LOG ENGINEERING: TOWARDS SYSTEMATIC LOG MINING TO SUPPORT
THE DEVELOPMENT OF ULTRA-LARGE SCALE SOFTWARE SYSTEMS

WEIYI SHANG

A thesis submitted to the
School of Computing
in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University
Kingston, Ontario, Canada

May 2014

Copyright (© Weiyi Shang, 2014

Abstract

uch of the research in software engineering focuses on understanding the dy-
namic nature of software systems. Such research typically uses automated
instrumentation or profiling techniques on the code. In this thesis, we exam-
ine logs as another source of dynamic information. Such information is generated from
statements inserted into the code during development to draw the attention of system
operators and developers to important run-time events. Such statements reflect the rich
experience of system experts. The rich content of logs has led to a new market for log man-
agement applications that assist in storing, querying and analyzing logs. Moreover, recent
research has demonstrated the importance of logs in understanding and improving software
systems. However, developers often treat logs as textual data. We believe that logs have
much more potential in assisting developers. Therefore, in this thesis, we propose Log En-
gineering to systematically leverage logs in order to support the development of ultra-large
scale systems.

To motivate this thesis, we first conduct a literature review on the state-of-the-art of
software log mining. We find that logging statements and logs from the development envi-
ronment are rarely leveraged by prior research. Further, current practices of software log
mining tend to be ad hoc and do not scale well.

To better understand the current practice of leveraging logs, we study the challenge of

understanding logs and study the evolution of logs. We find that knowledge derived from
development repositories, such as issue reports, can assist in understanding logs. We also
find that logs co-evolve with the code, and that changes to logs are often made without
considering the needs of Log Processing Apps that surround the software system. These
findings highlight the need for better documentation and tracking approaches for logs.

We then propose log mining approaches to assist the development of systems. We first
find that logging characteristics provide strong indicators of defect-prone source code files.
Hence, code quality improvement efforts should focus on the code with large amounts of
logging statements or their churn. Finally, we present a log mining approach to assist in

verifying the deployment of Big Data Analytics applications.

ii

Declaration

Author’s Declaration for Electronic Submission of a Thesis
I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Acknowledgments

I would like to thank my supervisor Dr. Ahmed E. Hassan for all his guidance and support
throughout this journey. Ahmed, I could not have imagined having a better advisor and
mentor for my Ph.D. study. For me, you have been a tremendous advisor, mentor and a
great friend. I would like to thank you for encouraging my research and for allowing me
to grow as a researcher. Your advice on both research as well as on my career have been
priceless.

A special thank you to my supervisory and examination committee members, Dr. Patrick
Martin, Dr. Mohammad Zulkernine, Dr. Thomas R. Dean, and Dr. Mark Harman, for their
continued critique, support and guidance. Many thanks to my examiners for their fruitful
feedback on my work.

I am very lucky to work and collaborate with some of the brightest researchers during
my Ph.D. I would like to thank all of my lab mates and collaborators, Tse-Hsun Chen,
Thanh Nguyen, Mark Syer, Nicolas Bettenburg, Shane McIntosh, Dr. Zhen Mining Jiang,
Dr. Meiyappan Nagappan, Dr. Emad Shihab, Dr. Yasutaka Kamei, Dr. Haroon Malik, Dr.
Stephen Thomas, Dr. Hadi Hemmati, Dr. Bram Adams, and Dr. Michael Godfrey for the
many fruitful discussions and collaborations. I learned so much from you all.

I would like to thank BlackBerry and the members of the BlackBerry Performance En-

gineering Team. I could not evaluate the impact and practical value of my thesis without

iv

the industrial environment and thoughtful feedback generally provided by the BlackBerry
team.

Through this entire journey I received so much love, guidance and support from many
dear friends. I would like to thank them all for making my Ph.D. journey an enjoyable one.

A special thanks to my family. Words cannot express how grateful I am for all of the
sacrifices that you have made on my behalf. Your support for me was what sustained me
thus far. At the end I would like express appreciation to my beloved wife Bingyang who
spent sleepless nights besides me and is always my support. I dedicate this thesis to my

family.

Dedication

To my family.

Related Publications

The following is a list of our publications that are on the topic of this thesis:

e Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Michael W. God-
frey, Mohamed Nasser, and Parminder Flora. 2011. An Exploratory Study of the
Evolution of Communicated Information about the Execution of Large Software Sys-
tems. In Proceedings of the 2011 18th Working Conference on Reverse Engineering
(WCRE 2011). IEEE Computer Society, Washington, DC, USA, 335-344. This work is

described in Chapter 4.
— This paper received the Best Paper Award for WCRE 2011.

e Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Michael W. Godfrey,
Mohamed Nasser and Parminder Flora. An Exploratory Study of the Evolution of
Communicated Information about the Execution of Large Software Systems. Journal
of Software: Evolution and Process (JSEP). Volume 26, Issue 1, pages 326, January

2014. This work is described in Chapter 4.

e Weiyi Shang. Bridging the divide between software developers and operators using
logs. In Proceedings of the 2012 International Conference on Software Engineering
(ICSE 2012). IEEE Press, Piscataway, NJ, USA, 1583-1586. This work is described in

Chapter 1.

vii

e Weiyi Shang, Meiyappan Nagappan, Ahmed E. Hassan. Studying the Relationship
between Logging Characteristics and the Code Quality of Platform Software. Empiri-
cal Software Engineering: An International Journal (EMSE). In Press. 24 pages. This

work is described in Chapter 5.

e Weiyi Shang, Zhen Ming Jiang, Hadi Hemmati, Bram Adams, Ahmed E. Hassan, and
Patrick Martin. 2013. Assisting Developers of Big Data Analytics Applications when
Deploying on Hadoop Clouds. In Proceedings of the 2013 International Conference
on Software Engineering (ICSE 2013). IEEE Press, Piscataway, NJ, USA, 402-411.

This work is described in Chapter 6.

— This paper received the ACM SIGSOFT Distinguished Paper Award for ICSE
2013.

e Weiyi Shang, Meiyappan Nagappan, Ahmed E. Hassan and Zhen Ming Jiang. Under-
standing Log Lines Using Development Knowledge. Submitted to the 30th Interna-
tional Conference on Software Maintenance and Evolution (ICSME 2014). This work

is described in Chapter 3.

viii

Contents

Abstract

Declaration

Acknowledgments

Dedication

Related Publications

Contents

List of Tables

List of Figures

1 Introduction
1.1 Research Hypothesis,
1.2 Thesis OVEIVIEW o o o e e e e e e e e e e e

1.2.1
1.2.2

1.2.3
1.2.4

1.2.5

Chapter 2: Literaturereview v v v v v v v
Chapter 3: What are the challenges in understanding logging state-
MENES? . . . o vt e e e e e e
Chapter 4: How do logging statements evolve?
Chapter 5: Prioritizing code review and testing efforts using logs and
theirchurn
Chapter 6: Verifying the deployment of Big Data Analytic applications
using logs e e

1.3 Thesis Contributions
1.4 Thesis Organization o v v vt i i v i it e

I Literature Review

2 Literature Review of Software Log Mining Research
2.1 Introduction i i e e e e

iii
iv
vi
vii
ix

xiii

AW W ==

92 IS

2.2 LogCollection i i i i e e e e 13

2.3 Log Transformation o i i it 15
2.4 LogAnalysis. e e e e 17
2.5 Log Mining Research Goals 19
2.6 SUMMATY . . . o v et e e e e e e e e e e e e 21

II Studying the Challenges Associated with Understanding and Evolving

Logging Statements 22
3 What are the Challenges in Understanding Logging Statements? 25
3.1 Introduction i i e e e e e 26
3.2 Related Work e 29
3.3 Preliminary Study. e e 30
3.4 RQ1: What Types of Information are Missing in Log Lines? 34
3.5 RQ2: Can Development Knowledge Provide Information about Log Lines? . 36
3.6 RQ3: Can Development Knowledge Resolve Real-world Inquiries? 43
3.7 RQ4: Can Experts Assist in Resolving Inquiries of Log Lines? 47
3.8 Automatically Providing Development Knowledge for Log Lines 52
3.8.1 Approach 52
3.82 Anexample 54

3.9 ThreatstoValidity e 55
3.10 Chapter SUMMATY . . .« v v v v v e e e e e e e e e e e e e e e e 57
4 How Do Logging Statements Evolve? 59
4.1 IntroduCtion v i v i e e e e e e e e e e e e e 61
4.2 A Motivating Example e 63
4.3 CaseStudy Setup o o v i i 65
4.3.1 StudiedsyStemsS. i e e e e e e e e 65
4.3.2 Uncovering logs and logging statements 67

4.4 CaseStudyResults e 71
4.4.1 RQ1: How much do logs change over time? 71
4.4.2 RQ2: What types of modifications happen to logs? 79
4.4.3 RQ3: What information is conveyed in short-lived logs? 88

4.5 Threatsto Validity 93
4.5.1 Externalvalidity 93
4.5.2 Internalvalidity 93
4.5.3 Constructvalidity 94

4.6 RelatedWork e 94
4.6.1 Non-code based evolution studies 94
4.6.2 Traceability between Logs and Log Processing Apps 96

4.7 Chapter SUMMAry o v i it i e e e e e e e e 97

III Log Engineering Approaches to Support Software Development Ac-

tivities

5 Prioritizing Code Review and Testing Efforts Using Logs and Their Churn

5.1 Introduction i i i i e e e e e e e
5.2 Motivating Study e e e e e
5.3 Background and Related Work
5.3.1 LogAnalysis. i
5.3.2 Software defect modeling
5.4 Logrelated Metrics i e e e e e
5.4.1 Log-related product metrics
5.4.2 Log-related process metricst
5.5 CaseStudy Setup o o i e e e
5.5.1 Extracting high-level source change information.
5.5.2 Identifying the Logging Statements
5.6 CaseStudyResults
5.6.1 Preliminary Analysis,
562 Results.
5.7 Threatsto Validity e
5.8 Chapter Summary

6 Verifying the Deployment of Big Data Analytic Applications Using Logs

6.1 Introduction e e
6.2 A Motivating Example e
6.3 Large Scale Data Analysis Platforms: Hadoop
6.3.1 The MapReduce programming model
6.3.2 Componentsof Hadoop
6.4 Approach e e
6.4.1 Execution Sequence Recovery
6.4.2 Generating repPortS v v v e e e e e e e e e e e e e
6.5 CaseStudy e e e e
6.5.1 Subject applications
6.5.2 The experiment’s environment setting
6.6 CaseStudyResults e
6.7 DISCUSSION v v vt it e e e e e e e e
6.8 Limitations and Threats to Validity
6.8.1 Externalvalidity
6.8.2 Constructvalidity
6.9 Related Work e
6.9.1 Dynamic software understanding
6.9.2 Hadooploganalysis
6.10 Chapter SUMMATY . . .+« v v v v v e e e e e e e e e e e e e e e

Xi

IV Conclusions and Future Work 164

7 Summary, Contribution and Future Work 165
7.1 Thesis contributions e e 166
7.2 Futureresearch e 169

7.2.1 Formally Investigating the Use of Logs in Software Engineering Activ-

THeS . o o e e e e e e 169
7.2.2 LogRepository 169
7.2.3 Domain-specific Language for Log Mining 169
7.2.4 System Test Planing Using FieldLogs 170

A Selection Protocol and Summary of Surveyed Papers 172
A.1 Selection Protocol of Surveyed Papers 173
A.2 Summary of Surveyed Papers 174

Xii

List of Tables

3.1
3.2

3.3

3.4

3.5

3.6

3.7

Overview of the subjectsystems
Types of information that operators asked about log lines in the email in-
QUITIES. & v v e o e
Number of logging statements (among 100 logging statements) that contain
each type of inquired information.
Number and percentage of logging statement changes that change each type
of information.
Percentage of the logging statements for which development knowledge can
complement by providing the missing information (grouped by each type of
INfOrmation). v v v v e e e e e e e e e e e e e e e e
Number of logging statements where each source of development knowledge
can provide a particular type of missing information. The largest numbers in
each type of missing information are shown in bold font. We study 100
logging statements for each subject system.
Results of using development knowledge to resolve the 14 real-world mailing
list inquiries. Each table cell indicates the source of development knowledge
that resolves the inquiries. A table cell with “not answered” indicates that the
inquiry is not answered by development knowledge. A blank cell indicates
that the corresponding information was not inquired about in the mailing
list. The first inquiry of Zookeeper did not request any specific information

in the email, hence it is excluded from this table.

Xiii

31

35

35

39

40

3.8
3.9

4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8
4.9

Resolved and un-resolved email inquiries. 48

‘Time to first reply’ of log line inquiries. 49
Overview of the studied releases of Hadoop (minor releases in italic) 65
Overview of the studied releases of PostgreSQL 66
Example of execution loglines. 70
Abstracted execution eVentso e e e e e e e e e 70
Percentage of unchanged, added, deleted and modified logs in the history of

EA (bold font indicates large changes). 77
Percentage of unchanged, added, modified and deleted logs (in execution
level and code level) in the history of Hadoop (bold font indicates large
changes). e 78
Percentage of unchanged, added, modified and deleted logs (in execution
level and code level) in the history of PostgreSQL (bold font indicates large
changes). e e e e e e 78
Log modification types and examples of the execution level analysis. 80
Logging statement modification types discovered from code-level analysis (in

addition to the typesin Table4.8). 80

4.10 Percentage of avoidable, recoverable and unavoidable log modifications in

Hadoop, PostgreSQL and EA. ot it i ittt ittt et 81

4.11 Percentages of different types of context modifications in Hadoop (execution

level). . . . o e e e e 81

4.12 Detailed percentages of different types of logging statement modifications in

Hadoop (codelevel). e e e e 83

4.13 Detailed percentages of different types of logging statement modifications in

PostgreSQL (code level). e 83

Xiv

4.14 Detailed percentages of different types of context modifications in PostgreSQL

(executionlevel). e 84
4.15 Detailed percentages of different types of context modifications in EA. . .. 84
4.16 Logging levels of short-lived and long-lived logs. 90
4.17 LDA topics of logs in Hadoop at the executionlevel. 91
4.18 LDA topics of logs in Hadoop at the codelevel. 91

4.19 Topics of the short-lived logs in PostgreSQL at the code level generated by LDA. 92

5.1 Distribution of log churnsreasons, 108
5.2 Overview of subject systems. 117
5.3 Lines of code, code churn, amounts of logging statements, log churns, per-
centage of files with logging, percentage of files with pre-release defects, and
percentage of files with post-release defects over the releases of Hadoop and
JBOSS. . . e e 120
5.4 Average defect densities of the source code files with and without logging
statements in the studied releases. Largest defect densities are shown in
bold. The p-value for significance testis0.05. 121
5.5 Spearman correlation between log-related metrics and post-release defects.
Largest number in each release is showninbold. 123
5.6 Spearman correlation between the two log-related product metrics: log den-
sity (LOGD) and average logging level (LEVELD), and the three log-related
process metrics: average logging statements added in a commit (LOGADD),
average logging statements deleted in a commit (LOGDEL), and frequency
of defect-fixing code changes with log churn (FCOC). 125
5.7 Deviance explained (%) improvement for product software metrics by logis-

ticregressionmodels. e 129

XV

5.8 Deviance explained (%) improvement for process software metrics by logistic
regressionmodels.
5.9 Deviance explained (%) improvement using both product and process soft-
ware metrics by logistic regression models. The values are shown in bold if
the model “Base+PRDUCT+PROCESS” has at least one log metric statisti-
cally significantly. e
5.10 Effect of log-related metrics on post-release defects. Effect is measured by
setting a metric to 110% of its mean value, while the other metrics are kept
at their mean values. The bold font indicates that the metric is statistically

significant in the Base(LOC+TPCPRE)+PRODUCT+PROCESS model.

6.1 Overview of the three subject BDAApPPS. o o v v v v v v i oo
6.2 Overview of the BDA App’s inputdatasize..
6.3 Effort required to verify the cloud deployment using our approach versus the
traditional keyword search. oo
6.4 Repeated execution sequences between running the BDA Apps once, twice
and three times. e e e

6.5 Number of log lines generated by running BDA Apps once, twice and three

6.6 Number of false positives, true positives, and the precision of both our ap-

proach and the traditional keyword search.

A.1 Summary of log mining related work

XVi

130

130

131

150
150

153

153

154

List of Figures

2.1

3.1

3.2

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2

6.3

Overview of Software LogMining

Density plot of the number of emails and active years of the experts of the
inquired log lines from Hadoop.
Overview of our approach to associate development knowledge to the corre-

sponding loglines

Overall framework for log abstraction.
Growth trend of logs (execution level and code level) in Hadoop.
Growth trend of logs (execution level and code level) in PostgreSQL.

Distributions of the different types of log modifications across all studied

releases. e e e e e e e e e

Overview of our case study approach.
Overview of the models built to answer RQ2. The results are shown in Ta-

ble 5.7,5.8and 5.9. e e e e

Overview of our approach.

An example of our approach for summarizing the run-time behaviour of BDA

An example of our log sequences report.

xvii

51

52

68
76
77

82

117

127

144

149

CHAPTER 1

Introduction

Automated software instrumentation techniques are commonly used to study the run-time
behaviour of software system [CZD"09]. However, such techniques often impose high
overhead, especially for real-world production workloads. To make matters worse, soft-
ware profiling and instrumentation are commonly performed by non-system experts after
the system has been built, based on limited domain and system knowledge. Therefore, ex-
tensive instrumentation often leads to an enormous volume of data that is impractical to
meaningfully interpret.

In practice, system operators and developers typically rely on the software system’s logs
to understand the high-level field behaviour of large systems and to diagnose and repair
bugs. Such logs consist of the major system activities (e.g., events) and their associated
contexts (e.g., a time stamp).

Rather than instrumenting software system in a blind manner, developers typically com-
municate some information that is considered to be particularly important through logs.
The rich yet unstructured nature of logs has created a new market for log management ap-

plications (e.g., Splunk [BGSZ10], XpoLog [xpo] and Logstash [logb]) that assist in storing,

Chapter 1: Introduction 2

querying and analyzing logs. We collectively call these applications, Log Processing Apps).
Moreover, recent software engineering research has demonstrated the importance of logs in
understanding and improving software systems. For example, software operators leverage
the rich information in logs to generate workload information for capacity planning of large
scale systems [HMF'08; NWV09], to monitor system health [BGSZ10], to detect abnormal
system behaviours [JHHFO08b], or to flag performance degradations [JHHF09].

Logs are not only used for the convenience of developers and operators, but they are
often needed to comply with legal regulations. For example, the Sarbanes-Oxley Act of
2002 [soa] stipulates that the execution of telecommunication and financial applications
must be logged.

Although logs are widely used in practice, and their importance has been well-identified
in prior research [GWS06; YPZ12], logs have not yet been fully leveraged by practitioners.

All too often, practitioners treat logs as textual data. A typical Log Processing App
searches through logs using keywords (e.g., “error” and “fail”) in order to identify system
run-time anomalies. We, on the other hand, believe that logs have much more potential in

assisting practitioners. Therefore, we propose Log Engineering:

Leveraging logs through systematic and scalable approaches in order to support the develop-

ment of software systems.

In this thesis, we first present a literature review on the state-of-the-art of software
log mining. We then study the challenges associated with understanding and evolving
logging statements. Finally, we propose systematic log engineering approaches to assist in

prioritizing code review efforts, and in deploying Big Data Analytic applications.

Chapter 1: Introduction 3

This chapter consists of the following parts: Section 1.1 presents our research hypothe-
sis. Section 1.2 gives an overview of the thesis. Section 1.3 briefly discusses the contribu-

tions of this thesis. Section 1.4 presents the organization of the thesis.
1.1 Research Hypothesis
Prior research and our industrial experience lead to the following research hypothesis.

(1)

ogs are a valuable yet rarely explored source of knowledge about a software

system and its operation. There is little research regarding the understanding
and evolution of logs
Systematic and scalable log mining approaches are needed to support vari-

ous software development activities (e.g., code quality improvement, large scale

/

The goal of this thesis is to empirically demonstrate the importance of logs and to pro-

\testing and deployment of ultra-large scale applications).

pose approaches to better leverage logs for supporting software development activities. The
thesis is divided into two parts along this goal, the first part studies the current practices of
leveraging logs through: 1) an empirical study of the challenges in understanding logging
statements and 2) an empirical study of the evolution of logs; the second part proposes two
approaches that leverage logs to support : 1) code quality improvement efforts and 2) large

scale testing and deployment of Big Data Analytic application.

1.2 Thesis Overview

We now give a brief overview of the work presented in this thesis.

Chapter 1: Introduction 4

1.2.1 Chapter 2: Literature review

Program Analysis is the set of analysis techniques that either analyze software systems
without executing them (static analysis) [NNH99] or analyze their run-time data (dynamic
analysis) [Bel99]. Static analysis has the ability to automatically highlight possible errors
and vulnerabilities in code [AHM™08]. Dynamic analysis has the potential to provide an
accurate picture of a software system because it exposes the actual behaviour of a sys-
tem [CZD"09]. Various types of run-time data, such as logs and execution traces, may be
collected during the execution of software systems and analyzed using various techniques.

Software Log Mining (SLM) focuses on mining the code snippets (i.e., logging state-
ments) that generate logs for static analysis and mining the generated logs as the source of
run-time data for dynamic analysis. This review chapter will focus on the topic of SLM. We
characterize and compare the surveyed literature along the following dimensions: 1) log
collection, 2) log transformation techniques, 3) log analysis techniques and 4) log mining
research goals. From the literature review, we find that much of the software log mining
literature leverages logs using ad hoc approaches and most of the software log mining re-
search focuses on assisting system operators, however, very little work focuses on assisting

software development activities.

1.2.2 Chapter 3: What are the challenges in understanding logging state-

ments?

In Chapter 3, we propose using knowledge derived from development repositories such as
code commits and issue reports, to assist in understanding log lines. We conduct a case
study on three open source systems (Hadoop, Cassandra and Zookeeper). Reading through
the mailing lists of the subject systems, we identify five types of information about log
lines that are often sought by practitioners. Based on examining 300 randomly sampled

logging statements from the source code of the subject systems, we find that four of the five

Chapter 1: Introduction 5

types of information are typically missing. However, development knowledge, especially
issue reports, contains such missing information. We also find that development knowledge
can be used to resolve 24 out of 45 real-world inquiries about logs. Based on our study,
we propose an initial approach to automatically extract the required information, from

development repositories.

1.2.3 Chapter 4: How do logging statements evolve?

In Chapter 4, we perform a case study on two large open source systems and one industrial
software system. We explore the evolution of logs by mining the execution logs and the
logging statements in the code from these systems. Our study illustrates the need for better
traceability between logs and the Log Processing Apps that analyze the logs. In particular,
we find that the logging statements change at a high rate across versions, which could lead
to fragile Log Processing Apps. We found that up to 70% of these changes can be avoided
and the impact of 15% to 80% of these changes can be controlled through the use of ro-
bust analysis techniques by Log Processing Apps. We also found that Log Processing Apps
that track implementation-level logging statement (e.g., performance analysis) and the Log
Processing Apps that monitor error message logging statements (e.g., system health moni-
toring) are more fragile than Log Processing Apps that track domain-level logging statements
(e.g., workload modeling), since the latter logging statements tend to be more stable and

long-lived.

1.2.4 Chapter 5: Prioritizing code review and testing efforts using logs and

their churn

In Chapter 5, we propose systematic log mining techniques to assist developers in prioritiz-
ing code review and testing efforts. We study the relationship between the characteristics

of logs, such as log density (i.e., the number of logging statements per lines of code) and

Chapter 1: Introduction 6

log churn (i.e., the number of changes to logging statements), and code quality, especially
for large platform software. We perform a case study on four releases of Hadoop and JBoss.
Our findings show that files with logging statements tend to have higher post-release defect
densities than those without logging statements. Inspired by prior studies on code quality,
we defined log-related product metrics, such as the number of logging statements in a file,
and log-related process metrics such as the number of changed logging statements. We find
that the correlations between our log-related metrics and post-release defects are as strong
as their correlations with traditional process metrics, such as the number of pre-release de-
fects, which is known to be one the metrics with the strongest correlation with post-release
defects. We also find that log-related metrics can complement traditional product and pro-
cess metrics resulting in up to 40% improvement in explanatory power when modeling
defect proneness. Our results show that logging characteristics provide strong indicators of
defect-prone source code files. However, we note that removing logging statements is not
the answer to better code quality. Instead, our results show that developers often relay their
concerns about a piece of code through logging statements. Hence, code quality improve-
ment efforts (e.g., testing and inspection) should focus more on the source code files with

large number of logging statements or with large amounts of log churn.

1.2.5 Chapter 6: Verifying the deployment of Big Data Analytic applications

using logs

As a first step in assisting developers of Big Data Analytic (BDA) Apps for cloud deploy-
ments, we propose a lightweight approach for uncovering differences between pseudo and
large scale cloud deployments. Our approach makes use of the readily-available yet rarely
leveraged execution logs from the underlying platform of BDA Apps. Our approach ab-
stracts the execution logs, recovers the execution sequences, and compares the sequences

between the pseudo and cloud deployments. Through a case study on three representative

Chapter 1: Introduction 7

Hadoop-based BDA Apps, we show that our approach can rapidly direct the attention of
BDA App developers to the major differences between the two deployments. Knowledge of
such differences is essential in verifying that BDA Apps perform well in the cloud. Using
injected deployment faults, we show that our approach significantly reduces the deploy-
ment verification effort ands provides very few false positives when identifying deployment

issues.

1.3 Thesis Contributions

In this thesis, we demonstrate that logs are a valuable yet rarely explored source of knowl-
edge about the development of software systems. We study the current practices of leverag-
ing logs and propose approaches for leveraging logs in a systematic fashion to support the
development of software systems.

In particular, our contributions are as follows:

1. We demonstrate that many challenges of understanding log lines can be supported

through mining development repositories.

2. We show that additional maintenance resources should be allocated to maintain Log
Processing Apps, especially when major changes are introduced into the software sys-
tems. Logging statements continually evolve, therefore traceability techniques are

needed to establish and track the dependencies between logs and the Log Processing

Apps.

3. We show that there is a relationship between logging characteristics and software

defects.

4. We propose approaches that leverage logs to verify the deployment of Big Data Ana-

lytic applications.

Chapter 1: Introduction 8

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents a literature review of
the state-of-the-art research on software log mining. Motivated by this literature review,
Chapters 3 to 6 study the current practices for leveraging logs to support the development

of software systems. In particular, we study and leverage logs in two parts:

e Part 1: Studying the challenges associated with understanding and evolving logging

statements

— Chapter 3 What are the challenges in understanding logging statements?

— Chapter 4 How do logging statements evolve?
e Part 2: Log engineering approaches to support software development activities

— Chapter 5 Prioritizing code review and testing efforts using logs and their churn.

— Chapter 6 Verifying the deployment of Big Data Analytic applications using logs.

Part 1

Literature Review

10

CHAPTER 2

Literature Review of Software Log Mining Research

Chapter 2: Literature Review 11

oftware Log Mining (SLM) focuses on mining logging statements for static anal-
ysis and mining logs as the source of run-time data for dynamic analysis. There
exists prior research that leverages logs to support system operation and software
development activities. In this chapter, we conduct a literature review on software log min-
ing research. We survey and compare the literature along the following dimensions: 1) log
collection, 2) log transformation techniques, 3) log analysis techniques and 4) log mining
research goals. From the literature review, we find that much of the software log mining
literature leverages logs using ad hoc approaches and focuses on assisting system operators,

however, very little work focuses on assisting in software development activities.

2.1 Introduction

Program Analysis is the set of analysis techniques that analyze software systems either
without executing them (static analysis) [NNH99] or by analyzing their run-time data (dy-
namic analysis) [Bel99]. Static analysis has the ability to automatically highlight possible
errors and vulnerabilities in source code [AHM*08]. Dynamic analysis has the potential to
provide an accurate picture of a software system because it exposes the system’s actual be-
haviour of a system [CZD"09]. Various types of run-time data, such as logs and execution
traces, are collected during the execution of software systems and analyzed using various
techniques.

Software Log Mining (SLM) focuses on either mining the logging statements that gen-
erate logs or the log lines themselves generated at run-time. For example, a logging state-
ment LOG.info(“Reporting fetch failure for ” + mapld + “ to jobtracker.”); would generate a
log line Reporting fetch failure for attempt_ 200910281903-0028_-m_001076_0 to jobtracker.
Logs consist of a large number of log lines generated during the execution of a software

system. Our research and this literature review will focus on the topic of SLM.

Chapter 2: Literature Review 12

Log

Software Log collection Log _ Log analysis mining
System transformation goal

==

Figure 2.1: Overview of Software Log Mining

More precisely, SLM can be defined as the mining of logging statements that are em-
bedded in the source code and the mining of data generated from such statement during
run-time. Large numbers of logging statements and logs are readily available from both
system-level testing and production settings. SLM helps developers in identifying bugs and
helps operators in ensuring the failure-free operation of the software.

It is important to note that, other sources of dynamic data are also commonly used to
study the run-time behaviour of software systems. For example, a large amount of prior
research leverages execution traces from automated profiling to verify the correctness of
a software system [RS11], to understand its behaviours [KKS06] and to study its evolu-
tion [GDGO6]. The main difference between logs and execution traces is that the execution
traces are typically generated from extensive software profiling and automated instrumen-
tation techniques, while software logs are generated from logging statements already em-
bedded by domain experts (e.g., developers).

Figure 2.1 shows an overview of the SLM process. First, logs are collected from the
source code or during the execution of a software system. For example, an operator of a
cluster of UNIX nodes may collect logs from all the nodes in the cluster. Then, the collected
logs are often transformed into certain data structures, such as vectors and graphs. The
operator of the UNIX cluster may then group the logs into sets by machine name or process
name. Finally, data analysis techniques are performed on the transformed logs to uncover
valuable knowledge. In this step, the operator from the example may count the error-related
keyword from each set of logs.

We describe the three steps of SLM in the following paragraphs using more concrete

Chapter 2: Literature Review 13

examples from prior research. For example, Jiang et al. [JHHFO8b] perform SLM to detect
system anomalies. They first collect application logs during load tests. They transformed
the collected logs into abstracted event pairs. For example, if log lines about “user purchase”
are always before log lines about “updating shopping cart”, the transformation technique
would generate a event pair “user purchase ->updating shopping cart”. In the analysis step,
they leverage a statistical approach named K-stat to identify system anomalies.

In this chapter, we perform a literature review to study the state-of-the-art of software
log mining. We select research papers that are related to the topic of software log mining
(see Appendix A.1). We then classify and compare the selected papers along the following

dimensions:

Log collection: we present the types and sources of the logs collected in prior SLM

research.

Log transformation techniques: we present the techniques used in log transforma-

tion and the types of output data.

Log analysis techniques: we present the techniques used to analyze the transformed

log data.

Log mining goals: we present the different goals of prior SLM research.

The rest of this chapter is organized as follows: Sections 2.2 to 2.5 present the four
dimensions of SLM research. For each dimension, we present our taxonomy and findings.

Section 2.6 concludes the chapter.

2.2 Log Collection

Prior SLM work leverages various types of logs from software systems. We categorize log

collection along two dimensions: types and sources. Types describe the types of software

Chapter 2: Literature Review 14

system that generates the logs. Sources describe the executing environment where the logs
are generated. Although logs are inserted in the code to achieve different purposes, such
as debugging and operation, prior research typically does not differentiate between the
purposes of logs.

