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A B S T R A C T

Context: IR-based bug localization is a classifier that assists developers in locating buggy source code entities
(e.g., files and methods) based on the content of a bug report. Such IR-based classifiers have various parameters
that can be configured differently (e.g., the choice of entity representation).
Objective: In this paper, we investigate the impact of the choice of the IR-based classifier configuration on the
top-k performance and the required effort to examine source code entities before locating a bug at the method
level.
Method: We execute a large space of classifier configuration, 3172 in total, on 5266 bug reports of two software
systems, i.e., Eclipse and Mozilla.
Results: We find that (1) the choice of classifier configuration impacts the top-k performance from 0.44% to 36%
and the required effort from 4395 to 50,000 LOC; (2) classifier configurations with similar top-k performance
might require different efforts; (3) VSM achieves both the best top-k performance and the least required effort for
method-level bug localization; (4) the likelihood of randomly picking a configuration that performs within 20%
of the best top-k classifier configuration is on average 5.4% and that of the least effort is on average 1%; (5)
configurations related to the entity representation of the analyzed data have the most impact on both the top-k
performance and the required effort; and (6) the most efficient classifier configuration obtained at the method-
level can also be used at the file-level (and vice versa).
Conclusion: Our results lead us to conclude that configuration has a large impact on both the top-k performance
and the required effort for method-level bug localization, suggesting that the IR-based configuration settings
should be carefully selected and the required effort metric should be included in future bug localization studies.

1. Introduction

Developers spend 50% of their programming time debugging the
source code in an unfamiliar software system [1]. Debugging mainly
includes locating buggy source code entities and fixing them. Estab-
lishing a good strategy to help developers quickly locate buggy source
code entities considerably reduces developers’ effort and debugging
time. To this end, several studies propose the use of Information Re-
trieval (IR) based classifiers for bug localization [2–15].

IR-based classifiers have different configuration parameters. For
example, source code entities can be represented using only identifiers
or using comments and identifiers. Recent studies suggest that such

configuration parameters may impact the top-k performance of IR-
based bug localization [16,17]. In a recent study, Thomas et al. [2]
show that the choice of classifier configurations impacts the perfor-
mance of IR-based classifiers at the file-level granularity. In addition to
file-level, IR-based classifiers are often used to locate bugs at the
method-level [18–24]. Indeed, our recent work shows that method-
level bug localization requires less effort to locate bugs than file-level
bug localization [25]. However, little is known about the impact that
the choice of a classifier configuration has on classifiers that are used to
locate bugs at the method-level.

In this paper, we partially replicate and extend Thomas et al. [2] to
investigate the impact of IR-based classifier configuration on the top-k
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performance and the required effort to examine source code entities
(e.g., files and methods) before locating a bug at the method level.
Moreover, we also analyze the classifier sensitivity to parameter value
changes. Finally, we investigate whether the most efficient classifier
configuration for file-level bug localization is also the most efficient at
the method-level (and vice versa). In total, we explore a large space of
classifier configurations 3172 configurations. Through a case study of
5266 bug reports of two software systems (i.e., Eclipse and Mozilla), we
address the following research questions:

(RQ1) Can IR-based classifier configurations significantly impact
the top-k performance of method-level bug localization?The
choice of classifier configuration impacts the top-k performance
from 0.44% to 36%, indicating that using an inappropriate
configuration could result in poor top-k performance. Moreover,
there are only few classifier configurations that perform close to
the best performing configuration, indicating that finding the
best top-k configuration is difficult.

(RQ2) Can IR-based classifier configurations significantly impact
the required effort for method-level bug localization?The
required effort of the classifier configurations vary from 4395 to
50,000 LOC, indicating that using an inappropriate configura-
tion could result in wasted effort. Classifier configurations which
give similar top-k performance often require different amount of
effort, suggesting that practitioners should take into considera-
tion the effort that is required to locate bugs instead of simply
using the top-k metrics when comparing the performance of
classifier configurations.

(RQ3) Is the most efficient classifier configuration for method-
level bug localization also the most efficient configuration
for file-level bug localization (and vice versa)?The most ef-
ficient classifier configuration obtained at the method-level can
also be used at the file-level (and vice versa) without a sig-
nificant loss of top-kLOC performance.

Our results lead us to conclude that configuration has a large impact
on both the top-k performance and the required effort for method-level
bug localization. The results suggest that the IR-based configuration
settings should be carefully selected and the required effort metrics
should be included in future bug localization studies. Nonetheless, we
find that configurations related to the entity representation of the
analyzed data have the most impact on the top-k performance and the
required effort, suggesting that practitioners would benefit from gui-
dance on which configuration parameters matter the most.

1.1. Paper organization

The remainder of the paper is structured as follows. Section 2 in-
troduces Information Retreival (IR)-based Bug Localization. Section 3
motivates our research questions, while Section 4 describes our case
study design. The results of our case studies are presented in Section 5.
Threats to the validity of our study are disclosed in Section 6. Finally,
Section 7 draws conclusions.

2. IR-based bug localization

Bug localization is the task of identifying source code entities that
are relevant to a given bug report. In the literature, various approaches
that exploit information such as dynamic and textual information are
proposed in order to support bug localization. A comprehensive survey
of the approaches can be found in Dit et al. [26]. In this section, we
discuss approaches that exploit textual information using Information
Retrieval (IR) classifiers to locate source code entities that are relevant
to fix a bug.

In IR-based bug localization (see Fig. 1), a bug report is treated as a
query and source code entities are treated as a document corpus. A

source code entity is considered relevant if the entity indeed needs to be
modified to resolve the bug report, and irrelevant otherwise. A source
code entity could be defined at different granularity levels (e.g.,
package, file, or method). Prior studies use file [2,5–7,27], or method
[21–25] granularity levels.

File-level bug localization is well-studied using several popular IR
models such as Vector Space Model (VSM) [6], Latent Semantic In-
dexing (LSI) [23,24], and Latent Dirichlet Allocation (LDA) [23,24].
The results of the studies, however, cannot be generalized. For example,
Rao and Kak [6] state that VSM outperforms sophisticated classifiers
like LDA, while Lukins et al. [23,24] state that LDA outperforms LSI. As
noted in Thomas et al. [2], the differences are often due to the use of
different datasets, different evaluation metrics, and different classifier
configurations. The classifier configuration for IR-based bug localiza-
tion includes the choice of bug report representation, entity re-
presentation, preprocessing steps, and IR-classifier parameters. To
compare different IR-based classifiers, Thomas et al. [2] proposed a
framework with a large space of classifier configurations.
Thomas et al. [2]’s results show that the configuration of IR-based
classifiers impacts the performance of the IR-based bug localization at
the file level.

Method-level bug localization considers a relatively smaller
source code entities (i.e., methods) instead of file. Marcus et al. [18] use
LSI to identify the methods that are required to implement a task. The
results show that LSI provides better results than existing approaches at
that time, such as regular expressions and dependency graphs.
Marcus et al. [19] and Poshyvanyk et al. [20] combine LSI with a dy-
namic feature location approach called scenario-based probabilistic
ranking in order to locate methods relevant to a given task. Lu-
kins et al. [23,24] use Latent Dirichlet Allocation (LDA) techniques to
localize bugs at the method-level. Their study on Eclipse, Mozilla, and
Rhino shows that LDA-based approach is more effective than ap-
proaches using LSI. However, to evaluate their approach, they use only
322 bugs across 25 version of three systems (Eclipse, Mozilla, and
Rhino), which on average are less than 20 bugs per version.
Wang et al. [22] investigate the effectiveness of several IR classifiers on
method-level bug localization. The results of Wang et al. [22]’s study
show that older and simpler IR techniques, e.g., VSM, outperform more
recent IR techniques. In their study, however, they use only one clas-
sifier configuration. Hence, their results cannot be validated and gen-
eralized to other classifier configurations.

