
19

The Co-evolution of the WordPress Platform and Its Plugins

JIAHUEI LIN, Queen’s University, Canada

MOHAMMED SAYAGH, ETS–Quebec University, Canada

AHMED E. HASSAN, Queen’s University, Canada

One can extend the features of a software system by installing a set of additional components called plugins.

WordPress, as a typical example of such plugin-based software ecosystems, is used by millions of websites

and has a large number (i.e., 54,777) of available plugins. These plugin-based software ecosystems are differ-

ent from traditional ecosystems (e.g., NPM dependencies) in the sense that there is high coupling between

a platform and its plugins compared to traditional ecosystems for which components might not necessarily

depend on each other (e.g., NPM libraries do not depend on a specific version of NPM or a specific version of

a client software system). The high coupling between a plugin and its platform and other plugins causes in-

compatibility issues that occur during the co-evolution of a plugin and its platform as well as other plugins. In

fact, incompatibility issues represent a major challenge when upgrading WordPress or its plugins. According

to our study of the top 500 most-released WordPress plugins, we observe that incompatibility issues represent

the third major cause for bad releases, which are rapidly (within the next 24 hours) fixed via urgent releases.

Thirty-two percent of these incompatibilities are between a plugin and WordPress while 19% are between peer

plugins. In this article, we study how plugins co-evolve with the underlying platform as well as other plugins,

in an effort to understand the practices that are related support such co-evolution and reduce incompatibility

issues. In particular, we investigate how plugins support the latest available versions of WordPress, as well

as how plugins are related to each other, and how they co-evolve. We observe that a plugin’s support of new

versions of WordPress with a large amount of code change is risky, as the releases that declare such support

have a higher chance to be followed by an urgent release compared to ordinary releases. Although plugins

support the latest WordPress version, plugin developers omit important changes such as deleting the use of

removed WordPress APIs, which are removed a median of 873 days after the APIs have been removed from

the source code of WordPress. Plugins introduce new releases that are made according to a median of five

other plugins, which we refer to as peer-triggered releases. A median of 20% of the peer-triggered releases are

urgent releases that fix problems in their previous releases. The most common goal of peer-triggered releases

is the fixing of incompatibility issues that a plugin detects as late as after a median of 36 days since the last

release of another plugin. Our work sheds light on the co-evolution of WordPress plugins with their platform

as well as peer plugins in an effort to uncover the practices of plugin evolution, so WordPress can accordingly

design approaches to avoid incompatibility issues.

CCS Concepts: • Software and its engineering→ Software evolution; Maintaining software;

Additional Key Words and Phrases: Plugin-based ecosystems - incompatibility issues - plugins co-evolution

Authors’ addresses: J. Lin and A. E. Hassan, Software Analysis and Intelligence Lab (SAIL), Queen’s University, 133

Princess St, Kingston, Ontario, K7L 1A8, Canada; emails: {jhlin, ahmed}@cs.queensu.ca; M. Sayagh, Department of Soft-

ware Engineering and IT, ETS-Quebec University, 1100 Notre-Dame St W, Montreal, Quebec, H3C 1K3, Canada; email:

mohammed.sayagh@etsmtl.ca.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1049-331X/2023/02-ART19 $15.00

https://doi.org/10.1145/3533700

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://orcid.org/0000-0002-7133-2219
https://orcid.org/0000-0002-2724-0034
https://orcid.org/0000-0001-7749-5513
mailto:permissions@acm.org
https://doi.org/10.1145/3533700
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3533700&domain=pdf&date_stamp=2023-02-13

19:2 J. Lin et al.

ACM Reference format:

Jiahuei Lin, Mohammed Sayagh, and Ahmed E. Hassan. 2023. The Co-evolution of the WordPress Platform

and Its Plugins. ACM Trans. Softw. Eng. Methodol. 32, 1, Article 19 (February 2023), 24 pages.

https://doi.org/10.1145/3533700

1 INTRODUCTION

A plugin-based software ecosystem is an ecosystem that is constituted of a platform that can be
extended with a set of “plugins.” WordPress, as a typical example of a plugin-based ecosystem,
has more than 54,777 plugins that are available to end-users. For example, one can install the FV
Flowplayer Video Player plugin to display videos on his or her WordPress website. The richness of
these plugins makes WordPress one of the most popular content management platforms. In fact,
WordPress is used by 61.8% of all the websites, whose content management system is known [38].
WordPress also has been used to build well-known websites such as the New York Post, USA Today,
and TIME websites [1].

Plugin-based software ecosystems are different from traditional ecosystems. For instance, the re-
lation between the plugins and the WordPress platform is symbiotic. The features that are provided
by the platform are often limited and need to be extended through the plugins. The plugins, how-
ever, cannot be used without the platform. In addition, plugins interfere with each other through
their shared platform. That is contrary to traditional ecosystems, for which a component can often
evolve independently from the other components. In addition, components in traditional ecosys-
tems might never interfere with each other if they do not share any resources or do not invoke each
other. Thus, there exists high coupling between plugins and the platform as well as the different
plugins for plugin-based software ecosystems.

Such high coupling leads to incompatibility issues that occur when a plugin co-evolves with
the platform or with other plugins. For example, a plugin might introduce a release that is incom-
patible with the platform or with other plugins. Given the richness of plugins, the freedom to
intermix plugins, and their varying release cycles, the users of WordPress often must cope with
incompatibility issues, which discourage users from upgrading their WordPress and plugins [5].
For example, a user’s website crashed after upgrading to the latest WordPress version due to an
incompatibility between a plugin and that latest WordPress version [9]. In other words, the plugin
did not co-evolve correctly with its platform.

A large amount of research has examined incompatibility issues in traditional ecosystems, such
as project dependencies [10, 17, 26, 41] (i.e., project dependency refers to a relation between two
working applications that contain a set of source files, configurations, assets, etc.), out-of-date de-
pendencies [28, 33], library dependencies [23, 31], and package dependencies [15, 22] (i.e., package
dependency refers to a package consisting of a group of related classes and source files that require
another package to work). However, a few research efforts [16, 35] investigated the incompatibility
issues in plugin-based software ecosystems, which have higher chances for incompatibility issues
compared to traditional ecosystems, as we noted earlier.

Through a preliminary study of the top 500 WordPress plugins with the largest number of re-
leases, we observe that incompatibility issues represent the third major cause of bad releases, which
are rapidly addressed via urgent releases. Note that this type of release is also studied by prior
work [19, 25], which also defined the urgent releases as the releases whose goal is to fix errors
that were introduced in a previous release that was recently published (within 24 hours before the
urgent release). Thirty-two percent of these incompatibility issues occur between plugins and the
WordPress platform while 19% are between peer plugins.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://doi.org/10.1145/3533700

The Co-evolution of the WordPress Platform and Its Plugins 19:3

The goal of this article is to shed light into the co-evolution of plugins with their platform and
other plugins in an effort to understand the practices of such co-evolution, so WordPress can better
design approaches to avoid incompatibility issues. We focus our study on the WordPress ecosystem,
since it is one of the most successful and widely used plugin-based ecosystems. In particular, we
address the following research questions:

RQ1: When plugins support a new version of WordPress?

Plugins announce their supports for a newly released version of WordPress after a me-
dian of 38 days, with a lag of one release behind the latest available version of WordPress.
However, each plugin does not have a consistent lag for every WordPress version. Plugin
developers use a new WordPress API as fast as 1 day after its introduction and delete the
use of removed APIs after a median of 873 days.

RQ2: How plugins support a new version of WordPress?

Eighty-nine percent of the studied plugins have at least one release that does not support
the latest version of WordPress. These releases have a higher chance of being followed by
an urgent release (153%) compared to ordinary releases. Furthermore, plugin releases that
announce support to a new version of WordPress with a large amount of code changes are
more likely to be followed by an urgent release.

RQ3: How WordPress plugins co-evolve?