Types of logs:

There are two main types of logs collected in prior studies.

e Platform logs: A platform typically acts as a container of applications running on
top of it. Platform logs can be leveraged for all the different applications running on
top of the platform. Hadoop is an example of such software platforms, which sup-
port applications running in a distributed environment [Whi09]. The large number
of logs generated by such platforms typically do not contain information about the
applications running on the platform, but rather platform itself. For example, Tan
et al. [TPKT08; TPKT09; TKGN10; BKT"10] leverage platform logs from Hadoop to
provide general visualization and anomaly detection for the applications running on
top of the Hadoop platform. Other examples of platforms include operating systems

(e.g., UNIX) and database systems (e.g., PostgreSQL).

e Application logs: Large software systems, e.g., telecommunication systems, also gen-
erate logs at run-time. Several open source applications that generate logs at run-
time have been widely used in previous work, such as RUBBoS [rub] and Dell DVD
Store [ds2]. For example, Jiang et al. [JHHF08b; JHHF09] leverage logs collected
from the Dell DVD Store application during load testing in order to identify functional

and performance problems.

Sources of logs:

There are two sources of logs studied in prior research.

e Logs from the field: Researcher have studied logs collected from field deployments.

Chapter 2: Literature Review 15

For example, Kavulia et al. [KTGN10] collected logs from the execution of a Hadoop

cluster, which had been running in the field for 10 months.

e Logs during development: Researchers have also studied logs collected from testing
environments. Such logs may be generated during debugging or large system testing.
For example, Jiang et al. [JHHF08b; JHHF09] collect logs during the execution of

load tests.

Finding 1. Little research focuses on the logging statements that reside in the

source code.

We find limited prior research leveraging logging statements in the source code [YPZ12;
YZP*11; YMX"10; XHFt09b; XHFt09a]. The majority of research collects only run-time
logs, i.e., application logs and platform logs, without considering the valuable knowledge

in the logging statements that reside in the source code.

Finding 2. Little research focuses on logs generated during the development of

systems.

We find that prior research typically collects logs after systems are deployed in the
field. There are large numbers of logs generated while a system is being developed and
tested. However, few researchers leverage such pre-deployment logs [JHHF08a; JHHF08b;
JHHFO09].

2.3 Log Transformation

Prior SLM work mainly transforms logs into three types of data structures:

e Abstracted logs: Techniques have been proposed to transform logs or logging state-
ments into events. Logs typically do not follow strict formats, but instead contain

significant unstructured data. For example, log lines may contain a time stamp and

Chapter 2: Literature Review 16

a free form message, making it difficult to extract any structured information from
them. In addition to being unstructured, log lines contain static and dynamic infor-
mation. The static information is specific to each particular event while the dynamic
information describes the context of each execution of a particular event. For ex-
ample, in a log line “time=1, Trying to launch, TaskID=01A", the text “Trying to
launch” is the static information that describes the event and the text “time=1" and
“TaskID=01A" are dynamic information which describe the context of the execution.
Jiang et al. [JHHF08a] propose an approach to identify the static and dynamic parts
in logs by leveraging data mining and clone detection techniques. They group log
lines by the number of tokens and identify the static parts by looking for matching

tokens in the log line groups.

e Vectors or sets: Researchers also transform logs into vector-like or set-like data struc-
tures. Such vectors or sets represent a series of events, which bring more context
information to every single log line. Domain and system knowledge, such as the
meaning of particular parameters in logs, is often required to build such vectors or
sets. Examples of the transformed vectors or sets include: pairs of logs [JHHF08b],

sequences of logs [JHHF09], suffix arrays [NWV09] and time series [BGSZ10].

e Graphs: Logs can also be transformed into graphs, where typically abstracted log
events are nodes in the graph and edges are added between two consecutive log
events in a vector. Therefore, graph-based algorithms are leveraged to analyze logs.
For example, Nagappan et al. [NR11] propose to transform logs into Directed Cyclic
Graphs. They create a tool to transform the logs into graphs and apply existing graph-
based algorithms to analyze the logs. Prior research has transformed logs into state-
based graphs (like state machines [TPK™08]), to analyze the control and data flow in

distributed systems.

e Matrixes: Researchers often extract data as a matrix from logs. Each log line will be

Chapter 2: Literature Review 17

transformed into a vector, where each element in the vector is a corresponding value
printed in the log line. The entire logs are transformed into a matrix [LFWL10]. Logs

are also transformed into parallel coordinates matrix [Tri08] for better visualization.

Finding 3. Prior research primarily uses ad hoc log transformation techniques.

While logs may be transformed into four common data structures, there is no standard-
ized data structure shared across different research efforts. For example, log abstraction is
one of the most common practices in log transformation. However, prior research efforts
tend to use different abstraction techniques, rather than reusing existing techniques. Stan-
dardized log abstraction techniques [JHHF08a; NV10], have seen limited adoption by other

researchers.

2.4 Log Analysis

Prior research analyzes the transformed logs using a number of different techniques:

e Simple calculation: Simple calculations include solving vectors [LFY'™10], calcu-
lating probability [JAST10], calculating response time [JHHF09] and simple filter-
ing [STO8]

e Directed-graph based algorithms: Directed-graph based algorithms are available
to analyze all logs that are transformed into graphs [NR11]. For example, Nagap-
pan [NR11] et al. identify the most visited nodes and edges in directed graphs gener-

ated from logs, to recover operational profiles of systems.

e Static analysis: Static analysis, including the recovery of call and data flow graphs,

may help to understand and improve the logging statements [YZPT11].

e Model checking: Model checking techniques are often used to automatically check

whether the logs fulfil a given specification [BBS™11]. Beschastnikh et al. [BBS™11]

Chapter 2: Literature Review 18

propose an approach to infer model from logs. They use the model to identify anoma-

lies in the system.

e Visualizations: Visualizations are used to assist developers and operators in manually

examining the logs [DPH10; TPK*09].

e Statistical methods: Various statistical methods are widely used to uncover knowl-
edge from logs. Examples of such statistical methods are principal component analy-

sis [XHF09b] and distribution estimation [XHFt09a] and k-stat [JHHFO8b].

e Data mining techniques: Data mining techniques are often used to discover pat-
terns in logs. For example, prior research performs invariance mining [BBS™11],
co-occurrence analysis [LFWL10] and Bayesian decision theory [LFWL10] in order to
recover system run-time models. Linear regression is used to recover the workload of

a system [KTGN10].

e Machine learning techniques: Machine learning techniques, such as various classi-
fication [FLL*13] and prediction techniques [SSN108], are used to uncover knowl-
edge (like rules) from logs. Researchers then use such knowledge to identify prob-

lems [FFHOS8; STO08].

e Other analysis techniques: Various other techniques are used to analyze logs. For
example, compression techniques [HMF108] and computing longest common pre-

fix [NWV09] are used on logs to recover the workload of a system.

Finding 4. Prior log mining research does not address the scalability challenges.

We find that most of the prior research efforts suffer from poor scalability. Prior research
leverages ever more complex analysis techniques on logs, such as model checking and data
mining techniques. However, many of these techniques typically do not scale well to support

large numbers of logs. Although there is some research that leverages existing distributed

Chapter 2: Literature Review 19

computing platforms to address scalability issues [SAH10], most log mining research does

not address the scalability challenge when being applied to logs.

2.5 Log Mining Research Goals

1. Log mining platforms: The rich yet unstructured nature of logs has created a new
market for log mining platforms. Such platforms typically provide features to store
large numbers of logs, and support querying and analyzing the logs. For example,
Logstash [logb] is an open source log mining platform, which stores and parses logs

for further search and analysis.

2. Log improvement: Prior research efforts aim to achieve better logging. For example,
Yuan et al. [YZP"11] propose a tool named Log Enhancer, which automatically adds

more context to log lines.
3. Log mining for system operation:

e Anomaly detection: Detecting anomalies in ultra-large scale systems is chal-
lenging, especially when the system is deployed on hundreds or thousands of
nodes. Logs are one of the only sources of data to detect system anomalies.
However, not all log lines contain keywords such as “error” or “failure” to indi-
cate an anomaly. More sophisticated techniques are designed to detect system
anomalies by analyzing logs. For example, Xu et al. [XHF09b; XHF09a] distill
the printed parameters and system state from the logs and extract a matrix with
each vector indicating the values of the parameters and the system state. They
perform Principal Component Analysis to identify the usual and unusual corre-
lations among features to detect system anomalies. Their approach has been

applied on Google’s production logs.

Chapter 2: Literature Review 20

e System monitoring: Logs are collected during system execution to monitor the
run-time behaviour of a system. For example, Chukwa [RK10] leverage dis-
tributed data processing platforms such as Hadoop [Whi09] to collect logs in
real-time from distributed nodes and to process the logs to monitor the health of

the system.

e Workload recovery and capacity planning: Logs are often leveraged to recover
the workload of a system. Such recovered workloads can assist in the efficient al-
location of resources. For example, Kavulia et al. [KTGN10] leverage 10 months
of logs in order to recover the workload of a Hadoop cluster in a cloud-computing
setting. The recovered workload assists system administrators in learning which
usage aspects impact the performance of their cluster and drive the cost of leas-

ing the cloud-computing resources.
4. Log mining for software engineering:

e Program comprehension: Understanding the run-time behaviour of large scale
systems is challenging. Logs are leveraged by prior research to understand the
run-time behaviour of a system. For example, Beschastnikh et al. [BBE*11;
BBS™11; BABE11] designed a tool named Synoptic, which infers concise and

accurate system run-time models from logs.

e Software testing: Logs are one of the only sources of information about a system
during large scale testing, such as performance testing and load testing. For ex-
ample, Jiang et al. [JHHF09] leverage logs to identify performance degradations
in large scale system load tests.

e Empirical studies: Researchers perform empirical studies on the characteris-
tic and efficiency of logs. For example, through an empirical study, Yuan et
al. [YPHT12] find that more than half of the failures could not easily be di-

agnosed using existing logs.

Chapter 2: Literature Review 21

Finding 5. There exists limited SLM research to support software development

activities.

One of the key findings highlighted by this survey is that there exists little SLM research
to support software development activities. We find that a majority of prior research focuses
on assisting system operation; while logs are not fully leveraged for assisting in software
development activities. Software developers often treat logs as a bi-product of the system
instead of a valuable source of knowledge. Existing research leverages logs during the
maintenance phase, such as program comprehension and regression testing. Logs are rarely
used during the early stages of development, such as requirements engineering, design and

coding.

2.6 Summary

In this chapter, we presented a literature review on the state-of-the-art software log mining
research.

From our literature review, we find that logging statements and logs generated during
development are rarely leveraged by prior research. Further, current practices of software
log mining tend to be ad hoc and fail to scale. There is limited research on leveraging logs
to support software development activities.

Motivated by the findings of our literature review, we first study the current practices of
leveraging logs (Chapter 3 and 4). We then propose systematic approaches to leverage logs

to support software development activities (Chapter 5 and 6).

Part 11

Studying the Challenges Associated
with Understanding and Evolving

Logging Statements

22

23

In our literature review (Chapter 2), we found that there exists limited research that
focuses on studying the logging statements that reside in the source code. Therefore, in this
part of the thesis, we studying the challenges associated with understanding and evolving

such logging statements.

e Chapter 3 studies the challenges associated with understanding log lines generated
by logging statements in source code. We propose the use of knowledge derived from
development repositories, like code commits and issue reports, to assist in under-
standing log lines. We identify five types of information about log lines that are often
sought by practitioners from a case study on three open source systems (Hadoop, Cas-
sandra and Zookeeper). We find that four of these identified types of information are
typically missing. However, development knowledge, especially issue reports, contain
such missing information. We also find that development knowledge can be used to
resolve 24 out of 45 real-world inquiries about log lines. Based on our study, we
propose an initial approach to automatically extract the required information from

development repositories.

e Chapter 4 studies the challenges associated with evolving logging statements. A case
study on two large open source and one industrial software system illustrates the
need for better traceability between logging statements and the Log Processing Apps
that analyze the logs generated from these statements. In particular, we find that
the logging statements change at a high rate across versions, which could lead to
fragile Log Processing Apps. We found that up to 70% of these changes could have
been avoided and the impact of 15% to 80% of the changes can be controlled through
the use of robust analysis techniques by Log Processing Apps. We also found that Log
Processing Apps that track implementation-level logging statement (e.g., performance
analysis) and the Log Processing Apps that monitor error message logging statements

(e.g., system health monitoring) are more fragile than Log Processing Apps that track

24

domain-level logging statements (e.g., workload modeling), since the latter logging

statements tend to be more stable and long-lived.

25

CHAPTER 3

What are the Challenges in Understanding Logging Statements?

Chapter 3: What are the Challenges in Understanding Logging Statements? 26

velopers use logs to communicate important run-time information about soft-

ware systems. The rich nature of logs has created a new market for log man-

agement applications (e.g., Splunk, XpoLog and Logstash) that assist in storing,
querying and analyzing logs. Moreover, recent research has demonstrated the importance
of logs in understanding and improving software systems. However, all too often practi-
tioners (i.e., operators and developers) are often left without any support to understand
the meaning and impact of specific log lines that are generated by logging statements in
source code.

In this chapter, we propose using knowledge derived from development repositories
such as code commits and issue reports, to assist in understanding log lines. We conduct
a case study on three open source systems (Hadoop, Cassandra and Zookeeper). Examining
the mailing lists of the subject systems, we identify five types of information about log lines
that are often sought by practitioners. By examining 300 randomly sampled logging state-
ments from the source code of the subject systems, we find that four of the five identified
types of information are typically missing. However, development knowledge, especially
issue reports, contain such missing information. We also find that development knowledge
can be used to resolve 24 out of 45 real-world inquiries about log lines. Based on our study,
we propose an initial approach to extract the required information automatically from de-

velopment repositories.

3.1 Introduction

Logs are an important medium to communicate information about the operation of a soft-
ware system. They report the major system activities (e.g., events) and their associated con-
texts (e.g., a time stamp) to assist developers and operators in understanding the high-level
system behaviours. Moreover, logs capture developer expertise because they are inserted

in specific code spots that are considered to be particularly important by developers or of

Chapter 3: What are the Challenges in Understanding Logging Statements? 27

great interest by operators.

The rich yet unstructured nature of logs has created a new market for log manage-
ment applications (e.g., Splunk [BGSZ10], XpoLog [xpo] and Logstash [logb]) that assist
in storing, querying and analyzing logs. Moreover, recent research has demonstrated the
importance of logs in understanding and improving software systems. As we discussed
in Chapter 2, logs are used to support system operation and development. For example,
software operators leverage the rich information in logs to generate workload informa-
tion for capacity planning of large scale systems [HMF1t08; NWV09], to monitor system
health [BGSZ10], to detect abnormal system behaviours [JHHF08b], or to flag performance
degradations [JHHFO09].

However operators and even developers are often faced with many challenges when
trying to understand the meaning of field logs or to answer questions about specific log
lines [SJA*13; SJAT11; YZP™11]. In contrast to the extensive and rich research in program
comprehension [VMV95], there exists no research in understanding and comprehending
logs despite the importance of logs.

Various types of development knowledge, such as development history [HH04; vMO03],
design rationale and source code concerns [BMS03; RM02] and email discussions [BLR10;
DR12] are widely used in program comprehension tasks (such as understanding the soft-
ware architecture [HHO4]). In this chapter, we propose to leverage such development
knowledge to help understand log lines. We define the development knowledge of log lines
as knowledge that is not directly presented in the log lines, but hidden in the develop-
ment history of the code surrounding the logging statements that generated the log lines.
To better understand the development knowledge and the usefulness of such knowledge
in understanding logs, we perform a case study on three open source systems: Hadoop,
Cassandra and Zookeeper. Information about these systems are shown in Table 3.1. A pre-
liminary study confirms five types of information (meaning, cause, context, solution and

impact) are often requested about log lines. Therefore, we study the log lines and their

Chapter 3: What are the Challenges in Understanding Logging Statements? 28

Table 3.1: Overview of the subject systems

System Description | KLOC | Length of history | # logging statements

Hadoop Distributed 580 8 years 5,641
platform

Cassandra Distributed 118 4 years 1,080
database

Zookeeper Distributed 78 5 years 1,163
coordination service

development knowledge along the following four research questions:

RQ1:

RQ2:

RQ3:

RQ4:

What types of information are missing in logging statements?

We find that around 80% of the logging statements provide the meaning of the log
lines, while the cause, context, solution and impact of the log lines are typically not

provided by the logging statements.
Can development knowledge provide information about logging statements?

We find that development knowledge can assist in providing more information about

logging statements. In particular, issue reports provide the most missing information.
Can development knowledge resolve real-world inquiries?

We find that development knowledge can resolve 24 out of 45 real-world inquiries.
Using development knowledge to resolve real-world inquiries out-performs results

provided by a web search and is comparable to human replies on the mailing lists.
Can experts assist in resolving inquiries of logging statements?

We find that logging statement experts (i.e., developers who edit the source code
surrounding a logging statement that generates a log line) are often the ones who an-
swer inquiries about logging statements. The answers from experts are short, precise
and affirmative. Development knowledge can assist in identifying logging statement

experts to resolve logging statement inquiries.

Our results demonstrate the value of leveraging software development knowledge when

Chapter 3: What are the Challenges in Understanding Logging Statements? 29

understanding log lines. However, collecting such development knowledge for log lines is
time consuming. Therefore, we propose an approach to automatically link development
knowledge with log lines, similar to the sticky note approach proposed by Hassan and
Holt [HHO4]. Our automated approach can successfully provide the development knowl-
edge to answer real-world inquiries about 45 different log lines in the studied software
systems.

The rest of this chapter is organized as follows: Section 3.2 presents the related work.
Section 3.3 presents the results of our preliminary study. Sections 3.4 to 3.7 address the
four research questions in our study. Section 3.8 proposes an approach to automatically
collect and link development knowledge for log lines. Section 3.9 discusses the threats to

validity of our study. Finally, Section 3.10 concludes the chapter.

3.2 Related Work

Documenting Code: There exists several prior studies that focus on providing documen-
tation to assist in understanding of source code. Sridhara et al. [SPVS11] describe a tech-
nique that automatically generates comments for Java methods. Their technique focuses
on describing the roles of parameters in a method. Padioleau et al. [PTZ09] performed a
qualitative study on the source code comments of three large, open source, operating sys-
tems and found that code comments can complement software documentation and record
the thoughts of developers during the development in an informal manner. Ibrahim et
al. [IBAH12] studied the relationship between code comments and code quality. They find
that a code change in which a function and its comment are co-updated inconsistently (i.e.,
they are not co-updated when they have been frequently co-updated in the past, or vice
versa), is a risky change. Buse et al. [BW08; BW10] have a number of studies on automati-
cally providing documentation. One of their studies automatically generates documentation

for exceptions in Java programs [BWO08]. This approach is based on an inter-procedural,

Chapter 3: What are the Challenges in Understanding Logging Statements? 30

context-sensitive analysis, which statistically analyzes the possible causes of the exception.
Instead of providing documentation for exceptions, our work exploits development knowl-
edge, such as the code commits and issue reports, to assist in log line understanding.
Improving Log lines: There also exists prior studies that aim to automatically improve
the information in log lines by providing the context and solution.
1. Providing context. Some logging libraries, such as Log4j [loga], can automatically output
the name of the class, in which the log is generated. Such information is useful to under-
stand the context of the logs. Yuan et al. [YZP*11] propose an approach to automatically
enhance logging statements by printing the values of the accessible variables. This approach
assists in adding more context to the log lines. Shang et al. [Shal2] design an approach to
automatically provide context information for log lines to assist users in deploying applica-
tions in a cloud environment. Beschastnikh et al. [BBS™11] build system models from logs
to infer the state of a system when an error occurs.
2. Providing solution. Ding et al. [DFL*12] design a framework to correlate logs, system
issues and corresponding simple solutions. They store such information in a database to
assist in providing solutions when similar logs appear. However, the solutions suggested
are very general in nature — for example the solution of “rebooting an application” would
be associated with several log lines without a clear rationale of the need for such a solution.
Instead of improving the documentation of code or improving the information in the
logs lines, our work focuses on improving the documentation for the logging statements
that are associated with log lines. Such log lines are widely used in practice, yet typically

have poor documentation.

3.3 Preliminary Study

Understanding log lines is critical for practitioners. However, we first need to understand

the type of information that is often sought about logs lines by the practitioners. Hence,

Chapter 3: What are the Challenges in Understanding Logging Statements? 31

Table 3.2: Types of information that operators asked about log lines in the email inquiries.

System | # Inquiries | Meaning | Cause | Context | Solution | Impact | N/A
Hadoop 10 2 8 0 5 0 0
Cassandra 2 0 1 1 1 1 0
Zookeeper 3 0 2 0 0 0 1
Total 15 2 11 1 6 1 1

we first perform an exploratory study that examines several real-world inquiries about logs
lines.

We choose three subject software systems that generate large amounts of logs during
execution. Table 3.1 shows an overview of our subject systems. The systems are of different
sizes, ages and application domains. However, they are all “systems software” (i.e., no
user interfaces) — a choice that was made to ensure that these systems make heavy use of
logging. We manually read through all the email threads in the user mailing lists of the
subject systems — a process that took over 100 man-hours. Since all three subject systems
are large-scale server systems, the users of the three subject systems are operators of the
systems. We found inquiries for 15 different log lines. For example, in the Cassandra
user mailing list, an inquiry was made when a particular logged event happens, whether a
particular logged event affects other components and how to resolve the logged event.

From the 15 inquiries from the mailing list threads, we identify the different types of
information that are sought about a log line by following the coding approach widely used
by previous studies [Sea99]. We repeat the process until we cannot find any new types of
inquired information. We assign the “N/A” tag to an inquiry if the users only include the
log lines in the email without asking for any particular information. Our study finds that
there are five types of information that are often sought about log lines. Table 3.2 gives an

overview of our results. We describe each type of inquired information below.

1. Meaning: A description of the meaning of a log line is often sought. Although devel-
opers print textual information in the log lines to indicate meaning, we found that it

might be challenging to understand the textual information. For example, an inquiry

Chapter 3: What are the Challenges in Understanding Logging Statements? 32

for a log line in Hadoop asked, “What exactly does this message mean?”

2. Cause: A clarification of the cause of a log line is commonly sought. Two-thirds of the
studied email inquiries asked about the cause of log lines. For example, an inquiry for

Zookeeper asked, “Does anybody know why this happened?”

3. Context: The context of a log line, e.g. the time of the log line being printed, is sought

in some cases. For example, an inquiry for Cassandra asked, “when does this occur?”

4. Solution: Often, the inquiries seek a solution for avoiding a particular log line when
the log line indicates an error. Log lines typically do not contain this information. For
example, a log line inquiry for Hadoop said “It will be great if some one can point to

the direction how to solve this.”

5. Impact: In some cases, the inquiry might seek the impact of a log line, e.g., whether
this line implies performance degradations. For example an inquiry for Cassandra

asked, “Is it affecting my data?”

We do note that a few industry guideline documents for creating log lines do men-
tion some types of information that we discovered above. For example, the design doc-
uments from the SANS consensus project for information systems [san] suggests that log
lines should include the subject and object of the event, time of the event, tools that per-
formed the event and the error status of the event. However, other types of information,
such as the solution and impact, are not suggested. Moreover, developers may forget to
provide some information even though it is required [BvDDTO7].

Additionally in our manual inspection, we noticed the following facts:

1. Inquiries about log lines may not be answered or may take a long period of time

to get resolved.

Although 12 of the 15 inquiries had replies, we found that 3 of the inquiries were not

answered in the mailing list. The maximum time for the first reply is over 105 hours.

Chapter 3: What are the Challenges in Understanding Logging Statements? 33

2. Not all email replies are helpful.

Some email replies are informative, some replies are brief, some replies lack certainty

and some replies are not useful.

3. Manual analysis of development knowledge is used to answer questions in some

cases.

In particular, to find out the cause of a Hadoop log line, the inquirer manually browsed
the source code of Hadoop and found the method that generates the log line. He was
not familiar with the Java code, but after he posted the code snippets online, an expert

replied and resolved his issue.

4. Log line inquiries are done through various online sources.

We were surprised with the small number of inquiries about log lines on the mailing
lists of the studied open source projects. In prior industrial collaborations we noted
that log lines played a key role in the interactions between customers and developers
(e.g., [HMF"08]). Hence we randomly sampled 300 logging statements from the
three subject systems and searched for the text in the logging statements using Google.
If the text in the logging statement is ambiguous, we added the name of the subject
system after the logging statement. For example, the text “Child Error” in a Hadoop log
statement may be ambiguous. We then search for “Child Error Hadoop” as opposed to
just “Child Error”. We then examined the first 10 results from Google for each logging

statement query.

We found that 32, 23 and 18 logging statements (in the set of 300) from Hadoop,
Zookeeper and Cassandra, respectively, are discussed or inquired about through other medi-

ums other than the project mailing list. Online issue reports (e.g., the Apache JIRA web

Chapter 3: What are the Challenges in Understanding Logging Statements? 34

interface') and Stack Overflow? are the two sources where the logs lines and logging state-
ments are discussed or inquired about most often.

We also manually browsed the top 100 most frequently viewed questions on Stack Over-
flow for the tags “Hadoop” and “Cassandra” and we found 7 and 2 questions that inquire
about log lines, respectively. For the tag “Zookeeper”, there were only 15 questions in total
with one being a log line inquiry. In short, practitioners often inquire about log lines through
various mediums — potentially making these inquiries more difficult to archive and retrieve.

We believe that development knowledge often contains the answers for such inquiries.

3.4 RQ1: What Types of Information are Missing in Log Lines?

Motivation

Through our preliminary study, we noted that there exists five types of information that
are often sought for log lines. In this research question, we investigate whether developers
include such information in the logs lines.
Approach

We select a random sample of 100 logging statements from all the logging statements
throughout the lifetime of each of the subject systems. We manually read each logging
statement and examine whether the text in the logging statement would provide the five
types of information, i.e., meaning, cause, context, solution and impact. We manually ex-
amine all the code changes to these sampled logging statements throughout their lifetime,
in order to determine whether such code changes led to changes in the types of information

stored in the text of the logging statement.

'http://issues.apache.org/jira last verified January 2014.
2http://stackoverflow.com last verified January 2014.

Chapter 3: What are the Challenges in Understanding Logging Statements? 35

Table 3.3: Number of logging statements (among 100 logging statements) that contain each
type of inquired information.

meaning cause context solution impact

Hadoop 79 2 29 1 9
Cassandra 79 2 24 0 10
Zookeeper 81 7 33 3 16

Table 3.4: Number and percentage of logging statement changes that change each type of

information.
meaning cause context solution impact
Hadoop | 9 (23%) 0 9(23%) 0 1@3%)
Cassandra 5 (6%) 0 28 (33%) 0 1(0%)
Zookeeper | 10 (17%) 0 7 (12%) 0 3(0B%)

Results
What types of information do logging statements provide?

Around 80% of logging statements provide the meaning of the log lines, while
the cause, context, solution and impact of the log lines are typically not provided by
the logging statement. Table 3.3 shows the number of logging statements that contain
each type of information. On average only 3.7%, 32%, 1.3% and 11.7% of the logging
statements contain information about the cause, context, solution and impact of the log
line, respectively. We find that most log inquiries are concerned with the cause and solution
of the log line (shown in Table 3.2), therefore logging statements would barely provide
answers to the most common inquiries.

Some logging statements do not provide any of the inquired information types. We find
that 14%, 14% and 6% of the log lines from Hadoop, Cassandra and Zookeeper, respectively,
do not contain any of the five types of information. Such logging statements may only print
a word “error”, or an exception stack trace, without providing any additional information.
What types of information in logging statements are changed?

We find that most changes to logging statements do not change information about

cause, solution and impact of the logging statements. As shown in Table 3.4, the cause

Chapter 3: What are the Challenges in Understanding Logging Statements? 36

and solution of the logging statements are not changed during the history of the logging
statements and only 1% to 5% of the logging statement changes provide additional informa-
tion about the impact of the logging statements. On average, 14% and 23% of the logging
statement changes modify the meaning and context of the logging statements, which are

the top two types of information that exist in logging statements.

Around 80% of the logging statements provide the meaning of the logging state-
ments, while the cause, context, solution and impact of the logging statements

are typically not included.

3.5 RQ2: Can Development Knowledge Provide Information about

Log Lines?

Motivation

From the results presented in Sections 3.3 and 3.4, we find that logging statements
often miss information that are frequently sought after in real-world inquiries about log
lines generated by such logging statements. Approaches are needed to assist in resolving
the most common types of inquiries about log lines. In this research question, we explore
whether development knowledge can assist in resolving such inquiries.
Approach

We identify five sources of development knowledge for each of the 300 logging state-
ments analyzed in Section 3.4. We broadly categorize these five sources of development

knowledge into two categories:

1. Snapshot knowledge:

Snapshot knowledge includes information from the most up-to-date snapshot of the

source code associated with a logging statement that generates the log line.

Chapter 3: What are the Challenges in Understanding Logging Statements? 37

(@

(b)

(©

Source code: The source code of the method that contains the logging state-
ment may provide information about the log line. For example, the if statement
that triggers the logging statement can help in explaining the cause for the ap-

pearance of a log line.

Code comments: Sometimes the source code is not self-explanatory. In these
cases, the code comment may be used to explain the source code and the associ-

ated logging statements.

Call graph: Often, the log lines only describe what happened instead of why
the event happened or under what circumstances the event happened. When
the reason or the context of a log line is sought out, the answer may be in the
methods that trigger the method containing the logging statement. For example,
a log line may say that there is an I/0 issue and the call graph may describe that

the issue happens while the copying of a file over the network.

2. Historical knowledge:

Historical knowledge consists of the information that is generated during the devel-

opment of logging statements that generates log lines.

(@

(b)

Code commits: A code commit contains the changes to the code and other
corresponding information, such as the check-in comment describing the change
and the developer who made the change. For example, the check-in comment
for a change that adds or modifies a logging statement (or its surrounding or
triggering code, calculated via the call graph) may provide information about the
meaning of the log line. For example, the changes to the condition for outputting

a log line may uncover the cause for outputting the log line.

Issue reports: The source code changes are often due to issues (such as new fea-

ture requests and bugs) in the system. These issues are tracked in issue tracking

Chapter 3: What are the Challenges in Understanding Logging Statements? 38

systems, such JIRA. The report for an issue consists of its description, its res-
olution and related developer discussions. An issue that is related to a logging
statement may be helpful in explaining the rationale of the log line. For example,
a logging statement in Cassandra is added to the source code for resolving issue
“Cassandra-957”.3 The description of the issue report explains the meaning, the

context and the cause of the log line.

We manually examine these five sources of development knowledge for each of the 300
randomly sampled logging statements from the subject systems. We examine whether their
associated development knowledge can provide the 5 different types of information that are
often sought after (i.e., meaning, cause, impact, context and solution (see Section 3.3)). We
then check whether these five sources of development knowledge can provide the particular

types of information that were missing in these logging statements.

®https://issues.apache.org/browse/CASSANDRA-957

39

Chapter 3: What are the Challenges in Understanding Logging Statements?

(S92/601) %1t (962/9€) %Tl (41T/L8T) %L8 (68T/TST) %ES (19/LS) %E6 | d3eIony
(¥8/€€) %6¢ (L6/LT) %8T (L9/€S) %6L (€6/LY) %1S (61/L1) %68 | 19daxjooz
(06/9€) %0v (001/9) %9 (94/99) %98 (86/8%) %6Y (IZT/12) %001 | eIpuesseD

(16/0V) %t (66/€1) %ET (T4/69) %L6 (86/LS) %8S (12/61) %06 | doopeH
Joedurt uonn[os 1X9]U0d asned Surueow

*(uonewrojur jo adAy yoes Aq padnoid) uoneuriojur Jut
-sstwr 93 3urpiaoid Aq juswd[durod ued a3papmowy] Juawdo[2Adp YIIYM 10§ sjusualels Jurd30[a3 JO 93eIuadidd S € d[qeL

Chapter 3: What are the Challenges in Understanding Logging Statements? 40

Table 3.6: Number of logging statements where each source of development knowledge
can provide a particular type of missing information. The largest numbers in
each type of missing information are shown in bold font. We study 100 logging
statements for each subject system.

