
Journal of Information Processing Vol.24 No.2 339–348 (Mar. 2016)

[DOI: 10.2197/ipsjjip.24.339]

Regular Paper

Magnet or Sticky? Measuring Project Characteristics from
the Perspective of Developer Attraction and Retention

Kazuhiro Yamashita1,a) Yasutaka Kamei1,b) ShaneMcIntosh2,c)

Ahmed E. Hassan3,d) Naoyasu Ubayashi1,e)

Received: June 30, 2015, Accepted: December 7, 2015

Abstract: Open Source Software (OSS) is vital to both end users and enterprises. As OSS systems are becoming a
type of infrastructure, long-term OSS projects are desired. For the survival of OSS projects, the projects need to not
only retain existing developers, but also attract new developers to grow. To better understand how projects retain and
attract contributors, our preliminary study aimed to measure the personnel attraction and retention of OSS projects
using a pair of population migration metrics, called Magnet (personnel attraction) and Sticky (retention) metrics. Be-
cause the preliminary study analyzed only 90 projects and the 90 projects are not representative of GitHub, this paper
extend the preliminary study to better understand the generalizability of the results by analyzing 16,552 projects of
GitHub. Furthermore, we also add a pilot study to investigate the typical duration between releases to find more appro-
priate release duration. The study results show that (1) approximately 23% of developers remain in the same projects
that the developers contribute to, (2) the larger projects are likely to attract and retain more developers, (3) 53% of
terminal projects eventually decay to a state of fewer than ten developers and (4) 55% of attractive projects remain in
an attractive category.

Keywords: Magnet, Sticky, Developer Transition, Open Source Software, Mining Software Repositories

1. Introduction

Open source software (OSS) is vital to both end users and en-
terprises. According to a survey conducted by Black Duck, 78%
of enterprises run part or all of their business operations on OSS
systems *1. For example, Red Hat, a leading company of Linux
distribution, is enhancing the Linux kernel to develop Enterprise
Linux (an enterprise operation system). As OSS systems are be-
coming a type of infrastructure, long-term OSS projects are de-
sired.

The survival of OSS projects depends on their ability to retain
contributors. As contributors continue working on a project, they
develop more efficient approaches and perform more complicated
tasks. Long Term Contributors (LTCs) are particularly important
for projects, because these contributors gradually become experts
who can write good codes and perform core tasks (e.g., mentoring
newcomers) [44].

Besides retaining contributors, OSS projects need to attract
new contributors to grow the projects. The importance of new
contributors has been emphasized in some studies. According to
Kraut et al. [21], new contributors provide innovation, new ideas,
and novel work procedures. Qureshi et al. [28] claim that new

1 Kyushu University, Fukuoka 819–0395, Japan
2 McGill University, Montréal, Québec, Canada
3 Queen’s University, Kingston, Ontario, Canada
a) yamashita@posl.ait.kyushu-u.ac.jp
b) kamei@ait.kyushu-u.ac.jp
c) shane.mcintosh@mcgill.ca
d) ahmed@cs.queensu.ca
e) ubayashi@ait.kyushu-u.ac.jp

contributors promote a sustainable community to motivate, en-
gage, and retain new contributors. New contributors may also
become candidates of new LTCs.

For these reasons, retaining contributors and attracting new
contributors are crucial for OSS projects. This fact has been
widely recognized in literature [21], [31], [33], [43], [45]. These
studies focus on the factors that attract and retain staff. For in-
stance, Zhou et al. [45] reported that a pro-community attitude
is most important for cultivating LTCs in open source projects.
Steinmacher et al. [33] modeled 58 social barriers of OSS projects
(e.g., not receiving an answer). However, to our knowledge, no
study has measured these characteristics using developer transi-
tions.

Therefore, in this study, we focus on the number of new and
existing contributors in OSS projects. We measure the attractive-
ness and retention of contributors in OSS projects by two met-
rics, called Magnet and Sticky metrics [26]. The Magnet met-
ric indicates the number of new developers attracted to a project
and Sticky metric indicates the number of existing developers that
stay with the project. The Magnet and Sticky metrics are defined
in Section 2. These metrics are expected to capture the status of
each project in terms of recruiting and retaining contributors.

Using the two metrics, we address the following two research
questions:

*1 https://www.blackducksoftware.com/future-of-open-source (accessed
2015-06-15)

c© 2016 Information Processing Society of Japan 339

Journal of Information Processing Vol.24 No.2 339–348 (Mar. 2016)

(RQ1) What Are the Typical Distributions of Projects from
the Magnet and Sticky Perspectives?
Motivation: Applying the concepts of Magnet and Sticky
in an OSS context, we seek the project distributions of
these concepts.
Result: 23% of contributors remain with a project. Lager
projects attract larger number of new contributors than
smaller projects.

(RQ2) How do the Magnet and Sticky values change over
time?
Motivation: By investigating the transitions of Magnet
and Sticky values, we can capture the temporal evolution
and decay of the projects.
Result: 53% of terminal projects eventually decay into a
state of have fewer than ten contributors. On the other
hand, 55% of attractive projects keep their popularity.
Furthermore, stagnant projects are more likely to decay
than fluctuating projects.

To answer these research questions, we conducted experiments
of 16,552 GitHub projects. GitHub is one of the largest so-
cial coding platforms in the world, hosting many types of OSS
projects.

This study is an extended version of our preliminary study (as
a short paper of an international conference) [42]. The largest
extension is the dataset. Since the dataset that we used for pre-
liminary study includes 90 projects that are not randomly selected
and not representative of GitHub *2, in this study, we use 16,552
projects that have more than ten forks and developers (cf., Sec-
tion 3). Furthermore, we modify the definition of sticky value
to improve the usability and investigate typical duration between
releases to avoid ad hoc decision about duration.

The summary of extensions is as below:
• Modifying the definitions of Sticky values (Section 2).
• Adding a pilot study to investigate the typical duration be-

tween releases (Section 4).
• Extending the number of target projects from 90 to 16,552

(RQ1, 2).
• Adopting the typical release duration as time period in our

experiments (RQ1, 2).
Paper organization. The remainder of the paper is organized as
follows. Section 2 describes out measure of contributor attractive-
ness and retention in OSS projects. Section 3 discusses the mo-
tivations and approaches of the research questions, overview the
dataset, and defines the terminology used throughout the paper.
Sections 4 and 5 present the results of pilot studies investigating
the release duration in OSS projects and studies that we conduct
using the large-scale of OSS projects, respectively. Then, we dis-
cuss our results in Section 6. Section 7 surveys related work, and
Section 8 concludes the paper.

