
https://doi.org/10.1007/s10664-022-10267-7

Vulnerability management in Linux distributions

An empirical study on Debian and Fedora

Jiahuei Lin1 ·Haoxiang Zhang1 ·Bram Adams2 ·Ahmed E. Hassan3

Accepted: 25 November 2022 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Vulnerabilities in software systems not only lead to loss of revenue, but also to loss of repu-
tation and trust. To avoid this, software providers strive to remedy vulnerabilities rapidly for
their customers. However, in open-source development, the providers do not always control
the distribution of their software themselves, but instead typically rely on Linux distribu-
tions to integrate and distribute upstream projects to millions of end users, which increases
the difficulty of vulnerability management. In addition, an upstream project is usually pack-
aged into several Linux distributions so that a vulnerability can propagate across multiple
distributions via the upstream project. In this work, we empirically investigate a large num-
ber of vulnerabilities registered with the Common Vulnerabilities and Exposures (CVE)
program in two popular Linux distributions, i.e., Debian (21,752 CVE-IDs) and Fedora
(17,434 CVE-IDs), to study the practices of vulnerability management in such ecosystems.
We investigate the lifecycle of fixing vulnerabilities, analyze how fast it takes for a vul-
nerability to go through each phase of its lifecycle, characterize the commonly occurring
vulnerabilities that affect both distributions, and identify the practices that developers use to
fix vulnerabilities. Our results suggest that the vulnerability testing period (i.e., the period
from when the vulnerability fix is committed for testing to when the vulnerability fix is
released) accounts for the largest number of days (median of 15 days) in Fedora. 74% (i.e.,
16,070) and 92% (i.e., 16,070) of the vulnerabilities in Debian and Fedora, respectively,
occur in both Linux distributions, which we refer to as common security vulnerabilities
(CSVs). This result is impacted by the package selection and customization of the distribu-
tions. Finally, on a representative sample of 345 fixed CSVs, we find that upstream projects
were responsible for fixing 303 (85%) and 267 (76%) out of the 345 CSVs in Debian and
Fedora, respectively, with distribution maintainers integrating those fixes. Our work aims
to gain a deeper understanding of the current practices in the vulnerability management of
Linux distributions, and propose suggestions to distribution maintainers for better mitigation
of the risks of vulnerabilities.

Communicated by: Jacques Klein

� Haoxiang Zhang
haoxiang.zhang@acm.org

Extended author information available on the last page of the article.

Published online: 16 February 2023

Empirical Software Engineering (2023) 28:47

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10267-7&domain=pdf
http://orcid.org/0000-0002-3921-1724
mailto: haoxiang.zhang@acm.org

Keywords Open-source software ecosystems · Vulnerability management ·
Developer coordination · Linux distributions

1 Introduction

Attackers seek flaws or weaknesses in software systems as a weapon, also known as security
vulnerabilities, and exploit them to attack or steal information from the victim systems.
Given the increase of malicious attacks on software systems, developers’ main strategy
to reduce the exploit of vulnerable code is to try to update their software as quickly as
possible with patches (fixes) for these vulnerabilities. In particular, each vulnerability has
its lifecycle that consists of several phases defined by the events of its discovery, disclosure,
exploitation, and patching (Shahzad et al. 2012), as shown in Fig. 1. The highest risk in
a vulnerability lifecycle happens in the phase after its disclosure (Shahzad et al. 2012) as
miscreants are actively trying to make zero-day attacks (Anderson 2002). Sometimes the
exploitation occurs even prior to the disclosure, when a vulnerability is discovered by a
Black-Hat hacker who does not report the vulnerability to the affected vendors. The lifecycle
of the vulnerability ends when all victim systems have adopted the fix patch (Shahzad et al.
2012).

Ironically, in today’s open-source software (OSS) ecosystems, the patch adoption phase
is not as trivial as it sounds, since a software project can be deployed and used directly or be
integrated into a larger system, creating a system of systems, which forms a software sup-
ply chain (Ellison et al. 2010; Al Sabbagh and Kowalski 2015). In other words, a software
product is assembled by integrating smaller software components that are developed either
by developers inside or outside of the product team. Therefore, the vulnerability could prop-
agate through OSS projects across OSS ecosystems (Ohm et al. 2020), and so must any
patch for it. To this end, once a vulnerability is identified, miscreants can exploit it to attack
several victim software systems at the same time.

In open-source software ecosystems, due to the emergence of software supply chains and
bug bounty programs, fixing a vulnerability may require the involvement of multiple par-
ties associated with the vulnerability, rather than just the entity who detected a vulnerability
and the impacted provider. The involvement of multiple parties complicates the process of
fixing vulnerabilities and increases coordination and disclosure challenges. First.org is one
of the leading organizations in incident response and includes a variety of computer secu-
rity incident teams from governments, corporations, and research organizations. To deal
with the challenges of patching vulnerabilities in an ecosystem, first.org suggests prac-
tices for multi-party vulnerability coordination and disclosure (Guidelines and practices for
multi-party vulnerability coordination and disclosure online). These practices indicate that
a vulnerability should be reported to the upstream project responsible for developing the

discovery

exploit

disclosure patching patch installed

exploit exploit

Fig. 1 An illustration of events in a vulnerability lifecycle started by the initial discovery of a vulnerability.
Note that exploits can happen at any time during the lifecycle

47 Page 2 of 34 Empir Software Eng (2023) 28:47

vulnerability fix, which should then propagate the fix to downstream ecosystems. The rea-
son for this is that developers in the upstream projects are familiar with their own projects
and are experts of the vulnerable source code (Ma et al. 2017), hence they should be able to
fix the vulnerability in a timely manner to reduce the exposure time of the vulnerability.

While a vulnerability fix is more likely to happen upstream, downstream ecosystems or
their users could also come up with fixes themselves. For example, vulnerability CVE-2014-
3207 was fixed by an upstream developer who sent a fix to the oss-security community by
email.1 In order to streamline such early detection and distribution of available fixes and
workarounds downstream, several distributions in the Linux ecosystem, including Debian
and Fedora, share a mailing list for handling security issues (e.g., reports, discussions,
notifications, etc.) (Operating system distribution security contact lists online).

Prior work investigated the lifecycle of a vulnerability in software projects (Shahzad
et al. 2012; Frei et al. 2006; Frei et al. 2008). For example, (Shahzad et al. 2012) leveraged
public documentation from vulnerability databases to analyze the evolution of disclosure,
exploitation, and patching behaviors. Prior studies also surveyed the patch deployment pro-
cess, such as the timelines of vulnerability fix patches (Li and Paxson 2017), the adoption
speed of patches from users (Nappa et al. 2015), and the reliability of vulnerability fix
patches (Huang et al. 2016). However, prior work did not investigate how developers work
together to fix vulnerabilities across OSS ecosystems with multi-party coordination.

In this paper, we identify the vulnerability fixing process and divide it into three phases
from the maintainer perspective (i.e., awareness, vulnerability fix integration, and vulnera-
bility fix testing) and two phases from the user perspective (i.e., user unawareness and users
waiting for a fix) for two popular Linux distributions (i.e., Debian and Fedora). In particular,
we study 21,752 and 17,434 security vulnerabilities, i.e., unique CVE-IDs, in Debian and
Fedora, respectively, to compare the duration of each phase in the process from both per-
spectives across the studied distributions. We also investigate the strategies that maintainers
use to fix the common vulnerabilities across the studied distributions. In the following, we
list our research questions along with the key results:

RQ1: How fast are security vulnerabilities fixed within the studied distributions?
This first RQ analyzes to what extent distribution maintainers react to vulnerabilities
and how fast users get the information (e.g., fixes, advisories) related to vulnerabili-
ties in the vulnerability fixing process in Linux distributions. In general, maintainers
in Debian and Fedora take a median of 20 and 27 days to fix vulnerabilities, respec-
tively, from when the security team creates a vulnerability report to when the fix
is released. This time includes the time taken by Debian and Fedora maintainers to
integrate vulnerability fixes, which happens within a median of 1 week. From the
user perspective, users are unaware of any existing vulnerability for a median of 17
days, then wait for a median of 0.2 days to get vulnerability fixes.

RQ2: What are the characteristics of common security vulnerabilities (CSVs) across
the studied distributions?
Since a vulnerability can affect several distributions at the same time, the second RQ
aims to characterize security vulnerabilities that have been reported in both studied
distributions (CSVs). CSVs make up 74% of Debian vulnerability reports, and 92%
of Fedora’s. We find that the CSVs are easy to exploit (median exploitability score
of 8.6), though their severity level is medium (median base score of 5.0), based

1https://seclists.org/oss-sec/2014/q2/225

Page 3 of 34 47Empir Software Eng (2023) 28:47

https://seclists.org/oss-sec/2014/q2/225

on the Common Vulnerability Scoring System CVSS 2.0. Testing fixes for CSVs
requires a median of 4.3 days longer than integrating fixes for CSVs.

RQ3: How do developers fix common security vulnerabilities (CSVs) across the studied
distributions?
Given the prevalence of CSVs, this RQ investigates the collaborative strategies of
fixing CSVs across distributions by a qualitative study on a representative random
sample of 345 fixed CSVs (confidence level = 95%, confidence interval = 5%) and
several quantitative analyses. From the qualitative study, we found that distribution
maintainers have five main types of sources from which they become aware of vul-
nerabilities, i.e., upstream, Debian, Fedora, upstream projects, or others, and seven
main types of strategies for fixing the identified vulnerabilities, such as in-house
vs. external fix development or the usage of embargoes. Furthermore, upstream
projects were found to develop vulnerability fixes for the majority of CSVs in
Debian (58%±5%) and Fedora (59%±5%), and to distribute the fixes to down-
stream distributions. Ironically, from the quantitative analyses, the availability of a
peer fix before maintainers start to analyze the vulnerability does not correlate with
faster integration of the fix.

Maintainers in the two studied distributions dedicate substantial effort to securing their
distributions, such as integrating vulnerability fixes in a median of one week after vulnera-
bilities are reported. Our results suggest that the studied distributions collaborate with each
other and with upstream after the discovery of vulnerabilities, while they integrate and test
vulnerability fixes in parallel.

Paper organization Section 2 provides the background of vulnerability management pro-
cess in Linux. Section 3 describes prior related work to our study. Section 4 describes how
we design our study and obtain our studied dataset. Section 5 answers our research ques-
tions. Section 6 discusses our findings and their implications. Section 7 discusses the threats
to the validity of our study. Finally, Section 8 concludes the paper.

2 Background

In this section, we briefly introduce the Common Vulnerabilities and Exposures (CVE)
system and Common Vulnerability Scoring System (CVSS) as well as the vulnerability
management process in Linux distributions.

2.1 Common Vulnerabilities and Exposures (CVE) and Common Vulnerability
Scoring System (CVSS)

The Common Vulnerabilities and Exposures (CVE) (CVE online) platform is one of the
most popular platforms for vulnerability registration. The CVE system stores a large number
of common software and hardware vulnerabilities and reports. More than 100 major soft-
ware providers, security companies and research organizations form the CVE Numbering
Authorities (CNAs), which are responsible for the vulnerability disclosure process. When a
vulnerability is discovered, a unique identifier, i.e., CVE-ID, is issued by one of the CNAs

47 Page 4 of 34 Empir Software Eng (2023) 28:47

for the vulnerability. Information about the vulnerability, such as the description, symptoms
and references, are then posted on the CVE website as a CVE report. In general, a CVE-
ID is usually assigned several days up to months before its mitigation (e.g., fix, security
advisories) is made public.

The Common Vulnerability Scoring System (CVSS) (US national institute of standards
and technology online) is an open standard for assigning scores to a vulnerability to indi-
cate its threat level. CVSS scores are widely used by many prior studies (Joh and Malaiya
2011; Fruhwirth and Mannisto 2009; Shahzad et al. 2012; Zhang et al. 2021) and large
organizations and companies (e.g., Computer Emergency Response Team (CERT), Cisco)
to communicate the severity of the vulnerabilities found in their products. A CVSS score
consists of scores in three groups: base, temporal and environmental, each group consisting
of a set of metrics. The base score represents the innate characteristics (e.g., access com-
plexity, exploitability) of a vulnerability to indicate its severity. For instance, a base score in
the range of 4.0 to 6.9 indicates medium severity. The base score of a vulnerability is com-
puted by six metrics grouped into two aspects: exploitability, i.e., how the vulnerability is
exploited, and impact, i.e., the extent of victim system losses if the vulnerability is exploited.