Hadoop
meaning cause context solution impact
source code 83 12 23 1 5
comment 55 11 37 1 15
call graph 2 25 66 0 3
commit 42 26 61 4 11
issue report 49 37 69 12 27
Cassandra
meaning cause context solution impact
source code 59 4 14 0 11
comment 47 19 26 1 18
call graph 0 11 39 0 1
commit 43 17 45 1 5
issue report 47 24 51 5 15
Zookeeper
meaning cause context solution impact
source code 59 9 12 0 13
comment 41 18 30 4 17
call graph 2 6 40 0 0
commit 37 22 45 3 5
issue report 51 34 56 17 25

Results

We find that development knowledge can complement logging statements by pro-
viding missing information. As shown in Table 3.5, development knowledge can provide
most of the missing meaning and context (on average 93% and 87%, respectively), around
half of the missing cause and impact (on average 53% and 41% respectively) and only an
average of 12% of the missing solution. These percentages are calculated using the num-
ber of logging statements with that type of information missing (derived from Table 3.3).
We think the reason for such results is that, the meaning and context of the logging state-

ments are the intuitively easiest types of information to retrieve; the cause and impact of

Chapter 3: What are the Challenges in Understanding Logging Statements? 41

the logging statements are more difficult; while solving a logged error is the most difficult.

In particular, we find that issue reports are the source of development knowledge that
can resolve the most log line inquiries (see Table 3.6). Issue reports provide the four most-
missing types of information about logging statements (cause, context, solution and im-
pact). Although source code is the source of the most meaning of logging statements, our
results from RQ1 (see Section 3.4) show that around 80% of the logging statements al-
ready contain the meaning already and Table 3.6 shows that issue reports are the second
most valuable source of meaning of the logging statements.

Discussion

We discuss each type of information that is requested from development knowledge.

Meaning. The meaning of a log line is inquired about because the text in the log line
is not descriptive enough. As we can see from Table 3.6, source code is the best source
of the meaning of a log line. For example, a log line from Hadoop prints “-files”, which
does not have a clear meaning. From the source code, we can find out that the log line
corresponds to temporary files defined by a user from command line. Issue reports also
provide useful information about the meaning of log lines. For example, the Hadoop issue
report “HADOOP-1824 is associated with the log line “log tracker”. In the discussion for the
issue report, the meaning of the log line was clearly presented as: “When a Task Tracker is
lost (by not sending a heartbeat for 10 minutes), the JobTracker marks the tasks that were
active on that node as failed”. Therefore, we can say that the “lost” message in the log line
means that a heartbeat from the tracker was not received.

Cause. 11 out of 15 inquiries in Section 3.3 were about the cause of a log line. Our re-
sults in Table 3.6 show that both sources of historical development knowledge, i.e. commit
messages and issue reports, can help in explaining the reason of some log lines. Issue re-
ports are the source of development knowledge of the cause of log lines in most cases. There

are typically two scenarios when an issue report would provide such useful information:

“https://issues.apache.org/jira/browse/HADOOP-182

Chapter 3: What are the Challenges in Understanding Logging Statements? 42

1. Alogging statement is added to the source code as part of a feature or improvement.
For example, to resolve Hadoop issue “Hadoop-11717° (where the issue was to enable

multiple retries of reading the data), a log line “fetch failure” was added.

2. A logging statement is explained in the discussion of the issue report when a bug
in the source code is identified. For example, in the discussion about Hadoop issue
“HADOOP-1093°, the reason for log line “NameSystem.completeFile: failed to com-
plete ” in Hadoop was explained as a race condition between a client and data server

of Hadoop.

The commit message is another source of development knowledge of the cause of a log line.
For example, a log line “DIR * FSDirectory.mkdirs: failed to create directory” was added in
revision 412474 of Hadoop with a commit message “Fix DFS mkdirs() to not warn when
directories already exist”, which clearly indicates the cause.

Impact. Source code can provide the information about which components contain the
event causing the log line. For example, from the source code of log line “initialization
failed”, we find that the logging statement is embedded in the constructor method of class
“FSNamesystem”. Therefore, we have the information that the initialization failure is in the
name index component of the file-system. The source code can also provide information
about other components that may be impacted by the event causing the log line. Although
some logging libraries, such as Log4j, can provide the information about the component
that generates the logs, information about other indirectly impacted components cannot be
gathered using the logging library.

Context. Context is important in understanding log lines. Call graphs are one type of
development knowledge that provides context for log lines. For example, the call graph of
the log line “Column family ID mismatch” of Cassandra indicates that the log line is in the

update period of the system. Most logging libraries provide a time stamp for each log line.

>https://issues.apache.org/jira/browse/HADOOP-1171
®https://issues.apache.org/jira/browse/HADOOP-1093

Chapter 3: What are the Challenges in Understanding Logging Statements? 43

However, such time stamps are not as useful as domain-specific context. For example in
MapReduce, the time stamp of a log line is not as useful as knowing if the log line is printed
in the map period or reduce period.

Solution. If a log line indicates an error, one would want a solve to the error. However,
since many complex reasons could potentially cause one error, log lines typically do not
contain information on how to solve the error. It is difficult to provide a solution to a
logged error. Prior research by Thakkar et al. [TJH"08] proposes a technique to find similar
customer engagement reports to solve field errors. Similarly, issue reports can provide some
solutions for logged errors. We find cases where developers discuss the log-related issues
in the issue tracking system. For example, the log line “Severe unrecoverable error, exiting”
from Zookeeper is related to issue “ZOOKEEPER-1277”7, where a developer describes the

way to resolve this issue by upgrading to a new version.

Sources of development knowledge can assist in providing more information
about logging statements. In particular, issue reports are the richest source

of information to answer inquiries into logging statements, relative to other

sources of development knowledge. J

3.6 RQ3: Can Development Knowledge Resolve Real-world In-

quiries?

Motivation
In the previous sections, we found that development knowledge can complement infor-
mation currently available in logging statements. In this research question, we examine

whether we can use development knowledge to answer real-world inquiries about log lines.

"https://issues.apache.org/jira/browse/ZOOKEEPER-1277

Chapter 3: What are the Challenges in Understanding Logging Statements? 44

Approach

We examine the real-world inquiries that we identified in the user mailing lists of the
subject systems and from the web searches in Section 3.3. For the 15 log lines inquired
about in the user mailing list and 73 search results, we focus on 14 log lines from the user
mailing list and 31 web search results where we can clearly identify the particular inquired
types of information. Although some log lines are mentioned in the email, issue reports and
other locations on the web, we cannot easily identify the inquired types of information.

For each of the 45 inquiries (i.e., mailing list question or web search results), we identify
the types of inquired information because each inquiry may contain inquiries to multiple
types of information. For example, an inquiry may ask about both the meaning and cause
of the log line. We then examine whether the various sources of development knowledge
can resolve the inquiries.
Results

Development knowledge can be used to resolve real-world inquiries. Development
knowledge provides answers to 9 out of 14 inquiries from the user mailing list. Table 3.7
shows that development knowledge can resolve 14 out of 21 specific items of inquired in-
formation from the 14 real-world inquiries from the user mailing list. Issue reports are the
richest source of development knowledge in resolving real-world inquiries. Issue reports
can provide answers to all 9 mailing list inquiries that were resolved using development
knowledge. In addition, 12 out of 14 resolved inquired specific items from the mailing list
are resolved using issue reports. Development knowledge provides answers to 15 out of
31 inquiries from the web search results and resolves 16 out of 39 items of requested spe-
cific information. Each source of development knowledge performs similarly in resolving
web search inquiries. Source code, code comment, call graph, commit and issue report can
respectively resolve 4, 6, 3, 5 and 6 items of requested specific information from the web

search results.

Chapter 3: What are the Challenges in Understanding Logging Statements? 45

Table 3.7: Results of using development knowledge to resolve the 14 real-world mailing
list inquiries. Each table cell indicates the source of development knowledge
that resolves the inquiries. A table cell with “not answered” indicates that the
inquiry is not answered by development knowledge. A blank cell indicates that
the corresponding information was not inquired about in the mailing list. The
first inquiry of Zookeeper did not request any specific information in the email,
hence it is excluded from this table.

Hadoop \ meaning cause context solution impact

1 call graph
issue report

N

commit
issue report
not answered
issue report issue report
not answered
commit commit
issue report issue report
not answered not answered
not answered

MUl bW

\O| 0|

not answered
10 source code issue report
issue report

Cassandra \ meaning cause context solution impact
1 code comment issue report
issue report issue report
2 not answered source code
Zookeeper \ meaning cause context solution impact
1 issue report
2 issue report
Discussion

We discuss alternative approaches, such as web searching and reading the mailing list,
to resolve real-world inquiries in this subsection.
Using web search engine to resolve the real-world inquiries

We first compare the use of development knowledge and the use of a web search engine

Chapter 3: What are the Challenges in Understanding Logging Statements? 46

to resolve the real-world inquiries. One may consider using a web search engine, such as
Google, to resolve log line inquiries. We use Google to search for the real-world inquired
log lines and check whether the first 10 results from the web search engine can answer the
inquiries. If the log lines are ambiguous, we add the name of the subject system after the
log line.

We focus on the 14 real-world inquired log lines from the user mailing list since the other
31 real-world log lines are also from Google web search. For the 14 mailing list inquiries,
we find four types of relevant search results from Google: the online link to the mailing
list, the online link to the development knowledge (e.g., the Apache JIRA web interface),
open source community websites (e.g., Stack Overflow) and personal websites. We find
three inquired log lines where open source community websites (e.g., Stack Overflow) can
provide useful information and two inquired log lines where personal websites can provide
useful information. From such results, we consider that the development knowledge (9 out
of 14 inquired log lines) outperforms the results from a web search engine (5 out of 14
inquired log lines).
Using mailing list to resolve the real-world inquiries

We compare the use of development knowledge and the answers from mailing list to
resolve the real-world inquiries. We find that the development knowledge is comparable
to the answers in the mailing list. In the mailing list, 10 inquiries are resolved after email
discussion, while 9 inquiries are resolved by development knowledge. However, we notice
that the answers from mailing list are clearer and more precise; while the development

knowledge contains more content and needs interpretation to resolve the inquiries.

Chapter 3: What are the Challenges in Understanding Logging Statements? 47

Development knowledge can help in resolving 9 out of 14 real-world inquiries
from the user mailing list and 15 out of 31 real-world inquiries from other
sources on the web. Development knowledge outperforms web search and is

comparable to browsing the mailing list when trying to resolve log line in-

quiries.

/

3.7 RQ4: Can Experts Assist in Resolving Inquiries of Log Lines?

Motivation

Logging statements are embedded in the source code by developers. Intuitively, the
developers who added or updated the log lines may be the most suitable individuals to
address any log line inquiries. From RQ3, we find that the replies in the user mailing lists
of the subject systems often resolve the inquiries (see Section 3.6). We verify whether ex-
perts of the log lines, such as the developers who added the logging statements, do provide
such information more often than non-experts of the log lines. If the experts provide extra
information about log lines, we can use development knowledge and leverage existing tech-
niques [MHO2] to identify the experts of the log lines to rapidly re-route log line inquiries
to the most appropriate developer (i.e., the owner of the log line).
Approach

Previous research by Mockus et al. [MHO02] proposed using the code change informa-
tion to identify the experts of code units, such as modules and methods. Based on this
technique, we define an expert for a log line as “a developer who has committed changes to
the method/function that contains the logging statement, which generates the log line.” For
example, log line “Lost tracker” of Hadoop is in a method called “lostTaskTracker” and all 10
developers who have committed changes to the method “lostTaskTracker” are considered

experts for that log line.

Chapter 3: What are the Challenges in Understanding Logging Statements?

48

Table 3.8: Resolved and un-resolved email inquiries.

System total resolved not-resolved
by by | replied only not
expert non- by replied by replied
expert | expert non-expert
Hadoop 10 5 1 0 1 3
Cassandra 2 0 2 0 0 0
Zookeeper 3 3 0 0 0 0

We read the email threads of all 15 inquired log lines and assign them to 1 of 5 cat-
egories: resolved by expert, resolved by non-experts, not-resolved but replied by expert,
not-resolved but only replied by non-expert and not replied. We also calculate the ‘time to
first reply’ for experts and non-experts to measure their response time.

Results
Who resolved the inquiries in the email threads?

We find that an expert is crucial in providing answers to log line inquiries. An
overview of the results is presented in Table 3.8. 8 of the 11 resolved inquiries had replies
by log experts. The one inquiry from Hadoop that was tagged as ‘resolved by non-expert’
was actually resolved by the person who made the inquiry. The two inquiries resolved by
non-experts from Cassandra were resolved by other developers of the project. We find that
experts have considerable knowledge about the log line itself, as well as the rest of the
project. This knowledge assists them in resolving inquiries of log lines. For example, an
expert pointed out that an inquired log line from Zookeeper was due to a fixed bug. It is
hard for a non-expert to provide such information.

It is interesting to observe that all inquiries that are answered by experts are answered
through short and affirmative answers. For example, the email that inquired about “Lost
tracker” was replied to by one expert and one non-expert. The non-expert asked about the
context of the log line, while the expert directly gave the answer and also pointed out that
there were bugs related to this log line. Another example is the email that inquired about

“fetch failure”, which was discussed by 4 different non-experts, and still had no affirmative

Chapter 3: What are the Challenges in Understanding Logging Statements? 49

Table 3.9: ‘Time to first reply’ of log line inquiries.

Expert Non-expert
Median Min Max | Median Min Max
Hadoop 3h 3min 96h 1h 8min 2h
Cassandra - - - 7min 77h 105h
Zookeeper 5h 1h %h - - -

answer at the end of the discussion. We also note that the experts for all the inquired
log lines are still active members of the development team of the three subject systems.
Therefore, the log line inquiries that had no replies were not due to the absence of experts
from the development team, but most probably due to the experts not being aware of such
inquiries.

How long does the first reply to a log line inquiry take?

Experts are important in providing useful information about log lines. The median
times for the first reply to a log line inquiry from experts in Hadoop and Zookeeper are 3 and
5 hours respectively, while the experts from Cassandra never replied (see Table 3.9). The
‘time to first reply’ from experts is sometimes slower than non-experts. From browsing the
email replies, we find that reason for slower reply is that experts often replies with a defini-
tive answer, while non-experts often ask for additional information. Therefore, although
experts may reply later than non-experts, they often provide more useful information than
the non-experts.

Our findings provide evidence that experts are important in providing useful information
about log lines. Therefore, finding the expert of a log line may be the most effective way
to understand the log line. However, a person with a log line inquiry may not be able to
direct their inquiries to experts because the list of log line experts is not easily accessible.
Moreover, experts may be too busy to check the mailing list. Automated ways to push
inquiries to experts may be of great value for understanding log lines.

Discussion

As we stated in the previous subsection, experts can provide useful information about

Chapter 3: What are the Challenges in Understanding Logging Statements? 50

a log line. However, we do not know how many experts are there for each log line, how
many of these experts are active on the mailing lists and how many orphaned log lines exist
without any experts. The results for these questions are below.

How many experts are there for the inquired log lines?

We manually identify the experts of the 300 sampled logging statements in the 3 subject
systems. We not only identify the developer who commits the revisions, but we also read the
commit comments. If a commit comment says that the revision is contributed on behalf of
another developer, we consider the developer who coded the revision as the expert instead
of the developer who committed the revision.

We find that, on average, there are 4.6, 3.1 and 2.8 experts for each log line in Hadoop,
Cassandra and Zookeeper, respectively. We also find that some log lines from Hadoop have
over 30 experts because the log lines are embedded inside large methods, while some log
lines only have 1 expert. Therefore, it is easier to find an expert for the log lines in large
methods because there are more experts to answer the inquiries. Inquiries about log lines
with only 1 expert may take longer to answer because the expert may not be available or
not currently working as part of the team.

How active are experts on the mailing list?

We examine all experts of the 15 inquired log lines in the mailing list. For each expert,
we count the number of emails sent and the number of active years in the mailing list.
Figure 3.1(a) shows the distribution of the number of emails sent by the experts of the
10 inquired log lines for Hadoop. We can identify three types of experts: 1) heavy email
contributors, who might send hundreds of emails over the years and are typically experts
of the entire project, 2) medium email contributors, who are typically experts of subsets of
the projects and 3) light email contributors who are not typically considered in the “core”
development team.

From the number of active years shown in Figure 3.1(b) for the log-line experts in

Hadoop, we observe that some experts are active in the mailing list throughout the entire

Chapter 3: What are the Challenges in Understanding Logging Statements? 51

] 0
3 o
=
o

i =

g < g
o
=
o 8]
o
5|
o 0 100 200 300 400 500 S0 2 4 6 8 10
(a) number of emails (b) number of years

Figure 3.1: Density plot of the number of emails and active years of the experts of the
inquired log lines from Hadoop.

history of the project (which is 8 years), while other ones are only active for a short period
of time.

We also find that experts who resolve log line inquiries tend to be heavy email contrib-
utors with long active years. This finding also indicates the value of automatically pushing
inquiries to experts since not all experts might be active on the mailing list and are often
likely to miss inquiries, that they could easily resolve.

How many orphan log lines are there with no experts around?

We define orphan log lines as log lines whose experts are no longer committing code
changes to the project since the last release prior to the inquiry. We examine experts of
the 15 log lines inquired in the mailing lists and we find that none of the log lines are
orphaned. Such a result indicates that searching for the experts of log lines may be one of
the best ways to resolve inquiries about log lines because it is unlikely that the inquired log
line is an orphan.

However, as we see in Tables 3.8 and 3.9, there are cases where there are no replies
or the replies take as long as 4 days. The person who has posed the inquiry may need

information much faster, especially when the log line is associated with an error. Hence, it

Chapter 3: What are the Challenges in Understanding Logging Statements? 52

- I Development knowledge v
Version . Extract Identify G . Attach
Control C;gmm@ high-level |Evolutionagy logging Logging Lo ?Z?alztes Lo Development »| Results
Repositories istory source chgange data statement code g p templates Knowlec_ige
P information to Log Lines
(A) B) (©) (D)

Figure 3.2: Overview of our approach to associate development knowledge to the corre-
sponding log lines

would be beneficial if one could either directly contact the log line expert or automatically
get the same information provided by the experts elsewhere and without having to wait for

a long period of time.

The responses from experts of logs can assist in log line understanding. However;

log line experts may not be easily identifiable or available.

3.8 Automatically Providing Development Knowledge for Log

Lines

In the previous sections, we found that development knowledge is a good source of the
various types of inquired information about log lines. However, collecting such knowledge is
a cumbersome, manual and error-prone process. In this section, we propose an automated
approach to associate development knowledge with the corresponding log lines. Figure 3.2

shows a general overview of our approach.

3.8.1 Approach

Step 1 - Extracting high-level source code change information: Similar to C-REX [Has05],
J-REX [SJAHO09; SAH11; Shal0] is used to extract historical information from Java soft-
ware systems. We use J-REX to extract high-level source change information from the SVN
repositories. J-REX extracts source code snapshots for each Java file revision from the SVN

repository. Along with the extraction, J-REX also keeps track of all commit messages and

Chapter 3: What are the Challenges in Understanding Logging Statements? 53

issue report IDs in the commit messages for all revisions. For each snapshot of a source
code file, J-REX builds an abstract syntax tree for the file using the Eclipse JDT parser.

Step 2 - Identifying logging statements: Software projects typically leverage logging
libraries to generate logs. Typically, logging source code contains method invocations that
call the logging library. For example, in Hadoop, a method invocation by an object of class
“Logger” is considered as a logging statement in the source code. Knowing the logging
library of the subject system, we analyze the output of J-REX to identify the logging source
code fragments and the corresponding historical changes to these log statements and the
source code in the method containing the logging statement.

Step 3 - Generating log templates: Typically a logging statement contains both static
parts and dynamic parts. The static parts are the fixed strings and the dynamic parts are
the variables whose values are determined at run-time. For example, in a logging statement
LOG.info(“Retrying connect to server: Already tried” + n+ “time(s)”, the variable n is the
dynamic part, while “Retrying connect to server: Already tried” and “time(s)” are the static
parts. We identify the static and dynamic parts in each logging statement and create a reg-
ular expression for each logging statement [XHFT09b]. The regular expression generated
for the above example is Retrying connect to server: Already tried. *time\ (s\).

Step 4 - Attaching development knowledge to log lines: Having all the regular ex-
pressions for the templates of the logging statements, we are able to match log lines in
the logs to the logging statements. For each of the inquired log lines, we find all the log
templates that match it.

The output of our automated approach maps, for each log line template, the informa-
tion from snapshots and historical development knowledge at the method-level (i.e., the
method that contains the logging statements). For example, if method A contains a logging
statement, the output of our automated approach is the source code of method A, the code
comments inside method A or next to the declaration of method A, methods one level be-

fore and after method A in the call graph, all the code commits that changes method A and

Chapter 3: What are the Challenges in Understanding Logging Statements? 54

all the issue reports mentioned in the comments of these commits.

3.8.2 An example

Our automated approach can successfully provide the development knowledge to assist in
understanding the 15 inquired log lines in the user mailing lists, 31 inquired log lines from
the web and the 300 sampled logging statements. In this subsection, we use the log line
“fetch failure” that is inquired in the Hadoop mailing list as an example to describe our
approach.

Log line. Our approach scans all the log templates in Hadoop and finds that the log line
partially matches with a log template (.)* Reporting fetch failure for (.)* to jobtracker (.)*,
which is generated by a logging statement LOG.info (“Reporting fetch failure for ” + mapld
+ “to jobtracker.”);.

Source code. By tracking this logging statement, we find that the logging statement is in
the method “checkAndInformJobTracker” in file “ShuffleScheduler.java”.

Comment. We find that the code comment right before the method saying Notify the Job-
Tracker after every read error, if ‘reportReadErrorImmediately’ is true or after every ‘maxFetch-
FailuresBeforeReporting’ failures.

Call graph. From the call graph of this method, we find this method is called by method
“copyFailed” in class “ShuffleScheduler”.

Commit. We generate all commits that change this method. One code commit (revision
889496) has message “MAPREDUCE-1171. Allow shuffle retries and read-error reporting
to be configurable. Contributed by Amareshwari Sriramadasu.”.

Issue report. From the commit message, we found an issue report with id “MAPREDUCE-
11717 8 related to this code change. From the issue report, we find the cause of the log line

and the context of the log line.

Shttps://issues.apache.org/jira/browse/MAPREDUCE-1171

Chapter 3: What are the Challenges in Understanding Logging Statements? 55

From the information in the source code, code comments, call graph, code commit and

issue report we have information about:

e Meaning: There is a data reading error (from comment, commit and issue report).

Cause: One of the possible reasons is a configuration mistake (from issue report).

Context: The event happens during the shuffle period (from source code, commit,

issue report and call graph).

Impact: The event impacts the jobtracker component (from comment and call graph).

Solution: Adding a configuration option may solve the issue (from issue report).

3.9 Threats to Validity

External validity. Our case study only focuses on 300 randomly sampled logging state-
ments, 15 email log lines inquiries and 31 log line inquiries from the web search results
from three “systems” projects with years of history and a large user base. The results may
not generalize to other systems, for example if developers do not input useful information in
the issue reports or SVN repositories, then these repositories would not be good sources of
inquired information about log lines. Nevertheless, our key contribution is to demonstrate
an approach that can leverage already-available historical information to assist in under-
standing log lines. Additional case studies on other open source and commercial systems
in different domains are needed. Also this work would not help for systems with limited
logging statements. However, if such systems produce graphical interface messages (e.g.,
error pop-up windows) we simply would need to link such calls to the GUI pop-up function
instead of the logging statements.

There may be other sources of development knowledge, such as design documents,

which maybe useful to understand log lines. Adding additional information could improve

Chapter 3: What are the Challenges in Understanding Logging Statements? 56

our approach. A broader study, which includes more sources of development knowledge
needs to be conducted to identify the potential of each source in resolving the various types
of log line inquiries.

Construct validity. The manual examination throughout the study is performed by the
author of this thesis. Although we have some experience in using and studying the subject
systems in our previous research (e.g., [SJHT13]), our expertise may be imperfect and
limited one particular version.

We choose to associate development knowledge to log lines at the method level. The
higher the level, the more development knowledge can be attached, but the more over-
whelming such attached knowledge may become. If we set the level lower (e.g., logging
statement level), we would lose some useful knowledge about log lines. Future work should
explore attaching development knowledge at different levels of granularity.

Based on previous research of source code expertise [MHO02], we consider developers
who commit code that changes the methods containing the logging statements as the ex-
perts of the log lines. Such an assumption may not be entirely correct. There could be other
approaches to refine the set of experts for log lines. However, even with this naive approach
for identifying experts, we are able to show the importance of experts in resolving log line
inquiries.

When a log line can match multiple log templates, we face the challenge of identifying
the correct log template. A naive example is, a log statement that simply outputs the value
of a variable would match every log line. In the three subject systems in our case study, we
find that less than 10% of log templates can match with every log line. We manually check
these logging statements and find that in most of the cases, such logging statements output
the Java exception message. In such a situation, the person posting a log line inquiry would
need to identify the source of the log line in the code, i.e., the logging statement which
outputs the log line. Once such identification is done, our approach can attach the correct

information. Such identification is not complex since such log lines with exception messages

Chapter 3: What are the Challenges in Understanding Logging Statements? 57

typically contain the stack trace instead of a high-level message — the stack trace can then
be used to identify the corresponding source code logging statement. Future work should

explore the automated attachment of development knowledge to such stack traces.

3.10 Chapter Summary

Much of the knowledge about log lines (the meaning and purpose of the log lines), lives only
in the minds of the developers who embedded the logging statements in the source code.
Users and operators rely heavily on logs for various tasks. Due to the lack of communication
with developers of large software systems, users and operators often face the challenge of
understanding the logs. Such challenges may jeopardize the effectiveness and correctness
of log analysis and understanding.

To investigate the challenge of understanding logging statements, we performed a case
study on three open source systems, Hadoop, Cassandra and Zookeeper. We manual examine
300 randomly sampled logging statements from the subject systems and we also find 46 real
inquiries about log lines in the user mailing lists of the three subject systems and from web

search results. From the results of our case study, we find that:

e System operators sometimes find it difficult to understand the log lines. The cause,
meaning, impact, context and solution of the log lines are often inquired about in the

mailing lists.

e Development knowledge can be leveraged for understanding log lines. In particular,

issue reports are useful for log line understanding.

Since collecting development knowledge for log lines requires expertise that the oper-
ators may not possess, we also present an automated approach to associate snapshot (like
executable source code, code comments and call graph) and historical (like commit mes-

sages and issue reports) development knowledge to log lines. In summary, we identify the

Chapter 3: What are the Challenges in Understanding Logging Statements? 58

importance of leveraging development knowledge for log line understanding. We conclude
that the developers should consider the needs of operators and that they should document
more information about log lines.

This chapter focuses on challenges associated with understanding logging statements.
In the next chapter, we study another aspect of the challenges associated with logging

statements — evolving logging statements.

59

CHAPTER 4

How Do Logging Statements Evolve?

Chapter 4: How Do Logging Statements Evolve? 60

ubstantial research focuses on understanding the dynamic nature of software sys-

tems in order to improve software maintenance and program comprehension.

This research typically makes use of automated instrumentation and profiling
techniques without considering domain knowledge. In this chapter, we examine logs as
another source of dynamic information that is generated from statements inserted into the
codebase during development to draw the system operators’ attention to important run-
time events.

The availability of logs has sparked the development of an ecosystem of Log Processing
Apps (LPAs) that surround the software system under analysis to monitor and document var-
ious run-time events. The dependence of LPAs on the timeliness, accuracy, and granularity
of the logs means that it is important to understand the nature of logs and how they evolve
over time. In Chapter 3, we examined the challenge of understanding logging statements.
In this chapter, we focus on another aspect — the evolution of logs, which to our knowl-
edge, has not yet been empirical studied. In a case study on two large open source and one
industrial software system, we explore the evolution of logs by mining the execution logs
of these systems and the logging statements, which produce such logs in the source code.
Our study illustrates the need for better traceability between logging statements and the
LPAs that analyze the logs produced by these statements. In particular, we find that logging
statements change at a high rate across versions, which could lead to fragile LPAs. We found
that up to 70% of these changes could have been avoided and the impact of 15% to 80%
of the changes can be controlled through the use of robust analysis techniques by LPAs.
We also found that Log Processing Apps that track implementation-level logging statement
(e.g., performance analysis) and the Log Processing Apps that monitor error message logging
statements (e.g., system health monitoring) are more fragile than Log Processing Apps that
track domain-level logging statements (e.g., workload modeling), since the latter logging

statements tend to be more stable and long-lived.

Chapter 4: How Do Logging Statements Evolve? 61

4.1 Introduction

Software profiling and automated instrumentation techniques are commonly used to study
the run-time behaviour of software systems [CZD'T09]. However, such techniques often
impose high overhead, especially for real-world workloads. Worse, software profiling and
instrumentation are performed after the system has been built, based on limited domain
knowledge. Therefore, extensive instrumentation often leads to an enormous volume of
results that are impractical to meaningfully interpret.

In practice, system operators and developers typically rely on logs, consisting of the
major system activities (e.g., events) and their associated contexts (e.g., a time stamp), to
understand the high-level field behaviour of large systems and to diagnose and repair bugs.
Rather than generating tracing information in a blind way, developers choose to explicitly
communicate some information that is considered to be particularly important for system
operation through logs. The purpose and importance of the information in such logs varies
based on their purpose. For example, detailed debugging logs are relevant to developers,
while operation logs summarizing the key execution steps are more relevant to operators.

The rich nature of logs has created a whole new market of applications that complement
large software systems. We collectively call these applications, Log Processing Apps (LPAs).
Such Apps are used, for example, to generate workload information for capacity planning
of large scale systems [HMF08; NWV09], to monitor system health [BGSZ10], to detect
abnormal system behaviours [JHHF08b], or to flag performance degradations [JHHF09].
As such, these LPAs play an important role in the development and management of large
software systems, to the extent that major decisions like adding server capacity or changing
company’s business strategy can depend on the information derived through such LPAs.

Log changes often break the functionality of the LPAs. Often, LPAs are in-house applica-

tions that are highly dependent on the logs. Although LPAs are typically built on commercial

Chapter 4: How Do Logging Statements Evolve? 62

platforms by IBM [ibm] and Splunk [spl], the actual link between the LPAs and the moni-
tored system depends heavily on the meaning and the specific kind and format of the logs
in use. Hence, the Apps require continuous understanding and maintenance as the content,
format or type of logs changes and as the needs change. In Chapter 3, we studied the chal-
lenges of understanding logs. However, since little is known about the evolution of logs, it
is unclear how much maintenance effort LPAs require.

We choose two open source systems and one closed source software system with differ-
ent sizes and application domains as the subjects for our case study. We choose ten releases
of Hadoop, five releases of PostgreSQL, and nine releases of a closed source large enterprise
application, which we will refer to as EA. We study logs at the execution level for these three
systems. We study logs at the code level for only Hadoop and PostgreSQL due to the lack of
access to the source code of EA. We do not study the Zookeeper and Cassandra systems from
Chapter 3 because they do not have long development histories. Our study is the first step
in understanding the maintenance of LPAs by studying the evolution of the logs (i.e., their
input data).