Plugins ship new releases that are triggered due to a median of five other plugins (i.e., peer-
triggered releases). Sixty percent of the pair of plugins that have a peer-triggered release do
not explicitly depend on each other. Peer-triggered releases have a lower chance of being
followed by an urgent release (66%) and a median of 20% of the peer-triggered releases
are urgent releases. Fixing incompatibility issues is the most common goal (46%) for peer-
triggered releases.

Our results provide an understanding on how a plugin co-evolves with its platform and other
peer plugins. Such an understanding provides WordPress developers with better understanding of
the co-evolution in plugin-based software ecosystems to avoid incompatibility issues.

Paper organization. Section 2 provides background information about the release process of
WordPress plugins and describes the related work to our study. Section 3 provides our preliminary
analysis on the incompatibilities that are fixed through urgent releases. Section 4 answers our
research questions. Section 5 discusses threats to the validity of our observations. Finally, Section 6
concludes the article.

2 BACKGROUND AND RELATED WORK

In this section, we provide background information about how plugins ship new releases and
support new versions of WordPress (Section 2.1). We discuss related work on empirical studies of
the co-evolution of different components of an ecosystem (Section 2.2) and incompatibility issues
(Section 2.3).

2.1 How Plugins Support New WordPress Versions

Each plugin has a “readme” file that contains the metadata of the plugin, such as the latest available
version and the versions of WordPress that the plugin officially supports. The readme file of a plugin
is used by the WordPress platform to auto-generate a web page for that plugin. For example, the
latest available version of the “Classic Editor” plugin is 1.5, as indicated by the “Stable-tag” in the
readme file, and as displayed on the web page of the plugin, as shown in Figure 1. The “Tested

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

19:4 J. Lin et al.

Fig. 1. An example of a readme file and the web page displaying the associated information in the readme

file.

up to” tag indicates that the plugin is supporting WordPress versions up to 5.3.2. The readme file
changes are recorded in the source code repository of each plugin.

2.2 Co-evolution of Different Components in Ecosystems

Prior work studied the co-evolution of a project and its dependencies [11, 21, 23, 27]. Hora et al. [21]
observed that developers discover and react to API changes after a median of 34 days and 95% of the
software systems never adopt new API changes. Kula et al. [23] identified that 81.5% of the software
systems stick with outdated dependencies, due to the overhead of updating such dependencies.
Bavota et al. [11] observed that developers update to the new version of a dependency when that
new version includes major changes such as new features or a large amount of bug fixes. The co-
evolution of different components of an ecosystem leads to incompatibility issues, which impacts
the stability and fault-proneness of an ecosystem [12], and results in poor user experiences [40].

Another line of research is related to breaking changes [13, 14, 32]. Raemaekers et al. [32] stud-
ied subsequent releases of more than 20,000 libraries in the Maven repository and observed that

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

The Co-evolution of the WordPress Platform and Its Plugins 19:5

one-third of all releases introduced at least one breaking change (e.g., method removals) that af-
fects their client systems. Raemaekers et al. [32] also observed that developers tend to keep up with
the latest version of dependent libraries with a median of 0 release lag of the versions between the
library version included in a project and the latest available version of the library. Bogart et al. [13]
observed the npm ecosystem focuses strongly on signaling change through semantic versioning
for developers to manage their dependencies, while developers bear to update their dependencies
when breaking changes are made in the dependencies in the R ecosystem. Even breaking changes
are costly in terms of interruptions and rework, each software ecosystem makes such breaking
changes for various purposes. For example, Bogart et al. [13] reported that the most important
reason for breaking changes is technical debt rather than bugs or new features in the Eclipse, R,
and npm ecosystems. Brito et al. [14] reported that another important reason for breaking changes
is to implement new features to simplify source code and improve maintainability in Java libraries
of popular GitHub projects.

2.3 WordPress Incompatibilities

A few prior studies focused on the incompatibility issues in the WordPress ecosystem [16, 30, 34,
35]. Sayagh et al. [34, 35] observed that plugins share a large percentage of the platform con-
figuration options. For example, 79% of all WordPress configurable constants and 85.16% of all
WordPress database options are used by at least two different plugins, which suggests potential
conflicts between plugins. Nguyen et al. [30] leveraged a source code analysis technique to identify
incompatibility errors between different WordPress plugins. Eshkevari et al. [16] leveraged static
and dynamic source code analysis techniques to identify incompatibility issues between two plug-
ins. While these studies focused on how to detect and fix incompatibility issues, our study focuses
on investigating the co-evolution of the plugin-platform and peer-plugins, which can guide Word-
Press developers to develop mechanisms that support such co-evolution to prevent incompatibility
issues.

3 (PRELIMINARY QUESTION) WHAT IS THE PROPORTION OF URGENT RELEASES
THAT ARE DUE TO INCOMPATIBILITY ISSUES?

Motivation: The goal of this preliminary research question is to quantify the prevalence of incom-
patibility issues. These issues occur due to missed interactions between a plugin and the platform
or other peer plugins. In this preliminary research question, we focus on the interactions that were
missed and that are critical enough to lead to urgent releases. These releases are shipped within
24 hours from their respective prior release. Urgent releases are perceived to be harmful, as noted
by several prior studies (e.g., References [18, 25]).

Approach: To study how often incompatibility issues lead to urgent releases, we first need to
investigate the prevalence of urgent releases and whether the urgent releases are related to their
prior releases. Then, we investigate the main causes of the urgent releases to quantify how often
they occur due to incompatibility issues.

To do so, we investigate the releases of the top 500 most-released plugins (the Plugin Dataset).
To obtain these plugins, we collect all the 60,592 plugins that have a readme file and the “Stable-tag”
and sort these plugins based on the number of their releases, which we obtain from the historical
changes to the “Stable-tag” in a plugin’s readme file.

To address our preliminary research question, we first quantify the number of urgent releases
for each of the top 500 most-released WordPress plugins. We then conduct a qualitative analysis on
a representative random sample (confidence level = 95%, confidence interval = 5%) of 375 urgent
releases. The goal of this qualitative analysis is to first identify whether urgent releases are related

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

19:6 J. Lin et al.

Fig. 2. The distribution of plugins with their respective number of urgent releases. Four hundred ninety-

seven of the studied plugins have at least one urgent release, while three do not have any urgent release.

to their prior release. We consider that an urgent release is related to its prior release (1) when both
of the release notes of the urgent and prior release mention the same information (e.g., features)
or (2) when both releases change the same parts of the code (e.g., functions or classes). However,
we cannot conclude if an urgent release is related to its prior release when both releases change
different parts of the code. The second goal of the qualitative analysis is to quantify how often
the urgent releases are caused by incompatibility issues. To do so, we use the extended Swanson’s
maintenance classification [20, 39] to label the causes of urgent releases. We perform an iterative
process that is similar to prior work [36, 37] to figure out what causes an urgent release. In particu-
lar, we manually analyze the release notes and commit messages of the 375 urgent releases against
their respective prior release. For example, one stated “fixing default sort” in the release note of
version 2.12.6 of the 12-step-meeting-list1 plugin, which was an urgent release. The sort feature
was introduced in version 2.12.5 as stated “now able to set sort order on meetings page” in its release
note. Meanwhile, there were overlaps between the code changes made in version 2.12.6 and 2.12.6.
Therefore, we determine that the urgent release 2.12.6 was to fix bugs in version 2.12.5 and label
the root cause of the urgent release as a malfunction. Note that our dataset contains 16,444 urgent
releases for the top 500 most-released plugins.