2. Measuring Contributor Retention and At-
traction in OSS

This section describes our measurements of personnel reten-
tion and attraction in OSS. In this study, we use the Magnet and

*2 http://2014.msrconf.org/challenge.php (Accessed 2015-06-15)

Sticky metrics defined by the Pew Research Center [26] for illus-
trating the migratory trends of citizens in the United States. The
Sticky metric revealed that just 28% of people are born in Alaska,
but more than 75% of those born in Texas, remain in their birth
states as adults. Furthermore, the Magnet metric revealed that
86% of adult residents of Nevada had migrated from a different
state.

2.1 Magnet and Sticky in State Populations
The Pew Research Center report [26] defines Magnet states as

states that attract a large proportion of adults from other states.
Thus, the Magnet metric of a state is the proportion of adult res-
idents who were not born in that state, relative to the total state
population. The report also defines Sticky states as states that re-
tain a large proportion of the people born in that state. Thus, the
Sticky metric of a state is the proportion of adult residents who
were born in that state, relative to the residents born and living in
the entire United States.

2.2 Magnet and Sticky in OSS Projects
The definitions of Magnet and Sticky are unambiguous in pop-

ulation studies, in which a single adult occupies only one state at
a time, but are not directly applicable to open source projects, be-
cause contributors can contribute to several projects at the same
time. Furthermore, the birth and current residence states of a sin-
gle adult are identified from certificates of residence; however,
no such document records the projects contributed by a developer.
Therefore, if a developer commits to a project during a certain pe-
riod, we identify that the developer has joined the project during
that period. Therefore, the identification depends on the duration
of the contribution period. In our preliminary study [42], we ten-
tatively assigned the time window of the analysis as one year. In
the present study, we more rigorously assess the time window as
six months in a pilot study, see Section 4.

Using this duration, we divide time into periods. The period of
interest is denoted the target period (pi). The periods immediately
preceding and succeeding the target period are called the previous
period (pi−1) and the following period (pi+1), respectively.

In our preliminary study [42], the Sticky metric was defined as
the proportion of contributors in both pi and pi+1. In this study,
we modify the definition to the proportion of contributors in pi−1

and pi. In this manner, we can predict the status of the projects in
pi+1 (i.e., the future status).

Therefore, we redefine the Magnet and Sticky metrics as fol-
lows:
Magnet projects are projects that attract a large proportion of

new contributors. Thus, the magnetism of a project is the
proportion of contributors who contributed during a particu-
lar period, but not during previous periods.

Sticky projects are projects in which many contributors con-
tinue making contributions. Thus, the stickiness of a project
is the proportion of contributors who contributed during a
particular period and also during previous periods.

2.3 Illustrative Example
The quantification of our definitions is demonstrated in Fig. 1.

c© 2016 Information Processing Society of Japan 340

Journal of Information Processing Vol.24 No.2 339–348 (Mar. 2016)

Fig. 1 Calculation examples of our newly defined Magnet and Sticky val-
ues.

In this example, we examine two projects during period pi. There
are six developers (A, B, C, D, E, and F) and two projects (1 and
2). Circles show the commits or pull requests contributed by the
developers (listed down the left-hand side). For example, while
developer A makes two contributions during period pi, developer
B makes no contributions during that period. To calculate the
Magnet metric, we observe that three new developers (C, E, and
F) join the team at pi, one of whom contributes to project 1 (C),
while the others (E and F) contribute to project 2. In this case, the
Magnet values of projects 1 and 2 are 1

3 and 2
3 , respectively.

To calculate the Sticky metrics, we note that two developers
(A and B) contributed to project 1 at pi−1, one of whom (A) also
contributes at pi. Hence, the Sticky value of project 1 is 1

2 . One
developer (D) contributes to project 2 at pi−1, and three develop-
ers (D, E, and F) contribute at pi. However, the Sticky metric only
considers the number of contributors during pi−1 and pi. Hence,
the Sticky value of project 2 is not 3

1 , but rather 1
1 .

3. Study Design

This section provides an overview of our study. First, we de-
velop our research questions and motivations, then describe our
dataset.

3.1 Research Questions — Motivation and Approach
(RQ1) What Are the Typical Distributions of Projects from
the Magnet and Sticky Perspectives?
Motivation. First, we overview the trends of Magnet and Sticky
values in the OSS context. This research question was addressed
in our preliminary study [42], but here we expand the number of
case study projects from 90 to 16,552. We also reconsider the
time window. In this study, we established the time window as
six months in a pilot study.
Approach. The Magnet and Sticky values of the studied OSS
projects are calculated as described in Section 2. To visualize the
data, we plot the Magnet and Sticky values of each project against
each other project, and (similar to Khomh et al. [20]) divide the
plot into four quadrants, as done in our preliminary study [42]:
Attractive projects (with high Magnet and Sticky values) suc-

cessfully attract new developers while retaining their exist-
ing ones.

Fluctuating projects (with high Magnet values, and low Sticky

values) successfully attract new developers but tend to lose
existing ones.

Stagnant projects (with low Magnet values, and high Sticky
values) retain their existing development team but struggle
to attract new members.

Terminal projects (with low Magnet and Sticky values) strug-
gle to retain existing developers while failing to attract new
ones.

The quadrant thresholds can be dynamically configured. In
this study, we use the median Magnet and Sticky values as the
thresholds, as the median is a robust measure that is not heavily
influenced by outliers.

As in our preliminary study [42], we focus on the latter six
months of the most recently completed year of historical data
(i.e., from July to December of 2013). The most recent dataset
includes the largest number of projects.

Note that the Sticky value depends on the number of contrib-
utors in both the target and the previous time periods (Fig. 1). If
few developers have contributed in the previous time period is
small, the Sticky value tends to be high. Therefore, to reduce the
noise in our results, we filter out projects with less than ten de-
velopers in the previous time period. We also consider the time
period in which the project started. The Sticky value of a start-up
project is 0, because all of the developers are new and no devel-
oper has contributed during the previous time period. Therefore,
we filter out new projects in the target time period.

Besides an overview of the distribution, we also show typi-
cal values of differently sized projects. As mentioned above, the
Magnet and Sticky metrics are influenced by the number of to-
tal developers in the target and previous time periods. Therefore,
we divide projects according to their number of developers, and
display the median Magnet and Sticky values of projects in each
size category.
(RQ2) How do the Magnet and Sticky values change over
time?
Motivation. By investigating the changes in Magnet and Sticky
values, we can capture the temporal evolution and decay of the
projects.
Approach. We analyze how the aging projects transit among
the quadrants of Fig. 3. As the quadrant boundaries will likely
change, the boundaries are recalculated in each time period. In
this study, we track the Magnet and Sticky values from 2000 to
2013 (i.e., thorough 28 time periods).