Our study tracks the logs of the execution of a fixed set of major features across the
lifetime of the three studied systems, and analyzes the logging statements in source code of
the two studied open source systems. Our study allows us to address the following research

questions:

RQ1: How much do logs change over time?

We find that, over time, the amount of run-time logs, i.e., log lines generated from
executing a same set of features of these systems, increases 1.5-2.8 times compared
to the first-studied release. The logging statements in the code corresponding to these
features increases 0.17-2.45 times. We note that as few as 40% of the run-time logs

are unchanged across releases and up to 21% of the run-time logs are modified across

Chapter 4: How Do Logging Statements Evolve? 63

RQ2:

RQ3:

releases. The modifications of the logs may be troublesome as they cause the LPAs to

be more error-prone.

What types of modifications happen to logs?

Examining the modification to logs across releases, we identify eight types of modi-
fications. 10-70% of the modifications can be avoided and the impact of 15-80% of
them can be minimized through the use of robust analysis techniques by the LPAs. The
remaining modifications are risky and should be tracked carefully to avoid breaking

the LPAs associated with the studied systems.

What information is conveyed by short-lived logs?

We find that short-lived logs focus more on system errors and warnings. They of-
ten contain implementation-level details and system error messages. Based on these
findings, more resources should be allocated to maintain LPAs that heavily depend on

implementation-level information or LPAs that monitor system errors.

The findings from this chapter highlight the need for tools and approaches (e.g., trace-

ability techniques) to ease the maintenance of LPAs.

The rest of this chapter is organized as follows: Section 4.2 presents an example to

motivate our work. Section 4.3 presents the data preparation steps for our case study. Sec-

tion 4.4 presents our case studies and the answers to our research questions. Section 4.5

discusses the limitations of our study. Section 4.6 discusses prior work. Section 4.7 con-

cludes the chapter.

4.2

A Motivating Example

We use a hypothetical, but realistic, motivating example to illustrate the impact of log

changes on the development and maintenance of LPAs.

Chapter 4: How Do Logging Statements Evolve? 64

The example considers an online file storage system that enables customers to upload,
share and modify files. Initially, there were execution logs used by operators to monitor
the performance of the system. The information recorded in the execution logs contained

”

system events, such as “user requests file”, “start to transfer file” and “file delivered”.

Release n

Suppose that operators identified a performance problem in release n-1. In order to
diagnose the problem, developer Andy added more information to the context of the execu-
tion events in logs, such as the ID of the thread that handles file uploads. Using the added
context in the execution logs, the operators identified the root cause of the performance
problem and developer Andy resolved it. A simple LPA was written to continuously moni-
tor for the re-occurrence of the problem by scanning the logs for the corresponding system

events.

Release n+1

The file upload feature was overhauled, during which the developers changed the com-
municated events and their associated log entries. These context changes to the log files led
to failures of the LPAs, since they could no longer parse the log lines correctly.

The application also started giving false alarms. After several hours of analysis, the root-
cause of the false alarm was identified. The logs had been changed by another developer,
Bob, who was not aware that others made use of this information since there is no trace-
ability between the information and the LPA. To avoid these problems reoccurring in the
future, developer Andy marked the dependence of the LPA on this log event in an ad hoc

manner through some basic code comments.

From the motivating example, we can observe the following:
e Logs are crucial for understanding and resolving field problems and bugs.

e Logs are continuously changing due to development and field requirements.

Chapter 4: How Do Logging Statements Evolve? 65

Table 4.1: Overview of the studied releases of Hadoop (minor releases in italic)

Release | Release Date K SLOC
0.14.0 20 August, 2007 122
0.15.0 29 October, 2007 137
0.16.0 7 February, 2008 181

0.17.0 20 May, 2008 158
0.18.0 22 August, 2008 174
0.19.0 21 November, 2008 | 293
0.20.0 22 April, 2009 250

0.20.1 14 September, 2009 | 258
0.20.2 26 February, 2010 259
0.21.0 23 August, 2010 201

e LPAs are highly dependent on the logs.

Unfortunately, today there are no approaches to ensure traceability between source code
and LPAs, leading LPAs to be very fragile, as they have to adapt to continuously changing

logs.

4.3 Case Study Setup

To study the evolution of logs, we mine both the actual logs generated dynamically at run-
time as well as the logging statements in the source code. Depending on the usage scenario,
some of the logging statements will result in actual logs, while other logging statements will
not be executed and hence not generated. In this section, we present the studied systems

and our approach to recover logs from their execution.

4.3.1 Studied systems

We chose two open source systems and one closed source software system with different
sizes and application domains as the subjects for our case study. We chose ten releases of

Hadoop', five releases of PostgreSQL?, and nine releases of a closed source large enterprise

'http://hadoop.apache.org/ last verified January 2014.
2http://www.postgresql.org/ last verified January 2014.

Chapter 4: How Do Logging Statements Evolve? 66

Table 4.2: Overview of the studied releases of PostgreSQL

Release | Release Date K SLOC
8.2 5 December, 2006 471
8.3 4 February, 2008 533
8.4 1 July, 2009 576
9.0 20 September, 2010 | 613
9.1 12 September, 2011 | 654

application, which we will refer to as EA.

Hadoop is a large distributed data processing platform that implements the MapRe-
duce [DGO8] data processing paradigm. We use releases 0.14.0 to 0.21.0 for our study as
shown in Table 4.1. We chose these releases since 0.14.0 is the earliest one that is able to
run in our experimental environment and 0.21.0 is the most recent release at the time of our
previous study [SJAT11]. Among the studied releases, 0.20.1 and 0.20.2 are minor releases
of the 0.20.0 series. Because Hadoop is widely used in both academia and industry, various
LPAs (e.g., Chukwa [RK10] and Salsa [TPK'08]) are designed to diagnose system problems
as well as monitor the performance of Hadoop.

PostgreSQL is an open source database management system written in C. We chose re-
leases 8.2 to 9.1 for our study because they are the releases that are able to run on our
experimental environment (Windows Server). The overview of the releases is shown in
Table 4.2. All the releases used in our study are major releases. Various LPAs have been de-
veloped for PostgreSQL, e.g., pgFouine [pgf] analyzes PostgreSQL logs to determine whether
certain queries need optimization.

The enterprise application (EA) in our study is a large scale, communication application
that is deployed in thousands of enterprises worldwide and used by millions of users. Due
to a Non-Disclosure Agreement, we cannot reveal additional details about the application.
We do note that it is considerably larger than Hadoop and PostgreSQL. Moreover, it has a
much larger user base and longer history. We studied nine releases of EA. The first seven

minor releases are from one major release series and the later two releases are from another

Chapter 4: How Do Logging Statements Evolve? 67

major release. We name the release numbers 1.0 to 1.6 for the first major release and 2.0
to 2.1 for the second major release. There are currently several LPAs for the EA. These
LPAs are used for functional verification, performance analysis, capacity planning, system
monitoring, and field diagnosis of customer deployments worldwide.

We do not choose to study Zookeeper and Cassandra from Chapter 3 since they do not

have long development history to study the evolution of logs.

4.3.2 Uncovering logs and logging statements

We perform an execution-level and code-level analysis of logs over-time. Studying logs at
both execution-level or code-level is important, since execution-level logs contain the infor-
mation that LPAs actually depend on and the code-level analysis would help us understand

the execution-level findings.

Execution Level

Our execution-level approach to recover the logs of software systems consists of the follow-

ing three steps: 1) system deployment, 2) data collection, and 3) log abstraction.

1. System Deployment
For this study, we seek to understand the logs of each system based on exercising the
same set of features across several releases of the studied systems. To achieve our goal, we

run every version of each systems with the same workload in an experimental environment.

2. Data collection

In this step, we collect the execution logs from these systems. We apply realistic run-
time workloads to these systems and collect the logs generated during the execution of the
systems.

The Hadoop workload consists of two example programs, wordcount and grep. The

wordcount program generates the frequency of all the words in the input data and the grep

Chapter 4: How Do Logging Statements Evolve? 68

-
Execution Events
Database

Execution Anonymized
Logs Anonymize | Execution Logs Tokenize — —»| Bins Categorize || Reconcile

Figure 4.1: Overall framework for log abstraction.

Abstracted
Log Lines

program searches the input data for a string pattern. In our case study, the input data for
both wordcount and grep is a set of data with a total size of 5 GB. The search pattern of the
grep program in our study is one particular word (“fail”).

To collect consistent and comparable data for the EA, we choose a subset of features that
are available in all versions of the EA. We simulate the real-world usage of the EA system
through a specialized workload generator, which exercises the configured set of features
for a given number of times. We perform the same 8-hour standard load test [Bei84] on
each of the FA releases. A standard load test mimics the real-world usage of the system and
ensures that all of the common features are covered during the test.

We deploy the database of the Dell DVD Store [ds2] on a PostgreSQL database server for
each of the releases. We extract database queries from the source code of the Dell DVD Store
as the typical workload of the Dell DVD Store database. We leverage Apache JMeter [jme] to
execute the queries repetitively for 2 hours.

Note that at the execution level, we use realistic run-time scenarios and workloads.
Hence, our experiments cannot guarantee full coverage of all features and hence run-time
events. This is the reason why we also need to perform the code-level analysis presented in

the next sub-section.

3. Log abstraction
We analyze the generated execution logs. Execution logs (e.g., Table 4.3) typically do
not follow a strict format. Instead, they often use inconsistent formats [BvDDTO07]. For

“w»

example, one developer may choose to use “,” as a separator, while another developer may

Chapter 4: How Do Logging Statements Evolve? 69

choose to use “ \t”. The free-form nature of these logs makes it hard to automatically
extract information from them. Moreover, log lines typically contain a mixture of static
and dynamic information. The static values contain the description of the execution events,
while the dynamic values indicate the corresponding context of these events.

One must identify the different kinds of system events based on the event instances
in the collected execution logs. We use a technique proposed by Jiang et al. [JHHF08a]
to automatically extract the execution events and their associated context from the logs.
Figure 4.1 shows the overall process of log abstraction. As shown in Table 4.4, the descrip-
tions of task types, such as “Trying to launch”, are static values, i.e., system events. The
time stamps and task IDs are dynamic values (i.e., the context for these events). The log
abstraction technique normalizes the dynamic values and uses the static values to create ab-
stracted execution events. We consider the abstracted execution events as representations
of the system events.

First, the anonymize step uses heuristics to recognize dynamic values in log lines. For
example, “TaskID=01A" will be anonymized to “TaskID=$id”. The tokenize step separates
the anonymized log lines into different groups (i.e., bins) according to the number of words
and estimated parameters in each log line. Afterwards, the categorize step compares log
lines within each bin and abstracts them into the corresponding execution events (e.g.,
“Reduce”). Similar execution events with different anonymized parameters are categorized
together. Since the anonymize step uses heuristics to identify dynamic information in a log
line, there is a chance that the heuristic might fail to anonymize some dynamic information.
The reconcile step identifies such dynamic values by analyzing the difference between the
execution events within the same bin. Case studies in previous research [JHHF08a] show
that the precision and recall of this log abstraction technique both are high, e.g., over 80%

precision and recall.

Chapter 4: How Do Logging Statements Evolve? 70

Table 4.3: Example of execution log lines

*

Log lines
time=1, Trying to launch, TaskID=01A
time=2, Trying to launch, TaskID=077
time=3, JVM, TaskID=01A
time=4, Reduce, TaskID=01A
time=>5, JVM, TaskID=077
time=6, Reduce, TaskID=01A
time="7, Reduce, TaskID=01A
time=8, Progress, TaskID=077
time=9, Done, TaskID=077
time=10, Commit Pending, TaskID=01A
time=11, Done, TaskID=01A

=

OO0 Ul A~ WN -

[

Table 4.4: Abstracted execution events

Event Event #
FEq time=3$t, Trying to launch, TaskID=%$id | 1,2
By time=$t, JVM, TaskID=$id 3,5
Es time=$t, Reduce, TaskID=$id 4,6,7
Ey time=$t, Progress, TaskID=$id 8
Es time=$t, Commit Pending, TaskID=$id | 10
Eg time=$t, Done, TaskID=$id 9,11

Code Level

Our code-level approach consists of two steps: 1) code abstraction and 2) identification of

logging statements.

1. Code abstraction

We download the source code of each release of the studied systems. For Hadoop, a
Java based system, we leverage the Eclipse JDT parser [jdt] to create abstract syntax trees
for each source code file. For PostgreSQL, we use TXL [Corl1] to parse code into abstract

syntax trees that are stored in XML format.

2. Identification of logging statements

Software projects typically use logging libraries to generate logs. One of the most widely

Chapter 4: How Do Logging Statements Evolve? 71

used logging libraries in Java systems is Log4j [loga]. We browse the source code of the
studied systems and identify the logging libraries.

Using this knowledge, we analyze the generated abstract syntax trees to identify the
logging-related source code fragments and changes. Typically, logging code contains method
invocations that call the logging library. For example, for systems using Log4j, a method in-
vocation like “LOG” is considered to be logging code. Changes that involve such code are
considered as log churn.

With the extracted logs from both execution and code level analyses, we study the
evolution of such logs. In particular, we measure three aspects: 1) how much do logs
change over time, 2) what types of modifications happen to logs and 3) what information
is conveyed in short-lived logs. We plan to answer these three question by performing
empirical studies on both open source and enterprise systems.

We only study the logs at the code-level for Hadoop and PostgreSQL due to the lack of

access to the source code of EA.

4.4 Case Study Results

In this section, we present the findings on our research questions. For each research ques-

tion, we present our motivation, approach, and results.

4.4.1 RQ1: How much do logs change over time?
Motivation

The evolution of logs impacts the maintenance of LPAs. The frequent changing of the logs
makes LPAs fragile due to the lack of established traceability techniques between LPAs and
logs. Hence, changes to execution events give an indication of the complexity of designing

and maintaining LPAs.

Chapter 4: How Do Logging Statements Evolve? 72

Approach

At the execution level, we use the number of unique abstracted execution events (we call
the abstracted execution events as “events” for short in the later part of this chapter) as
a measurement of the number of logs. We also study the log changes by measuring the
percentages of unchanged, added and deleted execution events. Given the current release
n and the previous release n-1, the percentages of unchanged and added execution events
are defined by the ratio of the number of unchanged and added events in release n over the
number of total execution events in the current release (n), respectively. The percentage
of deleted execution events is defined the same as unchanged and added events, except
over the number of total execution events in the previous release (n-1). For example, the

percentage of unchanged execution events in release n (P ynchanged ,,) iS calculated as:

unchanged events,,

P unchanged n, — (41)

total events ,

We identify modified events by manually examining added and deleted events. We use
the frequency of execution events in two releases to assist in mapping between modified
events with similar wording across releases. Given the large number of events of EA (over
1,900 across all releases), we only examine the top 40 most occurring events since they
represent more than 90% of the total number of logs. This means that for EA, we use a
similar equation as (4.1), except that the number of total execution events for EA is always
40 as we only examine 40 execution events.

At the code level, we use the number of logging statements as a measure of the number
of logs. The unchanged, added and deleted logging statements at the code level are studied
in a similar way as at the execution level. To assist in understanding the logging statement
changes at the code level, we also calculate the code churns (total number of added and
deleted lines of code) of each studied release. We leverage J-REX [SJAH09; SAH11; Shal0],

a high-level evolutionary extractor of source code history similar to C-REX [Has05], to

Chapter 4: How Do Logging Statements Evolve? 73

identify the modification of logging statements during the development of the systems.

Results: The total amount of logs

Execution level:

We first study the number of logs in the history of both systems. Figure 4.2 shows the
growth trend of logs in Hadoop. The growth of logs is faster than the growth of source code
(shown in Table 3.1). At the execution level, we note that the number of logs in the last
studied release (0.21.0) is 2.8 times the number of the first studied release (0.14.0), while
the size of the source code has increased by less than 30% (201 KLOC to 259 KLOC). In
particular, the number of logs increases significantly in release 0.21.0 even though the size of
the corresponding source code decreases by 20%. We also note that the logs increase more
between major releases than between two minor releases. The large increase of the number
of logs at the execution-level in major releases indicates that additional maintenance effort
might be needed for LPAs to continue operating correctly even if the existing LPAs do not
use logs about new features or the additional logs about the currently analyzed features.

The logs of PostgreSQL, shown in Figure 4.3, also shows a growth trend at the execution
level. Unlike Hadoop, there exists no release in PostgreSQL that has significantly larger log
growth than other releases. We believe that the reason is that PostgreSQL is a mature and
stable system with more than 20 years history, while the development of Hadoop started
in 2005. Therefore, the developers of PostgreSQL would be unlikely to add or delete sub-
stantial features in the system or significantly change the architecture of the system in one
release. The stable nature of the logs in PostgreSQL may suggest that its LPAs are easier
to maintain. The developers of LPAs can focus more on adding features to the LPAs by
analyzing the added logs, and focus less on maintaining features based on old logs.

For the EA system, we only study execution level logs due to lack of access to the source
code data. Since we study only two major releases, we study the number of logs in each

major release (nine releases in total) instead of generalizing a trend over the two studied

Chapter 4: How Do Logging Statements Evolve? 74

releases. We note that the number of logs does not change significantly in the first major
release, while the logs do increase significantly in the second major release. The logs of the
last studied release (2.1) is 1.5 times the amount of the first studied release (1.0).

Code level:

The trend of logging statement growth is similar to that of log growth at the execution
level. As an exception, the number of logging statements in release 0.17.0 of Hadoop in-
creases at the execution level but decreases at the code level. Table 4.6 shows that over
48% of the logging statements in release 0.16.0 is removed in release 0.17.0. The release
notes [hadb] show that the HBase component of Hadoop of release 0.16.0 became a separate
project right before the release of 0.17.0 of Hadoop.

In both Hadoop and PostgreSQL, less than 10% of the logging statements are observed at
the execution level. Operators typically examine the logs that appear in the field when the
software system is upgraded to a new release and adapt their LPAs accordingly. However,
our results indicate that most of the logging statements are not observed during a typical
execution of the system. The changes to such logging statements may cause problems in
the LPAs. Developers of the software system may consider documenting all the logging
statements in the system and transferring such knowledge to the operators in the field. On
the other hand, it may be good news for LPA developers, since most of the changed logging
statements may do not show up during execution, therefore the LPAs should not break in

practice.

Results: The number of changed logs

Execution level:

A closer analysis of the logs across releases shows that for all the studied systems at the
execution level, most (over 60%) of the old logs remain the same in new major releases
(see Tables 4.7, 4.6 and 4.5). The logs are more stable across minor releases (on average,

over 80% remain the same). This is good news for developers of LPAs. However, from

Chapter 4: How Do Logging Statements Evolve? 75

Tables 4.7, 4.6 and 4.5, we observe that, on average, around 1% (EA), 7.5% (Hadoop) and
6.3% (PostgreSQL) of the logs changes are log modifications. Such logs may be trouble-
some for maintainers of LPAs since they may need to modify their code to account for such
changes.

It is important to note that all these log changes are for a fixed set of executed features,
i.e., although the executed features remain the same, the logs clearly do not. We studied the
release information for both releases and read through the change logs to better understand
the rationale for large log changes. We find that internal implementation changes often
have a big impact on the logs. For example, according to Table 4.6, release 0.18.0 (in bold
font) is one of the releases with the highest percentage of log changes. Release 0.18.0
introduced new Java classes for Hadoop jobs (a core functionality of Hadoop) to replace the
old classes. Release 0.21.0 officially replaced the old MapReduce implementation named
“mapred”, with a new implementation named “MapReduce”. Table 4.6 shows that release
0.18.0 and 0.21.0 have the largest amounts of code churn, which shows evidence that both
releases have significant changes in the source code. Similarly, the 1.3 and 2.0 releases
(bold in Table 4.5) of EA have significant behavioural and architectural changes compared
with their previous releases. Similarly, although PostgreSQL has a much longer history and
mature architecture and design than Hadoop, we still observe added, deleted and modified
logs across releases. For example, release 8.3 has the largest amount (48.6%) of added logs,
which corresponds to the new “autovacuum” feature. It appears that the subject systems
communicate a significant amount of implementation-level information, leading their logs
to vary considerably due to internal changes.

Code level:

We observed different percentages of unchanged, added, deleted and modified logging
statements at the code level compared to the percentages at the execution level. For ex-
ample, in Hadoop, release 0.15.0, 0.16.0 and 0.19.0 have a large number of added logging

statements at the code level, but the added logs at the execution level is low. From the

Chapter 4: How Do Logging Statements Evolve? 76

3000 M #logging statements 128
» 2500 O+# execution events 140 »
= £
£ 2000 120 g
g 100 ¢
21500 g
@ 80 &
£ 1000 60 g
£ 500 0°
20
T e e I e B e R
O O O A0 0 O O N> O
W T N7 KV KDY DT AT DT DT A

Q" Q7 Q7 Q7 O O O O O O

Figure 4.2: Growth trend of logs (execution level and code level) in Hadoop.

release notes and development history, we find out that new components with extensive
logging statements had been added in the source code of these releases, but these compo-
nents are not deployed in the release. For example, HBase is added into Hadoop in release
0.15.0 but it is not, by default, deployed with Hadoop. In release 0.19.0 of Hadoop, a collec-
tion of sub-projects is added into the “contrib” folder of Hadoop, including Chukwa [RK10]
and Hadoop Streaming [hadc]. Neither of these sub-projects is deployed with Hadoop by
default. However, we cannot observe the same in PostgreSQL. Release 8.3 of PostgreSQL has
the largest number added logs at both the execution level and the code level. According to
the release notes [pos], the large addition of logs is due to the addition of a new feature to

support “multiple concurrent autovacuum processes”.

Chapter 4: How Do Logging Statements Evolve?

77

900 B #logging statements

(o]
o O O O
o O O O

o
o

logging statements
N WA U N
o o
o o

[EEN
o
o o

8.2

8.3

O # execution events

8.4

9.0

9.1

70
60
50
40
30
20
10

execution events

Figure 4.3: Growth trend of logs (execution level and code level) in PostgreSQL.

Table 4.5: Percentage of unchanged, added, deleted and modified logs in the history of EA
(bold font indicates large changes).

Unchanged Added Modified Deleted
1.1 92.1% 7.9% 0.0% 2.8%
1.2 64.8% 32.9% 23% 34.7%
1.3 77.8% 19.7% 25% 10.3%
1.4 86.0% 13.4% 0.7% 19.5%
1.5 85.7% 13.5% 0.8% 15.4%
1.6 96.5% 3.2% 0.3% 3.2%
2.0 61.2% 38.0% 0.7% 20.8%
2.1 74.2% 25.6% 0.2% 14.2%

@owledge about logging statements to users of logs.

tion that provides LPAs with detailed knowledge of the internals of the systems.
However, such logging style makes LPAs fragile, in particular for major releases
(e.g., in 0.21.0 of Hadoop, only 38% of logs remained unchanged). For minor
releases, we still see a large percentage of logs added or modified (e.g., only
64.8% logs remained unchanged in EA 1.2). The logs at the execution level
cover less than 10% of logging statements at the code level, and the logging
statements at the code level may change differently compared to the logs at the

execution level. Developers may consider explicitly documenting transferring

616 logs of the studied systems tend to contain implementation-level inform;

/

78

Chapter 4: How Do Logging Statements Evolve?

%ST %LT %LTIT %998 SI8 | %00 %S'T %8'TE %L99 99 [16
%LT %9’ %T'S %EE6 T6L | %00 %CT %9'ST %Z'T8 b |6
%0T %6’ %rTT %L'S8 18Z | %6'C %8'ST %S0T %L'EL 8 | ¥'8
%0y %8'E %9'TT %LEL ShL | %T8T %L'S %9'8Y %L 'Sh se | g8
Po19[2d PSYIPOW Pappy paSueyoun [ei0L | pIo[ed PAYIPOIN Pappy paSueypun [eiol

[9A3] @poD [9A3] UOTINDIAXY

*(se3ueyd 931e[S91BJIpUI JUOJ P[Oq) TOS2L3150d
JO A101S1 91 UI ([9AS] 9POD pUB [9A3] UONNIIXD UI) S30] PIIS[oP PUR PayIpowl ‘pappe ‘padueydun Jo 93ejuadisd :/ 4 9[qel

%9ET %LO %b'9S %9'Eh S09T | w¥'LT %6VL %P9 %L'SE 89T | 0120
%0'S %00 %0'T %066 T2ET | %00 %0°0 %8 %T'S6 vZl | 2020
%I %90 %EOT %L'68 0LET | %E8 %S'T %6'S %S'T6 8IT | 1°02°0
%L'ST WI'T %E6T %L 08 0STT | %9'8T %I'd %OYT %6TL 121 | 0020
%T9 %L %EPE %L'S9 6521 | %0HT %b'b %T6T %99 €IT | 061°0
%STT %8'E %TTIT %S8'SL 798 | %0°0T %STT %8'6E %L'SE €6 | 081°0
%E8Y %b0 %ETT %L'LS Y6L | %wT'E %98 %0°0T %18 oL | 0410
%TTIT %S'E %L'LT %ETL vLOT | %0°0T %I'E %6'9T %0°08 S9 | 0910
%S'ST %I'S %E'0E %L'69 148 | %001 %E'8 %001 %L'T8 09 | 0ST0
Po9[Pd PSYIPOW Pappy pasgueypun [eI0L | polO[Pd PIYIPOJN pIppY paSueyoun [eiof
[9A3] 2poD [9A3] UOTINIAXY

*(se3ue 931e] S9IBIIPUI JUOJ p[oq) dOOpPDH
Jo A103STY 913 UI ([9AS] 9POD PUB [9AS] UOIINIAXD UT) S30[PaId[op PUB payIpoul ‘pappe ‘padueyoun jo 23eIuad19d :9° 9[qeL

Chapter 4: How Do Logging Statements Evolve? 79

4.4.2 RQ2: What types of modifications happen to logs?
Motivation

In RQ1 we found that up to 21.5% (in Table 4.6) of communicated events are modified.
These modified logs have a crucial impact on LPAs because LPAs expect certain context
information and are likely to fail when operating on events with modified context. In
contrast, newly added logs are not likely to impact already developed LPAs because those
applications are unaware of the new logs and will simply ignore them. In short, changes
to the context of previously communicated events are more likely to introduce bugs and
failures in LPAs. For example, during the history of Hadoop, “task” (an important concept
of the platform) was renamed to “attempt”, leading to failures of monitoring tools and to
confusion within the user community about the communicated context [hadb]. Therefore,

we wish to understand how communicated contexts change.

Approach

We follow a grounded theory [BJO8] approach to identify modification patterns to the con-
text of a logging statement. We manually study all events at the execution level with a
modified context and all the modified logging statements at the code level. We analyze
what information is modified and how that information is modified. We repeat this process
several times until a number of modification types emerge. We then calculate the distri-
bution of different types of modifications. The percentage of each type of modification is
calculated as the ratio of the number of occurrences of a type across all the releases over
the total number of modifications across all the releases. For example, the percentage of

modified logs of type p (P jodified ,) is calculated as:

modi fied events |
total modi fied events

P modified , = (4.2)

Chapter 4: How Do Logging Statements Evolve?

80

Table 4.8: Log modification types and examples of the execution level analysis.

Pattern

Definitions

Examples

Before

After

Adding con-
text (Recover-
able)

Additional context
is added into the
logs.

ShuffleRamManager
memory limit n MaxS-
ingleShuffleLimit m

ShuffleRamManager
memory limit n MaxS-
ingleShuffleLimit m
mergeThreshold Q

avoidable)

merged into one.

MapTask data buffer

Deleting Context is removed | Got n map output | Gotn output
context (Un- | from the logs. known output m
avoidable)
Redundant Some redundant | task is in COM- | task is in com-
context information is | MIT_PENDING mit_pending, sta-
(Avoidable) added or the added tus:COMMIT_PENDING
information can be
inferred without
being included in
the context.

Rephrasing The logs are re- | Hadoop mapred Reduce | Hadoop MapReduce
(Avoidable) placed (partially) | task fetch n bytes task Reduce fetch n
by new logs. bytes

Merging (Un- | Several old logs are | MapTask record buffer MapTask buffer

Splitting (Un-
avoidable)

The old log is split
into multiple new
ones.

Adding task to task-
tracker

Adding Map Task to
tasktracker;

Adding Reduce Task to
tasktracker

Table 4.9: Logging statement modification types discovered from code-level analysis (in ad-
dition to the types in Table 4.8).

Pattern

Definitions

Examples

Before

After

Changing

log-

The logging level

Log.info("property’” +

Log.debug(” property”” +

ging level (Re- | is changed. key +7'is” + wval); key +7'is” 4+ val);

coverable)

Changing argu- | Arguments in | Log.info(” created | Log.info(” created

ments (Recover- | the logging | trash checkpoint: | trash checkpoint: 7+

able) statements are | ”+checkpoint); checkpoint.touri().
changed. getpath());

Chapter 4: How Do Logging Statements Evolve? 81

Table 4.10: Percentage of avoidable, recoverable and unavoidable log modifications in
Hadoop, PostgreSQL and EA.

Execution level Code level
Hadoop EA PostgreSQL | Hadoop | PostgreSQL
Avoidable | 71.83% | 40.68% 10.00% | 70.00% 68.06%
Recoverable | 14.08% | 52.54% 80.00% | 26.43% 28.78%
Unavoidable | 14.09% | 6.78% 10.00% 3.57% 4.17%

Table 4.11: Percentages of different types of context modifications in Hadoop (execution

level).
Release | Adding | Deleting | Redundant | Rephrasing | Merging | Splitting
context | context context
0.15.0 1.41 0.00 2.82 2.82 0.00 0.00
0.16.0 0.00 0.00 2.82 0.00 0.00 0.00
0.17.0 0.00 0.00 0.00 8.45 0.00 0.00
0.18.0 0.00 0.00 0.00 28.17 0.00 0.00
0.19.0 0.00 2.82 0.00 4.23 0.00 0.00
0.20.0 2.82 1.41 1.41 0.00 1.41 0.00
0.20.1 0.00 1.41 0.00 1.41 1.41 0.00
0.20.2 0.00 0.00 0.00 0.00 0.00 0.00
0.21.0 9.86 1.41 1.41 16.9 2.82 2.82

Chapter 4: How Do Logging Statements Evolve? 82

100.00%
0,
90.00% 80.00% DOHadoop
80.00%
HEA
70.00%
61.97%
. ’ PostgreSQL
60.00% 53 54%
50.00%
40.00% 40.68%
. (]
30.00% 10.00%
3.39% 10.00%
20.00% 14 ogo 0 86% °
10.00% 7.04% ~"°0.00% 7.04% 2.82% 0.00%
. (] 0,

0.00% +—— — — — — e
adding deleting redundant rephrasing splitting merging
context context context

(a) Execution level
100.00%
90.00% OHadoop
80.00%
—0.00% 68.06% B PostgreSQL
. (o]
60.00%
50.00%
0,
40.00% 10 oo 30.71%
30.00% | [20.83% 26.43
20.00% 5 78%
0, 0,
o 0 417% 143% 2RSSR
10.00% 4.17%)
0.71% 0.00% 1.43% 0.00% |l

adding deleting changing rephrasing splitting merging changing
context context argument level

(b) Code level

Figure 4.4: Distributions of the different types of log modifications across all studied re-
leases.

83

Chapter 4: How Do Logging Statements Evolve?

