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Dependency management bots are increasingly being used to support the software development process, for

example, to automatically update a dependency when a new version is available. Yet, human intervention

is often required to either accept or reject any action or recommendation the bot creates. In this article, our

objective is to study the extent to which dependency management bots create additional, and sometimes un-

necessary, work for their users. To accomplish this, we analyze 93,196 issue reports opened by Greenkeeper,
a popular dependency management bot used in open source software projects in the npm ecosystem. We find

that Greenkeeper is responsible for half of all issues reported in client projects, inducing a significant amount

of overhead that must be addressed by clients, since many of these issues were created as a result of Green-
keeper taking incorrect action on a dependency update (i.e., false alarms). Reverting a broken dependency

update to an older version, which is a potential solution that requires the least overhead and is automatically

attempted by Greenkeeper, turns out to not be an effective mechanism. Finally, we observe that 56% of the

commits referenced by Greenkeeper issue reports only change the client’s dependency specification file to

resolve the issue. Based on our findings, we argue that dependency management bots should (i) be config-

urable to allow clients to reduce the amount of generated activity by the bots, (ii) take into consideration

more sources of information than only the pass/fail status of the client’s build pipeline to help eliminate false

alarms, and (iii) provide more effective incentives to encourage clients to resolve dependency issues.
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1 INTRODUCTION

Today’s software systems are rarely built from scratch, with client projects often making use of
specific versions of provider packages (libraries) in the form of dependency relationships. Because
dependency relationships enable code reuse, they have been shown to improve developer produc-
tivity, software quality, and time-to-market of software products [1, 2]. However, this often comes
at an increased cost on the client’s part of having to actively manage their dependencies [38], as
provider packages continuously release new versions containing bug fixes, new functionalities,
and security enhancements, and these updates can break API-backwards compatibility [7].

Clients are increasingly turning to software bots to alleviate the cost of managing their depen-
dencies. The aim of these bots is to reduce the workload of repetitive tasks faced by practitioners
(e.g., updating the client’s dependency constraints when a provider releases a new version) and
to notify client packages about dependency updates that break their build (e.g., automatically test-
ing new dependency releases that satisfy the client’s accepted dependency version range). In fact,
studies have shown that dependency management bots can help with encouraging developers to
keep their dependencies up-to-date [3, 38], and detecting and reporting build failures [34, 50, 52].

Integrating these bots into a project’s workflow requires a certain level of effort on the part of the
client developers, and once the bot begins performing its specific function, human intervention is
usually required to either accept or reject any action or recommendation the bot creates. One such
dependency management bot that clients can integrate into their projects is Greenkeeper.1 Each
time one of the providers a client depends on releases a new version, Greenkeeper opens a new
branch in the client project with that update. The client’s continuous integration (CI) tests kick
in, and Greenkeeper watches them to see whether they pass or fail. If the client’s CI pipeline fails
with the new provider version and the provider release is within the accepted dependency version
constraints specified by the client, the bot will create a Greenkeeper issue report (GKIR) in the
client’s repository with information stating which dependency caused the issue. Figure 1 provides
an example of a GKIR with the provider package name, current version, target version, and the
dependency type in the client project highlighted.

Regular users of the client package could potentially be affected by these GKIRs, so there is
incentive for clients to resolve GKIRs in a timely manner, yet this is not always possible in an
automated way. For example, if it is discovered that a new release of the provider is breaking the
client, dependency management bots often recommend downgrading a dependency to an older
version. This downgrade occurs by modifying the client’s dependency version constraints to only
accept a specific older version (a.k.a., version pinning). While this has been shown to be one of the
most applied workarounds requiring the least effort to resolve dependency issues [28], it introduces
a host of other issues that can affect the client unless manual measures are taken to constantly
update the dependency constraint to a newer version. For example, older versions of a provider
can contain security issues, and more recent versions of providers often include fixes related to
project stability [15]. In other words, tools like Greenkeeper will automatically attempt to version
pin the offending dependency when a GKIR is initially opened, in effect recommending to the
clients to employ an anti-pattern in their project.

1https://greenkeeper.io/.
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Fig. 1. An example of a Greenkeeper in-range breaking build update issue report with the provider package
name, current version, target version, and the dependency type in the client project highlighted.

While previous studies have found that bots are able to automate dependency updates [38, 52],
there is a lack of research investigating the introduced overhead that accompanies integrating with
these bots, the efficacy of common actions recommended by bots for resolving dependency issues,
or the size of the changes that are required to be made by client developers to resolve the issues
reported by these bots. Therefore, in this article, we perform an empirical study of four years of
Greenkeeper data to examine the extent to which automated dependency management bots can
either save or create unnecessary work in their client projects, and report on the lessons learned
from our analysis. Specifically, we investigate the following research questions:

RQ1: What is the overhead introduced in client projects by Greenkeeper? We observe that
Greenkeeper generates a significant amount of artifacts (e.g., issue reports (IRs) and comments)
that must be addressed by clients. GKIRs make up approximately half of the IRs in all projects, or
two-fifths in projects with a high number of IRs. The Greenkeeper bot itself generates nearly all
of the activity on GKIRs. The vast majority of comments on GKIRs are from Greenkeeper, with
more comments continuing to be generated the longer the GKIR remains open. Approximately
one-fifth of user comments on GKIRs indicate that the GKIR is a false alarm, meaning that, while
the client’s CI pipeline might have failed with the new provider release applied, the CI failure was
not in fact caused by the new provider release, and that the GKIR only serves to create noise in
the client project.

RQ2: Is automated dependency pinning an effective mechanism for resolving GKIRs? To
our surprise, we observe that automatically attempting to pin the dependency turns out to be a
relatively ineffective solution to resolving GKIRs, failing over two-thirds of the time. Yet, since
the updated dependency is the only difference between the GKIR branch and the project’s main
branch, pinning the dependency to the previous version (i.e., the version that was previously in use
on the project’s main branch) should in effect render the GKIR branch a duplicate of the project’s
main branch. After further manual analysis, we observe that GKIRs with pin attempts that fail
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are caused by issues unrelated to the dependency being updated, such as misconfigured pipeline
environments, and often are in fact false alarms that are unrelated to the dependency update.

RQ3: What are the performed code changes when resolving GKIRs? We observe that more
than half (56%) of commits that resolve GKIRs only modify dependency specification files, and that
57% of these commits only modify a single line in the client’s dependency specification file, usu-
ally to upgrade the dependency version specification. Commits referenced by GKIRs that require
changes to the client’s code are comparable in size to commits referenced by non-GKIRs, and tend
to include changes to a mixture of different file types.

The aforementioned findings show that significant overhead can be introduced in client projects
by dependency management bots in the form of numerous notifications and false alarm issues.
To reduce this overhead, we argue that dependency management bots should take into account
more fine-grained information than simply the pass or fail status of the client’s CI pipeline when
attempting to update a dependency. Specifically, bots should be able to distinguish between CI
pipeline failures caused by existing issues in the client’s project (e.g., incompatible Node version
errors) and valid CI pipeline failures caused by the updated dependency. Additionally, dependency
management bots should be mindful of the trade-offs introduced by different features that could
increase or reduce the overhead introduced by the bot.

Our study presents the following contributions:

— An empirical investigation of the overhead introduced by dependency management bots
(RQ1), the efficacy of recommended actions by the bot (RQ2), and the size of manual changes
required by developers to resolve issues created by the bot (RQ3);

— A discussion of practical implications for designers of automated dependency management
bots;

— A dataset to help foment further empirical investigations on the related fields. In addition,
we make our parsers used to extract dependency information from GKIRs public, so that
they can be reused by developers and researchers to aid further studies [48].

2 BACKGROUND & RELATED WORK

In this section, we provide a more in-depth description and discuss the existing work concerning
dependency management and software bots.

2.1 Dependency Management

As most client packages use provider packages through dependency relationships [23, 54], it is
important to standardize how these relationships are tracked. Semantic Versioning2 (SemVer)
has become a popular policy for communicating the kinds of changes made to a software package.
A SemVer-compatible version is a version number composed of a major, minor and patch number
that allows maintainers to logically order package releases. The efficacy of this policy has been
studied in previous work [16, 19, 45, 46].

Amongst others, SemVer is adopted in the npm3 ecosystem,4 where provider packages need to
specify the version number of each release in their package.json metadata file.5 In turn, client pack-
ages can designate a dependency relationship with a provider package in their package.json file as
either a runtime dependency, which is required by the client package in a production environment,

2https://semver.org.
3https://www.npmjs.com/.
4https://docs.npmjs.com/misc/semver.
5https://docs.npmjs.com/files/package.json.
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or a development dependency, which is only needed by the client package for local development
and testing.

In addition to the dependency relationship type, clients can specify whether they would like
to accept either a specific version or a range of versions from the provider. If a specific version
is used (i.e., version pinning), the client will only accept that unique version of the provider. If a
version range is used, the provider is implicitly updated whenever a new release from the provider
is available that satisfies the existing version range statement in the client package (i.e., in-range
update). Version ranges are constrained using a set of operators that specify versions that satisfy
the range (e.g., “^” to accept only minor and patch updates, “∼” to accept only patch updates, etc.).
For example, if a client specifies an accepted version range of ^1.0.0 for a provider, and that
provider releases version 1.0.1, that provider update is in-range for the client, and will be im-
plicitly updated. In other words, if other developers clone the client project (i.e., client developers)
and install the client’s dependencies, they would receive version 1.0.1 of the provider package.
Additionally, if other projects make use of the client’s package as a dependency (i.e., client users)
and therefore transitively depend on the client’s dependencies, they would also receive version
1.0.1 of the provider package when they install their dependencies, which includes the client’s
published package.

To illustrate this, Figure 2 shows an example of how the dependency versioning statement of a
client package C for a provider package P affects the resolved version of P that is used by C when
C is built. Initially atT0, P has released version 1.0.0 and C specifies a versioning constraint as the
range statement "P":"^1.0.0" (i.e., implicitly accepting versions ≥1.0.0 ∧ <2.0.0 of P). Therefore,
when C is built, it will use version 1.0.0 of P. At T1, P releases version 1.0.1. Because this version
falls within C’s accepted version range, this version will now implicitly be used when C is built.
AtT2, C changes their dependency version statement for P from "P": "^1.0.0" to "P": "1.0.0"
(i.e., pinning P to version 1.0.0). Now when C is built, only version 1.0.0 of P will be used. This
can be seen at T3, where P releases version 1.0.2, but C will continue to explicitly use version
1.0.0. In other words, not only will C no longer benefit from any new features released by P
in the future, but they have also implicitly downgraded P from 1.0.1 to 1.0.0. At T4, C again
decides to modify their dependency version statement, this time changing from "P": "1.0.0" to
"P": "^1.0.0" (i.e., unpinning P and again implicitly accepting versions ≥1.0.0 ∧ <2.0.0 of P).
Now when C is built, version 1.0.2 of P will be used. Finally, at timeT5, P releases version 1.0.3,
which falls within C’s accepted version range, and therefore will now be used when C is built.

