
1

Deprecation of packages and releases in
software ecosystems: A case study on npm

Filipe R. Cogo, Gustavo A. Oliva, Ahmed E. Hassan

Abstract—Deprecation is used by developers to discourage the usage of certain features of a software system. Prior studies have
focused on the deprecation of source code features, such as API methods. With the advent of software ecosystems, package
managers started to allow developers to deprecate higher-level features, such as package releases. This study examines how the
deprecation mechanism offered by the npm package manager is used to deprecate releases that are published in the ecosystem. We
propose two research questions. In our first RQ, we examine how often package releases are deprecated in npm, ultimately revealing
the importance of a deprecation mechanism to the package manager. We found that the proportion of packages that have at least one
deprecated release is 3.7% and that 66% of such packages have deprecated all their releases, preventing client packages to migrate
from a deprecated to a replacement release. Also, 31% of the partially deprecated packages do not have any replacement release. In
addition, we investigate the content of the deprecation messages and identify five rationales behind the deprecation of releases,
namely: withdrawal, supersession, defect, test, and incompatibility. In our second RQ, we examine how client packages adopt
deprecated releases. We found that, at the time of our data collection, 27% of all client packages directly adopt at least one deprecated
release and that 54% of all client packages transitively adopt at least one deprecated release. The direct adoption of deprecated
releases is highly skewed, with the top 40 popular deprecated releases accounting for more than half of all deprecated releases
adoption. As a discussion that derives from our findings, we highlight the rudimentary aspect of the deprecation mechanism employed
by npm and recommend a set of improvements to this mechanism. These recommendations aim at supporting client packages in
detecting deprecated releases, understanding their impact, and coping with them.

Index Terms—Software ecosystem, Deprecation, Release deprecation, Dependency, npm, JavaScript, Node.js

F

1 INTRODUCTION

Deprecation is a mechanism used by developers to com-
municate that a software’s feature is obsolete and its usage
should be avoided [1]. Traditionally, deprecation is done at
the source code level, allowing developers to deprecate any
function from an API [2]. When a function is deprecated,
a compile-time warning is typically issued whenever a
call to such a function is performed [3]. In the context of
software ecosystems, in which client packages depend on a
specific release of a provider package, deprecation can be
offered at the release level by a package manager. Therefore,
developers can deprecate the entire release of a package in
a software ecosystem. In such cases, an install-time warning
is issued whenever a client package installs a deprecated
provider release using the package manager.

Although many different aspects of API deprecation
have been studied [2, 4–8], the deprecation of releases in a
software ecosystem has never been studied. Simple charac-
teristics such as the frequency with which releases are dep-
recated remain unknown. The complex network of package
dependencies typically found in software ecosystems raises
important concerns, such as how often deprecated releases
are adopted and whether such an adoption occurs directly
(by means of direct dependencies) or indirectly (by means

• Filipe R. Cogo is with the Centre for Software Excellence at Huawei,
Canada.

• Gustavo A. Oliva, and Ahmed E. Hassan are with the Software Analysis
and Intelligence Lab (SAIL) in the School of Computing at Queen’s
University, Kingston, Canada.
E-mail: {cogo,gustavo,ahmed}@cs.queensu.ca

of transitive dependencies). Client packages that directly
depend on a deprecated provider release can migrate to a
replacement release, i.e., a newer provider release that is
not deprecated. Nevertheless, this migration is not always
straightforward, since replacement releases might not al-
ways exist or be easily discoverable. Indeed, the provision
of a proper replacement release and its communication
depend entirely on the maintainers of provider packages.
Furthermore, when a deprecated provider release is transi-
tively adopted, the client package has no control over the
migration to a replacement release. When client packages
decide to continue using a deprecated release (e.g., because
a migration to replacement release would incur a costly
change to the codebase or lead to some incompatibility),
they should be aware of the risks of doing so. For instance,
a release might be marked as deprecated because it contains
a defect. Yet, the rationale behind release deprecations in
a software ecosystem has not been investigated by prior
literature.

In this paper we study the deprecation of releases in the
npm ecosystem, which is the largest software ecosystem to
date.1 In the following, we list our research questions and
the key results that we obtained:

RQ1. How often are releases deprecated? The proportion
of releases that are deprecated in a software ecosystem shed
light about the popularity of the deprecation mechanism,
ultimately demonstrating the importance of such a mecha-
nism in an ecosystem. We study the proportion of packages
that are fully deprecated (i.e., have all releases deprecated)
or partially deprecated (i.e., have some releases deprecated).

2

We also analyze whether partially deprecated packages offer
a follow-up replacement release to their clients. Finally, we
perform a manual analysis over a representative random
sample of the deprecation messages to understand the ratio-
nale behind the deprecation of a release. Our results indicate
that:

Deprecation is performed by almost 4% of the packages in
npm, with two-thirds of these packages being fully deprecated
(i.e., all their releases are deprecated). Almost one-third (31%)
of the partially deprecated packages do not offer any follow-up
replacement release and 15% of the existing follow-up replacement
releases are major releases. Also, withdrawal (i.e., terminating
the development of the deprecated package) is the most common
rationale for fully deprecating a package (49%) and defect is the
most common rationale for deprecating a specific release (63%).

RQ2. How do client packages adopt deprecated releases?
Although approximately 4% of the packages have at least
one deprecated release, the rate at which deprecated releases
are directly or transitively adopted by client packages is also
important to determine the typical scope of the deprecation.
In this RQ, we study the extent to which deprecated releases
are directly and transitively adopted by client packages. Our
results indicate that:

At the time of our data collection, 27% of all client packages
in npm directly adopt at least one deprecated release. Half of
these adoptions target a specific set of 40 provider releases. All
these 40 deprecated releases report a replacement release in their
deprecation message. In addition, more than half (54%) of all
client packages in the ecosystem transitively adopt at least one
deprecated release. The median number of direct provider packages
that result in the transitive adoption of at least one deprecated
release is 1.

The main contribution of this paper is to build a body
of knowledge and provide insights into how releases are
deprecated in a large software ecosystem, as well as into
how client packages adopt such deprecated releases. Our re-
sults provide information to client packages regarding how
often deprecated releases are published and the common
reasons for deprecation, which help in understanding the
risks associated with adopting a deprecated release. Also,
client packages will find relevant information regarding the
identification of transitively adopted deprecated releases
and the associated challenges with migrating away from
deprecated releases. Finally, we highlight the rudimentary
aspect of the deprecation mechanism employed by npm and
recommend a set of improvements to this mechanism. Our
recommended improvements aim to support client pack-
ages in detecting and reasoning about deprecated releases.
A supplementary package with our preprocessed data is
available online.2

Paper organization. The remainder of this paper is orga-
nized as follows. Section 2 introduces key concepts that are
employed throughout this paper. Section 3 explains the data
collection procedures that we followed to conduct our study.
Section 4 presents the motivation, approach, and findings
from our two research questions. Section 5 discusses the
implications of our findings. Section 6 presents the different
perspectives from which prior research has investigated the
notion of deprecation. Section 7 discusses threats to the

validity of our study. Finally, Section 8 concludes the paper
by summarizing our observations.

2 BACKGROUND

In this section we present the key concepts employed
throughout our study about deprecation of releases in
npm. In Section 2.1, we describe how packages manage
dependencies in npm. In Section 2.2, we describe how the
deprecation mechanism of npm works and how packages
use this mechanism.

2.1 Dependency management in npm
In a software ecosystem, dependencies are set by a client
package, so that the features of a provider package can be
reused by this client package. To set a dependency, client
packages use a versioning statement, which determines the
provider package and the respective provider’s release that
is going to be adopted. Such versioning statements are typi-
cally annotated in a configuration file, which in npm is called
package.json [9]. For example, a client package C that
depends on a provider package P can include the following
versioning statement in its configuration file: “P: 1.2.3”.
As a result, whenever the package C is installed, the release
1.2.3 of package P is also installed (and eventually loaded at
run-time) as a dependency for package C . When a package
is installed from npm, the provider packages that are used
by means of transitive dependencies are also installed [10].
An example of transitive dependency is a client package
C that depends on package P1 that, in turn, depends on
package P2. In this example, C directly depends on P1 and
transitively depends on P2. Therefore, when C is installed
from npm, P1 and P2 are also installed.

The release numbering of an npm package follows the
semantic version specification.3 According to this specifica-
tion, a version number of a release is comprised of three
levels, namely: major, minor, and patch. For instance, in
release 1.2.3, the number 1 stands for the major level, the
number 2 stands for the minor level, and the number 3
stands for the patch level. The semantic version also speci-
fies simple change-related rules for developers to determine
how one of the three levels should be incremented when
a release is published. In summary, a major release should
be published whenever a backward-incompatible change is
introduced (e.g., an API change). A major release must yield
the increment of the major version level, for example, from
1.2.3 to 2.0.0. A minor release should be published when
some new backward-compatible change is introduced. A
minor release must yield the increment of the minor level of
the version number (e.g., from 1.2.3 to 1.3.0). Finally, a patch
release should be published when a bug fix is introduced. A
patch release must yield the increment of the patch level of
the version number, such as from 1.2.3 to 1.2.4. Although
the adoption of the semantic version specification is not
mandatory, a prior study shows that, in general, packages
in npm comply with this specification [11]. Throughout this
paper, we use the increment of the version level between
two releases as an estimator for the complexity of the
introduced changes in the newer release.

Versioning statements can be of two types, namely a
version range or a specific version. When a version range

3

statement is used, the installed provider release is the latest
provider release that satisfies the stated version range. For
example, the versioning statement “P: >1.2.3” yields
the installation of the latest release of P that is greater
than release 1.2.3, which is eventually loaded at run-time
by the client package. We refer to the provider release that
is effectively installed as the resolved provider release (which,
in our prior example, is the latest release of P that is
greater than 1.2.3). Version range statements in npm have
a range operator, which determines the restrictiveness vs. the
permissiveness of the range of satisfied provider releases.
Essentially, the caret operator (∧) satisfies any patch releases
that are equal to or larger than 0.1.0 and any minor provider
releases that are equal to or larger than 1.0.0. Also, the tilde
operator (∼) satisfies any patch provider releases, and the
latest operator satisfies the latest provider release (including
major releases). Other operators are also possible,4 however
the caret, tilde, and latest operators are the most com-
monly used operators [11]. Version range statements need
to comply to a specific grammar.5 In turn, when a specific
version statement is used, the installed provider release is
determined by the specific stated version. For example, the
versioning statement “P: 1.2.3” yields the installation of
release 1.2.3 of the provider package P .

Client packages can migrate from one provider release to
another. A migration occurs when the resolved provider re-
lease changes from one client release to another. A migration
can occur even when the versioning statement used by the
client package does not change. For example, suppose that
a provider package P at release 1.2.3 eventually publishes
a new release with version 1.2.4. A client package C that
uses the versioning statement “P: >1.2.3” will perform
an implicit migration, i.e., the resolved provider release will
be updated from 1.2.3 to 1.2.4 without any modification of
the used versioning statement by the client package. In this
case, the migration is an implicit update, since the resolved
provider release was updated. Client packages can also per-
form a downgrade migration of the resolved provider release
by restricting the versioning statement to an older provider
release [12]. An implicit update contrasts with an explicit
update, in the sense that the latter requires a modification
of the versioning statement by the client package so that the
resolved provider release is updated. For example, if a client
package C uses a versioning statement “P: 1.2.3”, then
an update will only be performed after the modification of
the versioning statement to “P: 1.2.4” (or some version
range statement that satisfies the release 1.2.4).

2.2 The deprecation mechanism of npm

The npm deprecation mechanism allows provider packages
to communicate to their client packages that the usage
of a certain release should be avoided. In contrast with
the deprecation mechanism offered by programming
languages, in which a certain method can be deprecated,
the deprecation mechanism offered by a package manager
allows developers to deprecate an entire release. For
instance, to deprecate release 1.2.3 of a package P ,
a developer can use the following command:6 npm
deprecate P@1.2.3 “this release contains a
bug that is fixed in version 1.2.4”. When a

release is deprecated, the npm registry is modified and
the release is recorded as being deprecated (to date,
the timestamp at which the deprecation is performed is
not recorded in npm, making it impossible to analyze
the deprecation history of a package). Information
about the deprecation of a release can be stated in the
deprecation message. In the prior example, the deprecation
message states that the reason for the deprecation is the
presence of a bug in release 1.2.3. Whenever a deprecated
release is installed by some user, a warning is issued
(at the installation time) and the deprecation message is
displayed. For example, when the command npm install
P@1.2.37 is used to install release 1.2.3 of package P ,
the installation will succeed and the deprecation message
will be displayed. The deprecation mechanism adopted
by npm also allows one to deprecate a range of versions
or, alternatively, the entire package (which essentially
deprecates all versions of the package). In such cases, the
installation of any version that satisfies the deprecated
version range will issue a warning and the deprecation
message will be displayed.

