number of proxy contracts per usage context

Fig. 15: CCDFs of the number of proxy Fig. 16: CCDFs of the number of proxy
contracts per usage context of the contracts per usage context of top-5
on-chain and off-chain deployment style. on-chain and off-chain patterns.

8 RQ3: What are the different types and properties of proxy contracts?

Motivation. The growing use of proxy contracts in the Ethereum network has
sparked interest in understanding the different types of proxies and their imple-
mentation practices (Gnosis, 2023, [Salehi et al., 2022).

Proxies can be classified into forwarders and upgradeability based on their pur-
pose (Jorge Izquierdo, 2018| Salehi et al.l |2022). Understanding the prevalence of
these two proxy contract types can provide insights into the design choices made by
DApp developers. Despite initial research being conducted in 2020-2021 on the classi-
fication of proxies as upgradeability and forwarders(Salehi et al.,2022)), there is a lack
of empirical evidence regarding their current prevalence on Ethereum. This question
seeks to fill this gap by examining the prevalence of proxy types and how they are cre-
ated, ultimately shedding light on how different proxy types are typically deployed.

Furthermore, there exist several reference implementations for proxy contracts
on Ethereum, such as the EIP-897 Delegate Proxy Pattern (Jorge Izquierdo, [2018)),
the EIP-1967 Transparent Proxy Pattern (Santiago Palladino, 2019)), and the Open-
Zeppelin Proxy pattern (OpenZeppelin| 2018)) (Section . While these standards
offer different features and trade-offs in terms of security, gas efficiency, flexibility,
and functionality, they remain similar in terms of the common behavior of a proxy.
Thus, our approach is able to detect them regardless of the standard. In this RQ,
we study the prevalence of seven reference proxy implementations, such that we
can determine their popularity and understand whether developers adhere to those
implementations at all.

Approach. In the following, we describe the three analyses that we perform:

e On the prevalence of forwarder and upgradeability proxies. Litera-
ture has simply classified proxies into two major types based on their pur-
pose (Jorge Izquierdol |2018| |Salehi et al., 2022): forwarders and upgradeability
proxies. [Salehi et al.| (2022) proposed an approach for automatically detecting
upgradeability and forwarder proxies. Given that a replication package is not pro-
vided, we manually implemented their approach and applied it to a statistically

24

Amir M. Ebrahimi et al.

representative sample of proxies. Given 79,171 detected usage contexts (Section
@, we pick one representative proxy contract per usage context. Since all proxy
contracts within a usage context are similar, the representative proxy contract is
randomly picked. Subsequently, we used the set of representative proxy contracts
while drawing samples. In the first analysis, we studied the ratio of usage contexts
that employed either upgradeability or forwarder proxy contracts. We drew a
statistically representative sample of representative proxy contracts, accounting
for 385 instances. The sample size was estimated based on a 95% confidence level
and confidence interval of 5. We then classify the samples into either upgrade-
ability or forwarder categories. To ensure a consistent approach while manually
classifying proxies into forwarder and upgradeability types, we established a pro-
tocol and precisely followed it. Initially, the first author of this paper extracted
the classification process from the study of [Salehi et al.| (2022) and summarized
the steps. We explain this process in Appendix[E] Afterward, the first and second
authors together applied the extracted approach to every proxy instance in the
sample to examine its type. In case of disagreement, the third author mediated a
discussion to resolve it (three cases). Also, if we could not determine the type of
a proxy, we marked it as unknown (zero cases). The manual classification took
17 man-hours. Our replication package includes the sample dataset for reference.

On the relationship between the proxy contract purpose and the
type of creational pattern. We aimed to analyze if there is any relationship
between the purpose of proxy contracts and top-5 (in terms of the number of
proxy contracts) creational patterns. We first placed every representative proxy
contract into a corresponding creational pattern. Then, we picked 385 random
proxy contracts across the top-5 patterns (i.e., ideally 77 instances per pattern).
However, since the fifth pattern only has seven usage contexts and so does seven
representative contracts, we distribute the remaining 70 instances of this pattern
across the top-4 patterns. Afterwards, we manually categorized each sample
proxy contract into either upgradeability vs forwarder types using a similar
protocol as explained in the previous analysis. In two cases, the third author
mediates to resolve the conflicts. The manual classification took 16 man-hours.
Subsequently, we analyzed the trend of proxy types across the top-5 patterns.

On the adherence of proxy contracts to known reference standards.
The goal of this analysis is to investigate the extent to which proxy contracts
adhere to well-known proxy reference implementations. We used a tool called
evm-prozy-identification (Gnosis, 2023) that identifies seven known implemen-
tations of the proxy pattern including four ERC-897 |Jorge Izquierdo, (2018)),
ERC-1167 (Peter Murray, 2018), ERC-1822 (Gabriel Barros, |2019), ERC-
1967 (Santiago Palladinol [2019), ERC-1967 Beacon (Santiago Palladino, 2019))
proposals, OpenZeppelin Proxy Pattern (OpenZeppelin, 2018]|), and Gnosis-
SafeProxyE Each of these implementations, except ERC-1167, standardizes
a unique known storage slot for storing the address of the logic contract. The
evm-prozy-identification tool examines contracts’ storage slots to detect their
types. For ERC-1167, the tool detects them based on their bytecode. Due to a

11 https://github.com /safe-global /safe-contracts

https://github.com/safe-global/safe-contracts

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 25

limit on the number of API requests (quota), we applied the tool to a sample of
representative proxies. However, this time we opted for a larger sample. More
specifically, we randomly picked 13,776 proxies based on a sample size estimation
with a 99% confidence level and a confidence interval of 1. Subsequently, we
applied the tool to categorize each proxy from the sample into one of our seven
categories. We also added another category namely “Customized” for the cases
where a proxy contract does not match any of the reference implementations.
Our replication package includes the sample dataset for reference.

Findings. Observation 14) Just above two-thirds of usage contexts em-
ploy forwarder proxy contracts, whereas 32.2% that utilize upgradeability
proxy contracts. Out of 385 representative proxies, 124 (32.2%) were designed
for upgradeability purposes, whereas 261 (67.8%) proxies only forward calls to a
logic contract. As mentioned earlier in the introduction, monitoring proxies and
especially upgradeability proxies is critical to the security of many applications. As
such, our findings highlight the need for tools that monitor upgradeability proxies
for the replacements of logic contracts and the proxy admin. Monitoring changes
in the proxy admin address is important for governance because it ensures that
only authorized parties have the ability to make changes or upgrades to the code
(Santiago Palladinoy 2019))

Observation 15) Upgradeability and forwarder proxies are deployed
through both on-chain and off-chain styles. Figure [I7] compares the ratio of
usage contexts with either upgradeability and forwarder proxies across the top-5
creational patterns. It is evident that the majority of usage contexts use forwarders
for the top-4 patterns with the exception of the fifth pattern whose all usage
contexts employ upgradeability proxy contracts. Concerning upgradeability proxies,
we found instances of this class across the top-5 patterns, albeit to different extents.
More specifically, two on-chain patterns (i.e., FOA > FA > P and EOA > FA >
FA > FA > FA> P) have a higher ratio of upgradeable usage contexts (47.9% and
100%, respectively) compared to the only off-chain pattern (i.e., FOA > P with
35.8%). On the other hand, there are two other on-chain patterns (i.e., EOA > FA
> P and EOA > FA > FA > P with 5.3% and 7.4% in turn) with mostly usage
contexts that employ forwarder proxy contracts. Finally, we perform a chi-squared
test (aw=0.05) with a null hypothesis that there is no association between the
creational patterns and the proxy types. Corroborating our visual analysis of Figure
the test result indicates that we can reject the null hypothesis (p-value < 0.05).

Observation 16) Just below 30% of usage conterts employed ERC-1167
minimal proxies, while around 21% used customized implementations. As
per the results yielded by the evm-proxy-identification tool, the majority of usage
contexts (79%) adhere to the best practices while adopting proxy contracts. More
specifically, the ERC-1167 minimal proxy implementation dominates with a ratio
of approximately 29.38%, closely followed by ERC-897 and ERC-1967, representing
about 25.08% and 22.91%, respectively. EIP-1167 has had a great impact on
reducing deployment costs when cloning contract functionality (Peter Murray, [2018)).
Thus, we conjecture that the majority of proxies in Ethereum are for reducing
deployment costs. Surprisingly, a significant portion, around 21.1%, were classified

26 Amir M. Ebrahimi et al.

100 1
801 47.9
g 60 1
© 100.0
)
©
o 40
52.1
201 [Forwarder
[Upgradeable
0- I —
Q 4 4
??7 ((P7 <<P7
0\>7 &7 <>
o> <>
< QPj
7
o

Top-5 Frequent Patterns

Fig. 17: The ratio of different proxy types across the top-5 patterns in terms of
the number of deployed proxies.

as “Customized”, indicating that these proxy contracts did not adhere to any of
the recognized implementations (see Section [10]for a discussion of possible reasons).
The least adopted implementations were the ERC-1967 (Beacon), ERC-1822, and
the Gnosis Safe Proxy with ratios of 0.28%, 0.25%, and 0.13%, respectively.

RQ3: What are the different types and properties of proxy contracts?

a predominant use of forwarder proxies (67.8%) and a significant presence of upgradeability
proxies (32.2%), highlighting the importance of monitoring tools for security and governance.
The deployment of these proxies spans both on-chain and off-chain styles, with certain patterns
favoring upgradeable proxies. Additionally, while most proxies adhere to best practices like
ERC-1167, a notable 21.10% are customized, indicating a diverse range of implementations.

9 Discussion
9.1 Advantages of using the proxy pattern in DApps

e Enhanced modularity and maintenance. The use of proxy contracts in
DApps enhances their modularity and maintenance capabilities in a seamless

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 27

ERC-1167

ERC-897

ERC-1967
Customized
OpenZeppelin
ERC-1967 (Beacon)

Implementation Type

ERC-1822

Gnosis Safe Proxy

0 5 10 15 20 25 30
Ratio (%)

Fig. 18: The ratio of different proxy reference implementations.

and efficient manner. By separating logic from data, these contracts ensure a
clear architectural division that not only increases flexibility but also simplifies
modifications and upgrades. This is exemplified in the “Diamond Standard” or
EIP-2535, which stands as a testament to the advanced modularity achievable
through this pattern. Simultaneously, the Proxy pattern facilitates the easy swap-
ping of logic contracts. This adaptability allows developers to continuously up-
date and refine a running DApp, introducing new features and addressing bugs,
thereby transforming it into a more maintainable and agile software solution.

o Reducing deployment cost. A proxy contract can reduce deployment gas
costs by centralizing the main logic in one contract (the implementation con-
tract) and deploying lightweight proxy contracts (e.g., a minimal proxy contract)
for each instance. These proxy contracts simply delegate calls to the main logic
contract. Since each proxy contract only contains the delegation mechanism and
not the replicated logic, the gas cost for deploying these proxies is significantly
lower than that for deploying the full logic contract multiple times. See Appendix
[Clfor a case study of reducing deployment gas costs using proxy contracts.

e Third party contract reuse. The proxy pattern allows developers to reuse an
already deployed contract (e.g., the Gnosissafe wallet contractED by setting up
a proxy contract that forwards calls via delegatecall to that target contract.
This method enables the proxy to mimic the target contract’s behavior by
executing its logic within the proxy’s context. It is vital to align the storage
layouts and be mindful of the original contract’s permissions, which could
restrict interactions.

e Continuity. One of the primary benefits of using proxy patterns is the ability to
upgrade or modify the proxy’s logic without requiring the deployment of a new

12 https:/ /etherscan.io/address/0xd9db270c1b5e3bd 161e8c8503c55ceabee709552

https://etherscan.io/address/0xd9db270c1b5e3bd161e8c8503c55ceabee709552

28

Amir M. Ebrahimi et al.

contract address. This means that users can interact with the same proxy con-
tract address consistently, ensuring a seamless experience even if the underlying
logic changes. This creates a more predictable and stable environment for users.