Our RQ1 revisits Thomas et al. [2]’s study at the method level.
Moreover, we investigate the difficulty of locating optimal configura-
tions and the impact of each parameter on the overall performance of a
classifier. Such sensitivity analysis of parameters provides us with a
better understanding of the difficulty of the problem of finding con-
figurations in practice.

Evaluation Metrics are used to assess the performance of different
classifiers in localizing bugs. Several studies use the top-k performance
metric to carry out such assessment [2,3,5–7,28]. The top-k perfor-
mance metric considers a bug to be localized if at least one relevant
source code entity is returned in the top-k ranked entities. Metrics such

IR-based
Bug 

Localization

Rank Source code

1 A.java

2 B.java

3 C.java

4 D.java

Entities where 
the bug should 

query

corpus

Bug Reports

Source Code
Entity

Fig. 1. An overview of IR-based bug localization.
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as Precision, Recall, Mean Average Precision (MAP), and Mean Re-
ciprocal Ranks (MRR) will not be used for our study, since practitioners
are primarily interested in the top-k suggested entities Guan et al. [29].

In contrast to recent studies of effort-aware bug prediction [30–32],
prior studies of bug localization have not explored the effort that is needed
to cope with irrelevant suggestions until a relevant entity is located.
Hence, our RQ2 explores this notion of effort as another dimension to
evaluate and compare classifiers for IR-based bug localization.

3. Research questions

The goal of our study is to better understand: (1) the impact of
classifier configurations on method-level bug localization and which
parameters have a large impact on the performance of IR-based clas-
sifiers; (2) the impact of classifier configurations on the required effort
to locate bugs at the method level and which parameters have a large
impact on the required effort of IR-based classifiers; and (3) whether
the most efficient classifier configuration found for file-level bug loca-
lization is also efficient at method-level (and vice versa).

To do so, we executed a large space of classifier configuration, 3172 in
total, on 5266 bug reports of two software systems, i.e., Eclipse andMozilla.
We define and present the rationale of our research questions below:

(RQ1) Can IR-based classifier configurations significantly im-
pact the top-k performance of method-level bug localization?

Motivation. Thomas et al. [2] showed that the choice of classifier
configuration impacts the top-k performance of file-level bug localiza-
tion. However, the impact of classifier configurations on method-level
bug localization and a comparison to file-level bug localization remains
largely unexplored. Besides, prior research has paid attention to iden-
tifying the ideal IR configuration. Lohar et al. [33] use a Genetic Al-
gorithm to identify the best IR configuration for traceability link re-
covery. Panichella et al. [34] use a Genetic Algorithm to determine the
best LDA configuration. Yet, little is known which parameters of IR-
based bug localization truly have the most impact on the top-k per-
formance. For example, the choice of preprocessing techniques might
have a larger impact than the choice of LDA configurations. Knowing
which parameters are influential indicators of the top-k performance
could help practitioners make effective use of their time when exploring
various parameters (e.g., not spending too much time to find the op-
timal LDA configurations).

(RQ2) Can IR-based classifier configurations significantly im-
pact the required effort for method-level bug localization?

Motivation. Traditionally, the performance of IR-based bug loca-
lization approaches is evaluated using the top-k performance metric.
However, the top-k performance metric does not take into considera-
tion the effort that is required to examine the entities that are ranked
before the first relevant source code entity Xu et al. [35]. The metric
assumes that the required effort to locate a relevant entity ranked first
and tenth are the same, which is not necessary true. While for a de-
veloper, the required effort is different due to the number of ranked
entities to be examined and their varying sizes. Yet, little is known
about the impact that classifier configuration has on the required effort
to locate the first buggy entity. Knowing the required effort provides us
a better understanding of the practicality of a classifier [31,36].

(RQ3) Is the most efficient classifier configuration for method-
level bug localization also the most efficient configuration for
file-level bug localization (and vice versa)?

Motivation. In RQ2, we investigate if the top-k performer requires
the least effort to locate bugs. Therefore, in addition to evaluating the
performance and the effort individually, investigating the most efficient
configuration is also necessary for practitioners [31,37]. An efficient
configuration is a configuration which gives the best top-k performance
with a limited amount of reviewing effort. Since traditional IR eva-
luation metrics (e.g., top-k performance) do not consider the required
effort [35], the most efficient configuration still remains unexplored.
Besides, different researchers conduct bug localization only at one
granularity level, i.e., file or method. Prior research finds that classifiers
for bug prediction that are designed to work well at one granularity
level do not often work well at another level [30,38,39]. Yet, little is
known about whether such performance variances hold for IR-based
bug localization at different granularity levels. RQ3 investigates if the
configuration found to be efficient at a granularity level will also be
efficient on the other granularity levels. Knowing the most efficient
configuration of bug localization would help practitioners choose the
configuration that performs best and requires the least effort.

4. Case study design

In this section, we provide a summary of the studied systems, and
our data extraction and analysis approaches.

4.1. Studied systems

In order to address our three research questions and establish the
validity and generalizability of our results, we conduct an empirical
study using two of the three software systems that are provided by
Thomas et al. [2] (i.e., Eclipse and Mozilla). The third system, Jazz, is a
proprietary system, and hence, was not available. Eclipse JDT is one of
the most popular integrated development environment (IDE), which is
mainly written in Java. Mozilla mailnews is a popular email client,
which is mainly written in C/C++. Tables 1 and 2 provide descriptive
statistics for the two studied systems. We used a total of 5266 bug re-
ports and 26 source code snapshots (as used in Thomas et al. [2]).

4.2. Data preparation

In order to produce the necessary datasets for our study, we first
need to prepare the data from the Bug Tracking Systems (BTS) of each
studied system. Next, we need to prepare a set of links between bug
reports and entities that were changed to resolve the corresponding
bugs to create the ground-truth data at the method level. Finally, we
need to prepare source code corpus at the method level from the
Version Control Systems (VCS) of each studied system. Fig. 2 provides
an overview of our data preparation approach, which is further divided
into the three steps that we describe below.

(DP-1) Bug report preparation. In IR-based bug localization, we
have to collect bug reports, which are treated as a query, and source
code entities, which are treated as a document corpus. For each studied
system, we obtain the raw bugs data and the source code snapshots at

Table 1
Studied systems.

Eclipse Mozilla
(JDT) (mailnews)

Domain IDE Web browser
Language Java C/C++/Java
Years considered 2002–2009 2002–2006
# Bug reports 3898 1368
Source code snapshots 16 10
# Source code files 1882–2559 319–332
# Source code methods 17,466–27,404 6656–7466
Source code corpus size 232–506 (KLOC) 173–193 (KLOC)
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the file-level from Thomas et al. [2].
(DP-2) Ground-truth data preparation. To create the ground-

truth data at the method-level, we need to establish a set of links be-
tween bug reports and the methods that were changed to resolve the
corresponding bugs. To identify the changed methods, we used the
information in the change messages of the Git commit log. Change
messages of the Git commit log contains the method names whose
content were changed in a given commit.