Provider packages use the deprecation mechanism to
maintain backward compatibility of prior releases. Instead
of removing the deprecated release and causing a failure in
the client packages that adopt the removed release, provider
package developers opt for the deprecation. Whenever a
client package that adopts a deprecated provider release is
installed, a warning is issued and the provider’s deprecation
message is displayed. For example, suppose that a client
package C adopts the deprecated release 1.2.3 of provider
P . Whenever the command npm install C@latest is
used to install the latest release of package C , a warning
with the deprecation message of release 1.2.3 of package P
will be displayed. Any deprecated provider release that is
adopted by means of a transitive dependency also yields a
warning. Deprecation warnings that come from a transitive
dependency are difficult to trace,8 since the issued warning
does not explicitly indicate the dependency depth. By de-
pendency depth, we mean the number of downstream de-
pendencies from one client package to a transitively adopted
provider. For example, if a client package C depends on a
provider P1 that, in turn, depends on a provider P2, then
the transitive dependency between C and P2 has a depth of
2.

Client packages might want to migrate away from a
deprecated provider release towards some replacement release
(i.e., a non-deprecated provider release that follows the
deprecated one). Client packages that set a dependency
using a version range statement will eventually perform
an implicit update to the replacement release, as long as
the version range is satisfied by the replacement release.
Nevertheless, in many cases, the update of the provider to a
replacement release requires modifying the versioning state-
ment. Because the installation of a client package yields the
installation of all transitive dependencies, updating a depre-
cated provider package that is transitively adopted can also
be desired.9 However, identifying whether the transitively
adopted deprecated release has a follow-up replacement
release (and should consequently be updated) might not
be trivial. In particular, npm provides the npm outdated10

tool that checks which providers can be updated. To check

4

transitive dependencies, this tool requires an argument
that determines the maximum dependencies depth to be
checked. For example, npm outdated --depth 1 will
check whether the providers of the direct providers can be
updated. To date, the value for this argument needs to be
determined by a trial-and-error approach, i.e., iteratively
increasing the value of the --depth argument until all
transitive dependencies are checked.

3 DATA COLLECTION

In this section, we summarize our data collection approach
(a detailed description is given in Appendix A). Our data
collection approach entails three main steps: collect package
metadata, analyze package releases, and analyze package
dependencies. In the following, we describe each of these
steps.

1) Collect package metadata. In this step, we collect the
metadata of npm packages from the package.json files.
We obtained all package.json files that were stored in the
npm registry as of May, 2019. Each collected package.json
file corresponds to a distinct package P in npm. The
package.json file of a given package P contains release-
related metadata for all releases of P . The release-related
metadata include the release version number, the timestamp
at which the release was published, the dependencies that
are set in the release (i.e., the provider package name and
the respective versioning statement), and the deprecation
message in case the release is deprecated. The output of this
procedure is a list of 976,631 package.json files, each one
corresponding to a unique npm package. We only analyze
release activities that can be found in the npm data and we
do not consider activities performed on the packages’ code
base (e.g., commits of package.json files). Our rationale
is that there is no trivial approach to link npm releases
with commits of a package. Even if the link between npm
releases and the commits could be accurately determined,
performing a large-scale analysis of the package.json
files at the commit level (in particular, resolving the provider
versions revision by revision) becomes an infeasible task.
Hence, to consider release activities at the code base level,
we would have to study a smaller sample of packages, thus
not portraying the npm ecosystem as a whole, which we
find important for a first paper in the area.

2) Analyze package releases. In this step, for each package
obtained in the previous step, we sort the adjacent package
releases and determine how the version numbers change be-
tween two adjacent releases (e.g., whether the latter release
is a major, minor, or patch release). Because some packages
adopt parallel development branches (e.g., release 1.2.3 is
published after the existence of release 2.0.0), releases are
sorted according to a branch-based ordering (in contrast to
a chronological- or a numerical-based ordering). A branch-
based ordering schema allows a release to be considered
the predecessor of more than one release. For example, if
releases 1.0.0, 2.0.0, and 1.0.1 are published in chronological
order, then the branch-based ordering would allow 1.0.0 to
be the predecessor of both releases 1.0.1 and 2.0.0. More
details about such an algorithm can be found in our prior
work [12]. The output of this procedure is a list of 7,829,364

releases of the packages (clients and providers) obtained in
the previous step.

3) Analyze package dependencies. In this step, we select
the dependencies that are set in the latest client releases
(6,178,019 dependencies, corresponding to 6.3% of all de-
pendencies from all releases). We choose the latest client
release because npm does not store the date at which a
package release was deprecated. Hence, we can only cor-
rectly assume that the client package is using a deprecated
provider release at our data collection date. Finally, we
resolve the version of the providers that are used by each
client package in their latest release.

4 RESULTS

In this section, we present the results of our two RQs. For
each RQ, we discuss its motivation, the approach that we
used to address it, and the results that we obtained.

4.1 RQ1: How often are releases deprecated?

Motivation. Deprecation mechanisms are employed to dis-
courage the usage of a certain piece of code. Depreca-
tion can occur at different levels of granularity within a
software system. Traditionally, prior studies focus on API
deprecation, which typically operate at the function level
[1, 3, 5, 6, 13]. However, the offered deprecation mechanism
by the npm package manager operates at a higher level,
allowing one to deprecate either a release, a range of re-
leases, or the entire package (i.e., all releases of the package).
Maintainers of npm have drawn attention to features that
can discourage developers to use unmaintained packages.11

The deprecation mechanism is the main existing tool that
allows developers to communicate that a certain package
or release is no longer maintained. Yet, to the best of our
knowledge, no prior studies have investigated how often
deprecation occurs at the release-level within a software
ecosystem.

Ideally, the deprecation of a release should occur after
a replacement release is published (i.e., some newer release
that is not deprecated). In such cases, client packages that
are using a deprecated provider release can perform an
update targeting the replacement release. Therefore, it is
important for client packages to know how often follow-up
replacement releases are available. Also, to assess the likeli-
hood of an implicit migration to a replacement release, client
packages can compare their versioning statements against
the proportion of replacement releases that are patch, minor,
or major releases. Nonetheless, when a replacement release
is not available, client packages that want to migrate away
from a deprecated release need to perform a downgrade
(i.e., migrate to an older release that is not deprecated).
The drawback of performing a downgrade is that client
packages can miss new features and bug fixes from newer
releases [12, 14]. Hence, it is interesting for client packages
to understand how many patch, minor, and major releases
are back skipped when a downgrade from a deprecated
release to an older non-deprecated release is performed. For
example, a downgrade that changes the resolved provider
release from 1.0.1 to 1.0.0 is back skipping one patch release.

5

Approach. To determine the prevalence of release depre-
cation in npm (Result 1), we calculate the proportion of
packages that have at least one deprecated release and
the proportion of all releases that are deprecated in the
ecosystem. We also determine the prevalence of packages
that are fully deprecated (i.e., all releases are marked as
deprecated) or partially deprecated (i.e., some releases are
marked as deprecated, but not all). To this end, for each
package, we calculate the proportion of deprecated releases
over all its published releases.

Next, we study how often deprecated releases have a
follow-up replacement release (Result 2). More specifically, we
calculate the proportion of partially deprecated packages
that have some non-deprecated release that follows the
highest deprecated release (i.e., the deprecated release with
the largest version number within a package’s sequence of
releases). We focus on the highest deprecated release be-
cause we want to understand the availability of replacement
releases as of the data collection date (since we do not have
historical deprecation information). As an example, Figure
1 shows a hypothetical sequence of releases of a partially
deprecated package with a replacement release. The 2.1.1
release is the highest deprecated release and the following
3.0.0 release is the replacement release. We also investigate
how often a partially deprecated package that does not
have a replacement release is actually intended to be fully
deprecated. To do so, we manually analyze a representative
random sample of 364 (±5% C.I., 95% C.L.) deprecation
messages of the partially deprecated packages that do not
have a replacement release.

In Result 4, we calculate the proportion of replacement
releases that are major, minor, or patch releases (in the ex-
ample shown in Figure 1, the replacement release is a major
release). We also measure the number of provider releases
with the highest version level (i.e., major > minor > patch)
that are published in between the older non-deprecated
and the highest deprecated releases (this measure is called
technical lag [15]). For example, in Figure 1, in between the
older non-deprecated release and the highest deprecated
release, one major release is published (2.0.0), one minor
release is published (2.1.0), and three patch releases are
published (2.0.1, 2.0.2, 2.1.1). In this scenario, the technical
lag is one major provider release.

1.1.0 1.1.1 1.1.2 2.0.0 2.0.1 2.0.2 2.1.0 2.1.1 3.0.01.0.1

Highest
deprecated

release

Non-deprecated release

Deprecated release

1.0.0

Replacement
release

Older
non-deprecated

release

Fig. 1: Older non-deprecated and replacement release of a
hypothetical partially deprecated package.

Lastly, in Result 3 we determine the common rationales
behind the deprecation of packages and releases and how
often such rationales are associated with the deprecation
of all releases of a package in contrast to the deprecation
of a specific release (or range of releases) of a package. To
this end, we manually analyzed a statistically representative
sample (±5% C.I, 95% C.L) of the deprecation messages
used by npm packages. We sampled a total of 381 out of
the 44,112 unique deprecation messages used by different

packages. We performed an open coding [16] to catego-
rize the rationale behind release-level deprecation. We also
differentiate deprecation messages that are associated with
the deprecation of all releases of a package (full package
deprecation), in contrast to the deprecation of a specific
release of a package (partial package deprecation). Finally,
we calculate how often a deprecation message reports a
replacement package or a replacement release.

Result 1) 3.7% of the npm packages have at least one
deprecated release. There are 253,501 deprecated releases
in npm (3.2% of all releases) and 31,810 packages with at
least one deprecated release in npm, representing 3.7% of all
packages in the ecosystem. Two-thirds (66%) of the packages
with a deprecated release are fully deprecated (i.e., have
deprecated all releases). Figure 2 shows the proportion and
the total number of deprecated releases per package with at
least one deprecated release. A total of 29% of the fully dep-
recated packages have a single release (represented by the
darkest portion of the largest bar in Figure 2) and 20% have
ten or more deprecated releases (represented by the sum
of the two lightest portions of the largest bar in Figure 2).
Among the partially deprecated packages, 69% have more
than one deprecated release. That is, partially deprecated
packages tend to either deprecate a range of releases or
apply the deprecation mechanism more than once over time.
We cannot distinguish between these two cases because the
package.json files do not record historical information
about deprecation (i.e., one can only know whether a certain
release is deprecated or not).

0%

20%

40%

60%
66%

80%

100%

(0%,20%) [20%,40%) [40%,60%) [60%,80%) [80%,100%) 100%
Proportion of deprecated releases

P
ro

po
rt

io
n

of
 p

ac
ka

ge
s Number of

deprecated
releases

1

[2,5)

[5,10)

[10,100)

100 or more

Fig. 2: Number and proportion of deprecated releases per
package (excluding packages without deprecated releases).
The dashed line shows the proportion of fully deprecated
packages.

Result 2) 31% of the partially deprecated packages do
not have a replacement release. By manually analyzing
the deprecation messages of a representative sample of
the partially deprecated packages without a replacement
release, we observe that 65% of such deprecation messages
report that either the package maintenance was abandoned
or that the package was superseded by another package.
That is, we estimate that 20.15% (65% of 31%) of all partial
deprecations are actually intended to be full deprecations.
This estimated percentage corresponds to 1,987 packages.
We conclude that, although these packages have been par-
tially deprecated (including their latest release), the package
was in fact intended to be fully deprecated. Examples of
deprecation messages that indicate that packages were in-
tended to be fully deprecated include: “The functionality

6

of these package is now directly integrated in ’sql-pg”’
(deprecation message of package sql-pg-helper) and “Use
unitejs-webdriver-plugin instead” (deprecation message of
package unitejs-polymer-webdriver-plugin).
Result 3) Withdrawal is the most common rationale for
the deprecation of a package (49%) and defect is the most
common rationale for the deprecation of a release (63%).
Almost two-thirds (64%) of the deprecation messages report
the rationale behind the deprecation of a package or release.
We found five rationales: withdrawal (e.g., the development
of a package is no longer maintained in npm), supersession
(e.g., a deprecated release is replaced by a newer, improved
release), defect (e.g., a certain functionality is discovered to
be buggy), test (e.g., package is published for test purposes
only), and incompatibility (e.g., dependency incompatibil-
ity). More thorough descriptions and examples can be found
in Appendix B.

The proportion with which a given rationale is associ-
ated with the deprecation of either a package or release
is shown in Table 1. In total, 80% of the deprecation mes-
sages are for deprecated packages, whereas 20% of the
deprecation messages are for deprecated releases. In the
deprecation messages for deprecated packages, 51% report a
replacement package. Similarly, in the deprecation messages
for replacement releases, 51% report a replacement release.
From the deprecation messages that regard the supersession
of a package, 84% state that the package was moved or
renamed. In turn, from the deprecation messages that regard
the supersession of a specific release, 13% states that the
release was superseded by another.