Data persistence. Traditional contract upgrades without a proxy pattern often
require deploying an entirely new contract, migrating data, and instructing users
to interact with a new address. However, with a proxy pattern, only the logic
contract is upgraded, and the data remains intact in the proxy contract. This can
be much more gas-efficient than deploying a new contract and migrating data.

Limited exposure. The proxy pattern’s division of a contract system into
distinct parts adds a layer of defense. This separation means that if a vulner-
ability arises in the logic, it may lead to unintended behavior without directly
compromising the stored data or assets. Conversely, a flaw in the storage might
put data at risk, but not necessarily enable the execution of malicious functions
from the logic. Additionally, by having these multiple layers, the system gains
an extra security buffer. If one layer is compromised, the other can still provide
protection. A proxy can be configured to allow only certain types of calls to
the logic contract, enhancing overall security through this layered approach.

9.2 Drawbacks of proxy contracts in DApps

Architectural complexity. The proxy pattern introduces an additional layer
to DApps which can potentially increase the transaction processing time. In
addition, Instead of a single contract, developers now have to maintain at
least two contracts: the proxy and the logic contract. This can lead to higher
maintenance burdens, as developers need to monitor, update, and ensure the
compatibility of both the proxy and logic contracts across different versions.

Gas overhead. Although proxy contracts can offer gas optimizations in some
cases (e.g., ERC-1167 minimal proxies or data migration), the additional in-
direction can also introduce gas overheads for certain operations due to the
extra delegation call. In Solidity, the delegatecall operation carries a base
gas cost of 700. Additionally, transmitting data with the delegatecall incurs
variable gas costs.

Centralization & governance concerns. Centralization and governance
challenges arise in proxy contracts if upgradeability is not properly implemented.
A single entity with upgrade control could introduce potential vulnerabilities or
malicious changes. Furthermore, for decentralized systems, achieving consensus
on upgrades can be complex and prolonged, adding to trust and operational
concerns.

New attack vector. While proxy contracts can help in isolating and addressing
vulnerabilities, they also introduce new potential attack vectors. For instance, if
an attacker gains control of the proxy’s admin privileges, they can redirect the
proxy to any logic they want. Several incidents have been reported regarding
proxy contracts (Certik, [2022). For instance, a breach into the admin’s private
key, as seen in the PAID Network incident, can result in significant money losses.

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 29

In that specific case, an attacker compromised the proxy admin’s private key and
modified the logic contract, allowing them to burn and mint PAID tokens at will.
Transparency concerns. For end-users, it might not always be clear that they
are interacting with a proxy contract, which can lead to confusion or misinter-
pretation of the contract’s actual functionality, especially if the logic is changed

without the user’s knowledge. We will further discuss this issue in Section [9.5]

9.3 Benefits and drawbacks of on-chain deployment style

We term a pattern “on-chain” when a smart contract, known as the factory, creates
instances or clones from another smart contract template during runtime. The
contract template’s bytecode can be stored off-chain and sent to the factory during
runtime or embedded directly within the factory. To safeguard templates and main-
tain consistency in the clones, we recommend the embedded approach, especially
for generating multiple instances. An on-chain factory smart contract offers several
benefits, both from the perspectives of developers and users:

Gas efficiency with clone factories. Clone factories can employ the EIP-1167
minimal proxy pattern to minimize deployment gas costs. A master contract
is deployed only once, and the factory spawns a typically smaller and cheaper
proxy contract per request/user. This process allows end-users to reuse the
master contract’s functionality while having control over their own contract’s
storage and state. GnosisSafe (Appendix @ and Uniswap-V1 (Appendix
are two DApps that use clone factories to reduce deployment costs.

Standardization. Clone factories ensure that every contract spawned follows
a standardized template, promoting consistency in behavior and ensuring users
can trust the contract’s operations.

Reusability. Some factories can receive bytecode for any intended contract
and deploy it, which promotes reusability and reduces deployment efforts re-
quired for developing off-chain deployment scripts. Such factories advocate for
reusability and reduce the deployment efforts required for developing off-chain
deployment scripts. The longer chains in Table 2] can be the result of reusing
such general-purpose factories.

Interoperability. Factory contracts can be designed to integrate or commu-
nicate with other contracts or systems on the blockchain, enabling seamless
interoperability and richer functionalities.

Transparency & trustworthiness. The entire process, from the contract
creation to its interactions, is recorded on the blockchain. This transparency
builds trust among users, as they can independently verify the code and the
instantiation process of the contract.

Simplified management. Developers can manage and update the factory
contract. If there is a need to make upgrades or modifications, the developer can
address the factory contract, which can then influence all subsequent contracts it
spawns. We detected the PlotX DApp where developers employed several layers
of factory contracts to manage DApp’s contracts at different levels (Appendix@[).

30 Amir M. Ebrahimi et al.

e Enhanced security. On-chain factories can be designed to incorporate security
checks, ensuring that the spawned contracts adhere to certain safety standards
or practices. For instance, a factory can have different creation methods that
deploy instances under different circumstances.

While on-chain factory smart contracts bring several benefits, they also come
with potential drawbacks and challenges:
e Initial overhead. Setting up a factory smart contract can have higher initial
costs (in terms of development effort and gas fees) compared to deploying a
standalone contract.

e Architectural complexity. Developing and managing a factory contract can
be more complex than a singular, standalone contract. This complexity might
pose challenges for developers unfamiliar with the factory pattern.

e Single point of failure. If there is an error or vulnerability in the factory, every
contract it spawns might inherit that issue. Addressing this can be challenging,
especially if many contracts have already been deployed.

e Centralization concerns. If not designed carefully, the factory pattern might
introduce centralization. For instance, if the factory has an admin with elevated
privileges, it could become a central point of control or failure.

9.4 Benefits and drawbacks of off-chain deployment style

In contrast to the on-chain deployment method where proxies are deployed by a
factory contract, the off-chain style deploys them directly using an EOA and a
deployment script. The key distinction between the two methods is the location of
the deployment infrastructure. On-chain relies on a decentralized factory contract,
whereas off-chain uses centralized, locally-maintained scripts, like those in the
Truffle framework. When needed, the proxy is then deployed to Ethereum by the
EOA via running the deployment scripts. Off-chain deployment style offers several
advantages, including:

e Cost efficiency. By handling heavy computations off-chain, one can save
on gas costs associated with on-chain computations. When scaling to a large
number of deployments with a computationally-intensive initialization process,
this can result in significant savings.

e Flexibility. Deploying from off-chain scripts provides developers with a greater
degree of control and adaptability. They can modify deployment parameters,
test in various environments (like Ethereum testnets), and easily customize the
deployment process without being constrained by the blockchain’s rules and
limitations.

e Scalability. Off-chain style can handle large-scale deployments and interactions
by leveraging off-chain infrastructure and services, whereas on-chain solutions
might be constrained by the blockchain’s processing power and gas limits. For
instance, off-chain deployment scripts can be set up to deploy multiple contracts
in parallel, leveraging powerful centralized servers or cloud infrastructure. This

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 31

is in contrast to on-chain deployments that might be restricted by blockchain’s
inherent sequential processing.

e Batch deployment. Off-chain solutions can accumulate multiple deployment
requests and batch them into fewer on-chain transactions. This way, multiple
operations can be processed in one go, optimizing the use of network resources.

e Integration with other development tools. Off-chain scripts, especially
those written for frameworks like Truffle, can be seamlessly integrated with other
developer tools, version control systems, and continuous integration,/continuous
deployment (CI/CD) pipelines.

While deploying contracts using the off-chain style has several advantages, it
also comes with certain drawbacks:

e Lack of transparency. Unlike on-chain deployment methods, off-chain deploy-
ment does not record every preliminary action on the blockchain. As a result,
the entire deployment process might not be as transparent to external observers.

e Centralization risks. Off-chain scripts are typically maintained and executed
by a centralized entity or group. This central point of control could become a
target for attacks or misuse.

e Trust issues. Since the deployment is managed off-chain, other parties must
trust that the deploying entity has not made any malicious or erroneous mod-
ifications before deploying the contract on-chain.

e Security concerns. Deployment scripts, if not securely managed, could be
tampered with or compromised. This can lead to the deployment of malicious
contracts or the loss of valuable assets.

9.5 Implications to practice

Implication 1) Research should gradually shift towards a system view
while analyzing smart contracts. Our motivation study (Section {4)) has re-
vealed that smart contracts are becoming increasingly interdependent, with many
contracts being highly coupled to other contracts. This highlights a paradigm
shift in smart contracts’ design: from monolithic contracts to modular systems.
Therefore, it is imperative for researchers to consider a system view perspective
(i.e., the set of contracts that belong to a larger context or DApp), rather than
focusing solely on individual contracts. However, to date, no systematic research
has been conducted to determine the scope of systems in Ethereum. Thus, future
studies should aim to explore the systems’ scope in more detail.

As for the proxy contracts, they add a layer of indirection, and we showed
that such contracts have been playing a crucial role in smart contract interactions
(Observation [8)) since the early days of Ethereum. In our study, we introduced the
“usage context” notion as a way of grouping proxy contracts into clusters, each
representing a set of similar proxy contracts that are deployed by an identical entity
and whose purposes are similar. We then use this concept while analyzing proxy
contracts throughout our study. We brought some examples of large decentralized

32 Amir M. Ebrahimi et al.

systems that use the top-5 on-chain proxy creational patterns and discuss their
purpose (Appendix E[) In addition, we analyzed the application of proxy contracts
employed by the top-50 most active DApps (Appendix . However, there is a
need for additional research to comprehensively explore the characteristics of the
systems supporting the entirety of the 7.2 million detected proxies.