While practitioners stand to reap the many benefits that come with reusing software systems
that have been previously built and are maintained by other developers, these dependencies often
come with the increased cost of having to be managed and updated. An important decision that
is faced by clients is whether they should constrain a dependency to a single specific version, or
automatically accept a range of versions from the dependency. By constraining their dependencies,
clients are able to drastically reduce the risk of a dependency update breaking their project. In fact,
Bogart et al. [6] found the risk of breaking updates to be one of the main concerns that clients
have when determining whether they should update their dependencies. However, clients must
manually modify their dependency constraints if they want to take advantage of bug fixes and
new features in specific versions as they are released by the provider.

By accepting a range of versions from a dependency, clients are able to automatically receive
minor updates as they are released, potentially reducing the overhead of managing their depen-
dencies. However, there is a risk that providers will not respect the SemVer policy [10, 25, 29]
and release new versions that are not backwards-compatible. Situations where the new provider
release falls within the client’s range of accepted versions and ends up breaking the client’s build
(i.e., an in-range breaking update) can be a major problem for clients, especially if the provider is
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Fig. 2. An example of how the dependency versioning statement of a client package C for a provider package
P affects the resolved version of P that is used by C when C is built.

a runtime dependency, as both client developers and client users will be impacted while the issue
remains unaddressed, being unable to successfully build or install the client project.

Client developers can protect themselves from in-range breaking updates by using lock files (e.g.,
package-lock.json) in their project. The lock file will describe the entire dependency tree of the
project as it is resolved when created, including nested dependencies with specific versions. The
lock file is intended to pin down (i.e., lock) all versions for the entire dependency tree at the time
that the lock file is created, and is usually included to the client projects repository, so that other
client developers can install the exact dependencies specified in the lock file. In other words, this
ensures that installations remain identical and reproducible throughout the client project’s entire
dependency tree, across other developers, such as team members working together, and across
systems, such as when running a CI build.6

However, while including a lock file in the client’s repository might protect other client devel-
opers from in-range breaking updates, it does not protect the users of the client package from
these issues. This is because “package-lock.json” cannot be published to npm.7 This means that
if a user of the client package (e.g., another developer with their own project) installs the client’s
published package from npm (rather than, say, another client developer cloning the git repository),
the user will never download the client’s package-lock.json file, and therefore it will be com-
pletely ignored when the client’s dependencies (transitive dependencies to the user of the client
package) during the installation, allowing users of the client’s package to use any version of the
client packages dependencies that are compatible with the version ranges dictated by the client’s
package.json file. This is done by npm in order to reduce the amount of package duplication
caused when lots of a package’s dependencies all depend on slightly different versions of the same
transitive dependency.

Multiple studies have examined how to detect breaking changes in API updates [9, 29, 33].
Specifically, Mezzetti et al. [37] and Møller and Torp [42] describe the NoRegrets and NoRegrets+
tools, respectively, that generate models for both the pre-update and the post-update version of

6https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json.
7https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json#package-lockjson-vs-npm-shrinkwrapjson.
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a provider, then compare the models to identify type regressions. Mujahid et al. [39] describe a
crowd-based approach for detecting breaking changes in provider releases by leveraging the auto-
mated test suites of multiple client projects that depend upon the same dependency to test newly
released versions.

2.2 Recovering from Dependency Issues

If a dependency update breaks a client’s build, the client may resort to version pinning their de-
pendencies to resolve the issue [13, 30]. Version pinning a dependency involves changing the
dependency specification from a range statement to a specific version statement, in effect locking
the dependency to the previously known working release, as can be seen at T2 in Figure 2. In this
example, the provider P may have made a backwards-incompatible change when they released
version 1.0.1, creating an issue in the client package C and prompting C to pin P to the previous
working version (i.e., 1.0.0).

Version pinning a dependency is a common practice, usually motivated as a workaround to fix
breaking updates that occur from a dependency releasing a backwards-incompatible change. Jafari
et al. [28] found that developers choose to pin some of their dependencies in over 52% of npm
projects, and Cogo et al. [13] found in their study on dependency downgrades that 49% of all
downgrades occur due to a replacement of a version range statement with a specific version (i.e.,
pinning the dependency).

Pinning is a legitimate option when developers do not have the time or resources to fix an issue
introduced by a dependency update, as pinning is the action that requires a minimum overhead
to potentially resolve these type of issues. However, unless manual measures are taken to update
the dependency constraint when new versions are released, the client will not receive bug fixes or
new functionalities from the provider [28]. Additionally, Zerouali et al. [56] found that technical
lag, which is used to quantify packages lagging behind with respect to using the latest version of
their dependencies, is often caused by clients using strict dependency version constraints.

To detect whether clients would be affected by a dependency update, Møller et al. [41] propose
a simple pattern language for describing API access points that are involved in breaking changes,
and provide an accompanying program analysis tool for locating which parts of the client code may
be affected by the breaking change. Nielsen et al. [44] go a step further with their tool JSFIX, which
detects the locations affected by breaking changes in dependency updates, then transforming those
parts of the code to become compatible with the new provider version.

2.3 Dependency Bots

Bots can be defined as tools that perform repetitive predefined tasks to save developers’ time, in-
crease their productivity, and support them in making smarter decisions [11, 52]. As Storey and
Zagalsky [50] and Lin et al. [34] found, bots are useful for automatically completing a wide vari-
ety of chores, such as dependency management, detecting flaky tests, and creating issues when
a service fails. Wessel et al. [52] showed that bots are primarily used for reporting build failures,
decreasing code review time, and automating CI pipelines. Bots are especially prevalent in the area
of dependency management [3, 22, 32, 38, 51, 53].

Greenkeeper, Dependabot,8 and Renovate9 are popular dependency management bots that
clients can integrate into their projects to automate dependency updates. All of these bots perform
the same overarching task: to help clients keep their dependencies up-to-date. This is accomplished
by monitoring the client’s dependencies, and automatically testing new dependency releases to see

8https://github.com/dependabot.
9https://renovatebot.com.
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whether they are compatible with the client project. When one of a client’s dependencies releases
a new version, the bot will create a fresh branch with the new version applied, run the client’s
CI pipeline, and notify the client of the results with the option to update their dependency spec-
ifications. In our study, we focus on data from Greenkeeper because the artifacts Greenkeeper
creates (i.e., GKIRs) are easily identifiable and require client developers’ attention. Recall that in-
range breaking updates can potentially affect the users of a client’s project, and therefore should
be given special attention by client developers. Greenkeeper also takes care of corner cases that
don’t require client developer’s attention (e.g., when client’s pin their dependencies), which makes
the data more suitable and reliable to study the phenomenon of interest. Additionally, clients must
make the deliberate decision to integrate with Greenkeeper (as opposed to Dependabot, for ex-
ample, which is automatically enabled on client projects on GitHub to open security PRs,10 which
clients may end up paying less attention). These attributes make Greenkeeper an ideal dependency
management bot to study in the context of generating overhead for clients. Therefore, although
we explain in further detail how Greenkeeper works, the previously mentioned dependency man-
agement bots work in a similar manner.

Greenkeeper sits between the client and their ecosystem package manager, watching the
providers the client depends on. Each time one of the providers releases a new version, Green-
keeper creates an isolated branch with that dependency update. The repository’s CI pipeline runs
on the new branch, and Greenkeeper watches the results to see whether they are successful. Based
on the test results and the client’s dependency constraints, Greenkeeper will open a GKIR in the
client’s repository with information stating which dependency update caused the problem, an ex-
ample of which can be seen in Figure 1.

Since dependency updates that cause GKIRs to be created are in-range breaking updates, they can
directly affect users of the client package if the offending dependency is a runtime dependency. As
we discussed in Section 2.1, since the client’s dependency constraints automatically allow for the
new version of the dependency to be accepted when users install the client package, users will be
unable to successfully build or install the client package while the GKIR remains unresolved, even
if the client makes use of lock files in their project. Therefore, GKIRs can represent major issues
for the client, and there is incentive for the client developers to resolve them in a timely manner.

In addition to being alerted when a new GKIR is created in their project, clients will also receive
notifications for any activity that occurs on these GKIRs. One of the biggest drivers of these notifi-
cations is Greenkeeper itself. When a GKIR is first created, Greenkeeper will often attempt to pin
the dependency that caused the GKIR to be opened, as explained before. Greenkeeper will then
comment on the GKIR whether the client’s tests are passing again with the pinned dependency. If
the client’s tests continue to fail, the client must manually resolve the issue with a solution that
potentially induces a higher level of overhead. This could include either adapting their codebase
to be compatible with the new release of the provider, or by downgrading to an earlier version of
the provider that their project is compatible with. However, if the pin is successful, Greenkeeper
provides a link to create a pull request (PR) that commits the pinned dependency version speci-
fication to the main repository branch. Figure 3 shows an example of Greenkeeper notifying the
client that their tests are passing again (3(a)) versus that their tests are still failing (3(b)) with the
affected provider version pinned to the previous release.

Greenkeeper will continue to generate activity on GKIRs while the GKIR remains open. For
example, if the dependency that caused the GKIR to be created releases a new version while the
GKIR is still open, Greenkeeper will automatically re-run the client’s tests with the new version of

10https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-

dependencies/configuring-dependabot-security-updates#supported-repositories.
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Fig. 3. Examples of comments from Greenkeeper providing the results of automatically attempting to pin
the provider when a GKIR is created.

Fig. 4. Examples of comments from Greenkeeper when a new version from a provider that caused a GKIR is
released.

the dependency and notify the client whether their tests are passing again with the new version by
commenting on the GKIR thread. Figure 4 shows an example of Greenkeeper notifying the client
that their tests are passing again (4(a)) versus that their tests are still failing (4(b)) with a new
version of the provider that caused the GKIR to be created. This feature allows for clients to be
notified if the GKIR can actually be resolved by actions taken by the provider, with minimal effort
on the client’s part. For example, the provider may realize they had released a breaking update,
and perform a rapid release to correct the issue. Instead of rushing to fix the GKIR on their side,
clients can simply wait for the provider to fix the issue, and Greenkeeper will notify the client if
the issue is resolved.

Greenkeeper recognizes that clients may depend on multiple subpackages from the same
provider that are maintained in the same related codebase (i.e., monorepo package)11. For example,
if a client were to depend on the Jest12 provider, the client could depend on the core jest package,
as well as the jest-cli and the jest-resolve sub-packages. These monorepo packages tend to release
new versions of their subpackages as a group, and if Greenkeeper were to treat each of these
subpackages individually, the clients would be flooded with new notifications for each subpack-
age they depend on when the provider releases an update. Therefore, in an effort to reduce the

11https://greenkeeper.io/docs.html#monorepo-dependencies.
12https://github.com/facebook/jest.
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overhead introduced to the client, Greenkeeper will group releases from a predefined set of popular
monorepo providers together (e.g., Angular,13 Babel,14 Jest, and React.15) into bundled IRs.