TABLE 1: The proportion with which each rationale is
associated with the deprecation of a package or a release.

Rationale for
deprecation

Package
deprecation (80%)

Release
deprecation (20%) Example

Withdrawal 49.0% 12.0% “This module is
no longer maintained”

Supersession 45.0% 20.0% “Version 1.x branch of Iridium
has been superseded by v2.x.”

Defect 0.5% 63.0% “Buggy implementation of
class mixins.”

Test 5.0% 2.5% “Use version 1.0.0, this was a
prerelease (...)”

Incompatibility 0.5% 2.5% “Old versions not compatible
with sqb >0.7.0.”

Result 4) 68% of the replacement releases are patch releases,
17% are minors, and 15% are majors. Although the major-
ity of the replacement releases introduce simpler changes
(patch and minor releases), a non-negligible number of the
replacement releases introduce more complex changes (i.e.,
major releases, which might introduce backward incompat-
ible changes). Our analysis shows that even client packages
that set a restrictive range for their versioning statements
(e.g., version ranges that accept only patch updates) will
likely perform an implicit update to the replacement release.
However, client packages must be aware of the possibil-
ity of having to integrate major releases of the providers
when they are willing to adopt a replacement release.
Furthermore, client packages might prefer to downgrade
the provider from the highest deprecated release to the
older non-deprecated release, instead of integrating a major
replacement release. In this case, the median number of
provider releases that need to be backskipped with the

downgrade (i.e., the introduced technical lag) is either one
patch, one minor, or one major release of the provider.

: RQ1: How often are releases deprecated?

From all npm releases, 3.2% are deprecated.
• 3.7% of the npm packages have at least one deprecated release.
• 66% of the packages with deprecated releases are fully depre-
cated.
• 31% of the partially deprecated packages do not publish a
replacement release.
• 68% of the existing replacement releases are patches, 17% are
minors, and 15% are majors.
• Withdrawal is the most common rationale for the deprecation
of a package (49%) and defect is the most common one for the
deprecation of a release (63%).

4.2 RQ2: How do client packages adopt deprecated
releases?

In this RQ, we investigate how client packages adopt depre-
cated releases. We differentiate between direct and transitive
adoptions (Section 2.1). Direct adoptions are under the con-
trol of the client package, since they originate from direct
dependencies (i.e., those specified in the package.json
file). For these direct adoptions, we determine the fre-
quency with which they happen and how they relate to
the type of versioning statements that are employed by the
client packages. Transitive adoptions of deprecated releases
happen indirectly and thus are not under the control of
client packages. As part of this RQ, we also determine the
frequency with which clients transitively adopt deprecated
releases, as well as how deep these adoptions happen in the
dependency tree. Direct adoptions are discussed in Section
4.2.1 and transitive adoptions are discussed in Section 4.2.2.

4.2.1 Direct adoption of deprecated releases
Motivation. In this section, we investigate how frequently
client packages directly adopt deprecated releases. Such an
investigation will give insights into how effective the depre-
cation mechanism is in pushing client packages away from
deprecated provider releases. In particular, we investigate
whether there are deprecated releases that are still adopted
by a large number of clients and whether a replacement re-
lease (or replacement package) exists for them. The latter is
particularly relevant for client packages that value keeping
their providers up-to-date.

Approach. We calculate the proportion of client packages
that, in their latest release, directly adopt at least one dep-
recated provider release (Result 5). We then investigate
whether there are deprecated releases that are adopted
by more client packages than other deprecated releases
(Result 6). To this end, for each deprecated release d, we
calculate ad, which is the number of times that d is directly
adopted by a client package. We then divide ad by the total
number of direct adoptions of deprecated releases, obtaining
the proportion pd of direct adoptions of the deprecated
release d. We define a popular deprecated release as any release
d that belongs to the smallest subset of deprecated releases
for which pd sums up to 50% (i.e., the deprecated releases
that concentrate half of all adoptions). The adoption of
deprecated provider releases was assessed only at the latest

7

client release and, as a consequence, our results denote such
adoptions at the time of our data collection (see Section 3).
For the sake of simplicity, we will refer to a “client package
release” simply as a “client package” (implicitly referring to
the latest client package release).

Next, we determine how often popular deprecated re-
leases have a replacement release (Result 7). Because a
popular deprecated release can be a release of either a
partially or a fully deprecated package (see Section 4.1), we
employ a different method for those two cases. Basically, for
popular deprecated releases of fully deprecated packages,
we search for a replacement package instead of a replacement
release. In the following, we describe the two employed
methods:
• Partially deprecated packages: To determine whether a pop-
ular deprecated release of a partially deprecated package
has a replacement release, we search for the existence of any
non-deprecated release whose version number is larger than
the newest deprecated release (see Figure 1).
• Fully deprecated packages: To determine whether a popular
deprecated release of a fully deprecated package has a re-
placement package, we perform a manual analysis over the
deprecation messages. We search for replacement packages
by reading the deprecation message of the popular depre-
cated releases and any documentation that is mentioned in
such deprecation messages (e.g., tutorials that explain how
client packages should perform changes to migrate away
from the deprecated release).

After determining the replacement releases and pack-
ages, we estimate the date at which a popular deprecated
release was deprecated (Result 8). The motivation for per-
forming such an estimate is twofold. First, we want to safe-
guard the validity of our analysis, since a given deprecated
release might be massively adopted because client packages
did not have enough time to migrate away from that release
(e.g., releases that were deprecated at a date that is close to
our data collection). Second, we want to analyze the time
taken as well as the frequency at which client packages
migrate away from a popular deprecated release (to either
a replacement package or a release). We estimate the dep-
recation date by gathering two pieces of evidence. First,
we verify whether any mentioned documentation in the
deprecation message includes the date at which the release
was deprecated or some event that drove the deprecation
and whose date can be obtained (e.g., the first stable release
of a reported replacement package). Second, when none
of these pieces of information are reported in the existing
documentation, we assume that the deprecation occurred at
the package’s latest release date.

We use survival analysis [17] to study how the proba-
bility of a client package to migrate away from a popular
deprecated release changes over time. Survival analysis is
a statistical technique that is suitable for estimating the
probability of the occurrence of an event over time (i.e.,
a migration away from a popular deprecated release by a
client package), even when there are instances in the data for
which the event is not observed (i.e., right-censored data).
For each adoption of a popular deprecated release by a
client package, we verify whether the adoption is followed
by a migration away from the deprecated release. For the
cases in which the migration occurs, we calculate the time

spanned between the deprecation date and the migration
date (see Figure 3). Similarly, we treat as right-censored data
the adoptions for which we did not observe a migration
until the date of our data collection. We only consider adop-
tions of popular deprecated provider releases that occur
before the deprecation. Also, we separate the migrations
from popular deprecated releases of a fully deprecated
provider package from those of partially deprecated pack-
ages. For example, the popular deprecated release babel-
preset-es2015@6.24.1 does not have a replacement release,
but rather a replacement package (babel-preset-env). In this
case, we detect a migration whenever a client package
of babel-preset-es2015@6.24.1 eventually starts adopting
babel-preset-env. On the other hand, the popular depre-
cated release react-dom@16.2.0 does have a replacement
release and, therefore, we detect a migration whenever a
client adopting the deprecated release starts adopting any
of the replacement releases of react-dom@16.2.0 (i.e., react-
dom@>=16.2.1). Finally, we visualize the migration proba-
bility over time by plotting the complement of the Kaplan-
Meier survival curve. While Kaplan-Meier survival curves
are plotted as an interpolation of the survival estimates
S(ti), for each time ti, we plot survival curves as an interpo-
lation of the complement of the survival estimate, 1−S(ti),
for each time ti.

Time
Deprecation MigrationAdoption

Migrates

Does not migrate

Fig. 3: Survival analysis modelling for the time to migrate
away from a popular deprecated release.

Result 5) 27% of the client packages directly adopt at least
one deprecated provider release. In RQ1, we observed that
only a small proportion of npm packages (3.7%) deprecated
at least one release. Yet, when analyzing client adoption of
deprecated releases, we note that 27% of all client packages
in npm adopt at least one deprecated release.

Result 6) A remarkably small proportion of the deprecated
releases are massively adopted by client packages. More
specifically, 75% of all adoptions of deprecated releases con-
centrate on only 2.6% of all deprecated releases (Figure 4).
The top 40 most frequently adopted deprecated releases ac-
count for 50% of all adoptions of deprecated releases. We call
these 40 deprecated releases as popular deprecated releases.
In total, 80% (32 out of 40) of the popular deprecated releases
are from a fully deprecated package and 20% (8 out of 40)
are from a partially deprecated package.

Result 7) All popular deprecated releases have a deprecation
message that indicates a replacement package or release.
This result indicates that popular provider package develop-
ers always support clients in determining candidate releases
(or packages) to be migrated to in face of release depreca-
tion. Furthermore, we estimate that all popular deprecated
releases have been marked as such for at least 6 months
since our data collection date, showing that client packages
had a reasonable amount of time to migrate away from
them. In Appendix C, we list all the 40 popular deprecated

8

0%

25%

50%

75%

100%

0.
0%

2.
6%

25
.0

%
50

.0
%

75
.0

%

10
0.

0%

Proportion of deprecated releases

P
ro

po
rt

io
n

of
 a

do
pt

io
ns

Fig. 4: Cumulative histogram for the proportion of client
packages that depend on a deprecated provider release.

releases, their respective replacement release or package,
and our estimate of their deprecation date.

Result 8) More than half (59%) of the adoptions of a popular
deprecated release of a partially deprecated package are not
followed by a migration, even though a replacement release
is available. Moreover, more than 94% of the adoptions of
a popular deprecated release of a fully deprecated package
are never followed by a migration to a replacement package.
Figure 5 shows the probability of migration over time. The
probability of an earlier migration to a replacement release
is significantly larger than the probability of an earlier mi-
gration to a replacement package. Moreover, all migrations
to a replacement release occur in less than 285 days after
the deprecation, while migrations to a replacement package
occur in up to 877 days. Similarly, half of all migrations to
a replacement release take less than 22 days, while half of
all migrations to a replacement package take less than 315
days.

0.0%

10.0%

20.0%

30.0%

40.0%

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time (days)

Pr
ob

ab
ilit

y
of

 m
ig

ra
tin

g

Replacement Package Release

100 99 98 98 97 96 76 75 73 1 1 1 0
100 46 40 0 0 0 0 0 0 0 0 0 0−−

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time (days)R

ep
la

ce
m

en
t Proportion of adoptions with chance of migrating (%)

Fig. 5: Survival curve for the migration away from a popular
deprecated release.

4.2.2 Transitive adoption of deprecated releases

Motivation. In a software ecosystem, a deprecated provider
release can be transitively adopted by a client package
(Section 2.1). While client packages can choose the provider

packages that are directly adopted, provider packages that
are transitively adopted are out of the scope of client pack-
ages. As a consequence, tracking the transitive adoption of
a deprecated release can be challenging to client packages.
Even when providers that are transitively adopted can be
tracked, the provided tools by npm that help client packages
to check whether such providers can be updated require
the specification of the dependency depth parameter (see
Section 2.2), which is usually unknown. Also, there is no
trivial approach to update transitive providers. These issues
show how challenging dealing with the transitive adoption
of deprecated provider releases is. By knowing how often
deprecated provider releases are transitively adopted, client
packages can estimate the likelihood of having to deal with
a transitively adopted deprecated release. Also, transitive
providers can be updated as a consequence of the update
of a direct provider. Hence, client packages can benefit
from estimating how often a directly adopted provider
package results in the transitive adoption of a deprecated
release. In this RQ, we determine how often client packages
transitively adopt a deprecated provider release, what the
typical dependency depth is, and how often a provider that
is directly adopted results in the transitive adoption of a
deprecated release.

Approach. We study the transitive adoption of deprecated
releases by analyzing the dependency tree of the latest re-
lease of client packages. Such dependency trees contain the
provider package releases that are directly and transitively
adopted by each client in their latest release. To obtain these
dependency trees, we run the npm install command (to
install the client package release and its dependencies) fol-
lowed by the npm ls command (to obtain the dependency
tree in a parsable format). The dependency trees represent
the resolved provider releases at the time that we run the
npm install tool (February 2020), whereas the timestamp
of the latest client package releases were obtained from our
data set (which was collected on May 2019). For simplicity,
in this subsection we refer to the “latest client package
release” simply as a “client package”. Similarly, we refer
to the provider releases that are directly and transitively
adopted by the client packages as “provider packages”.
Furthermore, given the total number of client packages to
be analyzed (595,052), we draw a statistically representative
random sample of size 16,641 (99% confidence level, ±1%
confidence interval). Our sampling method preserves the
distribution of the number of provider packages per client
package that is found in the population. In total, the studied
dependency trees have 71,663 installed packages (among
client and provider packages) and 5,796,506 dependencies.
With the usage of version range statements by client pack-
ages, the installation of an npm package is not reproducible,
since installations that are run at a different time can also
produce different results. To mitigate this limitation regard-
ing the reproducibility of our results, in our supplementary
material we provide the data that was obtained during the
client package installations.

