
https://doi.org/10.1007/s10664-022-10173-y

Upstream bugmanagement in Linux distributions

An empirical study of Debian and Fedora practices

Jiahuei Lin1 ·Haoxiang Zhang2 ·Bram Adams1 ·Ahmed E. Hassan1

Accepted: 27 April 2022 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
A Linux distribution consists of thousands of packages that are either developed by in-house
developers (in-house packages) or by external projects (upstream packages). Leveraging
upstream packages speeds up development and improves productivity, yet bugs might slip
through into the packaged code and end up propagating into downstream Linux distribu-
tions. Maintainers, who integrate upstream projects into their distribution, typically lack the
expertise of the upstream projects. Hence, they could try either to propagate the bug report
upstream and wait for a fix, or fix the bug locally and maintain the fix until it is incorporated
upstream. Both of these outcomes come at a cost, yet, to the best of our knowledge, no prior
work has conducted an in-depth analysis of upstream bug management in the Linux ecosys-
tem. Hence, this paper empirically studies how high-severity bugs are fixed in upstream
packages for two Linux distributions, i.e., Debian and Fedora. Our results show that 13.9%
of the upstream package bugs are explicitly reported being fixed by upstream, and 13.3%
being fixed by the distribution, while the vast majority of bugs do not have explicit infor-
mation about this in Debian. When focusing on the 27.2% with explicit information, our
results also indicate that upstream fixed bugs make users wait for a longer time to get fixes
and require more additional information compared to fixing upstream bugs locally by the
distribution. Finally, we observe that the number of bug comment links to reference infor-
mation (e.g., design docs, bug reports) of the distribution itself and the similarity score
between upstream and distribution bug reports are important factors for the likelihood of
a bug being fixed upstream. Our findings strengthen the need for traceability tools on bug
fixes of upstream packages between upstream and distributions in order to find upstream
fixes easier and lower the cost of upstream bug management locally.

Keywords Software ecosystems · Open source collaboration · Linux upstream package
management · Upstream bug fixing

Communicated by: Walid Maalej

� Haoxiang Zhang
haoxiang.zhang@acm.org

Extended author information available on the last page of the article.

Published online: 20 July 2022

Empirical Software Engineering (2022) 27: 134

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10173-y&domain=pdf
http://orcid.org/0000-0002-3921-1724
mailto: haoxiang.zhang@acm.org

1 Introduction

A software ecosystem consists of many software projects with relationships among them
and a shared platform (Van Den Berk et al. 2010). Linux distributions (e.g., Debian) are
one of the most well-known software ecosystems. In such distributions, software projects
developed internally (in the distribution) or externally (upstream, potentially customized
in the distribution) are integrated with each other into a coherent product. To achieve this,
maintainers of the distribution package up all projects in a standard format using the distri-
bution’s package manager, recording any metadata such as dependencies, licenses, etc. The
package manager is able to enforce the metadata for the end users, guaranteeing that each
installed package has all the dependencies it needs.

Being the middlemen between the upstream projects and the end users, the distribution
maintainers spend a large amount of effort and resources maintaining upstream packages,
for example, updating to a new version, applying and reporting bug fixes, etc (Adams et al.
2016; Anbalagan and Vouk 2009; Storey et al. 2016). Prior studies investigated the inte-
gration challenges of upstream packages, such as estimating the effort to select the proper
packages or ensuring the security of the selected packages (Stol et al. 2011; Li et al. 2005;
Merilinna and Matinlassi 2006). Prior studies also surveyed the practices of fixing bugs
that are introduced by such integration (Ma et al. 2017; Ding et al. 2017) and the associ-
ated effect to developers during integration (Ma et al. 2020). However, prior studies did
not investigate (1) to what extent bug fixing effort is spread across upstream developers
and distribution maintainers, and (2) the cost going into upstream package management for
distribution maintainers.

One effort to reduce the distribution maintainers’ required maintenance effort of upstream
packages (https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/) are
freedesktop.org’s distribution-neutral packaging guidelines. These guidelines suggest that
distribution maintainers should follow the development practices of upstream projects, e.g.,
sending changes to upstream. Nevertheless, the guidelines list some exceptions for distribu-
tion maintainers to make a local fix, e.g., security issues, unresponsive upstream developers,
or discontinued projects.

In such exceptional cases, distribution maintainers need to step up and develop their
own patches, i.e., bypassing the upstream bugs, to protect their users from potential risks of
upstream code (Ma et al. 2017). However, this practice is not straightforward since distribu-
tion maintainers are not familiar with the upstream projects to propose the most appropriate
fix, or they could even introduce new bugs in such patches (Hauge et al. 2010; Li et al.
2005; Merilinna and Matinlassi 2006). Furthermore, while distribution maintainers can cre-
ate patches, they also need to maintain those patches and integrate them with the subsequent
releases of the upstream package, until it incorporates the fixes (Ma et al. 2017). Even then,
the typical lack of documentation for changes in upstream releases hinders the ability of dis-
tribution maintainers to understand which upstream release incorporates their needed fixes
(Stol et al. 2011; Ma et al. 2017).

In this paper, we measure how upstream packages in a distribution are managed in terms
of fixing bugs and compare the costs of locally fixing bugs of upstream packages by dis-
tribution maintainers to the costs of upstream fixes to such bugs, as well as locally fixing
bugs of in-house packages (i.e., the packages developed by the distribution itself). We inves-
tigate 143,362 high-severity (i.e., high, urgent, critical) bugs1 across two popular Linux

1Unless noted otherwise, the remainder of this paper refers to high-severity bugs as “bugs”.

134 Page 2 of 41 Empir Software Eng (2022) 27: 134

https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/
freedesktop.org

distributions, i.e., Debian and Fedora, that use two different types of package managers
and different bug management strategies. Debian is a purely open-source distribution, while
Fedora forms the core of the commercial Red Hat distribution. We focus on high-severity
bugs since they typically represent fatal errors or crashes that are important for developers to
fix (Menzies and Marcus 2008; Lamkanfi et al. 2010). We structure our study by answering
the following research questions, yielding the following key findings:

RQ1: What percentage of upstream bugs are fixed upstream versus locally?
This first RQ analyzes the prevalence of high-severity bugs in upstream vs.

in-house packages. High-severity bugs are dominant in the upstream packages of
the studied distributions, yet for 27% of them we found explicit traces of where
they were fixed (14% fixed upstream, 13% fixed in the distribution), while for the
remaining 73% it was unclear where they were fixed in Debian. The proportion of
high-severity bugs per upstream package that are fixed by upstream has dropped
over time in Fedora and has been fluctuating in Debian. Similarly, the proportion of
opened bugs per upstream package has also dropped over time in the studied distri-
butions. Moreover, Debian and Fedora share 9 out of the top 10 categories of buggy
upstream packages.

RQ2: What is the time and cost for fixing high-severity upstream bugs locally in
distributions and maintaining such distribution fixes?

We observe that bugs in upstream packages take 52% and 49% more time to
be fixed locally in Debian and Fedora, respectively, compared to bugs in in-house
packages, but 39% less time than upstream fixed bugs in Debian. Moreover, in
the bug comment discussions, maintainers mention more links to reference docu-
ments of a distribution (e.g., design docs, bug reports) when fixing upstream bugs
locally than when fixing bugs in in-house packages in Debian, but fewer links
than upstream bugs that are fixed upstream. In terms of the number of participants
per day and the number of comments per day, we observe that the cost of fixing
upstream bugs, both upstream and locally, is similar to fixing bugs in in-house pack-
ages. In addition, distribution maintainers maintain fewer local patches (fixes) per
upstream package within one distribution release than developers do for in-house
packages.

RQ3: Which high-severity bugs are most likely to be fixed upstream?
Since fixing upstream bugs locally requires a longer time than fixing in-house

bugs, this RQ investigates the factors that are associated with a bug being fixed
by upstream developers, by leveraging logistic regression models. In particular, we
extract 27 features in 6 dimensions to estimate the association between these fea-
tures and the likelihood of a bug being fixed upstream. Our models achieve a median
AUC of 0.87 and 0.73 for Fedora and Debian, respectively. For the performance
across the studied distributions, the model trained on Fedora achieves an AUC of
0.63 for Debian and the model trained on Debian achieves an AUC of 0.81 for
Fedora. Our results show that the features related to bug history (e.g., reported bugs
in upstream) are correlated the most with a bug being fixed upstream. Moreover, the
more similar to a previously reported upstream bug, the more likely a bug is fixed
upstream.

Since only the minority of upstream bugs are explicitly recorded to be fixed upstream or
locally, distributions and upstream projects should establish a process to explicitly track the
fixing process of bugs in upstream packages. In addition, even though the cost of fixing a
bug in upstream packages locally at the fine-grained level (i.e., in terms of the number of

Page 3 of 41 134Empir Software Eng (2022) 27: 134

participants per day and comments per day) is similar to in-house bugs, users wait a longer
time to get fixes and maintainers need more information for fixing upstream bugs. Based
on our models, the features in the bug history dimension have a relatively large explanatory
power regarding the likelihood of a bug being fixed upstream. We suggest that maintain-
ers should check upstream projects or peer-distributions for similar bug reports, especially
those with potential fixes, beyond the complex relation between upstream projects and
distributions that carry them.

Paper organization. Section 2 provides the background of upstream package manage-
ment in Linux and prior related work to our study. Section 3 describes how we design our
study and obtain our studied dataset. Section 4 answers our research questions. Section 5
discusses the implications of our study. Section 6 discusses the threats to the validity of
our study. Finally, Section 7 concludes the paper.

2 Background and RelatedWork

In this section, we briefly introduce upstream package management in Linux distributions
and how to fix bugs in upstream packages. We also discuss prior studies that are related to
our study. We discuss related work on empirical studies of (1) upstream and downstream
coordination and (2) bug fixing cost.

2.1 Upstream PackageManagement in Linux Distributions

A Linux distribution contains the kernel, a set of packages, and a package management sys-
tem. The package manager facilitates the installation of software from scratch by searching
the available packages in specific repositories, while ensuring that specified version con-
straints are followed. As shown in Fig. 1, upstream developers are members of upstream
projects in charge of developing those projects. The integration (and customization) of such
upstream projects into upstream packages is done by (distribution) maintainers. While the
role of “maintainer” is specific to a distribution, the person having that role could be part of
the upstream project (e.g., Fedora) or external to it (e.g., Debian). Finally, distributions also
feature in-house packages developed by (in-house) developers.

Given that distributions distribute both upstream and in-house packages to their user
base, they also play a major role in the management of bugs reported for those packages.
While in-house package bugs obviously are the responsibility of distributions themselves,
upstream bugs should be reported to and resolved by the upstream projects in order to
propagate the fixes to downstream distributions. Freedesktop.org, a website that offers inter-
operability specifications on the software development management (e.g., packager policy,
naming conflicts between files in two upstream packages) for Linux distributions, offers an
official guideline on how to manage upstream package bugs in Linux distributions (https://
www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/), encouraging develop-
ers not to deviate from the software development practices of the upstream projects. The
guideline highlights the benefits and shortcomings of upstream package management, such
as the benefit of incremental feature improvements, and the shortcoming that upstream
projects can be unresponsive.

However, in practice, some upstream bugs are resolved by distribution maintainers. This
could indicate an important challenge as maintainers often lack the expertise of upstream pack-
age developers to investigate the root causes of those bugs (Ma et al. 2017). Distribution

134 Page 4 of 41 Empir Software Eng (2022) 27: 134

Freedesktop.org
https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/
https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/

interacts with

DeveloperUpstream
developer

A Linux Distribution
in-house packages

upstream packages

develops

Maintainer

develops

maintains

interacts with

Upstream projects

packaged by

Upstream Downstream

Fig. 1 Simplified illustration of the three major roles involved in the maintenance of upstream packages in
Linux distributions. The maintainer role takes the responsibility of fixing bugs in upstream packages, interact-
ing with the upstream developers, and integrating upstream fixes into a distribution. While the “maintainer”
role is distribution-specific, the person having that role in a distribution could be part of the upstream project
or external to it. The developer role develops in-house packages and addresses bugs in these packages

maintainers can feel compelled to provide quick workarounds for the upstream bugs
in the form of local bug fixes (Ding et al. 2017). While providing quick workarounds
can avoid delays due to communication with the upstream, it conflicts with the official
guideline on freedesktop.org (https://www.freedesktop.org/wiki/Distributions/Packaging/
WhyUpstream/). Therefore, in our study, we are interested in how maintainers manage
upstream packages in practice.

Figure 2 indicates the typical bug fixing process for upstream packages. We derive the
process from the official documents in Debian (https://wiki.debian.org/UpstreamGuide)
and Fedora (https://fedoraproject.org/wiki/Staying close to upstream projects) by an open-
coding approach. The 1st author derived the initial version of the process, discussed this
version with the 2nd and 3rd authors, then iteratively resolved any disagreements. A triager
validates an upstream bug report and assigns it to the maintainer of the upstream package
after the upstream bug was reported by a user. Unlike fixing bugs in in-house packages, fix-
ing bugs in upstream packages includes additional stages: (1) the maintainer reports the bug
to upstream developers if they are accessible, (2) the upstream developers fix the bug and
release a new version, and (3) the maintainer tests the fix and integrates it into the package
repository of her/his distribution.

In practice, however, the process is more complex. If the upstream project is discontinued
or not responsive, maintainers need to fix the bug themselves by producing local patches
(Adams et al. 2016). Furthermore, upstream developers might take a long time to fix the
bug, while maintainers also produce a local patch to reduce the impact of the bug. When
maintainers produce the patches to fix a bug, they need to maintain the patches until the
upstream project ships a release incorporating the fix. In other words, maintainers have the
additional patch maintenance effort in keeping the patches compatible with the subsequent
distribution releases until the bug is fixed upstream.

Page 5 of 41 134Empir Software Eng (2022) 27: 134

freedesktop.org
https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/
https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/
https://wiki.debian.org/UpstreamGuide
https://fedoraproject.org/wiki/Staying_close_to_upstream_projects

Yes

Maintainer

2. fixes and releases
a new

 version

fixes the bug

Provides/Asks the information about the bug

Upstream
developer

Issue tracking
system

validated by

assigns to

Triager

No

Yes

commit patches

No

a new version
is released?

Upstream project

Package
repository

reports

User

1. reports the bug

Yeshas local
patches?

produces local patches

remove patches from
the package repository

3. tests and integrates
the fix into the package

release

Yesupstream is
alive?

No
the

version fixes the
bug?

modify the local
patches

Yeshas local
patches?

A Linux distribution

Fig. 2 An illustration of the bug fixing process for upstream packages. The three large blue boxes with
the blue-background text indicate the three stages in which a maintainer in a distribution, according to the
freedesktop.org guidelines, collaborates with upstream developers to fix a bug in their package. The blue
arrow lines indicate the common steps. The green arrow lines represent the alternative reaction of a maintainer
(e.g., upstream is discontinued or severe bugs). The dashed arrow lines and boxes represent optional steps.
The yellow dashed boxes represent the instances/roles/actions inside a Linux distribution or an upstream
project

2.2 RelatedWork on Upstream and Downstream (Distribution) Coordination

Prior studies investigated the potential problems and concerns regarding the coordination
between upstream and downstream developers to fix bugs in upstream projects. For instance,
Canfora et al. (2011) identified the prevalence of bug fixes between the FreeBSD and
OpenBSD kernels. To fix bugs that occur between projects, developers in the two projects
must communicate with each other to share the information of bugs. Ma et al. (2017) iden-
tified the difficulty for downstream developers to resolve upstream bugs in the scientific
Python ecosystem, and observed that workarounds (i.e., temporary and local solutions) are
common practices to reduce the long-lasting impact of upstream bugs. Our study investi-
gates the cost of fixing bugs in upstream packages in terms of the number of developers,
time, and local patches.