Bots and other third-party tools like repository badges that aim to ease the task of dependency
management for developers have previously been studied. Alfadel et al. [3] examine the use of
Dependabot for automatically creating PRs to fix dependency vulnerabilities in a client’s project.
They found that approximately 65% of Dependabot security PRs are merged and integrated in the
projects, usually within a day of being opened, and that 94% of PRs that are not merged are closed
by Dependabot itself. Interestingly, they found that half of the PRs that are not merged were
closed by Dependabot because a newer version of the affected dependency was released. Their
work specifically examines the efficacy of Dependabot for increasing awareness of dependency
vulnerabilities and whether the tool helps developers mitigate vulnerability threats in JavaScript
projects,whereas we focus in our study on the potential overhead introduced by dependency man-
agement bots.

Mirhosseini and Parnin [38] conducted a study on the effectiveness of different notification tech-
niques designed to help developers keep their dependencies up-to-date. They found that projects
that use PR notifications in the form of dependency management bots (e.g., Greenkeeper) and
projects that use badge notifications (e.g., David-DM.16) upgraded their dependencies 1.6 and
1.4 times as often, respectively, as projects that did not use any tools. While their work specifically
looks at whether tools like Greenkeeper can help developers keep their dependencies up-to-date,
in our study, we look to measure the degree of unnecessary work that these types of tools create
in client projects that use them.

3 DATA SET

In this section, we discuss how we collected the data set to address the RQs outlined in the in-
troduction. We use the workflow of Figure 5: (i) we identify projects on GitHub17 that use the
Greenkeeper bot, (ii) we collect all IRs for each project identified in the previous step, and extract
the necessary information from each GKIR, (iii) we collect any supporting artifacts related to each
GKIR identified in the previous step. Next, we provide a more in-depth explanation of each step
in our data-collection workflow.

3.1 Identify Projects Using Greenkeeper

To identify the projects using Greenkeeper, we first identify projects containing GKIRs. For this,
we leverage the title of the GitHub IRs, since GKIRs have a consistent prefix for their titles, namely
“An in-range update of. . . ”, as well as a user.login attribute of greenkeeper[bot], and can therefore
be distinguished from non-GKIRs. We use the GitHub Search API18 to search for IRs on GitHub
that match this criteria. Each IR record has an associated project attribute. So, once we identify
which IRs are GKIRs, we are able to construct a list of GitHub projects that have integrated with
the Greenkeeper bot and received at least one GKIR. One of the prerequisites to integrate with
Greenkeeper is that the project must have at least one package.json file somewhere in the project,19

which implies that all client projects that have integrated with Greenkeeper are part of the npm
ecosystem. In total, we extract a list of 9,632 GitHub projects.

13https://github.com/angular/angular.
14https://github.com/babel/babel.
15https://github.com/facebook/react.
16https://david-dm.org/.
17https://github.com/.
18https://docs.github.com/en/rest/reference/search.
19https://greenkeeper.io/docs.html#prerequisites.
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Fig. 5. Overview of the data collection process.

3.2 Collect and Parse GKIRs

To build our data set of IRs, we use the GitHub API 20 to retrieve all IRs opened in the list of projects
we collected in Section 3.1. This step is necessary as a follow up to the step in Section 3.1 to make
sure we capture all IRs from these projects, not just GKIRs. We separate the IRs into GKIRs and
non-GKIRs using the same criterion described in Section 3.1. GitHub considers PRs to be a type of
issue, however, we exclude PRs from our analysis, as our study focuses on actual IRs, rather than
the review process involved with dependency management. Overall, this process leaves us with
93,196 GKIRs and 573,430 non-GKIRs.

To understand the types of providers and provider updates that cause GKIRs, we extract the
name of the provider package, the current version of the provider used by the client and the newly
released target version of the provider, and whether the provider is a development dependency or
a runtime dependency in the client project. For the majority of GKIRs, this information is included
in the body of the GKIR. However, in some cases, depending on the version of Greenkeeper used
in the client project, not all of this information is available on the GKIR. Specifically, we are not
able to extract the provider dependency type from 4% of GKIRs. When this information is required
for our analysis, we omit the GKIRs that are missing this data from our study.

20https://docs.github.com/en/rest.
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The format of the GKIRs is not always consistent. For example, Greenkeeper will group releases
from a predefined set of popular monorepo providers together (e.g., Angular, Babel, Jest, and Re-
act). Additionally, clients can manually specify whether certain provider releases can be grouped
together for their projects. This means that all provider updates made by Greenkeeper will be bun-
dled together into a single GKIR,21 with information about each provider in the bundle in the body
of the same GKIR. We found that overall 4.3% of GKIRs correspond to bundled GKIRs. We iden-
tify nine unique GKIR templates based on the version of Greenkeeper that the client was using at
the time the GKIR was created, as well as whether the GKIR contained bundled updates. To parse
each of these templates, we build nine unique parser implementations that are able to detect the
type of GKIR and extract the necessary information from the GKIRs using regular expressions. We
make our parsers available for reuse by developers and researchers, as well as to verify the parsers’
correctness [48].

3.3 Collect Artifacts Related to GKIRs

To understand the activity generated on GKIRs and the maintenance level required to resolve
GKIRs, we gather any artifacts related to the GKIRs collected in the process described in Section 3.2.
In particular, we retrieve all comments on each GKIR, as well as any commits referenced by GKIRs
to analyze the level of activity generated on GKIRs and the types of changes developers create
to resolve GKIRs, respectively. These artifacts are retrieved in the form of issue events,22 which
are created whenever an interaction related to the issue occurs (e.g., a user references the IR from
a PR). We use the user_login attribute on the GitHub comment records to distinguish between
comments left by users and comments left by bots, collecting a total of 10,724 comments from users
on GKIRs, 354,901 comments from bots on GKIRs, and a total of 2,044 unique commits referenced
by GKIRs.

Finally, we collect the number of stargazers each project has on GitHub, which we use as a
measure of popularity of the project [8]. We also determine whether the project is available as a
provider package by searching for the project’s name on the npm registry. In order for a project to
be available to download in the npm ecosystem as a provider package, it must be available on the
npm registry. However, a client package can make use of a provider package available on the npm
registry without itself being available on the registry (i.e., it is possible for a project to act as a client,
a provider, or both on npm). We find that 76.1% (7,322) of the projects in our dataset are available
to download on the registry. We use these projects specifically to explore how long it takes for
developers to address GKIRs, since GKIRs can potentially affect the users of these packages.

The collected data is available as part of our supplementary package [48].

4 RESULTS

In this section, we present the results for each of our RQs. For each RQ, we discuss the motivation,
the approach we used to address the RQ, and our findings.

4.1 RQ1: What Is the Overhead Introduced in Client Projects by Greenkeeper?

Motivation. While software bots in general are useful for automating many different tasks, prior
research has shown that they have the potential side-effect of disrupting developers in their
work [50, 53]. However, there is a lack of investigation to determine whether that is the case
for dependency bots and what types of overhead these specific types of bots introduce. Wessel
et al. [52] found that package maintainers complain that bots in open source software (OSS)

21https://greenkeeper.io/docs.html#monorepo.
22https://docs.github.com/en/rest/reference/issues#events.
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projects provide incomprehensive or poor feedback on PRs, and that they are often overwhelmed
with notifications, thereby increasing the level of effort required to address any issues created by
the bot. Therefore, we consider overhead in the context of dependency management as referring to
the need for developers to address issues or recommendations created by the bot in their projects.
This includes any form of notification that requires developer’s attention, and may consist of a
significant amount of noise (e.g., if the GKIR is created as a result of some issue unrelated to the
dependency update, and therefore is a false alarm).

To that end, we explore the overhead that is introduced in clients who use tools like Greenkeeper.
Specifically, we investigate (1) how prevalent are GKIRs in client projects and what are the artifacts
(e.g., comments) created as a result of these GKIRs (Section 4.1.1)?, (2) how long does it take for
clients to address these artifacts (Section 4.1.2)?, and (3) are these artifacts actually useful to clients
(Section 4.1.3)?

4.1.1 How Prevalent are GKIRs in Client Projects and what are the Artifacts (e.g., Comments)

Created as a Result of these GKIRs?

Approach. We first examine the proportion of studied projects’ issues that are GKIRs, beginning
from the point in time when Greenkeeper first created a GKIR in each project. We use this point
in time as a proxy for when each project first adopted Greenkeeper. Exploring this metric can
provide a sense of how prevalent Greenkeeper is in projects that adopt it. We aim to reduce any
bias introduced by projects with a low number of IRs, as these cases may skew the proportion
of GKIRs in a project (e.g., a project with only three IRs, two of which are GKIRs will have a
proportion of two-thirds). Therefore, for this RQ, we first calculate the median number of IRs for
projects in our dataset, and then specifically analyze projects that have at least the median number
of total IRs.

If an IR has been closed, it is an indicator that someone (e.g., a human developer or a configured
bot) has decided that either the issue has been fixed, or that the issue is not, in fact, a problem for
the project in question (i.e., a false alarm), and can be closed. Therefore, we consider any GKIRs that
have been closed to be resolved. We examine both the overall proportion of GKIRs that have been
closed versus those that remain open, as well as each individual project’s proportion of GKIRs
that have been closed. These metrics can provide a sense of how much attention is required by
Greenkeeper from package maintainers compared to the rest of the project. We compare each
project’s proportion of closed GKIRs to non-GKIRs to discover whether GKIRs are resolved at a
higher rate.

Findings. Observation (1) Half of the IRs in projects that have integrated with Green-

keeper are GKIRs. This represents a very large proportion of IRs to be created by a single bot.
To account for packages with a significant number of IRs in our results, we perform the same anal-
ysis only on projects that have at least the median number of total issues. We find that 41.7% of IRs
in these projects are GKIRs, which is still a high percentage of a project’s IRs to be created by a bot.
The distributions of the proportion of GKIRs per project are shown in Figure 6. This observation
suggests that Greenkeeper is very prevalent in client projects that adopt it, and requires much
attention from client developers.

Observation (2) Clients close approximately the same proportion of GKIRs as other issues
in a project. We consider a GKIR being closed to indicate that it was determined that the GKIR has
either been fixed or the GKIR is not a problem. Overall, we observe that 82.3% of GKIRs are closed
(i.e., resolved), compared to 79.8% of non-GKIRs. This high proportion of closed GKIRs indicates
that developers are highly responsive to these issues, as a developer would have had to determine
that the GKIR has either been fixed or the GKIR is not a problem in order to close the GKIR. Of the
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Fig. 6. Violin-plot showing the distribution of the proportion of project issues that are in-range breaking
build update issues. The dashed lines indicate the first quartile, median, and third-quartile.

17.7% of GKIRs that are not closed, we find that 99% do not have any form of interaction from a
client developer (e.g., a comment or a referenced commit), indicating that these GKIRs are simply
ignored by the client developers.