The temporal and environmental scores capture dynamics and subjective information.
The temporal score represents the characteristics of a vulnerability that change over time,
such as the availability of exploit code and techniques, disclosed remediation plans of a
vulnerability, and confirmation of a vulnerability. The environmental score represents the
characteristics of a vulnerability that are relevant to a particular environment, such as dam-
age or potential losses to productivity, the proportion of vulnerable systems, and the extent
of impact. Note that we use CVSS 2.0 as CVSS 3.0 (released in 2015) and 3.1 (released in
2019) are not available for the majority of our data. Our dataset consists of vulnerabilities
whose CVE-ID was issued between Jan. 2007 and Dec. 2019 (see Section 4).

2.2 Vulnerability Management Process in Linux Distributions

Vulnerability management plays an important role in Linux distributions because they have
a large user base, including individuals who use them on desktops and companies who
use them on servers. In a Linux distribution, security vulnerabilities are addressed by the
collaboration between the security team, maintainers who integrate and maintain packages
from third-party providers, i.e., upstream projects, and upstream developers. The role of the
security team is to track vulnerabilities that affect the packages in their distribution.

Figure 2 represents the typical process of vulnerability tracing in the studied Linux distri-
butions. We derive the process from the official documentation in Debian (Debian security
team online) and Fedora (Fedora - security basics online) by an open-coding approach.
The 1st author derived the initial version of the process, discussed this version with the
2nd and 3rd authors, then iteratively resolved any disagreements. We identified the process
from two perspectives, i.e.,maintainers and users, and separated the process into three and
two phases, respectively. Distribution maintainers are developers who integrate upstream
projects into the distribution following the distribution’s policy, and maintain the integrated
upstream projects (e.g., synchronize fixes from upstream, forward bugs to upstream) for
end users. Users are stakeholders interested in the management of security vulnerabilities
by a distribution. They might be technical experts or system administrators in companies,
security specialists, developers in peer distributions, end users of the distributions, etc.

From the maintainer perspective, the three phases consist of awareness of vulnerabilities,
integration of vulnerability fixes and testing of vulnerability fixes. The awareness phase

Page 5 of 34 47Empir Software Eng (2023) 28:47

Extract vulns
from several
data sources
(e.g., CVE,

NVD)

No
update status

Affects the
distribution?

integrate
the fixes

Maintainer

assign toBug
report

Vuln
report

update status by
adding comments

Test
Repo

Stable
Repo

be aware of
security vulns

User

Awareness phase Integration phase Test phase

Collect the relevant
information and publish the

vuln (e.g., version, flaw)
Security
advisory

User-unawareness phase User-waiting phase

get fixes

Security team

Fixing time

Yes

Fig. 2 Overview of vulnerability management in a given distribution. The black solid and grey dashed arrow
lines represent the periods of the five phases of tracking a vulnerability from the maintainer and user per-
spectives, respectively. To fix a vulnerability in the distribution, the required time (i.e., the fixing time) is the
sum of the integration and test periods (the black dotted arrow line). Note that the disclosure time of security
advisories for end users (i.e., when the user unawareness phase ends) could happen at any time during the
maintainer awareness/integration/test periods

starts when a distribution is made aware of a vulnerability through a report in the vulner-
ability repository, after which the security team creates corresponding bug reports for the
vulnerability, one per affected package. Note that a vulnerability either can be found by the
security team itself or the security team gets a notification of the vulnerability from some-
where else. Since the awareness phase represents the time taken by the security team to
evaluate the extent to which a vulnerability affects the team’s distribution, a smaller aware-
ness period implies that the information regarding the vulnerability is sufficient for the
security team to more quickly investigate the packages affected by the vulnerability, or the
security team gets access more quickly to an existing investigation report, streamlining the
start of vulnerability analysis.

During the awareness phase, when a vulnerability is discovered without a fix, the secu-
rity team can choose to embargo the vulnerability to reduce its impact on the distribution.
Embargo of a vulnerability means that the vulnerability will not be disclosed for a period
of time to allow the affected software providers to develop a fix. When a vulnerability is
under embargo, a small group of people (e.g., the reporter, the developers of the affected
software) coordinate to develop and test a fix together. In our studied distributions, Debian
avoids embargoes “since coordination in private tends to cause a lot of friction and makes
it difficult to involve the right subject matter experts,” (Debian vulnerability disclosure pol-
icy online) while Fedora applies the embargo policy of Red Hat that keeps vulnerabilities
private for a certain period (Fedora - security bugs online).

The integration phase is calculated from the creation time of a bug report for the
vulnerability to when a vulnerability fix has been integrated and pushed into the test repos-
itory. Since the vulnerability may affect several distributions or other software systems,
the vulnerability fix can be developed by a wide range of involved people, e.g., upstream
developers, and maintainers, security experts. The integration period also allows main-
tainers to integrate a vulnerability fix that is compatible with the other packages in their
distribution (Adams et al. 2016; Foundjem and Adams 2021).

Lastly, the vulnerability fix needs to be tested before it is released into the stable
repository, which we refer to as the vulnerability test phase.

The two phases from the user perspective are unawareness of vulnerabilities and waiting
for vulnerability fixes. The security team in a distribution publishes a security advisory
that describes the related information (e.g., the names of the affected packages, how to fix

47 Page 6 of 34 Empir Software Eng (2023) 28:47

them) for a particular vulnerability to users. In our studied distributions, security advisories
are usually posted in a particular mailing list where users get proactive notifications by
subscription (Debian security faq onlinea; Fedora - security basics online). We define the
period before a security advisory is published as the user-unawareness period and the period
after that as the user-waiting period. The user-waiting period represents the time for users
to get a vulnerability fix, once they know that the vulnerability exists.

3 RelatedWork

We discuss prior empirical studies on (1) vulnerability life cycles and (2) vulnerability fix
development.

3.1 Vulnerability Lifecycles

The vulnerability lifecycle describes the events that characterize the period of a vulnerability
from its discovery until all victim systems have adopted a fix patch (Joh and Malaiya 2011).
Most of the existing research has focused on one or several particular events of the vulnera-
bility lifecycles. For example, zero-day attacks, the damage caused by exploiting unpatched
vulnerabilities, are believed to represent a large amount of targeted attacks (Anderson 2002;
Bilge and Dumitraş 2012; Wang et al. 2019). Algarni and Malaiya (2014) identified several
vulnerability markets where discoverers offer the undisclosed vulnerabilities to buyers for a
monetary reward. Joh and Malaiya (2011) formalize the risk measurement in each stage of
a vulnerability lifecycle by a stochastic model based on CVSS scores to help project man-
agers make decisions about whether to apply the patches. Different from prior studies that
focus on particular events in the vulnerability lifecycle of individual projects, we focus our
study on the whole fixing process from the user and maintainer perspectives in the Linux
ecosystem.

Prior studies also investigated the evolution of the events (e.g., how long after its discov-
ery is a vulnerability disclosed) in a vulnerability lifecycle. Frei et al. (2006) aggregated data
from several public data sources (e.g., the National Vulnerability Database (NVD) (National
vulnerability database online)) to analyze the distributions of the discovery, exploit, and
patch-availability date with respect to the disclosure date of a vulnerability. For exam-
ple, they found that the trend of zero-day attacks has increased. Shahzad et al. (2012)
extended Frei et al.’s (2006) work and investigated the evolution of events (e.g., disclosure
trend, exploitation behaviors) in the vulnerability life cycle from three public data sources
(i.e., NVD (National vulnerability database online), open-source vulnerability database
(OSVDB) and the data source from (Frei et al. 2006)).

However, the public data sources have been reported to have an undetectable bias due to
the various disclosure methods from different software providers (Schryen 2009; Christey
and Martin 2013). For example, the two studied distributions disclose vulnerabilities by
publishing security advisories (Debian vulnerability disclosure policy online; Fedora - secu-
rity bugs online). To avoid this problem, our work extracts multiple types of data (i.e.,
vulnerability reports, bug reports and security advisories) from a particular software ecosys-
tem and aggregates these data by CVE identifiers. In addition, we derive the lifecycle of a
vulnerability in a particular software ecosystem instead of individual software projects.

Page 7 of 34 47Empir Software Eng (2023) 28:47

3.2 Vulnerability Fix Development

Adopting security patches is a common practice to prevent the present vulnerabilities from
being exploited. This practice involves a number of processes, such as impact analysis of the
patch, integration of the patch, and resolving any potential side-effects caused by the patch.
Some researchers analyzed the timelines of security patches by software providers (Frei
et al. 2006; Shahzad et al. 2012). For example, Shahzad et al. (2012) observed that the trend
of patch availability before or on the disclosure of a vulnerability had decreased before 2005
but improved after 2008 (until 2011). The authors also showed that closed-source providers
release at least 70% of vulnerabilities on or before disclosure dates.

Another major line of research has focused on the dynamics of patch develop-
ment (Zaman et al. 2011; Huang et al. 2016; Ozment and Schechter 2006). (Ozment and
Schechter 2006) observed that the density of vulnerabilities is in the range of 0 to 0.033
vulnerabilities per thousand lines of code in the OpenBSD system. (Huang et al. 2016) pro-
posed a model to generate security workarounds rapidly for vulnerabilities in five projects.
The model generated workarounds for remediating 75% of vulnerabilities but possibly at the
expense of loss of functionality. Different from the aforementioned studies that only focus
on the stage of patch development in a few projects, our study investigates the entire fixing
process of a vulnerability in software ecosystems (i.e., Linux distributions). For example,
our findings suggest that Debian and Fedora integrate vulnerability fixes of the majority of
CSVs that are from vulnerable upstream projects.

Li and Paxson (2017) conducted a large-scale study of security patches on 4,080 com-
mits across 682 open-source projects for 3,094 vulnerabilities. They identified that the
changes for security patches in source code are more likely to be made by the project’s
own contributors, compared to ordinary (non-security) bug fixes made by external con-
tributors. They also showed that vulnerabilities reside in source code for years prior to
remediation. Li and Paxson (2017) studied vulnerability fixes in a large number of OSS
projects that may/may not have relations with each other, while in our work we study OSS
projects that form a self-sustainable software ecosystem. In addition, since collaboration is
the nature of OSS development for successful software (Kakimoto et al. 2006; Duc et al.
2011), our study investigates the collaboration of patch development across maintainers in
Linux distributions.

4 Study Design

This section presents the approach for our empirical study to understand how security vul-
nerabilities are managed in Linux distributions. RQ1 studies the duration of the five phases
for fixing vulnerabilities according to the two perspectives and compares them. RQ2 inves-
tigates the characteristics of vulnerabilities that affect the two studied distributions. Finally,
RQ3 studies the strategies that maintainers use to fix vulnerabilities that are shared by both
analyzed distributions.

4.1 Subject System Selection

We select Debian and Fedora for several reasons. First, Linux distributions form fam-
ilies based on their package file formats. Deb-based and Rpm-based families are two

47 Page 8 of 34 Empir Software Eng (2023) 28:47

notable Linux distribution families, with Debian and Fedora each belonging to a differ-
ent family.2 Second, within a family, ancestor relations exist based on the provenance of a
distribution’s packages. For example, Debian is the root of the Deb-based family of distri-
butions, with 44 “child” distributions extending and customizing Debian’s packages, each
of which can have its own child distributions. Fedora is the root distribution of the Rpm-
based distribution family, with 17 children. Despite being root, both Debian and Fedora are
popular Linux distributions by themselves, according to the well-known distrowatch.com
portal and considered amongst the most popular end-user Linux distributions,3 and best
multi-purpose Linux distributions.4 Prior work leveraged Debian’s and Fedora’s data on
studying security vulnerabilities, such as training vulnerability detection models (Russell
et al. 2018; Harer et al. 2018), building vulnerability discovery tools (Alhazmi and Malaiya
2008), security vulnerability assessment (Ristov et al. 2013) and studying the impact of
vulnerabilities (Yilek et al. 2009).

Furthermore, Fedora is a not-for-profit version of Linux that is primarily sponsored by
Red Hat.5 For example, Fedora follows the “upstream first” policy6 from Red Hat to do
software development (e.g., forwarding bugs to upstream, fixing bugs) side-by-side with
upstream developers in the upstream projects. On the other hand, Debian, while still trying
to get bug fixes merged upstream, is a purely open-design Linux distribution and has its own
community of contributors (Reasons to use debian online). As such, there are differences
between the strategies of upstream package management in Debian and Fedora in terms
of where bug fixes are developed. For these reasons, we are interested in comparing the
strategies of vulnerability management between the two distributions.