Results: Four hundred ninety-seven (99%) of the studied plugins have at least one urgent

release (i.e., a release within 24 hours of its prior release). The studied plugins have a median
of 24 urgent releases, as shown in Figure 2. Seventy-three (14%) of the studied plugins have fewer
than 10 urgent releases while 62 (12%) of the studied plugins have more than 30 urgent releases.
We also observe that some releases are followed not just by one urgent release but by a median
of 4.5 and up to 18 urgent releases. For example, the Wp-Easycart plugin2 continuously released
14 urgent releases (i.e., from 1.0.8 to 1.0.19) from July 22 to July 24, 2013. The causes of these
urgent releases include bug fixes in the plugin, bugs related to WordPress (e.g., notices appearing
everywhere when WordPress was in debug mode), and bugs related to other software systems

1https://wordpress.org/plugins/12-step-meeting-list/.
2https://wordpress.org/plugins/wp-easycart/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://wordpress.org/plugins/12-step-meeting-list/
https://wordpress.org/plugins/wp-easycart/

The Co-evolution of the WordPress Platform and Its Plugins 19:7

Table 1. Causes for Urgent Releases Based on Extended Swanson Categories of Changes

Category Issues Addressed Description Count

Corrective Visual Modifying changes related to user interface. For example,
ensuring that RichText links follow the global colors.

130

Data Processing
Logic

Changing the data processing logic in the operational
flows. For example, fix the logic of email piping in the
multi-site and single-site detection.

88

Malfunction Functional errors or processing failures 34

Adaptive Incompatibility Fixing conflicts with the platform (e.g., WordPress,
browsers), other plugins, libraries, or services (e.g., API).

69

Perfective Performance Enhancing functionality by improving throughput. For
example, reduce the amount of data that is loaded at the
initial stage when a page is opened.

9

Security Fixing security vulnerabilities or avoiding the leakage of
personal sensitive data. For example, a security fix to pre-
vent malicious uploads.

8

Implementation Improvement Adding new features or premium service. 30
Localization Changes related to languages, regions, or translations.

For example, updating the language files.
20

Non-functional Documentation Adding or revising meta data, guidelines, figures, or rele-
vant information.

36

Code Cleanup Cleaning or refactoring the source code. 11
Other — 9

Note that one release can address issues across several categories. Incompatibility is the third most common cause for

urgent releases.

(e.g., deprecated functions in PHP 5.3, did not store data in MySQL). The Hitsteps-Visitor-Manager
plugin3 released 5 urgent releases to resolve incompatibility issues with Woocommerce analytics
and the Contact-Form-7 plugin4 between June 10 and 15 in 2015.

Eighty-four percent of the urgent releases in our qualitatively examined urgent re-

leases are fixing bugs in their prior release, where the third most common cause of these

bugs (32% of the qualitatively examined urgent releases) are related to incompatibility

issues. The majority of urgent releases are fixing issues that affect the operation of a plugin and
result in failures. For example, an urgent release provides a set of new settings that were missing
in prior release, which displayed multiple errors on users’ websites. In addition, 9% of the urgent
releases are complementing features in their prior releases rather than fixing their prior releases.
For example, the Easyindex plugin5 stated that “Update: Made the instructions for thumbnail prese-
lection clearer” to guide users on how to use the new features. Note that we are not able to classify
7% of the urgent releases, which do not have any associated release notes or precise commit mes-
sages or due to the urgent releases exploiting different classes or functions than the prior release.
The third most common issue that plugin developers fix via their urgent releases is related to in-
compatibility issues, as shown in Table 1. For example, the Bns-login plugin6 released the urgent
release 1.5.1 to fix incompatibility issues with the WordPress version 3.0.1. Thirty-two percent of
these incompatibility issues are between the plugins and WordPress, 19% are between different

3https://wordpress.org/plugins/hitsteps-visitor-manager/.
4https://wordpress.org/plugins/contact-form-7/.
5https://wordpress.org/plugins/easyindex.
6https://wordpress.org/plugins/bns-login.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://wordpress.org/plugins/hitsteps-visitor-manager/
https://wordpress.org/plugins/contact-form-7/
https://wordpress.org/plugins/easyindex
https://wordpress.org/plugins/bns-login

19:8 J. Lin et al.

plugins, 32% are between the plugins and other software systems (e.g., database, PHP), and 26%
are between the plugins and a third party (e.g., JQuery libraries, Google APIs).

: Summary of PQ

Ninety-nine percent of the studied plugins release at least one urgent release. The third
most common cause for these urgent releases are done to address incompatibility issues.
Among these issues, 32% of the incompatibility issues are between plugins and WordPress
and 19% are between peer-plugins.

4 UNDERSTANDING THE RELATION BETWEEN WORDPRESS
AND PLUGIN RELEASES

Motivated by the observation of our preliminary study, we study when (RQ1) and how (RQ2) the
top 500 most-released plugins co-evolve with WordPress and how the plugins co-evolve related to
each other (RQ3).

RQ1: When plugins support a new version of WordPress?

Motivation: The goal of this research question is to investigate when plugins support new ver-
sions of WordPress, and the impact of the timing of such a support on the quality of the plugin
support releases (i.e., releases on which plugins support new WordPress versions). We measure
such a quality by the occurrence of urgent releases, as such releases indicate that a bug is intro-
duced in their prior releases, as discussed by prior work and our preliminary study. Our research
question sheds light on the dynamics of the relation between WordPress and its plugins.

Approach: To investigate when plugins support a new version of WordPress, we measure the
duration of the “off-sync period,” which consists of the lag between the release of a new Word-
Press version and when a plugin releases a version (“support release”) that supports that new
WordPress version, as shown in Figure 3. As illustrated in the same figure, we refer to the plugin
releases that are shipped within the off-sync period as “off-sync releases” and the other plugin re-
leases as “in-sync releases.” We also investigate whether plugins are consistent with their support
of new WordPress versions. For example, a plugin always releases a support release within 7 days
after a new version of WordPress. Finally, we investigate when plugins make changes according
to the changes of WordPress APIs.

In this research question, we study the plugins’ releases as well as WordPress releases. In partic-
ular, we use the Plugin Dataset (the set of the top 500 most-released plugins) and their associated
releases, which are obtained following the approach discussed in our preliminary research ques-
tion. In addition, we collect all the versions of WordPress including their release dates and notes
from the WordPress release page7 (the WordPress Dataset). WordPress had five major versions
with each of them having 10 minor versions (e.g., 4.0 to 4.9 for the WordPress version 4) except for
version 5, which is the latest major version of WordPress and which has only three minor versions
at the time of our data collection. We exclude the WordPress version 1, since it has only four active
plugins. Note that we do not consider the testing and beta versions of WordPress, such as “beta 1”
or “release candidate 1.” These versions are not official and are just for testing purposes.8

7https://wordpress.org/news/category/releases/.
8https://wordpress.org/news/2019/10/wordpress-5-3-release-candidate/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://wordpress.org/news/category/releases/
https://wordpress.org/news/2019/10/wordpress-5-3-release-candidate/

The Co-evolution of the WordPress Platform and Its Plugins 19:9

Fig. 3. An illustration of the “off-sync period,” which consists of the time between the release of a new

version of WordPress and when a plugin supports that new version. We refer to the release that supports a

new WordPress version by “support release.” During the off-sync period, a plugin can release an “off-sync
release,” which is shipped by a plugin before it declares support to the latest available version of WordPress.

We refer to any release that is shipped after the support of the latest WordPress version by “in-sync” release.

Since the duration of the off-sync periods varies from one plugin and WordPress releases to
another, we classify the support releases for a new version of WordPress into four groups as
follows:

(1) Early adopters are plugin releases that support WordPress Beta versions.
(2) Fast adopters are plugin releases that support new WordPress versions within one week

after the official release date of a new WordPress version.
(3) Normal adopters are plugin releases that support a new WordPress version after one week

and within 60 days from the release date of the new WordPress version.
(4) Slow adopters are plugin releases that support a new WordPress version after at least

60 days.

We then compare which of these groups has a higher chance to be followed by an urgent release.
Finally, we investigate when plugins adopt a new or delete a removed WordPress API. To do so,

we investigate which type of plugin releases (i.e., in-sync, off-sync, or support releases) change (add
or delete) a WordPress API. Then, we investigate the lag between the time when a new WordPress
API is added and when it is used by the plugins. Similarly, we investigate when a WordPress API
is removed and when it is removed from the source code of our studied plugins.