4.1.2 How Long Does it Take for Clients to Address these Artifacts?

Approach. There is incentive for clients to resolve GKIRs in a timely manner, especially if the
offending dependency is a runtime dependency, as users of the client’s project will be affected
by the GKIR while the issue remains unaddressed, being unable to successfully build or install
the client project. However, this issue is only relevant to clients who have dependent projects.
Therefore, for this analysis, we only examine projects that have at least 10 stars on GitHub, which
is a measure of package popularity [8], and whose package name is available on the npm registry,
which indicates that the client package is also available as a provider package for other projects
to depend on. After applying this filter, we find that 32.7% (3,152) of the client projects in our
dataset meet this criteria. For these projects, we analyze the amount of time it takes for GKIRs to
be resolved (closed) compared to non-GKIRs. To do this, we calculate the distribution of the time
difference (in days) between the creation date and the close date for closed GKIRs and non-GKIRs
for each project.

We compare the two distributions for each project and verify whether they are statistically dif-
ferent. We test the null hypothesis that both distributions do not differ from each other after using
the Wilcoxon Rank Sum test (α = 0.05) [5] and correct the resulting p values using Bonferroni
type adjustment [4]. For statistically significant distributions, we assess the magnitude of the dif-
ference with the Cliff’s Delta (d) estimator of effect size [12]. To classify the effect size, we use
the following thresholds [47]: negligible for |d | ≤ 0.147, small for 0.147 < |d | ≤ 0.33, medium
for 0.33 < |d | ≤ 0.474, and large otherwise. We report the proportion of associated projects with
each effect size, as well as the distributions of the median time-to-close GKIRs and non-GKIR per
project.

Findings. Observation (3) Popular projects that are available as provider packages take a
median of 6 days to resolve GKIRs, which is in line with non-GKIRs. During these 6 days,
users of these popular client projects could potentially be affected by the issue that caused the GKIR,
which is a considerably long time for a package to be in a broken state. We consider whether clients
may resolve GKIRs faster depending on if the offending dependency was a runtime dependency or
a development dependency. Approximately three-quarters of GKIRs were opened for updating a
provider package that was a development dependency of the client. This means the dependency is
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Table 1. String Patterns for Classifying Types of Greenkeeper Comments

Comment Type String Pattern

Failing new release Your tests are still failing with this version
Passing new release Your tests are passing again with this version
Failed pin attempt ^After pinning to .* your tests are still failing
Passing pin attempt ^After pinning to .* your tests are passing again

not required by the client project in production, and the client’s users will not be affected by any
issues caused by the dependency. GKIRs for these types of dependencies are resolved in a median
of 6.5 days. The remaining quarter of GKIRs were for runtime dependencies, which are required
by the client in production. In these cases, if the GKIR was indeed caused by the dependency, then
new installs of the client project will fail because of the new dependency release. GKIRs for these
types of dependencies are resolved in a median of 5.71 days. While the difference between the time
taken to close GKIRs opened for development or runtime dependencies is statistically significant
(p < 0.05), the effect size is negligible (|d | = 0.035), implying that the type of dependency that
caused the GKIR does not affect how fast client developers take to resolve these issues.

When comparing projects’ median time taken to close GKIRs and non-GKIRs, we find that the
vast majority (98%) of the distributions are not statistically significant or have a negligible effect
size. This implies that developers tend to resolve GKIRs at the same speed as non-GKIRs in their
projects.

4.1.3 Are These Artifacts Actually Useful to Clients?

Approach. To explore the notifications that clients receive in addition to the notification caused by
the creation of a GKIR, we examine the activity that occurs on GKIRs in the form of comments and
events. We use specific patterns (Table 1) that are used by the bot at the time of the data collection
to match types and frequency of comments made by Greenkeeper on GKIRs (see Section 2.3).

The comments left by users on GKIRs provide a unique source of information, as developers
may provide their rationale for considering the GKIR as resolved before closing the IR. We use the
user_type attribute on the comment records to distinguish between comments left by users and
comments left by bots.

We lemmatize the comments left by users on GKIRs, and initially set each lemmatized comment
body in the full data set as unclassified. The following steps are then used to classify the comments:
(1) the first author manually examined a sample size of 50 unclassified comment bodies from the
full data set to extract common patterns that could be grouped into similar categories, (2) these
new patterns are added to a set of regular expressions, (3) the full data set of lemmatized comments
are then re-classified with the updated regular expressions, (4) the process is repeated until any
new extracted patterns do not classify a threshold of at least 1% of the unclassified comments.
Once this threshold was reached, 74.8% of the comments in the full data had been matched to one
of following three overarching categories: Referenced Fix (i.e., the comment indicates the GKIR
has been resolved), False Alarm (i.e., the comment indicates the GKIR is a false alarm), and Tool
Mentioned (i.e., the comment mentions Greenkeeper, the CI system, or some other tool used by the
client developers). Each overarching category consists of multiple sub-categories, the patterns for
which are shown in Table 2. We then examine the proportion of each of these categories as a lower
bound estimate of how often developers are responding to GKIRs due to a dependency problem or
are indicating the GKIRs to be false alarms.

Findings. Observation (4) GKIRs generate a significant amount of noise in client projects.
The vast majority (96.8%) of comments on GKIRs are from the Greenkeeper bot itself. 80% of GKIRs
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Table 2. String Patterns for Classifying “False Alarm” and “Fix Referenced” User Comments on GKIRs

Category Sub Category Regular Expression

Fix Referenced PR URL https:\/\/github\.com\/[\S]*\/(pull)\/[\S]*
Closed By ((closed|fixed|resolved|done|updated)( in|by|via|with)+#\d*)
PR/Commit Number (^#\d*|(merged|close|pr|see).*#\d*)
Fix Mentioned (resolve|fix|bump|merge|upgrade|done|

clos(e|ing)|solved)

False Alarm

Flaky flake|flaky|flakiness|fluke|unrelated
Inconsistent (inconsistent|brittle|unstable|

spurious( unit)?) test
Build Hiccup (server|test|CI|build) (hiccup|is actually passing|failed for

other reasons)
Random Failure (random|intermittent)( build|test|CI)? (failure|error)
Rerun Pipeline re-?(run|ran|starting|build|tried|

trigger|start)
False Positive false (positive|alarm|negative|alert|flag)|

invalid|non-issue|no action required|obsolete(d)?|not
relevant

Timeout time-?out

Tool Mentioned Mention CI System (Travis|CircleCI|Cirecl CI|Jarvis|Jenkins|BitHound|CI.*issue)
Mention Greenkeeper Greenkeeper
Mention Renovate Renovate

Fig. 7. The distribution of the time taken to close a GKIR against the number of comments on the GKIR. The
bin colour indicates the frequency of each data point.

have an initial comment from Greenkeeper reporting the status of attempting to pin the depen-
dency, and GKIRs in general have a median of two comments from Greenkeeper. Figure 7 shows
that the longer a GKIR remains open, the higher the likelihood that it will continue to generate no-
tifications in the client project, as Greenkeeper will comment on the existing GKIR while the GKIR
remains open whenever the provider releases a new version, rather than creating a new GKIR.
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Fig. 8. Bar-plot showing the number of comments matched by each patterns shown in Table 2.

In total, 38% of GKIRs remain open long enough to see a new release from the provider. Of
these GKIRs, approximately four out of five (81.3%) only see new releases that continue to fail the
client’s tests. This means that if the GKIR is a false alarm (i.e., the GKIR was not in fact caused
by the dependency being updated, but rather some unrelated issue with the client’s project) the
client will constantly receive notifications that their build continues to fail with new dependency
updates until they determine the GKIR is, in fact, a false alarm and that they can safely close the
issue.

Observation (5) Developers tend to not comment on GKIRs, but when they do, they usually
indicate the issue has been resolved or is a false alarm. Only 9.3% of GKIRs have a comment
from a developer, versus 74.6% of non-GKIRs from the same set of projects. We classify these
comments (Figure 8) using the method described in the approach, and report the proportion that
indicates the GKIR has been fixed and how many indicate the GKIR is a false alarm, which are
the two most common overarching categories. We found that approximately half (47.8%) of these
developer comments are referencing a fix for the GKIR. For example, users may reference a PR
(e.g., “Fixed with PR #169.” ), a commit (e.g., “Fixed via f6800c7” ), or simply say that the issue has
been resolved(e.g., “Fixed manually” ).

Additionally, we found that one in five (19.8%) developer comments indicate that the GKIR is
a false alarm. For example, users indicate that the GKIR was caused by the CI pipeline (e.g., “The
tests passed after re-running the Travis build.”, “This is a false positive, the build had timed out.” ),
that their project’s tests failed for a non-deterministic reason (e.g., “Flaky test” ), or simply that the
GKIR is not, in fact, an issue (e.g., “False positive” ).
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4.2 RQ2: Is Automated Dependency Pinning an Effective Mechanism for Resolving
GKIRs?

Motivation. Greenkeeper’s automatic pin attempt feature is an interesting phenomenon that de-
serves to be investigated further, as automatically attempting to pin the dependency as a best-
effort solution has the potential to make the client package “downloadable” again quite quickly,
with minimal effort on the part of the client developers. It stands to reason that the pinning at-
tempt should succeed the majority of the time, since if a client’s build was passing before a de-
pendency released a new version that broke the client’s build, pinning the dependency back to
the prior version should result in the client’s build passing again. Yet, pinning should only be a
temporary measure, as the client will no longer receive bug fixes or security updates from the
provider.

However, if the pin attempt fails, then the client developer’s attention is required to address the
GKIR. In this case, the overhead of resolving the associated problem with the GKIR will incur on the
client developers. Additionally, a failed pin attempt may be a good indicator that the GKIR was not
in fact caused by the dependency being updated, but rather by some other issue that was already
present in the client’s project. Therefore, in this RQ, we investigate the efficacy of Greenkeeper’s
automatic pinning feature and the types of issues developers need to address when the pinning
attempt fails.

Approach. We look at the effectiveness of Greenkeeper’s automatic attempts at pinning the of-
fending dependency to resume passing the client’s CI pipeline. Greenkeeper posts a comment
following one of two specific patterns to notify the user whether the pin attempt was successful.
We determine whether the automatic pin attempt was successful by searching for comments on
GKIRs from Greenkeeper that match the pinning status patterns shown in Table 1.

To explore the types of issues that need to be addressed by client developers when Green-
keeper’s automatic pinning attempts fail, we manually analyze a statistically significant sam-
ple (95% confidence level and ±5% confidence interval) of GKIRs that have a failed pin attempt
by Greenkeeper (381 cases out of 51,720). For each GKIR with a failed pin attempt, we check
whether the build logs for the CI pipeline that failed are available. Whenever an observation in
our sample did not meet this requirement, we randomly drew another observation from the pop-
ulation of GKIRs with a failed pin attempt. We then categorize the build logs to determine the
reasons the client CI pipelines failed for the dependency updates that was followed by a failed pin
attempt.