4.2 Data Collection

Figure 3 presents an overview of our study approach. To extract the phases stated in
Section 2.2, we leverage vulnerability reports, bug reports and security advisories to mea-
sure the duration of each lifecycle phase for each vulnerability. We archived our scripts and
uploaded them to GitHub.7 For a given vulnerability, we use its unique CVE-ID to identify
its corresponding reports and advisories. A vulnerability report contains the CVE-ID, the
creation date, description, affected packages and package versions, links to its bug reports,
and references to other information (e.g., the fix patch), for example, the vulnerability report
of CVE-2018-7225.8 A security advisory is issued for one or several CVE-IDs and consists
of the affected packages, remediation plans (e.g., security updates), and reference reports
(e.g., National Vulnerabilities Database (NVD) reports).

Table 1 presents the software systems and mailing lists for which we obtain the three
types of data sources in each studied distribution. We extract data from Bugzilla (Fedora)
and GitLab (Debian) using their relevant APIs, access security advisories by the mailbox
package9 in Python, and customize crawlers for Debian’s Debbugs repository. We only

2https://en.wikipedia.org/wiki/List of Linux distributions
3https://www.zdnet.com/article/the-five-most-popular-end-user-linux-distributions/
4https://itsfoss.com/best-linux-distributions/
5https://getfedora.org/sponsors/
6https://www.redhat.com/en/blog/what-open-source-upstream
7https://github.com/SAILResearch/suppmaterial-22-justina-vulnerability management in linux
distributions
8https://security-tracker.debian.org/tracker/CVE-2018-7225
9https://docs.python.org/3/library/mailbox.html

Page 9 of 34 47Empir Software Eng (2023) 28:47

https://en.wikipedia.org/wiki/List_of_Linux_distributions
https://www.zdnet.com/article/the-five-most-popular-end-user-linux-distributions/
https://itsfoss.com/best-linux-distributions/
https://getfedora.org/sponsors/
https://www.redhat.com/en/blog/what-open-source-upstream
https://github.com/SAILResearch/suppmaterial-22-justina-vulnerability_management_in_linux_distributions
https://security-tracker.debian.org/tracker/CVE-2018-7225
https://docs.python.org/3/library/mailbox.html

Vuln
report

Bug
report

Security
advisory

Export

Debian's advisories

Export

Export

Fedora's vuln reports

Debian's vuln reports

Export

Fedora's bug reports

Export

Debian's bug reports

Export

Fedora's advisories

Aggregate data
by CVE-IDs

Compute the length of the
five phases from the
maintainer and user

perspectives

Identify vulnerabilities (CSVs)
that are common across

Debian and Fedora

Qualitative study on
the strategies of fixing

CSVs

Quantitative study on
the strategies of fixing

CSVs

RQ3) The strategies of
fixing CSVs

RQ2) The
characteristics of CSVs

RQ1) The speed of
fixing vulnerabilities
in each phase

APIs

APIs

Customized
crawlers

Python mailbox
package

Fig. 3 Overview of our study approach

consider security vulnerabilities with a valid CVE-ID according to the CVE system, as dis-
cussed in Section 2.1. Therefore, we filter out 5,138 security vulnerabilities with an invalid
CVE-ID. For example, some CVE-IDs should not have been assigned (e.g., not a real vul-
nerability or should remain private), some CVE-IDs refer to the same vulnerability, or one
CVE-ID actually refers to two different vulnerabilities, etc.10 This leaves us with a total
of 21,752 and 17,434 security vulnerabilities, i.e., unique CVE-IDs, in Debian and Fedora,
respectively, whose CVE-ID was issued between Jan. 2007 and Dec. 2019.

From the maintainer perspective, the duration of the awareness phase represents the time
difference between the creation time of a vulnerability report and the creation time of its
associated bug report. The duration of the integration phase represents the time difference
between the creation time of the bug report and the time when the vulnerability fix is ready
for testing. To identify when a vulnerability fix is ready for testing, i.e., in the test repository,
or available to users, i.e., in the stable repository, we extract the corresponding automated
messages in the comments of a bug report. For example, Fig. 4 indicates that the vulnerabil-
ity fix for CVE-2018-7889 has been pushed into the test repository on March 11th, 2018.11

To validate the existence of the automated messages, we randomly select a set of 50 fixed
vulnerabilities in each of the studied distributions and study their respective bug reports,
i.e., a total of 100 bug reports. We observe that all these bug reports contain such automated
messages. The duration of the test phase represents the time difference between when the
vulnerability fix is ready for testing and when it is available to users.

From the user perspective, the duration of the user-unawareness phase reflects the time
difference between the creation time of a vulnerability report and when its security advisory
is published. The duration of the user-waiting phase reflects the time difference between
when the security advisory is published and when the vulnerability fix is available to users.

4.3 Methodology

In this section, we present why and how we leverage the vulnerability data for our RQs and
how we perform the manual study (RQ3).

10https://cve.mitre.org/cve/list rules and guidance/correcting counting issues.html
11https://bugzilla.redhat.com/show bug.cgi?id=1553919

47 Page 10 of 34 Empir Software Eng (2023) 28:47

https://cve.mitre.org/cve/list_rules_and_guidance/correcting_counting_issues.html
https://bugzilla.redhat.com/show_bug.cgi?id=1553919

Table 1 The software systems and mailing lists where we extract the three kinds of repositories in the studied
distributions

Distribution Vulnerability reports Bug reports Security advisories

Debian Gitlab1 Debbugs3 Mailing list4

Fedora Bugzilla2 Bugzilla2 Mailing list5

1
https://salsa.debian.org/security-tracker-team/security-tracker

2
https://bugzilla.redhat.com/

3
https://www.debian.org/Bugs/

4
debian-security-announce@lists.debian.org

5
package-announce@fedoraproject.org

4.3.1 RQ1: How fast are security vulnerabilities fixed within the studied distributions?

Motivation The goal of this research question is to measure an upper bound of how much
time maintainers spend in each phase while fixing security vulnerabilities in a given dis-
tribution (Fig. 2). Such an investigation will give insights into the maximum cost these
phases require, both from the maintainer and user perspectives. Comparing the time taken
in each phase can provide useful indications of the practices that maintainers use to fix
vulnerabilities.

Approach We study the duration of the five phases from the maintainer and user per-
spectives, as discussed in Section 2.2. From the maintainer perspective, we compute the
number of days in each phase for each vulnerability and classify vulnerabilities into 6
classes based on the duration (i.e., <0, 0-1, 1-7, 7-30, 30-90 and 90+ days). These 6 classes
correspond to instantaneous, same-day, same-week, same-month, same-quarter, and more-
than-one-quarter, respectively. To compare the speed of fixing vulnerabilities in the studied
distributions, we analyze a cumulative density plot to show the proportion of vulnerabili-
ties over time. For example, we study how fast maintainers integrate vulnerability fixes in
the integration period. Since Debian is a purely community-driven distribution and Fedora
is a not-for-profit distribution backed by Red Hat, we compare the speed in each period to
understand whether they follow different strategies for vulnerability management.

From the user perspective, similar to the maintainer perspective, we compute the number
of days for the two phases, i.e., the user-unawareness and user-waiting phases, in the studied
distributions. We classify the phases into the same 6 classes to understand how long users
are unaware of a vulnerability and how much time it takes to get a fix. Since vulnerability
exploits usually have a large impact (e.g., data leakage, service temporarily unavailable)

Fig. 4 An example of a comment in a Fedora bug report that mentions that a vulnerability fix has been
pushed into the test repository

Page 11 of 34 47Empir Software Eng (2023) 28:47

https://salsa.debian.org/security-tracker-team/security-tracker
https://bugzilla.redhat.com/
https://www.debian.org/Bugs/
debian-security-announce@lists.debian.org
package-announce@fedoraproject.org

on victim software systems (Klinke and Renn 2002), we compare the duration of the two
phases between the studied distributions to understand whether they have different practices
of vulnerability management.

4.3.2 RQ2: What are the characteristics of common security vulnerabilities (CSVs)
across the studied distributions?

Motivation Developers may take more than two years to discover and fix vulnerabilities
in software projects (Ozment and Schechter 2006). During this period, the vulnerabili-
ties might propagate from one software ecosystem that has packaged the affected software
project to another (Li and Paxson 2017). In this case, several software ecosystems (i.e.,
Linux distributions) are affected by a given set of vulnerabilities. As such, given the reliance
of any open (and even closed) source project on a supply chain of software dependencies,
such vulnerabilities risk impacting not only direct end users of a distribution package, but
large cross-sections of the software world.

On the plus side, such spreading of vulnerabilities also increases the chance of vul-
nerability detection and opportunities for collaboration on fixing vulnerabilities (which is
studied in RQ3), cf. Linux’s Law (“given enough eyeballs, all bugs are shallow”) (Raymond
1999). Given that such collaboration transcends project, ecosystem or even company bor-
ders, it is important to understand the dynamics of such collaboration, as well as when such
collaboration happens (e.g., prioritization of vulnerabilities to fix collaboratively). For these
reasons, we are interested in the characteristics of the security vulnerabilities that affect sev-
eral distributions, and we investigate whether maintainers follow different strategies to fix
these security vulnerabilities.

Approach We analyze the characteristics of common security vulnerabilities (CSVs). To
study CSVs, we first identify security vulnerabilities whose CVE-ID exists across the two
studied distributions. For example, CVE-2014-0160 is an example CSV that has affected
both Debian12 and Fedora13 via the OpenSSL package.

We study the prevalence of CSVs and their threat level across the studied distributions.
To obtain the prevalence, we calculate the number of CSVs that have been reported and
fixed, and the number of their corresponding security advisories. To evaluate the impact, we
compare the threat level of CSVs based on their CVSS scores, as discussed in Section 2.1.
Similar to RQ1, we investigate the vulnerability fixing process of CSVs w.r.t. the five phases
from the two perspectives in Fig. 2. We calculate the number of days in each phase and
compare these numbers of CSVs between the studied distributions.

4.3.3 RQ3: How do developers fix common security vulnerabilities (CSVs) across
the studied distributions?

Motivation In a software project, developers often collaborate for security vulnerabilities
instead of relying on hero-centric contribution, which is different from ordinary bugs (Wang
and Nagappan 2019). Given the large number (i.e., 16,070) of CSVs across distributions
and the observations in RQ2 that maintainers take a longer time to test vulnerability fixes
of CSVs than to integrate fixes, we are interested in how maintainers across distributions

12https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=743883
13https://bugzilla.redhat.com/show bug.cgi?id=CVE-2014-0160

47 Page 12 of 34 Empir Software Eng (2023) 28:47

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=743883
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2014-0160

collaborate when integrating and testing vulnerability fixes in their distributions. Therefore,
understanding the collaboration patterns across distributions for fixing CSVs can provide
insights for improving current practices and sharing with other ecosystems.

Approach To understand howmaintainers collaborate on fixing security vulnerabilities, we
focus on CSVs that are marked as fixed by both Debian and Fedora. We select a set of 3,336
fixed CSVs in both studied distributions before we conduct a manual study on a representa-
tive random sample (confidence level = 95%, confidence interval = 5%) of 345 fixed CSVs
across the studied distributions. The goal of this qualitative analysis is to identify the flow of
strategies, i.e., the actions for fixing vulnerabilities, as well as the prevalence of each strat-
egy. In particular, we leverage the comments in the vulnerability reports, their corresponding
bug reports in the distribution, the related bug reports in upstream projects where vulner-
abilities could be discussed and fixed, and links to reference web pages in these reports.
Based on these comments and links, we compile a catalog of strategies for fixing vulnera-
bilities, which we have grouped into three types according to their purpose (i.e., awareness,
embargo, vulnerability fix integration).

For a given CSV, we first study the strategies of fixing vulnerabilities in the distribution.
The first author sorts the post time of each comment in the vulnerability and bug reports
to investigate the timeline of strategies through developer discussions, then labels strategies
(e.g., report upstream) that are used for fixing the vulnerability. After that, the first author
checks the links in the comments to reference web pages and the corresponding upstream
reports. These reference links indicate the information relevant to the development of a vul-
nerability fix, such as a patch, a notification email for the disclosure of the vulnerability, and
the reference reports of the vulnerability. Similarly, the first author labels strategies (e.g.,
propose a patch to upstream) along with (if this data is available) when they happened rela-
tive to each other, before structuring them into a timeline. Finally, the first author discusses
the strategies with the 2nd and 3rd authors and addresses disagreement. We performed this
process iteratively for each CSV and arrived at the strategies summarized in Fig. 5, along
with the numbers (proportions) of the analyzed CSVs using a particular strategy.