Implication 2) Proxy contracts reduce transparency in DApps. Proxy
contracts can reduce transparency in DApps by adding an extra layer of indirection
between users and the underlying logic contract. While this can enhance modularity,
it may decrease transparency if essential information about the logic contract (e.g.,
source code or address) is not accessible. Having studied the practical applications
of proxy contracts in DApps (Appendix E[), we found that out of 307 DApps with
at least one proxy contract, 297 did not publish some or any of their logic contract
addresses. Specifically, 97.1% of proxies lacked published logic contract addresses.
Several reasons could explain this phenomenon. Developers might aim to protect
against potential attacks on the logic contract or safeguard their intellectual prop-
erty. Some may not fully grasp the importance of sharing logic contract addresses,
while others using upgradeability proxies might avoid publication due to frequent
changes. Future research could delve deeper into developers’ motivations. Similarly,
we found that over 20% of usage contexts use proxy contracts that do not follow
the storage layout of popular proxy reference implementations (Section . This
can prevent blockchain explorers (e.g., Etherscan) from tracking the logic contract
of such contracts, further contributing to this issue.

This finding underscores a few critical points. Transparency is vital for DApps,
and the absence of logic contract addresses complicates auditing. Additionally, for
developers seeking to interact with the logic contract via its proxy, identifying the
right functions to call becomes challenging, hindering reusability. Lastly, incomplete
contract information in marketplaces poses challenges for blockchain researchers
in system view analysis, as these marketplaces are a primary source for DApps’
contract lists.

Given that proxy contracts can inadvertently reduce transparency, it is imper-
ative for DApp developers to prioritize the publication of logic contract addresses
alongside proxy addresses, allowing users, auditors, and fellow developers to ac-
cess vital information about the core functionality and interfaces of your DApp.
In addition, marketplaces can utilize services like Etherscan Proxy Verification
to display a proxy’s current logic contract. Finally, our proxy detection method
(Section can help marketplaces identify proxies and their logic contracts for
automatic updates of DApps’ missing contracts.

Implication 3) Developers should weigh the benefits and challenges of the
proxy pattern and choose the deployment styles that best meet the needs
of their DApps. When deciding to employ the proxy pattern, developers face a
nuanced trade-off between several factors. On the one hand, the proxy pattern offers
substantial benefits like flexible upgrades, cost reductions in large-scale deployments
etc., as outlined in Section On the other hand, it also introduces architectural
complexity and the need for rigorous design, consistent audits, and a transparent
governance structure to mitigate potential risks (Section . Key considerations

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 33

in this decision include the DApp’s characteristics, anticipated upgrade frequency,
user base size and characteristics, and the value of user trust. For DApps where
long-term maintenance, data longevity, modularity, or gas-saving deployment at
scale are essential, the proxy pattern might be highly suitable. Conversely, simpler
DApps or those for which transparency is of utmost importance may find the
added complexity of the proxy pattern unnecessary.

When choosing between on-chain and off-chain styles for deploying proxy con-
tracts, developers are presented with a nuanced trade-off. On one hand, on-chain
deployment, with its factory contracts, offers benefits such as gas efficiency, stan-
dardization, reusability, interoperability, transparency, simplified management, and
enhanced security (Section . It is particularly advantageous in larger usage
contexts where standardization and consistent deployment patterns are essential.
On the other hand, off-chain deployment provides cost efficiency in handling heavy
computations, increased flexibility, scalability, batch deployment capabilities, seam-
less integration with other development tools, and enhanced privacy (Section .
It lends itself well to scenarios where customized deployments, rapid iterations, or
integration with broader software ecosystems are essential. However, it comes with
its challenges, such as potential centralization risks and decreased transparency.
Thus, the decision largely hinges on the specific requirements and constraints of
a DApp, with developers needing to weigh the immediate advantages of a chosen
style against its long-term implications and potential challenges.

Based on the provided analysis (Observation , developers appear to lean
towards on-chain deployment when dealing with larger usage contexts. The one-time
gas expense of deploying factories, despite its initial overhead, proves to be more cost-
effective in scenarios with multiple proxies (Appendix . Conversely, for smaller
usage contexts, especially singletons, off-chain deployment methods are favored.
These off-chain methods, although having a larger bytecode size, hint at a richer
functionality, likely because developers are less concerned with gas optimization in
these scenarios and more inclined to offer comprehensive features. However, as the
size of the usage context grows, the trend seems to favor more gas-efficient deploy-
ments, perhaps using minimal proxy contracts to reduce gas costs. While the data
presents clear patterns in developers’ deployment preferences based on context size
and gas costs, it is paramount for future research to delve deeper into how the total
deployment gas cost, complexity of initialization, and storage costs impact the choice
of deployment style and to ascertain the magnitude of the effects of such variables.

Implication 4) Future studies should delve into the release engineering
process of smart contracts through proxies. |Chen et al.|(2021) explored
the reasons why developers terminate smart contracts. Their method, rooted in
code similarity, first detects a self-destructed contract before identifying its subse-
quent version. The SelfDestruct feature in Solidity lets a contract be destroyed,
transferring its balance to a specified address. Improper use can lead to security
vulnerabilities or funds loss. While |Chen et al.| (2021)’s study pioneered understand-
ing releases, it did not address release engineering via proxy contracts. (Wohrer,
and Zdun, 2021)) studied how DevOps can be applied to blockchain-based software
development, especially for Ethereum smart contracts. The authors proposed a

34 Amir M. Ebrahimi et al.

structured DevOps procedure that covers the main stages of Continuous Integra-
tion and Continuous Delivery along with a discussion around the challenges and
benefits of DevOps for blockchain, such as the need for more rigorous testing and
differentiated deployment due to the immutability of blockchain. While this study
focused on core DevOps practices, it is worth noting that there remains a gap in our
understanding of the characteristics of releases through the proxy pattern method.

Proxies, especially those that are upgradeable, are increasingly favored for their
adaptability in crafting update-friendly contracts. From our manual investigation,
over 32% of usage contexts contain upgradeability proxy contracts (Observation .
However, a deeper dive is required to fully grasp release characteristics. To jumpstart
future research on upgradeable contracts, we suggest six pivotal questions:

e Q1. How prevalent are different proxy types? Even though we conducted a
manual study on a representative sample of proxy contracts (Section , there has
been no large-scale study that automatically analyzes the prevalence of upgradeable
vs forwarder proxies since Ethereum’s birth. In addition, we could not detect the ref-
erence implementation of around 21% of proxy contracts using evm-proxy-detection
tool. In light of this observation, how static analysis techniques can be specifically
tailored to detect these variations effectively?

e (2. In light of our first implication, how many DApps use upgradeable vs
forwarder proxies?

e ()3. How is the distribution of the number of releases for upgradeable DApps?
The number of times a new version of a logic contract is replaced an old version
can indicate the extent to which release engineering is a common practice in the
Ethereum ecosystem.

e (4. What is the average amount of time required to upgrade a DApp?

e Q5. What techniques are used to ensure upgradeable governance in DApps?
Smart contract upgrades violate immutability and must be conducted in a secure,
controlled, and transparent manner. Therefore, it is important to establish up-
gradeable governance. Upgradeable governance refers to the rules and processes for
managing and executing smart contract upgrades. Several governance mechanisms
exist (e.g., on/off-chain voting, multi-sig contract, EOA, etc.) (Liu et al.| 2023|
OpenZeppelin, |2023a)). Thus, it is important to analyze how developers govern
contracts (and hence DApp) upgrades. In other words, how do developers maintain
the trust of their end-users when they practice upgradeability?

e ()6. To what extent is a suitable governance technique used that aligns with
the size of a DApps’ user base? The higher the number of users, the more critical
and sensitive a contract upgrade could be. For instance, for a given DApp with
thousands of users, if the upgrade is controlled by a single EOA, then it is a sign
of bad governance practice. It is also interesting to analyze how the size of the user
base affects the choice of upgradeability governance in existing DApps. Therefore, it
is important to study the employed governance technique while taking the contracts’
user base into account.

Addressing these queries demands automated tools for spotting upgradeable
proxies and determining governance methods. Some research has begun in this

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 35

direction (Salehi et al.;2022), yet there is ample room to further explore the breadth
of release engineering in Ethereum.

10 Threats to Validity

Construct Validity. Detecting proxies is not a trivial task. Similar to Salehi et al.
(2022), we proposed an approach that detects proxies based on their behavior. Since
Salehi et al.| (2022) did not provide a replication package, we re-implemented their
approach. While we were not able to thoroughly compare our approach with the pre-
vious study, we tested and evaluated it to the best of our abilities to ensure its correct-
ness (Section . We acknowledge that, while a behavioral detection approach has
high performance, it cannot detect inactive proxies (i.e., proxy contracts whose proxy
functionality is never used). Additionally, we used the Panoramix tool to decompile
the bytecode of the contracts during our evaluation. This tool has been utilized by
Etherscan EI, the most prominent blockchain explorer, as well as in prior research
(Salehi et al., [2022). While our focus is on active proxy contracts, we used a ground
truth dataset of both active and inactive proxy contracts to evaluate our proxy detec-
tion method. The reasons are twofold. Firstly, even though our focus is on the active
proxies, we intended to shed light on the actual ratio of proxy contracts by creating
a ground truth that included both active and inactive proxy contracts. As such,
we found that 23.3% of our sample contracts were indeed proxies. Given we found
14% of contracts are active proxies (Observation @, this means that just above 9%
of proxies are inactive. Secondly, future research can fruitfully use our ground truth
dataset for evaluation regardless of the characteristics of their detection method.
In RQ3, we relied on a tool called evm-proxy-detection to distinguish between
seven proxy reference implementations (Section . This tool is developed by
Gnosiﬂ which is a reputable open-source, decentralized prediction market built
on the Ethereum blockchain. Different reference implementations have a unique
signature (e.g., either their storage structure or bytecode) that the tool relies on in
order to detect the proxy implementation type. Given that the tool detects the type
of the majority (79%) of our proxies, we believe that it still provides useful insight
into the prevalence of different reference implementations. While the tool could not
detect the type of 21% of representative proxies, we acknowledge that this does
not mean that those proxies are poorly implemented. Indeed, although many of
the reference implementations emerged after 2018, Figure [§] shows that proxies
have emerged since mid-2016 (Observation @ Thus, it is natural that not all proxy
contracts are based on known reference implementations. Upon analyzing a subset
of these “Customized” cases, we found that slight bytecode variations from reference
implementations hinder detection by the tool, especially for minimal proxy contracts.
Additionally, some developers opt for custom designs, deviating from standard
storage layouts, and making their contract type undetectable by the employed tool.