3.2 Overview of Dataset
Our dataset is the GitHub dataset “GHTorrent” provided by

Gousios [12] *3. Part of this dataset is provided in the MySQL
database and includes diverse software evolution data from a
large collection of OSS projects, such as issue reports, pull re-
quests, organizations, followers, stars and labels. We focus on
the code authorship data in the commits and pull requests tables.

GitHub has unique features such as fork and pull request for
collaborative development. GitHub describes Fork as a copy of
a repository. Forking a repository allows you to freely experi-

*3 We use MySQL databases dump at 2014/04/02.

c© 2016 Information Processing Society of Japan 341

Journal of Information Processing Vol.24 No.2 339–348 (Mar. 2016)

Table 1 Overview of the GHTorrent dataset used in this study.

Dataset #Users #Repos #Commits #PullReqs

This Study 3,426,046 8,510,504 96,999,485 3,200,428
Preliminary Study 499,485 108,718 555,325 78,955

ment with changes without affecting the original project *4. Pull
request allows users to “tell others about changes you’ve pushed
to a repository on GitHub. Once a pull request is sent, interested
parties can review the set of changes, discuss potential modifi-
cations, and even push follow-up commits if necessary” *5. A
typical development process on GitHub, driven by fork and pull
requests, proceeds as follows:
(1) A developer forks a repository to which he or she hopes to

contribute.
(2) The developer makes changes to the fork repository.
(3) The developer sends a pull request to the original repository

to reflect his or her changes to the original repository.
(4) If the owner of the original repository allows the pull request,

the changes are included in the original repository.
Table 1 overviews the dataset used in our study. This dataset is

800 times larger than that accessed in our preliminary study [42].
Besides the higher number of repositories, the current dataset in-
cludes more users, commits and pull requests than the dataset of
the preliminary study.

As described above, the entire dataset is divided into sub-
datasets covering different time periods. Therefore, we examine
the column created at. However, this column contains uninter-
pretable or nonsensical dates such as ’0000-00-00’, ’0000-00-00
00:00:00’, and 2025 (as the commit year). As the dates of commit
and pull requests are critical to our analysis, we filtered out such
cases.

3.3 Developers
In this study, a developer is a person who alters software code.

In the GitHub dataset, developers can either perform the com-
mit themselves or send a pull request to an upstream repository
maintainer. Both actions are viewed as developmental activity
in our Magnet and Sticky analyses. According to Kalliamvakou
et al. [17], most of the accepted pull requests sent from fork repos-
itories are absent in the histories of original repositories. There-
fore, we mine the developer information from both the original
and fork repositories. In particular, we obtain the author infor-
mation from the retrieved commits. From the pull requests, we
obtain the information of actors who send (i.e., open) the pull
requests.

The GitHub system identifies authors as registered or non-
registered from the email addresses of the commits *6. If the au-
thor of a commit is not registered, GitHub records the author in-
formation that can be obtained from Git, such as name and email
address, along with a unique id. In this system, some developers
are assigned multiple user ids. Therefore, we clean the data using

*4 https://help.github.com/articles/fork-a-repo/ (Accessed 2015-06-15)
*5 https://help.github.com/articles/using-pull-requests/ (Accessed 2015-06-

15)
*6 https://help.github.com/articles/why-are-my-commits-linked-to-the-

wrong-user/ (Accessed 2015-06-15)

the tool *7 that matches users with their information recorded in
GitHub (e.g., login name, actual name, email address and loca-
tion).

3.4 Projects
Not all of the repositories included in our dataset are software

projects [17]. Other repository categories include, but are not lim-
ited to, Experimental (e.g., examples, demonstrations and sam-
ples,) and Storage (e.g., configuration files and personal use). We
assume that the number of fork repositories and developers is neg-
ligible in these categories, since these repositories do not require
collaboration with others. To identify software projects, we note
the number of fork repositories and number of developers, both
of which indicate collaborative activity. Projects with less than
10 fork repositories and 10 developers are filtered out. The post-
filtered dataset includes 16,552 original repositories.

Our study focuses on projects adopting the pull-based model,
which excludes the 55% of the GitHub projects using shared
repository models [13]. Moreover, we filtered projects with fewer
than 10 forks. Therefore, our findings are not generalizable to
shared repository models.

4. Pilot Study

In our preliminary study [42], we tentatively assigned the target
period of the magnetism and retention calculations as one year.
However, the validity of this assignment was not discussed. In
the present study, the appropriate period is identified in a pilot
study.

In defect prediction, code review and other studies relying on
Mining Software Repositories (MSR), experiments are conducted
at the release-level [18], [24]. However, when conducting exper-
iments across multiple projects, the release-level is inappropriate
for two reasons. First, we desire to compare metrics at the same
time; second, multiple projects are not released simultaneously.

Instead of the release-level, we therefore adopt the representa-
tive release duration. Some of the large projects regularly update
their products [19]; Google Chrome and Mozilla Firefox update
their products every six weeks (i.e., adopt a rapid release model).
If all the projects in our dataset are periodically updated at the
same rate, that period becomes a useful parameter in the mag-
netism and retention calculations. Therefore, we manually in-
spect some projects to determine the constancy of their update
periods. Unfortunately, unlike Google Chrome and Mozilla Fire-
fox, most projects are not regularly upgraded. Hence, to identify
the typical release period of the GitHub projects, we calculate the
durations between the releases of each project.
Approach. GitHub releases the products *8 and provides the
API to access the released information. We extract the release
information (version number and published date) of all target
projects from the GitHub API. The published and git tag dates
are independent, although both dates have the same version name
and release date of the updated version onto GitHub. Although

*7 https://github.com/bvasiles/ght unmasking aliases (Accessed 2015-06-
15)

*8 https://help.github.com/articles/creating-releases/ (Accessed 2015-06-
15)

c© 2016 Information Processing Society of Japan 342

Journal of Information Processing Vol.24 No.2 339–348 (Mar. 2016)

Table 2 Release durations of major, minor, patch upgrades of GitHub
projects (days).

Major Release Minor Release Patch Release

Min 9 1 1
1st Qu. 68.8 20 6
Median 167.5 52 18
Mean 202.8 84.2 38.5
3rd Qu. 316.3 117 45
Max 650 620 609

NumberOfUpdate 98 2,021 6,092

Fig. 2 Release Duration (days).