We also perform several quantitative analyses to evaluate the three types of strategies
of Fig. 5 (the boxes with grey background) to gain comprehensive insights on potential
collaboration across distributions to fix CSVs. We describe the details of approaches for
each type below:

(A) Awareness Since the security team is responsible for discovering vulnerabilities for
their distribution, we analyze how fast the security team becomes aware of a vulnerabil-
ity. We compare the creation time of vulnerability reports for fixed CSVs between Debian
and Fedora to measure the speed of awareness. We leverage the number of bug reports
related to vulnerabilities that were created by the security team (i.e., internal developers)
to measure the extent of responsibility for the security team.

(B) Embargo When a vulnerability is first reported to a distribution, the security team
could forward the vulnerability to upstream after it assesses the impact of the vulnerabil-
ity. In such a case, the security team could embargo the vulnerability (i.e., only certain
people with permission can read the vulnerability report) to reduce its impact accord-
ing to the distribution’s policy. For severe vulnerabilities, vulnerability fixes are usually
discussed privately under embargoes to prevent early disclosure (Ramsauer et al. 2020).
To understand how embargoes work in practice, we investigate the embargo policy for
CSVs in Fedora (Red Hat), since Debian encourages public disclosure of vulnerabilities
even before a fix has been developed (Debian vulnerability disclosure policy online).

Page 13 of 34 47Empir Software Eng (2023) 28:47

release a
local patch

Debian

Red Hat

Upstream projects

Others (e.g.,
CVE, openwall)

be aware of
vulns from

several
sources 28(8%)

8(2%) Y

has a fix?

N Y

reports
upstream?

Yembargo?

N

Debian: bold numbers
Fedora: normal numbers

Particular person

201(58%)

22(6%)

86(24%)

42(12%)

303(88%)

N

Y
upstream
releases

the patch?

Y

N

customize
the patch?

release the
upstream fix

8(19%)

34(81%)

143(42%)

197(58%)

29(69%)

13(31%)

83(24%)

262(76%)

42(50%)

41(50%)

18(22%)

17(20%)

66(80%)

N

proposes
a patch to
upstream?

65(78%)

16(81%)

67(19%)
39(11%)

299(88%)

206(59%)

20(6%)

10(3%)

47(14%)

62(18%)

occurs in Red Hat

Naffects? won't fix
5(1%)340(99%)

N

7(2%)
338(98%)

A) Awareness

B) Embargo

C) Vulnerability fix integration

Security team

How fast is the security
team in discovering vulns?

Does the availability of a peer fix
correlate with faster fix releasing?

How does the embargo practice work?

Y

Y

Fig. 5 The flow chart of the potential strategies that are used in Debian and Fedora for dealing with vul-
nerabilities. The bold numbers represent the number and proportion of CSVs in each strategy in Debian and
the normal numbers are for Fedora. The two grey dotted diamonds and dotted lines represent the strategies
related to Red Hat’s embargo policy. The three grey dashed boxes group the strategies based on their purpose.
The three boxes with grey background represent the quantitative analyses to measure the degree of potential
collaboration in the three groups

From the history of a Fedora vulnerability report, we observe that the Fedora security
teammembers add the “EMBARGOED” keyword as a prefix in the title of a vulnerability
report to indicate that the vulnerability is under embargo. The keyword is removed once
the embargo is lifted and this change is recorded in the history of the vulnerability report.
For example, CVE-2015-8382 was embargoed for 5 days in Red Hat.14 Therefore, we
study the embargo policy by studying the characteristics of embargoed CSVs and the
time taken by the five phases of the maintainer and user perspectives (Fig. 2).

(C) Vulnerability fix integration As discussed in Section 2.2, vulnerability fixes can
be developed by anyone before being integrated into the distributions that contain the
affected packages. We investigate the extent to which maintainers have access to a vul-
nerability fix generated by the peer distribution (the other studied distribution), which
we refer to as “peer (vulnerability) fixes”. For a CSV, we identify when such a peer
fix is available, i.e., before or during integration or not at all, by comparing the creation
and fixing time of a bug report to the release time of the peer fix. To measure whether
maintainers across distributions collaborate to integrate vulnerability fixes into their own
packages, we hypothesize that distribution maintainers become aware of a peer fix once
it is available. For example, Debian released a fix for CVE-2014-8145 on January 3rd,
2015,15 while the bug for CVE-2014-8145 was reported in Fedora on January 20th,
2015.16 We conclude that Fedora had access to a peer fix (in Debian) for CVE-2014-8145
before integration.

14https://bugzilla.redhat.com/show activity.cgi?id=1187225
15https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=773720
16https://bugzilla.redhat.com/show bug.cgi?id=1184079

47 Page 14 of 34 Empir Software Eng (2023) 28:47

https://bugzilla.redhat.com/show_activity.cgi?id=1187225
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=773720
https://bugzilla.redhat.com/show_bug.cgi?id=1184079

5 Results

RQ1: How fast are security vulnerabilities fixed within the studied distributions?

Results: From the maintainer perspective, Debian and Fedora take a median of 20 and
27 days, respectively, from when the security team creates a vulnerability report to
when the fix is released. Figure 6 indicates the duration of each phase. In particular, the
awareness period accounts for a median of 2 and 0.003 days (4.3 minutes), which indicates
a significant difference (Wilcoxon test: p-value < 2.2e−16) in Debian and Fedora, respec-
tively, although with negligible effect size (0.14). We will discuss the awareness period in
the next finding.

One possible reason for the significant difference between Debian and Fedora is that
Fedora is a not-for-profit Linux distribution that is primarily sponsored by Red Hat (as
discussed in Section 4.1). Furthermore, Red Hat also has a dedicated security team working
on vulnerabilities in Fedora. The integration period accounts for a median of 6.1 and 5.3
days (Wilcoxon test: p-value = 0.0001) and the test period accounts for a median of 0 and 15
days (Wilcoxon test: p-value< 2.2e−16) in Debian and Fedora, respectively. The differences
between Debian and Fedora in both the integration and test periods are significant. The
effect size of the integration period is negligible (0.0006), and the effect size of the test
period is small (0.24).

The security team in Fedora notifies its maintainers of at least 78% of vulnerabil-
ities within one day after the vulnerability reports were created (i.e., a median of 4.3
minutes), while the security team in Debian takes one week for 81% of vulnerabilities
(i.e., a median of 2 days), as shown in Fig. 6a. The awareness of a vulnerability is the first
step of tracking a vulnerability that the security team of a distribution faces (cf. Fig. 2). The
security team can discover a new vulnerability by itself or via other channels, e.g., open-
source security communities. Once the security team is aware of the new vulnerability, the
team evaluates, assesses and validates whether the packages in the distribution are affected
before assigning the vulnerability to maintainers.

Meanwhile, users report 34% and 6% of vulnerabilities as ordinary bugs to Debian and
Fedora, respectively, before their security teams become aware of these vulnerabilities, as
shown in Fig. 6a. For example, a Debian bug, CVE-2017-12424,17 was reported 3 years
before the CVE-ID was assigned, i.e., when the security team became aware of the vulner-
ability.18 In a given distribution, a vulnerability report can be created earlier or later than
its related bug report, suggesting two fixing processes of vulnerabilities. If the vulnerabil-
ity report is created earlier, the respective bug report is created for tracking the progress of
fixing the vulnerability. By contrast, when a bug report is created earlier, maintainers and
the community collaborate and discuss how to fix the bug before the bug is identified as a
vulnerability, suggesting the vulnerability is publicly disclosed without a fix. Researchers
should take into account how a vulnerability was discovered to study the impact of such
vulnerabilities.

Both Debian and Fedora maintainers integrate the vulnerability fixes for the
majority (50%) of security vulnerabilities within 1 week of the creation of their cor-
responding bug reports, and integrate 75% of security vulnerabilities within 1 month.
Figure 7 shows that Debian maintainers integrate more vulnerability fixes within 3 days

17https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=756630
18https://salsa.debian.org/security-tracker-team/security-tracker/-/commit/1d9590647d

Page 15 of 34 47Empir Software Eng (2023) 28:47

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=756630
https://salsa.debian.org/security-tracker-team/security-tracker/-/commit/1d9590647d

30%
34%

17%

4%
11%

5% 4%6%

72%

9%

2%
7%

0

2500

5000

7500

10000

<0 0−1 1−7 7−3030−90 90+
duration (days)

vu
ln

er
ab

ilit
ie

s

Debian Fedora

23% 23%

30%

13%12%

20%

14%

35%

10%

21%

0

1000

2000

3000

0−1 1−7 7−30 30−90 90+
duration (days)

vu
ln

er
ab

ilit
ie

s

Debian Fedora

60%

16%

7%7%
10%

16%

2%

19%

48%

16%

0

1000

2000

3000

4000

5000

0−1 1−7 7−30 30−90 90+
duration (days)

vu
ln

er
ab

ilit
ie

s

Debian Fedora

Fig. 6 The time taken in the three phases from the maintainers’ perspective

compared to Fedora maintainers. After that, Fedora catches up and both Debian and Fedora
maintainers integrate vulnerability fixes at the same speed. Since both studied distributions
have a large number of packages with complex relations among them, this result indicates
that the speed of integrating vulnerability fixes into a distribution is fast, compared to the
time of integrating patches into one project, i.e., the Linux Kernel project, which had an
increasing trend in the integration time of patches from 2006 to 2012, from instantly to a
month (Jiang et al. 2013).

Vulnerability fixes for 75% of vulnerabilities in Debian pass testing in 17 days, com-
pared to 44 days in Fedora. Figure 8 shows the cumulative distribution of the test period.
Vulnerability fixes pass testing in a median of 10 days across Debian and Fedora. The delay
in the number of days for a fixed vulnerability to become available for users is shorter than
that of an ordinary fixed bug (da Costa et al. 2014). For example, (da Costa et al. 2014)
observed that the median delay time for fixed bugs was 42 days in the Firefox project (the
minimum median delay time among three projects that they studied).

Figures 8 and 6c indicate that the test period for 60% of vulnerabilities is 0 days in
Debian. One possible reason is that Debian does not integrate the results of its continuous
integration (CI) system into bug reports. The continuous integration system in Debian auto-
matically coordinates the automated test against packages in the Debian archive when the
packages and/or their dependent packages have been updated (Debian continuous integra-
tion online). However, since the test logs in the CI system do not include whether the test
was triggered by which bug, we are not able to link the testing logs to the corresponding
bug. In addition, 53% of these vulnerabilities only affect the development (i.e., unstable)

0%

25%

50%

75%

100%

0 6 9 30 99 999
days

vu
ln

er
ab

ilit
es

Debian Fedora

Fig. 7 Cumulative density plot of the duration of the integration phase of a security vulnerability. Debian
and Fedora maintainers take a median of 6.1 and 5.3 days, respectively, to integrate fixes for security
vulnerabilities after their bug reports were created

47 Page 16 of 34 Empir Software Eng (2023) 28:47

0%

25%

50%

75%

100%

0 9 17 44 99 999
days

vu
ln

er
ab

ilit
es

Debian Fedora

Fig. 8 Cumulative density plot for the testing phase of a security vulnerability. Debian maintainers test the
fixes of 75% of security vulnerabilities in 17 days, while Fedora maintainers take 44 days for testing. 60%
of vulnerabilities in Debian have a 0-day test phase

version of Debian, which are less likely to impact users. For example, a denial-of-service
flaw in the Quassel IRC, i.e., CVE-2015-2779, only affected the development version.19

Furthermore, 11% out of the 53% vulnerabilities with 0 days of testing only affect the long-
term support (LTS) releases that are maintained by the Debian LTS team (Debian long term
support online), which has a different development policy for security vulnerabilities (LTS
development online).

The integration phase accounts for the largest proportion of time (i.e., median of 6.1
days, 40%) for tracking a security vulnerability in Debian, while Fedora spends the
largest proportion of time (i.e., median of 15.7 days, 58%) on vulnerability fix testing.
The number of days in the integration phase in Debian (median of 6.1 days) is similar to
the number in Fedora (median of 5.8 days). Figure 6b indicates that Debian integrates more
vulnerability fixes within one day than Fedora.