Ding et al. (2017) summarized four common workaround patterns that are used in prac-
tice to, on the one hand, require as few code changes as possible while, at the same time,
being easy to remove such code changes afterwards. For example, replacing the buggy
upstream method by using a similar method in the downstream project. We focus on the
amount of effort for downstream developers to produce local patches to fix upstream bugs.

Zhang et al. (2018) observed that upstream bugs are often linked with longer developer
discussions in the Ruby on Rails ecosystem. We also aim to understand the communication
between upstream and distribution (downstream) developers by leveraging machine learn-
ing models to explain how collaborative activities affect the fixing of bugs in upstream
packages. Ma et al. (2020) studied the impact of upstream bugs, such as buggy code hidden

134 Page 6 of 41 Empir Software Eng (2022) 27: 134

freedesktop.org

in downstream projects until the failure inducing preconditions are satisfied. They proposed
a technique to identify such impact in the downstream projects. They identified 1,132 down-
stream modules using 31 buggy upstream functions but only 47 out of these 1,132 modules
have ever reported the buggy functionality in the past.

Another line of research related to upstream and downstream coordination is to port func-
tions or code snippets in software projects from one to another. Porting software projects
is close to our study since it is similar to the 3rd stage in Fig. 2, i.e., integrating and test-
ing upstream fixes into a distribution. For instance, Ray and Kim (2012) studied the extent
and characteristics of duplicate work happening in forked projects when cross-system port-
ing from three BSD projects. They observed that porting happens periodically (at least 10
months) and the rate of porting does not reduce over time. At least 26% of active devel-
opers are involved in porting patches from other projects in the three BSD projects. Ray
et al. (2013) characterized 5 categories (e.g., inconsistent variable renaming, porting code
in a wrong operation) of porting errors from 113 and 182 porting errors in FreeBSD and the
Linux kernel, respectively. Barr et al. (2015) developed an algorithm using genetic program-
ming to transplant features in one software project into another automatically. The authors
applied the algorithm to extract a feature from the donor project (source) and transplant it
into the host project (target) through several experiments, including the VLC media player.
However, our study focuses on the entire bug fixing process, including the coordination
between upstream and distributions to fix high-severity bugs in upstream projects.

Different from the aforementioned studies, we study the prevalence of bugs in upstream
packages within Linux distributions, which contain thousands of packages to better
understand how maintainers manage upstream packages.

2.3 RelatedWork on Bug Fixing

Bug fixing is a complex, iterative, and costly process in distributed software development
(Crowston and Scozzi 2008). Prior work investigated the amount of needed time and devel-
opers to fix bugs. Kim and Whitehead Jr (2006) observed that it takes a median of 200 days
to resolve a bug in the ArgoUML and PostgreSQL projects. Duc et al. (2011) showed that,
in three firm-involved open-source projects, firm-paid developers contribute higher to fix
bugs and have a higher workload on average compared to volunteer developers.

Another popular line of work in this area is the analysis of the influential factors in the
bug-fixing process. Weiss et al. (2007) observed that similar bugs take similar effort for
developers to fix them in the JBoss project. Guo et al. (2010) studied twoMicrosoft products
and found that the reputation of bug reporters affects the bug-fixing time. However, in five
open-source projects, Bhattacharya and Neamtiu (2011) showed that the reputation of bug
reporters has little influence on the bug-fixing time. Zhang et al. (2013) discovered that
bugs with higher severity and priority are fixed faster, but the differences of bug fixing time
between each of these bugs are large in three industrial projects.

The aforementioned studies extracted bug reports from a project and studied the bug
fixing activities within the project, while our work extracts bug reports within a software
ecosystem (i.e., Linux distribution). In other words, in our case, bugs exist in in-house
and/or upstream projects in the Linux distribution. We also compare the cost of fixing bugs
for maintainers and developers between upstream and in-house projects. To the best of
our knowledge, no prior studies have examined the time for maintainers/developers to fix
upstream bugs and investigated the corresponding cost.

Page 7 of 41 134Empir Software Eng (2022) 27: 134

3 Study Design

This section presents the design of our empirical study addressing the three research ques-
tions that we mentioned in the introduction. RQ1 studies the proportion and evolution of
high-severity bugs in upstream and in-house packages that are fixed. RQ2 investigates the
maintenance cost for upstream bugs that are fixed by distributions. Finally, to understand
why bugs are fixed upstream, RQ3 examines the influential factors for a high-severity bug to
be fixed upstream. Note that the specific methodology for each RQ is explained in Section 4.

3.1 Selection of Subject Systems

We select two Linux distributions, i.e., Fedora and Debian, based on their popularity and the
ease of access to links between bugs and upstream for these two distributions. They leverage
two of the most popular package managers in Linux. Fedora leverages rpm as its package
manager, and Debian uses the dpkg package manager. According to the 2020 popularity
ranking on distrowatch.com2, Debian (6th) and Fedora (8th) are the two highest ranked root
distributions, i.e., the source distributions from which derivative distributions (like Ubuntu,
Mint, etc.) are forked to develop their own features independently.

In addition, Debian and Fedora follow different strategies of upstream bug management.
Fedora is the upstream distribution of the commercial Red Hat distribution, which is its
primary sponsor3. Therefore, Fedora follows the “upstream first” policy4 from Red Hat to
do software development (e.g., forwarding bugs to upstream, fixing bugs) side-by-side with
upstream developers in the upstream projects. Only in specific cases (e.g., unresponsive
upstream, release schedules), Fedora will fix bugs directly in the distribution and try to
get patches accepted upstream to avoid future maintenance on those patches. By contrast,
Debian depends on maintainers in its own community to maintain local patch repositories
for packaged upstream packages, sending patches upstream whenever possible.

3.2 Data Collection

Figure 3 presents an overview of our study approach. We leverage two data sources for each
of the studied distributions, i.e., the bug reports and the packages. Our studied period is
from 2005 to 2019 to exclude the insufficient data of the early stage in each distribution and
the latest data of 2020 (time of starting our study). The first release of Fedora was created
from Red Hat in 2003 (https://fedoraproject.org/wiki/Releases/HistoricalSchedules), while
the first release of Debian was made in 1996 (https://wiki.debian.org/DebianReleases). We
archived our scripts and uploaded them to GitHub.5

3.2.1 Extract High-Severity Bugs

To obtain our dataset, we first extract the bug reports from the corresponding issue tracker
of each studied distribution, as shown in Table 1, by either the relevant APIs that are offered
by the issue trackers or custom crawlers. We only consider the high-severity (e.g., high,

2https://distrowatch.com/dwres.php?resource=popularity
3https://getfedora.org/en/sponsors/
4https://www.redhat.com/en/blog/what-open-source-upstream
5https://github.com/SAILResearch/suppmaterial-20-justina-upstream bug linux

134 Page 8 of 41 Empir Software Eng (2022) 27: 134

distrowatch.com
https://fedoraproject.org/wiki/Releases/HistoricalSchedules
https://wiki.debian.org/DebianReleases
https://distrowatch.com/dwres.php?resource=popularity
https://getfedora.org/en/sponsors/
https://www.redhat.com/en/blog/what-open-source-upstream
https://github.com/SAILResearch/suppmaterial-20-justina-upstream_bug_linux

Distribution
Bug Data

Package
Data

Extract high-severity
bugs

Identify upstream and
in-house packages

The web pages
of packages

in a distribution

Package
Repository

RQ1. fixed upstream
proportion

RQ2. fixed upstream
cost

RQ3. fixed upstream
explanation

upstream
bug reports

local patches

Authors Debian
expert

official documentation

Find heuristics to match bugs
fixed upstream from four ways

Fedora
experts

Fig. 3 An overview of our study approach. The solid arrow lines indicate the data sources used for all RQs.
The dashed arrow lines indicate the particular data sources used for each specific RQ. We will describe the
data sources in more details in the corresponding sections (RQ2 and RQ3)

urgent, critical) bugs because these bugs have a higher impact on users and are hence more
important to fix (Menzies and Marcus 2008; Lamkanfi et al. 2010). We also identify dupli-
cate bugs, similar to prior work (Bettenburg et al. 2008; Boisselle and Adams 2015), and
remove them to avoid over-estimating the number of bugs and analyses in our work. Our
dataset contains a total of 143,362 high-severity bugs across the studied distributions. The
details of each distribution are presented in Table 1.

Note that even though an issue tracking system can also be used for feature requests, our
dataset does not include the latter since Linux distributions apply a low-severity label or use
other platforms for feature requests. In particular, Debian uses the wishlist value, which is a
low-severity label, to indicate that a bug report is a feature request (https://www.debian.org/
Bugs/Developer). Fedora does not track feature requests in its issue tracking system (https://
docs.fedoraproject.org/en-US/fesco/).

3.2.2 Identify Upstream and in-House Packages

We then extract the list of packages and their relevant information (e.g., name and category)
for each release of a given distribution. We also classify packages into two groups based on

Table 1 Basic statistics about the studied Linux distributions from January, 2005 to the end of 2019

Distribution ITS # high-severity bugs # upstream packages3 # in-house packages3

Fedora Bugzilla1 37,205 35,139 (76%) 11,332 (24%)

Debian Debbugs2 106,157 33,044 (86%) 5,366 (14%)

1https://bugzilla.redhat.com/
2https://www.debian.org/Bugs/
3The percentage is the # in the cell divided by the sum of the # of upstream and in-house packages

Page 9 of 41 134Empir Software Eng (2022) 27: 134

https://www.debian.org/Bugs/Developer
https://www.debian.org/Bugs/Developer
https://docs.fedoraproject.org/en-US/fesco/
https://docs.fedoraproject.org/en-US/fesco/
https://bugzilla.redhat.com/
https://www.debian.org/Bugs/

Fig. 4 An example of how to determine an upstream package. The gedit package is an upstream package
since the red box indicates the source project, i.e., GNOME

the sources of packages: upstream (obtained directly from an upstream project) or in-house
(developed by in-house teams).

For each package in a given distribution, we leverage the relevant web pages within the
distribution or package repositories, when available, to identify whether there is an upstream
project link. For example, Fig. 4 shows that gedit is an upstream package in Debian.6 We
identify 35,139 and 33,044 upstream packages in Fedora and Debian, respectively. After
identifying upstream packages, we filter out 13,996 and 33,230 of the remaining pack-
ages in Fedora and Debian, respectively, for which we cannot find available web pages or
repositories. We then assign the remaining packages as in-house packages.

To evaluate the precision of the above heuristic method that we use to determine upstream
and in-house packages, we manually investigate 50 packages by randomly selecting 25
upstream packages and 25 in-house packages. For the 25 sample upstream packages, we
leverage the upstream project link in each package to check whether the upstream developer
team is active or not. We observe that all the upstream projects are available at the time
when we write this paper, which indicates no false positives in our sample set.

For the 25 sample in-house packages, we search their package names to investigate
whether there is an active upstream project somewhere on the Internet (e.g., GitHub), in
which case our heuristic would not be correct. For each package, we investigate the metadata
(e.g., description, contributors, folder structure) of the potential upstream projects carefully
to identify the actual upstream project the package could belong to. After that, we determine
that an upstream project is alive by its activities (e.g., commits, comments). We observe that
2 out of the 25 sample in-house packages were originally packaged from upstream projects.
One of these two upstream projects is discontinued and thus distribution maintainers took
ownership of that package, becoming an in-house package. The other one was customized
by distribution maintainers, indicating it is an in-house package. Hence, our analysis of 50
packages indicates that the heuristic method achieves an accuracy of 100%.

6https://packages.debian.org/buster/gedit

134 Page 10 of 41 Empir Software Eng (2022) 27: 134

https://packages.debian.org/buster/gedit

4 Results

RQ1: What Percentage of Upstream Bugs are Fixed Upstream Versus Locally?

Motivation: Packages in a Linux distribution are either developed by in-house developers
or packaged from the upstream projects, e.g., GNOME, Firefox, and the Linux kernel. In
an ideal world, upstream developers provide new features and fix bugs, while distribution
maintainers integrate new package versions into their distribution, making them interact
seamlessly with the other packaged projects. Hence, the goal of this research question is to
characterize the bugs from upstream packages. In particular, we investigate the evolution
of reported and fixed high-severity bugs over time and the proportion of high-severity bugs
that are fixed upstream.

Approach: To study high-severity bugs that are fixed upstream, we analyze the proportion
of these bugs that are fixed upstream and those that are fixed locally in the two studied
distributions, the evolution of reported and fixed bug reports in a distribution over time, and
which application domains of packages are the most buggy. We compare the above analysis
between the studied distributions.

Unfortunately, there is no unique way to identify whether a bug reported to a distribution
has been fixed upstream or locally. For that reason, we have leveraged several heuris-
tics, combined with manual validation of the heuristics by the authors, an actual Debian
maintainer and three Fedora maintainers. Our interviewed maintainers are experienced indi-
viduals. We conducted the interview by asking four maintainers to avoid potential bias.
More specifically, the Debian maintainer has been working in Debian for almost 10 years
and currently maintains at least 35 packages. One of the three Fedora maintainers has been
working in Fedora since its first release (i.e., 2007) and keeps contributing to upstream
projects. This maintainer is an expert in several areas of package maintenance, having con-
tributed to and being involved in the maintenance of dozens of packages. The second Fedora
maintainer worked at Fedora for more than 6 years and is an expert in Python and auto
deployment. The third Fedora maintainer has worked at Fedora for 4 years, specializing in
the synchronization of package releases between upstream and Fedora.

Heuristics for Identifying Bugs that are Fixed Upstream We contacted the maintainers to
figure out the potential sources that record the information of bugs fixed upstream. For
example, the Debian maintainer suggested that “the Debian BTS has features to track
whether or not a bug is in the upstream portion of a package, and whether or not it is fixed
upstream. See, in particular, the ‘upstream’ and ‘fixed-upstream’ tags on bugs.” and “to see
if [a bug] was fixed by a patch in the packaging.”. One of the Fedora maintainers suggested
that “BZ [numbers] help to track the fixed changes [in the changelog].” Eventually, we set-
tled on leveraging the tags in bug reports, the changelogs of packages, and the metadata of
patches.

First, we leveraged the “fixed-upstream” tag of bug reports to identify a set of bugs that
are fixed upstream in Debian (https://www.debian.org/Bugs/Developer), while in Fedora
we look for bugs with the “UPSTREAM” label (https://fedoraproject.org/wiki/BugZappers/
BugStatusWorkFlow). Using these heuristics, we identified 3,726 and 556 fixed-upstream
bugs in Debian and Fedora, respectively. Since the “UPSTREAM” label in Fedora indicates
that a bug has been reported to upstream and it will be integrated back into Fedora after the

Page 11 of 41 134Empir Software Eng (2022) 27: 134

https://www.debian.org/Bugs/Developer
https://fedoraproject.org/wiki/BugZappers/BugStatusWorkFlow
https://fedoraproject.org/wiki/BugZappers/BugStatusWorkFlow

Fig. 5 Two examples of bug fixes in the changelogs of upstream bug fixes in a package release in Debian
and Fedora

upstream fixes it, we manually investigate whether bugs with the label were fixed upstream
on a representative sample set of 227 fixed-upstream bugs (confidence level = 95%, confi-
dence interval = 5%). We observe that 208 (92%) out of the 227 bugs were fixed upstream
and 19 are unknown. The upstream bug reports of 10 bugs are not available, 4 bugs were
reported to upstream developers by email, and 5 bugs do not contain the links to the respec-
tive upstream bug reports. Hence, we conclude that the heuristic has a high accuracy (at
least 92%) to identify fixed-upstream bugs.

Second, we leverage the official guidelines maintainers should follow to compose
the changelogs of a new package version. Specifically, Debian states that “It is con-
ventional that the changelog entry of a package that contains a new upstream version
of the software looks like this: *New upstream release” (https://www.debian.org/doc/
manuals/developers-reference/pkgs.html#recording-changes-in-the-package) and adds the
fixed bugs following a certain format (i.e., #id) (https://www.debian.org/doc/manuals/
developers-reference/pkgs.html#upload-bugfix). Fedora also has a similar policy for main-
tainers to record updates to a new version and fixed bugs in a changelog (https://docs.
fedoraproject.org/en-US/packaging-guidelines/#changelogs).