00°0 00°0 6€'1T £9°91 00°0 00°0 6¢'1T I'6
8/°C 000 6€'1 TL'6 LT 00°0 9¢8's 06
00°0 00°0 6€'1 17Tt 00°0 00°0 99's '8
00°0 00°0 000 9S°0€ 00°0 00°0 €e'8 €8
19491 8ur83oj juswndie | 3X9JU0D 1X3)U0d

Sui8ueyn Suidioy | Sumipds | Surserydsy | 3urdueyp | Sunse@ | Sulppy | 9sesd[y

"([9A9] 9p0d) TOS2.131504 Ul suonedPIpow Juswalels 3urd3of jo sodA) yuaiayjip jo sadejuadiad pafrelnd €14 9[qelL

1470 000 000 14°0 98'C 00°0 ¥1'C 0'TC°0
00°0 000 000 00°0 00°0 00°0 00°0 coco
14°0 140 14°0 14°0 14°0 00°0 &'l roco
00°0 14°0 000 y1'C PT°L 00°0 00°S 0°02°0
00°0 000 000 ¥1'C 00°0 00°0 144 0'61°0
00°0 000 000 6C¥1 98¢ 00°0 vl 0'8T°0
14°0 000 000 00°0 T 00°0 00°0 0210
14°S 000 000 LS°E 00°0T 000 626 091°0
&'l 000 140 98¢ 14°S 14°0 LS'8 0'ST°0
[9A9] Surd3o; judwIngIe | IX91Uod IX31U0D
Surdueyn Sui8iapy | Sumyipds | Surserydsy | SurSueyp | Sune[eg | Sulppy | 9ses[sy

*([9A9] 9p02) dooppy Ul suonedyIpow Juswalels 3urd3dof Jo sodAl Juaiagjip Jo sadeiuadtad pafrelnd :Z1'd d[qel

Chapter 4: How Do Logging Statements Evolve?

84

(execution level).

Release | Adding | Deleting | Redundant | Rephrasing | Merging | Splitting
context | context context

8.3 10.00 10.00 0.00 0.00 0.00 0.00

8.4 60.00 0.00 0.00 0.00 0.00 0.00

9.0 10.00 0.00 0.00 0.00 0.00 0.00

9.1 0.00 0.00 0.00 10.00 0.00 0.00

Table 4.15: Detailed percentages of different types of context modifications in EA.

Table 4.14: Detailed percentages of different types of context modifications in PostgreSQL

Release | Adding | Deleting | Redundant | Rephrasing | Merging | Splitting
context | context context
1.1 0.00 0.00 0.00 0.00 0.00 0.00
1.2 6.78 1.69 0.00 20.34 0.00 0.00
1.3 22.03 0.00 0.00 10.17 0.00 1.69
1.4 6.78 0.00 0.00 1.69 0.00 0.00
1.5 8.47 1.69 0.00 0.00 0.00 0.00
1.6 1.69 0.00 0.00 1.69 0.00 0.00
2.0 6.78 0.00 0.00 3.39 1.69 0.00
2.1 0.00 0.00 0.00 3.39 0.00 0.00

Results: Log modification types

Table 4.8 tabulates the six types of log modifications identified through our manual exami-
nation on the logs at the execution level. The table defines each type and gives a real-world
example of it from the studied data. Among all the types, Rephrasing and Redundant con-
text are avoidable modifications, because neither of them brings any additional information
to the logs, and only cause changes in LPAs. The Adding context modification is typically
unavoidable, but a robust log parser should still be able to parse the logs correctly. For
example, Island Grammars [Moo01] can be leveraged in this case to ignore the added infor-
mation in logs during the parsing of the log lines. Therefore, Adding context is a recoverable
modification and has a less negative impact than the avoidable modifications. The other
3 types of modification, i.e., Merging, Splitting and Deleting context, are unavoidable, but
the LPAs still need to adapt to these modifications. Developers can use a null value for the

deleted context to make the logs consistent. However, such deleted context may correspond

Chapter 4: How Do Logging Statements Evolve? 85

to removed features and such preferentially deleted context with null values may cause the
logs to be hard to maintain in the long term. Developers of the system should provide de-
tailed documentation of the unavoidable modifications and inform people who make use
of the modified logs. We note that although some Splitting modifications look similar to
Adding context, the two types of modifications are essentially different. Splitting is divid-
ing one log event into multiple ones, e.g., splitting the recording of buffer size to different
types of buffers, such as data buffer and task buffer; while Adding context is providing extra
information to the logs, e.g., in addition to recording the buffer size, the free space of the
buffer is also recorded.

At the code level, we identify two additional types of logging statement modifications
shown in Table 4.9. Both Changing logging level and Changing arguments are recoverable
modifications, since a robust log parser that analyzes the generated logs from these logging

statements would likely not be impacted by such logging statement modifications.

Results: Log modifications distribution

Overall:

Figure 4.4 shows the classification distribution of the log modification types at both
the execution and the code level across all the studied releases and Table 4.10 shows the
percentage of avoidable, recoverable and unavoidable log modifications. We find that the
majority of the log modifications are either avoidable or recoverable. Only a small portion of
the log modifications are unavoidable. Simply put, developers can improve the maintenance
of the LPAs by avoiding the avoidable modifications and documenting the unavoidable log
modifications.

Execution level:

Tables 4.11, 4.14 and 4.15 show the percentages of context modifications for Hadoop,
PostgreSQL and EA at the execution level, broken down per release and pattern. Table 4.11

shows that the two largest numbers (in bold) of context modifications are both instances of

Chapter 4: How Do Logging Statements Evolve? 86

Rephrasing context. They were introduced in release 0.18.0 and 0.21.0 of Hadoop. Table 4.15
shows that many Rephrasing context instances are introduced in version 0.1.2 of EA. As
noted in RQ1, all these three releases (0.18.0 and 0.21.0 of Hadoop and 1.2 of EA) have
significant changes to the systems. These results indicate that most of the Rephrasing context
modifications may have a high correlation to the major changes introduced into the software
systems. For example, in release 0.21.0, the old MapReduce library, which is the most
essential part of Hadoop, was replaced by a whole new implementation. Therefore, the
word “mapred” was replaced by the word “MapReduce”. As both implementations have the
same features, the operator should not need to worry about such implementation changes
of the library. However, such Rephrasing modifications require updating impacted LPAs to
ensure their proper operation.

In contrast, even though release 1.3 of the EA has many Adding context modifications,
it does not have a large number of added or deleted logs. This indicates that even though
some releases do not introduce major changes into the system, logs may still be modified
significantly. A release without major system changes may also impact the LPAs significantly.

In PostgreSQL, only Adding context, Deleting context and Rephrasing context are observed
in the studied releases. 80% of the context modification to the logs of PostgreSQL at the
execution level is recoverable (Adding context). Developers of the LPAs of PostgreSQL may
spend more effort on creating robust log parsers.

We observe that in Hadoop, most of the log modifications belong to the Rephrasing type
while most of the log modifications in PostgreSQL are of the Adding context type. We believe
the reason is that Hadoop, as a new project, has more structural changes, which may lead
to the log rephrasing. On the other hand, as a project with long history, PostgreSQL mainly
has features added to it, which may contribute to most of the Adding context modifications.

Code level:

Tables 4.12 and 4.13 show the percentage of context modifications for Hadoop and

PostgreSQL at the code level, broken down per release and pattern. For Hadoop, the results

Chapter 4: How Do Logging Statements Evolve? 87

of some releases are similar at the code level and the execution level, while the results of
some other releases are different at the code level and the execution level. For example,
release 0.18.0 has a large number of Rephrasing context modifications at both the code level
and the execution level, while release 0.21.0 of Hadoop has large number of Rephrasing
context modification at the execution level but the number is low at the code level. The
reason for high number of Rephrasing context modifications at the execution level but low
at the code level is because the re-implementation of the MapReduce library of Hadoop
without removal of the old implementation from the source code. Therefore, at the code
level, the new implementation is considered an “added” logging statement, while at the
execution level, the new implementation is considered Rephrasing, because it replaces the
old implementation during the execution.

In PostgreSQL, more Rephrasing context modifications are observed at the code level. For
example, the large percentage of Rephrasing at release 8.3 corresponds to rephrasing “can’t”
to “cannot” in all logging statements. These modifications to the logging statements are not
observed in typical execution, thus they are likely to be neglected by developers of LPAs. If
these logs appear during the execution of the system, the LPAs may not be able to process
them correctly. Developers of the software may consider spending more effort on tracking
these Rephrasing modifications using code analysis and informing the users of such logs

about any modifications.

Chapter 4: How Do Logging Statements Evolve? 88

me have identified eight types of log modifications. Two of the typ}
(Rephrasing and Redundant context) are avoidable, three types (Adding con-
text, Changing logging level and Changing arguments) are unavoidable but
their impact can be controlled through the use of robust parsing techniques. The
other three types (Merging, Splitting and Deleting context) are unavoidable
and have a high chance introducing errors. Around 90% of the modifications
can be controlled through careful attention by system developers (avoidable

context modifications) or careful robust programming of LPAs (Adding Con-

0 J

4.4.3 RQ3: What information is conveyed in short-lived logs?

Motivation

RQ1 shows that logs are added and deleted in every release. Some logs are added by
developers and removed in a short period of time. The LPAs depending on such short-lived
logs may be extremely fragile. We study the information conveyed in the short-lived logs to
understand why such logs exist only within a short period of time. By studying the conveyed
information, we can understand the logs at a high level of abstraction instead of considering

simple counts of added, removed and modified logs like in the previous two questions.

Approach

We consider the logs that only exist in a single release to be short-lived logs. To understand
the purpose of short-lived logs, we extract the logging level using the code analysis of the
logging statements to measure the logging levels of short-lived logs. For each logging level,
we calculate the percentage of short-lived logging statements.

To further understand the information conveyed by short-lived logs over time, we gen-

erate a Latent Dirichlet Allocation (LDA) [BNJO3] model of the topics in short-lived logs.

Chapter 4: How Do Logging Statements Evolve? 89

Each topic in the model is a list of words that has high probability of appearing together
in short-lived logs. We put the short-lived logs of each release in a separate file as input
documents for LDA. We use MALLET [MAL] to generate LDA models with five topics. Each
word in the topics has a probability indicating its significance in the corresponding topic.
We generated the five words with the highest probability in each topic to determine the
information conveyed by logs in the topic. Finally, we examine the words in the five top-
ics and generate a one-sentence summary based on our knowledge about the systems to
summarize the information conveyed in short-lived logs.

To compare the different characteristic between short-lived and long-lived logs, we per-
form the same experiments on long-lived logs. We consider the logs that exist in all studied

releases as long-lived.

Results

Logging level:

The results of the code level analysis in Table 4.16 shows that most of the short-lived
logging statements in Hadoop are at the info and debug level. Almost 70% of the logging
statements at trace level and 22% to 25% of the logging statements in debug and error level
only appear in one release, while none of the logging statements at trace level exist across
all the studied releases.

In PostgreSQL, over 75% of the short-lived logging statements are at the error level. The
logging statements at error and fatal level account for more than 90% of all the short-lived
logging statements. The percentage of short-lived fatal level logging statement is much
higher than long-lived logging statements. In contrast to Hadoop, PostgreSQL has more
error and fatal level logging than info level logging. Therefore, all info logging statements in
PostgreSQL are short-lived and they only account for 1.43% of the total logging statements.
Topics:

A manual analysis of short-lived logs at the execution level reveals that a small part of

Chapter 4: How Do Logging Statements Evolve?

Table 4.16: Logging levels of short-lived and long-lived logs.

Short-lived logs
Hadoop PostgreSQL
% over total % short-lived logs in % over total % short-lived logs in
short-lived logs the logging level | short-lived logs the logging level
trace 1.01% 69.70% - -
debug 27.36% 25.20% 3.93% 5.21%
info 47.62% 14.70% 1.43% 100.00%
warn 13.96% 14.31% 0.00% 0.00%
error 8.99% 22.17% 76.07% 7.55%
fatal 1.06% 10.86% 16.43% 17.10%
notice - - 0.36% 9.09%
log - - 1.79% 4.07%
Long-lived logs
Hadoop PostgreSQL

% over total % long-lived logs in % over total % long-lived logs in

long-lived logs the logging level | long-lived logs the logging level

trace 0.00% 0.00% - -

debug 18.43% 2.48% 5.56% 5.21%

info 54.98% 2.47% 0.00% 0.00%

warn 16.01% 2.39% 0.00%

error 8.16% 2.93% 82.83% 5.81%

fatal 2.42% 3.62% 3.54% 2.60%

notice - - 1.01% 9.09%

log - - 7.07% 4.07%

logs corresponds to exceptions and stack traces. We removed such data since it does not

represent short-lived logs but primarily rare errors.

Table 4.17 and 4.18 show the topics generated by LDA for Hadoop. The words in each
topic are sorted by their degree of membership. From the results in Table 4.17, as expected,
we find that both short-lived and long-lived topics contain high-level conceptional informa-
tion such as “job”. However, we also find that the topics in short-lived logs may contain
lower-level information, such as the implementation of the system. For example, the word
“ipc” in topic #4 means inter-procedural communication between machines. Since the topic
is about reading a remote file, the word “ipc” corresponds to an implementation detail of

how to read the file. In addition, the information about outputting results and choosing a

server in topics #1, #2 and #5 also contain implementation-level information.

Chapter 4: How Do Logging Statements Evolve? 91

Table 4.17: LDA topics of logs in Hadoop at the execution level.

Short-lived logs

Topic Summary
1 job output node jobhistory saved Hadoop saves output to a machine.
2 | reducetask jobinprogress choosing server hadoop | Hadoop assigns a reduce task to a machine.
3 mapred map tracker taskinprogress jobtracker Map task updates its progress.
4 id org local file ipc Hadoop reads from a local file.
5 task tasktracker attempt outputs tip Hadoop Attempt saves its output
and reports to the task tracker.
Long-lived logs
Topic Summary
1 | attempt starting successfully received Hadoop starts an attempt successfully.
2 sessionid jvm fetcher processname | The jvm metric starts on a process with session id.
3 | job initializing jvmmetrics jobtracker | Hadoop initializes a job with jvm metrics recorded.
4 id node tracker tasks A task with id is on a node.
5 task reduce map completed Hadoop map or reduce task completed.
Table 4.18: LDA topics of logs in Hadoop at the code level.
Short-lived logs
Topic Summary
1 block dir stringifyexception start Hadoop throws exception when it
reads a directory from a data block.
2 job integer finish maps Hadoop job finishes with a number of Map tasks.
3 tostring getmessage path created | A new path is created in the distributed file system.
4 | region tostring regionname regioninfo HBase region server information is printed.
5 error file closing size Hadoop fails to close a file.
Long-lived logs
Topic Summary
1 filter tracker defined trackername Filter a tracker.
2 | dst frequency countrecords testpipes Count records from a server.
3 records addr rename Rename a record on a node.
4 src patter unknown server | Progress from unknown server.
5 count skipping stringifyexception Skip records.

At the code level, two of the topics (topic #1 and #5) are about system exceptions or
errors. We browsed the short-lived logs of Hadoop and found over 15% of them contain low-
level details. For the topics in long-lived logs, we find that most of the topics correspond to
system events that do not often happen, such as filtering a node and skipping a record. The

fact that these features are not in the hot spot of the system might be the reason that these

Chapter 4: How Do Logging Statements Evolve? 92

Table 4.19: Topics of the short-lived logs in PostgreSQL at the code level generated by LDA.

Short-lived logs

spi type process tuple

failed arguments pipe gin
cache lookup invalid extract
file number create check
failed relation join ttdummy

Long-lived logs

type block invalid list
relationgetrelationname rel fired page
failed spi number trigger

index relname owner add

lookup relation returned manager

G| A | W[N | 3k
G| A | W[N = 3k

logs are not changed during the development of the system. We performed the same study
on EA at the execution level, with the results similar to the results of Hadoop. For example,
both long and short-lived logs contains high-level domain knowledge but three topics in
short-lived logs contain error messages or implementation details.

We observe that the topics in short-lived logs at the execution level differ to the topics
at the code level. The reason is that only a small part of the logs at the code level is
executed at run-time. In addition, Table 4.16 shows that almost 70% of the short-lived
logging statements of Hadoop at the code level are at trace level. These logs would not be
generated during execution with default configuration.

We do not find short-lived logs of PostgreSQL at the execution level. Table 4.19 shows
the generated topics by LDA for PostgreSQL. Since we do not have experience with the de-
velopment of PostgreSQL, we only show the generated topics without a summary. Compared
to the results of Hadoop, we can observe error messages, such as “fail” and “invalid”, in both
short-lived and long-lived logs of PostgreSQL at the code level. Such observation confirms
the results of logging level (shown in Table 4.16) that most of the logging statements (both
short-lived and long-lived) in PostgreSQL are at error level.

Some LPAs are designed for recovering high-level information about the system, e.g.,
system workload rather than implementation details. Such LPAs would not need the implementation-
level information and hence would not be impacted by changes to this kind of logs. How-
ever, there are a few LPAs that are designed for debugging purposes. Such applications

require the implementation-level information and error messages in the short-lived logs,

Chapter 4: How Do Logging Statements Evolve? 93

and would be fragile as their corresponding logs are continuously changing.

Short-lived logs contain implementation-level details and error messages to fa-
cilitate system development and testing. LPAs analyzing implementation-level

information and error messages are likely to be more fragile. More mainte-

nance effort is needed for such LPAs.

J

4.5 Threats to Validity

This section presents the threats to validity of our study.

4.5.1 External validity

Our study is an exploratory study performed on Hadoop, PostgreSQL and an enterprise
application, EA. Even though all the subject systems have years of history and large user
bases, more case studies on other software systems in the same domain are needed to see
whether our findings can generalize. Similarly, the studied logs are collected from specific
workloads, which may not generalize. Future studies should examine in-field execution

logs.

4.5.2 Internal validity

Our study includes several manual steps, such as the analysis and classification of log mod-
ifications. Our findings may contain subjective biases in such manual steps.

Our study is performed on both major and minor releases of Hadoop and EA. However,
the major and minor releases in the two systems may not contain similar numbers of source
code changes. We study Hadoop primarily using major releases while we study EA primarily
using minor releases. The major releases of Hadoop may not contain as many significant

changes and the minor releases of EA may contain large numbers of changes. Therefore,

Chapter 4: How Do Logging Statements Evolve? 94

our findings about major and minor releases may be biased. Studies of more releases of the

same systems and more systems would help to counter this bias.

4.5.3 Construct validity

Our execution-level study is mainly based on the abstraction of execution events proposed
by Jiang et al. [JHHF08a]. This approach, customized to better fit the two subject systems,
is shown to have a high precision and recall. However, falsely abstracted log events may
still exist, which may potentially bias our results. Other log abstraction techniques might
improve the precision and reduce the incorrectly abstracted execution events in our study.
Our code-level study leverages J-REX. The correctness of our code-level study depends
on the correctness of J-REX. J-REX has been used in previous research showing good per-
formance and accuracy [SJIT10; SBST10]. Due to the lack of mature techniques to track
the genealogy of logs, our approach cannot identify log modifications automatically. We
examined the added and deleted logs and identified the modified logs based on our expe-
rience using logs. Such results can be treated by the accuracy of our subjective decision on

the modified logs. More mature tracking techniques for log genealogy are needed.

4.6 Related Work

In this section, we give a brief overview of the prior work related to our study.

4.6.1 Non-code based evolution studies

While many prior studies examined the evolution of source code, (e.g., [GJKT97; GTO0O0;
LRW™'97]), this chapter studies the evolution of software systems from the perspective of
non-code artifacts associated with these systems. The non-code artifacts are extensively

used in software engineering practice, yet the dependency between such artifacts and their

Chapter 4: How Do Logging Statements Evolve? 95

surrounding ecosystem lacks explicit study. Therefore, understanding the evolution of non-
code based software artifacts is important. For example, the evolution of the following

non-code artifacts has been studied before:

e System Documentation: Software systems evolve throughout their lifetime, as new
features are added and existing features are modified due to bug fixes, performance
and usability enhancements. Antén et al. [APO1] study the evolution of telephony
software systems by studying the user documentation of telephony features in the

phone books of Atlanta.

e User Interface: His et al. [HP0O] study the evolution of Microsoft Word by looking at
changes to its menu structure. Hou et al. [HWO09] study the evolution of UI features

in the Eclipse IDE.

e Features: Instead of studying the code directly, some studies have picked specific
features and followed their implementation throughout the lifetime of the software
system. For example, Kothari et al. [KBMS08] propose a technique to evaluate the
efficiency of software feature development by studying the evolution of call graphs
generated during the execution of these features. Our study is similar to this work,
except for using logs instead of call graphs. Greevy et al. [GDGO06] use program slicing

to study the evolution of features.

e Code Comments: Comments are a valuable instrument to preserve design decisions
and to communicate the intent of the code to programmers and maintainers. Jiang
et al. [JHO6] study the evolution of source code comments and discover that the
percentage of functions with header and non-header comments remains consistent
throughout the evolution. Fluri et al. [FWG07; FWGGO09] study the evolution of code

comments in 8 software projects.

e Logs: To the best of our knowledge, this chapter is the first work that studies the

Chapter 4: How Do Logging Statements Evolve? 96

evolution of logs.

4.6.2 Traceability between Logs and Log Processing Apps

Many software developers consider logs as a final output of their systems. However, for
many such systems logs are just the input for a whole range of applications that live in the
log-processing ecosystem surrounding these systems.

Our study is the first study to explore how changes in parts of an ecosystem (communi-
cated information, i.e., logs), once released in the field, might impact other parts of the sys-
tem (LPAs). The need for such types of studies was noted by Godfrey and German [GGO08],
as they recognized that most software systems today are linked with other systems within
their ecosystems. For example, in regression tests, the test suites need to be maintained as
the functionality changes. Test suites tend to accrue beyond their usefulness because de-
velopers are reluctant to remove any tests that some other developers might be depending
on.

Lehman’s earlier work [LRW*97] recognizes the need for applications to adapt to the
changes in their surrounding environment. In this study, we primarily focused on the en-
vironmental changes of LPAs (i.e., changes to logs). To prove the concept that LPAs evolve
due to the evolution of logs, we manually examined the items in the issue tracking system
(JIRA) of Chukwa, a log collector for Hadoop. We found 6 items that are caused by the
updating of Hadoop logs. For example, one of the issues (CHUKWA-132 3) corresponds to
the failure of log parser when Hadoop starts to output logs across multiple lines. Another
example is issue CHUKWA-375 4, which is to update log parsers because of the log changes
in Hadoop. The issues spread out across releases during the development history of Chukwa.
Future work, should study the changes in all aspects of the ecosystem, namely the system,

the logs, and the LPAs that process the logs.

®https://issues.apache.org/jira/browse/ CHUKWA-132 last verified January 2014.
*https://issues.apache.org/jira/browse/ CHUKWA-375 last verified January 2014.

Chapter 4: How Do Logging Statements Evolve? 97

Our study and our industrial experience support us in advocating the need for research
on tools and techniques to establish and maintain traceability between the logs and the
LPAs. In addition, systematic techniques of leveraging logs are needed in software engi-
neering activities. However, reducing the maintenance overhead and costs for all apps

within the ecosystem of large software systems is essential.

4.7 Chapter Summary

Logs are generated by snippets of code inserted explicitly by domain experts to record valu-
able information. An ecosystem of LPAs analyzes such valuable information to assist in
software testing, system monitoring and program comprehension. Yet, these LPAs highly
depend on logs and are hence impacted by changes to logs. In the previous chapter (Chap-
ter 3), we studied one aspect of the current practices of leveraging logs, i.e., understanding
logs. In this chapter, we studied another aspect of the current practices of leveraging logs,
i.e., the evolution of logs. We performed an exploratory study on the logs of ten releases
of an open source software named Hadoop, five releases of another open source software
system named PostgreSQL and nine releases of a legacy enterprise application.

Our study shows that systems communicate more about their execution through logs as
they evolve. During the evolution of software systems, the logs also evolve. Logs change
significantly when there are major source code changes (e.g., a new major release), al-
though implementation changes ideally should not have an impact on logs. In addition, we
observed eight types of log modifications. Among the log modifications in the studied sys-
tems, less than 15% of the modifications are unavoidable and are likely to introduce errors
into LPAs. We also find that short-lived logs typically contain system implementation-level
details and system error messages.

Our results indicate that additional maintenance resources should be allocated to main-

tain LPAs, especially when major changes are introduced into the software systems. Because

Chapter 4: How Do Logging Statements Evolve? 98

of the evolution of logs, traceability techniques are needed to establish and track the de-
pendencies between logs and the LPAs.

However, even today, without traceability techniques between logs and LPAs, the nega-
tive impact can still be minimized by both the system developers (who generate logs) and
the developers of LPAs (who consume logs). System developers should avoid modifying logs
as much as possible. The avoidable log modifications include rephrasing and adding redun-
dant information in the logs. On the other hand, LPA developers should write robust log
parsers to reduce the negative impact of log changes. In addition, more resources should
be allocated to maintain LPAs designed for debugging problems (from short-lived logs).

We also find that the observed logs during typical system execution cover less than 10%
of the logging statements. The logging statements may evolve differently to the logs at the
execution level. The developers of LPAs are likely not aware of such difference, leading to
unexpected LPA bugs and failures.

Due to the differences between log lines at the execution level and the logging state-
ments in the source code, developers may consider providing documentation of the logging
statements to the users of the logs, i.e., system operators and developers of the LPAs, to
support better usage of logs and to avoid potential problems in the LPAs.

Chapter 3 and 4 show that logs are a valuable and widely used source of data for
software development. Yet, the use of logs in software development are ad hoc and there
exists limited support for systematic approaches to leverage logs. In the next two chapters
(Chapter 5 and 6), we propose systematic log mining approaches that leverage logs to

support software development activities.

Part I11

Log Engineering Approaches to
Support Software Development

Activities

99

100

In Chapter 2, we find that current practices of software log mining are often ad hoc and
do not scale well. Chapter 3 and 4 show that logs are a valuable and widely used source
of data for software development. Yet, the use of logs in software development are ad hoc
and there exists limited support for systematic approaches to leverage logs. In this part of
the thesis (Chapter 5 and 6), we propose systematic log mining approaches that leverage
logs to support software development activities.

A platform software typically acts as a container of applications running on top of it.
Platform logs can be leveraged for all the different applications running on top of the plat-
form. Hadoop is an example of such software platforms, which support applications running
in a distributed environment [Whi09]. Big Data Analytics Applications (BDA Apps) are a new
category of software applications that analyze large scale data, which is typically too large
to fit in memory or even on one hard drive, in order to uncover actionable knowledge using
large scale parallel-processing infrastructures [FDCD12]. Such BDA Apps typically run on
top of big data analytic platforms, e.g., Hadoop. We focus on platform software and BDA

Apps in this part of the thesis, since such software produces and depends heavily on logs.

e Chapter 5 proposes an approach to use logging characteristics to assist in prioritiz-
ing code review and testing efforts. We empirically study the relationship between
logging characteristics and software defects. We define log-related product metrics,
such as the number of log lines in a file, and log-related process metrics such as the
number of changed log lines. Through a case study on four releases of Hadoop and
JBoss, we find that the correlations between our newly-defined log-related metrics
and post-release defects are as strong as their correlations with traditional process
metrics, such as the number of pre-release defects, which is known to be strongly
correlated with post-release defects. We also find that log-related metrics can comple-

ment traditional product and process metrics resulting in up to 40% improvement in

101

the explanatory power of defect proneness. Our results show that logging characteris-
tics provide strong indicators of defect-prone source code files. However, we note that
removing logs is not the answer to better code quality. Instead, our results show that
it might be the case that developers often relay their concerns about a piece of code
through logs. Hence, code quality improvement efforts (e.g., testing and inspection)
should focus more on the source code files with large numbers of logs or with high

log churn.

Chapter 6 proposes a lightweight log mining approach for uncovering differences be-
tween pseudo and large scale cloud deployments using the readily-available yet rarely
used execution logs from these platforms. Our approach abstracts the execution logs,
recovers the execution sequences, and compares the sequences between the pseudo
and cloud deployments. Through a case study on three representative Hadoop-based
BDA Apps, we show that our approach can rapidly direct the attention of BDA App
developers to the major differences between the two deployments. Knowledge of such
differences is essential in verifying BDA Apps when analyzing big data in the cloud.
Using injected deployment faults, we show that our approach not only significantly
reduces the deployment verification effort, but also provides very few false positives

when identifying deployment failures.

102

CHAPTER b

Prioritizing Code Review and Testing Efforts Using Logs and Their Churn

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 103

latform software plays an important role in the development of large scale applica-

tions. Such platforms provide functionality and abstraction on which applications

can be rapidly developed and easily deployed. Hadoop and JBoss are examples
of popular open source platform software. Such platform software generate logs to assist
operators in monitoring the applications that run on them. These logs capture the doubts,
concerns, and needs of developers and operators of platform software. We believe that such
logs can be used to better understand code quality. However, logging characteristics and
their relation to quality has never been explored. In this chapter, we sought to empirically
study this relation through a case study on four releases of Hadoop and JBoss.

Our findings show that files with logging statements have higher post-release defect
densities than those without logging statements in 7 out of 8 studied releases. Inspired by
prior studies on code quality, we defined log-related product metrics, such as the number
of log lines in a file, and log-related process metrics such as the number of changed log
lines. We find that the correlations between our log-related metrics and post-release defects
are as strong as their correlations with traditional process metrics, such as the number of
pre-release defects, which is known to be strongly correlated with post-release defects. We
also find that log-related metrics can complement traditional product and process metrics
resulting in an up to 40% improvement in explanatory power of defect proneness.

Our results show that logging characteristics provide strong indicators of defect-prone
source code files. However, we note that removing logs is not the answer to better code
quality. Instead, our results show that developers often relay their concerns about a piece of
code through logs. Hence, code quality improvement efforts (e.g., testing and inspection)
should focus more on the source code files with large amounts of logs or with large amounts

of log churn.

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 104

5.1 Introduction

Large platform software provides an infrastructure for a large number of applications to
run on. Hadoop and JBoss are examples of popular open source platform software. Such
software relies heavily on logs to monitor the execution of the applications running on top
of them. These logs are generated at run-time by logging statements in the source code.
Generating logs during execution plays an essential role in field debugging and support
activities. These logs are not only for the convenience of developers and operators, but
have already become part of legal requirements. For example, the Sarbanes-Oxley Act of
2002 [soa] stipulates that the execution of telecommunication and financial applications
must be logged. Although logs are widely used in practice, and their importance has been
well-identified in prior software engineering research [GWS06; YPZ12; SJA*11], logs have
not yet been fully leveraged by empirical software engineering researchers to study code
quality.

We believe that logs capture developers’ concerns and doubts about the code. Develop-
ers tend to embed more logging statements to track the run-time behaviour of complex and
critical points of code. For example, one developer commented on a bug report (HADOOP-
2490Y) of Hadoop, as follows: “..add some debug output ... so can get more info on why
TestScanner2 hangs on cluster startup.”

Logs also contain rich knowledge from the field. Operators of platform software often
need to track information that is relevant from an operational point of view. For example,
a user of Hadoop submitted a bug report (HADOOP-10342) complaining about the limited
amount of logging. In the description of the bug report, the user mentions, “Only IOExcep-
tion is catched and logged (in warn). Every Throwable should be logged in error”.

To meet the need for run-time information, developers and operators record note-

worthy system events, including domain-level and implementation-level events in the logs.

'https://issues.apache.org/jira/browse/HADOOP-2490 last verified January 2014.
2https://issues.apache.org/jira/browse/HADOOP-1034 last verified January 2014.