To mitigate the risk of the classifications being biased by the first author, both the first and sec-
ond authors independently classified 15% (58) of the random samples, first examining the build
logs of each sample and (if possible) summarizing the reason for why the build failed in one sen-
tence. Each author then independently extracted common categories for why the builds failed,
and then discussed their individual categories and consolidated the classes. During the discussion,
there were 15 cases for which the only difference was the level of granularity with which we
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described the class (e.g., in a case where the client’s build failed because the test suite timed out,
one author considered the class to be a test failure, while the other considered the class to be a
timeout error)’ we consolidated these cases into classes that were commonly agreed. There were
three more cases for which the two authors disagreed (e.g., one authored mistakenly attributed a
build failure to a syntax error, when in fact a missing dependency caused the failure). The three dis-
agreements were discussed and an agreement was reached for them. Through this manual analysis
and following discussion, 10 different categories for created GKIRs with a failed pin attempt were
identified.

Considering the existence of 10 categories and three disagreements out of 58 analyzed cases, we
calculate the inter-rater agreement in our methodology using Cohen’s Kappa coefficient [14]. The
Cohen’s Kappa coefficient has been used to evaluate inter-rater agreement levels for categorical
scales, and provides the proportion of agreement corrected for chance. The resulting coefficient
is scaled to range between −1 and +1, where a negative value means less than chance agreement,
zero indicates exactly chance agreement, and a positive value indicates better than chance agree-
ment [24]. In our case, the level of agreement is +0.93, which indicates that the classification results
made by the first author are more likely to hold [31, 49]. Taking this high level of agreement into
account, the first author then classified the remaining 85% of the random sample using the 10 cate-
gories agreed upon by both the first and second authors, which is a common process and has been
done in previous work [20, 21, 36].

We found in the previous RQ that only approximately 1 in 5 GKIRs that see a new dependency
release actually have their client’s tests resume passing with the new release. In this RQ, we extend
this analysis to explore how often a new release from the dependency is able to resume passing
the client’s tests on a GKIR that has a failed pin attempt, as a failed pin attempt on a GKIR could
indicate that Greenkeeper should limit its attempts to test new dependency releases on opened
GKIRs. Greenkeeper will comment on GKIRs whether a new release of the dependency is able to
resume passing the client’s tests. We determine these comments by matching the comment body
against the patterns shown in Table 1 for alerting the client of a new dependency release.

Findings. Observation (6) The vast majority of the unsuccessful pin attempts are unrelated
to the dependency and require a manual intervention from the client developers. 80.3% of
GKIRs have a pinning attempt. 3.3% of GKIRs are for bundled dependency updates, which Green-
keeper does not perform any pin attempt on, and it was not clear why no pin attempt was per-
formed by Greenkeeper on the remaining 16.4%.

Regarding the overall proportion of automatic pin attempts on GKIRs, we observe that only
32% are able to successfully resume passing the client’s tests. This finding was surprising, since,
in principle, the updated dependency is the only difference between the GKIR branch and the
project’s main branch, and pinning the dependency to the previous version (i.e., the version that
was previously in use on the project’s main branch) should in effect render the GKIR branch a
duplicate of the project’s main branch. Therefore, we expected the majority of pinning attempts
to be successful. However, this was not the case, as over two-thirds of pinning attempts fail, which
implies the client’s build was already broken for an unrelated reason to begin with, and that new
installs of the client project may be failing as well.

To further investigate why so many pin attempts were failing, we manually analyze a statisti-
cally significant sample of GKIRs that have a failed pin attempt using the process described in the
approach. The categories are explained below, and are summarized in Table 3.
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Table 3. Prevalence and Description of Reasons for Created GKIRs with a Failed Pin Attempt

ID Category Proportion Description

C1 Syntax/Linter/Project
Guideline Error

17.6% The client’s CI failed because of a syntax or
linter error in the source code, or some other
requirement for the project was not met (e.g.,
code coverage).

C2 Client Test Case Failure 13.6% The client’s CI failed because of an assertion
error in the client’s test suite.

C3 Incompatible
Node/NPM/Depen-
dency Version
Error

13.4% The client’s CI failed because an invalid version
of either Node, npm, or one of their
dependencies was specified.

C4 Dependency Error 13.1% The client’s CI failed because one of their
dependencies threw an error (not related to the
dependency being updated).

C5 Missing File/Module 11.3% Either a file or an entire module was missing
from the client’s CI environment, causing it to
fail.

C6 Lockfile Error 10.8% The client’s CI failed because the client’s
package.json and the associated lockfile were
out-of-sync.

C7 Client Tests Failing to
Run Successfully

10.0% The client’s CI failed because the test suite
encountered an internal issue and did not run to
completion.

C8 Timeout/Network Error 5.2% The client’s CI failed because either their build
process stalled for too long or communication
over a network was not successful.

C9 Security Error 2.6% The npm audit command detected a security
vulnerability in one of the client’s dependencies,
causing the CI pipeline to fail.

C10 Invalid Credentials
Error

2.4% The client’s CI failed because the build
environment had invalid credentials, or was
missing them entirely.

— C1: Syntax/Linter/Project Guideline Error (17.6%): Client’s source code may have exist-
ing syntax errors that cause the CI pipeline to fail, or a linter can fail a build if any of the
code in the project does not meet the style guidelines set by the client. Listing 1 shows an
example of a client’s build23 failing because of multiple style rule infractions. Additionally,
a build can be configured to fail if the bundle size of the project grows too large or the test
coverage drops below a specific threshold.

23https://travis-ci.org/github/cnap-cobre/synapse-frontend/jobs/490193979.
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Listing 1. Example error snippet of build logs with a linter error.

— C2: Client Test Case Failure (13.6%): A client’s tests can fail for reasons unrelated to the
dependency update, either due to some existing issue or perhaps a flaky test. For example,
log output may not match what is specified to be expected in the test, or some other assertion
test may evaluate to false, causing the client’s tests to fail, as is shown in the excerpt of the
build logs24 of Listing 2.

Listing 2. Example error snippet of build logs where a failure of the client’s test case caused the CI

pipeline to fail.

— C3: Incompatible Node/NPM/Dependency Version Error (13.4%): Projects may run
their builds with multiple jobs, for example, 1 job each for versions 4, 6, and 7 of Node,
but dependencies might require Node >= 6.0.0, which causes one of the build jobs to fail,

24https://travis-ci.com/github/SlimIO/TimeMap/builds/149528914.
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as is the case in the build logs25 shown in Listing 3. Additionally, dependency versions can
conflict, or sometimes can not be found altogether, again causing the client’s CI pipeline to
fail.

Listing 3. Example error snippet of build logs where an incompatible version of Node was used.

— C4: Dependency Error (13.1%): One of the client’s dependencies used during the CI
pipeline can fail because they have not been configured properly. For example, Listing 4
shows the build logs 26 where the client’s CI pipeline failed due to a dependency not being
initialized properly.

Listing 4. Example error snippet of build logs where an error from a dependency of the client caused

the client’s CI to fail.

— C5: Missing File/Module (11.3%): A client’s CI pipeline can fail because of missing files or
even entire modules. We found cases where the initial clone of the project failed, resulting
in failed builds, as well as situations where dependencies were not available. Listing 5 shows
an example excerpt of a client’s build logs27 where the build configuration file is missing
completely, automatically causing the CI pipeline to fail.

25https://travis-ci.org/github/jaumard/trailpack-acl/jobs/529853292.
26https://travis-ci.org/github/chmanie/wdio-intercept-service/jobs/526469907.
27https://app.circleci.com/pipelines/github/unional/clibuilder/1/workflows/23256a75-d014-4d80-acf0-842644bfae24/jobs/

1719.
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Listing 5. Example error snippet of build logs where the project was missing a configuration file.

— C6: Lockfile Error (10.8%): Greenkeeper will bump the version specification in the pack-
age.json file for the dependency being updated, then run the client’s CI pipeline. However,
clients can specify in their CI install script the --frozen-lockfile flag, which results in
the package.json file and the associated lockfile becoming out of sync, as early versions of
Greenkeeper were not able to update the lockfile,28 causing the build to fail. Greenkeeper
has since added native support for this feature.29 However, this remains a common issue, as
shown in the build logs30 of Listing 6 as an example.

Listing 6. Example error snippet of build logs with a out-of-sync package.json and package-lock.json

error.

— C7: Client Tests Failing to Run Successfully (10.0%): While this category is similar to
C2: Client Test Case Failure, we differentiate the two because, in C2, the client’s tests fail
due to some assertion error, whereas in this category the client’s test suite does not run to
completion due to an issue. For example, Listing 7 shows the build logs31 of a client’s test
suite failing to run because of an error it the client’s testing code.

28https://blog.greenkeeper.io/greenkeeper-and-lockfiles-a-match-made-in-heaven-8260943fe521.
29https://blog.greenkeeper.io/announcing-native-lockfile-support-85381a37a0d0.
30https://travis-ci.org/github/travi/hapi-react-router/builds/619316527.
31https://travis-ci.org/github/G5/gtm-controller/builds/463979922.
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Listing 7. Example error snippet of build logs that show a client’s test suite not being able to run to

completion.

— C8: Timeout/Network Error (5.2%): The project’s build may not receive any output for
a specified threshold of time, in which case the build will time out and be marked as failed.
Listing 8 shows an example excerpt of a client’s build logs32 with this scenario. Additionally,
network requests (e.g., download a dependency or upload code coverage statistics) can fail.

Listing 8. Example error snippet of build logs with a build timeout error.

— C9: Security Error (2.6%): The npm audit command will return a failure code if any se-
curity vulnerabilities are detected in any of the project’s dependencies. For example, if a
vulnerability is found in a dependency other than the offending dependency that caused the
GKIR (or the offending dependency for that matter), the npm audit command will still cause
the pipeline to fail. Listing 9 shows an example excerpt of a client’s build logs33 with this
scenario.

Listing 9. Example error snippet of build logs with a security error.

— C10: Invalid Credentials Error (2.4%): Clients often need to specify credentials in their
CI environment to allow authenticated actions (e.g., cloning the project, pushing test results

32https://travis-ci.org/github/visusnet/typereact/builds/549691105.
33https://travis-ci.com/github/r3nya/r3nya.github.io/builds/104464336.
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to an external repository). However, these credentials may become invalid or be missing
entirely from the CI environment, which can cause the CI pipeline to fail. Listing 10 shows
an example excerpt of a client’s build logs34 where the CI environment does not have the
correct access rights to clone the project.

Listing 10. Example error snippet of build logs that error because of missing or invalid credentials.

Observation (7) Fewer than 1 in 10 GKIRs that have a failed pin attempt and eventually see
a new dependency release have their build resume passing with the new dependency release
applied. The results from Greenkeeper’s automatic pin attempt appear to be a good indicator of
whether the GKIR is a false alarm. 91% of GKIRs that have a failing pin attempt and stay open long
enough to see at least one new release from the dependency never have their tests resume passing
again due to Greenkeeper attempting to update the dependency on the GKIR. In other words, if
the initial pin attempt on a GKIR is not successful, any subsequent attempts by Greenkeeper to
attempt to fix the GKIR by upgrading to a new release of the dependency will also most likely fail,
and only serve to flood the client’s project with redundant notifications.