Internal Validity. To mitigate internal validity threats, we explicitly consider
code cloning in Ethereum while studying the prevalence of proxy contracts in the

13 https:/ /etherscan.io/bytecode-decompiler
14 https:/ /www.gnosis.io/

https://etherscan.io/bytecode-decompiler
https://www.gnosis.io/

36 Amir M. Ebrahimi et al.

first research question. We also mitigate other internal validity threats by ensuring
that our chosen statistical analysis procedures properly suit our goals and the
characteristics of our datasets. In addition, in Section[9} we collected DApps’ contract
list from three different marketplaces to reduce the risk of missing data points.
Furthermore, in our manual classification proxies based on their purpose (RQ3),
we followed open coding best practices and relied on an approach proposed by a
previous study (Salehi et al.,[2022). From a statistical point of view, we highlight
that we randomly picked a statistically representative sample of proxies in our
analyses. In addition, prior to classifying our proxy instances, we carefully reviewed
different proxy types in the literature (Gabriel Barros, 2019, Jorge Izquierdo), [2018|
OpenZeppelinl 2023b| |Peter Murray, 2018 |Santiago Palladino, 2019)). Such a review
informed and supported the entire coding process. Finally, we also leveraged our own
expertise in smart contracts while performing the classification (Kondo et al.l (2020}
Oliva and Hassanl, 2021} |Oliva et al., [2020} [Pacheco et al., 2023albl |Zarir et al., [2021]).

External Validity. The dataset used in this work is a collection of all smart
contracts and their transactions that were available on Etherscan as of September
1st, 2022. As such, our dataset is a complete representation of contracts at that
point in time. Nevertheless, it is possible that smart contracts developed after such
a period may have different characteristics. It is thus possible that our results do
not generalize to newer contracts. Also, our results might not generalize to other
programmable blockchain platforms. Finally, we only focus on active proxies. How-
ever, it is possible that inactive proxies may have unique characteristics. Therefore,
our results may not generalize to inactive proxy contracts.

11 Related Work

Proxy pattern in other disciplines. Design patterns provide standardized solu-
tions to recurring software design issues, facilitating an efficient response to common
challenges in system creation. The prominence of design patterns in computer sci-
ence grew substantially after the Gang of Four (GoF) published a book on standard
patterns for object-oriented systems (Gamma et al., |1995). Subsequent research has
expanded on these concepts, reusing existing patterns or identifying new ones across
various software domains, including microservices architectures (Richardson) 2018]),
10T systems (Bloom et al., [2018] Ngaogate, 2019), and cloud computing (Indrasiri
and Suhothayan, 2021)).

Proxies, as design structures, serve varied roles across different system contexts.
In object-oriented systems, they can mask the intricacy of primary objects, facil-
itating functionalities such as lazy initialization, access control, and logging. In
distributed systems, proxies are often advised to add structure and encapsulation
to the system (Shapiro, [1986). For instance, in microservices, they form the core of
the API gatewayEl pattern, which acts as the external entry point into applications.
Thus, this underscores the proxy’s indispensable role in both conventional and
contemporary software paradigms.

15 https://microservices.io/patterns,/apigateway.html

https://microservices.io/patterns/apigateway.html

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 37

Proxy pattern in smart contract design. |Rajasekar et al| (2020)) explored 19
distinct design patterns for blockchain applications, categorized into five domains:
security, data, creational, structural, and behavioral. They emphasized the Proxy
pattern, which facilitates contract modification and updates, and the Factory con-
tract, aiding contract creation on the blockchain!Wohrer and Zdun| (2018) identified
18 smart contract design patterns through a Multivocal Literature Research and
a qualitative analysis, categorizing them into five groups. They discussed the proxy
mechanism within the relay contract pattern, enabling contract upgrades:Xu et al.
(2021) presented several design patterns along with their merits, demerits, and use
cases. They proposed a decision model to assist in selecting appropriate patterns
for decentralized applications, discussing proxy patterns and factory contracts for
contract maintenance and on-chain contract generation.Kannengiesser et al.| (2021)
conducted a study identifying 29 smart contract development challenges and 60
solutions, extracting 20 design patterns, including detailed discussions on proxy
and factory patterns/Worley and Skjellum| (2019a)) proposed design patterns to
address common smart contract constraints, discussing the proxy pattern within
the migration patterns.

Proxy contract detection. Detecting proxies, although challenging, is crucial
for many applications’ security (Jorge Izquierdol 2018]). The most related study
is by [Salehi et al| (2022), introducing a method to detect proxy contracts based on
run-time behavior. Their analysis spanned from Sep-05-2020 to Jul-20-2021. In con-
trast, our study covers Ethereum’s entire lifespan, from Aug-01-2015 to Sep-01-2022.
Salehi et al.| (2022) utilized an Ethereum full archival node to replay transactions and
extract traces. This method, while accurate, is resource and time-intensive. Instead,
we harnessed the Ethereum public dataset on Google BigQuery, proposing a more
efficient technique that identifies all proxy contracts in under 15 minutes without re-
playing transactions. A comparison with [Salehi et al.fs method is available in Section
Additionally, while [Salehi et al.[(2022) initiated an automated method to discern
upgradeability and forwarder proxies, the limited analysis period may affect their
generalizability. We address this by meticulously analyzing a statistically representa-
tive proxy sample on Ethereum (Section, enhancing the robustness of our findings.

Etherscanriﬁ7 the most prominent blockchain explorer, offers an online service
called “Proxy Veriﬁcation’ﬂ that determines whether a deployed contract is a
proxy or not. We did not use this service due to two reasons. First, one can only
send 100 requests per day to the specified end-point. As such, it is impossible to use
it for such a large-scale study. Second, as acknowledged by Etherscan, this service
is based on a heuristic. Since the details of the heuristic are not available online, we
could not rely on it. In contrast, our proposed approach identifies proxies through
two definitive features of a proxy contract. (Section [2).

Finally, we also found a tool called Fvm-Prozy-Identification (Gnosis, 2023).
We use this tool to categorize different proxy implementations in Section 8} Yet, we
could not use this tool for detecting proxies in general due to several reasons. First,

16 https:/ /etherscan.io
17 'https:/ /etherscan.io/proxyContract Checker

https://etherscan.io
https://etherscan.io/proxyContractChecker

38 Amir M. Ebrahimi et al.

the tool uses a blockchain API called Infurﬂ which allows a limited number of
requests per day for a free account. Second, this tool detects certain popular proxy
types. For instance, as discussed in Observation |16} over 21% of our detected proxies
are labeled as “Customized” by the tool, which indicates the limited capability of
the tool in detecting proxies. In contrast, our approach detects proxies regardless
of their type by relying on their behavior, which is similar across all proxy types,
implementations, and standards.

We also examined the Fvm-Proxy-Identification tool (Gnosis, |2023) but faced
limitations due to its reliance on the restricted Infura API and its constrained
proxy detection. Our method, conversely, identifies proxies across types and im-
plementations by focusing on consistent behavior.

12 Conclusion

The proxy pattern is a well-established design pattern in software design with nu-
merous use cases in various disciplines. In the context of programmable blockchain,
the role of proxies in facilitating smart contract maintenance and reducing contract
deployment is undeniable. Yet, little is known about the characteristics of the proxy
pattern in this context.

In this paper, we conducted a large-scale study of the proxy pattern in a dataset
of 50,845,833 smart contracts. As the first large-scale study in the area, we attempted
to characterize the proxy pattern by determining its prevalence (RQ1), different
ways of its integration (RQ2), and its different types (RQ3). Using a behavioral
detection technique, we found that over 14% of the contracts are active proxies.

In RQ1, We observe an upward trend in the usage of proxy contracts over
the entire Ethereum lifespan from various perspectives, with its notable role in
increasing modularity.

In RQ2, we found 12 different creational patterns for deploying proxies, which
we classified into off-chain and on-chain styles depending on where the deployment
script is operating. We realized that on-chain patterns are the most popular way of
creating proxies in different contexts (i.e., proxy contracts of around 61% of usage
contexts are deployed through this style). Yet, the most popular off-chain pattern
is as popular (39.07%) as the most popular pattern of on-chain deployment style
(39.81%).

In RQ3, we found that while the majority of proxies (67.8%) typically intercept
calls, process, and subsequently forward them to their logic, 32.2% enable contract
maintenance and upgrades. Both forwarder and upgradeable are deployed through
both on-chain and off-chain patterns. Finally, we found that the majority (79%)
of usage contexts employ proxies that are implemented based on the best practices
and standards. In particular, just below 30% of the usage contexts use ERC-1167
minimal proxies, which is beneficial for reducing deployment costs.

Furthermore, we thoroughly discussed the benefits and drawbacks of the proxy
pattern, off-chain, and on-chain deployment styles (Section E[) In addition, we

18 https://www.infura.io/

https://www.infura.io/

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 39

studied the practical applications of the proxy pattern in the top-50 most active
DApps and found that the majority of them use proxy contracts for upgradeabil-
ity purposes (Appendix . We also revealed that in spite of the importance of
transparency for decentralized applications, DApps often do not publish the logic
contract address to which their proxies delegate calls.

Finally, based on our findings, we discussed opportunities for future research
and implications to practice (Section E[) In particular, we (i) highlighted the lack
of techniques for understanding smart contracts at the system level, (ii) proxy
contracts decrease transparency in marketplaces, (iii) shed light on the usage of
on-chain and off-chain styles along with their trade-offs, and (iv) provided a research
agenda with six open questions for further studies. We hope that our study will
inspire and bootstrap additional studies regarding the usage of proxy contracts,
especially in the field of release engineering for DApps.

Data Availability Statement (DAS)

A supplementary material package is provided onlinﬂ The contents will be made
available on a public GitHub repository once the paper is accepted.

Conflict of Interest (COI)

The authors declared that they have no conflict of interest.

References

Gedare Bloom, Bassma Alsulami, Ebelechukwu Nwafor, and Ivan Cibrario
Bertolotti. Design patterns for the industrial internet of things. In 2018 14th
IEEE International Workshop on Factory Communication Systems (WFCS),
pages 1-10, 2018. doi: 10.1109/WFCS.2018.8402353.

Certik. Upgradeable proxy contract security best practices, 2022.
URL https:/ /www.certik.com,/resources/blog/Fnf YrOCsy3M G9s9gixfb.J-
upgradeable-proxy-contract-security-best-practices.

Jiachi Chen, Xin Xia, David Lo, and John Grundy. Why do smart contracts
self-destruct? investigating the selfdestruct function on ethereum. ACM Trans.
Softw. Eng. Methodol., 31(2), dec 2021. ISSN 1049-331X. doi: 10.1145/3488245.

Dharma. Dharma-smart-wallet: Upgradeablebeacon, 2019. URL
https://github.com/dharma-eng/dharma-smart-wallet.

Ethereum. Upgrading smart contracts, 2023. URL https://ethereum.org/es/
developers/docs/smart-contracts/upgrading/. Accessed: 2023-08-22.