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 105

In many cases, logs are often used for fixing issues, since logs provide additional diagnostic
information. Therefore the inclusion of more logs in a source code file by a developer could
be an indicator that this particular piece of source code is more critical or more defect-
prone. Hence, there could be a direct link between logging characteristics and code quality.
However, except for individual experiences and observations, there are no empirical studies
that attempt to understand the relationship between logs and code quality. In Chapter 3
and 4, we studied the current practice of leveraging logs. In this chapter, we propose log
mining techniques to assist in prioritizing code review and testing efforts. We seek to study
the relationship between the characteristics of logs, such as log density and log churn, and
code quality, especially for large platform software. We use post-release defects as a mea-
surement of code quality because it is one of the most important and widely studied aspects
of code quality [Shil2]. In order to study this relationship, we perform a case study on four
releases of Hadoop and four releases of JBoss. In particular, we aim to answer the following

research questions:

RQ1: Are source code files with logging statements more defect-prone?

We find that source code files with logging statements have higher than average post-
release defect densities than those without logging statements in 7 out of 8 studied releases.
We also find positive correlations between our log-related metrics and post-release defects.
In 7 out of 8 releases, the largest correlations between log-related metrics and post-release
defects are at least as large as the correlation between post-release defects and pre-release
defects, which prior studies have shown to have the highest correlation to post-release
defects. The correlation between the average log churn (number of change log statements
in a commit) and post-release defects is the largest among our log-related metrics. Such
correlation provides support to our intuition about the tendency of developers to add more

logs in the source code files that they feel may be are more defect-prone than others.

RQ2: Can log-related metrics help in explaining post-release defects?

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 106

We find that the proposed log-related metrics provide up to a 40% improvement over
traditional product and process metrics in explaining post-release defects (i.e., the explana-

tory power).

This chapter is the first work to establish an empirical link between logs and defects.
We observe positive correlations between logging characteristics and post-release defects in
all studied releases. Therefore, practitioners should allocate more effort to source code files
with more logs or log churn.

However, such positive correlations do not imply that logs are harmful or that they
should be removed. For instance, prior research has shown that files with high churn are
more defect prone [NBZ06; NBO7]. Such studies do not imply that one should not change
such files. Instead, this study along with prior studies provides indicators to flag high-risk
files that should be carefully examined (tested and/or reviewed) prior to release in order to
avoid post-release defects.

The rest of this chapter is organized as follows: Section 5.2 presents a qualitative study
to motivate this chapter. Section 5.3 presents the background and related research for this
chapter. Section 5.4 presents our new log-related metrics. Section 5.5 presents the design
and data preparation steps for our case study. Section 5.6 presents the results of our case
study and details the answers to our research questions. Section 5.7 discusses the threats

to validity of our study. Finally, Section 5.8 concludes the chapter.

5.2 Motivating Study

In order to better understand how developers make use of logs, we perform a qualitative
study. We first collect all commits that have logging statement changes in Hadoop release
0.16.0 to release 0.19.0 and JBoss release 3.0 to release 4.2. We then select a 5% random sam-
ple (280 commits for Hadoop and 420 commits for JBoss) from all of the collected commits

with logging statement changes. Once we extract the commit messages from the sample

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 107

commits, we follow an iterative process similar to the one from Seaman et al. [SSRT08] to
identify the reasons that developers change the logging statements in the source code, until
we could not find any new reasons. We identify four reasons using this process and their

distributions are reported in Table 5.1. These four reasons are described below:

e Field debugging: Developers often use logs to diagnose run-time or field defects.
For example, the commit message of revision 954705 of Hadoop says: “Region Server
should never abort without an informative log message”. Examining the source code,
we observe that the Region Server would abort without any logs. In this revision, the
developer added logging statements to output the reason for aborting. Developers
also change logging statements when they need logs to diagnose pre-release defects.
For example, the commit message of revision 636972 of Hadoop says: “Improve the
log message; last night I saw an instance of this message: i.e. we asked to sleep 3 seconds

but we slept <30 seconds”.

e Change of a feature: Developers add and change logs when they change features.
For example, in revision 697068 of Hadoop, developer added a new “KILLED” status
for the job status of Hadoop jobs and adapted the logs for the new job status. Changing

logs due the change of a feature is the most common reason for log churn.

e Inaccurate logging level: Developers sometimes change logging levels because of an
inaccurate logging level. For example, developers of JBoss changed the logging level
at revision 29449 with the commit message “Resolves (JBAS-1571) Logging of cluster
rpc method exceptions at warn level is incorrect.”. The discussion of the issue report
“JBAS-1571" shows that the developers considered the logged exception as a normal

behaviour of the system and the logging level was changed from “warn” to “trace”.

e Logs that are not required: Developers often think that logs used for debugging

are redundant after the defect is fixed and they remove logs after using them for

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 108

Table 5.1: Distribution of log churns reasons

Hadoop | JBoss

Field debugging 32% | 16%

Change of feature 59% | 75%
Inaccurate logging level 0% 7%
Logs that are not required 9% 2%

debugging. For example, the commit message of revision 612025 of Hadoop says:

“Remove chatty debug logging from 2443 patch”.

This motivating study shows that developers change logs for many reasons, such as de-
bugging a feature in the field or when they are confident about a feature. Hence, we believe
that there is value in empirically studying the relationship between logging characteristics

and code quality.

5.3 Background and Related Work

We now describe prior research that is related to this chapter. We focus on prior work along

two dimensions: 1) log analysis and 2) software defect modeling.

5.3.1 Log Analysis

In the research area of computer systems, logs are extensively used to detect system anoma-
lies and performance issues. Xu et al. [XHF"09b] created features based on the constant
and variable parts of log messages and applied Principal Component Analysis (PCA) to
detect abnormal behaviours. Tan et al. introduced SALSA, an approach to automatically an-
alyze logs from distributed computing platforms for constructing and detecting anomalies
in state-machine views of the execution of a system across machines [TPK™08].

Yuan et al. [YZP"T11] proposed a tool named Log Enhancer, which automatically adds

more context to log lines. Beschastnikh et al. [BBS*11] designed an automated tool that

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 109

infers execution models from logs. The models can be used by developers to verify and di-
agnose bugs. Jiang et al. designed log analysis techniques to assist in identifying functional
anomalies and performance degradations during load tests [JHHFO8b; JHHF09]. Jiang et
al. [JHP"09] studied the characteristic of customer problem troubleshooting by using stor-
age system logs. They observed that customer problems with attached logs were resolved
sooner than those without logs.

A workshop named “Managing Large-Scale Systems via the Analysis of System Logs and
the Application of Machine Learning Techniques™ aims to address the analysis of system
logs to assist in managing large software systems.

The existing log analysis research demonstrates the wide use of logs in software devel-
opment and operation. However, in the aforementioned research, the researchers look at
the logs collected at run-time, whereas in our chapter we look at the logging code present
in the source code in order to establish an empirical link between logging characteristics
and code quality. Therefore, the wide usage of logs in software and the lack of sufficient
research motivates our study of the relationship between logging characteristics and code
quality in this chapter.

Recent work by Yuan et al. [YPZ12] study the logging characteristics in 4 open source
systems. They quantify the pervasiveness and the benefit of software logging. They also find
that developers modify logs because they often cannot get the correct log message on the
first attempt. Our previous research [SJAT11; SJAT13] studies the evolution of logs from
both static logging statements and log lines outputted during run-time. We find that logs
are often modified by developers without considering the needs of operators. The findings
from these previous studies motivates this work. However, previous studies only empirically
study the characteristics of logs, but do not establish an empirical link with code quality.
This chapter focuses on empirically studying the relationship of such logging characteristics

and code quality.

®http://sosp2011.gsd.inesc-id.pt/workshops/slaml last verified January 2014.

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 110

5.3.2 Software defect modeling

Software engineering researchers have built models to understand the rationale behind soft-
ware defects. Practitioners use such models to improve their processes and to improve the
quality of their software systems. Fenton et al. [FN99] provide a critical review of software
defect prediction models. They recommend holistic models for software defect prediction,
using Bayesian belief networks. Hall et al. [HBB"12] recently conduct a systematic review
on defect prediction models. They find that the methodology used to build models seems to
be influential to predictive performance. Prior research typically builds models using two

families of software metrics:
e Product metrics: Product metrics are typically calculated from source code.

— Traditional product metrics: Early work by Ohlsson and Alberg [OA96] build
defect prediction models using complexity metrics. Nagappan et al. [NBZ06]
also performed case studies to understand the relationship between source code
complexity and software defects. Several studies found that complexity metrics
were correlated to software defects although no single set of metrics can explain

defects for all projects [NBZ06].

— Code dependency metrics: Prior research investigates the relationship between
defects and code dependencies. Zimmermann and Nagappan [ZNO08] find code
complexity metrics have slightly higher correlation to defects than dependency
metrics. However, the dependency metrics perform better than complexity met-
rics in predicting defects. Nguyen et al. [NAH10] replicate the prior study and
find that a small subset of dependency metrics have a large impact on post-

release failure, while other dependency metrics have a very limited impact.

— Topic metrics: A few recent studies have tried to establish a link between topics

and defects. Liu et al. [LPFT09] proposed to model class cohesions by latent

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 111

topics. They propose a new metric named Maximal Weighted Entropy (MWE)
to measure the conceptual aspects of class cohesion. Nguyen et al. [NNP11]
apply Latent Dirichlet Allocation (LDA) [BNJO3] to the subject systems using
K=5 topics, and for each source code entity they multiply the topic memberships
by the entity’s LOC. They provide evidence that topic-related metrics can assist in
explaining defects. Instead of focusing on the cohesiveness of topics in an entity,
Chen et al. [CTNH12] proposed metrics that focus on the defect-prone topics in a
code entity. They find that some topics are much more defect-prone than others
and the more defect-prone topics a code entity has, the higher are the chances

that it has defects.

e Process metrics: Process metrics leverage historical project knowledge. Examples of

process metrics are prior defects and prior commits (code churn).

— Traditional process metrics: Several studies have shown that process metrics, such
as prior commits and prior defects, better explain software defects than product
metrics (i.e., process metrics provide better statistical explanatory power) [MPS08;
NBO5; NBO7; BH10]. Hassan [Has09] used the complexity of source code changes
to explain defects. He found that the number of prior defects was a better metric
to explain software defects than prior changes. A recent study by Rahman and
Devanbu [RD13] analyzed the applicability and efficacy of process and product
metrics from several different perspectives. They find that process metrics are

generally more useful than product metrics.

— Social structure metrics: Studies haven been conducted to investigate the rela-
tionship between social structure and software defects. Wolf et al. [WSDNO09]
carry out a case study to predict build failures by inter-developer communica-
tion. Pingzger et al. [PNMO08] and Meneely et al. [MWSOO08] use social network

metrics to predict software defects. Bacchelli et al. [BDL10] investigate the use

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 112

of code popularity metrics obtained from email communication among develop-
ers for defect prediction. Recent work by Bettenburg et al. [BH13; BH10] use
a variety of measures of social information to study relationships between these

measures and code quality.

— Ownership metrics: There is previous defect modeling research focusing on the
ownership and developers’ expertise of source code. Early work by Mockus
and Weiss [MWOO] define a metric to measure developers’ experience on a par-
ticular modification request. They use this metric to predict defects. Bird et
al. [BGMD10] focus on the low-expertise developers. They find that contri-
butions from low-expertise developers play a big role in the defect prediction
model. Rahman et al. [RD11] find that stronger ownership by a single author is
associated with implicated code. Recent work by Posnett et al. [PDDF13] pro-
pose using module activity focus and developers’ attention focus to measure code
ownership and developers’ expertise. They find that more focused developers are
less likely to introduce defects than less focused developers, and files that receive
narrowly focused activity are more likely to contain defects than files that receive

widely focused activities.

Due to the limitation of version control systems, most research on defect modeling
extract the process metrics on a code-commit level. Mylyn* is a tool that can record
developers’ activity in the IDE. Using Mylyn enables researchers to investigate finer-
level process metrics. For example, Zhang et al. [ZKZH12] leverage data generated

by Mylyn to investigate the effect of file editing patterns on code quality.

Studies show that most product metrics are highly correlated to each other, as well as
process metrics [SJIT10]. Among all the product metrics, lines of code has typically been

shown to be the best metric to explain post-release defects [HH10]. On the other hand,

*http://wiki.eclipse.org/Mylyn last verified January 2014.

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 113

prior commits and pre-release defects are the best metrics among process metrics to ex-
plain post-release defects [GKMSO0O0]. Prior research rarely considers comments. However,
a relatively recent empirical study by Ibrahim et al. [IBAH12] studied the relationship be-
tween code comments and code quality. They find that a code change in which a function
and its comment are co-updated inconsistently (i.e., they are not co-updated when they
have been frequently co-updated in the past, or vice versa), is a risky change. Hence they
have demostrated an empirical link between commenting characteristics and code quality.
Similarly, the goal of this chapter is to investigate and establish an empirical link between

logging characteristics and code quality (quantified through post-release defects).

5.4 Log-related Metrics

Prior research has shown that product metrics (like lines of code) and process metrics (like
the number of prior commits) are good indicators of code quality. Product metrics are
obtained from a single snapshot of the system, which describes the static status of the
system. On the other hand, process metrics require past information about the system,
capturing the development history of the system. Inspired by prior research, we define

log-related metrics that cover both these aspects, namely product and process.

5.4.1 Log-related product metrics
We propose two log-related product metrics, which we explain below.

1. Log density: We calculate the number of logging statements in each file. We consider
each invocation of a logging library method as a logging statement. For example, with
Log4j [loga], a “LOG” method invocation is considered a logging statement. To factor

out the influence of code size, we calculate the log density (LOGD) of a file as:

of logging statements in the file

LOGD = 100

(5.1)

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 114

where LOC is the number of total lines of code in a source code file.

2. Average logging level: Logging level, such as “INFO” and “DEBUG”, are used to
filter logs based on their purposes. Intuitively, high-level logs are for system operators
and lower-level logs are for development purposes [Gil]. We transform the logging
level of each logging statement into a quantitative measurement. We consider all
log levels including “TRACE”, “DEBUG”, “INFO”, “WARN”, “ERROR” and “FATAL”. We
consider that the lowest logging level is 1 and the value of each higher logging level
increases by 1. For example, the lowest logging level in Log4j is “TRACE”, therefore we
consider the value of the “TRACE” level as 1. One level above “TRACE” is “DEBUG”,
so the value of a “DEBUG” level logging statement is 2. We calculate the average

logging-level (LEVELD) of each source code file as

n
> logging level value;

LEVELD = =2 (5.2)
n

where n is the total number of logging statements in the source code file and logging level value;
is the logging level value of the i*" logging statement in the source code file. The
higher-level logs are typically used by operators and lower-level logs are used by de-

velopers and testers. Hence the log level acts as an indicator of the users of the logs.

Our intuition behind this metric is that some log levels are better indicators of defects.

5.4.2 Log-related process metrics

We propose two log-related process metrics, which we explain below.

1. Average number of log lines added or deleted in a commit: We calculate the

average amount of added and deleted logging statements in each file prior to release

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 115

(LOGADD and LOGDEL).

TPC
> # added logging statements;
_ =1
LOGADD = TPC (5.3)
TPC
> # deleted logging statements;
LOGDEL = =1 5.
oG e (5.4)

where T'PC is the total number of prior commits to a file. Similar to log-related
product metrics that were normalized, we normalize the log-related process metrics
using TPC. # added logging statements_i or # deleted loggingstatements_i is the
number of added or deleted logging statements in revision i. The intuition behind
this metric is that frequently updating logging statements may be due to extensive

debugging or implementation changes, which both may correlate to software defects.

2. Frequency of defect-fixing code changes with log churn: We calculate the number
of defect-fixing commits in which there was log churn. We calculated this metric

(FCOQ) as:

defect fixing commits N log churning commits)

N(
FCOC = ThC

(5.5)

where N(defect fixing commits N log changing commits) is the number of defect-
fixing commits in which there was log churn. The intuition behind this metric is
that developers may not be 100% confident of their fix. Therefore, they may add
some new logs or update old logs. Adding new logging statements, deleting existing
logging statements, and adding new information to existing logging statements are

all counted as log churn in this metric.

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 116

5.5 Case Study Setup

To study the relationship between logging characteristics and code quality, we conduct case

studies on two large and widely used open source platform software:

e Hadoop [hada] is a large distributed data processing platform that implements the
MapReduce [DGO08] data-processing paradigm. We use 4 releases (0.16.0 to 0.19.0)

of Hadoop in our case study.

e JBoss Application Server [jboa] (referred to as “JBoss” in the rest of this chapter) is
one of the most popular Java EE application servers. We use 4 releases (3.0 to 4.2) of

JBoss in our case study.

The goal of our study is to examine the relationship between our proposed log-related
metrics and post-release defects. Previous studies of software defects [SJIT10; BH10] typ-
ically use an Eclipse data set provided by Zimmermann et al. [ZPZ07]. We do not use this
data set because we are interested in platform software, where logging is more prominent.
Eclipse does not have substantial logging code, therefore, Eclipse is not an ideal subject sys-
tem for our study. Hadoop and JBoss are two of the largest and most widely used platform
software. Both generate large numbers of logs during their execution, and tools have been
developed to monitor the status of both systems using their extensive logs [RK10; jbob].
We do not use EA and PostgreSQL from Chapter 4 because we focus on platform software.
To avoid the noise from the logging statements in the unit testing code in both projects, we
exclude all the unit testing folders from our analysis. Table 5.2 gives an overview of the
subject systems.

Figure 5.1 shows a general overview of our approach. (A) We mine the SVN repository
of each subject system using a tool called J-REX [SJAHO09; SAH11; Shal0] to produce high-
level source code change information. (B) We then identify the log-related source code

changes from the output of J-REX. (C) We calculate our proposed log-related metrics and

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn

117

Table 5.2: Overview of subject systems.

Statistical
analysis

Release | # changed files | # defects
Hadoop | 0.16.0 1,211 98
0.17.0 1,899 180
0.18.0 3,084 218
0.19.0 3,579 175
JBoss 3.0 9,050 1,166
3.2 25,289 1,108
4.0 36,473 1,233
4.2 126,127 3,578
Extracting o Extr_apting
Version ; :) Identifying .| traditional "
S Tty st crange s e oo | e oo g Lo
(A) (B) (€)

Figure 5.1: Overview of our case study approach.

()

Study
- Results

traditional metrics. (D) Finally, we use statistical tools, such as R [IG96], to perform exper-

iments on the data to answer our research questions. In the rest of this section we describe

the first two steps in more detail.

5.5.1 Extracting high-level source change information

Similar to C-REX [Has05], J-REX [SJAH09; SAH11; Shal0] is used to study the evolution of

the source code of Java software systems. For each subject system, we use J-REX to extract

high-level source change information from their SVN repository.

The approach used by J-REX is broken down into three phases:

1. Extraction: J-REX extracts source code snapshots for each Java file revision from the

SVN repository.

extracted file in XML.

Parsing: Using the Eclipse JDT parser, J-REX outputs an abstract syntax tree for each

Differencing: J-REX compares the XML documents of consecutive file revisions to

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 118

determine changed code units and generates evolutionary change data. The results

are stored in an XML document. There is one XML document for each Java file.

As common practice in the software engineering research community, J-REX uses defect-
fixing changes [Has09; CMRHO09; NBZ06] in each source code file to approximate the num-
ber of defects in them. The approximation is widely adopted because (1) only fixed defects
can be mapped to specific source code files, (2) some reported defects are not real, (3) not
all defects have been reported, and (4) there are duplicate issue reports.

To determine the defect-fixing changes, J-REX uses a heuristic proposed by Mockus et
al. [MVO0O0] on all commit messages. For example, a commit message containing the word
“fix” is considered a message from a defect-fixing revision. The heuristic can lead to false
positives, however, an evaluation of the J-REX heuristics shows that these heuristics identify

defect-fixing changes with high accuracy [BKZ11].

5.5.2 Identifying the Logging Statements

Software projects typically leverage logging libraries to generate logs. One of the most
widely used logging libraries is Log4j [loga]. We manually browse a sample of source code
from each project and identify that both subject systems use Log4j as their logging library.
Knowing the logging library of each subject system, we analyze the output of J-REX
to identify the logging source code fragments and changes. Typically, logging source code
contains method invocations that call the logging library. For example, in Hadoop and
JBoss, a method invocation by “LOG” with a method name as one of the logging levels is

considered a logging statement. We count every such invocation as a logging statement.

5.6 Case Study Results

We now present the results of our case study. For each research question, we discuss the mo-

tivation for the question, the approach used to address the question and our experimental

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 119

results. For our case study, we study the code quality at the file level.

5.6.1 Preliminary Analysis

We start with a preliminary analysis of the log-related metrics presented in Section 5.5 to
illustrate the general properties of the collected metrics.

In the preliminary analysis we calculate seven aggregated metrics for each release of
both subject systems: total lines of code, total code churn (total added, deleted and mod-
ified lines of code), total number of logging statements, total log churn (total added and
deleted logging statements), percentage of source code files with logs, percentage of source
code files with pre-release defects, and percentage of source code files with post-release
defects. Table 5.3 shows that around 18% to 28% of the source code files contain logging
statements. Since less than 30% of the source code files have logs, we calculate the skew
and Kurtosis values for our log-related metrics. We observe that our log-related metrics
have positive skew (i.e., all the metric values are on the low scale) and large Kurtosis values
(i.e., the curve is too tall). To alleviate the bias caused by these high skew and Kurtosis val-
ues, we follow a typical approach used in previous research [SJIT10]: to log transform all
of the metrics. From this point on, whenever we mention a metric, we actually are referring

to its log transformed value.

5.6.2 Results

RQ1. Are source code files with logging statements more defect-prone?
Motivation

Our qualitative study in Section 5.2 shows that software developers often add or modify
logs to diagnose and fix software defects. We first explore the data to study whether source

code files with logging statements are more likely to be defect-prone.

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 120

Table 5.3: Lines of code, code churn, amounts of logging statements, log churns, percentage
of files with logging, percentage of files with pre-release defects, and percentage
of files with post-release defects over the releases of Hadoop and JBoss.

Hadoop JBoss
0.16.0 0.17.0 0.18.0 0.19.0 3.0 3.2 4.0 4.2
lines of code 133K 108K 119K 169K | 321K 351K 570K 552K
code churn 7k 10k 9k 12k | 489k 260k 346k 170K
logging 563 881 1,278 1,678 | 2,438 3,716 5,605 10,379

statements
log churn 601 2,136 2272 1,579 | 6,233 5,357 5,966 18,614
percentage of
files with 18% 26% 25% 28% | 27% 23% 24% 23%
logging
percentage of
files with pre- 16% 26% 27% 42% | 50% 34% 27% 31%
release defects
percentage of
files with post- 34% 27% 46% 29% | 45% 34% 33% 26%
release defects

Approach

First, we calculate the post-release defect densities of each source code file in each
of the studied releases. We compare the average defect density of source code files with
and without logging statements. Then, we perform independent two-sample unpaired T-
tests to determine whether the average defect-densities for source code files with logs are
statistically greater than the average defect-densities for source code files without logs.
Finally, we calculate the Spearman correlation between our log-related metrics and post-
release defects to determine if our metrics lead to similar prioritization (i.e., similar order)
with source code files with more defects having higher metric values.
Results and discussion

We find that source code files with logging statements are more defect-prone. Ta-

ble 5.4 shows the average post-release defect densities of source code files with and without

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn =~ 121

Table 5.4: Average defect densities of the source code files with and without logging state-
ments in the studied releases. Largest defect densities are shown in bold. The
p-value for significance test is 0.05.

Hadoop JBoss

0.16.0 0.17.0 0.18.0 0.19.0 3.0 3.2 4.0 4.2

With 0.116 0.142 0.249 0.140 0.172 0.145 0.101 0.092
logging

Without 0.095 0.083 0.250 0.124 | 0.122 0.101 0.075 0.090
logging

Statistically yes yes no no yes yes yes no
significant

p-value | <0.001 <0.001 0.51 0.16 | <0.001 <0.001 <0.001 0.36

logging statements. The results show that in 7 out of the 8 studied releases, source code
files with logging statements have higher average post-release defect densities than source
code files without logging statements.

We use independent two-sample unpaired one-tailed T-tests to determine whether the
average defect density of source code files with logs was statistically greater than those
without logs. Our null hypothesis assumes that the average post-release defect densities of
source code files with and without logging statements are similar. Our alternate hypothesis
was that the average defect density of source code files with logs was statistically greater
than those without logs. For 5 of the 7 releases where source code files with logs have
higher defect density, the p-values are smaller than 0.05 (see Table 5.4). We reject the null
hypothesis and conclude that in these 5 releases, the average defect density of source code
files with logs are greater than those without logs.

We examine the release 0.18.0 of Hadoop, which is the exception because the average
defect densities of source code files with and without logs are similar. We found that there
is a structural change in Hadoop before release 0.18.0 and that a large number of defects
appear after this release (largest percentage of defect-prone source code files in Hadoop as
shown in Table 5.3). This might be the reason that in release 0.18.0 of Hadoop, the software

source code files with logging statements are not more defect-prone.

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn =~ 122

Log-related metrics have positive correlation with post-release defects. Table 5.5
presents the Spearman correlations between our log-related metrics and post-release de-
fects. We find that, in 7 out of 8 releases, the largest correlations between log-related met-
rics and post-release defects are similar (3 releases with a +/— 0.03 value) or higher than
the correlations between pre-release defects and post-release defects. Since the number of
pre-release defects is known to have a positive correlation with post-release defects, this ob-
servation supports our intuition of studying the relationship between logging characteristics
and code quality.

For the only exception (release 3.0 of JBoss), we examine the results more closely and
find that the correlation between log-related metrics and post-release defects in this version
of JBoss is not very different from the other releases of JBoss. However, the correlation
between pre-release defects and post-release defects in this version of JBoss is much higher
compared to the other releases of JBoss. On further analysis of the data, we find that in
release 3.0 of JBoss, up to 50% more files (as compared to other releases) had pre-release
defects. Therefore, we think that this might be the reason that the correlation between pre-
release defect and post-release defects in release 3.0 of JBoss is higher than the correlation
between post-release defects and our log-related metrics.

Density of logging statements added has higher correlation with post-release de-
fects than density of logging statements deleted. We find that the average logging state-
ments added in a commit has the largest correlation with post-release defects in 5 out of 8
releases, while the correlation between the average deleted logging statements in a commit
and post-release defects is much lower than the other log-related metrics (see Table 5.5).
We count the number of added and deleted logging statements in source code files with
and without defects separately. We find that in Hadoop, the total lines of code ratio be-
tween defect-prone source code files and non defect-prone source code files is 1.03; while
the number of logging statements added in defect-prone source code files (2,309) is around

three times the number of logging statements added (736) in non defect-prone source code

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 123

Table 5.5: Spearman correlation between log-related metrics and post-release defects.
Largest number in each release is shown in bold.

Hadoop Releases
0.16.0 0.17.0 0.18.0 0.19.0
LOGD 0.36 026 0.24 0.24
LEVELD 0.36 0.25 0.22 0.23
LOGADD 0.42 0.27 0.28 0.24
LOGDEL 0.23 0.09 0.21 0.10
FCOC 0.25 0.30 0.18 0.17
PRE 0.15 0.27 0.25 0.12

JBoss Releases
3.0 3.2 40 4.2
LOGD | 0.26 0.26 0.21 0.13
LEVELD | 0.26 0.27 0.22 0.13
LOGADD | 0.34 0.29 0.59 0.19
LOGDEL | 0.34 0.18 0.42 0.13
FCOC | 0.23 0.20 0.20 0.14
PRE | 0.40 0.22 0.21 0.22

files. This shows that there exists a relation between logs and defect-prone source code
files. However, the number of logging statements deleted in defect-prone source code files
(268) is only around two times the number of logging statements deleted in non defect-
prone source code files (124). Therefore, even though developers delete more log lines in
defect-prone source code files, the ratio to non defect-prone source code files is much lower
than the ratio to log lines added. Hence, this shows that the developers may delete logs
when they feel confident with their source code files. Concrete examples of such logging
behaviour have been presented in Section 5.2.

Summary: We find that in 7 out of 8 studied releases, source code files with logging state-
ments have higher average post-release defect densities than those without logging state-
ments. In 5 of these 7 releases, the differences between the average defect density in the
source code files with and without logs are statistically significant. The correlations be-

tween log-related metrics and post-release defects are similar to the correlations between

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 124

post-release defects and pre-release defects (one of the highest correlated metrics to post-
release defects). Among the log-related metrics, the average logging statements added in a

commit have the highest correlation with post-release defects.

Source code files with logging statements tend to be more defect-prone.

RQ2. Can log-related metrics help in explaining post-release defects?
Motivation

In the previous research question, we showed the correlation between logging charac-
teristics and post-release defects. However, there is a chance that such correlations may
be due to other factors, such as lines of code being correlated to both the logging charac-
teristics and post-release defects. To further understand the relationship between logging
characteristics and post-release defects, we control for factors that are known to be the best
explainers of post-release defects, i.e., lines of code, pre-release defects, and code churn. In
particular, we would like to find out whether we can complement the ability of traditional
software metrics in explaining post-release defects by using logging characteristics (i.e., our
proposed log-related product and process metrics).
Approach

We use logistic regression models to study the explanatory power of our log-related
metrics on post-release defects. However, previous studies show that traditional metrics,
such as lines of code (LOC), code churn or the total number of prior commits (TPC), and
the number of prior defects (PRE), are effective in explaining post-release software de-
fects [NBZ06; GKMSO00]. Therefore, we included these metrics as well in the logistic re-
gression models. Note that many other product and process metrics are highly correlated
with each other [SJIT10]. To avoid the collinearity between TPC and PRE, we run PCA on

TPC and PRE and use the first component as a new metric, which we call TPCPRE:

TPCPRE = PCA(TPC, PRE) tirstcomponent (5.6)

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 125

Table 5.6: Spearman correlation between the two log-related product metrics: log density
(LOGD) and average logging level (LEVELD), and the three log-related process
metrics: average logging statements added in a commit (LOGADD), average log-
ging statements deleted in a commit (LOGDEL), and frequency of defect-fixing
code changes with log churn (FCOC).

Hadoop JBoss
0.16.0 0.17.0 0.18.0 0.19.0 3.0 3.2 4.0 4.2
LOGD and LEVELD 0.74 0.62 0.41 0.64 | 0.58 0.16 0.19 0.26
LOGADD and FCOC 0.49 0.46 0.69 0.47 | 0.68 0.58 0.59 0.56
LOGDEL and FCOC 0.25 0.36 0.48 0.18 | 0.48 0.43 0.43 0.36
LOGADD and LOGDEL 0.56 0.50 0.59 0.55] 0.59 0.52 0.54 0.55

Before building the logistic regression models, we study the Spearman correlation be-
tween the two log-related product metrics and the three log-related process metrics. From
the results in Table 5.6, we find that in some releases, the correlations between the two
log-related product metrics and between the three log-related process logging metrics are
high.

To address the collinearity as noted in Table 5.6, we derive two new metrics: a log-
related product metric (PRODUCT) and a log-related process metric (PROCESS), to capture
the product and process aspects of logging respectively. To compute the two new metrics,
we ran Principal Component Analysis (PCA) [JW91] once on the log-related product met-
rics (i.e., log density and average logging level), and once on the log-related process metrics
(average logging statements added in a commit and frequency of defect-fixing code changes
with log churn) [HarO1]. Since the previous section showed that the average deleted log-
ging statements (LOGDEL) has a rather low correlation with post-release defects (see Ta-
ble 5.5), we decided not to include LOGDEL in the rest of our analysis and models. From

each PCA run, we use the first principal component as our new metric.

PRODUCT = PCA(LOGD, LEV ELD) irstcomponent (5.7)

PROCESS = PCA(LOGADD, FCOQ) tirstcomponent (5.8)

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 126

We used the two combined metrics (PRODUCT and PROCESS) in the rest of the chapter, so
that we can build the same models across releases without worrying about the impact of
collinearity on our results.