4.3 RQ3: What Are the Performed Code Changes when Resolving GKIRs?

Motivation. While pinning the breaking dependency to its previous working version may be the
quickest and easiest method to resolve the issue, it is not always successful, and in fact is considered
an anti-pattern for dependency management [28], as this type of versioning specification is often
associated with outdated dependencies [56]. However, pinning is not the sole method available to
resolve GKIRs, and clients may prefer other more complex strategies that allow them to continue
taking advantage of the benefits of using a version range for the dependency.

34https://app.circleci.com/pipelines/github/gucong3000/gulp-reporter/7/workflows/131b9bbd-51b4-4131-be90-

cf92603a3790/jobs/1045.
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Ideally, minimal changes would be needed to resolve a GKIR while maintaining the project’s
updatability and resolving the issue in a timely manner. For this reason, it is important to explore
the code changes (other than pinning) that are performed when resolving GKIRs, which is what
we examine in this RQ.

Approach. First, we examine the proportion of file types that are most often modified, as well as
the size of the modifications that clients are pushing to resolve GKIRs. To do this, we collect the
patch diff from any commits that are referenced by GKIRs. Specifically, we look at the number of
files changed in the commit, as well as the lines of code (LOC) churn in the commit (i.e., added
lines + removed lines), which are metrics that have been used in previous work to measure the
impact of code changes [40, 43]. For example, if a commit only modifies a single LOC (e.g., rename a
variable), the churn metric would have a value of 2 (i.e., 1 addition and 1 deletion). To compare these
changes against a baseline, we perform the same analysis on commits referenced by non-GKIRs
from the same projects. To select the commits for our baseline, we find the preceding non-GKIR
that references a commit for each GKIR that references a commit, and compare the metrics for
these two distributions of commits.

We anticipate that the majority of commits referenced from GKIRs will contain modifications to
the project’s package.json, as Greenkeeper is a dependency management bot and this file contains
the client’s dependency specifications. Therefore, we additionally parse the changes made specifi-
cally to the package.json file to explore how clients are modifying their dependency version speci-
fications in order to resolve GKIRs. We extract the modifications made to the client’s dependency
specification files and parse the previous and current dependency specification version using the
semver35 package. We then compare the previous and current dependency specifications to deter-
mine whether the dependency was updated, downgraded, pinned, added, or deleted. We use this
information to learn the most common strategies used by clients for resolving GKIRs that only
modify their dependency specifications, which would be simple solutions that dependency man-
agement bots like Greenkeeper could automatically implement, potentially reducing the overhead
on client developers.

Additionally, for commits referenced by GKIRs that modify more than just the client’s depen-
dency specification files, we examine the most common file types that are changed when resolving
GKIRs. We again perform the same analysis on commits referenced by preceding non-GKIRs from
the same projects.

Findings. Observation (8) The changes required to resolve GKIRs are similar to that of
non-GKIRs. When comparing the number of file changes in commits referenced by GKIRs and
non-GKIRs, we find that they both change a median of 2 files per commit. Figure 9 shows the
distribution of the number of files changed in commits referenced by GKIRs and commits refer-
enced by non-GKIRs immediately preceding GKIRs. The difference between the two distributions
is statistically significant (p < 0.05), however, the effect size is negligible (|d | = 0.23).

Similarly, the size of the changes in the commits referenced by GKIRs and non-GKIRs is compara-
ble, with commits referenced by GKIRs having a median of 33 LOC churn and commits referenced
by non-GKIRs having a median of 38 LOC churn. Figure 10 shows the distribution of the number
of LOC churn in commits referenced by GKIRs and commits referenced by non-GKIRs immedi-
ately preceding GKIRs. The difference between the two distributions is not statistically significant
(p > 0.05).

Observation (9) More than half (56%) of changes that resolve GKIRs only include changes
to dependency specification files. These changes are primarily made to the package.json file,

35https://pypi.org/project/semver/.
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Fig. 9. Violin-plot showing the distribution of number of files changed in commits referenced from GKIRs
and commits referenced from non-GKIRs immediately preceding GKIRs. The dashed lines indicate the first
quartile, median, and third-quartile.

Fig. 10. Violin-plot showing the distribution of LOC churn in commits referenced from GKIRs and com-
mits referenced from non-GKIRs immediately preceding GKIRs. The dashed lines indicate the first quartile,
median, and third-quartile.

which is manually maintained and is the most common file to be changed, being modified in 78%
of commits referenced on GKIRs, versus only 17% of commits referenced from non-GKIRs. Addi-
tionally, the npm package-lock.json file and its similar counterpart yarn.lock, appear in 28% and 27%
of all referenced commits, respectively, versus just 4% and 3% of commits referenced by non-GKIRs,
respectively. However, these files are automatically generated whenever a project’s dependency
specifications change, and therefore changes to these files do not indicate any significant overhead
introduced on the client developers.

Changes that resolve GKIRs by only modifying dependency specification files tend to be small,
similar to changes from non-GKIRs. 57% of these commits on GKIRs that modify the package.json
file are only one-line changes, while 75% modify 3 or fewer lines. Similarly, commits on non-GKIRs
that modify the package.json file are approximately the same size, with 66% being one-line changes
and 81% modifying 3 or fewer lines.

Figure 11 shows the proportion of dependency change types made by clients when modify-
ing the package.json file to resolve a GKIR. We found that 88.8% of the dependency specification
changes are dependency version upgrades (e.g., bumping a dependency specification from ^1.2.3
to ^1.2.4), 7.8% are removing the range specification of the dependency, effectively adopting
the pinning action suggested by Greenkeeper (e.g., changing the dependency specification from
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Fig. 11. Bar-plot showing the proportion of the dependency change types made to the package.json file on
commits referenced from GKIRs.

∼1.2.0 to 1.2.0), 1.6% are adding new dependencies, 1.2% are deleting dependencies, and less
than 1% are downgrades (e.g., changing a dependency specification from 1.2.3 to 1.2.1).

Additionally, we observe that clients may resolve multiple GKIRs in their project with a single
patch. While the majority (79%) of commits only reference a single GKIR, 21% of commits resolve
at least 2 GKIRs. We also found that a quarter of commits upgrade at least four dependency version
specifications, further suggesting that clients might wait to perform all of their project dependency
updates in a batch fix.

Observation (10) Commits referenced by GKIRs that do not only modify dependency spec-
ification files tend to include changes to a mixture of different file types, similar to com-
mits referenced by non-GKIRs. While these commits commonly include changes to source code
files (e.g., JavaScript and TypeScript files), they can also include changes to project configuration
files (e.g., .eslintrc.json) and build pipeline files (e.g., .travis.yml). In fact, these commits even some-
times include changes to markdown files (e.g., README.md) and even the project’s .gitignore file.
Figure 12 shows the 10 most common file types that are changed in commits referenced by GKIRs
(12(a)) and non-GKIRs (12(b)) that do not only modify the client’s dependency specification files
(i.e., package.json, package-lock.json, and yarn.lock).

5 DISCUSSION

In this section, we discuss the findings presented in Section 4. We present a set of practical im-
plications for designers of dependency management bots with the aim of reducing the overhead
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Fig. 12. Top 10 files types that are changed in commits referenced from GKIRs and non-GKIRs that do not
only modify the client’s dependency specification files (i.e., package.json, package-lock.json, and yarn.lock).

generated in client projects by these software bots (Section 5.1), as well as the current state-of-the-
art in automated dependency management and avenues for future research (Section 5.2).

5.1 Implications

Implication (1) Dependency management bots should provide features that allow clients
to reduce the amount of activity generated by the bots. We found in RQ1 that half of the IRs
in client projects are opened by Greenkeeper. This is a high ratio of IRs to be opened by a bot,
and can overwhelm client developers with excessive notifications in their projects. We also found
that the longer these GKIRs stay open, the more activity is generated on them by the bot, often in
the form of comments notifying the client whether a new release of the dependency has resumed
passing the client’s tests. This feature can generate a high amount of notifications in the client
project, especially if the provider package releases new updates often, and does little to help the
client with resolving the issue.

Additionally, if the GKIR turns out to be a false alarm, these notifications only serve to dis-
tract the client, and may erode their trust in the dependency bot itself if they find they are being
bombarded with notifications for issues that turn out to be false alarms. In fact, the number of no-
tifications generated by dependency management bots is already a common complaint amongst
developers on forums and IRs. 36, 37, 38, 39 Therefore, we argue that dependency management bots
should provide features that allow clients to configure the bot to reduce the amount of activity
generated in their projects, and be mindful of the trade-offs associated with each feature in the
context of overhead introduced for the client.

For example, one feature that dependency management bots should support is to allow for a
project’s dependency updates to be bundled into a single PR. The results in RQ1 show that half
of the IRs in client projects are opened by Greenkeeper. We also found in RQ3 that clients may
manually group updates for multiple dependencies into a single commit in order to resolve a batch
of GKIRs, which suggests that clients could benefit from having the dependency updates in these

36https://github.com/dependabot/dependabot-core/issues/2265.
37https://github.com/dependabot/dependabot-core/issues/376.
38https://github.com/dependabot/dependabot-core/issues/2526.
39https://github.com/dependabot/dependabot-core/issues/1190.
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IRs and PRs grouped, so as to reduce the amount of noise created by the bot in client projects. In
fact, this issue has been a subject of discussion in at least four IRs 40, 41, 42, 43 in the Dependabot
project, another popular automated dependency bot. However, if one of the bundled dependency
updates causes the client’s CI to fail, it could require a significant amount of manual work on the
client’s part to determine which dependency caused the problem.

To explore the efficacy of this recommendation, we compare the time required to close PRs
opened by Greenkeeper for grouped dependency updates from monorepos and single depen-
dency updates from non-monorepos, and find that monorepo PRs are closed in a median of 1 day
13 hours, while non-monorepo PRs are closed in a median of 1 day 17 hours. The difference be-
tween distributions between these two scenarios is not significant (p > 0.05), which implies that
the speed of monorepo updates is approximately the same as non-monorepo updates, even though
multiple dependencies are being updated by them. This suggests that bundling updates could re-
duce the amount of activity generated by the bot.

To further reduce the amount of manual intervention required by clients to act on PRs opened
by dependency management bots, these bots should consider offering an option to auto-merge
any dependency updates if the updates meet a set of requirements set by the client. For example,
clients may trust certain provider packages they use in their project, and may prefer to have any
dependency updates from these packages that pass their CI pipeline to be automatically merged.
This functionality would serve to reduce the overhead required by clients to act on PRs that they
would have merged anyway, and is a feature that has been requested for multiple bots. 44, 45 How-
ever, if a backwards-incompatible update is released by a dependency that is not caught by the
client’s CI tests, any issues related to the dependency may not be discovered until after the update
has been integrated into the project, at which point the effort required to address the issue could
be significant.

Additionally, in order to avoid client projects becoming saturated with PRs opened by depen-
dency management bots, these bots should consider providing the option to limit the amount of
active PRs they create in client projects. This functionality will help client developers to avoid
being overwhelmed by PRs from the bot, and has in fact been discussed in at least two IRs. 46, 47

However, this may lead to an increase in technical lag of dependencies, as the number of PRs for
dependency updates that can be opened at one time will be limited.