Results: Plugins support a new version of WordPress after a median of 38 days with a lag

of just one release behind the latest available WordPress version. Twenty-eight percent of
the support releases are made within one week after the official release date of a new version of
WordPress, while 38% are made at least 60 days after a new version of WordPress. Our observation
holds for version 4 and its minor versions, as shown in Figure 4. For instance, only 27% of the
studied plugins support WordPress 4.0 within the first week and a median of 22% of the studied
plugins support minor versions of WordPress 4.0 (i.e., 4.1 to 4.9) within the first week. The lag
(in days) for plugins supporting a new version of WordPress is similar to the lag of updating API
changes (a median of 34 days) in the Pharo ecosystem, as reported by Hora et al. [21], while it is
faster than the lag of API adoption in the Android ecosystem (average 14 months), as reported by
McDonnell et al. [27].

Ninety-seven percent of the plugins have at least one support release that is made as

late as after a week from the release of the latest WordPress release. For instance, only
3% of the studied plugins always support new versions of WordPress within their first week. The
studied plugins support some versions of WordPress as early as within the first week, while the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

19:10 J. Lin et al.

Fig. 4. The distribution of plugins shipping a support release for a new WordPress version. Early spikes (i.e.,

early and fast adopters) appear across all minor versions of WordPress version 4. The vertical dashed lines

indicate when WordPress released a version. Note that this plot considers just version 4, and we observe

similar results for the other WordPress versions (i.e., 2, 3, and 5).

same plugins support other versions as late as after 60 days. For example, Woocommerce-Checkout-
Manager9 shipped a release to support WordPress 4.6 on August 19, 2016, which is three days after
the release of version 4.6, while the release supporting WordPress 4.9 was introduced 84 days after
its release date.

We do not observe any large differences among the four groups of adopters in terms

of the chance to be followed by an urgent release. Early, fast, normal, and slow adopters have
a median of 0%, 0%, 11%, and 13%, respectively, of their releases that are followed by an urgent
release. The percentage of normal and slow adopters that are followed by an urgent release is
statistically significantly different (Wilcoxon test: p-value < 2.2e−16, α = 0.01) compared to early
and fast adopters, as shown in Figure 5. However, this difference has a small effect size (0.26). In
particular, 478 (i.e., 96%) of the studied plugins have at least one early or fast adopter, while a
median of 0% of their such adopters are followed by an urgent release.

Although WordPress plugins support new WordPress versions, the plugins make

changes according to the new WordPress version after a median of 431 days. For instance,
even when plugins support a new WordPress version that removes a WordPress API, the studied
plugins keep using these APIs that are completely removed from the source code of WordPress for
a median of 873 additional days. WordPress removes an API from its source code in a median of
10 minor versions (i.e., 1,320 days as WordPress releases a minor version in a median of 132 days)
after the introduction of the API. Furthermore, most of the API related changes are not made by
support releases, but by in-sync releases, as shown in Figure 6. For example, post_permalink() has
been removed since WordPress 4.4.10 The photo-gallery plugin11 supported WordPress 4.4 one day
after its release, while the plugin removed the call to the post_permalink() API (in an in-sync re-

9https://wordpress.org/plugins/woocommerce-checkout-manager/.
10https://developer.wordpress.org/reference/functions/post_permalink/.
11https://wordpress.org/plugins/photo-gallery/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://wordpress.org/plugins/woocommerce-checkout-manager/
https://developer.wordpress.org/reference/functions/post_permalink/
https://wordpress.org/plugins/photo-gallery/

The Co-evolution of the WordPress Platform and Its Plugins 19:11

Fig. 5. The comparison of the distribution of urgent release ratio for support releases based on their adoption

speed. Slow and normal adopters are more likely to be followed by an urgent release.

Fig. 6. The comparison of the percentage of releases that change a WordPress API among in-sync, off-sync,

and support releases. Plugin developers are more likely to make changes related to the associated WordPress

APIs in in-sync releases compared to support releases.

lease) after 671 days. We also observe that newly introduced APIs are used as fast as 1 day from
their addition by WordPress. Finally, 25% of the WordPress APIs were never used by any Word-
Press plugin. We randomly selected 50 APIs from these APIs to further investigate whether they
need special settings (e.g., configuration settings) before using them. Seventy-six percent of these
50 APIs are to manipulate particular information of a tiny element (e.g., get the last name of the
author of the current post, determine if a string is well formatted) on a website. The others (24%)
are for administrators to control and maintain their websites, such as getting the size of a direc-
tory recursively and handling warnings and notices in each sub-domain of multi-sites. In general,
plugins only use these APIs when they support certain functionality (e.g., multi-site management).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

19:12 J. Lin et al.

: Summary of RQ1

Plugins support a new version of WordPress after a medium of 38 days with a lag of just
one release behind the latest available WordPress version. Such a lag period is inconsistent
even for the same plugin. Moreover, plugin developers use a new WordPress API as fast as
1 day after its introduction and delete removed APIs after a median of 873 days.

RQ2: How plugins support a new version of WordPress?

Motivation: The goal of this research question is to investigate how plugins support new Word-
Press releases, so WordPress developers can accordingly design tools to help plugins better support
new WordPress versions and reduce incompatibility issues. In particular, this research question in-
vestigates how plugins support new WordPress versions from three perspectives: We investigate
whether plugins release changes (or off-sync releases, as shown in Figure 3) before supporting
new WordPress versions and how likely these off-sync releases will contain issues that will be
fixed by an urgent release. Second, we investigate the amount of code changes during the support
of new WordPress releases. We also investigate post-support by studying how likely support re-
leases as well as releases that make a change according to the modification of a WordPress API
will be followed by an urgent release.

Approach: To study the practices that are before the support of new WordPress versions, we
quantify the amount of off-sync releases that plugins have. In particular, we count for each plugin
the number of releases that exist between the release of each WordPress version and the plugin’s
support release for the same new WordPress version. We also compare how often these off-sync
releases are followed by an urgent release compared to in-sync releases (i.e., releases that are made
after supporting new WordPress versions).

Second, we investigate the support itself by studying their code changes. In particular, we
compare the amount of code changes of support releases, in-sync, and off-sync releases. We also
compare the impact of the amount of code changes on the quality of support releases. The quality is
quantified by the chance of a support release to be followed by an urgent release. In particular, we
compare the support releases with a large amount of code change (i.e., the top 25% of our studied
support releases in terms of code changes) and support releases with a few code changes (i.e., the
bottom 25% of our studied support releases). Since plugins do not always use new WordPress APIs
or delete removed WordPress APIs in support releases, we also quantify the quality of releases that
change (add or delete) a WordPress API. Similarly to the other practices, we measure the quality
with the number of urgent releases.

Finally, we study the quality of support releases in comparison with ordinary releases by measur-
ing how likely such releases will be followed by urgent releases. Similarly, we study the quality of
releases that make a change according to a WordPress API (e.g., releases that add a new WordPress
API or delete a removed WordPress API).

Result: The majority of the studied plugins (i.e., 89%) have at least one off-sync release.

Such releases are more likely to be followed by an urgent release (153%) compared to in-

sync releases. The studied plugins have a median of six off-sync releases. Thirty-one percent of
these off-sync releases are made within one week after a new version of WordPress, while 17% are
made even after 60 days. Figure 7 shows the boxplots that compare off-sync and in-sync releases
in terms of the urgent release ratio (the percentage of the releases that are followed by an urgent
release for a given plugin). The difference of the urgent release ratio between off-sync and in-sync
releases is statistically significant (Wilcoxon test: p-value = 2.07e−7 , α = 0.01), with a medium

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

The Co-evolution of the WordPress Platform and Its Plugins 19:13

Fig. 7. The comparison of the distribution of urgent release ratio among in-sync, off-sync, and support re-

leases. Off-sync releases are more likely to be followed by an urgent release compared to support and in-sync

releases.

effect size (0.49). An example from the Caldera-Forms plugin12 shows how off-sync releases can
introduce incompatibility issues with WordPress. For instance, the plugin had an off-sync release
that was made 13 days after the official release of WordPress 5.0. The off-sync release was followed
by four urgent releases that fix incompatibility issues related to WordPress 5.0, as stated in the
release notes of the urgent releases (e.g., “FIXED: Unable to continue with Freemius opt-in after
update to WordPress 5.0.”).