GitHub recommends the semantic labeling of new versions (in
MAJOR.MINOR.PATCH number format) [27], some projects do
not follow this recommendation. Projects not adopting the se-
mantic versioning system are removed from our analysis. We also
remove alpha versions and release candidates (e.g., 1.0.0-alpha,
1.0.0-pre), because such versions are candidates rather than offi-
cial releases. After filtering, we extract the release information
of 16,682 versions of 1,778 projects. From this information, we
calculate the durations of Major, Minor and Patch releases.

In the semantic versioning system [27], a major release denotes
an update of incompatible API changes, and the version number
changes from (x.0.0) to (x+1.0.0). Minor releases add func-
tionality to a project in a backwards-compatible manner, and alter
the version number from (x.y.0) to (x.y+1.0). Patch releases
correct backwards-compatible bugs, and are marked by version
number changes from (x.y.z) to (x.y.z+1).

Multiple versions (even major upgrades) were occasionally re-
leased on the same day, and in different order from their version
numbers. We presumed that such projects had been moved to
GitHub from another hosting service (e.g., SourceForge), and had
been previously released. A developer could then release all ver-
sions onto GitHub on the same day. Therefore, we filter out up-
dates with durations below one day and released in different order
from their version numbers.
Results. The duration distributions of the major, minor, and
patch updates are presented in Table 2 and Fig. 2. To improve the
accuracy of the pilot study, we focus on durations between the 1st
and 3rd quantiles.

Figure 2 reveals clear duration differences between the major,
minor, and patch releases. At the patch level, the durations at the

Fig. 3 Distribution of Magnet and Sticky values for the studied projects.

1st and 3rd quantiles are 6 days and 45 days, respectively, with a
median of 18 days (approximately half a month). For minor up-
grades, the durations at the 1st and 3rd quantiles are 20 days and
117 days, respectively, with a median of 52 days (approximately
two months). At the major level, the durations of the 1st and 3rd
quantiles are 69 days and 316 days, respectively, and the median
is 168 days (approximately half a year).

New versions of GitHub projects are released in 18 days at

the patch level, 52 days at the minor level and 168 days at the

major level.

The pilot study revealed the typical durations of each level of
releases. In the following study, we adopt the median duration of
the major release as the time window, because the major release
is the most important update of a project.

5. Study Results

(RQ1) What Are the Typical Distributions of Projects from
the Magnet and Sticky Perspectives?

Figure 3 presents a Magnet vs. Sticky quadrant plot of the OSS
projects released on GitHub during the latest time period (July to
December of 2013). Attractive, fluctuating, stagnant, and termi-
nal projects land in the red (upper-right), green (upper-left), blue
(lower-right), and purple (lower-left) quadrants, respectively. The
names of the extremely attractive projects are annotated in the fig-
ure.

The median Magnet value is quite small, and the median Sticky
value is only 0.23 (Fig. 3). Although the Magnet value is typically
below 0.005 (marked by the horizontal division on the plot), some
projects have large Magnet values. These findings suggest that
the distribution of the number of new developers in each project
is highly skewed, and that approximately 23% of developers re-
main in the same projects.

The results are similar to our preliminary study [42]. In prelim-
inary study, Magnet values are much smaller than Sticky values

c© 2016 Information Processing Society of Japan 343

Journal of Information Processing Vol.24 No.2 339–348 (Mar. 2016)

Table 3 Projects with Sticky values of 1.0.

Name

DIRACGRID/DIRAC
JetBrains/MPS
georchestra/georgestra
dxw/wordpress
virtual-world-framework/vwf
open-mpi/ompi-svn-mirror
rose-compiler/edg4x-rose
stackforge/savanna
PCGen/pcgen
crosswalk-project/crosswalk

and only a few projects have large Magnet value. Furthermore,
the median Sticky value is approximately 20%.

Six of the projects have exceptionally high Magnet, namely,
Linux, Homebrew, Chromium, Angular.js, Specs, and
Mozilla-central. Linux is among the most famous projects,
and Homebrew is a popular package management tool for Mac
OS X. The web browser project Chromium is basis of Google
Chrome. Angular.js is the web framework for JavaScript,
Specs is a repository for the public CocoaPods *9 specification,
and Mozilla-central is a repository for source codes imple-
mented by the Mozilla foundation such as Firefox web browser.

The Linux, Chromium, Homebrew and Mozilla-central
projects are well-known and universally popular. Therefore,
many developers are expected to join these projects.

The popularity of Angular.js and CocoaPods during the
analysis period was checked by Google Trends *10, which records
the number of query searches on Google in chronological order.
In Refs. [6], [40], the popularity of a project is assessed from
the numbers of web pages indexed by Google and views of the
project page. However, the popularity trends of the projects are
difficult to identify by these indicators. Therefore, we identify the
popularities of the projects thorough Google Trends. The search
numbers of both Angular.js *11 and CocoaPods *12 were in-
creasing from 2013. Therefore, we assume that as the projects
gained popularity from 2013, they increasingly attracted new-
comers to their development. This finding suggests that the Mag-
net and Sticky values well-indicate the fame and popularity of a
project.

Ten projects in Fig. 3 have a Sticky value of 1.0 (we put a
framed box around the projects). The names of these ten projects
are listed in Table 3. To identify the reason for such high Sticky
values, we check their web pages and the developers’ affiliations
to find out the primary developers and maintainers of the projects.
If more than half of developers belong to companies, we con-
sider that the projects are supported by those companies. All the
projects in Table 3 are found to be developed or supported by
companies or laboratories. In general, non-company developers
are likely to join OSS projects as hobbyists [22], but company and
laboratory developers probably join OSS projects as part of their
work [22], [29]. Therefore, projects supported by company or

*9 CocoaPods is the dependency manager for Swift and Objective-C.
*10 https://www.google.co.jp/trends/ (Accessed 2015-10-15)
*11 https://www.google.co.jp/trends/explore#q=angularjs (Accessed 2015-

10-15)
*12 https://www.google.co.jp/trends/explore#q=CocoaPods (Accessed

2015-10-15)

Fig. 4 Beanplots of Magnet and Sticky values, grouped by developer size.

Table 4 Median values of Magnet and Sticky OSS projects released on
GitHub.

Metrics
of Total Developers in Project

10-50 51-100 101-500 501- Total

Median Magnet 0 2.9e-04 7.5e-04 9.1e-03 4.9e-05
Median Sticky 0.23 0.23 0.24 0.51 0.23

of Projects 4,275 217 112 8 4,612

laboratory developers are more likely to be constantly contributed
by the same developers than projects supported by non-company
developers.