After obtaining the dependency trees, we estimate the
proportion of client packages that transitively adopt at least
one deprecated provider release (Result 9). In addition, to
understand the relation between the direct and transitive

9

adoptions of deprecated releases, we calculate how often
client packages that directly adopt at least one deprecated
provider release also transitively adopt at least one depre-
cated provider release (and vice-versa).

We also calculate the distribution of the deepest depen-
dency depth of a deprecated provider release for each client
package (Result 10). The deepest dependency depth of a
deprecated provider release is the largest distance from the
client package to any adopted deprecated release in the
dependency tree. For instance, suppose that a client pack-
age C transitively adopts a deprecated provider release at
depths 2 (i.e., the provider of a provider is deprecated) and
3. For client package C , the deepest dependency depth of
a deprecated provider is 3. We use the deepest dependency
depth of non-deprecated releases as a baseline for assessing
the deepest dependency depth of deprecated releases. We
use the Wilcoxon Signed Rank test (α = 0.05) to verify
the hypothesis that the distribution of the deepest depen-
dency depth of deprecated and non-deprecated releases
differ. We also assess the effect size using the Cliff’s Delta
estimator with the following classification [18]: negligible
for |d| ≤ 0.147, small for 0.147 < |d| ≤ 0.33, medium for
0.33 < |d| ≤ 0.474, and large otherwise.

Finally, we analyze the distribution of the number and
the proportion of directly adopted providers that result in
the transitive adoption of at least one deprecated release
(Result 11). As an example, suppose that a client package
C directly adopts three providers, namely P1, P2, and P3.
Suppose that adopting P1 results in the transitive adoption
of deprecated release d1 and that adopting P2 results in
the transitive adoption of deprecated releases d2 and d3. In
such hypothetical scenario, the number of directly adopted
providers of C that result in the transitive adoption of at
least one deprecated release is 2 (P1 and P2), while the
proportion is 66% (2 out of 3 directly adopted providers).

Result 9) 54% of all client packages transitively adopt at
least one deprecated release. For client packages that adopt a
deprecated provider release, the majority of such adoptions
is exclusively transitive (see Table 2). In particular, the num-
ber of client packages that adopts a deprecated provider
exclusively by means of a transitive dependency (5,406) is
almost 5 times larger than the number of client packages
that adopts a deprecated provider by means of a direct
dependency (1,107). This scenario has the potential to con-
fuse client packages. In fact, a common theme of discussion
between developers evidences this situation: developers
get confused when deprecation messages come exclusively
from transitively adopted deprecated providers.12,13,14,15,16

TABLE 2: The number of client packages that directly and
transitively adopt at least one deprecated provider release
(only client packages that adopt a deprecated provider
release are shown).

Client packages Directly adopt
deprecated releases?

No Yes

Transitively adopt
deprecated releases?

No – 1,107 (11%)
Yes 5,406 (54%) 3,461 (35%)

Result 10) In 90% of all adoptions of a deprecated provider

release, the deepest dependency depth is no larger than 6.
Figure 6 depicts a histogram for the deepest dependency
depth of deprecated and non-deprecated provider releases.
While the median dependency depth for non-deprecated
releases is 6, the median for deprecated releases is 4. The dif-
ference between the distributions is statistically significant
(p-value < 0.05) with a medium effect size (|d| = 0.46). This
observation leads us to conclude that client packages should
be able to trace the transitive adoption of a deprecated
release with relative easiness (compared with the transitive
adoption of non-deprecated releases) and to take actions to
update the transitively adopted deprecated release. More
specifically, it is plausible to client packages to either update
a direct provider as an attempt to transitively update the
deprecated release or to suggest developers of transitively
adopted providers to update their own providers. Nonethe-
less, in practical terms, it might be still challenging for client
packages to trace transitive dependencies. Therefore, our
conclusion is limited to the comparison between deprecated
and non-deprecated releases.

0%

5%

10%

15%

20%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Deepest dependency depth of a deprecated provider release

P
ro

po
rt

io
n

of
 c

lie
nt

 p
ac

ka
ge

s

Deprecated?

Yes

No

Fig. 6: Histogram of the deepest dependency depth of dep-
recated and non-deprecated releases.

Result 11) The median number of direct providers that result
in the transitive adoption of at least one deprecated release
by a client package is 1. In other words, for 50% of the
client packages, one single direct provider would need to
be updated or replaced as an effort to cease the transitive
adoption of a deprecated release. In addition, Table 3 shows
that the median proportion of direct providers that account
for the transitive adoption of at least one deprecated release
is 25%.

TABLE 3: Descriptive statistics for the total number and the
proportion of direct providers that result in the transitive
adoption of at least one deprecated release.

Providers Min. Q1 Median Mean Q3 Max.

Total 1.0 1.0 1.0 1.98 2.0 60.0
Proportion 2.0% 16.6% 25.0% 32.5% 42.8% 100.0%

10

: RQ2: How do client packages adopt deprecated releases?

The direct adoption of deprecated releases is highly skewed, with
the top 40 popular deprecated releases accounting for more than
half of all deprecated releases adoption.
• All the top 40 popular deprecated releases have a deprecation
message that reports a replacement package or release, which eases
the migration from such deprecated releases.
• 54% of all client packages transitively adopt at least one depre-
cated release.
• In 90% of the cases where a deprecated provider release is
adopted, the deepest dependency depth is no larger than 6.
• A median of one in each four providers that are directly adopted
result in the transitive adoption of at least one deprecated release.

5 DISCUSSION

In this section, we discuss the findings presented in Sec-
tion 4. We divide our discussion in two topics: improve-
ments to the npm deprecation mechanism (Section 5.1) and
an assessment of the impact of deprecated releases on client
packages (Section 5.2).

5.1 Improving the deprecation mechanism

Although a small proportion of npm packages make use
of the deprecation mechanism (Result 1), a noteworthy pro-
portion of client packages directly adopt deprecated releases
(Result 5). Therefore, we consider release-level deprecation
to be a relevant aspect of the npm ecosystem. Despite such
relevance, the deprecation mechanism provided by npm is
fairly rudimentary (see Section 2.2 for a description on how
the npm deprecation mechanism works). In the following,
based on our observations from Section 4, we propose
specific improvements to the deprecation mechanism.

Implication 1) The deprecation mechanism should encour-
age developers to provide more meaningful deprecation
messages. The rationale for the deprecation is not reported
in 36% of the deprecation messages (Result 3). As presented
in Result 3, as well as in prior studies regarding API
deprecation in the Maven ecosystem for Java [2], there is
a diversity of rationales behind a deprecation that should be
explained to client packages. Informing the rationale behind
a deprecation allows client packages to assess the trade-off
between the risk of adopting the deprecated release and
the effort to migrate away from this release. Therefore, npm
should encourage developers to provide better reasons for
the deprecation of a release (e.g., by providing standardized
deprecation messages based on the five identified rationales
for deprecation).

In addition, the replacement release is not reported
in approximately half (49%) of the deprecation messages
(Result 3). Reporting a replacement release supports client
packages in migrating away from the deprecated release
(i.e., a clear and explicit option is given to them). Hence,
we argue that the npm deprecation mechanism should sup-
port package developers in informing what the replacement
release is (e.g., by automatically detecting the existence of a
newer non-deprecated release and, also, by warning devel-
opers when the latest package release is being deprecated).
A feature request endorsed by npm maintainers suggests
the creation of an “override” field on the package.json

file,17 which would be useful to store replacements of depre-
cated releases. In addition, the npm deprecation mechanism
should record a deprecation timestamp (to date, this infor-
mation is not recorded in the npm registry) and a severity
level for the deprecation. These information would help
client packages on 1) evaluating for how long a release is
considered deprecated and 2) assessing the risks of adopt-
ing a deprecated release, based on the perspective of the
developer of the provider package.

Nonetheless, simply reporting a replacement release
might not be sufficient to allow client package developers to
evaluate the difficulty to migrate to the replacement release.
In fact, deprecation messages should point to a migration
guide documentation that facilitates client packages to un-
derstand the impact of changing from a deprecated to the
replacement release. For example, a migration guide could
provide information on which features or set of functional-
ities are impacted by the deprecation and, therefore, were
modified by the replacement release.

Implication 2) The deprecation mechanism should interac-
tively prompt for contextual information about the dep-
recation. To reason about what lessons can be learned
from the deprecation mechanism of other ecosystems, we
analyzed the features of seven other package managers,
chosen according to the size of their ecosystem (i.e., the
number of packages),18 namely CPAN for Perl, Crates.io
for Rust, Maven for Java, Nuget for .NET, Packagist for
PHP, PyPi for Python, and RubyGems for Ruby. We ob-
serve that four out of the seven package managers do not
implement a deprecation mechanism (CPAN, Maven, PyPi,
and RubyGems). In Crates.io, the deprecation mechanism
was implemented after an explicit request of this feature by
the package manager users,19,20,21 indicating the relevance
of the mechanism to the package manager users. In this
package manager, developers have the option to explicitly
set the maintenance status of their packages and the notion
of deprecation is incorporated into this feature. In particular,
when the maintenance status of a package or release is
set as deprecated, a status indication badge is displayed in
the package’s description (package manager user interface).
However, no option for describing the rationale behind the
deprecation and its potential impact on client packages, nor
the explicit indication of a replacement package or release,
is provided by this deprecation mechanism. Also, there is no
option to deprecate a range of releases. Both Packagist and
Nuget have an integrated user interface for the deprecation
mechanism, which might help users to understand how the
deprecation mechanism works and to provide better infor-
mation regarding the deprecation. However, Packagist does
not contain any official documentation for the deprecation
mechanism, which can be detrimental to users. The most
complete set of features can be observed in Nuget. The dep-
recation mechanism of Nuget allows users to select between
one out of two pre-established deprecation rationales or,
alternatively, to input a user-defined rationale. In addition,
Nuget explicitly prompts users for a replacement release.
The features that are implemented by the deprecation mech-
anism of each of the aforementioned package managers are
summarized in Table 4.

Based on our observations regarding the deprecation

11

TABLE 4: Summary of the features implemented by four
package managers with a deprecation mechanism.

Package
manager

Official
document.

Support for
describing
rationale

Graphical
user
interface

Prompts for
replacement
release

Deprecation of
range of
releases

npm
Crates.io
Packagist
Nuget

mechanism of npm and other package managers, we high-
light the following set of best practices for the implementa-
tion of a deprecation mechanism for software ecosystems:

1) Official documentation about the deprecation mecha-
nism should be provided as part of the own package man-
ager documentation.
2) Documentation should make explicit the common sce-
narios for which deprecation is encouraged. In specific, a
pre-specified set of the common rationale for deprecation
should be displayed.
3) The deprecation mechanism should have a user interface
integrated with the package manager, both to display and
to input information about a deprecated release or package.
4) The deprecation mechanism should prompt for a replace-
ment package or release and, ideally, prevent a release to be
deprecated without having a replacement.
5) Deprecation should be allowed for a single release, a
range of releases, or the whole package.