To identify a bug report in the Git commit log, we used an approach
similar to Fischer et al. [40], which is also used in Thomas et al. [2].
This approach parses the Git commit log messages and looks for mes-
sages with “fixed” and “bugs” keywords (e.g., “Fixed Bug #293777”). If
such a message is found, the approach will establish a link between the
change commit and a bug report using the identified bug ID.

To identify the changed methods’ names in the change messages, we
rely on the change information of the git log command. The change
information will show the changed methods’ names and lines where
method declarations occur. Fig. 3 shows a snippet of a Git commit log
for Eclipse JDT obtained using the command git log -p. This commit
log provides information about what is modified to resolve bug ID
293777.1 The line which starts with @@ in the log shows the name of the
method that is changed to fix the bug. As shown in Fig. 3, the method
recordInitializationStates of the file MethodScope.java
was fixed to resolve the bug ID 293777.

(DP-3) Source code preparation at the method-level. To build
the source code corpus at the method-level, we use an abstract syntax
tree (AST) to extract methods from source code files. In addition to
methods, source code files contain source code elements such as attri-
bute and header definitions. Hence, in order not to miss any informa-
tion which were in the files, we created a dummy method per file. The

dummy method for each file contains all statements in the file which do
not fall into the body of methods, e.g., attribute definitions. For the
Eclipse system, which is written in Java, we use the publicly available
JavaParser library.2 For the Mozilla system, which is written in C++,
we use a publicly available C++ method extractor based on regular
expressions.3

4.3. Classifier configuration framework

Table 3 show the summaries of the parameters and the corre-
sponding values that are used in the configuration of the classifiers. The
configurations are presented in Thomas et al. [2]. However, for the sake
of completeness and clarity, we present them briefly below.

For bug report representation, there are three values: the title of the
bug report only (A1); the description only (A2); and both the title and
description of the bug report (A3).

For source code entity representation, there are six values. The first
three parameters are based on the text of the source code entity itself:
the identifier names (B1); comments only (B2); and both identifiers and
comments (B3). The other two parameters are based on past bug report
(PBR) [7]; using all the PBRs of an entity (B4); and using just the 10
most recent PBRs of an entity (B5). Finally, we consider all possible
data for an entity: its identifier, comments, and all PBRs (B6).

There are three common preprocessing steps: splitting identifiers;
removing stop words; and stemming using the Porter stemming algo-
rithm. We tested a total of 8 possible preprocessing techniques (C0-C7).

There are two families of classifiers: IR-based classifiers and entity
metric-based classifiers. For IR-based classifiers, we consider Vector
Space Model (VSM), Latent Semantic Indexing (LSI), and Latent
Dirichlet Allocation (LDA) models.

VSM [41] is a simple algebraic model based on the term-document
matrix of a corpus. The rows of the matrix are represented by unique
terms collected from the corpus while the columns represent unique
documents. When a term is contained in a document, the intersection of
the term row and document column will hold the weight of the term,
otherwise zero. The similarity between two documents will increase as
the number of common terms increases.

The VSM model has two parameters: term weighting and similarity
score. For term weighting, we considered the tf-idf (D1) and sublinear
tf-idf (D2) weighting schemes, as well as the more basic Boolean (D3)
weighting scheme. tf-idf is computed as the product of the number of
occurences of a term in a document and inverse of the number of
documents containing the term. In sublinear tf-idf, the term frequency
is replaced with the logarithm of the term frequency. The Boolean
weighting scheme assigns one if a term occurs in a document and zero,
otherwise.

For similarity score, we considered both the cosine (E1) and overlap
(E2) similarity scores [42]. Cosine similarity is computed as the ratio of
the dot product of two document vectors to the product of their Eu-
clidean length. The overlap similarity is defined as the ratio of the
number of common terms of two documents to the size of the smallest
document. We use the implementation of VSM that is provided by
Apache Lucene.4

LSI [43] is an extension to VSM which assumes that there is some
latent structure in word usage that is partially obscured by variability in
word choice. Singular value decomposition (SVD) is used as a means to
project the original term-document matrix into three new matrices: a
topic-document matrix D; a term-topic matrix T; and a diagonal matrix
S of eigenvalues. The dimension in the projected latent semantic space
represents the number of topics which is less than the original matrix. A
topic contains a list of terms that are related by collocation. Unlike

Table 2
Descriptive statistics of the studied systems.

Min. 1st Qu. Med Mean 3rd Qu. Max

Eclipse system
Bug report size (#words) 2 40 67 146 129 6187
File size (LOC) 1 59 116 255 255 12,490
Method size (LOC) 0 4 8 14 15 2518
# files per bug report 1 1 1 2 2 10
# methods per bug report 1 1 3 15 8 98
Mozilla system
Bug report size (#words) 4 54 96 127 152 2077
File size (LOC) 41 162 448 777 885 8733
Method size (LOC) 0 9 19 35 42 720
# files per bug report 1 1 1 2 2 9
# methods per bug report 1 1 3 18 10 96

(DP-3) Source Code 
Preparation 

at the Method-Level

Bug Tracking 
System (BTS)

Version Control
System (VCS)

Source Code
Corpus

Bug Reports

Ground-Truth
Data

(DP-2) Ground-Truth 
Data Preparation

(DP-1) Bug Report
Preparation

Fig. 2. An overview of our data preparation approach (Section 4.2).

1 https://bugs.eclipse.org/bugs/show_bug.cgi?id=293777.

2 https://code.google.com/p/javaparser/.
3 https://github.com/SAILResearch/replication-ist_bug_localization/.
4 https://lucene.apache.org/core/.
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VSM, LSI could consider two documents to be similar even if they have
no common term. While computing similarity, LSI sees if the terms in
the two documents are from the same topic, rather than term overalp.

The LSI model has three parameters: term weighting, similarity
score, and the number of topics. We considered the same three
weighting schemes as we did for the VSM model (F1-F3). We hold the
similarity score constant at cosine (H1). Finally, we considered four
values for the number of topics: 32, 64, 128, and 256 (G32-G256). We
use the implementation LSI that is provided by Gensim.5

LDA [44] is a popular statistical topic model which provides a
means to automatically index, search, and cluster documents that are
unstructured and unlabeled. In LDA, documents are represented as a
mixture of words taken from different latent topics, where a topic is
characterized by a distribution over words. A topic is defined before
any data is generated as a distribution over a fixed vocabulary. LDA
rank terms representing a topic using a probability of membership. The
membership probability indicates the level of representativeness of the
term in the respective topics in which it is found. In LDA, documents are
assumed to be generated by randomly choosing a topic from a selected
topic distribution and assigning the topic for a given term in a docu-
ment.

The LDA model has five parameters: number of topics, a document-
topic smoothing parameter, a topic-word smoothing parameter, number
of sampling iterations, and similarity score. We considered four values
for the number of topics: 32, 64, 128, and 256 (J32-J256), to be con-
sistent with the LSI model. Finally, we considered the conditional
probability score (N1). We use the implementation of LDA that is pro-
vided by MALLET Topic Modeling.6

Previous studies used the Entity Metric (EM) to predict buggy source
code entities [45] and locate bugs in the source code [2]. EM measures
source code features such as line of code and past bug proneness to
predict and locate buggy source code entities. EM-based classifiers have
only a single parameter, entity metric, which is used to determine the
bug-proneness of an entity. We considered four metrics: the Lines of
Code (LOC) of an entity;7 the churn of an entity (i.e., we computed the
summation of lines added and deleted from the git log –numstat
command); the cumulative bug count of an entity; the new bug count of
an entity.