Implication (2) Dependency management bots should take into account the state of the
client’s test suite on their main branch when attempting to update dependencies. We found
in RQ2 that a high number of false alarms are caused by issues that would have already existed on
the project’s main branch before the dependency update was attempted. For example, after manu-
ally analyzing why the client’s CI pipeline failed for GKIRs that had a failed pin attempt, we found
that nearly one-fifth of the failures were caused by a syntax, linter or project guideline error that
would have already been failing the client’s main branch, and was not in fact related to the depen-
dency being updated. Therefore, dependency management bots like Greenkeeper should consider
the state of the client’s test suite on their main branch when opening IRs for new dependency
updates. In other words, if the client’s main branch is failing and the dependency update fails for

40https://github.com/dependabot/dependabot-core/issues/2265.
41https://github.com/dependabot/dependabot-core/issues/376.
42https://github.com/dependabot/dependabot-core/issues/2526.
43https://github.com/dependabot/dependabot-core/issues/1190.
44https://github.com/dependabot/feedback/issues/954.
45https://blog.mergify.io/replacing-dependabot-preview-auto-merge-feature/.
46https://github.com/dependabot/dependabot-core/issues/2158.
47https://github.com/dependabot/dependabot-core/issues/2189.
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the same reason, the dependency update is most likely not the issue, and the bots should delay
their analysis until the main branch on the client project is passing again.

An example of an automated dependency management bot that does this well is Dependabot,
with its compatibility score feature.48 Dependabot functions similarly to Greenkeeper, with a com-
patibility score for each dependency update being calculated as the percentage of client CI runs
that passed when updating between relevant versions. However, Dependabot will only include the
results from client CI runs that have a previously passing test suite on their main branch. Using
this approach, they avoid negatively biasing the scores with failed CI pipeline runs that are not
caused by the provider package being updated. Including this type of functionality by default with
automated dependency bots would help to reduce the overhead generated by having to filter out
false alarm IRs created by these bots as a result of the client’s CI pipeline failing for an existing
reason.

Implication (3) Dependency management bots should provide more detailed information on
a pin attempt than simply reporting whether it succeeded or failed. Pinning the dependency
is a simple solution that bot designers and developers expect to be effective. Since the updated
dependency is the only difference between the GKIR branch and the project’s main branch, pinning
the dependency to the previous version (i.e., the version that was previously in use on the project’s
main branch) should in effect render the GKIR branch a duplicate of the project’s main branch.
Thus, it is expected that pinning the dependency should resume passing the client’s CI pipeline.

However, we saw in RQ2 that this is often not the case. Therefore, dependency management bots
should provide more information to the client explaining why the pin attempt failed, rather than
simply commenting that the pin attempt was not successful and that the issue might not be related
to the dependency. At a minimum, dependency management bots should analyze the CI logs of the
client pipeline to determine an overarching reason why the pin attempt failed. The categories we
reported in RQ2 for why the client’s CI pipeline failed in GKIRs with a failed pin attempt provide
a good basis to categorize these failures. Dependency bots could parse the client’s build logs and
match the output to regular expressions of common error messages, including information on any
matched categories in the issue report.

One of the drawbacks of pinning a dependency is that the client will no longer automatically
use the most up-to-date version of the provider package, and will begin to increasingly lag behind
as the provider releases new versions. To quantify packages lagging behind with respect to using
the latest version of their dependencies, Gonzalez-Barahona et al. [27] first proposed the concept
of “technical lag”, and multiple studies have examined how prevalent technical lag is in different
ecosystems [17, 18, 56]. If the pin attempt succeeds, Greenkeeper does a nice job of reducing the
amount of technical lag that is potentially introduced when clients decide to take the pinning
route. Greenkeeper will pin to the previous version of the dependency, which is better than simply
removing the range statement.

For example, if a client specifies they would like to accept the version range of ∼1.2.0 from a
provider (i.e., only accept patch updates), and version 1.2.4 of the provider causes a GKIR to be
created in the client’s project, Greenkeeper will attempt to pin the dependency to version 1.2.3
rather than version 1.2.0. Doing so reduced the amount of technical lag introduced by the pinning
action from a lag of 4 patch versions to a lag of 1 patch version. Because the client was using a
range operator in their dependency constraints, the client would have been implicitly using version
1.2.3 of the provider in their project before the GKIR was created, and therefore pinning to that
version should not introduce any new issues.

48https://dependabot.com/compatibility-score/.
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Implication (4) Dependency management bots should provide a more effective incentive to
encourage clients to resolve dependency issues. We found in RQ1 that GKIRs can stay open
for a median of 6 days, even when the offending dependency is a runtime dependency. This is an
especially long time to resolve an issue that is potentially affecting the users of the client project,
preventing them from successfully building and installing the client’s project in their own project,
resulting in more failed builds.

A more effective approach may be to provide telemetry data on the IR itself. For example, the bot
could make use of GitHub’s dependency graph mechanism49 to determine the dependents of the
client’s package and monitor the publicly available data of build systems (e.g., TravisCI50) of these
dependencies. The bot could then report the number of failed build attempts that have occurred
since the IR had been opened. Additionally, this sort of telemetry data could provide a reasonable
indicator of whether the IR is a false alarm. We found in RQ2 that GKIRs are often false alarms,
usually caused by the client’s CI pipeline. Providing the telemetry data on the number of build
attempts of the client package in production could give a clearer picture of whether the dependency
update has really broken the client’s project and how widespread the issue is amongst the client’s
users. This information could help client developers quickly filter out false alarms, allowing them
to react to these issues faster.

Implication (5) Dependency management bots should take the type of CI failure into consid-
eration when creating issues for new dependency releases. While we recommend in Implica-
tion 2 that bots should take into account the initial state of the client’s main branch when attempt-
ing to test dependency updates, they should also take into account the reason the CI pipeline fails
when testing a new dependency update on an isolated branch. Rather than treating all CI pipeline
failures the same, these bots should be able to distinguish between CI pipelines that failed because
of valid issues potentially caused by the dependency update and issues that are obviously unrelated
to the dependency update. After all, these are dependency management bots, which clients expect
to use to manage their dependencies, not to use as an alerting mechanism for when something in
general is wrong with their CI pipeline.

For example, Gallaba and McIntosh [26] describe tools in their study on misuse of CI features
that automatically detect and remove semantic violations in Travis CI build configuration files.
Dependency management bots could employ similar techniques to automatically classify common
CI failure types.

5.2 State-of-the-Art and Future Work in Automated Dependency Management

While Greenkeeper was a very popular dependency management bot, creating over 130,000
PRs [55] and having been referenced in multiple studies [11, 38, 55], it has since been acquired
by Snyk51 and deactivated on June 3 2020, and as such is no longer available for clients to inte-
grate with on GitHub. However, Greenkeeper was one of the first dependency management bots
available for use by software developers, and it is likely the designs of dependency management
bots that followed were influenced by Greenkeeper.

So, even though Greenkeeper is not state-of-the-art, it has many common features that have
been implemented in current state-of-the-art dependency management bots. Still, newer bots may
have implemented additional features that can help to reduce the overhead they introduce on

49https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-

the-dependency-graph.
50https://www.travis-ci.com/.
51https://snyk.io/.
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client developers. Therefore, we explore and discuss features from three other popular state-of-
the-art dependency management bots available for OSS developers: Dependabot,52 Renovate,53

and Depfu.54 We select these three bots to discuss (in addition to Greenkeeper) as they are actively
available across multiple ecosystems and have created the most PRs on GitHub of all dependency
management bot accounts [55]. We discuss common features available from all of these bots, as
well as unique features from each that aim to help ease the overhead they introduce on client
developers and how these state-of-the-art bots square with our aforementioned implications.

All of the default configurations of the aforementioned dependency management bots (includ-
ing Greenkeeper) perform essentially the same task: when one of a client’s dependencies re-
leases a new version, the bot will create a new branch with the new version applied, run the
client’s CI pipeline, and notify the client of the results with the option to update their dependency
specifications.

Each of these bots can be configured with multiple options, including ways that can help de-
crease the amount of overhead they introduce on client developers. For example, clients can set
the bot to ignore certain dependencies if they know they are never going to update said depen-
dency and don’t want to be bothered by these notifications from the bot.

Greenkeeper, Renovate, and Depfu all offer the option to bundle dependency updates in order
to reduce the amount of notifications received by client developers, which is one of our recom-
mendations in Implication 1. It is notable that Dependabot, which is currently the most popular
automated dependency management tool available, does not currently support this feature, even
though it is a highly requested feature.55

Dependabot, Renovate, and Depfu all offer the option for clients to configure how often and at
what date/time the bot will attempt to update the client’s dependencies. This is a useful feature
that can save client developers from a flood of notifications if one of their dependencies frequently
releases updates, as the bot will only open a single PR to update the provider to the latest release
at the scheduled time. These three bots can also be configured to only open a maximum number
of concurrent PRs in the client project, so that client developers do not become overwhelmed with
dependency updates. Additionally, Renovate and Depfu can both be configured to automatically
merge dependency updates if the client’s CI pipeline passes, which is in-line with Implication 1,
and can help to further reduce the number of concurrently opened PRs in client projects.

While there are many similarities between these bots, they each have unique features that at-
tempt to minimize the amount of noise they introduce in client projects, and therefore reduce the
overhead that comes with integrating with these bots. Greenkeeper will remain silent on in-range
updates that pass the client’s CI pipeline. For example, if a client specifies a dependency constraint
as “P: ^1.0.0”, and the provider package releases version 1.0.1, Greenkeeper will run the client’s
CI pipeline with the new provider version applied, and remain silent if the pipeline runs success-
fully (a GKIR will be created if the pipeline fails). Other bots (e.g., Dependabot) will still run the
client’s CI pipeline with the new provider version applied, but will default to creating a PR to bump
the client’s version specifications to “P: ^1.0.1” (e.g., Dependabot) or “P: 1.0.1” (e.g., Renovate),
regardless of the outcome of the client’s CI pipeline. The implemented behavior by Greenkeeper
aims to reduce the number of notifications received by clients,56 and encourages developers to
use version range statements (rather than specific versions) for their dependency specifications.57

52https://github.com/dependabot.
53https://github.com/renovatebot/renovate.
54https://depfu.com/.
55https://github.com/dependabot/dependabot-core/issues/1190.
56https://github.com/greenkeeperio/greenkeeper/issues/990.
57https://github.com/greenkeeperio/greenkeeper/issues/247.
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Dependabot can be configured to act in a similar manner using its versioning-strategy58 option,
where clients can specify how Dependabot should modify the dependency specification file when
updating dependencies. For example, client’s can specify the widen strategy, where Dependabot
will relax the version requirement to include both the new and old version, when possible, or the
increase-if-necessary strategy, where Dependabot will increase the version requirement only
when required by the new version.