Based on these documented guidelines to identify fixed-upstream bugs, we inspect the
changelogs (i.e., a total of 918 changelog entries) from a total of 50 randomly selected
upstream packages (i.e., 25 packages in Debian and 25 packages in Fedora) to find potential
patterns. We also randomly investigate the changelogs of the top 5 buggy upstream packages
in both studied distributions (i.e., a total of 10 packages) to figure out additional patterns.

Finally, we derive the regular expression "new upstream [\w]*(?=release|
version|fix)" in Debian to find references to bugs fixed upstream, while in Fedora we
would look for the keyword “upstream”. Bug #194851 in Debian (Fig. 5a) and Bug #742349
in Fedora (Fig. 5b) illustrate these heuristics. Note that the bug-id in a changelog entry
might indicate a low-/medium-severity bug or the reference bug-id to the upstream project
(that may not be reported to the distribution) for traceability, which we filter out afterward
from our dataset. Based on the heuristic, we identified a total of 5,180 (4,007 additional)
fixed-upstream bugs in Debian and 68 additional fixed-upstream bugs in Fedora.

To validate this second heuristic, we manually investigate the comments of 75 randomly
selected bugs from three popular packages (i.e., perl, apache2, and samba) in Debian. We
observe that 20 out of the 75 bugs that are marked as fixed-upstream bugs by the second
heuristic are the bugs that are reported to be fixed upstream, which are true positives. How-
ever, we found 3 out of the 75 selected bugs that are not marked as fixed-upstream bugs that
should be classified into fixed-upstream bugs, suggesting a high precision (72/75 = 96%)
and recall (20/23 = 87%) of the heuristic. The changelogs of these 3 bugs do not match
any pattern in the heuristic. Moreover, we also note that the participants in 4 out of the

134 Page 12 of 41 Empir Software Eng (2022) 27: 134

https://www.debian.org/doc/manuals/developers-reference/pkgs.html#recording-changes-in-the-package
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#recording-changes-in-the-package
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#upload-bugfix
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#upload-bugfix
https://docs.fedoraproject.org/en-US/packaging-guidelines/#changelogs
https://docs.fedoraproject.org/en-US/packaging-guidelines/#changelogs

Table 2 Statistics of high-severity upstream bugs in each distribution

Distribution # reported upstream bugs1 # fixed bugs2 # fixed upstream bugs2 # fixed locally bugs3

Fedora 32,530 (87.4%) 12,009 (36.9%) 624 (5.1%) 529 (4.4%)

Debian 88,300 (83.2%) 55,481 (62.8%) 7,733 (13.9%) 7,386 (13.3%)

1The percentage presents the percentage out of all high-severity bugs
2The percentage is computed relative to the cell on its left
3The percentage is computed relative to the # of fixed bugs

75 selected bugs were not able to determine whether the upstream fixed them or not. For
instance, for those bugs no developer tested the fix of a bug or there were no comments for a
long time (e.g., a few months or years) before the bug was closed and marked as fixed. Since
we cannot classify bugs for which distribution maintainers themselves are not able to track
the source of the fix, we do not consider these to be misclassifications of our heuristics.

On the other hand, since the heuristic only identifies a small number (i.e., 68) of fixed-
upstream bugs in Fedora, we investigate whether maintainers follow the guidelines in
practice. Although we observe 808 changelog entries containing bug-ids using the specific
format, only 68 of them also contain the keyword “upstream”. Furthermore, out of the 808
changelog entries in our dataset, only 121 refer to high-severity bugs.

Third, we also leverage the metadata in patches where maintainers tag the source (e.g.,
upstream, Debian) of a patch to identify fixed-upstream bugs. Debian suggests their main-
tainers follow the DEP-3 tagging guideline7 and to use the Origin label to indicate the
origin of the patch in the header. However, we observe that only 9.3% of patches in Debian
used the DEP-3 format, in which we identify a total of 652 (133 additional) fixed-upstream
bugs in Debian. Unfortunately, we cannot find a similar guideline in Fedora. Eventually, we
obtain a total of 7,733 (13.9%) and 624 (5.1%) fixed-upstream bugs in Debian and Fedora,
respectively (see Table 2).

Heuristics for Identifying Bugs that are Fixed Locally To identify bugs that are fixed
locally, we derive heuristics based on bug reports and the changelogs of packages. First, we
select all distribution bug reports that contain attached patch files, i.e., the attachments with
one of the following extensions: .debdiff, .diff, or .patch in Debian. In Fedora, we leverage
a similar heuristic based on the structured field (i.e., is patch) of an attachment in Bugzilla.
Using these heuristics, we identified 7,386 and 416 bugs that are fixed locally in Debian
and Fedora, respectively. Second, we select changelog entries that contain at least one of the
following keywords: work-around, workaround, temporar*, or patch and that do not contain
the “upstream” keyword in Fedora. We identified 113 additional bugs that are fixed locally.
Eventually, we obtain a total of 7,386 and 529 bugs that are fixed locally in Debian and
Fedora, respectively (see Table 2).

We validate these two heuristics by manual investigation on the set of identified bugs.
For the first heuristic, we investigate the comments of 25 randomly selected bugs in Debian
and 25 randomly selected bugs in Fedora. We observe that 1 out of the 50 selected bugs
was fixed upstream instead of locally, suggesting a high accuracy of 98% (49/50). Similar
to the aforementioned cases of fixed-upstream bugs, for 2 out of the 50 selected bugs we
were not able to determine whether distribution maintainers fixed it or not. For the 2nd

7https://dep-team.pages.debian.net/deps/dep3/

Page 13 of 41 134Empir Software Eng (2022) 27: 134

.debdiff
.diff
.patch
is_patch
https://dep-team.pages.debian.net/deps/dep3/

heuristic, we investigate the comments of 25 randomly selected bugs in Fedora and observe
that in 1 out of the 25 bugs maintainers were not able to determine who fixed it. Due to
the lack of precise information in the bug reports, we do not consider such cases to be
misclassifications of our heuristic.

Bug Analysis To analyze the evolution of the reported bugs in in-house or upstream
packages by year, we calculate the number of reported bugs for either group of packages
divided by the total number of reported bugs (i.e., both in-house and upstream packages)
in each year. To avoid the impact of the number of packages, we normalize the propor-
tion of reported bugs by the number of active packages (that have identified bugs by our
aforementioned heuristics) in each year. For example, when distribution maintainers inte-
grate new upstream packages into their system, the number of reported bugs in upstream
packages would exhibit a sudden spike, then drop afterwards. On the other hand, the actual
count of reported bugs drops suddenly when maintainers remove packages along with their
dependent ones.

Therefore, we calculate the normalized count of bugs (NCB) using the following equa-
tion to characterize the evolution of the proportion of bugs reported to maintainers per
package and compare the evolution between in-house and upstream packages.

NCBreport (y) = BugCountreport (y)

BugCountreportall(y) ∗ PackageCount (y)
(1)

where:

y = year of interest
BugCountreport = the number of bugs reported (in-house or upstream) in year y
BugCountreportall = the number of bugs in year y
PackageCount = the number of active packages in year y

We also compare the evolution of upstream bugs that are recorded to be fixed by in-house
teams and those that are recorded to be fixed by upstream developers. Similar to the reported
bugs, we calculate the normalized count of fixed bugs (NCFB) using the following equation
to capture the evolution of fixed bugs at the package level.

NCFBf ixed(y) = BugCountf ixed(y)

BugCountf ixedall(y) ∗ PackageCount (y)
(2)

where:

y = year of interest
BugCountf ixed = the number of upstream bugs fixed (locally or upstream) in year y
BugCountf ixedall = the number of upstream bugs in year y
PackageCount = the number of active packages in year y

Finally, we identify the categories of packages that more commonly contain high-severity
bugs. Since Debian has a list of 59 package categories (https://packages.debian.org/stable/)
and Fedora does not, we determine the package category for the upstream packages in
Fedora using the following steps:

– Assign the package category of a package in Fedora when the name of the package
matches exactly the name of a package in Debian.

– Assign the package category of a package in Fedora when the upstream source project
of the package matches exactly that of a package in Debian.

134 Page 14 of 41 Empir Software Eng (2022) 27: 134

https://packages.debian.org/stable/

– Based on our observations, we derive several heuristic rules from the naming conven-
tion of packages in Debian. For example, the names of packages in the localization
package category contain the keyword “i18n” or “l10n”. The names of packages related
to the KDE desktop start with the prefix “kde-”. We apply such heuristics to identify
the package categories. The full list of our heuristics can be found in Appendix.

Results: 13.9% and 5.1% of upstream bugs in the studied distributions are explicitly
recorded to be fixed upstream in Debian and Fedora, respectively, and 13.3% and
4.4% of upstream bugs are recorded to be fixed locally. The number of upstream bugs
that are fixed upstream and those that are fixed locally are similar in both studied distri-
butions (Fedora: 624 vs. 529, Debian: 7,733 vs. 7,386), while the percentages for Debian
(13.9% and 13.3%) are much higher than for Fedora (5.1% and 4.4%).

As a corollary of our findings, surprisingly, for 73% and 90% of upstream bugs in Debian
and Fedora, respectively, we are not able to automatically determine whether upstream
developers or distribution maintainers produced the fixes. While distribution maintainers
usually have this information in their minds, the fact that it is not explicitly recorded in
bug reports or changelogs could complicate upstream bug management in the long run.
Maintainers are not able to link several changes made for a particular bug. Furthermore,
in the context of the software supply chain, missing such information exacerbates the risks
of resolving security issues. For example, Heartbleed (i.e., CVE-2014-0160) was a severe
security bug in the OpenSSL package. Debian maintainers cherry-picked a commit8 made
by two external contributors into their OpenSSL package repository on April 5, 2014,
without the corresponding bug id. The commit directly changed source code in files (e.g.
ssl/d1 both.c) instead of being recorded as explicit patches. Bug9 #743883 (for Heartbleed)
in Debian’s issue tracker was closed on April 9. Shortly afterwards, Debian maintainers
incorporated a new upstream release10 on July 23, 2014, again without reference to the bug
id. Since there is no corresponding bug id in these two commits, the only way for Debian
maintainers to link both patches (direct fix and new upstream release) to bug #743883 would
be searching for the common CVE-ID (CVE-2014-0160).

Note that in our analysis an bug fixed upstream refers to a bug that was fixed upstream
first, before propagating the fix to the distributions, while a locally fixed bug refers to a bug
that first was fixed locally in a distribution, before potentially propagating the fix upstream.
The propagation process of an upstream fixed bug is automatic (as soon as the next release
is sent to the package maintainers, the distribution will have access to the fix), while the
propagation process of a locally fixed bug from a distribution to an upstream project is not
guaranteed (e.g., in the case of distribution-specific modifications).

The normalized count of upstream bugs (NCFB) that are recorded to be fixed upstream
has dropped over the years in Fedora, while the trend has been fluctuating in Debian.
The proportion of bugs reported to be fixed upstream per year has been steady in both Fedora
and Debian. For each year, a median of 5% and 14% of bugs across upstream packages
are recorded to be fixed upstream with a standard deviation of 1.9 and 2.4 in Fedora and
Debian, respectively.

8https://salsa.debian.org/debian/openssl/-/commit/96db9023b881d7cd9f379b0c154650d6c108e9a3
9https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=743883
10https://salsa.debian.org/debian/openssl/-/commit/2f21d2da895a465e151f4cb8f100040b897b5c1c

Page 15 of 41 134Empir Software Eng (2022) 27: 134

https://salsa.debian.org/debian/openssl/-/commit/96db9023b881d7cd9f379b0c154650d6c108e9a3
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=743883
https://salsa.debian.org/debian/openssl/-/commit/2f21d2da895a465e151f4cb8f100040b897b5c1c

fixed locally fixed upstream

2005
2008

2011
2014

2017
2020

2005
2008

2011
2014

2017
2020

0.00

0.05

0.10

0.15

year

no
rm

al
iz

ed
 b

ug
 c

ou
nt

Debian Fedora

Fig. 6 The normalized counts of upstream bugs (relative to package count) that are recorded to be fixed
locally (left) and upstream (right) have dropped in Fedora over time. Both trends continue to fluctuate in
Debian

Given this stable trend of the proportion of bugs that are fixed upstream, we further
analyze the trend at the package level using our normalized bug count (NCFB). Figure 6
shows the evolution of the normalized count of upstream bugs that are fixed upstream and
locally over time, respectively. In both studied Linux distributions, these trends are similar
since the proportion of bugs that are fixed upstream has been steady over time. However,
Fedora has fewer bugs per upstream package that are fixed, compared to Debian, for both
upstream and locally fixed bugs.

The normalized count of reported bugs (NCB) in upstream packages has also dropped
over the years, with fluctuations in the studied distributions. Figure 7 shows the evolu-
tion of the normalized count of reported bugs in upstream and in-house packages across the
studied distributions. The trend of the reported bugs in upstream packages (the right plot
in Fig. 7) is similar to the corresponding trends for fixed bugs in Fig. 6, indicating that the
proportion of the fixed bugs in upstream packages is consistent over the years. For exam-
ple, from 2011 to 2014, both the trends of bugs that are fixed upstream and locally continue
to increase in Debian (Fig. 6), which coincided with a similar trend for reported bugs in
upstream packages (the right plot in Fig. 7). We also observe that the NCFB (Fig. 6) and
NCB (Fig. 7) in Debian are larger than in Fedora. One possible reason for this is that they
follow different release cycles of approximately 3 years11 vs. 13 months12, respectively. As
such, the period for users to report bugs to a particular version of a package in a Debian
release is longer than in a Fedora release.

Debian and Fedora have a similar catalog of buggy upstream packages. Figure 8 shows
that 9 out of the top 10 buggy categories of upstream packages are common in the studied
distributions. These 9 common categories of upstream packages account for 84% and 94%
of upstream bugs in Debian and Fedora, respectively. However, the ranking of these cate-
gories of upstream packages is different between Debian and Fedora. For example, the libs
category is the most buggy category in Fedora, while it is the 6th ranked category in Debian.

11https://www.debian.org/releases/
12https://fedoraproject.org/wiki/Fedora Release Life Cycle

134 Page 16 of 41 Empir Software Eng (2022) 27: 134

https://www.debian.org/releases/
https://fedoraproject.org/wiki/Fedora_Release_Life_Cycle

in−house packages upstream packages

2005
2008

2011
2014

2017
2020

2005
2008

2011
2014

2017
2020

0.0

0.4

0.8

1.2

year

no
rm

al
iz

ed
 b

ug
 c

ou
nt

Debian Fedora

Fig. 7 Comparison between the evolution of the normalized count of reported bugs normalized by the
package count for both in-house and upstream packages

Since packages in the libs category are common packages that are shared by many pack-
ages, Fedora ensures the quality of these packages to reduce the impact on other packages.
One of the interviewed Fedora maintainers stressed “the responsibility of the SRE’s (Site
Reliability Engineers) to make sure [the bugs in libs] are fixed for Fedora.” On the other
hand, bugs in packages that are not in the libs category are reported to the corresponding
upstream projects. Therefore, the fixes are tracked and developed upstream rather than in
Fedora.

RQ2: What is the time and cost for fixing high-severity upstream bugs locally
in distributions andmaintaining such distribution fixes?