We determine whether the log-related metrics can complement traditional product and
process based metrics in providing additional explanatory power. The overview of the mod-
els is shown in Figure 5.2. We start with three baseline models that use the best-performing

traditional metrics as independent variables.

e Base(LOC): The first base model is built using lines of code as an independent variable

to measure the explanatory power of traditional product metrics.

e Base(TPCPRE): The second base model is built using a combination of pre-release
defects and prior changes as independent variables to measure the explanatory power

of traditional process metrics.

e Base(LOC+TPCPRE): The third base model is built using lines of code and the com-
bination of pre-release defects and prior changes as independent variables to measure

the explanatory power of both traditional product and process metrics.

We then build subsequent models in which we add our log-related metrics as independent

variables.

e Base(LOC)+PRODUCT: We add our log-related product metric (PRODUCT) to the
base model of product metrics to examine the improvement in explanatory power

due to log-related product metrics.

e Base(TPCPRE)+PROCESS: We add our log-related process metric (PROCESS) to the
base model of process metrics to examine the improvement in explanatory power due

to log-related process metrics.

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn

127

[Base(LoC)

| Base(TPCPRE)

| —— - | PRODUCT —>| Base(LOC)+PRODUCT

| — + | ProcESs |—> [Base(TPCPRE)+PROCESS

/,+ PRODUCT |——> | Base(LOC+TPCPRE)+PROCESS |

.

| Base(LOC+TPCPRE) |->+[PRODUCT]+ [PROCESS]->

\+ PROCESS |—>

Base(LOC+TPCPRE)
+PROCDUCT+PROCESS

Base(LOC+TPCPRE)
+PROCDUCT

/

Figure 5.2: Overview of the models built to answer RQ2. The results are shown in Ta-
ble 5.7, 5.8 and 5.9.

e Base(LOC+TPCPRE)+PRODUCT: We add our log-related product metric (PROD-

UCT) to the base model Base(LOC+TPCPRE) to examine the improvement in ex-

planatory power due to log-related product metrics.

e Base(LOC+TPCPRE)+PROCESS: We add our log-related process metrics (PROCESS)

to the base model Base(LOC+TPCPRE) to examine the improvement in explanatory

power due to log-related process metrics.

e Base(LOC+TPCPRE)+PRODUCT+PROCESS: Finally, we add both our log-related

product metric (PRODUCT) and our log-related product metric (PROCESS) into the

base model Base(LOC+TPCPRE) to examine the improvement in explanatory power

due to both log-related metrics.

For each model, we calculate the deviance explained by the models to measure their

explanatory power. A higher percentage of deviance explained generally indicates a better

model fit and a higher explanatory power for the independent variables.

To understand the relationship between logging characteristics and post-release defects,

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 128

we need to understand the effects of the metrics in the model. We follow a similar approach
used in prior research [SMK'11; Moc10]. To quantify this effect, we set all of the metrics
in the model to their mean value and record the predicted probabilities. Then, to measure
the effect of every log metric, we keep all of the metrics at their mean value, except for the
metric whose effect we wish to measure. We increase the value of that metric by 10% over
the mean value and re-calculate the predicted probability of the dependent variable. We
then calculate the change in probability caused by increasing the metric by 10%. The effect
of a metric can be positive or negative. A positive effect means that a higher value of the
factor increases the likelihood of the dependent variable, whereas a negative effect means
that a higher value of the factor decreases the likelihood of the dependent variable. This
approach permits us to study metrics that are of different scales, in contrast to using odds
ratios analysis, which is commonly used in prior research [SJIT10].

We would like to point out that although logistic regression has been used to build
accurate models for defect prediction, our purpose for using the regression model in this
chapter is not for predicting post-release defects. Our purpose is to study the explanatory
power of log-related metrics and explore its empirical relationship with post-release defects.
Results and discussion:

Log-related metrics complement traditional metrics in explaining post-release de-
fects. Table 5.7 shows the results of using lines of code (LOC) as the base model. We
find that the log-related product metric (PRODUCT) provides statistically significant im-
provement in 7 out of the 8 studied releases. The log-related product metric (PRODUCT)
provides up to a 43% improvement in the explanatory power over the Base (LOC) model.

Table 5.8 shows the results of using process metrics (TPCPRE) as the base model. In 5
out of 8 models, the log-related process metric (PROCESS) provides statistically significant
(p < 0.05) improvement. In particular, release 0.16.0 of Hadoop has the largest improve-
ment (360%) over the base model.

Table 5.9 shows the results of using both product and process metrics in the base models.

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 129

Table 5.7: Deviance explained (%) improvement for product software metrics by logistic
regression models.

Hadoop Releases
0.16.0 0.17.0 0.18.0 0.19.0
Base(LOC) 14.37 12.74 3.23 8.14
Base+PRODUCT | 15.85(+10%)* 12.76 (+0%) 4.62(+43%)** 9.7(19%)***

JBoss Releases
3.0 3.2 4.0 4.2
Base(LOC) 5.26 5.67 4.49 2.28
Base+PRODUCT | 6.25(4+19%) *** 6.41(+13%)*** 4.93(+10%)*** 2.56(4+12%)***
*** p<0.001, ** p<0.01, * p<0.05, ¢ p <0.1

In all studied releases, except for release 0.17.0 of Hadoop, at least one log-related metric is
statistically significant in enhancing the base model (in bold font). The log-related metrics
provide up to a 40% in the explanatory power of the traditional metrics.

Release 0.17.0 of Hadoop is the release where neither product nor process log-related
metrics are significant. In that release, we note that the number of source code files with
logs increased from 18% to 26% (see Table 5.3). Some logs may be added into defect-free
source code files when there is such a large increase in logs. We performed an indepen-
dent two-sample unpaired T-test to determine whether the average log densities of source
code files with post-release defects was statistically different to the average log densities
of source code files without post-release defects. The p-value of the test is 0.22. Hence
there is no statistical evidence to show that the log densities of defect-prone and defect-free
source code files differ in release 0.17.0 of Hadoop. We think this may be the reason that
log-released product metrics do not have significant explanation power in Hadoop release
0.17.0.

Log-related metrics have a positive effect on the likelihood of post-release defects.
In Table 5.10 we show the effect of the PRODUCT and PROCESS metrics on post-release de-
fects. We measure the effect by increasing the value of a metric by 10% from its mean value,

while keeping all other metrics at their mean value in a model. We only discuss the effect of

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 130

Table 5.8: Deviance explained (%) improvement for process software metrics by logistic
regression models.

Hadoop Release
0.16.0 0.17.0 0.18.0 0.19.0
Base(TPCPRE) | 2.49 8.47 4.53 2.44

Base+PROCESS | 11.47(+360%)*** 8.55 (+1%) 5.09 (+12%) o 3.69(+51%)***

JBoss Release
3.0 3.2 4.0 4.2
Base(TPCPRE) 10.38 3.75 4.56 2.37
Base+PROCESS | 10.55(+2%) ¢ 4.71(+26%)*** 4.83(+6%)*** 2.73(+15%)***
**% p<0.001, ** p<0.01, * p<0.05, ¢ p <0.1

Table 5.9: Deviance explained (%) improvement using both product and process software
metrics by logistic regression models. The values are shown in bold if the model
“Base+PRDUCT+PROCESS” has at least one log metric statistically significantly.

Hadoop Release
0.16.0 0.17.0 0.18.0 0.19.0
Base(LOC+TPCPRE) | 14.69 13.34 5.3 8.32
Base+PRODUCT 16.56(+13%)** 13.34 (+0%) 6.21 (+17%)* 9.84(+18%)***
Base+PROCESS 19.17(+30%)** 13.4 (+0%) 5.72 (+8%) 8.85(+6%)*
Base+PRODUCT 20.5(+40%) 13.42 (+1%) 6.36 (+20%) 9.98(+20%)
+PROCESS

JBoss Release
3.0 3.2 4.0 4.2
Base(LOC+TPCPRE) | 12.09 6.46 6.45 3.22
Base+PRODUCT 12.79(+6%)*** 6.98 (+8%)*** 6.69 (+4%)** 3.34(+4%)*
Base+PROCESS 12.09(+0%) 6.94 (+8%)*** 6.51 (+1%)* 3.41(+6%)**
Base+PRODUCT 12.93(+7%) 7.23 (+12%) 6.73 (+4%) 3.47(+8%)
+PROCESS

sk p<0.001’ sk p<0.01, * p<0_05’ O p<0.1

log-related metrics that are statistically significant in model Base (LOC+TPCPRE)+PRODUCT
+PROCESS (shown in Table 5.9). The effects of the log-related product metric (PRODUCT)
are positive. Since the log-related product metric (PRODUCT) is the combination of log
density and average logging level, this result implies that more logging statements and/or a

higher logging level leads to a higher probability of post-release defects. Table 5.10 shows

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 131

Table 5.10: Effect of log-related metrics on post-release defects. Effect is measured by set-
ting a metric to 110% of its mean value, while the other metrics are kept at their
mean values. The bold font indicates that the metric is statistically significant
in the Base(LOC+TPCPRE) +PRODUCT +PROCESS model.

Hadoop Release

0.16.0 0.17.0 0.18.0 0.19.0
PRODUCT 2.2% -0.1% 1.9% 3.6%
PROCESS 2.5% 0% 0.3% 0.3%

JBoss Release

3.0 3.2 4.0 4.2
PRODUCT 1.8% 0.8% 0.7% 4.7%
PROCESS -0.5% 0.5% 0.1% 2.5%

that in all 4 releases where the log-related process metric (PROCESS) is statistically signif-
icant, the log-related process metric (PROCESS) has a positive effect on defect-proneness.
The result shows that in some cases, developers change logs to monitor components that
may be defect-prone. For example, in revision 226841 of Hadoop, developers enhanced the
logging statement that tracks nodes in the machine cluster to determine the rationale for
field failures of nodes in their cluster. Therefore, in some source code files, the more logs
added and/or more defect fixes with log churn, the higher the probability that the source
code file is defect-prone.

Summary: Log-related metrics complement traditional product and process metrics in ex-
plaining post-release defects. In particular, log-related product metrics contribute to an in-
crease in explanatory power in 7 out of 8 studied releases, and log-related process metrics
contribute to an increase in explanatory power for 5 out of 8 studied releases. We also find

that increases in either log-related product or process metrics increases defect-proneness.

Our results show that there exists a strong relationship between logging char-

acteristics and code quality.

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn =~ 132

5.7 Threats to Validity

This section discusses the threats to the validity of our study.
External Validity

Our study is performed on JBoss and Hadoop. Although both subject systems have years
of history and large user bases, more case studies on other platform software in other
domains are needed to determine whether our findings can be generalized. There are other
types of software systems that make use of logs only while the system is under development.
The logs are removed when the system is released. Even though such systems do not benefit
from the field feedback through logs, logging is still a major tool to diagnose and fix defects.
Our findings may generalize to such software systems. However, future studies are needed
on the logs of such types of systems.

Internal Validity

Our study is based on the version control repositories of the subject systems. The quality
of the data contained in the repositories can impact the internal validity of our study.

Our analysis of the link between logs and defects cannot claim causal effects, as we are
investigating correlations, rather than conducting impact studies. The explanative power of
log-related metrics on post-release defects does not indicate that logs cause defects. Instead,
it indicates the possibility of a relation that should be studied in depth through user studies.

The deviance explained in some of the models may appear low, however this is expected
and should not impact the conclusions. One reason for such low deviance is that in a few
releases, the percentage of source code files with defects is less than 30% [MGF07; ZNW10].
Moreover, only around 20% to 30% of the source code files contain logging statements.
The deviance explained can be increased by adding more variables to the model in RQ2,
however we would need to deal with the interaction between the added variables.
Construct Validity

The heuristics to extract logging source code may not be able to extract every logging

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 133

statement in the source code. However, because the case study systems use logging libraries
to generate logs at runtime, the method in the logging statements are consistent. Hence,
this heuristic will capture all the logging statements.

Our software defect data is based on the data produced by J-REX, a software evolution
tool that generates high-level evolutionary source code change data. J-REX uses heuristics
to identify defect-fixing changes. The results of this chapter are dependent on the accuracy
of the results from J-REX. We are confident in the results from J-REX as it implements the
algorithm used previously by Hassan et al. [Has08] and Mockus et al. [MV00]. However,
previous research shows that the misclassified defect-fixing commits may introduce negative
effects on the performance of prediction techniques on post-release defects [BBAT09]. We
select a random sample of 337 and 366 files for Hadoop and JBoss, respectively. Only
14% and 2% of the files for Hadoop and JBoss are misclassified, respectively. Both random
sample sizes achieve 95% confidence level with a 5% confidence interval [Smi03]. Other
approaches can be used to identify defect-fixing commits, such as the data in the issue
tracking systems, to perform additional case studies to further understand the relationship
between logging characteristics and code quality. J-REX compares the abstract syntax trees
between two consecutive code revisions. A modified logging statement is reported by J-
REX as an added and a deleted logging statement. Such limitation of J-REX may result in
inaccuracy of our metrics. Other techniques to extract the log-related metrics should be
explored.

In addition, we find that, on average, there is a logging statement for every 160 and
130 lines of source code for Hadoop and JBoss, respectively. A previous study by Yuan et
al. [YZP'11] shows that the ratio between source code and logging code is 30:1. We think
the reason for such a discrepancy is that the log density metric (LOGD) defined in this
chapter uses the number of logging statements instead of lines of logging code, and the
total lines of code instead of source lines of code. We calculated the ratio between total

lines of code and number of logging statements for the four subject systems studied in prior

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 134

research. We found that the ratios are 155:1, 146:1, 137:1 and 70:1 for Httpd, Openssh,
PostgreSQL and Squid, respectively. Such ratios are similar to the ratios in our two studied
systems. In this chapter, we extract our log-related metrics from an AST. We chose to use
the AST so that we can accurately extract every invocation to a logging method. Hence due
to this choice, we can only get the number of logging statements and not number of lines
of logging code.

The possibility of post-release defects can be correlated to many factors other than just
logging characteristics, such as the complexity of code and pre-release defects. To reduce
such a possibility, we included 3 control metrics (lines of code, pre-release defects, and prior
changes) that are well known to be good predictors of post-release defects in our logistic
regression model [NBZ06; MPS08]. However, other factors may also have an impact on
post-release defects. Future studies should build more complex models that consider these
other factors.

Source code from different components of a system may have different characteristics.
Logs may play different roles in components with different levels of importance. Value and
importance of code is a crucial topic, yet it has been rarely investigated. However, this
chapter introduces a way to use logs as a proxy to investigate the role of different parts of

the code.

5.8 Chapter Summary

Logging is one of the most frequently-employed approaches for diagnosing and fixing soft-
ware defects. Logs are used to capture the concerns and doubts of developers as well as
operators’ needs for run-time information about the software. In this chapter, we propose
an approach to leveraging logs to assist in prioritizing code review and testing efforts. The
relationship between logging characteristics and software quality has never been empiri-

cally studied before. This chapter is a first attempt (to the best of our knowledge) to build

Chapter 5:Prioritizing Code Review and Testing Efforts Using Logs and Their Churn 135

an empirical link between logging characteristics and software defects. The highlights of

our findings are:

e We found that source code files with logging statements have higher post-release de-

fect densities than those without logging statements.

e We found a positive correlation between source code files with log lines added by

developers and source code files with post-release defects.

e We found that log-related metrics complement traditional product and process metrics

in explaining post-release defects.

Our findings do not advocate the removal of logs that are a critical instrument used
by developers to understand and monitor the field quality of their software. Instead, the
findings of this chapter suggest that software maintainers should allocate more preventive
maintenance effort on source code files with more logs and log churn, because such source
code files may be the ones where developers and operators may have more doubts and

concerns, and hence are more defect-prone.

136

CHAPTER O

Verifying the Deployment of Big Data Analytic Applications Using Logs

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 137

ig data analytics is the process of examining large amounts of data (big data)

in an effort to uncover hidden patterns or unknown correlations. Big Data An-

alytics Applications (BDA Apps) are a new type of software applications, which
analyze big data using massive parallel processing platforms (e.g., Hadoop). Developers of
such applications typically develop them using a small sample of data in a pseudo-cloud
environment. Afterwards, they deploy the applications in a large scale cloud environment
with considerably more processing power and larger input data (reminiscent of the main-
frame days). Working with BDA App developers in industry over the past three years, we
noticed that the run-time analysis and debugging of such applications in the deployment
phase cannot be easily addressed by traditional monitoring and debugging approaches.

In this chapter, as a first step in assisting developers of BDA Apps for cloud deployments,
we propose a lightweight approach for uncovering differences between pseudo and large
scale cloud deployments. Our approach makes use of the readily-available yet rarely used
execution logs from platform software. Our approach abstracts the execution logs, recov-
ers the execution sequences, and compares the sequences between the pseudo and cloud
deployments. Through a case study on three representative Hadoop-based BDA Apps, we
show that our approach can rapidly direct the attention of BDA App developers to the ma-
jor differences between the two deployments. Knowledge of such differences is essential in
verifying BDA Apps when analyzing big data in the cloud. Using injected deployment faults,
we show that our approach not only significantly reduces the deployment verification effort,

but also provides very few false positives when identifying deployment failures.

6.1 Introduction

Big-Data Analytics Applications (BDA Apps) are a new category of software applications that

analyze large scale data, which is typically too large to fit in memory or even on one hard

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 138

drive, in order to uncover actionable knowledge using large scale parallel-processing infras-
tructures [FDCD12]. Big data can come from sources such as run-time information about
traffic, tweets during the Olympic games, stock market updates, usage information of an
online game [Win], or the data from any other rapidly growing data-intensive software
system. For instance, EBAY! has deployed BDA Apps to optimize the search of products by
analyzing over 5 PBs of data using more than 4,000 CPU cores [eba].

For over three years, we have worked closely with BDA App developers in industry. We
noted and found that developing BDA Apps brings many new challenges compared to tradi-
tional programming and testing practices. Among these challenges in the different phases
of BDA App development, the deployment phase introduces unique challenges related to
verifying and debugging the BDA executions, as BDA App developers want to know if their
BDA App will function correctly once deployed. Similar observations were recently noted
in an interview of 16 professional BDA App developers at Microsoft [FDCD12].

In practice, the deployment of BDA Apps in the cloud follows these three steps: 1)
developers implement and test the BDA App in a small or pseudo cloud (using virtual or
physical machines) environment using a small data sample, 2) developers deploy the ap-
plication on a larger cloud with a considerably larger data set and processing power to
test the application in a real-world setting, and 3) developers verify the execution of the
application to make sure all the data are processed and that all jobs are successful. The tra-
ditional approach for deployment verification is to simply search for known error-keywords
related to unusual executions. However, such verification approaches are very ineffective
in large cloud deployments. For instance, a common basic approach for identifying deploy-
ment problems is searching for “killed” jobs in the generated execution logs (the output
of the internal instrumentation) of the underlying platform hosting the deployed applica-
tion [Whi09]. However, a simple keyword search would lead to false positive results be-

cause a platform such as Hadoop may intervene in the execution of a job, kill it and restart it

'www.ebay.com last verified January 2014.

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 139

elsewhere to achieve better performance, or it may start and kill speculative jobs [Whi09].
Considering the large amount of data and logs, such false positives rapidly overwhelm the
developers of BDA Apps.

In this chapter, we propose an approach to verify the run-time execution of BDA Apps
after deployment. The approach abstracts the platform’s execution logs from both the small
(pseudo) and large scale cloud deployments, groups the related abstracted log lines into
execution sequences for both deployments, then examines and reports the differences be-
tween the two sets of execution sequences. Ideally, these two sets should be identical for
a successful deployment. However, due to platform configurations and data size differ-
ences, the underlying platform may execute the applications differently. Among the delta
sets of execution sequences between these two sets, we filter out sequences that are due
to well-known platform-related (in our case study Hadoop) differences. The remaining
sets of sequences are potential deployment failures/anomalies that should be reported and
carefully examined.

We have implemented our approach as a prototype tool and performed a case study on
three representative Hadoop [Whi09] BDA Apps. The choice of Hadoop is due to it being
one of the most used platforms for Big-Data Analytics in industry today. However, our gen-
eral idea of using the underlying platform’s logs as a means for BDA App monitoring in
the cloud, is easily extensible to other platforms, such as Microsoft Dryad [IBYT07]. The
case study results show that our log abstraction and execution sequence clustering not only
significantly reduces the number of logs (by between 86% to 97%) that should be verified,
but it also provides much higher precision for identifying deployment failures/anomalies
compared to a traditional keyword search approach (commonly used in practice today).
In addition, practitioners who have used our approach in practice have noted that the re-
porting of the abstracted execution sequences, rather than raw log lines, provides a sum-
marized context that dramatically improves their efficiency in identifying and investigating

failures/anomalies.

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 140

The rest of this chapter is organized as follows. We present a motivating example in
Section 6.2. We present Hadoop, the platform that we studied in Section 6.3. We present
our approach to summarize logs into execution log sequences in Section 6.4. We present
the setup for our case study in Sections 6.5. We present the results of our case study
in Section 6.6. We discuss other features of our approach in Section 6.7 and discuss the
limitations of our approach in Section 6.8. We present prior work related to our approach

in Section 6.9. Finally, Section 6.10 concludes the chapter.

6.2 A Motivating Example

We now present a hypothetical but realistic motivating example to better explain the chal-
lenges in deploying BDA Apps in a cloud environment.

Assume a developer, Ian, developed a BDA App that analyzes the user information from
a large scale social network. Ian has thoroughly tested the App on an in-house small-scale
cloud environment with a small sample of testing data. Before officially releasing the App,
Ian needs to deploy the App in a large scale cloud environment and run the App with real-
world large scale data. After the test run of the App in the real cloud setup, Ian needs to
verify whether the App behaves as expected or not, in the testing environment.

Ian followed a traditional approach to examine the behaviour of the App in the cloud
environment. He leveraged the logs from the underlying platform (e.g., Hadoop) to find
whether there are any problematic log lines. After downloading all the logs from the cloud
environment, Ian found that the logs are of enormous size because the cloud environment
contains thousands of nodes and the processed real-world data is in PB scale, which makes
the manual inspection of the logs impossible. Therefore, Ian performed a simple keyword
search on the logs. The keywords are based on his own experience of developing BDA
Apps. However, the keyword search still returns thousands of problematic log lines. By

manually exploring the problematic log lines, Ian found that a large portion of the log lines

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 141

do not indicate any problematic executions (i.e., false positives). For example, the run-
time scheduler of the underlying platform often kills remote processes and re-starts them
locally to achieve better performance. However, such kill operations lead to seemingly
problematic logs that are retrieved by his keyword search. Moreover, for each log line,
Ian must trace through the log files across multiple nodes to gain some context about the
generated log files (and in many instances he discovers that such log lines are expected and
are not problematic ones). In short, identifying deployment problems of the BDA App is
excessively difficult and time consuming. Moreover, this difficulty increases considerably as
the size of the analyzed data grows and the size of the cloud increases.

From the above example, we observe that verifying the deployment of BDA Apps in a
cloud environment with large scale data is challenging. Although today, developers primar-
ily use grep [Sor09] to locate possible troublesome instrumentation logs, uncovering the
related context of the troublesome logs is still challenging with enormously large data (as
noted in recent interviews of BDA App developers [FDCD12]).

In the following sections, we present our approach, which summarizes the large amount
of platform logs and presents them in tables where developers can easily note troublesome
events and where they are able to easily view such events in the context of their execution

(since the table shows summarized execution sequences).

6.3 Large Scale Data Analysis Platforms: Hadoop

Hadoop is one of the most widely used platforms for the development of BDA Apps in
practice today. We briefly present the programming model of Hadoop, then present the

Hadoop logs that we use in our case studies.

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 142

6.3.1 The MapReduce programming model

Hadoop is an open source distributed platform [Whi09] that is supported by Yahoo! and
is used by Amazon, AOL and a number of other companies. To achieve parallel execution,
Hadoop implements a programming model named MapReduce. This programming model
is implemented by many other cloud platforms as well [IBY"07; MTF11].

MapReduce [DGO8] is a distributed divide-and-conquer programming model that con-
sists of two phases: a massively parallel “Map” phase, followed by an aggregating “Reduce”
phase. The input data of MapReduce is broken down into a list of key/value pairs. Mappers
(processes assigned to the “Map” phase) accept the incoming pairs, process them in parallel
and generate intermediate key/value pairs. All intermediate pairs having the same key are
then passed to a specific Reducer (process assigned to the “Reduce” phase). Each Reducer
performs computations to reduce the data to one single key/value pair. The output of all
Reducers is the final result of a MapReduce run.

To illustrate MapReduce, we consider an example MapReduce process that counts the
frequency of word lengths in a book. Mappers take each single word from the book and
generate a key/value pair of the form “word length/dummy value”. For example, a Mapper
generates a key/value pair of “5/hello” from the input word “hello”. Afterwards, the key/-
value pairs with the same key are grouped and sent to Reducers. Each Reducer receives the
list of all key/values pairs for a particular word length and hence can simply output the size
of this list. If a reducer receives a list with key “5”, for example, it will count the number of
all the words with length “5”. If the size is n, it generates an output pair “5/n” which means

there are n words with length “5” in the book.

6.3.2 Components of Hadoop

Hadoop has three types of execution components. Each component has logging enabled in

it. Such platform logging tracks the operation of the platform itself (i.e., how the platform

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 143

is orchestrating the MapReduce processing). Today, such logging is enabled in all deployed
Hadoop clusters and it provides a glimpse into the inner working mechanism of the platform
itself. Such an inner working mechanism is impacted by any problems in the cloud on which
the platform is executing. The three execution components and a brief example of the logs

generated by them are as follows:

e Job. A Hadoop program consists of one or more MapReduce steps running as a
pipeline. Each MapReduce step is a Job in Hadoop. A JobTracker is a process initial-
ized by the Hadoop platform to track the status of the Jobs. The information tracked
by the JobTracker includes the overall information of the Job (e.g., input data size)
and the high-level information of the execution of the Job. The high-level information
of the Job’s execution corresponds to the executions of Map and Reduce. For example,
a Job log may say that “the Job is split into 100 Map Tasks” and “Map TaskId=id is

finished at time t1”.

e Task. The execution of a Job is divided into multiple Tasks based on the MapReduce
programming model. Therefore, a Task can be either a Map Task that corresponds
to the Map in the MapReduce programming model, or a Reduce Task. The Hadoop
platform groups a set of Map or Reduce executions together to create a Task. There-
fore, each Task contains more than one execution of Map or Reduce. Similar to the
JobTracker, the TaskTracker monitors the execution of a Task. For example, a Task log

may say “received commit of Task Id=id”.

e Attempt. To support fault tolerance, the Hadoop platform allows each Task to have
multiple trials of execution. Each execution is an Attempt. Typically, only when an
Attempt of a Task has failed, another Attempt of the same Task will start. This restart
process continues until the Task is successfully completed or the number of failed At-
tempts is larger than a threshold. However, there are exceptions, such as “speculative

execution”, which we discuss later in this chapter. The attempt is also monitored

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 144

Execution Sequence Recovery

Execution logs
from small Log | | Log | ,| Simplifying
testing runs Abstraction Linking Sequences

Execution
sequence
report

Execution
sequence

Execution Sequence Recovery delta

Execution logs
from large testing Log | | Log |_,| Simplifying
runs Abstraction Linking Sequences

Execution
sequence
report

Figure 6.1: Overview of our approach.

by the TaskTracker and the detailed execution information of the Attempt, such as

“Reading data for Map task with TaskID=id”, is recorded in the Attempt logs.

The Job, Task and Attempt logs form the source of information used by our approach.
We use the former kinds of logs instead of application-level logs since such logs provide
information about the inner working of the platform itself, and not the application, which
is assumed to be correctly implemented for our purposes. In particular, the platform logs

provide us with information about any deployment problems.

6.4 Approach

The basic idea behind our approach is to cluster the platform logs to improve their compre-
hensibility, and to help understand and flag differences in the run-time behaviour.

As mentioned before, our approach is based on the analysis of platform logs of BDA
Apps. These logs are generated by the statements embedded by the platform developers
because they consider the information to be particularly important. Containing rich knowl-
edge, but not fully explored, platform logs typically consist of the major system activities
and their associated contexts (e.g., operation ids). Logs are a valuable resource for study-

ing the run-time behaviour of a software system, because they are generated by the internal

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 145

instrumentations and are readily available. However, previous research shows that logs
are continuously changing and evolving [SJAT11]. Therefore, ad hoc approaches based on
keyword search may not always work. Thus we propose an approach that does not rely on
particular phrases or the format of the logs. Figure 6.1 shows an overview of our approach.

Our approach compares the run-time behaviour of the underlying platform of BDA Apps
in a testing environment with a small testing data sample to the cloud environment with
large scale data. To overcome the enormous number of logs generated by a BDA platform
and to provide useful context for the developers looking at our results, we recover the

execution sequences of the logs.

146

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs

'sddy vg jo Inolaeyaq swn-uni oyl Jurzuewwns 10j yoeoidde 1no jo sjdwexs uy :g'9 2indig

‘uonenuidd pue uonnadar noym d1e soouanbas [eury oy,
‘soouonbos Surkjijdwis 103 seouonbos uornoaxa [eurq (p)

94 ‘VH ‘CH ‘1H LL0
9H ‘SH ‘€H ‘T ‘1Td V10
oouonboes queAr | (ISRL

soouanbas Ajrdung q

[SBL QUIeS 97})M SUOTNIIXS W)SAS
Jo 9ouonbas e Sunuasaidar ‘soouonbos of uonnoaxy (o)

‘SIQFIUPI Yse) pue sadAy
yse) ‘sduwe)s own UonnNdIX? Jo
s1s1SU09 ‘sour 0] Jo ojdwrexy ()

94 VA ‘¢ ‘14 L20
94 ‘G ‘€4 ‘€A €4 ‘T ‘1A V10 Supyul] S0 \ g
souenbes yueAl | (ISEL <€ — VIO=dDSeL 2Uoq=3se] T1=°Wn | TT
VI0=se], ‘Sutpusg prurwo)=yse], ‘gT=owr} | QT
. 9 . LL0=(I¥S8L, ‘PUOg=Yse[, ‘6=PWN | 6
SISUINUIPI 3Se] pazZijeuLiou pue sadKy ysel sduwreys umn LL0—(INS®], ‘SSo1301J—5e], ‘g—otr} | §
UOoNNIIX3 pazijewlou JO SISISUOI ‘SJUIAD UonnNoddIXyq AQV VI0=I¥SR], ‘@onpoy=yseJ, ‘L=owl} |),
116 PIg=DseL ‘duo=3se], ‘1g=owr} 9d VI0=DISRL, ‘90Npayy=3se], ‘9=awl)} | 9
0T | PIg=dIYSRL, ‘Sulpued NMWWOH=YsE], ‘1g=owI} [ici LL0=ATIS8L ‘INAL=SRL ‘¢=owny | ¢
8 PIg=(IsR], ‘ssa1801J=3sR], ‘}g=omr) [ZCHR a—— VIO=D[Se], ‘0onpoy=3yse], ‘F=ow} | §
29 PIg=(ISRI, ‘@onpay=3se], ‘}g=our} e VI0=AD{seL ‘INAL=YSBL ‘g=ouh | ¢
‘ = ‘ = “g= uonoensqe =S8, ‘youne| 03 SUIAL],=3sg], ‘g=oull
g€ PIS=AIMSBL INA[=SB], 1g=owl} cd . LLO=dTAS®L YU [01 SWIALL=YSB], ¢ Bl
‘T | PI$=dDISel ‘youne[0} SUILI],=3se], ‘}1g=owI} iici wo‘n— VTI0=D{Se], ‘youne| 01 SUlAI]=yseJ, ‘T=own} | |
oyerdure) JuaAf] | JuaAR aur] So7 |

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 147

6.4.1 Execution Sequence Recovery

In this step, we recover sequences of the execution logs. The log sequence clustering in-

cludes three phases.