Concerning the testing phase, Fedora spends a higher proportion of time (median of 15.7
days) for testing vulnerability fixes, compared to Debian. Figure 6c indicates that Fedora
takes 7 and up to 30 days to test 48% of vulnerabilities (the largest proportion among the
6 classes). One possible explanation is that the test logs in Debian’s continuous integration
(CI) system do not link back to the respective bug reports, making it impossible for us to
trace CI test results back to possible vulnerability fixes being tested. The CI system exe-
cutes automated test suites against packages when they and/or their dependent packages
have been updated (Debian continuous integration online). The test logs only include pack-
ages that have been tested and their testing status (e.g., pass or fail), but identifiers of bug
reports are not included, since a test can be triggered for a variety of reasons (e.g., a feature
change, bug fixes in the dependent packages). As a rough estimation, Debian states that it
usually takes 10 days to test a security update of a package (Securing debian manual - before
the compromise online), though it might take longer due to the dependent packages need-
ing testing, or shorter due to the emergency level of releasing a new version of the package,
suggesting that Debian’s test phase might be longer than the integration phase. In compar-
ison with Debian, Fedora integrates its CI and issue report system, and thereby the testing
results are recorded back into the bug reports (Fedora - update policy online).

From the user perspective, in general, Debian and Fedora publish security advi-
sories, i.e., end the user-unawareness period, in a median of 17 days. Figure 9a indicates
that Debian’s users are aware of the majority (>50%) of vulnerabilities 30 days after the

19https://security-tracker.debian.org/tracker/CVE-2015-2779

Page 17 of 34 47Empir Software Eng (2023) 28:47

https://security-tracker.debian.org/tracker/CVE-2015-2779

3%

14%

7%

3%

21%
21%

24%

39%

18%19%
16%16%

0

1000

2000

3000

<0 0−1 1−7 7−30 30−90 90+
days

vu
ln

er
ab

ilit
ie

s
Debian Fedora

34%

7%

57%

9%

38%
10%

13%

22%

5% 2% 2% 1%
0

1000

2000

3000

4000

<0 0−1 1−7 7−30 30−90 90+
days

vu
ln

er
ab

ilit
ie

s

Debian Fedora

Fig. 9 The number of vulnerabilities during the two phases from the user perspective

creation of vulnerability reports. Fedora’s users are aware of the largest proportion (39%)
of vulnerabilities within 7 to 30 days after the creation of vulnerability reports. In order
to assess how fast Debian and Fedora publish security advisories, we compare them with
GitHub security advisories, since GitHub is one of the most popular OSS code repositories.
The speed of publishing security advisories in Debian and Fedora is faster than the speed
of publishing security advisories in open-source projects on GitHub, based on the 2020
GitHub security report (Github - securing the world’s software online). That report stated
that users usually receive the alert of a security advisory more than 10 weeks after a vulnera-
bility becomes known across GitHub projects. In particular, the speed of publishing security
advisories provided by GitHub directly is 1 week, while the speed of publishing security
advisories that are imported from other sources into GitHub projects is 20 weeks. A poten-
tial explanation could be that the two Linux distributions are self-sustainable with organized
efforts, while GitHub projects are loosely coupled in nature, unless they are part of other
ecosystems (e.g., npm). As such, our results could be explained by a community-driven
effort to manage vulnerabilities in a Linux distribution ecosystem.

Users wait for a median of 0.2 days to get vulnerability fixes across Debian and
Fedora, which is 85 times shorter than the user-unawareness period. Figure 9b shows
that users wait for less than 7 days to get fixes for 81% and 74% of vulnerabilities in Debian
and Fedora, respectively. Fedora releases the largest proportion (57%) of vulnerability fixes
within 1 day after the end of the user-unawareness period, dropping to 10% within 7 days
and increasing to 22% within 30 days. The priority of fixing vulnerabilities is high due to
their potential impact (e.g., market value loss (Telang and Wattal 2005)) on a large number
of users. Figure 9b indicates that the fixes for 34% (i.e., 980) of vulnerabilities in Debian
were available before Debian published their security advisories, suggesting insufficient
awareness about those security vulnerabilities by the Debian’s security team. For exam-
ple, for a Debian bug representing a vulnerability that was reported for the vlc package
(i.e., CVE-2008-2147),20 its fix was available for users on May 17, 2008, while its security
advisory was published on June 18, 2009.21

One possible explanation is that vulnerabilities might be assumed to be ordinary bugs
when they were reported. As a consequence, their fixes might be ignored until they are

20https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=480724
21https://www.debian.org/security/2009/dsa-1819

47 Page 18 of 34 Empir Software Eng (2023) 28:47

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=480724
https://www.debian.org/security/2009/dsa-1819

identified as a vulnerability due to various reasons. For example, bug fixes often are devel-
oped relative to a new version of a package that the package maintainers cannot or do not
plan to upgrade to. Kula et al. (2018) identified that 81.5% of the analyzed software systems
stick to outdated dependencies. Second, a bug fix could introduce a new bug impacting the
software system (Yin et al. 2011), which is challenging for the maintainers to assess before
the adoption of bug fixes. Even if the maintainers would like to integrate the bug fix, they
usually update the software system periodically for a batch of bug fixes. This is because the
integration could require changes to their package’s code, and because they need to organize
(manual) testing activities. Depending on the workload of the maintainers and the testers,
the integration of a batch of bug fixes might be skipped until more fixes are available, at
which time all test activities are performed once.

Another explanation is Debian’s policy regarding publishing security advisories based
on the impact of vulnerabilities to Debian (Debian security faq onlineb). To avoid cogni-
tive overload, Debian typically includes the security advisory for low-impact vulnerabilities
of a particular package into the security advisory of a high-impact vulnerability in that
package. As such, the advisory of low-impact vulnerabilities might be delayed until the
next high-impact advisory is issued. Moreover, out of the 34% vulnerabilities whose fixes
were available before their security advisory in Debian, 55% did not affect any packages in
Fedora, since Fedora does not contain those packages for a variety of reasons (e.g., license,
patents) (Fedora - packagekit items not found online). Only 1% already had a fix prior to
the disclosure of their security advisories in Fedora.

RQ2: What are the characteristics of common security vulnerabilities (CSVs) across
the studied distributions?

Results: There are 16,070 CSVs across Debian (74%) and Fedora (92%). Table 2 shows
the statistics of the number of reported CSVs along with their related information for the
two studied distributions. One possible reason for the higher proportion (92%) of CSVs
in Fedora is that Debian includes over 89,000 packages (Debian packages online), while
Fedora only includes over 33,000 packages (Fedora package sources online). Another pos-
sible reason is that Debian offers its users 3 years of support for each release and 2 years of
extra long-term support (LTS) (Debian releases online), while Fedora supports its releases
for approximately 13 months (Fedora release life cycle online). The longer support period
increases the possibility of identifying and having to fix security vulnerabilities specific to
Debian in the packages of old releases.

Based on CVSS 2.0, the CSVs can be exploited easily (i.e., median exploitability
score of 8.6), though their severity level and impact is medium (i.e., median of both
base and impact score of 5.0), as shown in Fig. 10a. A high exploitability score indicates

Page 19 of 34 47Empir Software Eng (2023) 28:47

Table 2 The descriptive statistics of common security vulnerabilities (CSVs) along with their related
information. Note that a vulnerability report may map to several bug reports, and vice versa

Feature Debian Fedora

reported vulns 16,070 16,070

vulns with bug reports 7,265 12,034

vulns with advisories 6,760 8,710

vulns with fixes 5,951 7,310

2.5

5.0

7.5

10.0

base exploitability impact

sc
or

e

46%
51%

3%

81%

17%

2%

91%

9%
0%

accessComplexity accessVector authentication

high
medium low local

adjacent_network
network

multiple
single

none
0

5000

10000

15000

0

5000

10000

15000

0

2500

5000

7500

vu
ln

er
ab

ilit
ie

s

24%

16%

60% 47%

10%

42% 43%

10%

47%

availabilityImpact confidentialityImpact integrityImpact

complete
partia

l
none

complete
partia

l
none

complete
partia

l
none

0

2000

4000

6000

8000

0

2000

4000

6000

8000

0

3000

6000

9000

vu
ln

er
ab

ilit
ie

s

Fig. 10 The (a) high-level CVSS 2.0 scores for CSVs, and a breakdown for (b) exploitability and (c) impact
scores

47 Page 20 of 34 Empir Software Eng (2023) 28:47

33%

5%

31%

72%

17%
7% 10%

10%
5% 4% 3% 2%

0

2500

5000

7500

<0 0−1 1−7 7−3030−9090+
days

vu
ln

er
ab

ilit
ie

s
Debian Fedora

30%

19% 23%

35%

23%
22%

12%10% 12%

14%

0

1000

2000

0−1 1−7 7−30 30−90 90+
days

vu
ln

er
ab

ilit
ie

s

Debian Fedora
59%

2%
7%

19%

17%

48%

10%

16%

7%

15%

0

1000

2000

3000

4000

0−1 1−7 7−30 30−90 90+
days

vu
ln

er
ab

ilit
ie

s

Debian Fedora

Fig. 11 The duration of the three phases for CSVs from the maintainers’ perspective

that attackers can easily exploit these CSVs to infiltrate a victim system, potentially on a
large scale. Figure 10b indicates that the complexity to exploit 51% of CSVs is low and
that of 46% of CSVs is medium. Furthermore, attackers can exploit the majority of CSVs
using networks and without any authentication. In terms of the impact of CSVs, Figure 10c
indicates that the majority of CSVs have partial or no impact on victim systems based on
the three metrics, i.e., availability, confidentiality and integrity.

From the maintainer perspective, Debian and Fedora take a median of 20 and 27.1
days, respectively, to fix CSVs, from when the security team creates a vulnerability
report to when the fix is released. In particular, the security teams in Debian and Fedora
notify their maintainers in a median of 3.6 hours and 2.9 minutes, respectively, after the
creation of a vulnerability report. Maintainers in Debian and Fedora take a median of 6.1
and 5.5 days to integrate fixes, respectively, and a median of 0 and 15 days to test fixes,
respectively. These results are in line with the result in RQ1 (Fig. 6).

Figure 11 indicates the distribution of CSVs in each of the three phases. The security
teams in Debian and Fedora notify their maintainers of 81% and 84% of CSVs, respectively,
within 7 days after the creation of a vulnerability report. Maintainers integrate fixes for the
majority of CSVs within one week. For testing fixes, Fedora takes up to 30 days for 59% of
CSVs, while Debian takes one day for the same proportion. As discussed in RQ1, Debian
performs part of tests in its CI system but there is no link between bug reports and the test
logs in the CI system.

Testing fixes for CSVs requires a median of 4.3 days longer than integrating fixes
for CSVs across Debian and Fedora, as shown in Fig. 12. The difference between the

0

25

50

75

awareness integration test

da
ys

Fig. 12 The comparison of the length of each phase from the maintainers’ perspective for CSVs. The
awareness period is shorter than the integration and test phases

Page 21 of 34 47Empir Software Eng (2023) 28:47

integration and test phases is significantly different, according to the Wilcoxon test, with a
p-value of 0.001 (α = 0.01) and a negligible effect size of 0.03.

From the user perspective, users wait for a median of 0.2 days to get fixes for CSVs
while they take a median of 17 days to be aware of CSVs. The Wilcoxon test indicates
that there is a significant difference between the user-unawareness and user-waiting period,
with a p-value < 2.2e−16 and a medium effect size of 0.47. These median values of the two
phases for CSVs are the same as the median values of the two phases in RQ1 (Fig. 9).

In addition, similar to the results from the maintainer perspective, the user-unawareness
and user-waiting periods have different distributions in Debian and Fedora. Figure 13a
and b show the distribution of CSVs in the two user perspective phases in Debian and
Fedora. These differences might be due to the different strategies of vulnerability manage-
ment in Debian and Fedora. Future work could replicate our work on other distributions to
generalize our findings.

RQ3: How do developers fix common security vulnerabilities (CSVs) across the
studied distributions?