We then study the impact of the number of project develop-
ers on the Magnet and Sticky values. Figure 4 shows beanplots
of the Magnet and Sticky values of differently sized projects (the
medians are listed in Table 4). In these plots, the left (black)
regions and right (gray) regions indicate the Magnet and Sticky
values, respectively. From left to right, the number of developers
is binned into 10–50, 51–100, 101–500, 501– plus, and all sizes.

From Fig. 4 and Table 4, we find that the Magnet and Sticky
values are generally higher for larger projects than for smaller
projects. As the denominator of the Sticky value is the total num-
ber of developers in the previous time period, the Sticky value
is inversely proportional to the number of developers. However,
large projects tend to have large Sticky values, consistent with our
intuition that developers prefer to join and contribute long-term to
such projects.

Larger projects attract and retain more developers than

smaller projects. 23% of developers remain with the same

project irrespective of size (total number of developers), and

new developers tend to join popular and famous projects.

(RQ2) How do the Magnet and Sticky values change over
time?

Figure 5 illustrates the quadrant transition likelihood on a state
transition diagram. Percentages describe the likelihood of a tran-
sition from one quadrant to another (or the same) quadrant. The
direction of the arrow indicates the direction of the quadrant
change. For example, the likelihood of moving from the attractive
to the terminal quadrant is 13%. States marked with “*” indicate

c© 2016 Information Processing Society of Japan 344

Journal of Information Processing Vol.24 No.2 339–348 (Mar. 2016)

Fig. 5 The likelihood of quadrant transitions.

projects that failed our filtering criteria (ten or more developers)
during some time periods. To improve the readability of the fig-
ure, we plot two “*” states, although these states are semantically
identical.

According to this figure, 3%, 8%, 28%, and 53% of the attrac-
tive, fluctuating, stagnant, and terminal projects entered the fil-
tered out state (“*”). Although any project can drop into the “*”
state, the probability is much higher for terminal projects than for
projects in other quadrants. Therefore, terminal projects are very
likely to decay into the “*” state. Intuitively, we expect that as ter-
minal quadrant projects are losing team members and struggling
to attract new ones, they will eventually die.

This result is different from our preliminary study [42]. In our
preliminary study, projects decay into “*” state only from termi-
nal quadrant, however, in this study, we found that projects that
are in other three quadrants decay into “*” state.

Interestingly, 28% of the stagnant projects, but only 8% of the
fluctuating ones, decay into the “*” state. In both quadrants, one
of the two metrics (Magnet or Sticky) is high; therefore, we ex-
pected that both quadrants would enter the “*” state with similar
likelihood. The observed asymmetry might reflect the impact of
number of developers. As fluctuating (stagnant) projects are char-
acterized by high (low) Magnet and low (high) Sticky values, it
appears that Magnet measure is more affected by number of de-
velopers than Sticky.

Moreover, projects in the fluctuating, stagnant, and terminal
quadrants do not easily transit to the attractive quadrant. Only
18% of the projects entered the attractive quadrant from other
quadrants, but 55% of the attractive projects maintained their high
magnetism and stickiness. This phenomenon indicates that attrac-
tive projects are more stable than projects in other quadrants.

In Fig. 5, we filtered start-up projects during the time period be-
cause the Sticky value of such projects is 0, as earlier described
in RQ1. However, the status transitions from the first time period
to the next warrant investigation. Figure 6 shows the likelihood
of quadrant transitions from the first to the second time period.
Only 13% of the projects maintained ten or more developers in
next one, indicating the difficulty of retaining and acquiring de-
velopers after initiating a project.

53% of the terminal projects eventually decayed into a state of

ten or fewer contributors, while 55% of the attractive projects

maintained their popularity. Only 13% of the projects identi-

fied in the first time period had maintained ten or more devel-

opers in the second period.

Fig. 6 Likelihood of quadrant transitions from the first period.

6. Discussion

This section discusses our analysis and results.

6.1 Discussion of RQ1
From the result of calculating Magnet and Sticky values at lat-

est time period, we obtained the distributions of the values of
projects such as the median Magnet value is 0.05 and Sticky value
is 0.23. The results are similar to our preliminary study [42]. Fur-
thermore, we found that larger projects attract and retain larger
number of developers. These findings fit our intuition. The large
projects are already known by many people and there are more
information of the projects compared to small projects. Hence,
we assume that new developers can find the projects and the in-
formation easily. For existing developers, contributing at fame
and popular project is proud thing and motives them. From these
expectations, we assume that both types of developers (new de-
velopers and existing developers) have good motivation to con-
tribute to the projects in larger projects.

Also, we showed the median of Magnet and Sticky values at
the latest time period. We assume that the values act as a gauge
of project health. If Magnet and Sticky values of a project are
lower than the median values, the project faces a risk of decay-
ing. In particular, Sticky value is stable across total number of
developers. Hence, projects that have lower Sticky values are es-
pecially risky.

6.2 Discussion of RQ2
From the result of calculating likelihood of quadrant transi-

tions, we found that 53% of terminal projects eventually decay
into a state where they have fewer than ten contributors and 55%
of attractive projects keep the popularity. We also revealed some
different trends from our preliminary study [42]. In preliminary
study, only terminal projects decay into the “*” state, but in this
study, attractive, fluctuating, and stagnant projects also decayed
into the “*” state. We attribute these differences to the much
larger dataset in this study.

We plan to study project survivability (i.e., project keep main-
taining) using the transition in our future work. Chengalur-
Smith et al. [4] showed that the number of developers positively
correlates with project survivability. Therefore, we expect that
project survivability can be predicted from the analyzed trends
and the definition of project failure, as proposed by English and

c© 2016 Information Processing Society of Japan 345

Journal of Information Processing Vol.24 No.2 339–348 (Mar. 2016)

Schweik [11]. This estimation is planned for future work, but we
must consider the definition of project death. In this study, the
“*” state represents projects with fewer than ten developers and
we consider projects moved to the “*” state as a type of obso-
lete projects. However, some projects with few developers are
robustly sustained. Therefore, a small number of developers does
not signify that the project will die (i.e., project stops its devel-
opment). We must consider the definition of obsolete project in
future work.

7. Related Work

7.1 Role Migration in Open Source Software
Some studies have investigated the role migration in OSS.

Nakakoji et al. [25], Ye et al. [43] and Jensen and Scacchi [16]
found that the extent to which each developer influences an OSS
project establishes a hierarchy among the developers. Nakakoji
et al. [25] claimed that a sustainable OSS project must evolve
both the systems and the community. They identified three evo-
lution patterns exploration-oriented, utility-oriented, and service-
oriented. Ye et al. [43] sought to understand why people partici-
pate in OSS projects. They assume that learning in practice mo-
tivates OSS developers. Along with this learning process, a de-
veloper’s role transformation in the OSS community provides ex-
trinsic motivation. Jensen and Scacchi [16] investigated the role
migration and project career advancement processes of OSS de-
velopers, focusing on three large OSS projects. They discussed
the roles and layers in each projects and the migration between
the roles and layers of developers who joined the projects.