Josselin Feist, Gustavo Greico, and Alex Groce. Slither: A static analysis framework
for smart contracts. In Proceedings of the 2Nd International Workshop on

19 https://drive.google.com /drive/folders /1-qeQC4JQOEL1DO70EikbOQJ1PDjQ8In2?usp=
sharing

https://www.certik.com/resources/blog/FnfYrOCsy3MG9s9gixfbJ-upgradeable-proxy-contract-security-best-practices
https://www.certik.com/resources/blog/FnfYrOCsy3MG9s9gixfbJ-upgradeable-proxy-contract-security-best-practices
https://github.com/dharma-eng/dharma-smart-wallet
https://ethereum.org/es/developers/docs/smart-contracts/upgrading/
https://ethereum.org/es/developers/docs/smart-contracts/upgrading/
https://drive.google.com/drive/folders/1-qeQC4JQOEL1DO70EikbOQJ1PDjQ8In2?usp=sharing
https://drive.google.com/drive/folders/1-qeQC4JQOEL1DO70EikbOQJ1PDjQ8In2?usp=sharing

40 Amir M. Ebrahimi et al.

Emerging Trends in Software Engineering for Blockchain, WETSEB 19, pages
8-15, Piscataway, NJ, USA, 2019. IEEE Press.

Patrick Gallagher Gabriel Barros. Eip-1822: Universal upgradeable proxy standard
(uups) [draft], Mar 2019. URL https://eips.ethereum.org/EIPS/eip-1822.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., USA, 1995. ISBN 0201633612.

Gnosis. Gnosis/evin-proxy-detection: Detect proxy contracts and their target ad-
dresses using ethers, 2023. URL https://github.com/gnosis /evin-proxy-detection.

Kasun Indrasiri and Sriskandarajah Suhothayan. Design Patterns for Cloud
Native Applications. " O’Reilly Media, Inc.", 2021.

Manuel Araoz Jorge Izquierdo. FEip-897: Delegateproxy, Feb 2018. URL
https://eips.ethereum.org/EIPS /eip-897.

N. Kannengieser, S. Lins, C. Sander, K. Winter, H. Frey, and A. Sunyaev.
Challenges and common solutions in smart contract development. IEEE
Transactions on Software Engineering, 48(11):4291-4318, nov 2022. ISSN
1939-3520. doi: 10.1109/TSE.2021.3116808.

Niclas Kannengiesser, Sebastian Lins, Christian Sander, Klaus Winter, Hellmuth
Frey, and Ali Sunyaev. Challenges and common solutions in smart contract
development. IEEE Transactions on Software Engineering, pages 1-1, 2021.
doi: 10.1109/TSE.2021.3116808.

Masanari Kondo, Gustavo A. Oliva, Zhen Ming (Jack) Jiang, Ahmed E. Hassan,
and Mizuno Osamu. Code cloning in smart contracts: A case study on
verified contracts from the ethereum blockchain platform. Empirical Software
Engineering, 25, 2020.

Jiahuei Lin, Haoxiang Zhang, Bram Adams, and Ahmed E Hassan. Vulnerability
management in linux distributions: An empirical study on debian and fedora.
Empirical Software Engineering, 28(2):47, 2023.

Yue Liu, Qinghua Lu, Liming Zhu, Hye-Young Paik, and Mark Staples. A system-
atic literature review on blockchain governance. Journal of Systems and Software,
197:111576, 2023. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2022.111576.
URL https://www.sciencedirect.com /science/article/pii/S0164121222002527.

Nick Mudge. Erc-2535: Diamonds, multi-facet proxy, Feb 2020. URL
https://eips.ethereum.org/EIPS /eip-2535.

Dr Nanjundeswaraswamy and Shilpa Divakara. Determination of sample size and
sampling methods in applied research. Proceedings on Engineering Sciences,
3:25-32, 03 2021. doi: 10.24874/PES03.01.003.

Wasana Ngaogate. Gof design patterns in a smart city system. Journal of
Software, 14:220-226, 05 2019. doi: 10.17706/jsw.14.5.220-226.

Gustavo A. Oliva and Ahmed E. Hassan. The gas triangle and its challenges to the
development of blockchain-powered applications. In ACM, editor, Proceedings
of the ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering - Ideas, Visions and Reflections
(IVR) track., 2021.

Gustavo A. Oliva, Ahmed E. Hassan, and Zhen Ming (Jack) Jiang. An exploratory
study of smart contracts in the ethereum blockchain platform. Empirical

https://eips.ethereum.org/EIPS/eip-1822
https://github.com/gnosis/evm-proxy-detection
https://eips.ethereum.org/EIPS/eip-897
https://www.sciencedirect.com/science/article/pii/S0164121222002527
https://eips.ethereum.org/EIPS/eip-2535

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 41

Software Engineering, 25, 2020.

OpenZeppelin. Openzeppelin lab, 2017. URL https://github.com/OpenZeppelin/
openzeppelin-labs.

OpenZeppelin. Proxy patterns, Aug 2018. URL https://blog.openzeppelin.com /
proxy-patterns/.

OpenZeppelin. How to set up on-chain governance, 2023a. URL
https://docs.openzeppelin.com/contracts /4.x /governance.

OpenZeppelin. Proxies, 2023b. URL https://docs.openzeppelin.com/contracts/
4.x /api/proxy.

Michael Pacheco, Gustavo A. Oliva, Gopi Krishnan Rajbahadur, and Ahmed E.
Hassan. What makes ethereum blockchain transactions be processed fast or
slow? an empirical study, 2022.

Michael Pacheco, Gustavo Oliva, Gopi Krishnan Rajbahadur, and Ahmed
Hassan. Is my transaction done yet? an empirical study of transaction
processing times in the ethereum blockchain platform. ACM Trans. Softw.
Eng. Methodol., 32(3), apr 2023a. ISSN 1049-331X. doi: 10.1145/3549542. URL
https://doi.org/10.1145/3549542.

Michael Pacheco, Gustavo A. Oliva, Gopi Krishnan Rajbahadur, and Ahmed E.
Hassan. What makes ethereum blockchain transactions be processed fast
or slow? an empirical study. Empirical Software Engineering, 28(2):39,
Feb 2023b. ISSN 1573-7616. doi: 10.1007/s10664-022-10283-7. URL
https://doi.org/10.1007/s10664-022-10283-7.

Nate Welch Peter Murray. Eip-1167: Minimal proxy contract, Jun 2018. URL
https://eips.ethereum.org/EIPS /eip-1167.

ITham Qasse, Mohammad Hamdaqa, and Bjérn Por Jonsson. Smart contract
upgradeability on the ethereum blockchain platform: An exploratory study, 2023.

Vijay Rajasekar, Shiv Sondhi, Sherif Saad, and Shady Mohammed. Emerging
design patterns for blockchain applications. pages 242-249, 01 2020. doi:
10.5220/0009892702420249.

C. Richardson. Microservices Patterns: With examples in Java. Manning,
2018. ISBN 9781617294549. URL |https://books.google.ca/books?id=
UeK1swEACAAJL

J. Romano, J.D. Kromrey, J. Coraggio, and J. Skowronek. Appropriate statistics
for ordinal level data: Should we really be using t-test and Cohen’sd for
evaluating group differences on the NSSE and other surveys? In Annual meeting
of the Florida Association of Institutional Research, pages 1-3, 2006.

Mehdi Salehi, Jeremy Clark, and Mohammad Mannan. Not so im-
mutable: Upgradeability of smart contracts on ethereum, 2022. URL
https://arxiv.org/abs/2206.00716.

Francisco Giordano Santiago Palladino. Eip-1967: Proxy storage slots, Apr 2019.
URL https://eips.ethereum.org/EIPS /eip-1967.

M Shapiro. Structure and encapsulation in distributed systems the proxy principle.
International Conference on Distributed Computing Systems, pages 198-204,
1986. URL https://cir.nii.ac.jp/crid/1573105973883317248.

Ankur Tagra, Haoxiang Zhang, Gopi Krishnan Rajbahadur, and Ahmed E Hassan.
Revisiting reopened bugs in open source software systems. Empirical Software

https://github.com/OpenZeppelin/openzeppelin-labs
https://github.com/OpenZeppelin/openzeppelin-labs
https://blog.openzeppelin.com/proxy-patterns/
https://blog.openzeppelin.com/proxy-patterns/
https://docs.openzeppelin.com/contracts/4.x/governance
https://docs.openzeppelin.com/contracts/4.x/api/proxy
https://docs.openzeppelin.com/contracts/4.x/api/proxy
https://doi.org/10.1145/3549542
https://doi.org/10.1007/s10664-022-10283-7
https://eips.ethereum.org/EIPS/eip-1167
https://books.google.ca/books?id=UeK1swEACAAJ
https://books.google.ca/books?id=UeK1swEACAAJ
https://arxiv.org/abs/2206.00716
https://eips.ethereum.org/EIPS/eip-1967
https://cir.nii.ac.jp/crid/1573105973883317248

42 Amir M. Ebrahimi et al.

Engineering, 27(4):92, 2022.

Maximilian Wohrer and Uwe Zdun. Devops for ethereum blockchain smart
contracts. In 2021 IEEE International Conference on Blockchain (Blockchain,),
pages 244-251. IEEE, 2021.

Carl R. Worley and Anthony Skjellum. Opportunities, challenges, and future
extensions for smart-contract design patterns. In Witold Abramowicz and Adrian
Paschke, editors, Business Information Systems Workshops, pages 264-276,
Cham, 2019a. Springer International Publishing. ISBN 978-3-030-04849-5.

Carl R Worley and Anthony Skjellum. Opportunities, challenges, and future
extensions for smart-contract design patterns. In Business Information Systems
Workshops: BIS 2018 International Workshops, Berlin, Germany, July 18-20,
2018, Revised Papers 21, pages 264-276. Springer, 2019b.

Maximilian Wohrer and Uwe Zdun. Design patterns for smart contracts
in the ethereum ecosystem. In 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pages 1513-1520, 2018. doi:
10.1109/Cybermatics _2018.2018.00255.

Xiwei Xu, H.M.N. Dilum Bandara, Qinghua Lu, Ingo Weber, Len Bass, and Liming
Zhu. A decision model for choosing patterns in blockchain-based applications.
In 2021 IEEE 18th International Conference on Software Architecture (ICSA),
pages 47-57, 2021. doi: 10.1109/ICSA51549.2021.00013.

Abdullah A. Zarir, Gustavo A. Oliva, Zhen Ming (Jack) Jiang, and Ahmed E.
Hassan. Developing cost-effective blockchain-powered applications: A case study
of the gas usage of smart contract transactions in the ethereum blockchain
platform. Transactions on Software Engineering and Methodology (TOSEM),
2021. Accepted for publication.