While a median of 20% of support releases are followed by an urgent release, a median

of 5% of support releases are urgent releases that fix their previous releases. Two hundred
seventy-one (54%) of the studied plugins have at least one of its support releases that is also an
urgent release. Figure 8 indicates that 351 plugins have less than 10% of their support releases that
are urgent releases, while 2 plugins have more than 50%. For example, the planso-forms plugin13

shipped an urgent release (i.e., 1.3.2) to support WordPress 4.2 due to an incompatibility issue, as
noted in the release note of version 1.3.2: “Checked for compatibility with WordPress 4.2. Changed
the dynamic date and time variables to obey the WordPress settings.”

Support releases with a large amount (i.e., top 25%) of code changes are more likely to

be followed by an urgent release compared to support releases with a few code changes

(bottom 25%). In particular, plugin developers modify a median of 33 lines of code for support
releases, while they modify a median of 22 and 13 lines of code for in-sync and off-sync releases,
respectively. Figure 9 indicates that the difference of the urgent release ratio between support
releases with large changes and few changes is statistically significant (Wilcoxon test: p-value <
2.2e−16 , α = 0.01), with a medium effect size (0.6).

Releases with code changes related to WordPress APIs are more likely to be followed

by an urgent release compared to ordinary releases (that do not have changes related

to WordPress APIs). Figure 10 presents the difference between these two kinds of releases is
statistically significant (Wilcoxon test: p-value = 0.005, α = 0.01), with a small effect size (0.15).
Although plugin developers are more likely to make changes related to WordPress APIs in the
in-sync releases (Figure 6), the ratio of such in-sync releases that are followed by an urgent release

12https://wordpress.org/plugins/caldera-forms.
13https://wordpress.org/plugins/planso-forms.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://wordpress.org/plugins/caldera-forms
https://wordpress.org/plugins/planso-forms

19:14 J. Lin et al.

Fig. 8. The number of plugins that have a certain percentage of its support releases that are urgent releases.

For example, 102 plugins have 10–20% of their support releases that are urgent releases.

Fig. 9. The comparison of urgent release ratio for support releases with large vs. few changes. Support re-

leases with a large amount of code changes are more likely to be followed by an urgent release.

(i.e., median of 20%) is lower than support releases that have changes related to WordPress APIs
(i.e., median of 31%). Moreover, a median of 22% of in-sync releases that have changes to WordPress
APIs are also urgent releases that fix their previous releases.

: Summary of RQ2

The majority (89%) of the studied plugins have at least one off-sync release. The possibility
of such off-sync releases being followed by an urgent release is 153% times higher than in-
sync releases. Support releases with a large amount of code changes are risky, since they
are more likely to be followed by an urgent release.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

The Co-evolution of the WordPress Platform and Its Plugins 19:15

Fig. 10. The comparison of urgent release ratio for releases with a change related to WordPress APIs vs.

ordinary releases (no changes related to WordPress APIs). Releases with changes related to WordPress APIs

are more likely to be followed by an urgent release compared to ordinary releases (that not have changes

related to WordPress APIs).

RQ3: How WordPress plugins co-evolve?

Motivation: The goal of this research question is to investigate the co-evolution of plugins. Incom-
patibility issues do not occur solely between a plugin and its platform but also between different
plugins, as discussed in our preliminary study. For example, a user noted an incompatibility issue
between the Jetpack plugin and the Yoast-SEO plugin 2 days after the release of version 7.0 of
the Jetpack plugin.14 The problem was resolved once the user reverted the upgrade of Jetpack by
downgrading to the version 6.9. Therefore, this research question investigates the relation between
plugins by studying when a plugin releases a change according to another plugin (or peer-triggered
releases), the quality (in terms of following urgent releases) of such a change, and what resources
can be shared between plugins so incompatibilities occur. Our findings can provide a clearer un-
derstanding of the co-evolution of plugins, so WordPress can accordingly develop solutions that
minimize the incompatibilities between WordPress plugins.

Approach: To investigate how plugins release new updates according to other plugins, we identify
related plugins from the Plugin DataSet, which is obtained from our preliminary study. Since
there are no metadata that indicate which plugin is related to which other plugin, we leverage the
description of plugins and their release notes to identify related plugins. In particular, we identify
that two plugins are related from one plugin’s description or from the release notes of a plugin.
A plugin is explicitly related (i.e., explicit relation) to another plugin when they extend each
other’s features according to one of the two plugins’ descriptions. For example, the ecwid-shopping-
cart plugin15 generates shopping carts for users to place their orders on an e-commerce store.
The plugin supports multilingual storefronts by leveraging multilingual plugins (e.g., the polylang
plugin) to translate the information (e.g., name, description) of products. Therefore, the ecwid-
shopping-cart plugin has an explicit relation with each of the multilingual plugins. In other cases,
two plugins might interfere via an implicit relation when they are installed together leading to
incompatibility issues. For example, Figure 11 shows that there is a relation between the All-In-
One-Wp-Security-and-Firewall plugin and the Woocommerce plugin. We refer to the releases that

14https://wordpress.org/support/topic/jetpack-7-0-incompatible-with-yoast-seo/.
15https://wordpress.org/plugins/ecwid-shopping-cart/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://wordpress.org/support/topic/jetpack-7-0-incompatible-with-yoast-seo/
https://wordpress.org/plugins/ecwid-shopping-cart/

19:16 J. Lin et al.

Fig. 11. An example of a pair of plugins, the All-In-One-Wp-Security-and-Firewall plugin and the Woocom-

merce plugin, based on the release note of the the All-In-One-Wp-Security-and-Firewall plugin.

mention other plugins as “peer-triggered releases.” Similarly to RQ1 and RQ2, we first measure the
quality of peer-triggered releases by calculating the amount of their following urgent releases.

We also investigate a lower-bound time required to fix an incompatibility between plugins. In
particular, we investigate the time when plugins ship new releases in response to incompatibilities
that were introduced by other plugins. Since we cannot identify for a plugin A that introduces an
incompatibility issue that was fixed by a plugin B, we compute the lag between the release of
the plugin B that fixes compatibility issues to the closest previous release of the plugin A, as a
lower-bound estimation of the time that incompatibility issues between plugins persist.

After defining a set of related pairs of plugins, we qualitatively investigate what resources plu-
gins could share leading to incompatibility issues. To do so, we conduct a qualitative analysis for
a statistically representative random sample (confidence level = 95%, confidence interval = 5%)
of 240 peer-triggered releases to provide a catalog of the rationale for two plugins to be related.
Among the 240 peer-triggered releases, we manually label each peer-triggered release that ad-
dresses incompatibility issues by investigating the release note of that release as well as its source
code changes. We label the main causes for incompatibility issues between WordPress plugins in
terms of resources that are shared between plugins. For example, one stated that “fixed issue setting
Featured flag and Catalog Visibility in woocommerce 3.0 and later” in the release note of version
2.41 of the pw-bulk-edit plugin,16 a plugin for editing product metadata (e.g., name or price) on
an e-commerce website. We determine the root cause of the incompatibility issue between the
pw-bulk-edit and woocommerce plugins as layout, since the two plugins shared the same elements
(e.g., labels, buttons) on a web page. The developers of the pw-bulk-edit plugin tweaked the invoked
function for retrieving and displaying information in the elements of the web page in version 2.41.