To quantify the performance of all possible classifiers, we used a full
factorial design. We explored every possible combination of parameter
values. In this study, we have 3168 IR-based classifiers and 4 entity
metric-based classifiers. Thus, we have 3172 classifiers under test. We
run all 3172 classifiers on the data for the two systems at the method
level.

commit b1672031b269719ce6519561e4ea344da64970cb
Author: oliviert <oliviert>
Date: Tue Nov 3 15:37:46 2009 +0000

HEAD - Fix for 293777

diff --git a/compiler/org/eclipse/jdt/internal/compiler/lookup/MethodScope.java
b/compiler/org/eclipse/jdt/internal/compiler/lookup/MethodScope.java

index 4901ba8..00aaffd 100644
--- a/compiler/org/eclipse/jdt/internal/compiler/lookup/MethodScope.java
+++ b/compiler/org/eclipse/jdt/internal/compiler/lookup/MethodScope.java

@@ -469,7 +469,7 @@ public final int recordInitializationStates(FlowInfo flowInfo) {

Fig. 3. A snippet of the Eclipse JDT commit log.

Table 3
The configuration parameters and the values of the IR (e.g., VSM, LSI, and LDA)
and EM family of classifiers, as proposed by Thomas et al. [2].

Parameter Value

Parameters common to all IR classifiers
(A) Bug report representation A1 (Title only)

A2 (Description only)
A3 (Title+ description)

(B) Entity representation B1 (Identifiers only)
B2 (Comments only)
B3 (Idents+ comments)
B4 (PBR-All)
B5 (PBR-10 only)
B6 (Idents+comments+PBR-All)

(C) Preprocessing steps C0 (None)
C1 (Split only)
C2 (Stop only)
C3 (Stem only)
C4 (Split+ stop)
C5 (Split+ stem)
C6 (Stop+ stem)
C7 (Split+ stop + stem)

Parameters for VSM only
(D) Term weight D1 (tf-idf)

D2 (Sublinear tf-idf)
D3 (Boolean)

(E) Similarity metric E1 (Cosine)
E2 (Overlap)

Parameters for LSI only
(F) Term weight F1 (tf-idf)

F2 (Sublinear tf-idf)
F3 (Boolean)

(G) Number of topics G32 (32 topics)
G64 (64 topics)
G128 (128 topics)
G256 (256 topics)

(H) Similarity metric H1 (Cosine)
Parameters for LDA only

(I) Number of iterations I1 (Until model convergence)
(J) Number of topics J32 (32 topics)

J64 (64 topics)
J128 (128 topics)
J256 (256 topics)

(K) α K1 (Optimized based on K)
(L) β L1 (Optimized based on K)
(N) Similarity metric N1 (Conditional probability)

Parameters for EM only
(M) Metric M1 (Lines of code)

M2 (Churn)
M3 (New bug count)
M4 (Cumulative bug count)

5 https://radimrehurek.com/gensim/.
6 http://mallet.cs.umass.edu/.
7 https://www.dwheeler.com/sloccount/.
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5. Case study results

In this section, we present our research questions (RQs) and their
results. For each research question, we discuss the approach that we
followed to answer the RQs.

(RQ1) Can IR-based classifier configurations significantly impact the
top-k performance of method-level bug localization?

Approach. To investigate the impact of classifier configuration for
method-level bug localization, we use the framework proposed by
Thomas et al. [2]. The framework is summarized in Section 4.3. We
executed all 3172 configurations of bug localization approaches at the
method-level (see Fig. 4). To compare the different classifier config-
urations, we computed the top-k performance metric for each config-
uration. The top-k performance metric is described below.

Evaluation metric. Top-k performance metric is the most fre-
quently-used evaluation metric to assess the performance of IR-based
bug localization approaches [2,3,5–7]. IR-based bug localization ap-
proaches rank source code entities based on the entities’ similarity to a
query formulated from the bug report. The entities ranked at the top are
considered to be the most relevant to start fixing the reported bug.
Developers usually examine the ranked entities in the top k, starting
sequentially from the top, until they find the relevant entity to fix the
reported bug. Top-k performance measures the percentage of bug re-
ports for which at least one relevant source code entity was returned in
the top k ranked entities. Formally, the top-k performance of a classifier
Cj is

∑= ∃ ∈ ∧ ≤
=

k C
Q

I d D rel d q r d C q ktop- ( ) 1 ( ( , ) ( , ) ),j i

Q
i j i1 (1)

where |Q| is the number of queries, qi is an individual query, rel(d, qi)
returns whether entity d is relevant to query qi, r(d|Cj, qi) is the rank of d
given by Cj in relation to qi, and I is the indicator function, which re-
turns 1 if its argument is true and 0 otherwise. For example, a top-20
performance value of 0.25 indicates that for 25% of the bug reports, at
least one relevant source code entity was returned in the top 20 results.
Following Thomas et al. [2], we choose the k value to be 20.

Results. The choice of classifier configuration impacts the top-
kperformance from 0.44% to 36%. Table 4 presents the top-20 per-
formance value of the best and worst four top-k configurations of
method-level bug localization. For Eclipse, the best top-k configuration
localizes 1337 bugs (34.3%), while the worst top-k configuration lo-
calizes none of the bugs in the top-20 ranked methods. For Mozilla, the

best top-k configuration localizes 514 bugs (37.6%), while the worst
top-k configuration localizes 12 bugs (0.88%) in the top-20 ranked
methods. The wide top-k performance range indicates that classifier
configuration plays an important role in the top-k performance of
classifiers. Using inappropriate configuration could result in poor top-k
performance.

Among the four types of classifiers, VSM achieves the best top-
kperformance. When comparing the best top-k configuration of each
classifier, on average, VSM is 1.2–4 times better than other classifiers
(i.e., LSI, LDA, and EM). We suspect that VSM outperforms others has to
do with the similar textual characteristics between bug reports and
source codes. To see if increasing the number of topics changes the
results, we run LSI and LDA using 512 topics and found the result to still
hold. We suspect that increasing the number of topics will produce
more granular topics, instead of totally different topics [46]. Thus, in-
creasing the number of topics has little impact on the top-k perfor-
mance.

The likelihood of randomly picking a configuration that per-
forms within 20% of the best top-kclassifier (VSM) configuration is
on average 5.4%. Table 5 shows the likelihood of configurations that
perform within 1, 5, 10, 15, and 20% of the best top-k performing
classifier configuration of each classifier. The second column in the
tables indicates the total number of configurations for the respective
classifiers. EM has only four configurations, hence, we did not compute
the likelihood of randomly picking the best top-k configuration. While
using the best top-k classifier (VSM), the likelihood of randomly picking
a configuration that performs within 20% of the best top-k configura-
tion is on average 5.4% for method level. The low likelihood indicates
that there are only few classifier configurations that perform close to
the best performing configuration. The statistical summaries of classi-
fier configurations performance also indicate that the performance of
the majority of classifier configurations is low as compared to the best
top-k performing classifier (see Table 6). Hence, finding the best top-k
configuration is difficult.