Von Krogh et al. [38], Ducheneaut [10], Herraiz et al. [14], Bird
et al. [2], and Shibuya et al. [32] also studied the role immigration
process of OSS participants. Von Krogh et al. [38] found that new
joiners to the Freenet project will more likely undertake certain
actions than long-term developers. Drawing on personal expe-
rience, Deucheneaut described the six steps toward becoming a
Python developer. In their experiments on three large projects,
Bird et al. found that a submission history of patch upgrades
can effectively elevate a joiner to developer status. Herraiz et al.
discovered two groups of role migration; volunteer developers
who proceed in a step-by-step fashion, and sponsored developers
who suddenly migrate their roles. Shibuya and Tamai studied the
openness (transparency and accessibility [41]) of three projects.
They found that each project facilitates participation of new de-
velopers in different ways.

Similar to project roles, Robles et al. [30], Hindle et al. [15],
and Vasilescu et al. [37] studied the various activities in projects.
Hindle et al. distinguished four types of files and Robles et al.
proposed eight different activities. Recently, Vasilescu et al. ex-
tended this number to 14 activities and empirically studied how
the workloads of projects/contributors varied across the software
ecosystem.

These studies focused on the role migration in development
projects. In contrast, we investigate developer’s migration be-
tween projects. By measuring the numbers of new and existing
developers, we attempt to understand the underlying characteris-
tics of projects.

7.2 Success of Open Source Software
After conducting a literature review, DeLone and McLean [9]

proposed the Information Systems (IS) Success Model. They also
reformed the model and its dimensions of information quality,
system quality, service quality, use, user satisfaction, and net

benefits [8]. Crowston et al. [5] similarly conducted a literature
review and proposed dimensions that determine the success of an
OSS project. Next, they trialed their success measures by inter-
viewing SlashDot developers. The interviewed developers rated
developer dimensions (such as developer involvement and satis-
faction) most highly, followed by user dimensions (such as user
satisfaction and involvement). Crowston et al. also performed an
empirical study of their success measures [6].

Based on interviews with OSS developers, English and
Schweik [11] proposed six ranks of OSS success and failure.
Their classes are defined by several factors, such as the number of
public releases, activity and age of the project. Evaluating their
classification on SourceForge projects, and they classified only
15% of the projects as “Success, Growth.”

Bonaccorsi et al. [3] claimed that two factors shape the lifecy-
cle of a successful OSS project; a widely accepted leadership and
effective co-ordination among the developers.

As described above, there are many methods of evaluating the
success of OSS projects. In this study, we focus on developer
attraction and retention (i.e., the success of developer growth).

7.3 GitHub
GitHub projects have been analyzed in various studies.

Wagstrom et al. [39] proposed a dataset for investigating the rela-
tionship between Ruby on Rails and ecosystems, which includes
approximately 1,000 projects. Thung et al. [34] investigated the
relationships among projects and among developers, and identi-
fied the most successful projects/developers by their page rank.
These studies focused on the relationships among and between
projects and developers during a project’s evolution.

McDonald et al. [23] interviewed 10 lead and core members of
three large OSS projects hosted on GitHub. Most of the intervie-
wees measured of a project’s success by the numbers of existing
and new contributors. In a quantitative analysis, Tsay et al. [36]
studied two measures of a project’s success on GitHub. Betten-
burg and Hassan [1] studied the effect of social interactions on
software quality. They found that social interactions consistently
influence software quality and complexity. Dabbish et al. [7] ex-
amined how GitHub users interpreted and use the information ob-
tained from GitHub.

Gousios et al. [13] and Tsay et al. [35] investigated Pull Re-
quests on GitHub. Gousios et al. found that most of the pull re-
quests are accepted or rejected within one day, and that accepting
users submit their pull request within very similar timeframes.
Tsay et al. studied the factors affecting pull request acceptance
rates. They found that highly discussed pull requests are likely
to be rejected, but, this effect is moderated by the submitter’s
prior interactions. Kalliamvakou et al. [17] discussed the perils
and promises of researching on GitHub.

Our research applies Magnet and Sticky concept derived from
social study and the Pew Research Center (a nonpartisan think

c© 2016 Information Processing Society of Japan 346

Journal of Information Processing Vol.24 No.2 339–348 (Mar. 2016)

tank) in an OSS context, and thereby measures the attractiveness
of GitHub projects.

8. Conclusion

Building on our preliminary study [42], we aimed to better un-
derstand how OSS projects attract and retain contributors. First,
we extended the dataset from 90 to 16,552 projects to generalize
out preliminary results. Second, we redefined the Sticky metric
to better suit our purpose. Third, we experimentally identified the
typical duration between product releases.

In this study, we obtained similar and different (RQ2) results
to our preliminary study [42]. Roughly, the results of RQ1 are
similar and of RQ2 are different to our preliminary study.

The main results of the experiments are summarized below as
follows:
• 23% of developers remain in the same projects.
• Larger projects attract and retain more developers.
• 53% of terminal projects eventually decay into a state of

fewer than ten contributors.
• 55% of attractive projects remain in the attractive quadrant.
As mentioned in Section 6, our future work will investigate the

relationship between the Magnet and Sticky metrics and project
survivability. We found that developers tend to abandon termi-
nal projects, whereas attractive projects are frequently sustained.
These findings indicate a relationship between survivability and
the proposed metrics, but cannot quantify this relationship. In
particular, we did not define the failure of projects. Therefore,
when investigating this relationship in future work, we should
adopt a definition of project failure, as proposed English and
Schweik [11].

Acknowledgments This research was partially supported by
JSPS KAKENHI Grant Numbers 15H05306 and the Program
for Advancing Strategic International Networks to Accelerate the
Circulation of Talented Researchers.

References

[1] Bettenburg, N. and Hassan, A.: Studying the Impact of Social Struc-
tures on Software Quality, Proc. Int’l Conf. Program Comprehension
(ICPC), pp.124–133 (2010).

[2] Bird, C., Gourley, A., Devanbu, P., Swaminathan, A. and Hsu, G.:
Open Borders? Immigration in Open Source Projects, Proc. Int’l
Working Conf. Mining Software Repositories (MSR), pp.6–13 (2007).