Motivation: The results in RQ1 show that only less than 14% of upstream bugs are explic-
itly recorded to be fixed upstream. However, distribution maintainers take responsibility
for at least 13% of the remaining upstream bugs (with the 73% remaining cases in Debian
not having explicit information w.r.t. who fixed them) even though they are not neces-
sarily familiar with the upstream packages. For example, for maintainers who adopt an
upstream project, Ubuntu states that “You should have some experience with the upstream
project - it really helps if you’re working on something you know well.” (https://wiki.ubuntu.
com/Upstream/Adopt) Lacking this experience increases the difficulty to come up with

Page 17 of 41 134Empir Software Eng (2022) 27: 134

https://wiki.ubuntu.com/Upstream/Adopt
https://wiki.ubuntu.com/Upstream/Adopt

Debian Fedora

ad
min

de
ve

l

de
sk

top

ne
tw

ork uti
ls lib

s
web

med
ia

ed
ito

rs
mail lib

s
de

ve
l

de
sk

top
ad

min

ne
tw

ork uti
ls

ed
ito

rs
web

med
ia

gra
ph

ics
0

10

20

30

bu
g

(%
)

Fig. 8 The distribution of top 10 buggy categories of upstream packages. Fedora and Debian share 9 of
10 common buggy categories with different ranking orders. The categories that do not match are the mail
category in Debian and the graphics category in Fedora

good fixes for the upstream bugs. As a consequence, downstream developers often propose
workarounds (e.g., local patches) to reduce the impact of such bugs (Ma et al. 2017).

When a bug is successfully fixed by a distribution maintainer, the fix still needs to be sub-
mitted to the upstream project (https://www.freedesktop.org/wiki/Distributions/Packaging/
WhyUpstream/). However, the fix might only be relevant to the maintainer’s own distribu-
tion, or it might take time before the upstream project is able to validate the submitted fix.
In such a case, distribution maintainers need to hold on to their bug fix changes as separate
patches, i.e., diffs between the official upstream release and their modified version. When-
ever upstream releases a new version of their project, the maintainer now needs to check
if it incorporates his/her bug fix changes and, if not, whether the existing bug fix patch
still applies cleanly (Ma et al. 2017). If not, the patch has to be fixed, and re-submitted
online for (possible) inclusion in the next project release. Therefore, this is an additional
cost for distribution maintainers to maintain the patches and keep them compatible with the
following releases until distribution maintainers integrate the upstream releases including
the bug fixes.

Considering the above challenges and the large number (i.e., 67,490) of fixed bugs in
upstream packages (see Table 2), we are interested in gaining a deeper understanding of the
involved costs of fixing upstream bugs locally.

Approach: As in Section 2.1 (Fig. 2), the bug fixing process for upstream packages
includes collaboration between maintainers and upstream developers. We focus on the bugs
that our heuristics in RQ1 are able to identify as fixed upstream or locally to estimate the
cost of fixing an upstream bug. We leverage the following metrics that prior studies have
widely used to study bug fixing: needed time for users waiting for fixes (Zhang et al. 2013;
Kim and Whitehead Jr 2006; Bhattacharya and Neamtiu 2011), the number of participants
in the bug fixing process (Bhattacharya and Neamtiu 2011; Canfora et al. 2020), the
number of comments (Giger et al. 2010; Zhou et al. 2015; Zhang et al. 2012), the number
of reference links (e.g., URLs to design documents or other bug reports) mentioned in

134 Page 18 of 41 Empir Software Eng (2022) 27: 134

https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/
https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/

comments (Canfora et al. 2020), and the characteristics of local patches (Weimer 2006;
Bhattacharya and Neamtiu 2011). We then compare the difference of the costs among
upstream bugs that are fixed upstream vs. locally, and in-house bugs that are fixed locally.

We compare the needed time for users waiting for fixes among three types of bugs,
i.e., bugs in upstream packages that are fixed upstream vs. locally, and bugs in in-house
packages. However, fixing upstream bugs includes several different processes in certain
circumstances, as shown in Fig. 2. We cannot measure the time from when upstream devel-
opers start fixing a bug to when maintainers know about the fix (although they might not
yet have access to it). Therefore, similar to prior work (Zhang et al. 2013; Kim and White-
head Jr 2006; Bhattacharya and Neamtiu 2011), we use the duration between when a bug is
opened and when it is marked as fixed in the bug report of a given distribution.

We normalize three of our selected metrics to reduce the correlation between these met-
rics. In particular, we normalize the number of participants and the number of comments by
the needed time to fix. The number of reference links mentioned in comments is normalized
by the number of comments.

Additionally, maintainers produce local patches when these patches (fixes) are not imme-
diately accepted upstream (Adams et al. 2016). Hence, maintainers maintain these patches
locally for the subsequent distribution releases until the upstream fixes that particular bug.
Local patches can be managed by different tools and stored in dedicated patch repositories.
We extract the patches for each package from the corresponding package repository in the
studied distributions.

We analyze how many patches are maintained in one distribution release, how long
a patch file survives in terms of the number of distribution releases (i.e., a patch is
removed when the upstream incorporates the fix), and the code churn of each patch
file. Specifically, Debian maintainers use Quilt to control the series of patches related
to the upstream source (https://perl-team.pages.debian.net/howto/quilt.html). In contrast
to regular version control systems like git, tools like Quilt do not physically merge
patches into a code base, but treat patches as first-class entities. In other words, patches
can easily be applied, removed, swapped with other patches, etc. Fedora maintain-
ers leverage the git diff command to track the changes of the upstream source for
a bug as a patch (https://docs.fedoraproject.org/en-US/Fedora Draft Documentation/0.1/
html/Documentation Guide/sect-workflow-patching.html).

Results: In Debian, locally fixed upstream bugs make users wait for 39% less time
than upstream bugs that are fixed upstream, but require users to wait for 52% more
time than locally fixed in-house bugs. Figure 9 compares the user-waiting time for in-
house bugs, upstream bugs that are fixed locally, and upstream bugs that are fixed upstream.
In Debian, bugs that originate from upstream packages take longer to be fixed by the
upstream developers themselves than being fixed locally. This inefficiency is mostly due
to the communication overhead with the upstream projects . Since the upstream packages
are widely used through Linux distributions (those “distribute” open source projects to
end users), bugs from upstream packages typically are reported through them before being
propagated upstream (Davies et al. 2010). After reporting to the upstream, maintainers
need to wait for the upstream developers to respond to and fix the bug.

More specifically, in Debian, users have to wait a median of 38 days for local fixes of
the upstream bugs, while they wait a median of 62 days for fixes that are from upstream
and being integrated into Debian. The result of the Wilcoxon signed-rank test shows that

Page 19 of 41 134Empir Software Eng (2022) 27: 134

https://perl-team.pages.debian.net/howto/quilt.html
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Documentation_Guide/sect-workflow-patching.html
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Documentation_Guide/sect-workflow-patching.html

Fig. 9 Upstream bugs that are fixed locally (the yellow boxplots) take a longer time compared to in-house
bugs (the green boxplots) across the studied distributions. In Debian, upstream bugs that are fixed locally
(the yellow boxplot) take a shorter time compared to those that are fixed upstream (the orange boxplot)

the difference between bugs that are fixed upstream and those that are fixed in-house is
statistically significant (i.e., p-value � 0.01, α = 0.01), with a small effect size (0.22). On
the other hand, users also wait longer to get local fixes for upstream bugs (i.e., a median of
38 days) than in-house bugs (i.e., a median of 25 days), with p-value � 0.01 (α = 0.01).

In Fedora, locally fixed upstream bugs make users wait for 49% and 175% more time
than locally fixed in-house bugs and upstream bugs that are fixed upstream, respec-
tively. The reason why users wait a relatively shorter time for upstream bug fixes that are
from upstream than local fixes is not that those bugs were actually fixed faster, but because
maintainers mark the bug report as fixed once they report the bug to upstream or know
that upstream developers have published the fix for the bug. Maintainers do not need to
wait for upstream developers releasing a new version and integrating the version into their
distribution manually before marking a bug as fixed. Antiya (https://release-monitoring.
org/), a service to monitor the upstream releases in Fedora, will automatically integrate the
new upstream releases of packages into Fedora (https://fedoraproject.org/wiki/Upstream
release monitoring). Of course, users would still need to wait the entire time, suggesting
that the results for Fedora might be more akin to those in Debian.

For example, a bug report related to taking screenshots when the screen was locked in
Fedora, was closed by a maintainer who stated “Fixed upstream, the 3.14.1 release in next
week will bring the fix to Fedora.”.13 In the corresponding upstream bug report14, before
posting the comment in Fedora, the maintainer posted 13 comments to help resolve the
bug, such as testing the patches committed by other developers, pointing out the drawbacks
of those patches, and proposing solutions and changes to fix the bug. Finally, the bug was
resolved according to his suggestions and changes.

The number of participants per day and the number of comments per day when fixing
upstream bugs locally are similar to when fixing in-house bugs and fixing upstream
bugs upstream. Figures 10 and 11 indicate that fixing an upstream bug locally does not

13https://bugzilla.redhat.com/show bug.cgi?id=1150444
14https://bugzilla.gnome.org/show bug.cgi?id=737456

134 Page 20 of 41 Empir Software Eng (2022) 27: 134

https://release-monitoring.org/
https://release-monitoring.org/
https://fedoraproject.org/wiki/Upstream_release_monitoring
https://fedoraproject.org/wiki/Upstream_release_monitoring
https://bugzilla.redhat.com/show_bug.cgi?id=1150444
https://bugzilla.gnome.org/show_bug.cgi?id=737456

Fig. 10 The number of participants per day to fix an upstream bug locally (yellow) is equal to the number of
participants per day to fix an in-house bug (green) across the studied distributions. Note that these boxplots
remove the top 1% of data points for better visualization

require more participants per day, nor more discussion (comments) per day, compared to
fixing in-house bugs and fixing upstream bugs upstream. One possible explanation is that
upstream bugs that are fixed locally occur due to certain builds or modifications in a given
distribution. For example, a Debian maintainer mentioned “Actually we had to put some
handlers back in after upstream removed them because the keys were not generated in the
Debian kernel.”, which made the keystroke events be reported twice on certain platforms.15

In Debian, distribution maintainers record more links to reference documents when
fixing upstream bugs locally than when fixing in-house bugs, but fewer links than for
upstream bugs that are fixed upstream. In Fedora, the number of reference links per
comment is similar among all three types of bugs. The reference links in comments
indicate whether fixing a bug needs more additional information (e.g., design documents,
requirements). Fedora follows the “upstream first” policy16 that encourages its maintainers
to discuss solutions of a bug in the upstream bug tracker, where the larger community can
vet the solutions, as discussed in Section 3. As such, Fedora maintainers tend to comment
on and discuss bugs in the upstream bug tracker rather than the distribution bug tracker.
Figure 12 shows that the number of links to reference documents when fixing upstream
bugs locally is larger than when fixing in-house bugs in Debian (Wilcoxon test: p-value �
0.01, α = 0.01 and the negligible effect size). For example, an upstream bug17 that is fixed
locally and an in-house bugs18 have 1.33 (4 links among 3 comments) and 0.43 (3 links
among 7 comments) reference links per comment, respectively.

Maintainers maintain equal or fewer local patches per package for upstream packages
within one distribution release compared to in-house packages. More specially, both
Debian and Fedora maintain a median of 2 patches per upstream package, while they main-
tain a median of 3 and 2 patches per in-house package, respectively. As shown in Fig. 13,

15https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=586924
16https://www.redhat.com/en/blog/what-open-source-upstream
17https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=489553
18https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=424456

Page 21 of 41 134Empir Software Eng (2022) 27: 134

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=586924
https://www.redhat.com/en/blog/what-open-source-upstream
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=489553
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=424456

Fig. 11 The number of comments per day in an upstream bug is similar to the number for an in-house bug.
Note that these boxplots remove the top 1% of data points for better visualization

Fig. 12 The number of reference links per comment in an upstream bug that is fixed locally (yellow) is larger
than the number for an in-house bug (green) in Debian, though they are similar in Fedora. Note that these
boxplots remove the top 1% of data points for better visualization

Fig. 13 The number of patches per upstream package in one release of a given distribution is smaller than
the number of patches per in-house package in Debian, while the number is equal for upstream and in-house
packages in Fedora, though there are more outliers for upstream packages

134 Page 22 of 41 Empir Software Eng (2022) 27: 134

930 upstream packages (outliers) require a higher number of local patches than in-house
packages. According to the guidelines of upstream package management in Linux distri-
butions (https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/), when
the upstream bugs are critical (e.g., security issues or severe impacts), the distribution main-
tainers can produce local patches for such bugs to reduce their effects. For such a short-term
fix, distribution maintainers potentially face a long-term maintenance effort. They need to
check the compatibility of their patches with each subsequent release of upstream packages,
until the upstream projects release a new version containing the bug fixes. On the other hand,
in-house packages are not necessarily developed by in-house developers from scratch, they
can take ownership of an orphaned upstream package or customize a package themselves
as an in-house package (as mentioned in Section 3.2). Hence, in-house developers can also
produce patches for bugs in in-house packages.

However, surprisingly we observe that the maintenance cost of the patches for upstream
packages is slightly lower than for in-house packages in terms of the number of patches per
package, with a small effect size (Wilcoxon test: p-value � 0.01, α = 0.01).

Maintainers remove local patches for upstream packages faster than for in-house
packages in terms of the number of distribution releases. Figure 14 shows the distri-
bution of code churn and survival time of each patch file in one distribution release. The
difference in survival time of patch files between upstream and in-house packages is sta-
tistically significant in both Fedora and Debian, with a p-value � 0.01 (Wilcoxon test:
α = 0.01). The Cliff’s Delta effect size indicates that the magnitude of the difference is
small (0.34) and median (0.45) in Fedora and Debian, respectively. As patches are produced
to fix bugs and ensure the stability of a distribution, these patches will be removed after-
wards, i.e., the survival time is shorter when the upstream projects release new bug fixes.
In contrast, local patches for in-house packages are maintained much longer in terms of the
number of distribution releases.

RQ3: Which high-severity bugs are most likely to be fixed upstream?

Motivation: While observations in RQ2 indicate that distribution maintainers need less
information to fix upstream bugs locally than upstream, they still need more informa-
tion than to fix bugs of in-house packages. Similarly, users wait longer for local fixes to
upstream bugs than for in-house packages. While compared to bugs fixed upstream, main-
tainers need less information to fix upstream bugs locally. Therefore, for a distribution as a
whole, it is important to understand the characteristics of fixing bugs upstream. Specifically,

Page 23 of 41 134Empir Software Eng (2022) 27: 134

https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/

1

10

100

1000

Debian Fedora

fil

es

in−house upstream

(a) #changed files

10

100

1000

Debian Fedora

lin

es

in−house upstream

(b) #changed lines

1

3

10

30

Debian Fedora

re

le
as

es

in−house upstream

(c) Survival time

Fig. 14 The code churn and survival time of each patch file for the upstream and in-house packages in each
Fedora and Debian release. Across the studied distributions, the maintenance effort for the upstream packages
is lower than for the in-house packages in (a), (b) and (c)

we aim to understand what types of bugs are fixed upstream and whether the interaction
between upstream and downstream influences bugs being fixed upstream. Therefore, we can
offer suggestions for maintainers to reduce the maintenance burden and identify additional
opportunities for assigning bugs to upstream.

Approach: We are interested in the key factors that influence the likelihood that a bug will
be fixed upstream. Figure 15 illustrates an overview of the process to build our explanatory
models. First, we select a dataset that consists of a balanced number of bugs that are fixed
upstream and those that are fixed locally, with one dataset for Debian and one for Fedora.
In particular, we randomly select 500 bugs that are fixed upstream and 500 bugs that are
fixed locally from the dataset in Table 2, obtaining two datasets of 1,000 high-severity bugs
(Model Dataset).