Summary: Configuration has a large impact on the top-k per-
formance of method-level bug localization, suggesting that
using an inappropriate configuration could result in poor top-
k performance. There are only few classifier configurations
that perform close to the best performing configuration, in-
dicating that finding the best top-k configuration is difficult.
Hence, practitioners are in need of guidance to help them in
selecting the optimal configurations.
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Fig. 4. An overview of our data analysis approach that is applied to address our research questions (RQs).
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Parameter sensitivity analysis. Our results indicate that locating
the best configuration is difficult. Hence, we would like to explore
which of the parameters has the most impact on the performance of a
classifier. To perform such sensitivity analysis, we build regression
models. The models help to understand the relationship between clas-
sifier configurations and the top-k performance of a classifier. To study
the importance of each configuration parameter and examine the re-
lative contribution (in terms of explanatory power) of each configura-
tion parameter to the regression model, we perform an ANOVA ana-
lysis [47,48]. As suggested by our recent work, we use ANOVA Type II
[49,50]. Fig. 5 shows an overview of our sensitivity analysis approach.
We describe each step of our approach below.

(Step-1) Model construction. We build regression models to ex-
plain the relationship that classifier configurations have on the top-k
performance of a classifier. A regression model fits a line of the form

= + + + ⋯+y β β x β x β xn n0 1 1 2 2 to the data, where y is the dependent
variable and each xi is an explanatory variable. In our models, the de-
pendent variable is the top-k performance and the explanatory variables
are the set of parameters outlined in Table 3. We fit our regression
models using the Ordinary Least Squares (OLS) technique using the ols
function provided by the rms package [51], as suggested by recent
studies [52–54].

(Step-2) Assessment of model stability. We evaluate the fit of our
models using the Adjusted R2, which provides a measure of fit that
penalizes the use of additional degrees of freedom. However, since the
adjusted R2 is measured using the same data that was used to train the
model, it is inherently upwardly biased, i.e., “optimistic”. We estimate
the optimism of our models using the following bootstrap-derived ap-
proach [48,55].

First, we build a model from a bootstrap sample, i.e., a dataset
sampled with replacement from the original dataset, which has the
same population size as the original dataset. Then, the optimism is
estimated using the difference of the adjusted R2 of the bootstrap model
when applied to the original dataset and the bootstrap sample. Finally,
the calculation is repeated 1000 times in order to calculate the average
optimism. This average optimism is subtracted from the adjusted R2 of
the model fit on the original data to obtain the optimism-reduced ad-
justed R2. The smaller the average optimism, the higher the stability of
the original model fit.

(Step-3) Estimate power of explanatory variables. We perform
an ANOVA analysis of each classifier configuration using the Wald χ2

maximum likelihood (a.k.a., “chunk”) test. The larger the Wald χ2

value, the larger the impact that a particular explanatory variable has
on the response [48].

Table 4
The best four configurations and the worst four configurations for method-level bug localization, for each classifier family (VSM, LSI, LDA, and EM) and each studied
system. The configurations are ordered according to their top-20 performance.

VSM LSI LDA EM

Rank Configuration Top-20 Rank Configuration Top-20 Rank Configuration Top-20 Rank Config. Top-20

Eclipse system
1 A1.B4.C5.D1.E1 0.343 1 A1.B4.C7.F1.G256 0.307 1 A1.B4.C6.J32.K1 0.083 1 M2 0.117
2 A1.B4.C3.D1.E1 0.343 2 A1.B4.C6.F1.G256 0.307 2 A1.B4.C6.J64.K1 0.081 2 M4 0.037
3 A1.B4.C7.D1.E1 0.340 3 A1.B4.C3.F1.G256 0.303 3 A1.B4.C2.J64.K1 0.080 3 M1 0.027
4 A1.B4.C6.D1.E1 0.340 4 A1.B4.C5.F1.G256 0.302 4 A1.B4.C4.J128.K1 0.079 4 M3 0.027
861 A3.B2.C3.D1.E2 0.007 1725 A2.B2.C1.F1.G32 0.004 574 A1.B2.C2.J32.K1 0.001 –
862 A2.B2.C0.D2.E2 0.006 1726 A2.B2.C1.F3.G32 0.004 574 A1.B2.C2.J256.K1 0.001 –
863 A2.B2.C3.D1.E2 0.006 1727 A2.B2.C1.F2.G32 0.004 575 A1.B2.C0.J256.K1 0.001 –
864 A2.B2.C0.D1.E2 0.006 1728 A2.B2.C0.F1.G32 0.004 576 A1.B2.C2.J128.K1 0.000 –
Mozilla system
1 A3.B1.C7.D1.E1 0.376 1 A3.B3.C5.F2.G256 0.308 1 A3.B6.C7.J32.K1 0.096 1 M2 0.087
2 A3.B3.C7.D1.E1 0.376 2 A3.B1.C5.F2.G256 0.303 2 A3.B6.C4.J32.K1 0.091 2 M1 0.062
3 A3.B1.C5.D1.E1 0.373 3 A3.B3.C1.F2.G256 0.282 3 A3.B6.C7.J64.K1 0.090 3 M3 0.033
4 A3.B3.C5.D1.E1 0.370 4 A3.B1.C2.F3.G256 0.278 4 A3.B6.C7.J128.K1 0.087 4 M4 0.032
861 A2.B3.C0.D1.E2 0.004 1725 A2.B1.C0.F1.G32 0.003 574 A3.B2.C7.J64.K1 0.010 –
862 A3.B3.C0.D1.E2 0.003 1726 A1.B2.C2.F3.G32 0.003 574 A1.B2.C2.J32.K1 0.010 –
863 A2.B1.C0.D1.E2 0.003 1727 A1.B2.C6.F3.G32 0.003 575 A1.B2.C2.J128.K1 0.010 –
864 A3.B1.C0.D1.E2 0.003 1728 A2.B3.C0.F1.G32 0.002 576 A3.B2.C5.J256.K1 0.008 –

Table 5
The likelihood of randomly picking a configuration within 20% of the best top-k
performance.

Classifier # Config. 1% 5% 10% 15% 20%

Eclipse system
VSM 864 0.005 0.010 0.019 0.023 0.042
LSI 1728 0.001 0.002 0.010 0.020 0.034
LDA 576 0.002 0.007 0.017 0.035 0.054
EM 4 0 0 0 0 0
Mozilla system
VSM 864 0.003 0.007 0.014 0.041 0.065
LSI 1728 0.001 0.001 0.002 0.010 0.020
LDA 576 0.002 0.002 0.009 0.009 0.023
EM 4 0 0 0 0 0

Table 6
Top-20 performance dispersions of method-level bug localization for Eclipse
and Mozilla.

Min. 1st Qu. Med Mean 3rd Qu. Max Variance

Eclipse system
VSM 0.006 0.031 0.073 0.098 0.152 0.343 0.0073
LSI 0.004 0.023 0.054 0.089 0.153 0.308 0.0062
LDA 0.000 0.005 0.017 0.025 0.041 0.083 0.0005
EM 0.027 0.027 0.033 0.052 0.058 0.117 0.0019
Mozilla system
VSM 0.034 0.078 0.126 0.146 0.189 0.376 0.0067
LSI 0.025 0.093 0.148 0.138 0.177 0.308 0.0034
LDA 0.009 0.027 0.045 0.044 0.058 0.096 0.0003
EM 0.032 0.033 0.048 0.054 0.068 0.087 0.0007
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Fig. 5. An overview of our sensitivity analysis approach.
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Fig. 6. Distribution of Wald’s statistics for each configuration parameter. A horizontal blue line indicates the bootstrap percentile 95% confidence interval, where a
diamond shape indicates the median Wald’s statistic for each configuration parameter of each studied system at the method level. High Wald’s statistics indicates high
impact on the top-k performance of the classifier. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Finally, we present both the raw Wald χ2 values, and its bootstrap
95 percentile confidence interval. High Wald χ2 indicates high impact
on the top-k performance of classifier.