[3] Bonaccorsi, A. and Rossi, C.: Why Open Source software can suc-
ceed, Research Policy, Vol.32, No.7, pp.1243–1258 (2003).

[4] Chengalur-Smith, I.N., Sidorova, A. and Daniel, S.L.: Sustainability
of Free/Libre Open Source Projects: A Longitudinal Study., Journal
of the Association for Information Systems, Vol.11, No.11 (2010).

[5] Crowston, K., Annabi, H. and Howison, J.: Defining Open Source
Software Project Success, Proc. Int’l Conf. Information Systems
(ICIS), pp.327–340 (2003).

[6] Crowston, K., Howison, J. and Annabi, H.: Information systems suc-
cess in Free and Open Source Software development: Theory and
measures, Software Process–Improvement and Practice, Vol.11, No.2,
pp.123–148 (2006).

[7] Dabbish, L., Stuart, C., Tsay, J. and Herbsleb, J.: Social Coding in
GitHub: Transparency and Collaboration in an Open Software Repos-
itory, Proc. Conf. Computer Supported Cooperative Work (CSCW),
pp.1277–1286 (2012).

[8] DeLone, W. and McLean, E.: Information Systems Success Revisited,
Proc. Int’l Conf. System Sciences (HICSS), pp.238–248 (2002).

[9] DeLone, W.H. and McLean, E.R.: Information Systems Success:
The Quest for the Dependent Variable, Information Systems Research,
Vol.3, No.1, pp.60–95 (1992).

[10] Ducheneaut, N.: Socialization in an Open Source Software Commu-

nity: A Socio-Technical Analysis, Comput. Supported Coop. Work,
Vol.14, No.4, pp.323–368 (2005).

[11] English, R. and Schweik, C.M.: Identifying Success and Tragedy of
FLOSS Commons: A Preliminary Classification of Sourceforge.net
Projects, Proc. Int’l Workshop Emerging Trends in FLOSS Research
and Development (FLOSS), pp.54–59 (2007).

[12] Gousios, G.: The GHTorrent dataset and tool suite, Proc. Int’l Work-
ing Conf. Mining Software Repositories (MSR), pp.233–236 (2013).

[13] Gousios, G., Pinzger, M. and van Deursen, A.: An Exploratory Study
of the Pull-based Software Development Model, Proc. Int’l Conf. Soft-
ware Engineering (ICSE), pp.345–355 (2014).

[14] Herraiz, I., Robles, G., Amor, J.J., Romera, T. and González
Barahona, J.M.: The Processes of Joining in Global Distributed Soft-
ware Projects, Proc. Int’l Workshop Global Software Development for
the Practitioner (GSD), pp.27–33 (2006).

[15] Hindle, A., Godfrey, M. and Holt, R.: Release Pattern Discovery via
Partitioning: Methodology and Case Study, Proc. Int’l Workshop Min-
ing Software Repositories (MSR), p.19 (2007).

[16] Jensen, C. and Scacchi, W.: Role Migration and Advancement Pro-
cesses in OSSD Projects: A Comparative Case Study, Proc. Int’l Conf.
Software Engineering (ICSE), pp.364–374 (2007).

[17] Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German,
D.M. and Damian, D.: The Promises and Perils of Mining GitHub,
Proc. Working Conf. Mining Software Repositories (MSR), pp.92–101
(2014).

[18] Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K., Adams, B.
and Hassan, A.E.: Revisiting Common Bug Prediction Findings Using
Effort Aware Models, Proc. Int’l Conf. Software Maintenance (ICSM),
pp.1–10 (2010).

[19] Khomh, F., Adams, B., Dhaliwal, T. and Zou, Y.: Understanding the
impact of rapid releases on software quality, Empirical Software En-
gineering, Vol.20, No.2, pp.336–373 (2015) (online), available from
〈http://dx.doi.org/10.1007/s10664-014-9308-x〉.

[20] Khomh, F., Chan, B., Zou, Y. and Hassan, A.E.: An Entropy Evalu-
ation Approach for Triaging Field Crashes: A Case Study of Mozilla
Firefox, Proc. Int’l Working Conf. Reverse Engineering (WCRE),
pp.261–270 (2011).

[21] Kraut, R., Burke, M., Riedl, J. and Resnick, P.: The Challenges of
Dealing with Newcomers, MIT Press, pp.179–230 (2012).

[22] Lakhani, K. and Wolf, R.: Why Hackers Do What They Do: Un-
derstanding Motivation and Effort in Free/Open Source Software
Projects., MIT Press (2005).

[23] McDonald, N. and Goggins, S.: Performance and Participation in
Open Source Software on GitHub, CHI ’13 Extended Abstracts on
Human Factors in Computing Systems, pp.139–144 (2013).

[24] McIntosh, S., Kamei, Y., Adams, B. and Hassan, A.E.: The Impact of
Code Review Coverage and Code Review Participation on Software
Quality: A Case Study of the Qt, VTK, and ITK Projects, Proc. Work-
ing Conf. Mining Software Repositories (MSR), pp.192–201 (2014).

[25] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K. and Ye, Y.:
Evolution Patterns of Open-source Software Systems and Communi-
ties, Proc. Int’l Workshop on Principles of Software Evolution (IW-
PSE), pp.76–85 (2002).

[26] Pew Research Social & Demographic Trends: Magnet or Sticky?: A
State-by-State Typology, available from 〈http://www.pewsocialtrends.
org/2009/03/11/magnet-or-sticky/〉 (accessed 2015-06-15).

[27] Preston-Werner, T.: Semantic Versioning 2.0.0, available from
〈http://semver.org〉 (accessed 2015-06-15).

[28] Qureshi, I. and Fang, Y.: Socialization in Open Source Software
Projects: A Growth Mixture Modeling Approach, Organizational Re-
search Methods, Vol.14, No.1, pp.208–238 (2011).

[29] Riehle, D., Riemer, P., Kolassa, C. and Schmidt, M.: Paid vs. Volun-
teer Work in Open Source, Proc. Hawaii Int’l Conf. System Sciences
(HICSS), pp.3286–3295 (2014).

[30] Robles, G., Gonzalez-Barahona, J.M. and Merelo, J.J.: Beyond
Source Code: The Importance of Other Artifacts in Software Devel-
opment (a Case Study), J. Syst. Softw., Vol.79, No.9, pp.1233–1248
(2006).

[31] Schilling, A., Laumer, S. and Weitzel, T.: Who Will Remain? An
Evaluation of Actual Person-Job and Person-Team Fit to Predict De-
veloper Retention in FLOSS Projects, Proc. Hawaii Int’l Conf. System
Science (HICSS), pp.3446–3455 (2012).