Feature Collection Then, we extract a total of 27 features in 6 dimensions regarding
bugs, packages, and collaboration between upstream and distributions. Similar to prior work
(Shihab et al. 2013; Ohira et al. 2012; Xia et al. 2014), we extract the common factors
(e.g., description, bug-fixed time) of a bug report to characterize bugs (Shihab et al. 2013;
Zimmermann et al. 2010; Xuan et al. 2012), reporters (Fan et al. 2018; Just et al. 2008;
Xuan et al. 2012; Marks et al. 2011), and bug fixing activities (Mockus et al. 2002; Jeong
et al. 2009). For example, Fan et al. (2018) found that reporter’s experience is an important
indicator that determines a valid bug or not. To understand the relation between upstream

Bug data
The top 100

buggy packages

Upstream
bug reports

Feature
Collection

Correlation
Analysis

Redundancy
Analysis

Out-of-sample
bootstrap

train

test

Explanatory
model

Compute AUC

Repeat 100 times

Study important factors
of bugs being fixed upstreamPackage data

Feature selection

Fig. 15 Overview of RQ3 model construction process

134 Page 24 of 41 Empir Software Eng (2022) 27: 134

and downstream, we add several novel dimensions along with several metrics and highlight
them in bold in Table 3. We now describe the dimensions with novel metrics in more detail.

Bug Fixing History Since upstream projects are the source of upstream packages, main-
tainers report a bug to the upstream project before adding the reference link of the upstream
bug report in the bug report. We leverage the number of reference links to the upstream bug
reports to indicate such behavior. Furthermore, an upstream bug can affect many distribu-
tions and their users in the Linux ecosystem. Therefore, a similar upstream bug can already
be reported in the issue tracking systems of different distributions. We add two metrics
regarding the similarity of previous bug reports either between upstream and distributions,
or between peer distributions (see Table 3).

Additionally, since upstream packages may affect in-house packages or vice versa, we
add the number of reference links to the related in-house bug reports to indicate the inter-
ference between upstream and in-house packages. Furthermore, bug triage is an essential
step in the bug fixing process but a time-consuming task (Hu et al. 2014). We add one novel
metric, i.e., the number of bugs that are fixed upstream before the current bug report in a dis-
tribution, to measure the performance of the package maintainers with respect to upstream
bugs.

Internal Collaboration Activities The number of comments in a bug report is related to
its fixing time (Hooimeijer and Weimer 2007). Hence, we further extract the URLs in the
comments as an indicator to reflect the maintenance effort of maintainers to search the
relevant information (e.g., design documents, bug reports in other bug trackers). Then,
we classify these URLs into internal links (referring to internal documents) and external
links (referring to external documents). When maintainers discuss the fix for a bug, they
may post the links regarding the relevant information (e.g., design doc, similar bugs or
solutions) in the comments of the bug report. Therefore, we use the number of external and
internal links to measure the communication activities. In addition, according to RQ1, bugs
in upstream packages might be addressed by maintainers instead of upstream developers.
We measure the number of maintainers involved with fixing upstream bugs based on the
comments of a bug report. We identify those maintainers via their email address, which
contains the domain name of their distribution (e.g., debian.org) (https://www.debian.org/
doc/manuals/developers-reference/index.en.html, https://fedoraproject.org/wiki/Join the
package collection maintainers#Create a Fedora Account).

External Collaboration Activities In general, an upstream bug is first reported by a user of
a distribution before maintainers forward the upstream bug to upstream developers. While
upstream developers are fixing the bug, they often lack the information and context of a
specific bug occurring downstream (Ma et al. 2017) and require additional information (e.g.,
logs from the user, tests in certain circumstances). Maintainers coordinate with them to
provide the required information, even from the user who reported the bug. We use four
metrics extracted from the comments of the local and upstream bug reports to reflect the
interaction between upstream and downstream (see Table 3). Due to the variety of upstream
bug trackers (e.g., GitHub, Bugzilla), it is a time-consuming task to collect all the bug
reports of upstream projects. Hence, we analyze the distribution of upstream bug trackers
and only consider the upstream projects using Bugzilla and Debbugs (i.e., Debian bugs) as
their bug trackers. In the selected 100 upstream projects, 73% of the upstream reference
links in bug reports link to such bug trackers.

Page 25 of 41 134Empir Software Eng (2022) 27: 134

https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://fedoraproject.org/wiki/Join_the_package_collection_maintainers#Create_a_Fedora_Account
https://fedoraproject.org/wiki/Join_the_package_collection_maintainers#Create_a_Fedora_Account

Ta
bl
e
3

T
he

di
m
en
si
on
s
of

fe
at
ur
es

in
ou
r
m
od
el
s.
T
he

fe
at
ur
e
na
m
es

in
bo
ld

ar
e
ne
w
fe
at
ur
es

w
ith

re
sp
ec
tt
o
th
e
re
la
tio

n
be
tw
ee
n
up
st
re
am

an
d
di
st
ri
bu
tio

n
fi
xi
ng

bu
gs

Fe
at
ur
e
na
m
e

Ty
pe

D
es
cr
ip
tio

n

B
ug

C
ha

ra
ct
er
is
ti
cs

#D
es
cr
ip
tio

n
N
um

er
ic

T
he

nu
m
be
r
of

w
or
ds

in
th
e
de
sc
ri
pt
io
n
of

th
e
bu
g

Se
ve
ri
ty

St
ri
ng

T
he

se
ve
ri
ty

of
th
e
bu
g

Pr
io
ri
ty

St
ri
ng

T
he

pr
io
ri
ty

of
th
e
bu
g

R
ep

or
te
r
C
ha

ra
ct
er
is
ti
cs

Is
in
te
rn
al
re
po
rt
er

B
oo
le
an

St
at
es

w
he
th
er

th
e
re
po
rt
er

is
an

in
-h
ou
se

de
ve
lo
pe
r.
In
-h
ou
se

de
ve
lo
pe
rs

ar
e
de
te
r-

m
in
ed

ba
se
d
on

th
e
de
ve
lo
pe
r’
s
em

ai
l
th
at

co
nt
ai
ns

th
e
do
m
ai
n
na
m
e
of

a
di
st
ri
bu
-

tio
n
(e
.g
.,
de
bi
an
.o
rg
)
(h
ttp

s:
//w

w
w
.d
eb
ia
n.
or
g/
do
c/
m
an
ua
ls
/d
ev
el
op
er
s-
re
fe
re
nc
e/
in
de
x.

en
.h
tm

l,
ht
tp
s:
//f
ed
or
ap
ro
je
ct
.o
rg
/w
ik
i/J
oi
n
th
e
pa
ck
ag
e
co
lle

ct
io
n
m
ai
nt
ai
ne
rs
#C

re
at
e

a
Fe
do
ra

A
cc
ou
nt
)

R
ep
or
te
r
ex
pe
ri
en
ce

N
um

er
ic

T
he

nu
m
be
r
of

bu
gs

re
po
rt
ed

by
th
e
sa
m
e
de
ve
lo
pe
r
be
fo
re

th
is
bu
g

R
ep
or
te
r
ex
pe
ri
en
ce

to
th
e
pa
ck
ag
e

N
um

er
ic

T
he

nu
m
be
r
of

bu
gs

re
po
rt
ed

to
th
e
sa
m
e
pa
ck
ag
e
by

th
e
sa
m
e
de
ve
lo
pe
r
be
fo
re

th
is
bu
g

B
ug

F
ix
in
g
A
ct
iv
it
ie
s

Fi
xe
d
tim

e
N
um

er
ic

T
he

tim
e
du
ra
tio

n
in

th
e
nu
m
be
r
of

da
ys

be
tw
ee
n
w
he
n
th
e
bu
g
w
as

re
po
rt
ed

an
d
w
he
n

th
e
bu
g
is
fi
xe
d

T
ri
ag
ed

tim
e

N
um

er
ic

T
he

tim
e
du
ra
tio

n
in

th
e
nu
m
be
r
of

da
ys

be
tw
ee
n
w
he
n
th
e
bu
g
w
as

re
po
rt
ed

an
d
w
he
n

de
ve
lo
pe
rs
st
ar
te
d
to

fi
x
th
e
bu
g

B
ug

F
ix
in
g
H
is
to
ry

re
ga
rd
in
g
th
e
cu
rr
en
t
bu

g

#R
el
at
ed

in
-h
ou

se
bu

g
re
po

rt
s

N
um

er
ic

T
he

nu
m
be
r
of

re
la
te
d
in
-h
ou
se

bu
g
re
po
rt
s
th
at
w
er
e
re
po
rt
ed

be
fo
re

th
e
cu
rr
en
tb

ug

#R
ef
er
re
d
up

st
re
am

lin
ks

N
um

er
ic

T
he

nu
m
be
r
of

re
fe
re
nc
e
lin

ks
to

th
e
up
st
re
am

bu
g
re
po
rt
s

P
ee
r
si
m
ila

ri
ty

sc
or
e

N
um

er
ic

T
he

co
si
ne

si
m
ila
ri
ty
be
tw
ee
n
th
e
bu
g
re
po
rt
an
d
pe
er
-d
is
tr
ib
ut
io
ns
’b

ug
re
po
rt
s
th
at
w
er
e

re
po
rt
ed

be
fo
re

th
e
cu
rr
en
tb

ug

Si
m
ila

ri
ty

sc
or
e1

N
um

er
ic

T
he

co
si
ne

si
m
ila
ri
ty

be
tw
ee
n
th
e
cu
rr
en
tb

ug
an
d
th
e
co
rr
es
po
nd
in
g
up
st
re
am

bu
g
re
po
rt
s

Pa
ck
ag
e
ca
te
go
ry

St
ri
ng

T
he

ap
pl
ic
at
io
n
do
m
ai
n
of

th
e
pa
ck
ag
e

134 Page 26 of 41 Empir Software Eng (2022) 27: 134

https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://fedoraproject.org/wiki/Join_the_package_collection_maintainers#Create_a_Fedora_Account

Ta
bl
e
3

(c
on
tin

ue
d)

Fe
at
ur
e
na
m
e

Ty
pe

D
es
cr
ip
tio

n

#F
ix
ed

bu
gs

N
um

er
ic

T
he

nu
m
be
r
of

fi
xe
d
bu
gs

in
th
e
pa
ck
ag
e
be
fo
re

th
e
cu
rr
en
tb

ug
re
po
rt

#F
ix
ed
-u
ps
tr
ea
m

bu
gs

N
um

er
ic

T
he

nu
m
be
r
of

bu
gs

th
at
ar
e
fi
xe
d
up
st
re
am

in
th
e
pa
ck
ag
e
be
fo
re

th
e
cu
rr
en
tb

ug
re
po
rt

#P
ar
tic
ip
an
ts

N
um

er
ic

T
he

nu
m
be
r
of

pa
rt
ic
ip
an
ts
ac
ro
ss

th
e
bu
g
re
po
rt
hi
st
or
y
be
fo
re

th
e
cu
rr
en
tb

ug
re
po
rt

In
te
rn
al

C
ol
la
bo

ra
ti
on

A
ct
iv
it
ie
s

#C
om

m
en
ts

N
um

er
ic

T
he

nu
m
be
r
of

co
m
m
en
ts
in

th
e
bu
g
re
po
rt

#E
xt
er
na

ll
in
ks

in
co
m
m
en
ts

N
um

er
ic

T
he

nu
m
be
r
of

un
iq
ue

ex
te
rn
al
re
fe
re
nc
e
lin

ks
th
at
de
ve
lo
pe
rs
po
st
ed

in
th
e
co
m
m
en
ts

#I
nt
er
na

ll
in
ks

in
co
m
m
en
ts

N
um

er
ic

T
he

nu
m
be
r
of

un
iq
ue

in
te
rn
al
re
fe
re
nc
e
lin

ks
th
at
de
ve
lo
pe
rs
po
st
ed

in
th
e
co
m
m
en
ts

%
In
te
rn
al

co
m
m
en
ts

N
um

er
ic

T
he

pr
op
or
tio

n
of

co
m
m
en
ts

ad
de
d
by

di
st
ri
bu
tio

n
m
ai
nt
ai
ne
rs

or
de
ve
lo
pe
rs

in
th
e

bu
g.

D
is
tr
ib
ut
io
n

m
ai
nt
ai
ne
rs

an
d

de
ve
lo
pe
rs

ar
e

de
te
rm

in
ed

ba
se
d

on
th
e

de
ve
l-

op
er
’s
em

ai
l
th
at

co
nt
ai
ns

th
e
do
m
ai
n
na
m
e
of

a
di
st
ri
bu
tio

n
(e
.g
.,
de
bi
an
.o
rg
)
(h
ttp

s:
//

w
w
w
.d
eb
ia
n.
or
g/
do
c/
m
an
ua
ls
/d
ev
el
op
er
s-
re
fe
re
nc
e/
in
de
x.
en
.h
tm

l,
ht
tp
s:
//f
ed
or
ap
ro
je
ct
.

or
g/
w
ik
i/J
oi
n
th
e
pa
ck
ag
e
co
lle
ct
io
n
m
ai
nt
ai
ne
rs
#C

re
at
e
a
Fe
do
ra

A
cc
ou
nt
)

#M
ai
nt
ai
ne
rs

N
um

er
ic

T
he

un
iq
ue

nu
m
be
r
of

m
ai
nt
ai
ne
rs
co
nt
ri
bu
tin

g
to

th
e
bu
g
by

po
st
in
g
co
m
m
en
ts

E
xt
er
na

lC
ol
la
bo

ra
ti
on

A
ct
iv
it
ie
s

H
as

up
st
re
am

de
ve
lo
pe
rs

B
oo
le
an

St
at
es

w
he
th
er

up
st
re
am

de
ve
lo
pe
rs
co
nt
ri
bu
te
d
to

th
e
bu
g
by

po
st
in
g
co
m
m
en
ts

#E
xt
er
na
ld

ev
el
op
er
s

N
um

er
ic

T
he

un
iq
ue

nu
m
be
r
of

ex
te
rn
al
de
ve
lo
pe
rs
co
nt
ri
bu
tin

g
to

th
e
bu
g
by

po
st
in
g
co
m
m
en
ts

%
E
xt
er
na

lc
om

m
en
ts

N
um

er
ic

T
he

pr
op
or
tio

n
of

co
m
m
en
ts
ad
de
d
by

ex
te
rn
al
de
ve
lo
pe
rs
in
th
e
bu
g.
W
he
n
th
e
em

ai
lo
fa

de
ve
lo
pe
rd

oe
s
no
tc
on
ta
in
th
e
do
m
ai
n
na
m
e
of

a
di
st
ri
bu
tio

n,
w
e
de
te
rm

in
e
th
e
de
ve
lo
pe
r

is
an

ex
te
rn
al

de
ve
lo
pe
r

(h
ttp

s:
//w

w
w
.d
eb
ia
n.
or
g/
do
c/
m
an
ua
ls
/d
ev
el
op
er
s-
re
fe
re
nc
e/

in
de
x.
en
.h
tm

l,
ht
tp
s:
//f
ed
or
ap
ro
je
ct
.o
rg
/w
ik
i/J
oi
n
th
e
pa
ck
ag
e
co
lle
ct
io
n
m
ai
nt
ai
ne
rs
#

C
re
at
e
a
Fe
do
ra

A
cc
ou
nt
)

H
as

di
st
ri
bu

ti
on

m
ai
nt
ai
ne
rs

1
B
oo
le
an

St
at
es

w
he
th
er

di
st
ri
bu
tio

n
m
ai
nt
ai
ne
rs
at
ta
ch
ed

co
m
m
en
ts
to

th
e
up
st
re
am

bu
g
re
po
rt

#C
om

m
en
ts
fr
om

di
st
ri
bu

ti
on

m
ai
nt
ai
ne
rs

1
N
um

er
ic

T
he

nu
m
be
r
of

co
m
m
en
ts
po
st
ed

by
di
st
ri
bu
tio

n
m
ai
nt
ai
ne
rs
in

th
e
up
st
re
am

bu
g
re
po
rt

#C
om

m
en
ts
up

st
re
am

1
N
um

er
ic

T
he

nu
m
be
r
of

co
m
m
en
ts
in

th
e
up
st
re
am

bu
g
re
po
rt

1
T
he

fe
at
ur
es

ar
e
co
m
pu
te
d
fr
om

th
e
co
rr
es
po
nd
in
g
up
st
re
am

bu
g
re
po
rt
if
it
is
av
ai
la
bl
e

Page 27 of 41 134Empir Software Eng (2022) 27: 134

https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://fedoraproject.org/wiki/Join_the_package_collection_maintainers#Create_a_Fedora_Account
https://fedoraproject.org/wiki/Join_the_package_collection_maintainers#Create_a_Fedora_Account
https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://fedoraproject.org/wiki/Join_the_package_collection_maintainers#Create_a_Fedora_Account
https://fedoraproject.org/wiki/Join_the_package_collection_maintainers#Create_a_Fedora_Account

Model Construction and Performance Assessment Finally, we build logistic regression
models to understand the relation between the studied metrics and the possibility of get-
ting a bug fixed upstream (see Fig. 15). Our models classify upstream bugs into being fixed
upstream or in-house. Since the results in RQ1 show that each Linux distribution has sepa-
rate characteristics, we build a model for each Linux distribution instead of one model for
all the studied distributions.