Implication 3) The deprecation mechanism should periodi-
cally warn client packages about the adoption of a depre-
cated provider release. Even though all popular deprecated
releases report a replacement release in their deprecation
message (Result 7), such releases are still massively adopted
by client packages (on their latest release, as of our data
collection date) (Result 6). The migration away from pop-
ular deprecated releases of partially deprecated packages
should be performed at low cost by client packages, since
the majority of the replacement releases are patch releases.
However, less than half of the client packages of a popu-
lar deprecated release eventually migrate away from such
releases (Result 8). We hypothesize that the lack of migra-
tions is associated with the fact that deprecation messages
are displayed only when a deprecated provider release is
installed. When the provider release is deprecated while it
is already installed, the client package developer does not
become aware of such a deprecation. In fact, this issue has
been a subject of discussion in at least two issue reports.22,23

We argue that npm should provide an easy way for client
package developers to check the adoption of a deprecated
provider release. Preferably, the deprecation mechanism
should proactively (and periodically) warn client packages
when a deprecated release is adopted. Another hypothesis
that can be stated to explain the lack of migrations from
a deprecated release is that the set of functionalities of the
provider that is used by the client package is not affected
by the deprecation. Another plausible hypothesis is that
client packages do not have a strict policy against the
adoption of deprecated provider releases. A fruitful future
research endeavour is to survey client package developers
to understand the reasons for not migrating to an existing

replacement release (particularly, when the replacement is a
patch release).
Implication 4) The deprecation mechanism should provide
built-in features for assessing the transitive adoption of
deprecated provider releases. The current support by the
standard npm tools for verifying the transitive adoption
of a deprecated release is limited, as is the support for
migrating away from a transitively adopted deprecated
release. For example, when the deprecation message for a
transitively adopted deprecated release is displayed, there is
no information on whether the deprecation message refers
to a direct or a transitive dependency. Moreover, there is
no trivial solution to update a transitively adopted provider
package. Yet, more than half (54%) of the client packages
transitively adopt a deprecated provider release (Result 9).
Hence, a significant proportion of the client packages would
benefit from having better support for dealing with transi-
tively adopted provider packages. In contrast to the current
scenario, in which separated tools need to be used to detect
the adoption and to update transitive deprecated releases
(see Section 4.2.2), the own deprecation mechanism should
implement such functionalities. In particular, the depreca-
tion mechanism should 1) differentiate between deprecation
messages from directly and transitively adopted deprecated
providers, 2) help client packages to identify how deep in
the dependency tree a certain transitively adopted depre-
cated release is, 3) assist client packages in the identification
of which (and how many) directly adopted provider results
in the transitive adoption of a deprecated release. In Re-
sult 10, we observe that the typical dependency depth of a
transitively adopted deprecated release is relatively shallow,
compared with the depth of non-deprecated releases. Also,
in Result 11, we observe that the median number of direct
providers that result in the transitive adoption of a depre-
cated release is one. Therefore, the set of suggested features
can be implemented by the deprecation mechanism without
overloading client packages with too much information
regarding the transitive adoption of deprecated releases.
Implication 5) The deprecation mechanism should prevent
the implicit adoption of deprecated releases when an older
non-deprecated release is available. If a provider pack-
age does not have a replacement release (i.e., the latest
release is deprecated) but has some older non-deprecated
release, then the deprecation mechanism should interact
with the provider version resolution mechanism to make
client packages adopt the older non-deprecated release in
detriment to the latest deprecated release. For example, sup-
pose a provider package P that has version 1.2.3 deprecated
and version 1.2.2 non-deprecated. A client package C that
adopts P using a version range statement such as “P:
>1.0.0” should load version 1.2.2 of P , instead of version
1.2.3.

5.2 Assessing the impact of deprecated releases
Although the migration away from a deprecated release
depends on the client package’s willingness, we found evi-
dences that such a migration might not be trivial (e.g., by the
lack of a replacement release or the need to perform changes
to migrate). For this reason, client packages that are willing
to migrate away from deprecated releases can benefit from

12

understanding whether a replacement release is available
and how difficult such a migration typically is. In turn,
client packages that still adopt a deprecated provider release
should evaluate the impact and risks associated with such
an adoption. In the following, we discuss the risks that client
packages can face when adopting a deprecated release, as
well as the challenges to migrate away from a deprecated
release.

Implication 6) Client packages should be especially careful
about the usage of deprecated releases of partially dep-
recated packages. The deprecation of a release can occur
for different reasons. The most common reason for the
deprecation of all releases of a package in npm is withdrawal
(i.e., terminating the maintenance of a package), whereas
the deprecation of one or more specific releases of a package
usually occurs due to a defect (Result 3). Defective provider
releases might be risky to client packages and, therefore,
should be addressed with proper attention (e.g., by migrat-
ing away from the deprecated release). Another common
reason for deprecation is when a release is superseded. This
rationale for deprecation does not indicate any issue that
needs to be urgently addressed, however provider packages
can have some specific reason (e.g., the deprecated release
use some obsolete feature) to communicate a deprecation
to client packages instead of simply publishing a newer
release. Therefore, client packages should update a super-
seded provider release whenever it is possible, especially
when the newer provider release is backward compatible
with the deprecated release. Incompatibility is also identi-
fied as a rationale for the deprecation of a package’s release,
however the deprecation of a release for this reason is sig-
nificantly less common than for other reasons. Nevertheless,
client packages are exposed to incompatibilities in very
specific circumstances (i.e., when incompatible versions of
two providers are used at once).

Implication 7) Client packages should be aware that
providers misuse release deprecation. A total of 31% of
the partially deprecated packages do not have a follow-
up replacement release. However in Result 2, by manually
analyzing the deprecation message of such packages, we
observed that 65% of the deprecation messages refer to a
withdrawal or a supersession of a whole package (not a
specific release). Therefore, client packages might be inad-
vertently adopting a release of an unmaintained provider
package. Nonetheless, we observed that 84% of the super-
seded packages were simply moved to another repository
(e.g., codebase) or renamed (Result 3). Therefore, for fully
deprecated packages that were superseded, client packages
should expect to be able to find a respective replacement
package.

Implication 8) Client packages should reason about the
characteristics of the replacement release when migrating
away from a deprecated release. 80% of the popular depre-
cated releases belong to fully deprecated packages that only
provide a replacement package (in lieu of a replacement
release) (Result 6). The migration to a replacement pack-
age requires the adoption of a different provider package,
potentially requiring client packages to perform changes
in order to cope with a new design implemented by this
provider (e.g., new APIs). When a replacement release is

available, in 15% of the cases client packages will need
to integrate a major provider release (Result 4), which is
assumed to be backward incompatible with the deprecated
release, likely requiring client packages to perform changes
to integrate the new major provider release. Also, we ob-
served that 32% of the replacement releases are minor (17%)
or major releases (15%). In some of these cases, a patch
downgrade to an older non-deprecated release is a viable
option (for instance, when the release 2.1.0 of the provider
package is non-deprecated, the release 2.1.1, which is cur-
rently adopted by the client package is deprecated, and the
release 2.2.0 is non-deprecated). In such a scenario, client
packages should take several factors into consideration to
decide whether a patch downgrade or a minor update is
the appropriate migration choice. Some of these factors
include the presence/absence of features, bugs and security
vulnerabilities, as well as the estimated required effort to
perform the migration.

Implication 9) Client packages should be attentive to the
transitive adoption of deprecated provider releases. More
than half (54%) of the client packages in the ecosystem tran-
sitively adopt at least one deprecated release. Interestingly,
the majority of these client packages (54%) do not directly
adopt deprecated releases (Result 9). Client packages that
want to avoid the adoption of deprecated releases by all
means should be attentive to their transitive providers.
When a deprecated release is transitively adopted, client
packages have two main options to cease the adoption:

1) Updating the direct provider that is responsible for the transi-
tive adoption of a deprecated release. This option does not neces-
sarily guarantee that the adoption of the deprecated release
will cease, however it serves as a best-effort approach. We
verified that the median number of direct providers that
result in the transitive adoption of at least one deprecated
release is 1 (Result 11). This number thus serves as an
estimate of how many direct providers would need to be
updated when this best-effort approach is chosen by the
client package as an attempt to cease the transitive adoption
of deprecated release.

2) Performing workarounds. The deeper a transitively adopted
deprecated release is in the dependency tree of a client
package, the less control the client package has over such
an adoption. Indeed, we verified that the median of the
deepest dependency depth of a deprecated provider release
is 4 (Result 10), showing that, in general, client packages
need to cope with the transitive adoption of deprecated
provider releases that are far down the dependency tree.
To manually update transitive adoptions, client packages
often rely on workarounds, such as manually modifying
build files that are automatically generated and reinstalling
all provider packages.24,25

A feature that can help client package developers to
assess the impact of a transitively adopted deprecated re-
lease is to explicitly display the dependency tree when these
deprecated releases are installed.26 The implementation of
this feature can help client developers to understand the
transitive adoption of deprecated releases (e.g., which direct
provider causes the adoption of a deprecated release and
how deep this deprecated release is in the dependency tree).
Moreover, the deprecation mechanism should offer client

13

packages a built-in feature to update transitive dependen-
cies.27,28,29

6 RELATED WORK

In this section, we describe prior studies about deprecation
in software ecosystems. We initially present related work
that discusses how client packages use deprecated APIs and
how such clients react to the deprecation of these APIs.
Then, we discuss studies that report how often deprecation
messages report a replacement API. Finally, we discuss
studies that describe the rationale behind the deprecation
of APIs. All the presented related work discusses the phe-
nomenon of API deprecation, whereas our paper is the first
to present a study about release deprecation in a software
ecosystem. In an attempt to bridge the two related areas,
we compare literature results regarding API deprecation
with our results about release deprecation. Nonetheless, we
remind the reader that such comparisons should be taken
with a grain of salt. The reason is twofold: 1) API and
release deprecation operate at different levels, the former at
the function- or method-level and the latter at the package’s
release level, and 2) the mechanisms for API deprecation
are provided by the programming language, whereas the
mechanisms for release deprecation are provided by the
package manager.

Usage of and migration away from deprecated releases.
Henkel and Diwan [19] discuss that the usage of a certain
provider’s API by client packages can have an impact on
the decision of deprecating this API. The authors argue
that provider packages do not want to drive complex
changes in the client packages and the decision about the
deprecation of an API should consider this assumption.
Robbes et al. [3] analyzed the deprecation of packages’
API in the Pharo ecosystem (for the Smalltalk language)
and found that a small proportion (14%) of the deprecated
methods triggered a client package reaction (e.g., a method
replacement). Sawant et al. [13] analyze the reaction of
clients to the deprecation of Java APIs and found that
a small proportion of the client packages migrate away
from the deprecated methods. The authors found that the
majority of the client packages do not use any deprecated
provider API. In a follow-on study, Sawant et al. [4] derive
the following patterns of reaction to Java API deprecation:
deletion of call to deprecated API, replacement by third-
party API, replacement by in-house API, and downgrade
of API version. Although the authors also found that the
majority of the client packages do not migrate away from
the deprecated methods, when the migration takes place
client packages usually replace the deprecated method with
a call to another third-party API. Li et al. [5] report that
38% of a random sample of 10,000 Android apps are using
a deprecated API. Our results show that 27% of all client
packages in the ecosystem adopt a deprecated release.

Prior studies show that the rate at which client packages replace
an adopted deprecated API is low. In contrast, we found that
85% of the replacement releases in npm are patch and minor
releases, which are often implicitly adopted by client packages.

Replacement releases in deprecation messages. Zhou and
Walker [1] found that 51% of the studied packages in the
Maven ecosystem (for the Java language) have a deprecation
message that reports a replacement API. Brito et al. [8] show
that 59.5% of the API elements (types, fields, and methods)
of 661 Java projects are deprecated with a message that
reports a replacement API element. Ko et al. [20] reveal that
61% of 260 deprecation messages of eight Java packages
have a replacement API. In turn, Li et al. [5] found that,
among a set of 20 Android releases, the median proportion
of deprecated APIs that do not report a replacement on the
deprecation message is approximately 30%. In a study about
API deprecation messages of the top 50 most popular client
packages in npm, Nascimento et al. [21] points that 67%
of the deprecation messages report a replacement API. Our
results show that 51% of the deprecation messages in npm
report a replacement release.

In general, the difference between the proportion of API and
release deprecation messages that report a replacement is at
most 16%.

Rationale behind deprecation. According to a survey by
Sawant et al. [2], there are seven rationales for the usage
of the deprecation mechanism by client developers in Java.
Their study examined deprecation at the method level (i.e.,
API deprecation). With the exception of one out of the
seven stated rationales (namely “old interface encourages
bad practices”), all of them have commonalities with the
rationales for the deprecation of a release in npm (see Table
5). In turn, Sawant et al. [7] manually investigate the depre-
cation messages of 374 Java APIs and propose 12 categories
for the rationale of deprecation. Even focusing on Java API
deprecation, many of the proposed categories agree with the
rationales for the deprecation of npm packages and releases.
Mirian et al. [22] studied the reasons for the deprecation of
APIs provided by the Chrome web browser. The authors
identified six different categories for the rationale behind
the deprecation of an API. Four out of the six categories
are related with the identified rationales for the deprecation
of a release in npm. The “inconsistent implementation” and
“security” categories by Mirian et al. [22] are related with
defects, the “updated standard” category is related with
supersede, and the “removed from standard” category is
related with withdrawal. Raemaekers et al. [23] studied the
Maven ecosystem and found that deprecation is rarely used
to communicate that a given API has introduced backward
incompatible changes (a.k.a. breaking changes). Decan et al.
[14] suggest that package developers in npm should depre-
cate releases that can potentially suffer from vulnerabilities.

There are a number of commonalities between the rationale for
deprecating an API and a release. All rationales for release dep-
recation can also be associated with API deprecation, although
the opposite does not hold.

7 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our
study about release deprecation in npm. We discuss the

14

TABLE 5: Comparison between the identified rationales
behind API and release deprecation.

Reference Identified rationales for method
deprecation

Identified rationales
for release deprecation

Sawant et al. [2] Feature is unnecessary; no longer pro-
vide a feature

Withdrawal

New feature supersedes existing one Supersede

Functional issue; non-functional issue Defect

Mark as beta Test

Old interface encourages bad practices —

Sawant et al. [7] Redundant methods, Renaming of fea-
ture

Withdrawal

Merged to existing method; new feature
introduced; separation of concerns

Supersede

Functional defects; security flaws Defect

Temporary feature; dissuade usage Test

No dependency support Incompatibility

Avoid bad coding practices; design pattern —

Mirian et al. [22] Removed from standard Withdrawal

Updated standard Supersede

Security; inconsistent implementation Defect

Clean experience; never standardized —

threats related to construct validity, internal validity, and
external validity.