Result: Plugins have a median of six peer-triggered releases. The plugins release changes

according to a median of 5 other plugins (not all of these related plugins are in the top

500 most most-released plugins). Figure 12 illustrates that the studied plugins are related to one
other plugin and as much as 78 other plugins (not all of these related plugins are in the top 500
most most-released plugins). For example, the Squirrly-SEO plugin17 is related to 78 other plugins,
since it offers smart tools of search engine optimization that collect information from web pages

16https://en-ca.wordpress.org/plugins/pw-bulk-edit/.
17https://wordpress.org/plugins/squirrly-seo/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://en-ca.wordpress.org/plugins/pw-bulk-edit/
https://wordpress.org/plugins/squirrly-seo/

The Co-evolution of the WordPress Platform and Its Plugins 19:17

Fig. 12. The distribution of the number of related plugins for a given plugin. The numbers at the top of each

bin indicate the unique number of related plugins and the percentage of these related plugins that are in the

top 500 most-released plugins.

where those plugins are installed to increase the ranking of their websites. In addition, the top three
plugins having the largest number of relations with other plugins are Woocommerce,18 Gutenberg,19

and Buddypress.20 Woocommerce is a popular eCommerce solution built on WordPress, Gutenberg
is a flexible editor for users to create fancy content (e.g., media, photo gallery) easily on a website,
and Buddypress provides a suite of components to integrate a modern, robust, and sophisticated
social network into a website. We also observe that 94% of the pairs of related plugins do not share
any developers in common.

Peer-triggered relations do not exist just between the plugins that directly depend on each other.
In particular, 60% (144 of 240) of the qualitatively studied plugins relations are between plugins that
do not extend the features of each other or do not directly depend on each other (implicit relations).
For example, Super-Socializer21 integrates login, share, and comments from social media into a
website. This plugin breaks the features of Buddypress, which is a competitor. Hence, the Super-
Socializer developers have resolved the incompatibility issue and stated that “[Bugfix] BuddyPress
XProfile fields were being wiped out on Social Login, if social profile fields were not mapped to XProfile
fields from plugin options.” On the other side, Woocommerce-Predictive-Search22 is a plugin that
extends Woocommerce with an auto-complete feature so there is an explicit relation between the
Woocommerce-Predictive-Search and Woocommerce plugin.

Peer-triggered releases are not risky, since peer-triggered releases are less likely to be followed
by an urgent release, compared to ordinary releases (that are not associated with other plugins).
Figure 13 shows that the ratio of urgent releases for peer-triggered releases is statistically signif-
icantly (Wilcoxon test: p-value = 1.66e−8; α = 0.01; effect size is small (0.21)) lower than the ratio
of urgent releases that are associated with ordinary releases (that are not associated with other
plugins). In addition, a median of 20% of peer-triggered releases are urgent releases that fix their

18https://wordpress.org/plugins/woocommerce/.
19https://wordpress.org/plugins/gutenberg/.
20https://wordpress.org/plugins/buddypress/.
21https://wordpress.org/plugins/super-socializer/.
22https://wordpress.org/plugins/woocommerce-predictive-search.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://wordpress.org/plugins/woocommerce/
https://wordpress.org/plugins/gutenberg/
https://wordpress.org/plugins/buddypress/
https://wordpress.org/plugins/super-socializer/
https://wordpress.org/plugins/woocommerce-predictive-search

19:18 J. Lin et al.

Fig. 13. The comparison of urgent release ratio for ordinary vs. peer-triggered releases. Peer-triggered re-

leases are less likely to be followed by an urgent release.

Fig. 14. The number of plugins that have a certain percentage of its peer-triggered releases that are urgent

releases. For example, 53 plugins have 10–20% of its peer-triggered releases that are urgent releases.

previous releases. Figure 14 indicates the distribution of plugins that have a certain percentage of
its peer-triggered releases that are urgent releases. One hundred seventy (34%) of the studied plu-
gins have at least one peer-triggered release that is an urgent release. For example, one mentioned
that “FIXED: Block was not showing in the editor if Gutenberg was not active and WordPress
5.0.1+” in the release note of an urgent release for the caldera-forms plugin.23

The most common goal of peer-triggered releases is fixing incompatibility issues be-

tween peer plugins, as shown in Table 2. In fact, 46% of these releases are related to incompat-
ibility issues between plugins. In addition, plugins extend their features by using other plugins,
as discussed earlier in the above for the explicit relations between plugins. Plugins also face in-
compatibility issues in these explicit relations, for which developers know in advance the plugins

23https://wordpress.org/plugins/caldera-forms.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://wordpress.org/plugins/caldera-forms

The Co-evolution of the WordPress Platform and Its Plugins 19:19

Table 2. The Types of Relations That Exist between a Pair of Related Plugins

Reason Count(%)

Conflicts between plugins 110 (46%)
Leverage features from other plugins to extend its features 80 (33%)
Adjust/Add functions to offer additional settings for other plugins (e.g., options to implement
Yoast-SEO breadcrumbs)

72 (30%)

Multiple plugins to form a feature (e.g., master-slave) 25 (10%)
Integrated newly created plugins to benefit to users (e.g., merge settings from different plugins
together)

23 (10%)

Protective measurements to avoid conflicts or errors with plugins having a similar feature 8 (7%)

Note that a relation can have multiple reasons.

Fig. 15. The incompatibility last (lower-bound estimation) between pairs of plugins with explicit or implicit

relations. The blue number above each boxplot represents the number of pairs of plugins are considered in

each relation.

on which they depend. For example, as stated in the release notes of the Affiliates-Manager plu-
gin,24 “Fixed an issue that was preventing affiliates manager from creating new affiliates during
WooCommerce checkout.”

Developers take a long time, i.e., a median of 36 days (lower-bound estimation), before fixing
incompatibility issues. Based on our qualitatively studied incompatibilities, we observe that plugin
developers take a median of 39 days or 27 days (lower-bound estimation) to fix an incompatibility
between a pair of plugins having an explicit or implicit relation, respectively, as shown in Figure 15.

Sharing six types of resources is responsible for incompatibility issues between peer

plugins, according to our investigation on the main causes for 110 incompatibilities. Table 3
presents the six types of resources, which are workflow, layout, data, library, name, and cache
that plugins share with each other along with examples. While sharing the workflow and layout
is expected, because plugins work together to form a web page, sharing data, libraries, names,
and caches between plugins is surprising, because each plugin is designed for different purposes.
Even when WordPress provides a best practices guideline about the naming conventions25 of these
resources to avoid the incompatibilities, plugins still share these resources.

24https://wordpress.org/plugins/affiliates-manager/.
25https://developer.wordpress.org/plugins/plugin-basics/best-practices/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://wordpress.org/plugins/affiliates-manager/
https://developer.wordpress.org/plugins/plugin-basics/best-practices/

19:20 J. Lin et al.

Fig. 16. The explanation for the examples of sharing resources between plugins in Table 3.

: Summary of RQ3

Our studied plugins have a median of six peer-triggered releases. The first important goal
of these peer-triggered releases is fixing incompatibility issues, which remain unfixed for
39 days and 27 days for explicitly and implicitly related plugins, respectively. The studied
plugins have a median of 20% of their peer-triggered releases are urgent releases. These
incompatibilities occur when two plugins share at least one of six types of resources.

5 THREATS TO VALIDITY

5.1 Internal Validity

An internal threat to validity is related to the identification of related plugins. For instance, we
might learn more possible reasons for incompatibility issues in case we are able to identify all the
possible related pairs of plugins. However, our approach that leverages the plugins’ descriptions
and release notes to identify related plugins allows us to observe that plugins can accidentally in-
teract even if they do not extend each other. Finding more possible relations between plugins will
enforce that conclusion. In addition, our approach to identify related plugins allows us to collect
a large number of incompatibilities between plugins, which we qualitatively study to identify the
possible causes of incompatibility issues. Finding more relations between the WordPress plugins
can help identify more possible causes for incompatibility issues. Thus, we encourage future stud-
ies to investigate approaches that help identify all possible relations between WordPress plugins.