Results (awareness): For the majority of fixed CSVs, distributions are notified about
vulnerabilities by the upstream projects. Figure 5 presents the 5 identified sources
through which the security team becomes aware of CSVs. The security teams in Debian

11% 3%
4% 2%

19%

21%

26%

40%

19%

18%

22%

16%

0

1000

2000

3000

<0 0−1 1−7 7−30 30−90 90+
days

vu
ln

er
ab

ilit
ie

s

Debian Fedora

32%
7%

9%

58%

39%
11%

13%

21%

5% 2% 2% 1%
0

1000

2000

3000

4000

<0 0−1 1−7 7−30 30−90 90+
days

vu
ln

er
ab

ilit
ie

s

Debian Fedora

Fig. 13 The duration of the two phases from the user perspective for CSVs

47 Page 22 of 34 Empir Software Eng (2023) 28:47

and Fedora are aware of 58% (201 out of 345) and 59% (206 out of 345) of the fixed CSVs
from the affected upstream projects directly. Our results show that the awareness of distri-
butions about vulnerabilities comes mainly from upstream projects, along with a fix. This
indicates that the collaboration across distributions and upstream projects on vulnerability
fix propagation is in line with the guidelines for multi-party coordination from first.org (as
mentioned in Section 1).

For the majority of vulnerabilities, the security teams in the studied distributions
are also made aware of an available fix. Figure 5 shows that the security team provides the
information (e.g., links) to a fix patch for the majority of the fixed CSVs in Debian (303 out
of 345, 88%) and Fedora (262 out of 345, 76%). Maintainers in Debian and Fedora need to
fix vulnerabilities for their users even if they did not introduce the vulnerabilities. However,
due to their lack of detailed knowledge about the upstream projects’ internals (Ma et al.
2017), adopting a provided fix for a vulnerability is the common way for distribution main-
tainers to remediate the vulnerability and quickly release a new version to users, compared
to investigating and addressing the root causes by themselves.

To this end, our results indicate that the security team usually offers maintainers suffi-
cient information (e.g., patch, upstream reports that they require) to achieve the goal of fast
remediation for vulnerabilities. For example, for the RTP resource exhaustion (CVE-2016-
7551) in the asterisk package, the security team posted the upstream bug report along with
the reference link to a fix patch when the security teams created the corresponding bug
reports in both Debian22 and Fedora.23

For Fedora, the security team of Red Hat is almost exclusively responsible for dis-
covering the CSVs, while, in Debian, 30% of fixed CSVs are reported by users. More
specifically, the security team of Red Hat creates bug reports for 99% of fixed CSVs, while
the security team in Debian “only” reports 70% of fixed CSVs, although with an increas-
ing trend. As mentioned in Section 4.1, since Fedora is primarily sponsored by Red Hat,24

the security team of Red Hat handles vulnerabilities in Fedora (Fedora - security bugs
online). This result is similar to the result we found in RQ1 that users report 34% and 6%
of vulnerabilities to Debian and Fedora, respectively.

The security teams in Debian and Fedora are aware of fixed CSVs at a similar speed.
The security team in Debian is aware of 41% of fixed CSVs faster than Fedora and vice
versa, while the security teams are aware of 18% of fixed CSVs on the same day. Figure 14
shows that the awareness speed for the 41% of fixed CSVs in Debian is a median of 5.5
days faster than in Fedora. For the 41% of fixed CSVs that Fedora became aware of earlier,
the awareness speed is a median of 7.5 days faster than Debian.

Results (embargo): Red Hat becomes aware of 24% (i.e., 83 out of 243) of CSVs with-
out a fix and embargoes half (42 out of 83) of these CSVs to prevent early disclosure.
Since Red Hat plays the role of a trusted partner for many upstream open-source projects to
assist them with security issues,25 upstream projects reach out to Red Hat for rapidly devel-
oping a fix when they became aware of an embargoed vulnerability. In addition, the Red Hat
security team contributes patches for 13 (31%) out of the 42 embargoed CSVs, suggesting
a close collaboration between Red Hat and upstream projects on fixing vulnerabilities.

22https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=838832
23https://bugzilla.redhat.com/show bug.cgi?id=CVE-2016-7551
24https://getfedora.org/sponsors/
25https://www.redhat.com/en/resources/managing-vulnerabilities-FAQ

Page 23 of 34 47Empir Software Eng (2023) 28:47

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=838832
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2016-7551
https://getfedora.org/sponsors/
https://www.redhat.com/en/resources/managing-vulnerabilities-FAQ

1000

0

1000

10 100 1000
faster (days)

co
un

t

speed Debian Fedora

Fig. 14 The distributions of the difference (in log-scale days) between the creation times of fixed CSV
reports with the same CVE-ID in Debian and Fedora. The black lines indicate the median values of the two
distributions

On the other hand, Debian does not embargo vulnerabilities (Debian vulnerability disclo-
sure policy online), which increases the chance of attackers exploiting vulnerabilities after
their disclosure, if the fixing process takes longer than foreseen. For example, the bug report
for a CSV (CVE-2013-6456) was publicly disclosed in Debian26 when Debian maintainers
were not yet able to fix it. One Red Hat developer was involved in fixing the vulnerability
by evaluating a patch and providing suggestions. In the end, the upstream project accepted
the patch that was submitted by the Red Hat developer.27

Although Debian does not embargo any vulnerabilities, Debian is potentially involved in
vulnerability fix development during the embargo period. Out of the 42 embargoed CSVs,
Debian referred to Red Hat’s vulnerability reports and/or security advisories for 12 (29%)
embargoed CSVs and attached the same references that were attached to Red Hat’s vul-
nerability reports for 6 (14%) embargoed CSVs. For example, CVE-2017-100040928 was
a buffer overflow in the glibc 2.5 package and can be triggered by a specific environment
variable. The fix was developed by the members of the open-source security group29 of
which both Debian and Fedora are a member. Another embargoed CSV, CVE-2012-2737,30

was found and embargoed by Red Hat31 and also affected the accountsservice package in
Debian. The respective bug report in Debian was created within one hour after the embargo
was lifted and one Debian maintainer posted the link to the Red Hat’s report,32 with the
report hinting at the corresponding maintainer being aware of the embargoed vulnerability
during the embargo period.

Embargoed CSVs are more risky than non-embargoed CSVs since they have a
higher impact score, based on CVSS score 2.0. Figure 15 shows the comparison between
embargoed and non-embargoed CSVs. Embargoes can reduce the risk of a vulnerability
being exploited by attackers before having a mitigation (The hidden costs of embargoes

26https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=732394
27https://libvirt.org/git/?p=libvirt.git;a=commit;h=5fc590ad9f4
28https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000409
29https://seclists.org/oss-sec/2017/q4/385
30https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2737
31https://bugzilla.redhat.com/show bug.cgi?id=CVE-2012-2737
32https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=679429

47 Page 24 of 34 Empir Software Eng (2023) 28:47

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=732394
https://libvirt.org/git/?p=libvirt.git;a=commit;h=5fc590ad9f4
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000409
https://seclists.org/oss-sec/2017/q4/385
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2737
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2012-2737
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=679429

2.5

5.0

7.5

10.0

base impact exploitability

sc
or

e

non−embargoed embargoed

6%
3%

85%

6% 3%
28% 3%

41%
15%1% 1% 7%

0

2500

5000

7500

<0 0−1 1−7 7−30 30−90 90+
duration (days)

vu
ln

er
ab

ilit
ie

s

non−embargoed embargoed

18%

23%

32%

51%

15%

23%

11%

6%

16%

5%
0

500

1000

1500

2000

0−1 1−7 7−30 30−90 90+
duration (days)

vu
ln

er
ab

ilit
ie

s

non−embargoed embargoed

2% 3%

16%

34%

48%

48%

17%

9%

18%

6%
0

1000

2000

3000

0−1 1−7 7−30 30−90 90+
duration (days)

vu
ln

er
ab

ilit
ie

s

non−embargoed embargoed

4%

1%

3%

1%

23%

13%

36%

52%

22%

17% 17%

11%

0

500

1000

1500

2000

2500

<0 0−1 1−7 7−30 30−90 90+
duration (days)

vu
ln

er
ab

ilit
ie

s

non−embargoed embargoed

8%

3%

60%

51%

18%
9%

20%

24%

1% 2% 1% 2%0

1000

2000

3000

<0 0−1 1−7 7−30 30−90 90+
duration (days)

vu
ln

er
ab

ilit
ie

s

non−embargoed embargoed

Fig. 15 The comparison between the embargoed and non-embargoed CSVs in Fedora. (a) shows the distribu-
tion of the base, impact and exploitability scores. (b), (c), and (d) reflect the three phases from the maintainer
perspective. (e) and (f) reflect the two phases from the user perspective

online). However, embargoing a vulnerability is challenging in an open source development
setting, since the code repositories (e.g., GitHub) of software projects are publicly available.
Hence, the embargoed vulnerability can be found by anyone during the embargo period,
such as the Heartbleed vulnerability (CVE-2014-0160), which was initially found by Code-
nomicon, before being independently found by the Google security team.33 The history of
the vulnerability report of Heartbleed indicates that it was embargoed for a short period
(i.e., about 12 hours) after the security team created the vulnerability report.34

Embargoed CSVs have a slower speed of awareness for maintainers but a faster speed of
integrating and testing vulnerability fixes, compared to non-embargoed CSVs. Figure 15b
- f show the five phases for the embargoed and non-embargoed CSVs from the maintainer
and user perspectives, respectively. For the maintainer perspective, the awareness period of
embargoed CSVs accounts for a median of 43% of the total time for tracking a CSV in
Fedora, while that of non-embargoed CSVs accounts for a median of 0%, though those non-
embargoed CSVs might have been embargoed somewhere else (without Fedora being aware
of this). However, the integration and test phases for embargoed CSVs are shorter than non-
embargoed CSVs (Wilcoxon test: p-value < 2.2e−16, α = 0.01). Both the integration and
test phases have a small effect size of 0.29 and 0.3, respectively. By contrast, from the user
perspective, both the user-unawareness and user-waiting phases for the embargoed CSVs are
longer than non-embargoed bugs, by the Wilcoxon test (user-unawareness: p-value = 5e−10,
user-waiting: p-value < 2.2e−16, α = 0.01). Both the user-unawareness and user-waiting
phases have a negligible effect size of 0.13 and 0.002, respectively.

33https://www.zdnet.com/article/heartbleed-serious-openssl-zero-day-vulnerability-revealed/
34https://bugzilla.redhat.com/show activity.cgi?id=1084875

Page 25 of 34 47Empir Software Eng (2023) 28:47

https://www.zdnet.com/article/heartbleed-serious-openssl-zero-day-vulnerability-revealed/
https://bugzilla.redhat.com/show_activity.cgi?id=1084875

0

10

100

1000

Debian Fedora

fix
 ti

m
e

(d
ay

s)

peer fixes before during none

Fig. 16 Debian and Fedora maintainers do not speed up the integration of vulnerability fixes (in log-scale
days) when peer fixes are available before the integration

Results (vulnerability fix integration): Debian maintainers fix 42% (143 out of 345) of
the CSVs by applying customized patches, compared to 11% (39 out of 345) of the
CSVs in Fedora. Once the upstream project has a patch to fix a vulnerability, distribution
maintainers either leverage the fix patch and integrate it into their package manually or wait
for the upstream release that incorporates the patch. The former case is the fastest way for
distribution maintainers to release remediation of vulnerabilities to their users. However,
distribution maintainers need to maintain these patches until the upstream has a release (Ma
et al. 2017). By contrast, adopting the upstream release represents the simplest way for dis-
tribution maintainers to fix vulnerabilities though users might need to wait a longer time
for the vulnerability fix. For example, Debian maintainers fixed the CVE-2017-16808 vul-
nerability35 by producing a patch, 54 days faster than Fedora maintainers who applied the
upstream release.36

In addition, distribution maintainers might not be available to rapidly produce a new
version for the affected packages or there might not even be a maintainer available for it.
Therefore, the security team would take care of these affected packages and release new ver-
sions for users. For example, CVE-2010-3695 in Debian37 was fixed by the security team,
as stated in the release message “Non-maintainer upload by the security team”. In fact, the
security team in Debian has fixed 1,707 (8%) vulnerabilities for the affected packages that
did not have maintainers when the vulnerabilities were reported.