Construct Validity. The npm registry does not record the
date of a release deprecation. Therefore, when our data
was collected from the npm registry, we only knew that
a given release was deprecated some time before our data
collection. The lack of knowledge about the deprecation date
makes it impossible for us to perform a reliable historical
analysis about the adoption of deprecated releases. To mit-
igate this threat, we do not perform a historical analysis
of deprecated release adoption (e.g., an analysis on how
client packages migrate away from deprecated releases).
Rather, we consider how deprecated releases were adopted
at the latest client release (i.e., at the snapshot of our data
collection). Even though, we can still rely on cases for which
the provider release was deprecated at the time of our data
collection, but was not deprecated when the client package
started adopting this release.

When analyzing the adoption of the top 40 popular
deprecated releases using survival analysis (Section 4.2.1),
we manually search for any documentation that allows us
to estimate the deprecation date. For 30 out of the top 40
popular deprecated releases, the deprecation date is stated
either in the deprecation message or in some associated
documentation. Nonetheless, for the other 10 releases, we
assumed the deprecation date to be that of the date of
the latest package release. For these 10 deprecated releases,
we might have overestimated the deprecation time. In Ap-
pendix C, we show more detailed information about how
we estimate deprecation dates.

The analyses of how client packages adopt deprecated
provider releases (RQ2) are performed at the package de-
pendency level. As a consequence, they abstract how client
packages are used by providers. The set of features of a
provider package that are used by different client packages
range from an isolated functionality to a full set of de-
pendent features. Although the circumstances under which
a provider package is used by its clients are abstracted,
they can influence how client packages adopt and migrate

away from a deprecated provider release. For example, we
observed that many deprecated releases are defective. In
those cases, a client package might be compelled to migrate
away from a deprecated release.
External Validity. Our study is limited to data from the npm
ecosystem, therefore our results might not be generalized to
other ecosystems. Our study is the first to analyze the dep-
recation phenomenon at the release- and package-levels in a
software ecosystem and to provide knowledge about such a
phenomenon. Nevertheless, we identified that the rationales
for the deprecation of releases have commonalities with the
deprecation of APIs.

Our study does not have the objective of elucidating
general theories about the deprecation phenomenon and
further research is needed to provide more comparisons
and an eventual generalization. Furthermore, release-level
deprecation mechanisms are provided by other package
managers ecosystems (e.g., Packagist for the PHP language
or Nuget for .NET) and our approach can be replicated in
those other ecosystems. Although the deprecation mecha-
nisms of different ecosystems have different characteristics,
the learned lessons discussed in Section 5 can be useful
to reason about release-level deprecation in other ecosys-
tems.30,31,32

8 CONCLUSION

Deprecation is a mechanism employed by software devel-
opers to discourage the use of a particular piece of code.
Prior empirical studies focused on the deprecation of API
elements (e.g., methods and functions) and investigated
several topics, such as how frequently deprecated APIs are
adopted by clients [3, 13], the provisions of replacement
APIs [1, 5, 21], and the rationales behind the deprecation
of APIs [2, 7, 22]. In this paper, we studied deprecation
from a software ecosystem perspective, which entails the
deprecation of releases. More specifically, we conducted a
case study of release deprecation in npm.

To understand the relevance of the deprecation mech-
anism in npm, we analyzed how often releases are depre-
cated by provider package developers and the impact of
the deprecated releases over the client packages. We found
that the rate at which the deprecation mechanism is used
by provider packages is small, with approximately 3% of
the releases being deprecated. However, 27% of the client
packages directly adopt at least one deprecated release
and 54% of all client packages transitively adopt at least
one deprecated release in their latest release. We assessed
the risks brought by the usage of deprecated releases by
studying the rationales behind the deprecation. We verified
that the deprecation of all releases of a package is usually
associated with withdrawals (i.e., terminating the package
maintenance) and supersession (i.e., the substitution of a
release by another). Also, we verified that the deprecation
of one specific package release is usually associated with
the presence of defects in that release.

Based on our results, we concluded that, despite the im-
portance of the deprecation mechanism to the npm ecosys-
tem, such a mechanism is still fairly rudimentary. For in-
stance, to date, there is no simple approach that enables
client packages to check whether any installed provider

15

release is deprecated. We proposed a series of improvements
to the npm deprecation mechanism. We also concluded that
is not straightforward for client package to assess the impact
(e.g., risk) of using a deprecated release. For instance, the
rationale behind a deprecation is not always provided and
client packages can unwittingly adopt deprecated releases
by means of transitive dependencies. We proposed ways in
which client packages can better assess the impact of using
deprecated releases.

REFERENCES

[1] J. Zhou and R. J. Walker, “API deprecation: A retrospective anal-
ysis and detection method for code examples on the web,” in
Proceedings of the 24th International Symposium on Foundations of
Software Engineering (FSE’16), 2016, pp. 266–277.

[2] A. A. Sawant, M. Aniche, A. van Deursen, and A. Bacchelli,
“Understanding developers’ needs on deprecation as a language
feature,” in Proceedings of the 40th International Conference on Soft-
ware Engineering (ICSE’18), 2018, pp. 561–571.

[3] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers
react to API deprecation? The case of a Smalltalk ecosystem,” in
Proceedings of the 20th International Symposium on the Foundations of
Software Engineering (FSE’12), 2012, pp. 1–11.

[4] A. A. Sawant, R. Robbes, and A. Bacchelli, “To react, or not to
react: Patterns of reaction to API deprecation,” Empirical Software
Engineering, vol. 24, no. 6, pp. 3824–3870, 2019.

[5] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Char-
acterising deprecated android APIs,” in Proceedings of the 15th
International Conference on Mining Software Repositories (MSR’18),
2018, pp. 254–264.

[6] A. Hora, R. Robbes, M. T. Valente, N. Anquetil, A. Etien, and
S. Ducasse, “How do developers react to API evolution? A large-
scale empirical study,” Software Quality Journal, vol. 26, no. 1, pp.
161–191, 2018.

[7] A. A. Sawant, G. Huang, G. Vilen, S. Stojkovski, and A. Bacchelli,
“Why are features deprecated? An investigation into the motiva-
tion behind deprecation,” in Proceedings of the 34th International
Conference on Software Maintenance and Evolution (ICSME’18), 2018,
pp. 13–24.

[8] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do developers
deprecate APIs with replacement messages? A large-scale analysis
on java systems,” in Proceedings of the 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER’16), 2016,
pp. 360–369.

[9] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics
of the JavaScript package ecosystem,” in Proceedings of the 13th
International Workshop on Mining Software Repositories (MSR’16),
2016, pp. 351–361.

[10] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and
evolution of package dependency networks,” in Proceedings of the
14th International Working Conference on Mining Software Repositories
(MSR’17), 2017, pp. 102–112.

[11] A. Decan and T. Mens, “What do package dependencies tell us
about semantic versioning?” IEEE Transactions on Software Engi-
neering, pp. 1–15, 2019.

[12] F. R. Cogo, G. A. Oliva, and A. E. Hassan, “An empirical study
of dependency downgrades in the npm ecosystem,” IEEE Transac-
tions on Software Engineering, 2019, preprint.

[13] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to
deprecation of clients of 4+1 popular java APIs and the JDK,”
Empirical Software Engineering, vol. 23, no. 4, pp. 2158–2197, 2018.

[14] A. Decan, T. Mens, and E. Constantinou, “On the evolution of
technical lag in the npm package dependency network,” in Pro-
ceedings of the 34th International Conference on Software Maintenance
and Evolution (ICSME’18), 2018, pp. 404–414.

[15] A. Zerouali, T. Mens, J. Gonzalez-Barahona, A. Decan, E. Con-
stantinou, and G. Robles, “A formal framework for measuring
technical lag in component repositories and its application to
npm,” Journal of Software: Evolution and Process, 2019.

[16] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in soft-
ware engineering research: A critical review and guidelines,” in
Proceedings of the 38th International Conference on Software Engineer-
ing (ICSE’16), 2016, pp. 120–131.

[17] I. Samoladas, L. Angelis, and I. Stamelos, “Survival analysis on
the duration of open source projects,” Information and Software
Technology, vol. 52, no. 9, pp. 902–922, 2010.

[18] J. Romano, J. Kromrey, J. Coraggio, and J. Skowronek, “Appro-
priate statistics for ordinal level data: Should we really be using
t-test and Cohen’s d for evaluating group differences on the NSSE
and other surveys?” in Annual Meeting of the Florida Association of
Institutional Research, 2006.

[19] J. Henkel and A. Diwan, “Catchup! Capturing and replaying
refactorings to support API evolution,” in Proceedings of the 27th
International Conference on Software Engineering (ICSE’05)., 2005, pp.
274–283.

[20] D. Ko, K. Ma, S. Park, S. Kim, D. Kim, and Y. L. Traon, “API
document quality for resolving deprecated APIs,” in Proceedings
of the 21st Asia-Pacific Software Engineering Conference (APSEC’14),
vol. 2, 2014, pp. 27–30.

[21] R. Nascimento, A. Brito, A. Hora, and E. Figueiredo, “Javascript
API deprecation in the wild: A first assessment,” in Proceedings of
the 27th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER’2020), 2020.

[22] A. Mirian, N. Bhagat, C. Sadowski, A. Porter Felt, S. Savage,
and G. M. Voelker, “Web feature deprecation: A case study for
Chrome,” in Proceedings of the 41st International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP’19),
2019, pp. 302–311.

[23] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic version-
ing versus breaking changes: A study of the Maven repository,”
in Proceedings of the 14th International Working Conference on Source
Code Analysis and Manipulation (SCAM’14), 2014, pp. 215–224.

[24] A. Decan, T. Mens, and E. Constantinou, “On the impact of
security vulnerabilities in the npm package dependency network,”
in Proceedings of the 15th International Conference on Mining Software
Repositories (MSR’18), 2018, p. 181–191.

Filipe R. Cogo is a Software Engineering Re-
searcher at Huawei, Canada. His research fo-
cuses on empirical software engineering and
mining software repositories. He received his
BSc and MSc in Computer Science from Univer-
sidade Estadual de Maringá (UEM), Brazil, and
his PhD from Queen’s University, Canada.

Gustavo A. Oliva is Research Fellow at Queen’s
University in Canada under the supervision of
professor Dr. Ahmed Hassan. His research fo-
cuses on understanding the rationale of software
changes and their impact on Software Main-
tenance and Evolution. As such, his studies
typically involve Mining Software Repositories
(MSR) and applying static code analysis, evo-
lutionary code analysis, and statistical learning
techniques. Gustavo received his MSc and PhD
from the University of São Paulo (USP) in Brazil

under the supervision of professor Dr. Marco Aurélio Gerosa.

Ahmed E. Hassan is an IEEE Fellow, an
ACM SIGSOFT Influential Educator, an NSERC
Steacie Fellow, the Canada Research Chair
(CRC) in Software Analytics, and the NSER-
C/BlackBerry Software Engineering Chair at the
School of Computing at Queen’s University,
Canada. His research interests include mining
software repositories, empirical software engi-
neering, load testing, and log mining. He re-
ceived a PhD in Computer Science from the
University of Waterloo. He spearheaded the cre-

ation of the Mining Software Repositories (MSR) conference and its
research community. He also serves/d on the editorial boards of
IEEE Transactions on Software Engineering, Springer Journal of Em-
pirical Software Engineering, and PeerJ Computer Science. Contact
ahmed@cs.queensu.ca. More information at: http://sail.cs.queensu.ca.

http://sail.cs.queensu.ca

16

APPENDIX A
DATA COLLECTION

In this section, we describe our data collection method.
Figure 7 depicts an overview of the method. Three main
steps are performed: collect package metadata (Section A.1),
analyze package releases (Section A.2), and analyze package
dependencies (Section A.3). In the following, we discuss
each of these steps.

Obtain
package.json

files

Collect package metadata

npm

Analyze package dependencies

Select latest
client release
dependencies

Resolve
providers
release

RQ1: How often are releases
deprecated?

List of
6,178,019

dependencies

RQ2: How are deprecated
releases adopted by client

packages?

Analyze package releases

Sort adjacent
releases

Determine
version

number level
change

List of
7,829,362
releases

List of 976,631
package.json

files

Fig. 7: An overview of our data collection method.

A.1 Collect package metadata
In this step, we collect the metadata of npm packages from
the package.json files (see Section 2.1 for an explanation
of the package.json file).

Obtain package.json files: We obtained all
package.json files that were stored in the npm registry
as of May, 2019. The package.json file of a given
package P contains release-related metadata for all releases
of P . The release-related metadata include the release
version number, the timestamp at which the release was
published, the dependencies that are set in the release (i.e.,
the provider package name and the respective versioning
statement), and the deprecation message in case the release
is deprecated. The output of this procedure is a list of
976,631 package.json files.