Feature Selection After extracting the metrics, we apply correlation and redundancy anal-
ysis, similar to prior work (Lee et al. 2020; Rajbahadur et al. 2021; da Costa et al. 2018),
before constructing our models. The correlation analysis (Lee et al. 2020; Rajbahadur et al.
2021) step removes highly correlated variables (whose Spearman correlation is > 80%),
since correlated variables can affect the interpretation of the model. While the correlation
analysis removes correlated variables, it does not detect all the redundant variables, i.e., vari-
ables that can be predicted with more than one other independent variable. Therefore, we
then conduct a redundancy analysis (McIntosh et al. 2016; da Costa et al. 2018) that identi-
fies for each metric whether it can be predicted by other metrics. The redundancy analysis is
performed by the redun function19 from the Hmisc package in R. The discarded metrics
are marked with the dagger symbol (†) in Table 4.

AUC We assess the performance of our models using the area under the curve (AUC), which
is calculated by 100 out-of-sample bootstrap iterations with replacement (Thongtanunam
et al. 2016; McIntosh et al. 2016). AUC is a better measurement for evaluating the perfor-
mance of a classification algorithm (Ling et al. 2003), since, unlike accuracy, AUC is not
impacted by class distributions. Moreover, AUC evaluates performance across a range of
thresholds instead of requiring one specific threshold like precision, recall, and F-Measure
do. In each bootstrap iteration, as shown in Fig. 16, we draw a bootstrap sample set from
the Model Dataset with replacement for each of the studied distributions. The train set is
re-sampled with replacement from the bootstrap sample, while the test set consists of the
data points from the bootstrap sample that are not in the train set. The AUC of our models
is calculated by the test set, which enables to compute true positive rates and false positive
rates on unseen data.

To assess the performance of our models across the studied distributions, we train a
model on one dataset and assess its performance on the other dataset. For example, we
train a model on the Fedora dataset and test this model on the Debian dataset. Note that we
remove the features that do not have the corresponding ones across the studied distributions.
We use the commonly occurred features which are the majority of our extracted features.

Log-likelihood ratio tests In addition, we use a log-likelihood ratio (LR) test (Huelsenbeck
and Crandall 1997) to evaluate the performance of our regression models fit to the data
at the dimension level. Similar to prior work (Thongtanunam and Hassan 2020; Lee et al.
2020), we compute the overall LRχ2 to represent the performance of fit for the model using
all the studied metrics (i.e., the full model) against the null model (i.e., a model without any
metrics). We then compute the �LRχ2 to indicate the performance of fit for the model with
the metrics of interest against the model without using the metrics of interest.

19https://www.rdocumentation.org/packages/Hmisc/versions/4.2-0/topics/redun

134 Page 28 of 41 Empir Software Eng (2022) 27: 134

https://www.rdocumentation.org/packages/Hmisc/versions/4.2-0/topics/redun

Table 4 Statistics of our regression models. The goodness of fit for the metrics of interest (�LRχ2) is shown
in a proportion to the overall LRχ2

Fedora Debian

Overall LRχ2 526*** 211***

AUC 0.87 0.73

AUC (across distributions) 0.63 0.81

Bug Characteristics �LRχ2 31***(6%) 17***(8%)

#Description χ2 5.27* (+) 0.86o (+)

Severity χ2 0.09o 15.22**

Priority χ2 22.79** -

Reporter Characteristics �LRχ2 1.1(0.2%) 12***(6%)

Is Internal reporter χ2 0.79o (-) 5.25 * (-)

Reporter experience χ2 0.01o (-) 4.05* (-)

Reporter experience to the package χ2 0.15o (-) †

Bug Fixing Activities �LRχ2 17***(3%) 1(0.5%)

Fixed time χ2 16.41*** (+) 0.97o (+)

Triaged time χ2 0.09o (+) -

Bug Fixing History �LRχ2 81***(15%) 92***(44%)

#Related in-house bug reports χ2 1.91o (+) †

#Referred upstream links χ2 † †

Peer similarity score χ2 4.25* (-) 1.35o (-)

Similarity score χ2 21.88*** (+) 54.44*** (+)

Package category χ2 † †

#Fixed bugs χ2 † †

#Fixed-upstream bugs χ2 19.24*** (+) 8.17** (+)

#Participants χ2 13.90*** (-) 0.34o (-)

Internal Collaboration Activities �LRχ2 201***(38%) 23***(11%)

#Comments χ2 7.21** (-) †

#External links in comments χ2 6.77** (+) 7.84** (+)

#Internal links in comments χ2 46.14*** (-) 9.32** (-)

%Internal comments χ2 0.01o (+) 5.25* (-)

#Downstream developers χ2 16.68*** (-) 4.12o (+)

External Collaboration Activities �LRχ2 8*(2%) 15**(7%)

Has upstream developers χ2 2.67o (+) 0.11o (+)

Has distribution contributors χ2 † †

#External developers χ2 † 13.49*** (-)

%External comments χ2 5.06* (-) 3.96* (+)

#Comments from distribution contributors χ2 † †

#Comments upstream χ2 † †

Statistical significance: *** p < 0.001, ** p < 0.01, * p < 0.05, o p ¿ 0.05

† Discarded due to the correlation or redundancy analysis

- Metrics are not available in the distribution

Bold numbers indicate that correlation is significant, taking into account Bonferroni correction

Page 29 of 41 134Empir Software Eng (2022) 27: 134

original
data

100 bootstrap
samples

...

fit modeltrain

test

...

compute AUC to
evaluate performance

fit modeltrain

test

compute AUC to
evaluate performance

fit modeltrain

test

compute AUC to
evaluate performance

...

model assessment

Fig. 16 The model building and validation process of the models used in RQ3

Association analysis We use Wald statistics to analyze the explanatory power (Wald χ2)
of each studied metric to the fit of the regression models. The larger the Wald χ2 value, the
higher the explanatory power of a metric to the model (Harrell Jr et al. 1984). In addition,
we use the regression coefficients of the regression model to examine the direction of the
association of the studied metrics.

Results: Our logistic regression models reach a median AUC of 0.87 and 0.73 to
explain the likelihood that a bug will be fixed upstream in Fedora and Debian, respec-
tively. We note that our models for the two studied distributions are remarkably good
compared to a random model (AUC of 0.5). The high AUC values in modeling Fedora and
Debian suggest that our models have a high explanatory power when studying bugs being
fixed upstream, hence, we analyze our models’ features in more details.

The Fedora model achieves an AUC of 0.63 to explain the likelihood that a bug will be
fixed upstream for Debian, and the Debian model achieves an AUC of 0.81 for Fedora.
These AUC values indicate the generalizability of our models for understanding bugs being
fixed upstream. An upstream project can be part of multiple distributions, suggesting that a
potential issue can occur in a common set of upstream packages across different distribu-
tions. The generalizability of our models across the studied distributions indicates that bug
fixes from upstream projects can propagate across distributions, thus sharing common bug
fixing patterns.

Dimension Level The dimension of bug fixing history has the strongest association
with the likelihood that a bug will be fixed upstream in Debian, while the dimension
ranks 2nd in Fedora. Table 4 shows that 4 out of 5 metrics and 2 out of 4 metrics that
capture the history of a fixed bug contribute a significant amount of explanatory power
to our Fedora and Debian models, respectively. Moreover, Table 4 shows that the �LRχ2

values for our studied metrics account for 15% and 44% of the overall LRχ2 in the Fedora
and Debian models, respectively. This result suggests that a bug being fixed upstream tends

134 Page 30 of 41 Empir Software Eng (2022) 27: 134

to be related most to its fixing history in the ecosystem. For example, the number of bugs
that are fixed upstream before the current bug reflects the extent of support from upstream
developers to resolve their bugs in distributions.

On the other hand, the dimension of internal collaboration activities between
upstream projects and distribution maintainers accounts for the highest percentage
(i.e., 38%) of the overall LRχ2 in the Fedora model, while the dimension accounts for
11% (2nd ranked) in the Debian model. Since developers are geographically distributed,
they have several communication channels (e.g., emails, Internet Relay Chat (IRC) chan-
nels) (Panichella et al. 2014) to discuss and make decisions in software development other
than the bug report comments. Therefore, future research may study whether collaboration
activities occur in another communication channel. In addition, the strategy of upstream
package management in Fedora is to mainly develop and fix bugs upstream, as mentioned
in Section 3. Internal collaboration activities could be a negative indicator of a bug being
fixed upstream.

Feature Level The similarity score between the upstream and distribution bug reports
is highly associated with the likelihood that a bug will be fixed upstream (p-value <

0.001). Table 4 indicates that there is a significant positive correlation between the cosine
similarity of the upstream and distribution bug reports and the likelihood that a bug will
be fixed upstream. In particular, the similarity score of the upstream and distribution bug
reports contributes a relatively large amount of explanatory power in the Fedora (10%)
and Debian (38%) models. This result indicates that the more likely a similar bug was
reported in the past, the more likely this bug will be fixed upstream. This result suggests
that maintainers should take into account identifying/reusing similar bug reports upstream
before requesting an upstream bug, which could save unnecessary effort. This result is also
in line with the observation of the guidelines for working with upstream in Debian that “If
the package has an upstream bug tracker then searching it for similar reports can be useful”
(?debianbugtriage).

The number of bugs that are previously fixed upstream in one upstream package is sig-
nificantly associated with a bug being fixed upstream (p-value < 0.01). Table 4 shows
that the number of previously fixed bugs from upstream packages has a positive association
with the possibility of a bug being fixed upstream. This result indicates that some upstream
projects might be used to interacting more closely with distributions, being more likely to
continue such interactions. On the other hand, it might not be likely to expect upstream
projects without such interactions to suddenly start doing this by themselves.

The number of internal links in comments is significantly associated with a bug being
fixed upstream (p-value< 0.01). Table 4 shows that the number of internal links in com-
ments has a negative association with the possibility of a bug being fixed upstream. This
result suggests that maintainers discuss how to resolve a bug by posting additional internal
references in comments, the less likely the bug will be fixed upstream. Similarly, the num-
ber of external links in comments has a positive association with the possibility of a bug
being fixed upstream. The more maintainers refer to external links to discuss the fix for a
bug, the more likely the bug will be fixed upstream.

Additionally, there is a gap in the explanatory power of the number of internal links in
comments between Debian (6%) and Fedora (21%). One possible explanation is the dif-
ference in strategy of Debian and Fedora to manage upstream packages, as discussed in
Section 3. Fedora prefers to vet solutions in upstream projects rather than distribution bug

Page 31 of 41 134Empir Software Eng (2022) 27: 134

reports. Therefore, the number of internal links in comments has a larger amount of explana-
tory power, and a negative association with a bug being fixed upstream in the Fedora model.
In other words, the more internal reference links in a Fedora’s bug report, the more likely
the bug is not related to the source code of the upstream project. By contrast, the number of
external links in comments has a similar amount of explanatory power in both models.

5 Discussion

This section discusses the implications of our findings. We focus on the interaction across
distributions and upstream projects (Section 5.1) and distribution maintainers of upstream
packages (Section 5.2).

5.1 Implications for the Interaction Across Distributions and Upstream Projects

There is a need for tool support to explicitly track the bug fixing process across
upstream and distributions. In RQ1, we observe that for the majority (at least 73%) of
upstream bugs it is not clear who fixed them. The two popular and established Linux dis-
tributions that we studied use a mixture of different practices (e.g., certain fields such as
labels or tags in a bug, but do not enforce these practices) to record that a bug is related to
upstream and has been fixed upstream. Since such a recording mechanism is not a manda-
tory feature in the studied distributions, maintainers might not record the information of bug
fixing before closing a bug. Missing such information increases the difficulty of maintainers
to trace the progress of fixing an upstream bug and the difficulty of new maintainers to learn
the history of managing a package. Furthermore, in case of vulnerabilities, it is important to
have full traceability information.

Therefore, distributions should establish a means to unambiguously record this infor-
mation across upstream projects and their distribution, even though upstream packages
are packaged and distributed by multiple Linux distributions, corresponding to an N-to-N
relation of traceability links between bug reports of packages and distributions. Trying to
establish a centralized database, while the most intuitive solution, might not be feasible in
practice, since it is unclear where to locate the database and who should be responsible
for maintaining it. Furthermore, an upstream project usually focuses on bugs reported in
its own issue tracker. Since a given upstream project can be packaged and distributed by

134 Page 32 of 41 Empir Software Eng (2022) 27: 134

several distributions, the upstream developers need substantial additional effort to record
the corresponding distribution bug ids in their issue tracker and maintain this information.
This is especially true since each distribution has its own bug repository technology (mak-
ing automation less effective) and upstream projects usually lack human resources and are
relatively small.

On the other hand, the issue of software supply chain attacks has led to increasing adop-
tion of different metadata formats for specifying a project’s Software Bill of Materials
(SBOM20). Technologies like SPDX (Software Package Data Exchange) allow to (semi-
)automatically generate the SBOM information for a given project or distribution, including
lists of components, dependencies, etc. This SBOM information is shipped in a given release
of a software product. Some SBOM technologies even allow to specify which patches were
installed, which bug fixes (for which bugs), etc., which seems to be a promising means for
both upstream projects and distribution alike to formally specify the traceability informa-
tion relative to their product in a scalable manner. Of course, this does not solve the issue of
recovering traceability links for historical releases.

Active collaboration between upstream developers and distribution maintainers
should be encouraged in order to fix bugs and better distribute fixes to the needed
users. In RQ3, our explanatory models indicate that the similarity score between upstream
and distribution bug reports and the number of previously fixed bugs in upstream projects
are associated with a higher likelihood of a bug being fixed upstream. While upstream is the
best place to perform quality assurance (https://www.freedesktop.org/wiki/Distributions/
Packaging/WhyUpstream/), sending more bugs to upstream and fixing them there requires
contributions from both sides (i.e., upstream and distributions).

First, an upstream project might not have an explicit bug tracker or different bug track-
ing technology than the distribution where distribution maintainers report their bugs to and
search for the old bugs of the upstream project. In such a case, the collaboration activi-
ties between upstream and distributions happen in other channels (e.g., emails), which is
difficult for people who are less involved with tracking or reviewing the fixing history.

Second, distribution maintainers require providing sufficient information (e.g., logs, con-
figurations) of a bug for upstream developers when they validate whether the bug is valid in
the upstream project or specific to a given distribution.

Furthermore, even if the upstream project would be interested in fixing a bug, the fix
typically only applies directly to a new version of the upstream project. The results in RQ2
indicate that both Debian and Fedora maintain a median of 2 patches per upstream package.
Since distributions offer their users a certain period of support, distribution maintainers
need a backport fix for the old versions, especially for security fixes. For example, Debian
maintainers had to backport the fix for a security bug21 in the glib2.0 package from the
upstream release 2.60.0 to the old version 2.58.3 in Debian.