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 43

Appendix A Practical applications of the proxy pattern in DApps

To gain a more holistic understanding of the usage of proxy patterns, we investigated
those in the context of DApps. More specifically, we analyzed the contract list
of 3,767 Ethereum DApps collected from three well-known marketplaces, namely
stateofthedapps.com, dappradar.com, and dapp.com. Having cross-referenced the
DApps’ contracts with our proxy contract dataset (Section @7 we found that 307
(8.14%) DApps have at least one proxy contract. We then sorted these 307 DApps
based on their activity level in ascending order. To determine the activity level of
a given DApp, we calculated the average number of inbound transactions received
by all of the DApps’ contracts as of September 5th, 2023. First, we determined
the date when the very first contract of a DApp was deployed, which we refer to
as the DApp’s ’birthday’. Then, we computed the DApp’s age by counting the
number of days from its birthday to September 5th, 2022. Subsequently, we tallied
the number of inbound transactions that all the DApps’ contracts received during
this period, which we refer to as the 'inbound traffic’. Finally, we divided a DApp’s
inbound traffic by its age to derive the activity level.

To understand how proxies are used in relevant DApps, we selected the top-50
most active DApps. Subsequently, we analyzed the proxy contracts of these DApps
(a total of 2,045 proxy contracts) to gain a deeper understanding of the reasons
for using the proxy pattern in DApp design. The minimum, median, maximum,
and standard deviation of the number of proxies per DApp are 1, 2, 1,740, and
40.9, respectively. For each DApp, we clustered its proxy contracts based on its
bytecode, as contracts with similar bytecode possess similar functionalities. We
then selected a random proxy contract from each cluster.

The first and third authors of this paper collaborated to study the source code
of these proxies. Specifically, we employed a hybrid coding approach to discern the
primary rationale behind using the proxy. As per source ERC-897 standard, a proxy
contract can either be an upgradeability proxy or a forwarder proxy. The former is
primarily utilized to upgrade DApp contracts, while the latter can serve various pur-
poses such as cost-effective cloning of a contract that is expensive to deploy, logging,
access control, routing, and more. Upon analyzing the proxy’s source code, if it is
used for upgradeability, we label it accordingly. On the other hand, if it is a forwarder
proxy, we delve deeper into its source code to pinpoint a more specific reason. During
this analysis, if we cannot match the reason with one from our existing codebook of
reasons, we formulate a new one and subsequently incorporate it into our codebook.

Findings. Out of 50 studied DApps, 43 (86%) used proxy contracts for upgrade-
ability purposes, whereas 9 (14%) with proxies that act as forwarders. Regarding
the latter category, we found 6 systems that used proxy contracts towards reducing
the deployment cost. The bold example is Uniswap-V1 for which we identified 1,740
prozy contracts. Uniswap-V1 uses the minimal proxy pattern to deploy a minimalist
proxy per user. All deployed proxy contracts delegate to a singular logic contract
address (i.e., Vyper contract), yet since every proxy executes the logic code in its
own context, it allows reuse of the same logic code without the need to deploy the
expensive logic per use. Furthermore, we found one DApp (i.e., Swerve Finance)
that uses two forwarder proxy contracts to extend the functionality of the correspond-

44 Amir M. Ebrahimi et al.

ing logic contracts. These specific forwarders add getter interfaces through which
one can read the logic’s state variables. Finally, we found two other DApps (i.e.,
Element and Ether Legend) whose forwarder proxy contracts act as a hub/router,
receiving requests and subsequently routing them to an appropriate logic contract.

Appendix B Comparing on-Chain vs. off-Chain Deployment on gas
costs and complexity

In Observation [T3] we discovered that larger usage contexts typically favor on-chain
deployment, while smaller ones lean towards off-chain methods. In this post-hoc
analysis, our objective is to compare the average deployment gas cost across usage
contexts for both deployment styles. We collected gas usage data for each proxy con-
tract from the “trace” table in the Ethereum BigQuery dataset. We categorized the
usage contexts of each deployment style based on their size (N) into either singleton
(N=1) or multi-proxy (N>1) contexts. We then computed the average deployment
gas cost for each context. For an on-chain context, this is the sum of the gas used
for deploying its proxy contracts and the entire chain of factory contracts utilized in
its creational pattern, divided by the number of deployed contracts. For an off-chain
context, it is the sum of the gas used for deploying its proxy contracts divided by
the number of deployed proxy instances. Additionally, we assessed the complexity
of the off-chain and on-chain usage contexts by analyzing their bytecode length.
We omitted factories from on-chain contexts in this analysis as we aimed to focus
solely on the complexity difference in proxy contracts deployed through each style.

Findings. Figure|19 presents our findings. We observed that on-chain (N=1)
contexts (red line) typically consumed more gas during deployment than their off-
chain (N=1) counterparts (blue line). A one-tailed Mann—Whitney U test indicates
that this difference is statistically significant (P-value < 0.05) but with a small
effect size (0.27). We hypothesize that the higher cost is attributable to the ad-
ditional overhead of deploying factory contracts essential for on-chain singleton
contexts. Interestingly, upon excluding the gas cost of these factory contracts from
our calculations for on-chain (N=1) contexts, the average gas consumption dropped
significantly below that of off-chain (N=1). This highlights the considerable overhead
of factories when deploying a single proxy.

Conwersely, on-chain (N>1) contexts (black line) consistently consumed less gas
than off-chain (N>1) contexts (green line), with a notable effect size of 0.72. We
surmise that as the usage context size grows, the one-time gas expense for deploying
factories remains more cost-effective for on-chain (N>1) contexts. Indeed, even
after removing the gas cost for factories, on-chain (N>1) contexts still consumed
significantly less gas than their counterparts. It is essential to note that while we
are discussing the average deployment gas cost per usage context, the total deploy-
ment gas expense for on-chain contexts is usually higher than off-chain due to the
broader scope of proxy deployment—exhibiting medians of 1,312,466 and 283,871,
respectively. However, other elements, like initialization complexity and storage
costs, might also affect deployment gas costs. Further investigation is needed to
definitively assess the influence of these factors.

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 45

100 A —5 ---- Off-chain (N=1) 1007 == Vi, . ---- On-chain
901 [IR Off-chain (N>1) 90 i T Off-chain
80 1 b t —— On-chain (N=1) 80 i
701 i —— On-chain (N>1) 70 H
—_ it — H
& 601 £ 60 i
o 501 2 50
3 T
S 404 g 40
30 30
20 20
101 10
0] D—— 0
104 105 106 107 102 103 104
Average gas cost per usage context Average bytecode size per usage context

Fig. 19: CCDFs of the average deploy- Fig. 20: CCDFs of the average bytecode
ment gas cost per usage context of the length per usage context of the on-chain
top-5 on-chain and off-chain patterns. and off-chain deployment style.

Figure [20 reveals that off-chain usage contexts typically have a significantly
larger bytecode size than on-chain contexts, with a substantial effect size of 0.52. This
indicates that they offer more extensive functionality compared to on-chain contexts.
We identified this pattern regardless of conteat size (i.e., whether N=1 or N>1). We
speculate that since off-chain contexts are predominantly singleton (96%) or smaller
in scale (1 Obsemation compared to on-chain contexts, developers might prioritize
adding functionalities over optimizing their proxy code. To delve deeper, we conducted
a Spearman correlation test to examine the relationship between the size of the
usage context (measured in terms of the number of proxy contracts) and its average
bytecode size. The coefficient was -0.55, indicating a moderate inverse relationship
between the two metrics. This supports our speculation that as the number of proxy
contracts in a usage context increases, developers might opt for more gas-efficient
proxy contracts (e.g., using minimal prozy contracts) to curtail deployment expenses.
However, additional research is essential to confirm this causation.

Appendix C Reducing deployment gas costs: A case study on ERC-
1157 minimal proxy contracts

Approach. To illustrate how cost-effective the proxy pattern can be in reducing
deployment costs, we analyze the case of the Uniswap-V1 DApp (Appendix [A).
We consider two scenarios: actual and hypothetical. In the first scenario (actual),
the main logic contract called Vyper contract is deployed just once. Subsequently,
1,740 minimal proxy contracts are deployed, each of which delegates its operations
to the Vyper contract. In the second scenario (hypothetical), the Vyper contract
is directly and independently deployed 1,740 times. We recall that such an operation
involves creating an entirely new and separate instance of the contract each time,
encompassing both its logic and its state.

We then computed the total deployment fee in Ether (ETH) for both scenarios.
The transaction fee for deploying a contract is calculated by multiplying the number

46 Amir M. Ebrahimi et al.

of used gas units with the gas price (in ETH) at the time of deployment. The gas
price could vary based on several factors such as network congestion, miners’ policy
and network upgrades. Hence, for the first scenario, we scraped the deployment
transaction fee and the corresponding gas price from each of the 1,740 minimal
proxy contracts web pages on Etherscan. We then summed up the deployment
transaction fees of all minimal proxy contracts and the deployment fee (0.04 ETH)
of the singular Vyper contract to determine the total deployment fee.

Subsequently, we collected the number of gas units that were needed to deploy
a single Vyper contract. Knowing the gas prices at the time of deploying the
minimal proxy contracts from the first scenario, we multiplied them by the number
of gas units required to deploy the Vyper contract. We then summed up all these
calculations to derive the total deployment fee in the second scenario.

Findings. The total deployment gas cost for the first scenario (actual) is 2.07
ETH, which is approximately 14 times lower than that of the second scenario
(28.46 ETH). Thus, our findings show that the careful use of proxy contracts can
substantially reduce deployment gas costs at scale.

Appendix D Examples of largest DApps for the top-5 on-chain
creational patterns

Approach. The substantially large number of proxies (99.3%) that are systemat-
ically deployed using on-chain factories motivated us to examine some examples of
large decentralized systems that employ such patterns. Thus, we attempted to find
the largest DApps associated with the top-5 on-chain creational patterns (i.e., the
second to sixth rows of Table 2). For each of the top-5 patterns, we reused a similar
method to the usage context viewpoint analysis in Section [f] and then picked the
largest usage context (a.k.a, the connected component) in terms of the number of
proxy contracts. After which, we used Etherscan to manually identify the underlying
system of the largest context. More specifically, we inspected the source/bytecode
of the proxy contracts, logic contracts, and the contracts involved in the sequence
through which the proxy is created. In particular, large-scale systems often utilize
the name of the decentralized system as a pseudonym for the deployer address,
which facilitates our identification of them in certain cases. Following, we discuss
each pattern in the context of its corresponding system.

1. EOA > FA > P. We identified 6,618,012 proxy contracts for this pattern.
The largest usage context we found for this pattern, is OpenseaP_U| with 943,022
proxies (14.2%). Opensea is the most prominent digital marketplace for crypto
collectibles, especially non-fungible tokens (NFT5). Opensea uses a simple fac-
tory contract (WyvernProxyRegistry) to deploy one proxy per user, allowing
them to have control over their assets. Each item that is traded on Opensea
is owned by the proxy smart contract of a user. The corresponding sequence
of contract names is as follows. Concerning the proxy (factory) contracts, the

20 |https://opensea.io

https://opensea.io

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 47

proxy contract name and its logic name are presented as a pair (e.g., [proxy
contract name, logic contract name]).