When the release of a package P is deprecated, the
package.json file of P contains a deprecated field that
stores the deprecation message that is associated to that
release (in contrast, non-deprecated releases do not have
such a field). We observed that 8% of all deprecated releases
have the “False” string as a deprecation message. After
performing a manual analysis (see Section 5 for further
details about this analysis), we decided to classify such
releases as non-deprecated. Also, 1% of the deprecated
releases have an empty deprecation message. According to
the npm documentation on deprecation,33 a developer can
remove the deprecation of a release by setting the depreca-
tion message to an empty string. Therefore, releases whose

deprecation message is an empty string were classified as
non-deprecated.

A.2 Analyze package releases
In this step, we sort the adjacent package releases and
determine how the version numbers change between two
adjacent releases (e.g., whether the latter release is a major,
minor, or patch release). See Section 2.1 for a definition of
the release version levels.
Sort adjacent releases: We sort the releases of a package
according to a branch-based ordering (in contrast with a
chronological- or numerical-based ordering). The motiva-
tion for using a branch-based ordering is the adoption of
parallel development branches by some packages, for which
chronologically interleaved releases are published (e.g., re-
lease 1.2.3, a patch for release 1.2.2, being published after
the existence of release 2.0.0). With a chronological-based
ordering, release 2.0.0 would be considered the predecessor
of release 1.2.3, which is incongruous from the numerical
point of view. Similarly, with a numerical-based ordering,
release 1.2.3 would be considered the predecessor of release
2.0.0, which is incongruous from the chronological point
of view (after all, release 1.2.3 was published after release
2.0.0). A branch-based ordering schema allows a release to
be considered the predecessor of more than one release.
In our example, release 1.2.2 would be considered the
predecessor of both releases 1.2.3 and 2.0.0. More details
about the branch-based ordering algorithm can be found in
our prior work [12].
Determine version level change: After sorting the releases
of a package according to our branch-based ordering, we
analyze how the version level changes between two adjacent
releases. For each pair of adjacent releases, we classify the
version level change into a major, minor, or patch release.
For example, if release 1.2.2 is considered the predecessor
of release 2.0.0, then release 2.0.0 is classified as a major
release. Similarly, if release 1.2.2 is considered the predeces-
sor of release 1.2.3, then release 1.2.3 is classified as a patch
release. The same logic applies to minor releases. The output
of this procedure is a list of 7,829,364 release changes.

A.3 Analyze package dependencies
In this step, we select a subset of all dependencies, namely
the dependencies that are set in the latest client release. We
also resolve the release of the providers that are used by
each client package (see Section 2.1).
Select latest client release dependencies: The date at which
a provider package release was deprecated is not available
in the npm registry. This limitation in the npm data pre-
vents an analysis about the adoption history of deprecated
releases by client packages. For example, Figure 8 depicts a
scenario in which the provider release is deprecated after
it is adopted by a client package. In such case, we can
only correctly assume that the client package is using a
deprecated provider release at our data collection date (since
the deprecation date is unknown). Therefore, we select only
the latest client release (i.e., the current client release at our
data collection date) to analyze how deprecated provider
releases are adopted by client packages.

17

Provider
release

Client release
(adoption date)

Deprecation of
provider release

Data
collection

Time

Incorrect assumption of
deprecated release adoption

Correct assumption of
deprecated release adoption

Fig. 8: Illustration of a scenario in which the provider release
is deprecated after it is adopted by the client package.

Resolve providers release: We resolve the release of the
providers that are used in the latest release of each client
package. For the latest release of each client package, we
parse the used versioning statements according to the gram-
mar provided by npm. The resolved release is the latest
provider release (at the time of the client release) that is
satisfied by the versioning statement. For instance, suppose
that a client package C , in its 2.0.0 release, sets a depen-
dency using the versioning statement “P: > 1.2.3”. In this
case, the resolved provider release will be the latest release
of P (the provider package) that is greater or equal 1.2.3
and that is published before the client package release 2.0.0.
Invalid versioning statements or versioning statements that
do not satisfy any existing provider release are ignored. The
output of this procedure is a list of 6,178,019 dependencies
that are set in the latest client release with the respective
resolved release of each provider.

: Data collection summary

• Data collection day: May 5th, 2019.
• Data source: the npm registry.
• Collected data: package.json files, from which
7,829,362 releases and 6,178,019 dependencies are ex-
tracted and analyzed.

APPENDIX B
CONTENT OF DEPRECATION MESSAGES

Documentation is an important aspect of deprecation. With
proper deprecation messages, client packages can under-
stand the reason for the deprecation and evaluate the risk
of adopting a given deprecated release. Furthermore, it is
important that deprecation messages report the replacement
packages and releases, therefore client packages can per-
form an easier migration.

We manually analyzed a statistically representative sam-
ple (95% confidence level, with ±5% confidence interval)
of the deprecation messages used by npm packages. We
sampled a total of 381 out of the 44,112 unique depreca-
tion messages used by different packages. The performed
analysis resulted in a categorization of the rationale behind
the deprecation of a release, as well as an estimate of the
proportion of deprecation messages that report a replace-
ment package or release. We performed an open coding
[16] to categorize the rationale behind release-level depre-
cation. We also classify the deprecation messages between
messages that refer to a deprecated package (e.g., “This
package is no longer supported”) from messages that refer
to a specific release of the deprecated package (e.g., “This
version has a bug. Use version 1.0.1 instead”). We perform
such a classification to calculate how often each identified

rationale is associated with the deprecation of all releases of
a package (full deprecation), in contrast to the deprecation of
a specific release of a package (partial deprecation). Finally,
we calculate how often a deprecation message reports a
replacement package or a replacement release.

Almost two-thirds (64%) of the deprecation messages
report the rationale behind the deprecation of a package or
release. This result suggests that, when installing a depre-
cated package or release, client packages in many cases will
be able to evaluate the risk of adopting a deprecated release.
From the deprecation messages that report the rationale
behind the deprecation, 86% are a customized message
(i.e., they are different from the standard message that is
provided by npm).34 This latter observation suggests that
the typical rationale for the deprecation of a package or
release goes far beyond the rationale stated in the standard
message (which is “Package no longer supported. Contact sup-
port@npmjs.com for more info.” at the time this paper was
written).

We also note that a total of 8% of all deprecation mes-
sages are the string “False”. To understand the usage of
the “False” string as a deprecation message, we manually
analyzed the revisions (i.e., the history of versions) of the
package.json files from packages with such deprecation
message. We identified that some packages have the “False”
deprecation messages since its creation, having never been
in fact deprecated. We hypothesize that some developers
might not understand the meaning of the deprecated
field in the package.json file. In such cases, the devel-
oper manually edit the package.json file and set the
deprecated field as “False”, with the intent of communi-
cating that the release is not deprecated. This result suggests
that the deprecation mechanism is not intuitive, leading
some package developers to misunderstand how the mech-
anism works.

We identified five rationales for the deprecation of a
package or release: withdrawal (43%), supersession (37%),
defect (13%), test (6%), and incompatibility (1%). Each
category is described below:

• Rationale 1) Withdrawal: The deprecation message indi-
cates that the package or release was deprecated because its
development was terminated. However, the package is left
on the registry, such that the actual client packages are not
affected. An analysis of such deprecation messages shows
that withdrawals occur for different reasons. The following
deprecation messages indicate that the withdrawal might
occur because the package/release is no longer maintained
in npm:

“This module is no longer maintained.” [deprecation
message of package kilt],
“This project is no longer a npm-package. Checkt [sic]
our github at https://github.com/Server-Eye/bucket-
collector” [deprecation message of package
bucket-collector],
“Package unsupported. Please use the rws-compile-sass
package instead.” [deprecation message of package
custom-rws-compile-sass]

The following deprecation messages indicate that the with-
drawal might occur because the package/release is a de-

18

pendency that is no longer required (e.g., its features were
incorporated into another package/release):

“Deprecated as it’s now the default reporter in ESLint.”
[deprecation message of package eslint-stylish],

“This is a stub types definition. p-limit provides its own
type definitions, so you do not need this installed.” [depre-
cation message of package @types/p-limit],
“No longer needed for grunt-vows-runner. Use grunt-
vows-runner instead.” [deprecation message of package
vows-reporters]

Also, as shown in the following deprecation messages,
the withdrawal might occur because the package/release
became obsolete.

“Very old and unmaintained module. Don’t recommend
using this anymore.” [deprecation message of package
grunt-copy-mate],
“Since Catberry@4 this package is not supported due to
architecture changes.” [deprecation message of package
catberry-lazy-loader],
“Do not use this package to update globally installed
CLIs anymore.” [deprecation message of package
npm-update-module]

• Rationale 2) Supersession: The deprecation message indi-
cates that the deprecated package or release was replaced
by another one. The following deprecation messages indi-
cate that the deprecated release was replaced by a newer,
improved release:

“Version 1.x branch of Iridium has been superseded by
v2.x.” [deprecation message of package iridium],
“Still using old declarative binding syntax? Please, update
to its latest version: 0.5.102.” [deprecation message of
package pacem],
“API changed: then() to on(), catch() to onerror(), finally()
to oncancel().” [deprecation message of package rnr]

In addition, the following deprecation messages indicate
that the deprecated package features were incorporated into
another package:

“This has been merged back into express-batch, which you
should now use.” [deprecation message of package
express-batch-deep],
“This module is now a part of babel-preset-
steelbrain@2.x.x.” [deprecation message of package
babel-preset-steelbrain-async],
“@appnest/focus-trap has moved to @a11y/focus-trap.
Please uninstall this package and install @a11y/focus-
trap instead.” [deprecation message of package
@appnest/focus-trap],
“All Pivotal UI components & styles have been moved
to the ’pivotal-ui’ package. Install that package for all
future updates.” [deprecation message of package
pui-react-checkbox],
“This library has been renamed to flum. Please install flum
to get the lastest [sic] version.” [deprecation message of
package react-basic-forms]

• Rationale 3) Defect: The deprecation message indicates
that the package or release was deprecated due to the
presence of a known defect. An analysis of such deprecation
messages shows that the source of defect can be either in the
source code or in the deployed artifact (built package). The
following deprecation messages indicate that the package or
release was deprecated due to a defect in the source code:

“This patch version has breaking changes. Please use
0.23.0 instead.” [deprecation message of package
@devexperts/react-kit],
“Buggy implementation of class mixins.” [deprecation
message of package @zenparsing/skert],
“windows posix socket bug” [deprecation message of
package node-ipc],
“Sending Blob body using XMLHttpRequest polyfill
may cause incorrect result with this version, please
use 0.9.1 instead.” [deprecation message of package
react-native-fetch-blob]

Also, the following deprecation messages indicate that the
package or release was deprecated due to a defect in the
built package:

“wrong build.” [deprecation message of package
dc-webapi],
“critical dir missing.” [deprecation message of package
angular-html5],
“incorrect main field in package.json, fixed in 1.0.1” [dep-
recation message of package eslint-config-r29],
“error in version number.” [deprecation message of
package react-native-aerogear-ups],
“Main script path incorrect. Only ES6 module is working.”
[deprecation message of package defy]

• Rationale 4) Test: The deprecation message indicates that
the deprecation occurs because the package or release was
published for test purposes or by accident:

“This is package is just for testing. don’t install it.” [dep-
recation message of package reactmanishbot],
“Not a usable package.” [deprecation message of pack-
age glarce-combo],
“not meant to be published sorry.” [deprecation message
of package chat-engine]

The following deprecation messages indicate that pre-
releases, which are used for in-field testing, are also dep-
recated:

“Development versions have been deprecated.” [depreca-
tion message of package @servicensw/page],
“outdated prerelease.” [deprecation message of package
@dandi/common],
“Use version 1.0.0, this was a prerelease and is no
longer maintained.” [deprecation message of package
vue-cli-plugin-git-describe],
“still in beta.” [deprecation message of package
chat-engine]

• Rationale 5) Incompatibility: The deprecation message in-
dicates that the package or release was deprecated due to
incompatibility. The following deprecation messages indi-

19

cate incompatibility between client and provider packages
(dependency incompatibility):

“Old versions not compatible with sqb >0.7.0.” [depreca-
tion message of package sqb-serializer-oracle]

Also, the following deprecation messages indicate incom-
patibility between the package and some specific browser
version:

“Incompatible with modern browsers.” [deprecation mes-
sage of package yahoo-shapes]

Limitations. To understand the rationales behind the depre-
cation of a release, we manually analyzed a representative
sample of unique deprecation messages. We choose to sam-
ple unique deprecation messages instead of unique deprecated
releases because each package has a different number of
releases and the same package can deprecate a range of
releases (perhaps all releases) with the same message. There-
fore, by sampling unique deprecation messages instead of
unique deprecated releases, we are avoiding a selection
bias towards packages with a large number of deprecated
releases.