In a distribution, the availability of a peer fix for a CSV before maintainers start
to integrate the CSV fix does not correlate with faster integration and testing of the
vulnerability fix. Figure 16 shows boxplots of the fixing time, i.e., the sum of the duration
of the integration and test phases from the maintainer perspective, for CSVs based on when
a peer fix is available in the two studied distributions. In particular, Fedora maintainers
fix CSVs without a peer fix (the white box) faster than those that have a peer fix before
integration (the dark grey box) (Wilcoxon test: p-value = 2.2e−16, α = 0.01), with a medium
effect size of 0.71. In Debian, we observe a similar phenomenon where maintainers take
more time to fix CSVs when a peer fix is available before or during development, compared
to those without a peer fix (Wilcoxon test: p-value = 2.6e−6, α = 0.01). The effect size

35https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=881862
36https://bugzilla.redhat.com/show bug.cgi?id=1516995
37https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=698916

47 Page 26 of 34 Empir Software Eng (2023) 28:47

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=881862
https://bugzilla.redhat.com/show_bug.cgi?id=1516995
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=698916

is small (0.15). Our results suggest that collaboration across distributions is less likely to
happen after maintainers start to integrate a vulnerability fix, since maintainers integrate
packages into their distributions following their own packaging policy.

6 Discussion

In this section, we discuss the findings presented in Section 5.
Distribution maintainers collaborate closely across distribution boundaries before

vulnerability fixes are available, but less afterwards, i.e., in the integration and test
phases. Even though the majority of CSVs in both Debian (51%) and Fedora (65%) have
a peer fix before the integration of CSV fixes, we observe in RQ3 that maintainers do not
release CSV fixes faster in such cases. In addition, Debian (58%) and Fedora (59%) are
notified about the majority of fixed CSVs by upstream projects, even though they share a
mailing list with other Linux distributions (Operating system distribution security contact
lists online), indicating that Debian and Fedora are collaborating on developing fixes rather
than on the discovery of a vulnerability.

Hence, since the two studied distributions are major software ecosystems in the larger
Linux ecosystem, there is still room for more collaboration on fixing vulnerabilities at the
scale of the whole Linux ecosystem. This should lead to more benefits in terms of reduced
fixing time, especially since the majority of vulnerabilities of both Debian and Fedora are
CSVs (RQ2).

In addition, there is a need for better tracking of the collaborative fixing process of
vulnerabilities to enable the ability of evaluating and continuously improving the collabora-
tion model. For example, in the studied distributions, some of the collaborative work occurs
via email (both public and private mailing lists) or other channels, including reporting a
vulnerability to upstream, discussions before a fix is developed, and notifications of a vul-
nerability (with its fix). Some parts of the process happen under embargo, with some of the
work being opened up afterwards. Similarly, some vulnerability fixes are applied locally in
the distribution’s code base, while others come in through new version updates of packages.

Hence, there is a lack of traceability from a particular vulnerability fix to all the phases
of work involved. Since vulnerabilities have a large impact on software systems, having
effective collaboration is necessary to develop vulnerability fixes quickly for vulnerable
software systems and to minimize the losses of vulnerability exploits. Adding labels and
corresponding times for the collaborative behaviors (e.g., receiving the notification of the

Page 27 of 34 47Empir Software Eng (2023) 28:47

discovery of a vulnerability) in issue tracking systems might be a first step towards improved
traceability. Researchers could leverage this data to improve the collaboration model across
distributions in the Linux ecosystem.

Embargoed high-severity vulnerabilities have quicker fixes for users than non-
embargoed ones. Embargoes can reduce the risk of a vulnerability being exploited by
attackers before the fix has been developed. Red Hat states the expected benefit of embar-
goes as “we’ll fix these issues in private and release the update in a coordinated fashion in
order to minimize the time an attacker knows about the issue and an update is not avail-
able” (The hidden costs of embargoes online). We found in Fig. 15a that the embargoed
vulnerabilities have a higher impact on victim software systems. Figure 15c indicates that
74% of embargoed CSVs have been integrated into the distribution within 7 days after main-
tainers have been assigned the task, compared to 50% for non-embargoed CSVs. For the
testing phase, Fig. 15d indicates that 37% of embargoed CSVs passed testing within 7 days,
compared to 18% of non-embargoed CSVs.

However, this success comes at a cost, since fixing an embargoed vulnerability in secret
requires additional costs (The hidden costs of embargoes online). For this reason, Red
Hat has chosen to only embargo vulnerabilities having a high risk with respect to its
products (The hidden costs of embargoes online).

7 Threats to Validity

7.1 Internal Validity

We study vulnerability management based on vulnerability reports, bug reports and security
advisories in a given distribution. These three sources might not capture all activities related
to fixing vulnerabilities in a distribution. For example, developers have other channels (e.g.,
emails) where they discuss vulnerabilities. Our dataset does not include vulnerabilities in
the Long-Term-Support (LTS) versions of Debian releases since those are not recorded in
Debian’s issue tracker. In addition, the LTS versions are maintained by a group of volunteers
and companies, instead of by Debian itself (Debian long term support online). Nevertheless,
to the best of our knowledge, no prior work leverages the three data sources in a given
distribution to draw insights into how its security team, maintainers and upstream projects
collaborate to fix vulnerabilities. We encourage future work to add additional data sources
to study developer communication on vulnerability management.

Our study focuses on vulnerabilities with a valid CVE-ID and ruled out those with an
invalid CVE-ID.38 These invalid CVE-IDs may still correspond to vulnerabilities to a cer-
tain extent but they were invalid due to a variety of reasons. For example, the CVE website
stated that a CVE-ID could be rejected when further research determines the issue not to be
a vulnerability.

In RQ2, we only study CSVs across the studied distributions. We did not consider vul-
nerabilities that are found only in one of the studied distributions, since our focus on two
distributions only is not sufficient to conclude that such vulnerabilities would only impact
one distribution. On the other hand, the studied distributions reflect the root distribution of
two notable Linux distribution families (i.e., RPM-based and Deb-based) and both of them

38https://cve.mitre.org/cve/list rules and guidance/correcting counting issues.html

47 Page 28 of 34 Empir Software Eng (2023) 28:47

https://cve.mitre.org/cve/list_rules_and_guidance/correcting_counting_issues.html

have existed over a decade. Many prior works leveraged the data in these studied distri-
butions to analyze security vulnerabilities (Russell et al. 2018; Harer et al. 2018). Future
studies could consider adding other distributions to identify vulnerabilities that are specific
to one distribution (as opposed to being common to other distributions) and why they are
specific.

Our study involved a qualitative study performed by humans based on their experience
and knowledge as well as the available data sources, (e.g., vulnerability reports, bug reports).
To reduce the bias of our analysis, each vulnerability is labeled by two of the authors indi-
vidually and discrepancies are discussed until a consensus is reached. The data sources
might not capture all activities related to fixing vulnerabilities in the distribution. For exam-
ple, Debian has its continuous integration (CI) system39 perform automated tests against
each package when it and/or its dependencies have been updated. However, we cannot link
the logs in the CI system to vulnerability fixes because of the lack of explicit information
on how/why the test was triggered. For example, a package can be tested because of a bug
fix, a new feature, or its dependent packages that are updated.

7.2 External Validity

A threat to the external validity of our study is that we only studied vulnerability fixes and
propagation in Debian and Fedora. However, Debian and Fedora are two popular Linux
distributions that have existed for more than 10 years, as discussed in Section 4. In addition,
there are Linux distributions (e.g., Arch Linux) using another type of release model, i.e.,
rolling release. Such distributions release a new version once their code has been updated,
and might follow different practices to manage vulnerabilities. Thus, we cannot claim that
our results generalize to other Linux distributions that are not studied in this work. Hence,
future work should replicate this work to reach more general conclusions.

8 Conclusion

Our study focuses on 21,752 and 17,434 vulnerabilities in Debian and Fedora, respectively,
to study the practices of vulnerability management within a distribution and across the dis-
tributions. Our analysis shows that Debian and Fedora maintainers integrate vulnerability
fixes for the majority (50%) of vulnerabilities within 1 week. Fedora maintainers take a
longer time to test vulnerability fixes in the vulnerability fixing process. From the user per-
spective, the time during which users are not aware of vulnerabilities is 85 times longer
than the time during which users wait for vulnerability fixes after becoming aware, across
Debian and Fedora. Users wait for less than 2 weeks for the fixes of 75% vulnerabilities
after becoming aware.

Common security vulnerabilities (CSVs) are dominant across Debian (74%) and Fedora
(94%). These CSVs are easy to exploit, i.e., they have a median exploitability score of 8.6,
though with a medium impact (median of 5), according to CVSS score 2.0. Maintainers
spend more time testing vulnerability fixes for CSVs than integrating vulnerability fixes by
a median of 4.3 days across Debian and Fedora. Users wait for a median of 0.2 days to get
fixes of CSVs after the releases of their respective security advisories.

39https://ci.debian.net/doc/

Page 29 of 34 47Empir Software Eng (2023) 28:47

https://ci.debian.net/doc/

Finally, we conduct a qualitative study that investigates the sources through which main-
tainers become aware of CSVs and the practices with which maintainers manage CSVs. In
general, upstream projects provide notifications and fixes for the majority of fixed CSVs to
Debian (58%) and Fedora (59%). For the CSVs without an available fix, Fedora embargoes
half of them to prevent early disclosure since embargoed CSVs have a higher impact score,
according to CVSS score 2.0. Although the embargo policy makes maintainers become
aware of vulnerabilities later than non-embargoed vulnerabilities, maintainers integrate and
test fixes of the embargoed vulnerabilities faster than non-embargoed vulnerabilities. Addi-
tionally, Debian maintainers are more likely to integrate their own patches for CSVs, while
Fedora maintainers tend to integrate new upstream releases.

Our study is a first step to aggregate and empirically study several data sources in Linux
distributions to understand vulnerability management in practice. Our results suggest that
distribution maintainers collaborate to develop vulnerabilities together before public dis-
closure, while they integrate fixes into their distributions in parallel. Future work could
investigate additional practices by exploring other datasets (e.g., emails, developer com-
munication channels, vulnerability fix releases) and interviewing maintainers. Future work
could also investigate the practices of vulnerability management in upstream projects to
have comprehensive insights of the collaboration model in the Linux ecosystem.

Acknowledgements We would like to thank the anonymous reviewers for their insightful comments.

Data Availability Statement The datasets generated during and/or analysed during the current study are
available online.40

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

References

Adams B, Kavanagh R, Hassan AE, German DM (2016) An empirical study of integration activities in
distributions of open source software. Empirical Software Engineering (EMSE’16) 21(3):960–1001

Al Sabbagh B, Kowalski S (2015) A socio-technical framework for threat modeling a software supply chain.
IEEE Security & Privacy 13(4):30–39

Algarni A, Malaiya Y (2014) Software vulnerability markets: Discoverers and buyers. Int J Comput Inf Sci
Eng 8(3):71–81

Alhazmi OH, Malaiya YK (2008) Application of vulnerability discovery models to major operating systems.
IEEE Trans Reliab 57(1):14–22

Anderson R (2002) Security in open versus closed systems—the dance of boltzmann, coase and moore. Tech.
rep., Technical report. Cambridge University, England

Bilge L, Dumitraş T (2012) Before we knew it: an empirical study of zero-day attacks in the real world.
In: Proceedings of the 2012 ACM conference on Computer and communications security (CCS’12),
pp 833–844

Christey S, Martin B (2013) Buying into the bias: Why vulnerability statistics suck. Blackhat, Las Vegas,
USA, Tech, Rep 1

CVE (online) https://cve.mitre.org/. Last accessed: 2021-06-02
da Costa DA, Abebe SL, McIntosh S, Kulesza U, Hassan AE (2014) An empirical study of delays in the

integration of addressed issues. In: Proc. of the 30th int’l conf. on software maintenance and evolution
(ICSME’14), pp 281–290

40https://github.com/SAILResearch/suppmaterial-22-justina-vulnerability management in linux
distributions

47 Page 30 of 34 Empir Software Eng (2023) 28:47

https://cve.mitre.org/
https://github.com/SAILResearch/suppmaterial-22-justina-vulnerability_management_in_linux_distributions

Debian continuous integration (online) https://ci.debian.net/doc/. Last accessed: 2021-06-02
Debian long term support (online) https://wiki.debian.org/LTS. Last accessed: 2021-06-02
Debian packages (online) https://packages.debian.org/stable/. Last accessed: 2021-06-02
Debian releases (online) https://www.debian.org/releases/. Last accessed: 2021-06-02
Debian security faq (online) https://www.debian.org/security. Last accessed: 2021-06-02
Debian security faq (online) https://www.debian.org/security/faq. Last accessed: 2021-06-02
Debian security team (online) https://security-team.debian.org/security tracker.html. Last accessed: 2021-