EOA > FA [WyveumxyRegistrgEl/ >P [OwnableDelegaterzﬂ Authen-
ticated Prox

EOA > PF > P. We identified 379,293 proxy contracts for this pattern. The
largest usage context we found for this pattern, is Krakeﬂ with 202,151 proxies
(53.3%). Kraken is a decentralized exchange that provides a trading platform for
buying, selling, and trading crypto assets. Kraken uses a proxy factory contract
whose logic can be updated at runtime. Using this proxy factory, Kraken deploys
a minimalistic prozy for each user (see EIP-1167 in Section . This minimalistic
proxy merely forwards calls to a logic contract. Interestingly, the logic contract
itself is a proxy contract that conducts several input validation checks before
forwarding the calls to the final logic contract. Therefore, proxies here act as
gates that validate the transaction input data. Our findings also show that
there exits complex systems that use several layers of proxies stacked on top
of each other. The corresponding sequence of contract names is as follows.

FEOA > PF [Non Vem’fieﬂ Not Verifie(@ > P [Not Vem‘ﬁeﬂ Not Vem‘ﬁe@

. EOA > FA > FA > P. We identified 123,349 proxy contracts for this pattern.

The largest usage context we found for this pattern is the GnosisSafe Wallet
DApﬂ which contains 51,746 (42%) proxy contracts. The corresponding
sequence of contract names is as follows.

EOA > FA [Generic Facto > FA [GnosisSafePro:ryFactorﬂ > P [Gno-
sisSaferwﬁ GnosisSaf

The instances of GnosisSafeProxy contracts are deployed by the GnosisSafe-
ProxyFactory, which instantiates one instance per user request. We found that
developers used another FA to deploy the GnosisSafeProxyFactory itself. We
further analyzed why developers used another FA to deploy GnosisSafeProxyFac-
tory itself. We found that the factory used for deploying GnosisSafeProxyFactory
is indeed a generic factory and with minimalistic code. It only receives a byte-
code and then deploys it using the create2 statement. Listing [2] shows the
decompiled bytecode of this factory. Therefore, the chain becomes longer be-
cause developers preferred to use an on-chain generic factory to deploy the

21
22
23
24
25
26
27
28
29
30
31
32
33

https://etherscan.io/address/0xa5409ec958c83c3{309868babaca7c86dcb077c1
https://etherscan.io/address/0xf69f020053685724feda8e617486442e08995607
https://etherscan.io/address/0xf9e266af4bca5890e2781812cc6a6e89495a79f2
https://www kraken.com
https://etherscan.io/address/0xf9e266af4bca5890e2781812cc6a6e89495a79f2
https://etherscan.io/address/0x2febe3d60bb2bbdab135c¢740617241c2eb949635
https://etherscan.io/address/0x439039fbbbebfd1ded4fcacca694ac0dal97a624
https://etherscan.io/address/0x83b76b11257c4ece35370b6152f1946d49479e89
https:/ /safe.global/
https://etherscan.io/address/0x4e59b44847b379578588920ca78fbf26c0b4956¢
https://etherscan.io/address/0xa6b71e26c5¢0845{74c812102ca7114b6a896ab2
https://etherscan.io/address /Oxec55b27ffce0ed 7c1de6568d98ad9a3b6219b6a7
https://etherscan.io/address/0xd9db270c1b5e3bd161e8c8503c55ceabee709552

https://etherscan.io/address/0xa5409ec958c83c3f309868babaca7c86dcb077c1
https://etherscan.io/address/0xf69f020053685724feda8e617486442e08995607
https://etherscan.io/address/0xf9e266af4bca5890e2781812cc6a6e89495a79f2
https://www.kraken.com
https://etherscan.io/address/0xf9e266af4bca5890e2781812cc6a6e89495a79f2
https://etherscan.io/address/0x2febe3d60bb2bbdab135c740617241c2eb949635
https://etherscan.io/address/0x439039fbbbe5fd1de44fcacca694ac0da197a624
https://etherscan.io/address/0x83b76b11257c4ece35370b6152f1946d49479e89
https://etherscan.io/address/0x4e59b44847b379578588920ca78fbf26c0b4956c
https://etherscan.io/address/0xa6b71e26c5e0845f74c812102ca7114b6a896ab2
https://etherscan.io/address/0xec55b27ffce0ed7c1de6568d98ad9a3b6219b6a7
https://etherscan.io/address/0xd9db270c1b5e3bd161e8c8503c55ceabee709552

48 Amir M. Ebrahimi et al.
1| def _fallback() payable: # default function

2 create2 contract with callvalue wei

3 salt: call.func_hash

4 code: call.data[32 len calldata.size - 32]

5 require create2.new_address

6 return addr (create2.new_address)

Listing 2: The decompiled bytecode of the general purpose factory used by
GnosisSafe.

specialized GnosisSafeProxyFactory instead of off-chain scripts. There can be
several reasons for using such a generic on-chain factory, including the deter-
minism offered by the create2 opcode, ensuring consistency across platforms
and Ethereum forks, and simplifying deployment logic for contract reusability.

EOA > FA > FA > FA > FA > P. We identified 35,764 proxy contracts for
this pattern, primarily associated with the Dharma Wallet DApﬂ with 18,397
proxy contracts. The corresponding sequence of contract names is as follows:

EOA > FA [Generic Factorﬂ > FA [ImmutableCreate2Facto > FA
[ImmutableCreate2Facto > FA [DharmaSmartWalletFactoryVE®sj > P
[UpgradeBeaconProxzyV1”l DharmaSmart WalletImplementation V1 In this

example, an EOA deployed a generic factory contract, followed by the deploy-
ment of the ImmutableCreate2Factory using the generic factory. Immutable-
Create2Factory offers secure contract deployment with a salt value and ini-
tialization code, preventing redeployment, collisions, and front-running. An-
other instance of ImmutableCreate2Factory is deployed through the former
ImmutableCreate2Factory, and eventually, the DharmaSmartWalletFactoryV1
factory is deployed via the latter ImmutableCreate2Factory, which deploys
clones of UpgradeBeaconProxyV1 proxy contracts. We further analyzed who
initiated each of the four factory contracts’ creation transactions:

e EOA initiated the Generic Factory (FA) creation transaction.

e EOA2 initiated the first ImmutableCreate2Factory (FA) creation transac-
tion.

e EOA2 also initiated the second instance of the ImmutableCreate2Factory
creation transaction.

e Dharma initiated the DharmaSmartWalletFactoryV1 creation transaction.
Given this analysis, it is evident that three different EOAs initiated the creation
transactions of the intermediary factory contracts. Assuming that each EOA

34
35
36
37
38
39
40

https://www.dharma.io/
https://etherscan.io/address/0x7a0d94f55792c434d74a40883c6ed8545e¢406d12
https://etherscan.io/address /Oxcfa3a7637547094£f06246817a35b8333c315196
https://etherscan.io/address/0x0000000000£fe8b47b3e¢2130213b802212439497
https://etherscan.io/address/0xfc00c80b0000007f73004edb00094cad80626d8d
https://etherscan.io/address/0x0004c95{9ba50aleal 1544565b71fab5dc5658c0
https://etherscan.io/address/0x4d90cal0f218ebd4509ca0f9816cf20£d9903c35

https://etherscan.io/address/0x7a0d94f55792c434d74a40883c6ed8545e406d12
https://etherscan.io/address/0xcfa3a7637547094ff06246817a35b8333c315196
https://etherscan.io/address/0x0000000000ffe8b47b3e2130213b802212439497
https://etherscan.io/address/0xfc00c80b0000007f73004edb00094cad80626d8d
https://etherscan.io/address/0x0004c95f9ba50a1ea11544565b71fab5dc5658c0
https://etherscan.io/address/0x4d90ca10f218ebd4509ca0f9816cf20fd9903c35

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 49

represents an independent developer, this observation mainly highlights the
practice of developers/practitioners reusing factory contracts deployed by others
for their own purposes, which can lead to a higher pattern length.

. EOA > PF > PF > P. We identified 1,968 proxy contracts, primarily

associated with the PlotX DApﬂ with 720 (36.5%) proxy contracts. The
corresponding sequence of contract names is as follows.

EOA > PF [OwnedUpgmdeabz’lityPromﬁ Maste@ > PF [OwnedUpgradeabili-
tyProa:ﬂ MarketRegistryNeuE]/ > P [OwnedUpgmdeabilityPrwﬂ MarkeE]/

In this instance, the EOA deploys the first OwnedUpgradeabilityProxy “PF”
contract, enabling upgradeability for the Master logic contract, which serves as
a central registry and controller for other contracts within the PlotX DApp. The
second OwnedUpgradeabilityProxy “PF” contract enables upgradeability for
the MarketRegistryNew logic contract, primarily dealing with market creation
and reward distribution. The MarketRegistryNew deploys Market instances by
instantiating another OwnedUpgradeability Proxy proxy contract that delegates
to a Market logic contract. Our analysis revealed that all of these intermediary
“PF” contracts were initiated by the PlotX organization, indicating the use of
multiple layers of upgradeability proxy contracts for managing and upgrading
their DApps’ contracts at different levels.

Appendix E Proxy classification process

We followed an approach proposed by [Salehi et al.| (2022) to classify proxy contracts
into either forwarder or upgradeability classes. We studied their approach, extracted
the workflow, and adopted it in our qualitative study protocol in Section[§] Figure [21]
depicts the process used for manually classifying proxy contracts into upgradeability
and forwarder types. The input of the process is a proxy contract and its logic
contracts. Below, we summarize the ten steps involved along with examples. Note
that, due to limited space, the examples are excerpted from real-world contacts.
We use the “[...]” to summarize the source code.

1.

The approach relies on the contract’s decompiled bytecode. Therefore, we
decompile the proxy contract’s bytecode using the Panoramix tool.

We extract the logic contract’s reference variable from the function where the
proxy functionality is implemented. Listing |3| shows an example of a proxy. The
proxy functionality is implemented between 8 to 18. In this example, the logic
contract’s reference variable can be found at like 11, stor3608.field_0.

41
42
43
44
45
46
47

https://plotx.io/
https://etherscan.io/address/0x03c41cbaff6d541ef7d4c51c8b2e32a5d4427275
https://etherscan.io/address /0x4eb82{80858¢6974307458b057b875bf3f23c4a0
https://etherscan.io/address/0xe210330d6768030e816d223836335079c7a0c851
https://etherscan.io/address/0x495d3a0530367ed4331833eac74b32d48484010
https://etherscan.io/address/0x4c7861e96dc5a6ebach31833ea5722e800a7bd24
https://etherscan.io/address/0x25cf9d 73b711bff4d3445a0f7f2e63ade5133e67

https://etherscan.io/address/0x03c41c5aff6d541ef7d4c51c8b2e32a5d4427275
https://etherscan.io/address/0x4eb82f80858e6974307458b057b875bf3f23c4a0
https://etherscan.io/address/0xe210330d6768030e816d223836335079c7a0c851
https://etherscan.io/address/0x495d3a0530367ed4331833eae74b32d4848401f0
https://etherscan.io/address/0x4c7861e96dc5a6e5acb31833ea5722e800a7bd24
https://etherscan.io/address/0x25cf9d73b711bff4d3445a0f7f2e63ade5133e67

50 Amir M. Ebrahimi et al.

Proxy contract

bytecode
Decompile the proxy Extract the logic Is the reference Forwarder
bytecode contract reference hard coded?