We also do not generalize our results to the WordPress changes that can be triggered by the plu-
gins. As the plugins are designed to extend the functionality of WordPress instead of the opposite,
our study focuses on how the plugins react to the changes of WordPress and whether there is any
relation between the plugins themselves. While there is no systematic way to identify whether a
WordPress change is triggered by a plugin, we observed certain examples where a plugin developer
suggested WordPress certain improvements,26 which was integrated into WordPress after several
versions (from 2.9 to 4.4). Thus, we encourage future work to investigate how WordPress reacts to
the suggestions made by the plugins.

5.2 External Validity

Similarly to prior studies [16, 24, 29, 30, 34, 35] that focused just on WordPress, we do not gen-
eralize our findings to other content management systems (e.g., Drupal and Joomla). However,

26https://core.trac.wordpress.org/ticket/11334.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://core.trac.wordpress.org/ticket/11334

The Co-evolution of the WordPress Platform and Its Plugins 19:21

Table 3. The Types of Resources That Are Shared between Each Pair of Plugins That Show a Conflict

Shared

Resource

Description Example Reason Count(%)

Data Data related objects that
are used in the operations
of a web page (e.g.,
rendering, forms) are
changed or removed by
another plugins

“Fix – Yoast SEO was
overriding Sunshine’s own
title tags with wrong data
for individual galleries and
images, not anymore” [8]

Two plugins (i.e., yoast-seo
and sunshine) change data
in the same global variable.

58 (53%)

Workflow The order of invoking
functions is impacted when
a plugin is installed with
other plugins, such as one
function is invoked twice.

“Fixed: If you click on
the small icon from the
WooCommerce product
editor to insert shortcode,
it shows popup header
twice” [4]

Two plugins added two
textboxes that are sharing
the same css-class
“css-textbox”. One of the
two plugin added a
javascript handler for the
mouse-over on any textbox
tagged with the css-textbox
class style. Thus, the
handler was executed for
both textboxes, as
illustrated in Figure 16(a).

45 (41%)

Layout HTML elements (e.g.,
buttons, images) are not
located at their proper
positions in a web page

“Fixed: Input width and
box shadow options are
not applied on file type
input in Contact Form 7
widget” [6]

One plugin changes the css
class of an element that
was created by another
plugin after certain
behaviors (e.g., mouse
over), making users cannot
interact with the element
any more. See Figure 16(b)
for more details.

35 (32%)

Library A collection of files,
programs, and code that
assists developers to reduce
the implementation time
and can be used by
different plugins

“Fixed Stripe library
conflict if other Stripe
plugin is installed” [7]

Several plugins include the
stripe-gateway library in
the same web page. When
the web page loads the
same library at the 2nd
time, the variables and
functions in the library
conflict with the ones that
have been loaded by the
first plugin.

11 (10%)

Name The same source code
names (e.g., classes, vari-
ables, configurations) are
repeated across plugins

“Renamed configuration
page tab classes to avoid
conflicts with other
plugins” [2]

Css styles apply to several
elements (e.g., labels) on a
web page that are sharing
the same name but are
added by two different
plugins.

6 (5%)

Cache A asset is stored in cache
for a web page to enhance
the performance of the web
page

“Avoid using relative asset
URLs that may break
caching plugins” [3]

Caching plugins cannot
cache the assets without
their full urls, leading to
errors.

3 (2%)

WordPress is the most popular CMS platform and has been used by more than 42% of the websites
whose content management system (i.e., more than 65% of market share) is known [38], compared
to other popular CMSs, such as 1.5% for Drupal and 2.1% for Joomla. In addition, WordPress has
a structured historical repository that allows us to collect data for analyzing the co-evolution be-
tween the plugins and their platform. That is not the case for Joomla, as it does not have any

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

19:22 J. Lin et al.

hosted code repositories for its plugins so we cannot analyze the plugins changes according to
the changes to the Joomla platform. Drupal has a completely different release strategy for plugins,
compared to WordPress. The developers of Drupal plugins specify a version of Drupal when they
create a plugin. In other words, each Drupal plugin only works for a particular version of Drupal,
which is completely different from WordPress and its plugins. In fact, users can install any version
of WordPress plugins on any version of WordPress. Hence, the results we learn from our study
might not be applicable to Drupal. That said, Drupal and Joomla have many incompatibility issues
between the platform and plugins (e.g., the config-terms plugin was incompabilitible with Drupal
9.227 and the admin-tools plugin28 was incompatible with Joomla 4.0.329) and we encourage future
studies to investigate the incompatibilities in these other CMSs. Nevertheless, a large number of
posts on incompatibilities between WordPress and its plugins or between plugins with each other
are reported on the WordPress support forum, indicating how common the incompatibility issues
are.30 For example, one stated an incompatibility between a plugin and WordPress 5.3, “when I
click on Add New Post, Blank White screen appears.31”

6 CONCLUSION

A plugin-based software ecosystem, such as WordPress, is an ecosystem that consists of a platform
that can be extend by additional components, that are called plugins. Differently from traditional
ecosystems, the platform and the plugins of a plugin-based software ecosystem have a symbiotic
relation. The platform needs the plugins, which in turn require the platform. Such a high coupling
between the platform and the plugins increases the chances for incompatibility issues. In fact, users
hesitate to upgrade their WordPress and plugins due to incompatibility issues. According to our
preliminary study, plugins often miss relations with the platform or other plugins, which cause
important incompatibility issues that are as important to be rapidly addressed via urgent updates.
Thirty-two percent and 19% of the incompatibilities that are fixed through urgent updates are
between a plugin and its platform and between a pair of plugins, respectively.

In this article, we conduct an empirical study that investigates how plugins ship releases in
a plugin-based software ecosystem, so we can get a clear understanding of how plugins and the
platform as well as peer plugins co-evolve. Such understanding can guide future studies and Word-
Press developers better support such co-evolution by designing mechanisms and evaluating their
impact on reducing incompatibility issues. For example, WordPress can design mechanisms for
notifying that a new version will be released and that APIs will be removed in the new version.
These mechanisms can also warn plugin developers when they accidentally share resources (e.g.,
unique css classes, variable names) with other plugins. Our findings suggest that (RQ1) even if plu-
gins support the latest WordPress versions, they do so after a long period. Even worse, they make
changes according to the WordPress APIs after a long period (i.e., a median of 431 days). During
such an-out-of sync period, plugins can manifest incompatibility issues with their platform. (RQ2)
Plugins release risky changes that are out-of-sync with WordPress releases, whereas the support
releases and especially those with a large source code modification are risky. Finally, (RQ3) in-
compatibility issues occur not just between plugins that extend each other’s features, and these
incompatibilities occur when plugins accidentally share six types of resources with each other.

27https://www.drupal.org/project/config_terms/issues/3200627.
28https://extensions.joomla.org/extension/admin-tools/.
29https://www.akeeba.com/support/admin-tools/Ticket/35795:extensions-not-compatible-with-joomla-4-0-3.html.
30https://wordpress.org/search/incompatibility.
31https://wordpress.org/support/topic/incompatible-with-wp-5-3-gutenberg/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://www.drupal.org/project/config_terms/issues/3200627
https://extensions.joomla.org/extension/admin-tools/
https://www.akeeba.com/support/admin-tools/Ticket/35795:extensions-not-compatible-with-joomla-4-0-3.html
https://wordpress.org/search/incompatibility
https://wordpress.org/support/topic/incompatible-with-wp-5-3-gutenberg/

The Co-evolution of the WordPress Platform and Its Plugins 19:23

REFERENCES

[1] CASE Studies. Retrieved May 15, 2020 from https://wpvip.com/case-studies/.

[2] Link Library. Retrieved May 15, 2020 from https://wordpress.org/plugins/link-library/#developers.

[3] Page Builder by SiteOrigin. Retrieved May 15, 2020 from https://wordpress.org/plugins/siteorigin-panels/#developers.