[32] Shibuya, B. and Tamai, T.: Understanding the process of participat-
ing in open source communities, Proc. Int’l Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Develop-
ment (FLOSS), pp.1–6 (2009).

[33] Steinmacher, I., Conte, T., Gerosa, M.A. and Redmiles, D.: So-
cial Barriers Faced by Newcomers Placing Their First Contribution
in Open Source Software Projects, Proc. Conf. Computer Supported
Cooperative Work and Social Computing (CSCW), pp.1379–1392
(2015).

c© 2016 Information Processing Society of Japan 347

Journal of Information Processing Vol.24 No.2 339–348 (Mar. 2016)

[34] Thung, F., Bissyande, T.F., Lo, D. and Jiang, L.: Network Structure of
Social Coding in GitHub, Proc. European Conf. on Software Mainte-
nance and Reengineering (CSMR), pp.323–326 (2013).

[35] Tsay, J., Dabbish, L. and Herbsleb, J.: Influence of Social and Tech-
nical Factors for Evaluating Contribution in GitHub, Proc. Int’l Conf.
Software Engineering (ICSE), pp.356–366 (2014).

[36] Tsay, J.T., Dabbish, L. and Herbsleb, J.: Social Media and Success in
Open Source Projects, Proc. Conf. on Computer Supported Coopera-
tive Work Companion (CSCW), pp.223–226 (2012).

[37] Vasilescu, B., Serebrenik, A., Goeminne, M. and Mens, T.: On the
variation and specialisation of workload—A case study of the Gnome
ecosystem community, Empirical Software Engineering, Vol.19,
No.4, pp.955–1008 (2014).

[38] von Krogh, G., Spaeth, S. and Lakhani, K.R.: Community, joining,
and specialization in open source software innovation: A case study,
Research Policy, Vol.32, No.7, pp.1217–1241 (2003).

[39] Wagstrom, P., Jergensen, C. and Sarma, A.: A network of Rails
a graph dataset of Ruby on Rails and associated projects, Proc.
Int’l Working Conf. Mining Software Repositories (MSR), pp.229–232
(2013).

[40] Weiss, D.: Measuring Success of Open Source Projects Using Web
Search Engines, Proc. Int’l Conf. Open Source Systems, pp.93–99
(2005).

[41] West, J. and O’mahony, S.: The Role of Participation Architecture in
Growing Sponsored Open Source Communities, Industry and Innova-
tion, Vol.15, No.2, pp.145–168 (2008).

[42] Yamashita, K., McIntosh, S., Kamei, Y. and Ubayashi, N.: Magnet
or Sticky? An OSS Project-by-project Typology, Proc. Int’l Working
Conf. Mining Software Repositories (MSR), pp.344–347 (2014).

[43] Ye, Y. and Kishida, K.: Toward an Understanding of the Motivation
Open Source Software Developers, Proc. Int’l Conf. Software Engi-
neering (ICSE), pp.419–429 (2003).

[44] Zhou, M. and Mockus, A.: Developer Fluency: Achieving True Mas-
tery in Software Projects, Proc. Int’l Symposium on Foundations of
Software Engineering (FSE), pp.137–146 (2010).

[45] Zhou, M. and Mockus, A.: What Make Long Term Contributors: Will-
ingness and Opportunity in OSS Community, Proc. Int’l Conf. Soft-
ware Engineering (ICSE), pp.518–528 (2012).

Kazuhiro Yamashita is a Ph.D. candi-
date at Kyushu University. He received
his Bachelor’s degree and Master’s de-
gree from Kyushu University. His re-
search interests include software engi-
neering, data mining, mining software
repositories (MSR).

Yasutaka Kamei is an associate profes-
sor at Kyushu University in Japan. He has
been a research fellow of the JSPS (PD)
from July 2009 to March 2010. From
April 2010 to March 2011, he was a post-
doctoral fellow at Queen’s University in
Canada. He received his B.E. degree in
Informatics from Kansai University, and

M.E. degree and Ph.D. degree in Information Science from Nara
Institute of Science and Technology. His research interests in-
clude empirical software engineering, open source software engi-
neering and Mining Software Repositories (MSR). His work has
been published at premier venues like ICSE, FSE, ESEM, MSR
and ICSM, as well as in major journals like TSE, EMSE and IST.
More information is available online at http://posl.ait.kyushu-u.
ac.jp/˜kamei/.

Shane McIntosh is an assistant professor
in the Department of Electrical and Com-
puter Engineering at McGill University.
He received his Bachelor’s degree in Ap-
plied Computing from the University of
Guelph and his M.Sc. and Ph.D. in Com-
puter Science from Queen’s University. In
his research, Shane uses empirical soft-

ware engineering techniques to study software build systems, re-
lease engineering, and software quality. His research has been
published at several top-tier software engineering venues, such
as the International Conference on Software Engineering (ICSE),
the International Symposium on the Foundations of Software En-
gineering (FSE), and the Springer Journal of Empirical Software
Engineering (EMSE). More about Shane and his work is available
online at http://shanemcintosh.org/.

Ahmed E. Hassan is a Canada Research
Chair in Software Analytics and the
NSERC/Blackberry Industrial Research
Chair at the School of Computing in
Queen’s University. Dr. Hassan serves
on the editorial board of the IEEE Trans-
actions on Software Engineering and the
Journal of Empirical Software Engineer-

ing. He spearheaded the organization and creation of the Mining
Software Repositories (MSR) conference and its research com-
munity. Early tools and techniques developed by Dr. Hassan’s
team are already integrated into products used by millions of
users worldwide. Dr. Hassan industrial experience includes help-
ing architect the Blackberry wireless platform, and working for
IBM Research at the Almaden Research Lab and the Computer
Research Lab at Nortel Networks. Dr. Hassan is the named inven-
tor of patents at several jurisdictions around the world including
the United States, Europe, India, Canada, and Japan. More infor-
mation at: http://sail.cs.queensu.ca/.

Naoyasu Ubayashi is a professor at
Kyushu University since 2010. He is
leading the POSL (Principles of Software
Languages) research group at Kyushu
University. Before joining Kyushu Uni-
versity, he worked for Toshiba Corpora-
tion and Kyushu Institute of Technology.
He received his Ph.D. from the University

of Tokyo. He is a member of ACM SIGPLAN, IEEE Computer
Society, and Information Processing Society of Japan (IPSJ). He
received “IPSJ SIG Research Award 2003.”

c© 2016 Information Processing Society of Japan 348