Q Google

Big Query

8
Fetch the callee address
and bytecode

[Yes] /Is the reference
obtained from an
external callee

contract?

Callee contract
bytecode

Decompile the callee
bytecode

Upgradeable

Logic contract
bytecode

Can the reference
be substituted in the
callee?

Decompile the logic

Upgradeable bytecode

Can the reference
be substituted
within the
logic?

Upgradeable

Fig. 21: The process of classifying a proxy contract into upgradeability and
forwarder classes.

3. After identifying the reference of logic contract, we check whether it is hard-
coded. In Listing[3] the reference is not hard-coded because its definition can be
found in the storage function (line 3). However, Listing |7_1| provides an example
where the logic contract reference is hard-coded in line 2. In the former case,
we proceed to step 4, while in the latter case, we label the proxy as a forwarder.

4. We check where the logic reference variable is obtained through performing a
call to an external callee contract. If so, we proceed to step 8. Otherwise, We
record the storage slot of the reference variable and then proceed to step 5. In
Listing [3] the reference and its reserved storage slot (0x361[. . .]1bc), is defined

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 51

in the proxy contract storage in line 3. On the other hand, Listing [5| shows an
example where the proxy makes a call to a callee to inquire about the logic
reference in line 7. The proxy then reads the logic address from the returned
value of the external call and then delegates the call in line 11.

5. If the reference variable is found in the proxy contract, we then check whether
there is a function that allows developers to substitute the old reference with
an updated one. To do this, we check all variable assignments and filter those
whose left operand includes the reference variable. Next, we evaluate each assign-
ment individually. In particular, we examine the function where the assignment
occurs to see if it receives an argument that is used as the right operand in the
assignment. In the positive case, it means that the function allows updating the
logic reference; thus, we label the proxy as an upgradeability proxy. Otherwise,
we proceed to step 6. Listing [3|is an example where there are two functions
that enable substituting the logic reference. The first one is updateTo function
(line 25 to line 32) and the logic reference is updated in line 32 by a function’s
argument. The second function (updateToAndCall) is defined between lines 35
to 42 where the logic reference is updated in line 41.

6. It is possible that the function that enables substituting the logic reference gets
implemented in the logic contract rather than the proxy. In this scenario, the
proxy contract delegates a call to the update function implemented within the
logic contract. Since the execution happens in the context of the proxy with
delegatecall (Section , when the logic contract updates the logic reference,
it indeed substitutes the logic reference stored in the proxy contract storage,
and the next delegatecall will use the new logic contract address. Thus, if we
cannot find it within the proxy, we then search for it in the logic contract. We
decompile the logic contract’s bytecode.

7. Having known the storage slot of the reference variable (step 3), we then check
if the logic contract has a variable in its storage with a similar storage slot. If
so, we extract the variable name and repeat the fifth step to assess if there
is a function within the logic contract that updates the reference variable. In
the positive case, we label the proxy as an upgradeability proxy; otherwise, we
categorize it as a forwarder. Listing [f] shows an example of a proxy and its logic
contract where the latter implements the update function.

8. If the logic reference comes from an external callee contract, then the update
function can be implemented in the callee. To check this, we first need to find
the callee’s address. Specifically, we use the BigQuery dataset to analyze the
proxy’s traces and fetch the trace related to the external call, i.e., the last trace
that occurs just before the delegatecall trace. We then extract the callee from
the fetched trace. Additionally, we extract the first four bytes from the trace’s
calldata, i.e., the function selector of a function that returns the logic reference
to the proxy. We refer to this function as the “getter” function. We also extract
the callee’s bytecode in this phase.

9. We then decompile the callee’s bytecode.

52 Amir M. Ebrahimi et al.

10. Having known the getter function selector, we then look for a function with a sim-
ilar selector within the callee contract. If we find a match, we check the function’s
return statement and record the returned variable (i.e., the reference variable).
Once we detect the reference variable, we repeat the fifth to figure out if there
is a function within the callee contract that allows substituting the reference
variable. If there is such a function, we label it as an upgradeability proxy; other-
wise, we label it as a forwarder proxy. Listing|5| shows an example of a proxy and
an external callee contract. The proxy calls the implementation() function
from the external callee in line 7. The implementation() getter function is
implemented between lines 23 and 24 in the callee contract, where it returns the
implementationAddress reference variable in line 24. Having applied the fifth
step, we can observe that the callee contract implements an upgradeTo function
that allows updating the implementationAddress with a new implementation
address in line 32. Therefore, we label the proxy as an upgradeability proxy.

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 53

© 0 N DU W N

e
=]

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31

32
33
34

35
36

37
38
39
40
41

42
43
44
45
46
47
48
49
50

def storage:
stor3608 is uint128 at storage 0x36[...]lbc offset 160
stor3608 is addr at storage 0x36[...]bc
stor3608 is uint256 at storage 0x36[...]bbc
Looold

the function that implement the proxy functionality
def _fallback() payable: # default function
if caller == addr(storB531.field_0):
Coaold
delegate
uint256 (stor3608.field_0) with: # the reference variable
funct call.datal[0 len 4]
gas gas_remaining wei
args call.data[4 len calldata.size - 4]

if not delegate.return_code:
revert with ext_call.return_data[0 len return_data.sizel
return ext_call.return_datal[0 len return_data.size]

return the logic contract address
def implementation(): # not payable
Toood

substitute
the logic reference with a new reference logic contract
def upgradeTo(address _implementation): # not payable

require calldata.size - 4 >= 32
if addr(storB531.field_0) != caller:
Foool
if ext_code.size(_implementation) <= 0:
Foool
addr (stor3608.field_0
) = _implementation # substitute the logic reference
Loood

substitute
the logic reference with a new reference logic contract
and then make a call.
def upgradeToAndCall
(address _implementation, bytes _data) payable:
require calldata.size - 4 >= 64
require _data <= 4294967296
require _data + 36 <= calldata.size

Lo ood
addr (stor3608.field_0

) = _implementation # substitute the logic reference
Toood

return the admin address
def admin(): # not payable
[...]

change proxy admin to a new address
def changeAdmin (address _admin): # not payable
Loood

Listing 3: An example of upgradeability proxy.

54 Amir M. Ebrahimi et al.

def _fallback() payable: # default function
delegate 0x2f5e324ec0e2fd9925165c66e0daade39837adb5 with:
funct call.datal[return_data.size len 4]
gas gas_remaining wei
args
call.datal[return_data.size + 4 len calldata.size - 4]
if not delegate.return_code:
revert with ext_call
.return_data[return_data.size len return_data.size]
8 return ext_call
.return_data[return_data.size len return_data.sizel]

T W N

N O

Listing 4: An example of a forwarder proxy where the logic contract reference is
hard coded at line 3.

A Large-Scale Exploratory Study on the Proxy Pattern in Ethereum 55

-

======================== Proxy contract ==s=====================

2| def storage:

3 storA3F0 is addr at storage 0Oxa3[...]50

4

5| def _fallback() payable: # default function

6 require ext_code.size(storA3F0)

7 static call storA3FO.implementation() with: # external call
8 gas gas_remaining wei

9 Loood

10 # read the logic reference from the returned value

11 delegate ext_call.return_data[0] with:

12 funct call.data[0 len 4]

13 gas gas_remaining wei

14 args call.data[4 len calldata.size - 4]

15 Lo o odl

16

17| =================== External callee contract ==================
18| def storage:

19 owner is addr at storage 0

20 implementationAddress is addr at storage 1

21

22| # the reference variable getter function

23| def implementation () payable:

24 return implementationAddress # reference variable
25
26| # substitute

the logic reference with a new reference logic contract
27| def upgradeTo (address _implementation) payable:

28 require calldata.size - 4 >= 32

29 if owner != caller:

30 revert with O, ’0Ownable: caller is not the owner’
31 [...]

32 implementationAddress = _implementation

33 [...]

34

35| # return the proxy admin
36| def owner () payable:

37 Loood

38
39| # renounce the ownership

40| def renounceOwnership() payable:
41 Lo odl

42
43| # transfer the ownership to another address

44| def transferOwnership(address _newOwner) payable:

45 [...]

Listing 5: An example of a proxy where the logic contract reference is returned
by an external callee.

56 Amir M. Ebrahimi et al.
1| ======================== Proxy contract =======================
2| def storage:
3 # The storage slot of the reference variable is 0x36[...]bc
4 stor3608 is addr at storage 0x36[...]bc
5
6| def _fallback () payable: # default function
7 delegate stor3608 with:
8 funct call.data[0 len 4]
9 gas gas_remaining wei
10 args call.data[4 len calldata.size - 4]
11 Loood
12
13| ======================== Logic contract =======================
14| def storage:
15 Lo o odl
16 # exactly similar storage slot.
17 stor3608 is addr at storage 0x36[...]bc
18 Loood
19
20| # Update the logic contract reference to a new reference
21| # logic contract. Having called by the proxy, this changes
22| # the proxy’s storage, leading to the substitution of the
23| # logic reference variable in the proxy storage.
24| def upgradeTo (address _implementation): # not payable
25 require calldata.size - 4 >= 32
26 Lo odl
27 addr (stor3608

) = _implementation # substitute the logic reference
28 if not stor4910:
29 [...]
30 addr (stor3608

) = _implementation # substitute the logic reference

31 log Upgraded(address nextVersion=_implementation)

Listing 6: An example of a proxy and it logic contract. The logic implements the
update function rather than the proxy.

	Introduction
	Background
	Data Collection
	Motivation study: Is the proxy pattern a relevant practice in the domain of smart contracts?
	Proxy Detection Approach & Evaluation
	Detection approach
	Evaluation

	RQ1: How prevalent is the proxy mechanism in the Ethereum ecosystem?
	RQ2: What are the different creational patterns for deploying proxy contracts?
	RQ3: What are the different types and properties of proxy contracts?
	Discussion
	Advantages of using the proxy pattern in DApps
	Drawbacks of proxy contracts in DApps
	Benefits and drawbacks of on-chain deployment style
	Benefits and drawbacks of off-chain deployment style
	Implications to practice

	Threats to Validity
	Related Work
	Conclusion
	Practical applications of the proxy pattern in DApps
	Comparing on-Chain vs. off-Chain Deployment on gas costs and complexity
	Reducing deployment gas costs: A case study on ERC-1157 minimal proxy contracts
	Examples of largest DApps for the top-5 on-chain creational patterns
	Proxy classification process