[4] Photo Gallery by 10Web–Mobile-Friendly Image Gallery. Retrieved May 15, 2020 from https://wordpress.org/plugins/

photo-gallery/#developers.

[5] Plugin Compatibility Beta. Retrieved May 15, 2020 from https://wordpress.org/news/2009/10/plugin-compatibility-

beta/.

[6] Premium Addons for Elementor. Retrieved May 15, 2020 from https://wordpress.org/plugins/premium-addons-for-

elementor/#developers.

[7] Simple Membership. Retrieved May 15, 2020 from https://wordpress.org/plugins/simple-membership/#developers.

[8] Sunshine Photo Cart. Retrieved May 15, 2020 from https://wordpress.org/plugins/sunshine-photo-cart/#developers.

[9] Urgent: Plugin Update for 4.7.1? Retrieved May 15, 2020 from https://wordpress.org/support/topic/urgent-plugin-

update-for-4-7-1/.

[10] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. 2013. The evolu-

tion of project inter-dependencies in a software ecosystem: The case of apache. In Proceedings of the IEEE International

Conference on Software Maintenance (ICSM’13). IEEE, 280–289.

[11] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. 2015. How the

apache community upgrades dependencies: An evolutionary study. Emp. Softw. Eng. 20, 5 (2015), 1275–1317.

[12] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Massimiliano Di Penta, Rocco Oliveto,

and Denys Poshyvanyk. 2014. The impact of api change-and fault-proneness on the user ratings of android apps.

IEEE Trans. Softw. Eng. 41, 4 (2014), 384–407.

[13] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016. How to break an API: Cost nego-

tiation and community values in three software ecosystems. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE’16). 109–120.

[14] Aline Brito, Marco Tulio Valente, Laerte Xavier, and Andre Hora. 2020. You broke my code: Understanding the moti-

vations for breaking changes in APIs. Emp. Softw. Eng. 25, 2 (2020), 1458–1492.

[15] Alexandre Decan, Tom Mens, and Maëlick Claes. 2017. An empirical comparison of dependency issues in OSS pack-

aging ecosystems. In Proceedings of the IEEE 24th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER’17). IEEE, 2–12.

[16] Laleh Eshkevari, Giuliano Antoniol, James R. Cordy, and Massimiliano Di Penta. 2014. Identifying and locating in-

terference issues in PHP applications: The case of WordPress. In Proceedings of the 22nd International Conference on

Program Comprehension (ICPC’14). 157–167.

[17] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2014. Web API growing pains: Stories from client developers

and their code. In Proceedings of the Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering,

and Reverse Engineering (CSMR-WCRE’14). IEEE, 84–93.

[18] Safwat Hassan, Cor-Paul Bezemer, and Ahmed E. Hassan. 2018. Studying bad updates of top free-to-download apps

in the google play store. IEEE Trans. Softw. Eng. 46, 7 (2018), 773–793.

[19] Safwat Hassan, Weiyi Shang, and Ahmed E. Hassan. 2017. An empirical study of emergency updates for top android

mobile apps. Emp. Softw. Eng. 22, 1 (2017), 505–546.

[20] Abram Hindle, Daniel M. German, and Ric Holt. 2008. What do large commits tell us? A taxonomical study of large

commits. In Proceedings of the International Working Conference on Mining Software Repositories (MSR’08). 99–108.

[21] André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien, and Stéphane Ducasse. 2018. How

do developers react to API evolution? A large-scale empirical study. Softw. Qual. J. 26, 1 (2018), 161–191.

[22] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure and evolution of package depen-

dency networks. In Proceedings of the IEEE/ACM 14th International Conference on Mining Software Repositories (MSR’17).

IEEE, 102–112.

[23] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro Inoue. 2018. Do developers update

their library dependencies? Emp. Softw. Eng. 23, 1 (2018), 384–417.

[24] Ar Kar Kyaw, Franco Sioquim, and Justin Joseph. 2015. Dictionary attack on Wordpress: Security and forensic analysis.

In Proceedings of the 2nd International Conference on Information Security and Cyber Forensics (InfoSec’15). IEEE, 158–

164.

[25] Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. 2017. Studying the urgent updates of popular games on the Steam

platform. Emp. Softw. Eng. 22, 4 (2017), 2095–2126.

[26] Mircea Lungu, Romain Robbes, and Michele Lanza. 2010. Recovering inter-project dependencies in software ecosys-

tems. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE’10). 309–312.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://wpvip.com/case-studies/
https://wordpress.org/plugins/link-library/#developers
https://wordpress.org/plugins/siteorigin-panels/#developers
https://wordpress.org/plugins/photo-gallery/#developers
https://wordpress.org/news/2009/10/plugin-compatibility-beta/
https://wordpress.org/plugins/premium-addons-for-elementor/#developers
https://wordpress.org/plugins/simple-membership/#developers
https://wordpress.org/plugins/sunshine-photo-cart/#developers
https://wordpress.org/support/topic/urgent-plugin-update-for-4-7-1/

19:24 J. Lin et al.

[27] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An empirical study of api stability and adoption in the

android ecosystem. In Proceedings of the IEEE International Conference on Software Maintenance (ICSM’13). IEEE, 70–

79.

[28] Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests encourage software developers to upgrade

out-of-date dependencies? In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engi-

neering (ASE’17). IEEE, 84–94.

[29] Parisa Moslehi, Bram Adams, and Juergen Rilling. 2018. Feature location using crowd-based screencasts. In Proceedings

of the 15th International Conference on Mining Software Repositories. 192–202.

[30] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring variability-aware execution for testing

plugin-based web applications. In Proceedings of the 36th International Conference on Software Engineering (ICSE’14).

907–918.

[31] Steven Raemaekers, Arie Van Deursen, and Joost Visser. 2012. Measuring software library stability through historical

version analysis. In Proceedings of the 28th IEEE International Conference on Software Maintenance (ICSM’12). IEEE,

378–387.

[32] Steven Raemaekers, Arie Van Deursen, and Joost Visser. 2014. Semantic versioning versus breaking changes: A study

of the maven repository. In Proceedings of the IEEE 14th International Working Conference on Source Code Analysis and

Manipulation (SCAM’14). IEEE, 215–224.

[33] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do developers react to API deprecation? The

case of a Smalltalk ecosystem. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering (FSE’12). 1–11.

[34] Mohammed Sayagh and Bram Adams. 2015. Multi-layer software configuration: Empirical study on wordpress. In

Proceedings of the IEEE 15th International Working Conference on Source Code Analysis and Manipulation (SCAM’15).

IEEE, 31–40.

[35] Mohammed Sayagh, Noureddine Kerzazi, and Bram Adams. 2017. On cross-stack configuration errors. In Proceedings

of the IEEE/ACM 39th International Conference on Software Engineering (ICSE’17). IEEE, 255–265.

[36] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. IEEE Trans. Softw. Eng.

25, 4 (1999), 557–572.

[37] Carolyn B. Seaman, Forrest Shull, Myrna Regardie, Denis Elbert, Raimund L. Feldmann, Yuepu Guo, and Sally Godfrey.

2008. Defect categorization: Making use of a decade of widely varying historical data. In Proceedings of the 2nd ACM-

IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’08). 149–157.

[38] Web Technology Surveys. Usage of Content Management Systems. Retrieved May 15, 2020 from https://w3techs.com/

technologies/overview/content_management.

[39] E. Burton Swanson. 1976. The dimensions of maintenance. In Proceedings of the 2nd International Conference on Soft-

ware Engineering. 492–497.

[40] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android fragmentation: Characterizing and detecting

compatibility issues for Android apps. In Proceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering (ASE’16). 226–237.

[41] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical and impact analysis of API breaking

changes: A large-scale study. In Proceedings of the IEEE 24th International Conference on Software Analysis, Evolution

and Reengineering (SANER’17). IEEE, 138–147.

Received 15 May 2021; revised 22 March 2022; accepted 22 April 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 19. Pub. date: February 2023.

https://w3techs.com/technologies/overview/content_management