For VSM, the choice of both term weight and source code re-
presentation consistently appears as the most important para-
meters at the method level. Fig. 6 shows that the choice of both term
weight and source code representation (i.e., B and D) has the highest ex-
planatory power for VSM only at the method level.

For LSI and LDA, while the choice of data representation and
data preprocessing consistently appears as the most important
parameters, the number of topics in LSI and LDA consistently ap-
pear as the least important parameters. Fig. 6 shows that the choice
of source code representation (i.e., B) has the highest explanatory power.
Conversely, the number of topics for LSI and LDA (i.e., G and J) have a
low sensitivity. Hence, the number of topics has minimal impact on the
performance of classifiers. Our results also confirm the finding of
Bigger et al. [56]. Our findings suggest that practitioners should care-
fully select configurations related to the source code representation and
not to be as concerned about the number of topics.

Summary: Configurations related to the source code re-
presentation has the most impact on the top-k performance,
suggesting that practitioners should carefully select the source
code representation settings and not to be as concerned about
the number of topics.

RQ2: Can IR-based classifier configurations significantly impact the
required effortfor method-level bug localization?

Approach. To address this research question, we used lines of code
(LOC) as a proxy to measure the required effort to locate bugs.
Arisholm et al. [31] point out that the cost of source code quality as-
surance activities, such as code inspection, are roughly proportional to
the size of source code entity. For every classifier configuration, we
computed the cumulative sum of LOC a developer would need to read
to find the first relevant entity to a bug report. The effort is computed
for all configurations that are ranked based on top-k performance at the
method-level (see Table 4). The results are presented using horizontal
boxplots. In order to better see the distribution of the efforts required to
locate the first buggy entities, we used 50,000 LOC as the maximum
LOC to be examined.

Results. The required effort of the classifier configurations
varies from 4395 to 50,000 LOC.Table 7 presents horizontal boxplots
of the cumulative sum of LOC that a developer would read to locate the
first buggy entity. The boxplots are shown for the best four and the
worst four top-k configurations at the method granularity level. The
average median required effort for the best top-k configurations is 4395
LOC, while the required effort for the worst top-k configuration is
50,000 LOC, respectively. The observed wide range of required effort
between the best and worst top-k configuration indicates that the
choice of configuration also impacts effort.

Classifier configurations which give similar top-k performance could
require drastically different amount of efforts. While evaluating clas-
sifier configurations using top-k performance metrics, two configura-
tions could achieve similar performance. However, we find that the
required effort to locate bugs using the two configurations could be a
median difference of 2.6 times and vary up to 15 times. For example,
for Eclipse at the method-level, the second best LDA configuration
(A1.B4.C6.J64.K1) and the third best LDA configuration
(A1.B4.C2.J64.K1) achieve a top-k performance of 0.081 and 0.080,
respectively. However, the median required effort by the two config-
urations is 13,820 LOC and 50,000 LOC, respectively. Hence, we re-
commend that researchers should also take into consideration the re-
quired effort to locate bugs while comparing the performance of
classifier configurations using top-k metrics. We also computed the
Spearman rank correlation [57,58] between the rank of the config-
urations ordered by top-k performance and the effort for method
granularity level. We find that the Spearman rank correlation values for
Eclipse and Mozilla are 0.9 and 0.8, respectively. The results indicate
that the configurations that perform well at top-k performance tend to
give the lowest effort.

Among the four types of classifiers, VSM requires the least ef-
fort. For Eclipse and Mozilla, Table 8 shows that the least efforts are
2025 LOC and 3090 LOC, while the effort required by the best VSM top-
k configurations (A1.B4.C5.D1.E1 and A3.B1.C7.D1.E1) are 2602
LOC and 6188 LOC, respectively. Hence, our findings suggest that the
best VSM top-k configuration requires the least effort to locate bugs at
the method-level.

The likelihood of randomly picking a configuration that per-
forms within 20% of the least effort is on average 1%. Table 9 shows
the likelihood of configurations that perform within 1, 5, 10, 15, and
20% of the classifier configuration that requires the least effort of each
classifier. The second column in the tables indicates the total number of
configurations for the respective classifiers. EM has only four config-
urations, hence, we did not compute the likelihood of randomly picking

Table 7
The amount of lines of code (Median LOC) a developer needs to read in order to locate the first buggy entity of the best four configurations and the worst four
configuration of bug localization at method-level, for each classifier family (VSM, LSI, LDA, and EM) and each studied system. The configurations are ordered
according to their top-20 performance.
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the configuration that requires the least effort. While using the classifier
that requires the least effort (VSM, LSI), the likelihood of randomly
picking a configuration that performs within 20% of the least effort
configuration is on average 1% for method level, respectively. The low
likelihood indicates that there are only a few classifier configurations
that require effort close to the least effort configuration. The statistical
summaries of the required effort for different classifier configurations
also indicate that the effort of the majority of classifier configurations is
large as compared to the least effort classifier (see Table 8). Hence, this
indicates that finding the least effort configuration is difficult and more
difficult than finding the best top-k configuration.

Summary: Configuration has a large impact on the required
effort of bug localization at the method level, suggesting that
practitioners should take into consideration required effort to
locate bugs while comparing the performance of classifier
configurations using top-k metrics. There are only few classi-
fier configurations that perform close to the configuration that
requires the least effort, indicating that finding the least effort
configuration is difficult. Hence, practitioners are in need of
guidance to help them in selecting the optimal configurations.

Parameter sensitivity analysis. We again use the high-level ap-
proach of Fig. 5 to understand the relationship that classifier config-
urations have on the required effort.

In contrast to the top-kperformance, the most important para-
meters are inconsistent across classifiers and systems for the
method level classifiers. Fig. 7 shows that there is no consistency in
the most important parameters across classifiers and systems for the
method level, indicating that the parameters are more susceptible to the
required effort. Such inconsistency suggests that the impact that para-
meter configurations has on the required effort is larger than their
impact that has on the top-k performance. Conversely, the number of
topics in LSI and LDA tends to appear as the least important parameters,
which is consistent to the top-k performance.

Summary: The most important parameters inconsistently ap-
pear across classifiers and systems for the method level, in-
dicating that the parameters are more susceptible to the re-
quired effort. Conversely, the number of topics in LSI and LDA
consistently tends to appear as the least important parameters,
indicating that practitioners should not be concerned about
the number of topics as compared to other parameters.

RQ3: Is the most efficient classifier configuration for method-level bug
localization also the most efficient configuration for file-level bug
localization (and vice versa)?

Approach. Given a list of source code entities ranked by the si-
milarity scores, a developer is expected to focus on resources at the
beginning of the list as much as possible. The question to answer in this
context is: what is the percentage of bug reports that can be successfully
localized, when reviewing only top LOC of the entities ranking. Hence,
we extend the top-k performance metric to top-kLOC performance. Top-
kLOC performance is the percentage of bug reports for which at least one
relevant source code entity is found in the top ranked entities with
cumulative sum of executable LOC below k. Formally, the top-kLOC
performance of a classifier Cj is

∑= ∃ ∈ ∧ ≤
=

k C
Q

I d D rel d q s r d C q ktop- ( ) 1 ( ( , ) ( ( , )) ),LOC j i

Q
i j i1

where |Q| is the number of queries, qi is an individual query, rel(d, qi)
returns whether entity d is relevant to query qi, r(d|Cj, qi) is the rank of d
given by Cj in relation to qi, s is the cumulative sum of executable LOC
of all entities whose rank is less than or equal to r(d|Cj, qi), and I is the
indicator function, which returns 1 if its argument is true and 0
otherwise. For example, a top-10,000LOC performance value of 0.25
indicates that for 25% of the bug reports, at least one relevant source
code entity was returned in the top ranked entities whose cumulative
sum of LOC is below 10,000. We choose the k value to be 10,000 LOC.