06-02
Debian vulnerability disclosure policy (online) https://www.debian.org/security/disclosure-policy. Last

accessed: 2021-06-02
Duc AN, Cruzes DS, Ayala C, Conradi R (2011) Impact of stakeholder type and collaboration on issue

resolution time in OSS projects. In: IFIP International conference on open source systems, pp 1–16.
Springer

Ellison RJ, Goodenough JB, Weinstock CB, Woody C (2010) Evaluating and mitigating software supply
chain security risks. Tech. rep. Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst

Fedora - packagekit items not found (online) https://docs.fedoraproject.org/en-US/quick-docs/packagekit-
not-found/. Last accessed: 2021-06-02

Fedora - security basics (online) https://fedoraproject.org/wiki/SecurityBasics#Subscribing to Security
Announcement Services. Last accessed: 2021-06-02

Fedora - security bugs (online) https://fedoraproject.org/wiki/Security Bugs. Last accessed: 2021-06-02
Fedora - update policy (online) https://docs.fedoraproject.org/en-US/fesco/Updates Policy/. Last accessed:

2021-06-02
Fedora package sources (online) https://src.fedoraproject.org/?page=1&sorting=None. Last accessed: 2021-

06-02
Fedora release life cycle (online) https://fedoraproject.org/wiki/Fedora Release Life Cycle. Last accessed:

2021-06-02
Foundjem A, Adams B (2021) Release synchronization in software ecosystems. Empir Softw Eng 26(3):1–50
Frei S, May M, Fiedler U, Plattner B (2006) Large-scale vulnerability analysis. In: Proceedings of the 2006

SIGCOMM workshop on Large-scale attack defense (LSAD’06), pp 131–138
Frei S, Tellenbach B, Plattner B (2008) 0-day patch exposing vendors (in) security performance. BlackHat

Europe
Fruhwirth C, Mannisto T (2009) Improving CVSS-based vulnerability prioritization and response with

context information. In: 2009 3Rd international symposium on empirical software engineering and
measurement, pp 535–544. IEEE

Github - securing the world’s software (online) https://octoverse.github.com/static/github-octoverse-2020-
security-report.pdf. Last accessed: 2021-06-02

Guidelines and practices for multi-party vulnerability coordination and disclosure (online) https://www.first.
org/global/sigs/vulnerability-coordination/multiparty/guidelines-v1.1. Last accessed: 2021-06-02

Harer JA, Kim LY, Russell RL, Ozdemir O, Kosta LR, Rangamani A, Hamilton LH, Centeno GI, Key
JR, Ellingwood PM et al (2018) Automated software vulnerability detection with machine learning.
arXiv:1803.04497

Huang Z, DAngelo M, Miyani D, Lie D (2016) Talos: Neutralizing vulnerabilities with security
workarounds for rapid response. In: 2016 IEEE Symposium on security and privacy (SP’16), pp 618–
635. IEEE

Jiang Y, Adams B, German DM (2013) Will my patch make it? and how fast? case study on the linux kernel
2013 10Th working conference on mining software repositories (MSR’13), pp 101–110. IEEE

Joh H,Malaiya YK (2011) Defining and assessing quantitative security risk measures using vulnerability life-
cycle and cvss metrics. In: Proceedings of the 2011 international conference on security and management
(SAM’11), vol 1, pp 10–16

Kakimoto T, Kamei Y, Ohira M, Matsumoto K (2006) Social network analysis on communications
for knowledge collaboration in OSS communities. In: Proceedings of the international workshop on
supporting knowledge collaboration in software development (KCSD’06), pp 35–41. Citeseer

Klinke A, Renn O (2002) A new approach to risk evaluation and management: Risk-based, precaution-based,
and discourse-based strategies 1. Risk Analysis: An Int J 22(6):1071–1094

Kula RG, German DM, Ouni A, Ishio T, Inoue K (2018) Do developers update their library dependencies?
Empir Softw Eng 23(1):384–417

Li F, Paxson V (2017) A large-scale empirical study of security patches. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS’17), pp 2201–2215

LTS development (online) https://wiki.debian.org/LTS/Development#Prepare security updates for LTS.
Last accessed: 2021-06-02

Page 31 of 34 47Empir Software Eng (2023) 28:47

https://ci.debian.net/doc/
https://wiki.debian.org/LTS
https://packages.debian.org/stable/
https://www.debian.org/releases/
https://www.debian.org/security
https://www.debian.org/security/faq
https://security-team.debian.org/security_tracker.html
https://www.debian.org/security/disclosure-policy
https://docs.fedoraproject.org/en-US/quick-docs/packagekit-not-found/
https://docs.fedoraproject.org/en-US/quick-docs/packagekit-not-found/
https://fedoraproject.org/wiki/SecurityBasics#Subscribing_to_ Security_Announcement_Services
https://fedoraproject.org/wiki/SecurityBasics#Subscribing_to_ Security_Announcement_Services
https://fedoraproject.org/wiki/Security_Bugs
https://docs.fedoraproject.org/en-US/fesco/Updates_Policy/
https://src.fedoraproject.org/?page=1&sorting=None
https://fedoraproject.org/wiki/Fedora_Release_Life_Cycle
https://octoverse.github.com/static/github-octoverse-2020-security-report.pdf
https://octoverse.github.com/static/github-octoverse-2020-security-report.pdf
https://www.first.org/global/sigs/vulnerability-coordination/multiparty/guidelines-v1.1
https://www.first.org/global/sigs/vulnerability-coordination/multiparty/guidelines-v1.1
http://arxiv.org/abs/1803.04497
https://wiki.debian.org/LTS/Development#Prepare_security_updates_for_LTS

Ma W, Chen L, Zhang X, Zhou Y, Xu B (2017) How do developers fix cross-project correlated bugs? a case
study on the github scientific python ecosystem. In: 2017 IEEE/ACM 39Th international conference on
software engineering (ICSE’17), pp 381–392. IEEE

Nappa A, Johnson R, Bilge L, Caballero J, Dumitras T (2015) The attack of the clones: a study of the
impact of shared code on vulnerability patching. In: 2015 IEEE Symposium on security and privacy,
pp 692–708. IEEE

National vulnerability database (online) https://nvd.nist.gov/. Last accessed: 2021-06-02
Ohm M, Plate H, Sykosch A, Meier M (2020) Backstabber’s knife collection: a review of open source soft-

ware supply chain attacks. In: International conference on detection of intrusions and malware, and
vulnerability assessment (DIMVA’20), pp 23–43. Springer

Operating system distribution security contact lists (online) https://oss-security.openwall.org/wiki/
mailing-lists/distros. Last accessed: 2021-06-02

Ozment A, Schechter SE (2006) Milk or wine: does software security improve with age? In: USENIX
Security symposium, vol 6

Ramsauer R, Bulwahn L, Lohmann D, Mauerer W (2020) The sound of silence: Mining security vulnerabili-
ties from secret integration channels in open-source projects. In: Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop (CCSW’20), pp 147–157

Raymond E (1999) The cathedral and the bazaar. Knowledge, Technology & Policy 12(3):23–49
Reasons to use debian (online) https://www.debian.org/intro/why debian. Last accessed: 2021-06-02
Ristov S, Gusev M, Donevski A (2013) Openstack cloud security vulnerabilities from inside and outside.

Cloud Computing, 101–107
Russell R, Kim L, Hamilton L, Lazovich T, Harer J, Ozdemir O, Ellingwood P, McConley M (2018) Auto-

mated vulnerability detection in source code using deep representation learning. In: 2018 17Th IEEE
international conference on machine learning and applications (ICMLA’18), pp 757–762. IEEE

Schryen G (2009) A comprehensive and comparative analysis of the patching behavior of open source
and closed source software vendors. In: 2009 Fifth international conference on IT security incident
management and IT forensics (IMF’09), pp 153–168. IEEE

Securing debian manual - before the compromise (online) https://www.debian.org/doc/manuals/securing-
debian-manual/ch10.en.html#security-support-testing. Last accessed: 2021-06-02

Shahzad M, Shafiq MZ, Liu AX (2012) A large scale exploratory analysis of software vulnerability life
cycles. In: 2012 34Th international conference on software engineering (ICSE’12), pp 771–781. IEEE

The hidden costs of embargoes (online) https://access.redhat.com/blogs/766093/posts/1976653. Last
accessed: 2021-06-02

Telang R, Wattal S (2005) Impact of software vulnerability announcements on the market value of software
vendors-an empirical investigation. Available at SSRN 677427

US national institute of standards and technology (online) CVSS information. https://nvd.nist.gov/
vuln-metrics/cvss. Last accessed: 2021-06-02

Wang S, Nagappan N (2019) Characterizing and understanding software developer networks in security
development. arXiv:1907.12141

Wang X, Sun K, Batcheller A, Jajodia S (2019) Detecting “0-day” vulnerability: an empirical study of secret
security patch in OSS. In: 2019 49Th annual IEEE/IFIP international conference on dependable systems
and networks (DSN’19), pp 485–492. IEEE

Yilek S, Rescorla E, Shacham H, Enright B, Savage S (2009) When private keys are public: Results
from the 2008 Debian openSSL vulnerability. In: Proceedings of the 9th ACM Conference on Internet
Measurement (IMC’09), pp 15–27

Yin Z, Yuan D, Zhou Y, Pasupathy S, Bairavasundaram L (2011) How do fixes become bugs? In: Proceedings
of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software
engineering (FSE’11), pp 26–36

Zaman S, Adams B, Hassan AE (2011) Security versus performance bugs: a case study on firefox. In:
Proceedings of the 8th working conference on mining software repositories (MSR’11), pp 93–102

Zhang H, Wang S, Li H, Chen THP, Hassan AE (2021) A study of c/C++ code weaknesses on stack
overflow. IEEE Transactions on Software Engineering (TSE’21)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

47 Page 32 of 34 Empir Software Eng (2023) 28:47

https://nvd.nist.gov/
https://oss-security.openwall.org/wiki/mailing-lists/distros
https://oss-security.openwall.org/wiki/mailing-lists/distros
https://www.debian.org/intro/why_debian
https://www.debian.org/doc/manuals/securing-debian-manual/ch10.en.html#security-support-testing
https://www.debian.org/doc/manuals/securing-debian-manual/ch10.en.html#security-support-testing
https://access.redhat.com/blogs/766093/posts/1976653
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
http://arxiv.org/abs/1907.12141

Jiahuei Lin

Haoxiang Zhang

Bram Adams

Page 33 of 34 47Empir Software Eng (2023) 28:47

Ahmed E. Hassan

Affiliations

Jiahuei Lin1 ·Haoxiang Zhang1 ·Bram Adams2 ·Ahmed E. Hassan3

Jiahuei Lin
jhlin@cs.queensu.ca

Bram Adams
bram.adams@queensu.ca

Ahmed E. Hassan
ahmed@cs.queensu.ca

1 Software Analysis and Intelligence Lab (SAIL), Queen’s University Kingston,
Kingston, Ontario, Canada

2 Lab on Maintenance, Construction, and Intelligence of Software (MCIS), Queen’s University Kingston,
Kingston, Ontario, Canada

3 Software Analysis and Intelligence Lab (SAIL), Queen’s University Kingston, Kingston, Ontario,
Canada

47 Page 34 of 34 Empir Software Eng (2023) 28:47

http://orcid.org/0000-0002-3921-1724
mailto: jhlin@cs.queensu.ca
mailto: bram.adams@queensu.ca
mailto: ahmed@cs.queensu.ca

	Vulnerability management in Linux distributions
	Abstract
	Introduction
	Paper organization

	Background
	Common Vulnerabilities and Exposures (CVE) and Common Vulnerability Scoring System (CVSS)
	Vulnerability Management Process in Linux Distributions

	Related Work
	Vulnerability Lifecycles
	Vulnerability Fix Development

	Study Design
	Subject System Selection
	Data Collection
	Methodology
	RQ1: How fast are security vulnerabilities fixed within the studied distributions?
	Motivation
	Approach

	RQ2: What are the characteristics of common security vulnerabilities (CSVs) across the studied distributions?
	Motivation
	Approach

	RQ3: How do developers fix common security vulnerabilities (CSVs) across the studied distributions?
	Motivation
	Approach

	Results
	RQ1: How fast are security vulnerabilities fixed within the studied distributions?
	RQ2: What are the characteristics of common security vulnerabilities (CSVs) across the studied distributions?
	RQ3: How do developers fix common security vulnerabilities (CSVs) across the studied distributions?
	Results (awareness):
	Results (embargo):
	Results (vulnerability fix integration):

	Discussion
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	Declarations
	References
	Affiliations