In addition, it would be essential for distributions to collaborate together more system-
atically in terms of exchanging fixes to common bugs. When bug fixes are made by one
distribution instead of the upstream project, these fixes will not be shared with the other dis-
tributions until the upstream project integrates the fix in its next release, unless distribution
maintainers proactively search for peer fixes in other distributions. For example, a bug22 in

20https://www.ntia.gov/SBOM
21https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=931234
22https://bugzilla.redhat.com/show bug.cgi?id=772257

Page 33 of 41 134Empir Software Eng (2022) 27: 134

https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/
https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/
https://www.ntia.gov/SBOM
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=931234
https://bugzilla.redhat.com/show_bug.cgi?id=772257

the augeas package was resolved in Fedora more than one month earlier than when a simi-
lar bug23 was reported in Debian. At the same time, the bugs in an upstream package might
affect several distributions without them knowing this, hence precious time could be saved
by closer collaboration between peer distributions.

5.2 Implications for DistributionMaintainers

There is a need for tool support to scan existing bug reports in the ITS of the upstream
project or peer distributions for similar reports that potentially were fixed upstream.
Since an upstream package can be part of several distributions, a bug in the upstream
package in a given distribution might have been reported by the maintainers in other dis-
tributions, and potentially already have a fix. Our models suggest that the similarity score
between a previously reported upstream bug report and a distribution bug report is an impor-
tant factor for a bug being fixed upstream (Table 4). In our dataset, there are 9% and 6% of
the high-severity bugs in Debian and Fedora, respectively, with a median similarity score of
0.87 and 0.88 to their correlated upstream bug report. These numbers suggest a high similar-
ity score of bug reports between upstream projects and distributions, even though the actual
proportion of bugs with such high similarity is low (<10%). Since we only computed the
similarity score for bugs that contain a reference link to their respective upstream bug report,
there might be a larger set of bugs with such a high similarity score to an upstream report,
unknown to maintainers, and hence, without such information being recorded explicitly. As
such, using techniques of duplicate bug report detection could help find such cases.

Although there are some existing techniques to detect duplicate bug reports (Boisselle
and Adams 2015; Alipour et al. 2013), these tools typically focus on detection between
individual software systems in a 1-to-1 relation. In Linux distributions, such tools might
not be able to detect similar bug reports between upstream projects and distributions, which
is an N-to-N relation (N upstream projects vs. N distributions carrying them). In addition,
after an upstream project ships a release, the package version of the upstream release is
usually changed by maintainers to meet their distribution versioning guideline, i.e., adding
the version number used in a given distribution. The upstream version of the release reflects
several different version numbers in several distributions. On the other hand, a distribution
might skip a certain package version of the upstream release. Hence, the complexity of
mapping package versions from distributions to upstream projects increases the difficulty
of identifying similar bug reports across distributions and upstream.

There is a need for tool support to integrate the web context of the reference links in
the comments of a bug report and provide a summary of these links to speed up fixing
upstream bugs. Having more external (less internal) links in bug comments is associated
with the possibility of a bug being fixed upstream (Table 4). Since the maintainers of an
upstream package can leave or join over time, a new maintainer needs to learn how to fix
bugs in the package and might take care of an unfixed bug from other retired maintainers.
In addition, anyone who is interested in fixing bugs can contribute to the comments of a
bug. The links in the comments provide an additional channel for gathering information in
the bug fixing process, which can be a source of additional context about a bug. The results
in RQ2 indicate that Debian maintainers need more links to reference documents when
fixing upstream bugs locally than when fixing in-house bugs (Fig. 12). An external link can

23https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=731132

134 Page 34 of 41 Empir Software Eng (2022) 27: 134

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=731132

refer to information related to the bug (e.g., the configuration setting is disabled by default)
in the upstream package. In contrast, the internal links in the comments of a bug report
indicate that the upstream bug might be related to other packages in a given distribution
(e.g., conflicts with other packages or the distribution-specific process). To increase the
ability of fixing upstream bugs, the need of tool support to retrieve and summarize the links
in comments helps maintainers to have comprehensive information related to a bug.

6 Threats to Validity

6.1 Construct Validity

Although we only study the high-severity bugs in two studied distributions, our dataset
contains a large number of bugs in total (i.e., 143,362). High-severity bugs typically indicate
fatal errors and even crashes, while low-severity bugs represent the effect of such bugs is
low on the functionality of a software system (Lamkanfi et al. 2010). Although the severity
field of a bug might be filled out randomly (Lamkanfi et al. 2010), our findings from high-
severity bugs reveal the lower-bound of involved cost of fixing upstream bugs in-house,
since lower-severity bugs also need to be addressed.

In addition, developers might assign the severity label of a bug based on their own
knowledge. However, Debian and Fedora have been in the top 10 popular Linux distribu-
tions over the past decade, according to the distrowatch.com rankings. They have derived
and documented a mature policy of assigning severity labels (https://www.debian.org/Bugs/
Developer, https://fedoraproject.org/wiki/BugZappers/BugStatusWorkFlow) for their main-
tainers to fix bugs and maintain their popularity. Note that a bug could be tagged as severe
initially but later converted into a low severity bug, or vice versa. Since our work aims
at studying bugs that really were severe, the final status of a bug, captured the latest bug
characteristics, suffices for us.

We classify packages in a distribution into upstream and in-house packages based on the
reference link to the source upstream project in related web pages of a package or package
repositories, when available. Since an in-house package can be packaged from an upstream
project a long time ago and the upstream project is no longer maintained, the link to the
upstream project could have been removed. It is challenging to derive a heuristic to dis-
criminate between such a type of package and in-house packages even though such a type
of package differs from in-house packages that are developed from scratch. In our man-
ual study sample in Section 3.2, we observe that 1 (4%) out of the 25 in-house packages
was such a type of package. Future work can study such a type of package and evaluate its
impact.

Although we aim to identify bugs that are fixed upstream or locally in a comprehensive
manner, like any heuristic-based approach, we may miss other scenarios of upstream fixed
bugs and local fixed bugs. For instance, a bug labeled as fixed upstream may have a root
cause related to the different packaging processes between upstream and the distribution,
where maintainers need to customize the upstream project (e.g., modify locations for config-
uration files) (Adams et al. 2016). When maintainers cannot customize the upstream project
by themselves, they need to ask the upstream to adjust its packaging process (e.g., add con-
figurations, switch to a new build system) to fix bugs in the packaging process. Since the
bugs in the packing process only happen when maintainers package the upstream project
to fit their distribution policy, we do not consider the case of customization for upstream
packages and do not investigate the logs of the packaging process.

Page 35 of 41 134Empir Software Eng (2022) 27: 134

distrowatch.com
https://www.debian.org/Bugs/Developer
https://www.debian.org/Bugs/Developer
https://fedoraproject.org/wiki/BugZappers/BugStatusWorkFlow

Since the studied distributions provide their maintainers flexibility on how to deal with
packages, maintainers decide whether or not to reference relevant commits in their dis-
tribution’s bug reports and changelogs, or to include bug ids in the commit messages of
their version control system. For example, Debian’s openssh repository24 contains 8,492
commits between 2005 and 2019 (i.e., our studied period), 769 (9%) of which included a
total of 212 Debian bug ids, with 28 out of these 212 bugs being high-severity bugs. Since
Debian has 180 high-severity bug reports for openssh in its bug repository, this means that
only 28 (16%) out of 180 high-severity bugs were explicitly recorded in commit messages.
Upstream developers have the same freedomw.r.t. including bug ids in the commit messages
of their version control system.

Furthermore, a bug fix can be made by a maintainer of another distribution, which is
neither a local fix nor an upstream fix. For example, bug 85105225 was a flickering issue
while inputting characters and happened in several distributions (e.g., Ubuntu). A Ubuntu
contributor made a commit directly to the Debian repository to fix the bug.

6.2 Internal Validity

For the measures of issue discussions (i.e., comments) and user waiting time for fixes, we
only examine the number of comments per day, the number of links per comment and
user waiting time between upstream bugs and in-house bugs. The experience of issue com-
menters and issue difficulty are not considered in our study. Nevertheless, we focus on
high-severity bugs to partially mitigate these issues and provide the overall insight of the
costs of fixing upstream bugs for distribution maintainers.

In RQ3, the regression models present the relation between the possibility of a bug that
is fixed upstream and a set of software metrics. We build our explanatory models to gain an
understanding of how distribution maintainers submit bugs to upstream and how these bugs
are fixed upstream successfully. Although we do not use a mixed-effect model, our models
reach high AUC values, i.e., 0.87 and 0.73 for Fedora and Debian, respectively. There might
be other factors that influence a bug that is fixed upstream. Hence, we encourage future
research to add more features to improve the explanatory power of the model and con-
duct qualitative studies to understand how upstream and downstream developers collaborate
together to fix a bug.

6.3 External Validity

We perform a case study on two Linux distributions. Although Debian is commonly used
as a case study of prior research (Herraiz et al. 2011; Claes et al. 2015; Boisselle and
Adams 2015; Davies et al. 2010) and Fedora is one of the popular Linux distributions26,
the results may not generalize to all Linux distributions. Moreover, Fedora and Debian rep-
resent the roots of their families. Since derivative distributions can inherit packages from
Fedora and Debian, maintainers in derivative distributions can also report bugs in those
packages to Fedora and Debian. Maintainers fix such bugs that slip through into derivative
distributions for downstream developers in their families. Hence, additional replication stud-
ies are required in order to characterize the practices and challenges of upstream package
management in the Linux ecosystem.

24https://salsa.debian.org/ssh-team/openssh/-/commits/master
25https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=851052
26https://distrowatch.com/index.php?dataspan=2020

134 Page 36 of 41 Empir Software Eng (2022) 27: 134

https://salsa.debian.org/ssh-team/openssh/-/commits/master
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=851052
https://distrowatch.com/index.php?dataspan=2020

7 Conclusion

In this paper, we investigate 143,362 high-severity bugs across two Linux distributions to
understand the prevalence of upstream bugs and the cost of fixing them for distribution
maintainers in practice.

Our analysis shows that upstream bugs are dominant across the studied distributions,
yet only less than 14% of these bugs are explicitly recorded fixed by upstream and at least
13% of these bugs are recorded fixed by the distribution. Our findings suggest that the vast
majority (at least 73%) of upstream bugs are unknown who fixed them. In other words, there
is a lack of traceability between high-severity bugs and their fixes, potentially impacting
maintenance activities by other contributors than a package’s maintainer.

Our measurements for upstream bugs indicate that the cost of fixing an upstream bug
locally requires a longer needed time for users to wait for fixes and more reference links
per comment, compared to bugs in in-house packages, but less than for upstream bugs fixed
upstream. However, the number of participants per day and the number of comments per
day are similar. In addition, the patches made for the upstream packages are simpler than
the patches for the in-house packages in terms of code churn.

Finally, we build regression models to understand the factors that influence bugs being
fixed upstream. We suggest that maintainers search for bug fixing history in the upstream
projects before starting to fix a bug. Since searching the fixing history of bugs increases
the effort for maintainers, we suggest to leverage techniques of duplication bug detection.
Furthermore, the similarity score of upstream and distribution bug reports, the number of
reference links, and the number of bugs that have previously been fixed upstream in a
package are important indicators of a bug being fixed upstream.

Appendix

Table 5 shows the heuristics derived from the naming convention of packages in Debian and
their associated categories.

Table 5 The heuristics and their categories

Category Heuristics

Admin The package name contains one of the following keywords: abrt, grubby, dnf, yumex

Database The package name contains the keyword “mysql”

Devel The package name starts with the keyword “perl-” or “python-”, or ends with the keyword
“-devel”, or contains one of the following keywords: -java-, glibc, anaconda, golang.

Desktop The package name starts with the keyword “kde-”

Editor The package name contains one of the following keywords: document, documentation,
-doc, javadoc

Fonts The package name contains one of the following keywords: font

Libs The package name contains one of the following keywords: library, -lib, mesa, lroax

Localization The package name contains the keyword “i18n” or “l10n”

Network The package name contains the keyword “networkmanager” or “freeipa”

Acknowledgments We would like to thank the Debian and Fedora maintainers that graciously provided
us feedback. Furthermore, special thanks to Rahul Bajaj and the anonymous reviewers for their insightful

Page 37 of 41 134Empir Software Eng (2022) 27: 134

comments. The findings and opinions in this paper belong solely to the authors, and are not necessarily those
of Huawei. Moreover, our results do not in any way reflect the quality of Huawei software products.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

References

Debian - bug triage wiki (online). https://wiki.debian.org/BugTriage. Last accessed: 2020-12-01
Debian - information regarding the bug processing system for package maintainers and bug triagers (online).

https://www.debian.org/Bugs/Developer. Last accessed: 2020-12-01
Debian - list of package categories (online). https://packages.debian.org/stable/. Last accessed: 2020-12-01
Debian - managing packages (online). https://www.debian.org/doc/manuals/developers-reference/pkgs.

html#recording-changes-in-the-package. Last accessed: 2020-12-01
Debian - managing packages (online). https://www.debian.org/doc/manuals/developers-reference/pkgs.

html#upload-bugfix,. Last accessed: 2020-12-01
Debian - quilt for debian maintainers (online). https://perl-team.pages.debian.net/howto/quilt.html. Last

accessed: 2020-12-01
Debian developer’s reference (online). https://www.debian.org/doc/manuals/developers-reference/index.en.

html. Last accessed: 2020-12-01
Debian releases (online). https://wiki.debian.org/DebianReleases. Last accessed: 2020-12-01
Fedora - anitya - upstream release monitoring system (online). https://release-monitoring.org/. Last accessed:

2020-12-01
Fedora - bug status workflow (online). https://fedoraproject.org/wiki/BugZappers/BugStatusWorkFlow. Last

accessed: 2020-12-01
Fedora - creating a patch (online). https://docs.fedoraproject.org/en-US/Fedora Draft Documentation/0.1/

html/Documentation Guide/sect-workflow-patching.html. Last accessed: 2020-12-01
Fedora - fedora engineering steering committee (online). https://docs.fedoraproject.org/en-US/fesco/. Last

accessed: 2020-12-01
Fedora - join the package collection maintainers (online). https://fedoraproject.org/wiki/Join the package

collection maintainers#Create a Fedora Account. Last accessed: 2020-12-01
Fedora - upstream release monitoring (online). https://fedoraproject.org/wiki/Upstream release monitoring.