Evaluation metric: To compare the top-kLOC performance of the
most efficient classifier configurations, we used the differences between
the lift charts of top-kLOC performances obtained at different k values.
The comparison is between the top-kLOC performance lift chart of the
best configuration of file-level on the method-level with the best con-
figuration of method-level (and vice versa).Result. The most efficient
configuration is an IR-based classifier that uses the Vector Space
Model (A3.B6.C7.D2.E1), with the index built using sub-linear tf-idf
term weighting on all available data in the source code entities (i.e.,
identifiers, comments, and past bug reports for each entity), which has
been stopped, stemmed, and split, and queried with all available data in
the bug report (i.e., title and description) with cosine similarity.

The most efficient configuration of file-level bug localization
performs close enough to the most efficient configuration of
method-level, when used at the method-level. We used the most
efficient file-level configuration at the method-level (line with diamond)
and compared the results with the results of the most efficient config-
uration of method-level bug localization(line with circle) (see Fig. 8).
The top-kLOC performance of the most efficient method-level config-
uration (line with circle) is same or higher than the top-kLOC performance
of the most efficient file-level configuration (line with diamond) while
used to locate bugs at the method-level. For Eclipse, the maximum
difference where the line with circle is higher than the line with diamond
is 0.004, while for Mozilla, the maximum difference is 0.045. The small
differences indicate that the most efficient file-level configuration is
also efficient at the method-level.

The most efficient configuration of method-level bug localiza-
tion performs close enough to the most efficient configuration of
file-level, when used at the file-level. We compared the most

Table 8
The median required effort dispersion amongst classifier families.

Min. 1st Qu. Med Mean 3rd Qu. Max Var

Eclipse system
VSM 2400 6788 12,830 20,320 31,680 50,000 293
LSI 2025 5440 12,990 21,460 43,410 50,000 341
LDA 11,920 16,330 50,000 35,080 50,000 50,000 262
EM 9230 11,740 14,120 21,870 24,250 50,000 358
Mozilla system
VSM 3090 9439 36,590 30,530 50,000 50,000 357
LSI 3709 15,180 20,780 25,370 33,680 50,000 202
LDA 24,360 50,000 50,000 47,890 50,000 50,000 28
EM 20,760 28,500 32,760 34,070 38,330 50,000 146

Table 9
The likelihood of randomly picking a configuration within 20% of the least
effort configuration for method-level bug localization.

Classifier # Config. 1% 5% 10% 15% 20%

Eclipse system
VSM 864 0.002 0.002 0.009 0.021 0.028
LSI 1728 0.001 0.001 0.001 0.002 0.003
LDA 576 0.003 0.003 0.007 0.010 0.016
EM 4 0 0 0 0 0
Mozilla system
VSM 864 0.001 0.002 0.003 0.005 0.007
LSI 1728 0.001 0.001 0.003 0.004 0.004
LDA 576 0.002 0.003 0.003 0.005 0.005
EM 4 0 0 0 0 0

C. Tantithamthavorn et al. Information and Software Technology xxx (xxxx) xxx–xxx

10



Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (D)

Similarity (E)

0 100 200 300 400

(a) Eclipse (VSM)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (D)

Similarity (E)

0 5 10 15 20 25

(b) Mozilla (VSM)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (F)

Number of Topics (G)

0 100 200 300

(c) Eclipse (LSI)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (F)

Number of Topics (G)

0 20 40 60 80

(d) Mozilla (LSI)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Number of Topics (J)

0 5 10 15 20

(e) Eclipse (LDA)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Number of Topics (J)

0 10 20 30 40 50

(f) Mozilla (LDA)

Fig. 7. Distribution of Wald’s statistics for each configuration parameter. A horizontal blue line indicates the bootstrap percentile 95% confidence interval, where a
diamond shape indicates the median Wald’s statistic for each configuration parameter of each studied system at the method level. High Wald’s statistics indicates high
impact on the required effort of the classifier. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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efficient configuration of method-level bug localization at the file-level
(line with square) with the most efficient configuration of file-level bug
localization (line with triangle) (see Fig. 8). For every k≤ 10,000, we
computed the difference between the top-kLOC performance of the line
with triangle and the line with square. The maximum observed difference
for Eclipse is 0.016, while for Mozilla the maximum difference is 0.032.
The results of the best efficient configuration comparisons indicate that
the best efficient configuration irrespective of the granularity level
gives similar result.

Summary: The most efficient classifier configuration obtained
at the method-level can also be used at the file-level (and vice
versa) without a significant loss of top-kLOC performance.

6. Threats to validity

The key goal of our study is to explore the impact of parameter
setting in prior bug localization studies. Hence, our study has much of
our threats to validity of prior studies in literature on this topic (espe-
cially for internal validity concerns). We do note that a key contribution
of our study is the used methodology to quantify and analyze the im-
pact of settings. Such methodology holds independent of threats to
validity that arise due to data characteristics.

6.1. Threats to internal validity

The main internal threat to validity of our study and other bug lo-
calization studies in literature lies on the Fischer et al. [40]’s technique
that we used to collect ground-truth data. Although this technique is
commonly used for linking bug reports to source code entities, a
number of potential biases can affect the validity of the ground-truth
data of our study.

First, wrongly classified bug reports might be included in our da-
tasets, which can impact the top-k performance of bug localization.
Herzig et al. [59] find that 43% of bug reports are wrongly classified,
suggesting that these misclassified bug reports should be excluded from

the various analyses. However, an extensive analysis by
Kochhar et al. [60] finds that wrongly classified bug reports have a
negligible impact on the performance of bug localization. Hence, we
suspect that this bias does not pose a great threat in our study.

Second, incomplete ground-truth entities can impact the top-k per-
formance of bug localization, another threat that is shared with prior
studies. Bird et al. [61] find that there are several bug reports that are
not identified in the commit logs. To mitigate this threat, such analysis
would require deep domain knowledge of the system and a thorough
working understanding of how the code is organized and run. Un-
fortunately, we do not possess this knowledge or understanding.

Third, incorrect ground-truth entities can impact the top-k perfor-
mance of bug localization. This internal threat to validity is also shared
with prior studies. Murphy et al. [62,63] find that developers often
refactored source code while fixing bugs. Kawrykow et al. [64] find that
developers often included unrelated changes (e.g., refactoring, com-
ments modification, code indentation) to the bug-fixing commit. Such
unrelated changes are considered as non-buggy entities, which should
be excluded from the ground truth data as they do not contain the bug.
However, an extensive analysis by Kochhar et al. [60] finds that such
incorrect ground-truth entities does not have an impact on the perfor-
mance of bug localization. Hence, we suspect that this bias does not
pose a great threat in our study.