Our sample size ensures a confidence level of 95% and a
confidence interval of ±5%. Therefore, the reported preva-
lence for each rationale is bound to the properties of such
sample. Also, we might have not sampled messages that
refer to rationales that rarely appear. For example, prior
studies indicate that vulnerabilities can potentially drive a
deprecation [24], however our sample did not include any
deprecation messages that explicitly refers to a vulnerability
(although vulnerabilities would be part of the defect cate-
gory).

APPENDIX C
TOP 40 POPULAR DEPRECATED RELEASES

In this appendix section, we provide information regarding
the popular (top-40 frequently used) deprecated releases
(see Section 4.2 to more details about the popular dep-
recated releases). Table 6 shows the popular deprecated
releases in npm at the time of our data collection. The
column “Replacement package or release” shows the name
of the replacement package, when the deprecation message
provides a replacement package (e.g., babel-preset-env),
or the replacement release, when the deprecation message
provides a replacement release (e.g., gulp@>= 4).

20

TABLE 6: Popular deprecated releases and their replacement package or release.

Package name Deprecated release Replacement package or release Deprecation date estimate Evidence for date estimate

babel-preset-es2015 6.24.1, 6.18.0, 6.9.0, 6.6.0,
6.22.0, 6.3.13, 6.14.0, 6.24.0,
6.16.0, 6.13.2, 6.5.0

babel-preset-env December, 2016 Documentation reports35 that deprecation of babel-
preset-es2015 occurred after release 1.0.0 of babel-
preset-env (December 9, 2016).

istanbul 0.4.5, 0.3.22, 0.4.2, 0.4.3, 0.4.4 nyc May, 2015 Istanbul and nyc packages were merged when nyc
released version 2.0.0.36

gulp-util 3.0.8, 3.0.7, 3.0.6 vinyl, replace-ext, ansi-colors, date-
format, fancy-log, lodash.template,
minimist, beeper, through2, multip-
ipe, list-stream, plugin-error

December, 2017 Deprecation message reports documentation with
deprecation date information.37

babel 6.23.0, 6.5.2 babel-cli February, 2017 Deprecation message reports that deprecation oc-
curs on release “6.x”. We assume the date of the
latest release on 6.x branch (6.23.0).

react-dom 16.2.0 react-dom@>= 16.2.1 August, 2018 Vulnerability that drove deprecation was reported
on August 01, 2018.38

core-js 2.4.1, 2.5.1 core-js@latest or core-js@>= 3 February, 2019 Deprecation message reports that deprecation oc-
curs at release 2.6.5.

coffee-script 1.10.0, 1.6.3, 1.7.1, 1.8.0 coffeescript February, 2017 Latest package release and release 1.0.0 of replace-
ment package.

react-dom 16.4.1 react-dom@>= 16.4.2 August, 2018 Vulnerability that drove deprecation was reported
on August 01, 2018.39

core-js 2.5.7 core-js@latest or core-js@>= 3 February, 2019 Deprecation message reports that deprecation oc-
curs at release 2.6.5

jade 1.11.0 pug April, 2016 jade becomes pug on version 2.0.0, released on
April 1, 2016.40,41

react-dom 16.3.2 react-dom@16.3.3 August, 2018 Vulnerability that drove deprecation was reported
on August 01, 2018.42

validate-commit-msg 2.14.0 commitlint October, 2017 Latest package release and release 4.2.0 (first re-
lease) of replacement package.

babel-preset-es2017 6.24.1 babel-preset-env September, 2017 Latest package release.
node-uuid 1.4.7 uuid March, 2017 Latest package release.
core-js 2.5.3 core-js@latest or core-js@>= 3 February, 2019 Deprecation message reports that deprecation oc-

curs at release 2.6.5.
rollup-watch 4.3.1 rollup August, 2017 Documentation reports that rollup-watch package

was deprecated at release 0.46.0 of rollup package
(August 11, 2017).43

isparta-loader 2.0.0 istanbul-instrumenter-loader November, 2011 Latest package release.
gulp-minify-css 1.2.4 gulp-clean-css December, 2015 Package has deprecation commit.44

react-dom 16.0.0 react-dom@>= 16.0.1 August, 2018 Vulnerability that drove deprecation was reported
on August 01, 2018.45

21

APPENDIX D
NOTES

1https://insights.stackoverflow.com/survey/2019#technology
2https://bit.ly/2wKO3se. For the final version of the paper, the

contents will be made available on GitHub.
3https://semver.org
4https://docs.npmjs.com/misc/semver#advanced-range-syntax
5https://docs.npmjs.com/misc/semver#range-grammar
6https://docs.npmjs.com/cli/deprecate
7https://docs.npmjs.com/cli/install
8https://stackoverflow.com/questions/36329944/how-to-

determine-path-to-deep-outdated-deprecated-packages-npm
9https://stackoverflow.com/questions/35236735/npm-warn-

message-about-deprecated-package
10https://docs.npmjs.com/cli/outdated.html
11https://github.com/nodejs/package-maintenance/issues/93
12https://stackoverflow.com/questions/60735307/how-to-resole-

this-npm-installation-problem
13https://stackoverflow.com/questions/34840153/npm-

deprecated-warnings-do-i-need-to-update-something
14https://stackoverflow.com/questions/35236735/npm-warn-

message-about-deprecated-package
15https://stackoverflow.com/questions/61174805/problems-trying-

to-install-using-npm-core-js3-is-no-longer-maintained
16https://stackoverflow.com/questions/38889519/how-to-deal-

with-deprecation-warnings-from-npm
17https://github.com/npm/rfcs/blob/latest/accepted/0009-

package-overrides.md
18http://www.modulecounts.com
19https://github.com/rust-lang/crates.io/issues/549
20https://github.com/rust-lang/crates.io/issues/542
21https://github.com/rust-lang/crates.io/issues/704
22https://github.com/npm/npm/issues/15536
23https://github.com/npm/npm/issues/18023

24https://stackoverflow.com/questions/56634474/npm-how-to-
update-upgrade-transitive-dependencies

25https://stackoverflow.com/questions/15806152/how-do-i-
override-nested-npm-dependency-versions

26https://github.com/npm/rfcs/issues/155
27https://github.com/npm/rfcs/blob/latest/accepted/0019-

remove-update-depth-option.md
28https://github.com/npm/rfcs/blob/latest/accepted/0027-

remove-depth-outdated.md
29https://github.com/npm/rfcs/blob/latest/accepted/0006-

shallow-updates.md
30https://devblogs.microsoft.com/nuget/deprecating-packages-on-

nuget-org/
31https://www.tomasvotruba.com/blog/2017/07/03/how-to-

deprecate-php-package-without-leaving-anyone-behind/
32https://api.rubyonrails.org/classes/ActiveSupport/Deprecation.

html
33https://docs.npmjs.com/deprecating-and-undeprecating-

packages-or-package-versions
34https://docs.npmjs.com/deprecating-and-undeprecating-

packages-or-package-versions
35https://github.com/babel/babel-preset-env/pull/65
36https://github.com/istanbuljs/nyc/issues/524#issuecomment-

280979372
37https://medium.com/gulpjs/gulp-util-ca3b1f9f9ac5
38https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html
39https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html
40https://www.npmjs.com/package/pug
41https://github.com/pugjs/pug/commit/

ab26404b880a1db0b44269354d11d9c55ab4862f
42https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html
43https://github.com/rollup/rollup-watch
44https://github.com/scniro/gulp-clean-css/commit/

438a4faf27f134c30e3e94024a83951c21fdc5cc
45https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html

https://insights.stackoverflow.com/survey/2019#technology
https://bit.ly/2wKO3se
https://semver.org
https://docs.npmjs.com/misc/semver#advanced-range-syntax
https://docs.npmjs.com/misc/semver#range-grammar
https://docs.npmjs.com/cli/deprecate
https://docs.npmjs.com/cli/install
https://stackoverflow.com/questions/36329944/how-to-determine-path-to-deep-outdated-deprecated-packages-npm
https://stackoverflow.com/questions/36329944/how-to-determine-path-to-deep-outdated-deprecated-packages-npm
https://stackoverflow.com/questions/35236735/npm-warn-message-about-deprecated-package
https://stackoverflow.com/questions/35236735/npm-warn-message-about-deprecated-package
https://docs.npmjs.com/cli/outdated.html
https://github.com/nodejs/package-maintenance/issues/93
https://stackoverflow.com/questions/60735307/how-to-resole-this-npm-installation-problem
https://stackoverflow.com/questions/60735307/how-to-resole-this-npm-installation-problem
https://stackoverflow.com/questions/34840153/npm-deprecated-warnings-do-i-need-to-update-something
https://stackoverflow.com/questions/34840153/npm-deprecated-warnings-do-i-need-to-update-something
https://stackoverflow.com/questions/35236735/npm-warn-message-about-deprecated-package
https://stackoverflow.com/questions/35236735/npm-warn-message-about-deprecated-package
https://stackoverflow.com/questions/61174805/problems-trying-to-install-using-npm-core-js3-is-no-longer-maintained
https://stackoverflow.com/questions/61174805/problems-trying-to-install-using-npm-core-js3-is-no-longer-maintained
https://stackoverflow.com/questions/38889519/how-to-deal-with-deprecation-warnings-from-npm
https://stackoverflow.com/questions/38889519/how-to-deal-with-deprecation-warnings-from-npm
https://github.com/npm/rfcs/blob/latest/accepted/0009-package-overrides.md
https://github.com/npm/rfcs/blob/latest/accepted/0009-package-overrides.md
http://www.modulecounts.com
https://github.com/rust-lang/crates.io/issues/549
https://github.com/rust-lang/crates.io/issues/542
https://github.com/rust-lang/crates.io/issues/704
https://github.com/npm/npm/issues/15536
https://github.com/npm/npm/issues/18023
https://stackoverflow.com/questions/56634474/npm-how-to-update-upgrade-transitive-dependencies
https://stackoverflow.com/questions/56634474/npm-how-to-update-upgrade-transitive-dependencies
https://stackoverflow.com/questions/15806152/how-do-i-override-nested-npm-dependency-versions
https://stackoverflow.com/questions/15806152/how-do-i-override-nested-npm-dependency-versions
https://github.com/npm/rfcs/issues/155
https://github.com/npm/rfcs/blob/latest/accepted/0019-remove-update-depth-option.md
https://github.com/npm/rfcs/blob/latest/accepted/0019-remove-update-depth-option.md
https://github.com/npm/rfcs/blob/latest/accepted/0027-remove-depth-outdated.md
https://github.com/npm/rfcs/blob/latest/accepted/0027-remove-depth-outdated.md
https://github.com/npm/rfcs/blob/latest/accepted/0006-shallow-updates.md
https://github.com/npm/rfcs/blob/latest/accepted/0006-shallow-updates.md
https://devblogs.microsoft.com/nuget/deprecating-packages-on-nuget-org/
https://devblogs.microsoft.com/nuget/deprecating-packages-on-nuget-org/
https://www.tomasvotruba.com/blog/2017/07/03/how-to-deprecate-php-package-without-leaving-anyone-behind/
https://www.tomasvotruba.com/blog/2017/07/03/how-to-deprecate-php-package-without-leaving-anyone-behind/
https://api.rubyonrails.org/classes/ActiveSupport/Deprecation.html
https://api.rubyonrails.org/classes/ActiveSupport/Deprecation.html
https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-versions
https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-versions
https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-versions
https://docs.npmjs.com/deprecating-and-undeprecating-packages-or-package-versions
https://github.com/babel/babel-preset-env/pull/65
https://github.com/istanbuljs/nyc/issues/524#issuecomment-280979372
https://github.com/istanbuljs/nyc/issues/524#issuecomment-280979372
https://medium.com/gulpjs/gulp-util-ca3b1f9f9ac5
https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html
https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html
https://www.npmjs.com/package/pug
https://github.com/pugjs/pug/commit/ab26404b880a1db0b44269354d11d9c55ab4862f
https://github.com/pugjs/pug/commit/ab26404b880a1db0b44269354d11d9c55ab4862f
https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html
https://github.com/rollup/rollup-watch
https://github.com/scniro/gulp-clean-css/commit/438a4faf27f134c30e3e94024a83951c21fdc5cc
https://github.com/scniro/gulp-clean-css/commit/438a4faf27f134c30e3e94024a83951c21fdc5cc
https://reactjs.org/blog/2018/08/01/react-v-16-4-2.html

	Introduction
	Background
	Dependency management in npm
	The deprecation mechanism of npm

	Data Collection
	Results
	RQ1: How often are releases deprecated?
	RQ2: How do client packages adopt deprecated releases?

	Discussion
	Improving the deprecation mechanism
	Assessing the impact of deprecated releases

	Related Work
	Threats to Validity
	Conclusion
	Biographies
	Filipe R. Cogo
	Gustavo A. Oliva
	Ahmed E. Hassan

	Appendix A: Data Collection
	Collect package metadata
	Analyze package releases
	Analyze package dependencies

	Appendix B: Content of Deprecation Messages
	Appendix C: Top 40 popular deprecated releases
	Appendix D: Notes