Last accessed: 2020-12-01
Fedora historical schedules (online). https://fedoraproject.org/wiki/Releases/HistoricalSchedules. Last

accessed: 2020-12-01
Fedora packaging guidelines (online). https://docs.fedoraproject.org/en-US/packaging-guidelines/#

changelogs. Last accessed: 2020-12-01
Staying close to upstream projects (online). https://fedoraproject.org/wiki/Staying close to upstream

projects. Last accessed: 2020-12-01
Ubuntu - adopt an upstream (online). https://wiki.ubuntu.com/Upstream/Adopt. Last accessed: 2020-12-01
Upstream guide (online). https://wiki.debian.org/UpstreamGuide. Last accessed: 2020-12-01
Upstream guidelines for linux distributions (online). https://www.freedesktop.org/wiki/Distributions/

Packaging/WhyUpstream/. Last accessed: 2020-12-01
Adams B, Kavanagh R, Hassan AE, German DM (2016) An empirical study of integration activities in

distributions of open source software. Empirical Software Engineering (EMSE’16) 21(3):960–1001
Alipour A, Hindle A, Stroulia E (2013) A contextual approach towards more accurate duplicate bug report

detection. In: 2013 10th Working Conference on Mining Software Repositories (MSR’13). IEEE,
pp 183–192

Anbalagan P, Vouk M (2009) On predicting the time taken to correct bug reports in open source projects. In:
2009 IEEE international conference on software maintenance (ICSM’09). IEEE, pp 523–526

Barr ET, HarmanM, Jia Y,Marginean A, Petke J (2015) Automated software transplantation. In: Proceedings
of the 2015 international symposium on software testing and analysis (ISSTA’15), pp 257–269

Bettenburg N, Premraj R, Zimmermann T, Kim S (2008) Duplicate bug reports considered harmful... really?
In: 2008 IEEE international conference on software maintenance (ICSM’08). IEEE, pp 337–345

Bhattacharya P, Neamtiu I (2011) Bug-fix time prediction models: can we do better? In: proceedings of the
8th working conference on mining software repositories (MSR’11), pp 207–210

134 Page 38 of 41 Empir Software Eng (2022) 27: 134

https://wiki.debian.org/BugTriage
https://www.debian.org/Bugs/Developer
https://packages.debian.org/stable/
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#recording-changes-in-the-package
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#recording-changes-in-the-package
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#upload-bugfix
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#upload-bugfix
https://perl-team.pages.debian.net/howto/quilt.html
https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://wiki.debian.org/DebianReleases
https://release-monitoring.org/
https://fedoraproject.org/wiki/BugZappers/BugStatusWorkFlow
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Documentation_Guide/sect-workflow-patching.html
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Documentation_Guide/sect-workflow-patching.html
https://docs.fedoraproject.org/en-US/fesco/
https://fedoraproject.org/wiki/Join_the_package_collection_maintainers#Create_a_Fedora_Account
https://fedoraproject.org/wiki/Upstream_release_monitoring
https://fedoraproject.org/wiki/Releases/HistoricalSchedules
https://docs.fedoraproject.org/en-US/packaging-guidelines/#changelogs
https://docs.fedoraproject.org/en-US/packaging-guidelines/#changelogs
https://fedoraproject.org/wiki/Staying_close_to_upstream_projects
https://wiki.ubuntu.com/Upstream/Adopt
https://wiki.debian.org/UpstreamGuide
https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/
https://www.freedesktop.org/wiki/Distributions/Packaging/WhyUpstream/

Boisselle V, Adams B (2015) The impact of cross-distribution bug duplicates, empirical study on debian and
ubuntu. In: 2015 IEEE 15th international working conference on source code analysis and manipulation
(SCAM’15). IEEE, pp 131–140

Canfora G, Cerulo L, Cimitile M, Di Penta M (2011) Social interactions around cross-system bug fixings:
the case of freebsd and openbsd. In: Proceedings of the 8th working conference on mining software
repositories (MSR’11), pp 143–152

Canfora G, Di Sorbo A, Forootani S, Pirozzi A, Visaggio CA (2020) Investigating the vulnerability fixing
process in oss projects: Peculiarities and challenges. Computers & Security 99:102067

Claes M, Mens T, Di Cosmo R, Vouillon J (2015) A historical analysis of debian package incompatibili-
ties. In: 2015 IEEE/ACM 12th working conference on mining software repositories (MSR’15). IEEE,
pp 212–223

Crowston K, Scozzi B (2008) Bug fixing practices within free/libre open source software development teams.
Journal of Database Management (JDM’08) 19(2):1–30

da Costa DA, McIntosh S, Treude C, Kulesza U, Hassan AE (2018) The impact of rapid release cycles on
the integration delay of fixed issues. Empirical Software Engineering (EMSE’18) 23(2):835–904

Davies J, Zhang H, Nussbaum L, German DM (2010) Perspectives on bugs in the debian bug tracking system.
In: 2010 7th IEEE working conference on mining software repositories (MSR’10). IEEE, pp 86–89

Ding H, Ma W, Chen L, Zhou Y, Xu B (2017) An empirical study on downstream workarounds for cross-
project bugs. In: 2017 24th Asia-Pacific software engineering conference. IEEE, pp 318–327

Duc AN, Cruzes DS, Ayala C, Conradi R (2011) Impact of stakeholder type and collaboration on issue
resolution time in oss projects. In: IFIP international conference on open source systems. Springer, pp 1–
16

Fan Y, Xia X, Lo D, Hassan AE (2018) Chaff from the wheat: Characterizing and determining valid bug
reports. IEEE Transactions on Software Engineering (TSE’18) 46(5):495–525

Giger E, Pinzger M, Gall H (2010) Predicting the fix time of bugs. In: Proceedings of the 2nd international
workshop on recommendation systems for software engineering, pp 52–56

Guo PJ, Zimmermann T, Nagappan N, Murphy B (2010) Characterizing and predicting which bugs get
fixed: an empirical study of microsoft windows. In: Proceedings of the 32Nd ACM/IEEE international
conference on software engineering-Volume 1 (ICSE’10), pp 495–504

Harrell Jr FE, Lee KL, Califf RM, Pryor DB, Rosati RA (1984) Regression modelling strategies for improved
prognostic prediction. Statistics in Medicine 3(2):143–152

Hauge O, Ayala C, Conradi R (2010) Adoption of open source software in software-intensive organizations–a
systematic literature review. Inf Softw Technol 52(11):1133–1154

Herraiz I, Shihab E, Nguyen ThanhHD, Hassan AE (2011) Impact of installation counts on perceived quality:
A case study on debian. In: 2011 18th working conference on reverse engineering. IEEE, pp 219–228

Hooimeijer P, Weimer W (2007) Modeling bug report quality. In: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering (ASE’07), pp 34–43

Hu H, Zhang H, Xuan J, Sun W (2014) Effective bug triage based on historical bug-fix information. In: 2014
IEEE 25th international symposium on software reliability engineering. IEEE, pp 122–132

Huelsenbeck JP, Crandall KA (1997) Phylogeny estimation and hypothesis testing using maximum likeli-
hood. Annual Review of Ecology and Systematics 28(1):437–466

Jeong G, Kim S, Zimmermann T (2009) Improving bug triage with bug tossing graphs. In: Proceedings of the
7th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering (FSE’09), pp 111–120

Just S, Premraj R, Zimmermann T (2008) Towards the next generation of bug tracking systems. In: 2008
IEEE symposium on visual languages and human-centric computing. IEEE, pp 82–85

Kim S, Whitehead Jr EJ (2006) How long did it take to fix bugs? In: Proceedings of the 2006 international
workshop on Mining software repositories (MSR’06), pp 173–174

Lamkanfi A, Demeyer S, Giger E, Goethals B (2010) Predicting the severity of a reported bug. In: 2010 7th
IEEE working conference on mining software repositories (MSR’10). IEEE, pp 1–10

Lee D, Rajbahadur GK, Lin D, Sayagh M, Bezemer C-P, Hassan AE (2020) An empirical study of the
characteristics of popular minecraft mods. Empirical Software Engineering (EMSE’20) 25(5):3396–
3429

Li J, Conradi R, Slyngstad OPN, Bunse C, Khan U, Torchiano M, Morisio M (2005) An empirical study
on off-the-shelf component usage in industrial projects. In: International conference on product focused
software process improvement. Springer, pp 54–68

Ling CX, Huang J, Zhang H (2003) Auc: a better measure than accuracy in comparing learning algorithms.
In: Conference of the canadian society for computational studies of intelligence. Springer, pp 329–341

Page 39 of 41 134Empir Software Eng (2022) 27: 134

MaW, Chen L, Zhang X, Feng Y, Xu Z, Chen Z, Zhou Y, Xu B (2020) Impact analysis of cross-project bugs
on software ecosystems. In: Proceedings of the ACM/IEEE 42nd international conference on software
engineering (ICSE’20), pp 100–111

Ma W, Chen L, Zhang X, Zhou Y, Xu B (2017) How do developers fix cross-project correlated bugs? a case
study on the github scientific python ecosystem. In: 2017 IEEE/ACM 39th international conference on
software engineering (ICSE’17). IEEE, pp 381–392

Marks L, Zou Y, Hassan AE (2011) Studying the fix-time for bugs in large open source projects. In: Proceed-
ings of the 7th international conference on predictive models in software engineering (PROMISE’11),
pp 1–8

McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the impact of modern code review
practices on software quality. Empirical Software Engineering (EMSE’16) 21(5):2146–2189

Menzies T, Marcus A (2008) Automated severity assessment of software defect reports. In: 2008 IEEE
international conference on software maintenance (ICSM’08). IEEE, pp 346–355

Merilinna J, Matinlassi M (2006) State of the art and practice of opensource component integration. In:
32nd EUROMICRO conference on software engineering and advanced applications (EUROMICRO’06).
IEEE, pp 170–177

Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development: Apache
and mozilla. ACM Transactions on Software Engineering and Methodology (TOSEM’02) 11(3):309–
346

Ohira M, Hassan AE, Osawa N, Matsumoto K (2012) The impact of bug management patterns on bug fixing:
A case study of eclipse projects. In: 2012 28th IEEE international conference on software maintenance
(ICSM’12). IEEE, pp 264–273

Panichella S, Bavota G, Di Penta M, Canfora G, Antoniol G (2014) How developers’ collaborations identified
from different sources tell us about code changes. In: 2014 IEEE international conference on software
maintenance and evolution (ICSME’14). IEEE, pp 251–260

Rajbahadur GK, Wang S, Ansaldi G, Kamei Y, Hassan AE (2021) The impact of feature importance methods
on the interpretation of defect classifiers. IEEE Transactions on Software Engineering (TSE’21)

Ray B, Kim M (2012) A case study of cross-system porting in forked projects. In: Proceedings of the ACM
SIGSOFT 20th international symposium on the foundations of software engineering (FSE’12), pp 1–11

Ray B, Kim M, Person S, Rungta N (2013) Detecting and characterizing semantic inconsistencies in ported
code. In: 2013 28th IEEE/ACM international conference on automated software engineering (ASE’13).
IEEE, pp 367–377

Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Hassan AE, Matsumoto K (2013) Studying
re-opened bugs in open source software. Empirical Software Engineering (EMSE’13) 18(5):1005–1042

Stol K-J, Babar MA, Avgeriou P, Fitzgerald B (2011) A comparative study of challenges in integrating open
source software and inner source software. Inf Softw Technol 53(12):1319–1336

Storey M-A, Zagalsky A, Figueira Filho F, Singer L, German DM (2016) How social and communication
channels shape and challenge a participatory culture in software development. IEEE Transactions on
Software Engineering (TSE’16) 43(2):185–204

Thongtanunam P, Hassan AE (2020) Review dynamics and their impact on software quality. IEEE
Transactions on Software Engineering (TSE’20)

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2016) Revisiting code ownership and its relationship with
software quality in the scope of modern code review. In: Proceedings of the 38th international conference
on software engineering (ICSE’16), pp 1039–1050

Van Den Berk I, Jansen S, Luinenburg L (2010) Software ecosystems: a software ecosystem strategy assess-
ment model. In: Proceedings of the Fourth European conference on software architecture: companion
volume, pp 127–134

Weimer W (2006) Patches as better bug reports. In: Proceedings of the 5th international conference on
Generative programming and component engineering (GPCE’06), pp 181–190

Weiss C, Premraj R, Zimmermann T, Zeller A (2007) How long will it take to fix this bug? In: Fourth
international workshop on mining software repositories (MSR’07). IEEE, pp 1–1

Xia X, Lo D, Wen M, Shihab E, Zhou B (2014) An empirical study of bug report field reassignment. In:
2014 software evolution Week-IEEE conference on software maintenance, reengineering, and reverse
engineering (CSMR-WCRE’14). IEEE, pp 174–183

Xuan J, Jiang H, Ren Z, Zou W (2012) Developer prioritization in bug repositories. In: 2012 34th
international conference on software engineering (ICSE’12). IEEE, pp 25–35

Zhang F, Khomh F, Zou Y, Hassan AE (2012) An empirical study on factors impacting bug fixing time. In:
2012 19th working conference on reverse engineering. IEEE, pp 225–234

134 Page 40 of 41 Empir Software Eng (2022) 27: 134

Zhang H, Gong L, Versteeg S (2013) Predicting bug-fixing time: an empirical study of commercial software
projects. In: 2013 35th international conference on software engineering (ICSE’13). IEEE, pp 1042–
1051

Zhang Y, Yu Y, Wang H, Vasilescu B, Filkov V (2018) Within-ecosystem issue linking: a large-scale study
of rails. In: Proceedings of the 7th international workshop on software mining, pp 12–19

Zhou B, Neamtiu I, Gupta R (2015) A cross-platform analysis of bugs and bug-fixing in open source projects:
Desktop vs. android vs. ios. In: Proceedings of the 19th international conference on evaluation and
assessment in software engineering (EASE’15), pp 1–10

Zimmermann T, Premraj R, Bettenburg N, Just S, Schroter A, Weiss C (2010) What makes a good bug
report? IEEE Transactions on Software Engineering (TSE’10) 36(5):618–643

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Jiahuei Lin1 ·Haoxiang Zhang2 ·Bram Adams1 ·Ahmed E. Hassan1

Jiahuei Lin
jhlin@cs.queensu.ca

Bram Adams
bram.adams@cs.queensu.ca

Ahmed E. Hassan
ahmed@cs.queensu.ca

1 Software Analysis and Intelligence Lab (SAIL), Queen’s University, Kingston, Ontario, Canada
2 Centre for Software Excellence at Huawei Canada, Kingston, ON, Canada

Page 41 of 41 134Empir Software Eng (2022) 27: 134

http://orcid.org/0000-0002-3921-1724
mailto: jhlin@cs.queensu.ca
mailto: bram.adams@cs.queensu.ca
mailto: ahmed@cs.queensu.ca

	Upstream bug management in Linux distributions
	Abstract
	Introduction
	Background and Related Work
	Upstream Package Management in Linux Distributions
	Related Work on Upstream and Downstream (Distribution) Coordination
	Related Work on Bug Fixing

	Study Design
	Selection of Subject Systems
	Data Collection
	Extract High-Severity Bugs
	Identify Upstream and in-House Packages

	Results
	RQ1: What Percentage of Upstream Bugs are Fixed Upstream Versus Locally?
	Motivation:
	Approach:
	Results:
	The normalized count of upstream bugs (NCFB) that are recorded to be fixed upstream has dropped over the years in Fedora, while the trend has been fluctuating in Debian.
	The normalized count of reported bugs (NCB) in upstream packages has also dropped over the years, with fluctuations in the studied distributions.
	Debian and Fedora have a similar catalog of buggy upstream packages.

	RQ2: What is the time and cost for fixing high-severity upstream bugs locally in distributions and maintaining such distribution fixes?
	Motivation:
	Approach:
	Results:
	In Fedora, locally fixed upstream bugs make users wait for 49% and 175% more time than locally fixed in-house bugs and upstream bugs that are fixed upstream, respectively.
	The number of participants per day and the number of comments per day when fixing upstream bugs locally are similar to when fixing in-house bugs and fixing upstream bugs upstream.
	In Debian, distribution maintainers record more links to reference documents when fixing upstream bugs locally than when fixing in-house bugs, but fewer links than for upstream bugs that are fixed upstream. In Fedora, the number of reference links per comment is similar among all three types of bugs.
	Maintainers maintain equal or fewer local patches per package for upstream packages within one distribution release compared to in-house packages.
	Motivation:
	Approach:
	Bug Fixing History
	Internal Collaboration Activities
	External Collaboration Activities
	Feature Selection
	AUC
	Log-likelihood ratio tests
	Association analysis
	Results:
	The Fedora model achieves an AUC of 0.63 to explain the likelihood that a bug will be fixed upstream for Debian, and the Debian model achieves an AUC of 0.81 for Fedora.
	Dimension Level
	Feature Level
	The number of bugs that are previously fixed upstream in one upstream package is significantly associated with a bug being fixed upstream (p-value < 0.01).
	The number of internal links in comments is significantly associated with a bug being fixed upstream (p-value < 0.01).

	Discussion
	Implications for the Interaction Across Distributions and Upstream Projects
	There is a need for tool support to explicitly track the bug fixing process across upstream and distributions.
	Active collaboration between upstream developers and distribution maintainers should be encouraged in order to fix bugs and better distribute fixes to the needed users.

	Implications for Distribution Maintainers
	There is a need for tool support to scan existing bug reports in the ITS of the upstream project or peer distributions for similar reports that potentially were fixed upstream.
	There is a need for tool support to integrate the web context of the reference links in the comments of a bug report and provide a summary of these links to speed up fixing upstream bugs.

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion
	Appendix I
	References
	Affiliations