Finally, Kochhar et al. [60] point out that already localized bug
reports (i.e., bug reports where their textual descriptions have already
specified the files that contain the bug) can inflate the top-k perfor-
mance if they are not removed. To ensure if already localized bug re-
ports are affecting the conclusions of our paper, we analyze search the
file extensions (e.g., .java, .cpp, .h) using a regular expression for all of
the studied bug reports. After we removed these localized bug reports,
we find that they do not alter our conclusions. Thus, we suspect that
already localized bug reports do not pose a great threat to validity of
our conclusions.

6.2. Threats to external validity

Threats to external validity are concerned with the generalization of
our findings. In this study, we used two large open source software
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most efficient configuration of file-level bug localization performs close enough to the most efficient configuration of method-level, when used at the method-level
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systems, Eclipse and Mozilla, which are large real-world software sys-
tems and frequently used in top venue. The data for the systems is
obtained from Thomas et al. [2] for a fair comparison of RQ1 to file-
level bug localization. Thus, our conclusions may not generalize to
other software systems. Moreover, we only consider bug reports during
a period of 2002–2009 for Eclipse JDT and a period of 2002–2006 for
Mozilla. Thus, our conclusions may not generalize to other periods.
However, the key goal of our work is to highlight that there is an impact
for some datasets. We can add additional datasets but realistically we
will never have enough datasets to establish a wide ranging empirical
law. The key message to take home from our analyeses is that the
parameter settings matter. Given the simplicity of considering these
settings, we suggest that all future studies explore them (as it might be
the case that they matter for their data set). If they do not matter for a
particular system, then the wasted efforts are minimal.

6.3. Threats to construct validity

The main threat to construct validity of our study is related to the
effort-based evaluation which is used to analyze method-level bug lo-
calization. In our study, we used LOC as a proxy to measure effort as
done in prior studies [30–32]. However, LOC may not reflect actual
effort required to assess a code entity. A code entity could be complex
and also depend on other entities. Future studies should incorporate
factors related to complexity and dependency of the source code entity
into the effort-based metrics. This proposed direction for future studies
holds for our work and other works in the area of effort-aware bug
prediction.

The results of our RQ1 rely on the top-20 performance in order to
establish a fair comparison with Thomas et al. [2]. Recently, a survey
on 386 practitioners by Kochhar et al. [65] shows that more than
73.58% of respondents suggested that the top-5 performance is the
optimal inspection threshold for bug localization. Thus, future studies
should consider top-5 performance as suggested by practitioners. Since
the top-k performance does not measure the number of relevant buggy
entities in the top-k ranked list, other performance measures like Mean
Reciprocal Rank (MRR) and Recall should be considered in future work.
Mean Reciprocal Rank (MRR) is a statistical measure for evaluating any
process that produces a list of possible responses to a query. The re-
ciprocal rank of a query response is the multiplicative inverse of the

rank of the first correct answer. Recall measures the percentage of the
relevant buggy entities that successfully retrieved for a bug report.
Nevertheless, the results of our RQ2 show that classifier configurations
which give similar top-k performance could require drastically different
amount of efforts. Thus, traditional IR evaluation metrics (e.g., top-k
performance, MRR, and Recall) should also consider the required effort
to locate bugs (e.g., the top-kLOC performance in RQ3) into considera-
tion.

7. Conclusion

Previous study showed that classifier configuration has an impact
on file-level bug localization. Several bug localization studies, however,
are also conducted at the method-level. In this paper, we investigate the
impact that the choice of IR-based classifier configuration has on the
top-k performance and the required effort to examine source code en-
tities (e.g., files and methods) before locating a bug at the method level.
Moreover, we also analyze the classifier sensitivity to parameter value
changes. In total, we explore a large space of classifier configurations,
3172 configurations. Through a case study of 5266 bug reports of two
large-scale software systems (i.e., Eclipse and Mozilla), we make the
following observations:

• The choice of classifier configuration impacts the top-k performance
from 0.44% to 36% and the required effort from 4395 to 50,000
LOC, suggesting that using inappropriate configurations could result
in poor top-k performance and wasted effort.

• Classifier configurations which give similar top-k performance could
require different efforts, suggesting that practitioners should take
into consideration required effort to locate bugs while comparing
the performance of classifier configurations.

• VSM achieves both the best top-k performance and the least re-
quired effort for method-level bug localization.

• The likelihood of randomly picking a configuration that performs
within 20% of the best top-k classifier configuration is on average
5.4% and that of the least effort is on average 1%.

• Configurations related to the entity representation of the analyzed
data have the most impact on the top-k performance and the re-
quired effort, suggesting that practitioners would benefit of gui-
dance on which configuration parameters matter the most.

Table 10
Summary of the main findings. The two cells with gray background indicate the main contributions of Thomas et al. [2], while the remaining 18 cells with white
background are the main contributions of this paper.

File-level Method-Level

Does classifier configuration impact top-k performance of
classifiers?

Yes Yes

What is the best top-k performing classifier? VSM VSM
What is the range between the best and worst top-k

performing classifiers?
The top-k performance range is between 0.37% and
67.48%, on average.

The top-k performance range is between 0.44% and 36%,
on average.

What is the likelihood of randomly picking a configuration
that performs within 20% of the best top-k performing
classifier?

There is an average of 12.2% chance of randomly picking
a configuration that performs within 20% of the best top-
k performing classifier.

There is an average 5.4% chance of randomly picking a
configuration that performs within 20% of the best top-k
performing classifier.

What is the likelihood of randomly picking a configuration
that performs within 20% of the classifier that
requires the least effort?

There is an average of 1% chance of randomly picking a
configuration that performs within 20% the classifier
that requires the least effort.

There is an average of 2% chance of randomly picking a
configuration that performs within 20% the classifier
that requires the least effort.

Which parameter has the most impact on the
performance? (i.e., sensitivity)

Term weight for VSM. Entity representation for LSI and
LDA.

Term weight for VSM. Entity representation for LSI and
LDA.

Which parameter has the most impact on the required
effort? (i.e., sensitivity)

Inconsistent results for the most important parameters.
However, the number of topics appears as the least
important parameters.

Inconsistent results for the most important parameters.
However, the number of topics appears as the least
important parameters.

Does the best top-k performing classifier require the least
effort?

VSM is the most top-k performing classifier. However,
LSI requires the least effort. VSM requires as much as
2.56 times more effort than LSI.

VSM is the best top-k performing classifier and also
requires the least effort.

Which IR classifier gives the least effort? LSI VSM
Is the most efficient classifier configuration for method-

level bug localization also efficient for file-level bug
localization (and vice versa)?

Yes Yes
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• The most efficient classifier configuration obtained at the method-
level can also be used at the file-level (and vice versa) without a
significant loss of top-kLOC performance.

Furthermore, we also repeat our analysis at the file level to extend
the findings of Thomas et al. [2]. Table 10 summarizes the key findings
of the method-level and file-level bug localizations. Our results lead us
to conclude that configurations have a large impact on both the top-k
performance and the required effort for method-level and file-level bug
localization, suggesting that the IR-based configuration settings should
be carefully selected and the required effort measure should be in-
cluded in future bug localization studies.

At the end, we suggest that the most efficient classifier configuration
for bug localization is A3.B6.C7.D2.E1@Method the Vector Space
Model, with the index built using sub-linear tf-idf term weighting on
methods (i.e., identifiers, comments, and past bug reports for each
entity), which has been stopped, stemmed, and splitted, and queried
with all available data in the bug report (i.e., title and description) with
cosine similarity. We provide our datasets online in order to encourage
future research in the area of IR-based bug localization.8
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