Renovate specifically allows clients to configure the types of notifications they would like to
ignore using the suppressNotifications59 option. For example, clients can disable notifications
from a PR being closed without being merged, or can choose to not receive a warning notification
for deprecated dependency releases. Renovate also includes a stabilityDays60 option in which
clients can configure the number of days required before a new release is considered to be stabilized.
This feature is intended to help protect client developers from accepting provider releases that later
become unpublished (e.g., npm packages less than 3 days old can be unpublished, which could
result in a service impact if the client has already updated to it). These are helpful features that
can help to address the amount of activity created by dependency management bots (Implication 1),
although it is unclear how often clients actually make use of them in practice.

Depfu has an update strategy called “reasonably up-to-date”61 that clients can use to reduce the
amount of activity generated by the bot. The rationale behind this update strategy is that there
is a lot of value in a client having their dependencies up-to-date, but there is very little value
in being on all the latest versions. In other words, clients just want their dependencies to stay
current. When enabled, Depfu will let new provider releases “mature” before creating a PR in the
client project, reducing the amount of dependency updates that clients receive, especially if the
provider package has a high release frequency. In fact, the developers of the Depfu bot have tested
this feature and found that clients can see a reduction of up to 50% in the amount of PRs opened
by the bot,62 significantly reducing the amount of noise clients must deal with (Implication 1).

While state-of-the-art dependency management bots have begun to implement features specif-
ically tailored to help reduce the amount of overhead introduced on the client, there is still room
for improvement. For example, none of the aforementioned bots have implemented advanced fea-
tures, such as examining the logs of the client’s CI pipeline to determine the root cause of a failure
if a dependency update does not pass the client’s CI pipeline (Implication 5), in order to help catch
false positive breaking updates. Additionally, these bots do not provide any form of incentive to
resolve breaking dependency updates (Implication 4), which may lead to client developers simply
ignoring the recommendations of the bot. These features represent interesting avenues for future
researchers to study, both in terms of the practicality and efficacy of implementing these features
aimed at reducing the overhead introduced on client developers, in addition to the features already
implemented by these bots.

Another interesting avenue for future research is exploring the efficacy of automated depen-
dency management bots employing sophisticated methods to automatically detect locations in the
client’s code affected by non-backwards compatible provider updates (such as in Møller et al. [41]),
and transform those parts of the code to become compatible with the new provider version (such
as in Nielsen et al. [44]). Combining these areas of research could prove to be an effective ap-
proach to reducing the effort on the part of client developers to address GKIRs or, more generally,

58https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/

configuration-options-for-dependency-updates#versioning-strategy.
59https://docs.renovatebot.com/configuration-options/#suppressnotifications.
60https://docs.renovatebot.com/configuration-options/#stabilitydays.
61https://depfu.com/blog/reasonably-up-to-date.
62https://depfu.com/blog/reasonably-up-to-date.
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breaking changes. Additionally, such methods could help to reduce the amount of noise generated
by automated dependency bots, as these tools could help to identify when, for example, Green-
keeper has created a GKIR, but the code analysis tools have not detected any non-backwards com-
patible API changes in the provider package, and can flag the GKIR as a potential false alarm.
However, as current state-of-the-art automated dependency management bots do not presently
employ such sophisticated features and our study looks to evaluate the overhead introduced by
these bots in today’s software systems, we leave this to future work.

Also, further research should be done to explore the true amount of work that is required to
address breaking dependency issues. While we explore the overhead that is introduced by GKIRs
using metrics such as the time to resolve the issue and the size of changes required to resolve
the issue, there are additional, more implicit factors (e.g., debugging) that affects the true effort
required on the part of client developers to resolve GKIRs. However, this is not always easily
measured, as it is difficult to accurately quantify the amount of work required on the developers
part to address GKIRs, or software issues in general, and the time needed to resolve IRs may not
always correlate with the actual effort needed to resolve IRs [35]. For example, on the one hand, an
issue report may require minimal effort to resolve but have a low priority, and therefore remains
open for an extended period of time, as client developers may delay addressing the issue if they
are already overloaded with work. On the other hand, even if only a small change was required
to resolve an issue report, the client developer may have expended a significant amount of effort
debugging the issue to determine exactly where the issue occurs and exactly what section of the
code needed to be modified to resolve the issue.

6 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our study.

Internal Validity: Threats to internal validity concerns factors that could have influenced our
analysis and findings. When we were looking for projects with GKIRs, we only searched for IRs
using the GitHub Search API that match the default title used by Greenkeeper. Clients are able to
configure the default title that Greenkeeper will use when opening GKIRs, so we may have missed
projects that have integrated with Greenkeeper that do not use the default title for their GKIRs.
However, we only found 19 projects in our dataset where the client had switched from using the
default Greenkeeper title to a custom title, so we do not believe this scenario is very common.

When parsing the information from GKIRs, we were not able to successfully extract the provider
dependency type from approximately 4% of GKIRs. While this is still a relatively high success ratio,
we only use this information for a single angle of our study in RQ1, so omitting these cases would
not have had a major affect on our analysis.

In RQ1, we compare the time taken to close GKIRs with non-GKIRs to explore whether GKIRs
are resolved at a faster pace. However, the time taken to close IRs in general can be influenced by
many factors (e.g., project maintainers simply might not have enough time to fix issues quickly).
We attempt to mitigate this thread by comparing GKIRs and non-GKIRs at the project level, so that
project-level factors will be accounted for in our analysis.

Also, in RQ1 the first author manually analyzed comments left by users on GKIRs to extract
common patterns so that they could be grouped into similar categories. Only patterns that matched
at least 1% of the comments were used, so comments that did not follow a common pattern may
not have been matched to a specific category, and therefore the percentage of comments classified
to each category represent a lower bound. However, nearly 80% of the total comments were able
to be classified, which is a reasonably high proportion.
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We cannot definitively provide an exact proportion of GKIRs that are considered noise, as we
would have to conclude whether each GKIR was in fact created as a result of a dependency update
causing the client’s CI pipeline to fail. However, we are able to provide a lower bound of 1.8% using
specific comments left from developers on GKIRs (Observation 5), as well as a general approxima-
tion of 54.5% for the proportion of GKIRs that are considered noise if we consider all GKIRs with
a failed pin attempt to be noise (Observation 6).

In RQ2 we manually analyze a sample of GKIRs that have a failed pin attempt to identify the
reasons for why these pin attempts fail. This analysis is subject to author bias, as every inves-
tigator has a subjective method when classifying an error that leads to a failed CI pipeline. We
mitigate this threat by having the first and second authors independently classify the reasons for
CI pipelines failing on 15% of the random samples, then calculating the inter-rater agreement in
our methodology (Cohen’s Kappa coefficient [14]), after which categories were consolidated as
necessary. The level of agreement (+0.93) indicates that the classification results made by the first
author are more likely to hold [31, 49], and that the first author could independently classify the
remaining 85% of the samples using the agreed upon categories, which is a common approach and
has been done in previous work [20, 21, 36].

When collecting commits from client projects to evaluate the level of maintenance activity re-
quired to resolve GKIRs, we look for referenced issue events on GKIRs that include a commit_sha
attribute, which indicates a relationship between the GKIR and the associated commit. However,
in order for a commit issue event to be created for a GKIR, the client would have to reference the
GKIR issue number either on the commit message when the commit was created, or on the PR
that the commit was merged in. While these two heuristics are the main ones used in practice, not
every client project may follow these processes.

External Validity: Threats to external validity concern the generalization of our technique and
findings. Our study analyses GKIRs opened by Greenkeeper during the period from October 10,
2016 to June 3, 2020. As previously mentioned, while Greenkeeper was a very popular depen-
dency management bot during this time period, creating over 130,000 PRs [55] and having been
referenced in multiple studies [11, 38, 55], it has since been acquired by Snyk63 and deactivated
on June 3 2020, and as such is no longer available for clients to integrate with on GitHub. While
we considered including data from Snyk, which offers a similar service, there are differences be-
tween the two bots that might lead to inconsistencies in the analysis. Also, there are other de-
pendency management bots in addition to Greenkeeper and Snyk, such as Dependabot, Renovate,
and Depfu64 that should be studied in future work, as they all have unique features that might
affect the generalizability of our results with Greenkeeper. However, Greenkeeper was one of the
first dependency management bots available for use by software developers, first being released at
least a year before the aforementioned dependency management bots, and it is likely the designs
of the dependency management bots that followed were influenced by Greenkeeper. So, while our
results cannot be generalized, our discussion provides implications that can still apply to these
bots.

Because the collected Greenkeeper data is exclusively from npm, our findings might not be
generalizable to other ecosystems. Although npm is representative in size, each software ecosys-
tem has its own intrinsic characteristics, such as the frequency of package releases, the automatic
update mechanism, and how package changes are communicated across the ecosystem [7]. There-
fore, we acknowledge that additional studies are required in order to further generalize our results.
However, to the best of our knowledge, this is the first paper to empirically analyze the potential

63https://snyk.io/.
64https://depfu.com/.
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overhead that is introduced by dependency management bots and provide a series of practical
recommendations for designers of these bots.

7 CONCLUSION

It has become commonplace for developers to reuse code from multiple provider packages in the
form of software dependencies. With this rise in software dependencies in OSS projects, we have
seen an increase in popularity of using software bots to automatically manage these dependencies.
Although bots are able to help automate these monotonous tasks, integrating these bots into a
project’s workflow introduces a certain level of overhead in the client project, and once the bot
begins performing its specific function, human intervention is usually required to either accept or
reject any actions or recommendations the bot creates.

In this article, we perform an empirical study of 93,196 IRs opened by Greenkeeper (GKIRs), a
popular software bot used to manage software dependencies in the npm ecosystem, that examines
the extent to which automated dependency management bots can either save or create unnec-
essary work in their client projects. Studying these GKIRs allows us to explore the amount of
overhead created by using these types of dependency management bots. Specifically, we examine
the overhead introduced in client projects by Greenkeeper (RQ1). Our results show that Green-
keeper introduces a significant amount of overhead in the form of notifications and other artifacts
(e.g., IRs and comments) that must be addressed by client developers. Next, we explore whether
automated dependency pinning is an effective mechanism for resolving GKIRs (RQ2), and observe
that this is not the case, with 68% of pin attempts failing, usually due to reasons unrelated to the
dependency update (e.g., pre-existing issue in the client’s CI pipeline). Finally, we look at the per-
formed code changes resolving GKIRs (RQ3). We observe that, while the majority of changes that
resolve GKIRs are small (1–3 LOC) modifications to the client’s dependency specification file, they
can sometimes require changes to the client’s source code, in which case they are comparable in
size to changes that resolve non-GKIRs.

These findings indicate that, while bots like Greenkeeper can be an effective tool for managing
dependencies, they also can generate a significant amount of noise in client projects, especially
if the client has a low quality CI pipeline that is prone to intermittent failures. Leveraging our
findings, we provide a series of implications that are of interest for designers of dependency man-
agement bots, with attention given to practical recommendations to help reduce the amount of
overhead introduced by these bots.
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