Log abstraction

Log files typically do not follow strict formats, but instead contain significant unstructured
data. For example, log lines may contain the task type, the execution time stamp and free
form text — making it hard to extract any structured information from them. In addition to
being in free form, log lines contain static and dynamic information. The static information
is specific to each particular event while the dynamic values of the logs describe the event
context. We use a technique proposed by Jiang et al. [JHHF08a] to abstract logs. This
technique is designed to be generalizable as it does not rely on any log formats. Using
the technique, we first identify the static and dynamic values of the logs based on a small
sample of logs. Then we apply the identified static and dynamic parts to the entire logs to
abstract the logs. Figure 6.2 shows an example of a log file with 11 log lines and how we
process it. Each log line contains the execution time stamp, the task type, and the task ID.
The log lines are abstracted into six different system events, as shown in Figure 6.2-b. The

“$id” and “$t” identifiers indicate two dynamic values.

Log linking

This phase uses dynamic values, such as “$id”, to link log lines into a sequence. The linking
heuristic is based on the dynamic values. In our example, TaskID is used for log linking
since TaskID represents some kind of session “ID”. Therefore, line 1 and line 3 in the input
data in Figure 6.2-a can be linked together since they contain the same TaskID. Similar to
log abstraction, we also identify the linkage among a few IDs based on a small sample of

data, then apply the linking on full data.

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 148

Figure 6.2-c shows the resulting sequences after abstracting the logs and linking them
into sequences using the TaskID values. Events E1, E2, E3, E5 and E6 are linked together
(note that event E3 has been executed three times) and events E1, E2, E4, E6 are linked

together since the same TaskID values are shared, among them.

Simplifying sequences

An example of repetition is a sequence caused by loops. For example, for sequences about
reading data from a remote node, there would be repeated events about fetching the data.
Without this step, similar log sequences that include different occurrences of the same event
are considered different sequences, although they indicate the same system behaviour in
essence. These repeated events need to be suppressed to improve the readability of the gen-
erated summaries. Therefore, we use regular expression techniques to detect and suppress
the repetitions. For the example shown in Figure 6.2, our technique detects the repetition
of E3 in the sequence “El, E2, E3, E3, E3, E5, E6”, and reduces this sequence to “E1, E2,
E3, E5, E6”.

The second step of simplifying sequences is dealing with permutations of sequences.
The reason why permutations occur is that the events may execute asynchronously on the
distributed computing platforms, although the corresponding sequences result in the same
system behaviour. We group the permutations of a sequence together to simplify the se-
quences. For example, if we recovered two sequences “E1, E2, E3, E4” and “E1, E3, E2, E4”,
we would group these two sequences together in this step.

After simplifying sequences, we obtain the final log sequences in Figure 6.2-d.

6.4.2 Generating reports

We generate a log sequence report in HTML format. Figure 6.3 shows an example report.

The report consists of two parts: an overview of the number of execution log sequences

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 149

and a list of sample log lines. To ease the comparison of different reports, each event is
represented by the same unique number across the reports. An example sequence from the
analyzed logs is shown in each row of the report to provide developers an actual example

with a realistic context.

8,10.7.0.5,3.2.1
Sample Sequence8#8#8#10#7#0#5#3#2#1

Total 5 grouped sequences 2011-06-26 15:36:53.460 INFO org.apache hadoop.mapred JobInProgress:
8 ||tip:task_201106261526_0001_m_000047 has split on node:/default-
|C0unt”Gr0uped Sequence rack/sail215.cs.queensu.ca

2011-06-26 15:36:53,460 INFO org.apache.hadoop.mapred.JobInProgress:
tip:task_201106261526_0001_m_000047 has split on node:/default-

o~ rack/sail217.cs.queensu.ca
u 8,10.7.0,5.3.2.1 h ,l 2011-06-26 15:36:53,460 INFO org.apache.hadoop.mapred.JobInProgress:
SNOW sample |ig |kip:task_201106261526_0001_m_000047 has split on node:/default-

=3

sequences rack/sail213.cs.queensu.ca
22 8.10.7.0.5,6.3.2.1 20110626 15:37:29,100 INFO org.apache.hadoop.mapred JobTracker: Adding task
10|[attempt_201106261526_0001_m_000047_0" to tip task_201106261526_0001_m_000047,

for tracker 'tracker_sail215.cs.queensu.ca:localhost/127.0.0.1:48227"

2011-06-26 15:37:29,100 INFO org.apache.hadoop.mapred.JobInProgress: Choosing data-
local task task_201106261526_0001_m_000047

2011-06-26 15:37:29,101 DEBUG org.apache.hadoop.mapred.JobTracker:

3

21 10.0,5.3,2.1

0 ||[tracker_sail215.cs.queensu.ca:localhost/127.0.0.1:48227 -> LaunchTask:
2 8,10,7,0.4,5,2,6,3,1 attempt_201106261526_0001_m_000047_0
2011-06-26 15:38:10,657 INFO org.apache.hadoop.mapred.JobInProgress: Task
5 |[attempt_201106261526_0001_m_000047_0" has completed
1 8.10.4.0.7.5.3.2.1 task_201106261526_0001_m_000047 successfully.
EX Oy AU,y Uy fadady &y 1

2011-06-26 15:51:54,749 DEBUG org.apache.hadoop.mapred.JobTracker: Marked
"attempt_201106261526_0001_m_000047_0' from
'tracker_sail215.cs.queensu.ca:localhost/127.0.0.1:48227'

2011-06-26 15:51:55,758 DEBUG org.apache.hadoop.mapred JobTracker: Removing task
"attempt_201106261526_0001_m_000047_0'

2011-06-26 15:51:55,758 INFO org.apache.hadoop.mapred.JobTracker: Removed completed|
task 'attempt_201106261526_0001_m_000047_0' from
'tracker_sail215.cs.queensu.ca:localhost/127.0.0.1:48227'

w

Figure 6.3: An example of our log sequences report.

6.5 Case Study

In this section, we present the design of the case study that we performed to evaluate our

approach.

6.5.1 Subject applications

We use three BDA Apps as subjects for our study. Two out of the three applications are
chosen to be representative of industrial BDA Apps. In addition, to avoid potential bias
from the development of the applications, we chose one application that is developed from

scratch and another application that is re-engineered by migrating a set of Perl scripts to the

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 150

Table 6.1: Overview of the three subject BDA Apps.

WordCount PageRank JACK

Source Hadoop: Google: RIM:
Official Developed | Migrated

Example from scratch | from Perl

Domain File Social Log
processing network analysis

Injected Machine | Missing supporting Lack of
problem failure library | disk space

Table 6.2: Overview of the BDA App’s input data size.

WordCount & | PageRank
JACK
Large Data 3.69GB 1.08GB
Small Data 597M B 10.7M B

Hadoop platform. In addition, to ease the replication of our approach by others, we chose
a third application from Hadoop’s official example package. The overview of the three BDA

Apps is shown in Table 6.1.

e WordCount. WordCount is an application that is released with Hadoop as an example
of the MapReduce programming. The WordCount application analyzes the input files

and counts the number of occurrences of each word in the input files.

e PageRank. PageRank [PBMW99] is a program used by the Google Internet search

engine for rating Web pages. We implemented the PageRank algorithm on Hadoop.

e JACK. JACK is an industrial application that uses data mining techniques to identify
problems in load tests [JHHFO8b]. This tool is used in practice on a daily basis. We

migrated JACK to the Hadoop platform.

Note that none of the three above BDA Apps have their own logs and the logs that
our approach uses are the platform (Hadoop) logs generated during the execution of these

applications.

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 151

6.5.2 The experiment’s environment setting

As input data for WordCount and JACK, we use two groups of execution log files from a large
enterprise application. The input data for the PageRank application, however, comes from
two social-network datasets from the Stanford Large Network Dataset Collection®. Table 6.2
summarizes the overall size of the input data for the studied applications.

As a proof of concept, we performed our experiments on an in-house small cloud (a
computing cluster of 40 cores across five machines). Each machine has Intel Xeon E5540
(2.53GHz) with 8 cores, 12 GB memory, a Gigabit network adaptor and SATA hard drives.

The operating system of the machines is Ubuntu 9.10.

6.6 Case Study Results

In this section, we present our research questions, and the results of our case study. For
each research question, we present the motivation of the question, our approach to answer

the question, and the results.

RQ1: How much effort reduction does our approach provide when verifying the de-

ployment of BDA Apps in the cloud?

Motivation

Developers often use simple text search techniques to identify troublesome events when
deploying BDA Apps. For example, keywords such as “kill” and “fail” are often used to
find problematic tasks in Hadoop. Due to the decision by the underlying platform (e.g.
algorithms that Hadoop uses for assigning tasks to machines), a problematic event might be
caused by other reasons than an actual deployment failure. Two commonly seen examples

of such reasons on the Hadoop platform are “Task exceptions” and “Speculative execution”:

e Task exceptions. When there is an exception during the execution of a Hadoop task,

%http://snap.stanford.edu/data/ last verified January 2014.

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 152

the task will be killed and restarted on another cloud node. Therefore, a keyword
search for “kill” on the log lines would flag such Hadoop decisions as a sign of failure,

even though this is supposed to be transparent to developer.

e Speculative execution. The overall performance of a Hadoop Job may slow down
because of some slow-running tasks. To optimize the performance, Hadoop repli-
cates the unfinished tasks on idle machines. When one of the replicated tasks, or the
original task, is finished, Hadoop commits the results from the task and kills other
replicas. This mechanism is similar to the Backup Task in Google’s MapReduce plat-
form [DGO8]. The replication and killing are decided at run-time and are not signs of
deployment failures. However, again, a keyword search would flag them as a problem

to be verified.

Therefore, a simple text search for such keywords may result in a very large set of irrelevant
log lines for manual verification. In this research question, we investigate whether our
approach saves any effort in the verification process of cloud deployments.
Approach

To evaluate our approach in terms of effort reduction, we use the number of log lines
that must be examined as a basic approximation of the amount of effort. We first use the
traditional (most-often-used in practice today (e.g., [FDCD12])) approach of searching for
keywords in the raw log lines as a baseline for comparison. The keywords that we use in
this experiment are common basic keywords (“kill”, “error”, “fail”, “exception” and “died”)
that are usually a sign of failure in a log line. We applied this search on all three BDA Apps.
We measure the number of log lines with these keywords as the baseline effort.

To apply our approach for deployment verification, we first recover execution sequences
from the three BDA Apps, when deployed on a cloud environment. We then compare the
two sets of log sequences (small-scale environment and large cloud) and identify the delta

set (the execution sequences without an exact match). The last step involves searching

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 153

Table 6.3: Effort required to verify the cloud deployment using our approach versus the
traditional keyword search.

Using our approach Using keyword search

execution | # unique #log line

sequences | log events with keyword

WordCount 19 64 467
PageRank 55 83 1,739
JACK 20 67 726

Table 6.4: Repeated execution sequences between running the BDA Apps once, twice and
three times.

once and twice (%) | twice and three times (%)

WordCount 98.4 99.1
PageRank 95.0 95.1
JACK 99.5 99.8

for the same keywords as the traditional approach to measure the number of execution
sequences and log events that are required to be examined.
Results

The results from Table 6.3 show that with our approach the number of execution log
sequences (and their corresponding number of log events) to verify is 19(64), 55(83), and
20(67) for WordCount, PageRank, and JACK respectively. However, the number of raw log
lines to verify after the keyword search, i.e., the traditional approach, is 467, 1739, and
726 for WordCount, PageRank, and JACK respectively. Therefore, our approach provides
86%, 95%, and 97% effort reduction over the traditional approach, ignoring the fact that
verifying a log line may require more effort than verifying a log event. Indeed, verifying
a log line requires checking the other log lines to get a context of the failure, whereas the
log events are already shown in the context (i.e., the execution sequences). Also, notice
that our approach does not incur any instrumentation overhead since the platform logs are
already available.

Another interesting point is that when the input data grows, several new execution

sequences and log lines appear. That is due to the fact that the behaviour is not present with

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 154

Table 6.5: Number of log lines generated by running BDA Apps once, twice and three times.

once | twice | three times

WordCount 78 K | 309 K 393 K
PageRank | 109K | 217K 474 K
JACK | 237K | 419K 666 K

the smaller runs. However, when moving to bigger runs, the execution sequences will not
increase dramatically. The reason is that most of the runs, at the abstract level, are identical.
Therefore, the size of the final sequences to verify will show very minor increases. However,
the log lines to be verified using traditional approaches always increase in proportion to the
data. Table 6.4 shows the number of repeated execution sequences when running the same
BDA App once, twice, and three times. In Table 6.5, we report the number of log lines
to be verified using the traditional approach for the same BDA App executions. The large
portion of repeated execution sequences in the number of execution sequences versus the
rapid growth in the number of log lines emphasizes the effectiveness of our approach in

terms of effort reduction during verification of the deployment of a BDA App in the cloud.

Our approach reduces the verification effort by 86% to 97% when verifying the

cloud deployment of BDA Apps.

RQ2: How precise and informative is our approach when verifying cloud deploy-

ments?

Motivation

As discussed in RQ1, a flagged sequence (using our approach) or a flagged log line (us-
ing the traditional approach), may be caused by some other reasons than an actual deploy-
ment failure. We consider such flagged sequences or log events, e.g., those that are related
to “ Task exception” and “Speculative execution”, as false positive results that affect the
precision of the approaches. Therefore, in this question, we compare the two approaches
in terms of precision. We also discuss how our approach facilitates the verification of the

flagged execution sequences.

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 155

Approach

In this research question, we categorize the flagged logs sequences by the tradition-
al/our approach into two classes: actual failures (true positives) and platform-related
events (false positives). To identify the instances of the actual failure, we intentionally in-
jected three different failures, which are commonly observed by BDA App developers [com],
into our experimental environment. These three failures have often been encountered in
our experience using Hadoop in large industrial clouds. The three injected failures are as

follows:

1. Machine failure. A machine failure is one of the most common system errors in
distributed computing. To inject this failure, we manually turn off one machine in the

cluster.

2. Missing supporting library. A cluster administrator may decide to expand the size
of the cluster. However, the new machines in the cluster may by missing supporting
libraries or the version of the supporting libraries may be outdated. We inject this

failure by removing one required library.

3. Lack of disk space. Disks often run out of space while a BDA App is running on the
platform due to the large amount of intermediate data. We manually fill up one of the

machine’s disks to inject this failure.

Next, we manually analyzed the log sequences in the HTML reports and identified any
false positive instances.
Results

Table 6.6 summarizes the number of false positives, total number of flagged sequences/log
lines, and the precision of both approaches. The precision of our approach is 21%, 38%,
and 10% for WordCount, PageRank, and JACK respectively. The range of the number of

false positive sequences to verify is 15 to 34 sequences (16-49 log events). However, the

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs

156

Table 6.6: Number of false positives, true positives, and the precision of both our approach
and the traditional keyword search.

Using our approach Using keyword search
false positive | true positive | precision | false positive | true positive | precision
WordCount 15 4 21% 432 35 7%
PageRank 34 21 38% 272 1467 84%
JACK 18 2 10% 650 76 10%

precision of the traditional approach is 7%, 84%, and 10% for WordCount, PageRank, and
JACK respectively, while the range of the number of false positive log lines to verify is 432
to 650 log lines. A more detailed analysis of the results shows that the only case where
the precision of our approach is outperformed by traditional approach is with JACK BDA
App where one single exception appears in almost every log line. Though the traditional
approach has a higher precision, the same exception produces 1,467 log lines that must be
examined manually to determine their context and decided whether they are problematic
or not. Unfortunately, because a keyword approach does not provide any abstraction all
log lines would need to be examined carefully, even though they are instances of the same
abstract problem.

Note that the recall for both approaches is 100%, because all instances of log lines and
execution sequences related to the failures are identified by the keyword search. However,
there are cases where it may not be possible to catch deployment failures by a keyword
search. For example, a temporary network congestion may cause the pending queue to
be very long, but logs may record that the pending queue is too long without making use
of an “error” like string in the log line. In some cases, a node in the cloud may even fail
without recording any error message [COR06]. In such situations, our approach is superior,
because the traditional approach simply fails (as no “error” log lines are produced) and the
developer would miss such problems unless he or she examines each log line. However, our
recovered execution sequences still work, because it only depends on finding the delta set

of sequences when switching from the small to large cloud.

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 157

Another interesting aspect of our approach, which was the initial motivation of this
work, is the extra information (context of a log line) that our approach provides for de-
ployment verification. Even after all the reduction that is performed by the keyword search
approach, 467 to 1,739 log lines should be verified manually. As discussed earlier, there
are false positives in the flagged log lines. Distinguishing them from true positives requires
knowledge about the context of each line (otherwise both categories contain the failure-
related keyword). Our approach provides such context by grouping the log events in one

execution sequence, which speeds up the understanding and verification of the event.

/The precision of our approach for assisting deployment verification of BDA Apps\
in the cloud is comparable with the precision of the traditional keyword-scan
approach. However, our approach provides additional context information (ex-

ecution sequences) that is essential in speeding up the manual investigation of

flagged problems.
_ /

6.7 Discussion

In this section, we discuss other possible features of our approach. In particular, one feature
is its ability to support developers in understanding the run-time differences when migrating
BDA Apps from one platform to another.

To find the most optimal and economical platform for BDA Apps, a BDA App may need
to be migrated from one Big-Data Analytics platform to another [FDCD12]. This type of re-
deployment requires similar verifications as discussed in the research questions. Therefore,
developers need an approach to help them in identifying any run-time behaviour changes,
caused by the migration. Identifying the differences between the execution of the BDA App
in the two environments may help in verifying the new deployment and flag any potential
failures or anomalies.

To assess the ability of our approach to identify the potential redeployment problems

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 158

in the cloud, we migrated the PageRank program from Hadoop to Pig. Pig [ORST08] is
a Hadoop-based [Whi09] platform designed for analysis of massive amounts of data. To
reduce the effort of coding in the MapReduce paradigm, Pig provides a high-level data
processing language called Pig Latin [ORS™08]. Using Pig Latin, developers can improve
their productivity by focusing on the process of data analysis instead of writing the boiler-
plate MapReduce code [GNC*09].

We ran PageRank three times on Hadoop and three times on Pig. After examining the
sequence reports we could note the following differences between both platforms:
1. Hadoop-based PageRank has more MapReduce steps than Pig-based PageRank

In our implementation, the Hadoop-based PageRank consists of four MapReduce steps,
while the Pig-based PageRank has eight lines of Pig scripts (each line is one step in the
pipeline of the data analysis). However, in the real-world execution, the Pig platform groups
the eight steps of data process into three MapReduce steps. Since the Hadoop platform does
not have a feature for grouping MapReduce steps, the execution of Hadoop-based PageRank
has four MapReduce steps, just as it is written.
2. Hadoop-based PageRank has more tasks than Pig-based PageRank

We examine the distribution of sequences in both implementations of PageRank. The re-
sults show that the total number of log sequences from the Hadoop-based PageRank is much
larger than the Pig-based PageRank. For example, one run of the Hadoop-based PageRank
generates, in total, over 700 execution log sequences in the Task log, while this number by
the Pig-based PageRank is less than 30. This result indicates that the Pig-based PageRank
splits the execution into a significantly smaller number of tasks than the Hadoop-based one.
The reason is that, based on the Hadoop instructions [Whi09], the number of Map Tasks
should be set to a relatively large number. Therefore, in our case study, the number of Map
Tasks is configured to 200. However, Pig optimizes the platform configurations at run-time
and reduces the number of Map Tasks to a smaller number to get better performance.

Identifying such differences would be extremely difficult by only looking at the raw log

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 159

lines. Thus our approach not only assists developers of BDA Apps with the first deployment
in the cloud but also helps them with any redeployments. We do note that our approach only
works when the new platform is a derivative of the older platform (e.g., in the case of Pig,
it provides a high-level abstraction to create programs that still run on MapReduce. Hence
we can compare the MapReduce execution for the Pig program against the old MapReduce

execution).

6.8 Limitations and Threats to Validity

We present the limitations and threats to validity for our approach in this section.

6.8.1 External validity

As a proof of concept, we illustrate the use of our approach to address the challenges en-
countered in our experience. However, there are still other challenges of developing and
testing BDA Apps, such as choosing an architecture that optimizes the cost and perfor-
mance [FDCD12]. Our approach may not be able to address other challenges. Additional
case studies are needed to better understand the strengths and limitations of our approach.

We only demonstrate the use of our approach on Hadoop, one of the most widely
adopted platforms for BDA Apps, with three injected failures. In practice, we have tried our
approach on several commercial BDA Apps on other underlying platforms. The only effort
for adapting our approach to other platforms of BDA Apps is to determine the parameters
for abstracting and linking the platform logs. Additional studies on other open source and
commercial platforms with other types of failures are needed to study the generalizability
of our approach.

All our experiments are carried out on a small-scale private experimental cluster, which
mimics the large cloud with 40 cores. However, a typical environment for BDA Apps has

more than 1,000 cores, such as Amazon EC2 [ec2]. The logs of such large scale clouds

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 160

do lead to considerably more logs and more sequences. From our experiences using our
approach in practice on such large clouds, we have found that our approach performs even
better than grep since the abstraction and sequencing leads to a drastic reduction in the
amount of data. Such observation was noted in our case study as well. One interesting note
is that to support such large clouds we needed to re-implement our own approach to run in
a cloud setting using the Hadoop platform (since we needed to process a very large amount
of logs and summarize them into a small number of event sequences). Since our log linking
is designed to be localized, for example, linking Hadoop task logs only needs the logs from

one task, our approach is parallelizable with minimal effort.

6.8.2 Construct validity

We use abstracted execution logs to perform log clustering and to learn the run-time be-
haviour. However, the execution logs may not contain all the information of the run-time
behaviour. Other types of dynamic information, such as execution tracing, may have more
details about the execution of the BDA Apps. We use the execution logs rather than other
more detailed dynamic information in this work, because execution logs are readily avail-
able and are widely used in practice (leading to no performance overhead). We leverage
the logs from the underlying platform of the BDA Apps (e.g., Hadoop) instead of the logs
from the Apps themselves. The purpose of this work is not to identify the bugs in the BDA
Apps but rather assist in reducing the effort in deploying BDA Apps in a cloud environment.
Therefore, the platform logs provide more and better information than application logs.
Identifying the re-occurrences of sub-sequences can also be used in our approach to re-
duce the event sequences, similar to our method of eliminating repetitions in Section 6.4.
In our experience, we performed sub-sequence detection on the recovered event sequences
and found that it did not suppress execution log sequences as good as our repetition elimi-

nation approach. In addition, the process of sub-sequence detection is very time consuming

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 161

and slows down the overall analysis. Therefore, we did not use the sub-sequence detection
in practice. For other BDA Apps and other distributed platforms, sub-sequence detection

may be effective in reducing the log sequences.

6.9 Related Work

In this section, we discuss the related work along two areas.

6.9.1 Dynamic software understanding

Fischer et al. [FOGGO5] instrument the source code and produce different kinds of visual-
izations to track and to understand the evolution of software at the module level. Kothari
et al. [KBMSO08] propose a technique to evaluate the efficiency of software feature develop-
ment by studying the evolution of call graphs generated by execution traces. Rothlisberger
et al. [RGNO8] implement an IDE called Hermion, which captures run-time information
from an application under development. The run-time information is used to understand
the navigation and browsing of source code in an IDE.

Recent work by Beschastnikh et al. [BBST11] designed an automated tool that infers
execution models from logs. The models can be used by developers to verify and diagnose
bugs. Our techniques aim to provide context of logs when deploying BDA Apps in cloud.

In addition, Cornelissen et al. [CZvD*09] perform a systematic survey of using dynamic
analysis to assist in program understanding and comprehension. FIELD is a development
environment created by Reiss et al. [Rei95] that contains the features to dynamically un-
derstand the execution of a program. However, the environment is rather designed for

traditional application development, rather than cloud deployment of BDA Apps.

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 162

6.9.2 Hadoop log analysis

Hadoop typically runs on large scale clusters of machines with hundreds or even thousands
of nodes. As a result, large amounts of log data are generated by Hadoop. To collect and
analyze the large amounts of log data from Hadoop, Boulon et al. built Chukwa[RK10].
This framework monitors Hadoop clusters in real-time and stores the log data in Hadoop’s
distributed file system (HDFS). By leveraging Hadoop’s infrastructure, Chukwa can scale
to thousands of nodes in both collection and analysis. However, Chukwa focuses more on
collecting logs without the ability to perform complex analysis.

Tan et al. introduced SALSA, an approach to automatically analyze Hadoop logs to
construct state-machine views of the platform’s execution [TPKT08]. The derived state-
machines are used to trace the data-flow and control-flow executions. SALSA computes
the histograms of the durations of each state and uses these histograms to estimate the
Probability Density Functions (PDFs) of the distributions of the durations. SALSA uses the
difference between the PDFs across machines to detect anomalies. Tan et al. also compare
the duration of a state in a particular node with its past PDF to determine if the duration
exceeds a determined threshold and can be flagged as an anomaly.

Another related approach is the work of Xu et al. in [XHF"09b], which uses the source
code to understand the structure of the logs. They create features based on the constant
and variable parts of the log messages and apply the Principal Component Analysis (PCA)
to detect the abnormal behaviour.

All the above approaches are designed for system operators in managing their large
clusters. Our approach, on the other hand, aims to assist developers in comparing the

deployed system on such large clusters against the development cloud.

Chapter 6: Verifying the Deployment of Big Data Analytic Applications Using Logs 163

6.10 Chapter Summary

Developers of BDA Apps typically first develop their application with a small sample of
data in a pseudo cloud, then deploy the application in a large scale cloud environment.
However, the larger data and more complex environments lead to unexpected executions
of the underlying platform. Such unexpected executions and their context cannot be easily
uncovered by traditional approaches.

In this chapter, we propose an approach to assist in verifying the deployment of BDA
Apps. Our approach uncovers the different behaviour of the underlying platforms for BDA
Apps between runs with small testing data and large real-world data in a cloud environ-
ment. To evaluate our approach, we perform a case study on Hadoop, a widely used plat-
form, with three BDA Apps. The case study results show the strength of our approach in

two aspects:

1. Our approach drastically reduces the verification effort by 86-97% when verifying the

deployment of BDA Apps in the cloud.

2. The precision of our approach is comparable with the traditional keyword search
approach. However, our approach reports fewer problematic logs than a keyword
search. The smaller number of reported problematic logs makes it possible to manu-

ally explore them.

In addition, our approach provides additional context information (execution sequences).
Based on the context information, developers can explore the execution sequences of the

logs to rapidly understand the cause of problematic log lines.

164

Part IV

Conclusions and Future Work

165

CHAPTER [

Summary, Contribution and Future Work

Chapter 7: Summary, Contribution and Future Work 166

his chapter summarizes the main ideas presented in this thesis. In addition, we
propose future work to leverage logs in other types of software engineering ac-
tivities.

Logs are generated from statements inserted into the code during development to draw
the attention of system operators and developers to important run-time behaviour. Such
statements reflect the rich experience of system experts. The rich nature of logs has cre-
ated a new market for log management applications (e.g., Splunk, XpoLog and Logstash)
that assist in storing, querying and analyzing logs. Moreover, recent software research has
demonstrated the importance of logs in understanding and improving software systems.
However, practitioners often treat logs as textual data. We believe that logs have much
more potential in supporting software engineering activities. To evaluate our hypothesis,
we propose leveraging logs to support practitioners in maintaining and operating large scale
systems. Through our case studies, we conclude that there are challenges in understanding
logs in practice and that logs are co-evolving with the systems. We propose leveraging logs
and their evolution to better prioritize software quality improvement efforts and assist in
debugging Big Data Analytic applications. Our results and approaches to leveraging logs

are valuable for software engineering practitioners.

7.1 Thesis contributions

The goal of this thesis is to better understand the challenges associated with logging state-
ments and to propose automated approaches for leveraging logs, in a systematic fashion.
We make several contributions towards this goal. These contributions are motivated by our
survey of the state-of-the-art software log mining research in Chapter 2. From our litera-
ture review, we find that much software log mining research leverages logs using ad hoc
approaches and focuses on assisting system operators. However, very little work focuses on

assisting in software development activities. We now highlight the main contributions of

Chapter 7: Summary, Contribution and Future Work 167

the thesis in more detail.

1. Part 1: Studying the Challenges Associated with Understanding and Evolving

Logging Statements.

(@

(b)

What are the Challenges in Understanding Logging Statements? We find
that there are many challenges to understanding logs in practice. Around 80%
of the logging statements provide the meaning of the log lines, while the cause,
context, solution and impact of the log lines are typically not provided by the
logging statements. We find that development knowledge can assist in providing
more information about log lines. Our study shows that development knowledge
can provide answers to resolve 24 out of 45 real-world inquiries. We also find
that log line experts are often the ones who answer inquiries about log lines.
We propose an automated approach that can successfully provide the develop-
ment knowledge to answer real-world inquiries about 45 different log lines in

the studied software systems.

How Do Logging Statements Evolve? We find that logs co-evolve with software
systems. Our study results show that systems communicate more about their
execution as they evolve. During the evolution of software systems, the logs also
evolve. Especially when there are major source code changes (e.g., a new major
release), the logs change significantly, although the changes of implementation
ideally should not have an impact on logs. In addition, we observed 8 types
of log modifications. Among the log modifications in the studied systems, less
than 15% of the modifications are unavoidable and are likely to introduce errors
into Log Processing Apps. We also find that short-lived logs typically contain
system implementation-level details and system error messages. Our finding
highlight the need for allocating more maintenance effort to Log Processing Apps

and the need for tools and approaches (e.g., traceability techniques) to ease the

Chapter 7: Summary, Contribution and Future Work 168

maintenance of Log Processing Apps.

2. Part 2: Log Engineering Approaches to Support Software Development Activi-

ties.

(a) Prioritizing Code Review and Testing Efforts Using Logs and Their Churn.
We are the first to establish an empirical link between logging characteristics
and software defects. We find that source code files with logging statements
have higher post-release defect densities than those without logging statements.
We also find a positive correlation between source code files with log lines added
by developers and source code files with post-release defects. Our log-related
metrics complement traditional product and process metrics in explaining post-
release defects. Our findings suggest that software maintainers should allocate
more preventive maintenance effort on source code files with more logs and
log churn, since such source code files might be the ones where developers and

operators may have more doubts and concerns, and hence are more defect prone.

(b) Verifying the Deployment of Big Data Analytic Applications Using Logs. We
propose an approach to support large scale testing and deployment of large scale
applications by assisting the deployment of Big Data Analytic applications using
logs. Our approach uncovers the differing behaviour of the underlying platforms
for BDA Apps between runs with small testing data and large field data in a cloud
environment. Our case study results show that our approach drastically reduces
the verification effort by 86-97% when verifying the deployment of BDA Apps
in the cloud. The precision of our approach is comparable with the traditional
keyword search approach. However, fewer problematic logs are reported by
our approach compared to using keyword search, which makes it feasible to

manually examine the problematic logs.

Chapter 7: Summary, Contribution and Future Work 169

7.2 Future research

We believe that our thesis makes a major contribution towards the goal of systematically
leveraging logs to support software engineering activities. However, there are many open
challenges and opportunities to leverage logs in practice. We now highlight some avenues

for future work.

7.2.1 Formally Investigating the Use of Logs in Software Engineering Activi-

ties

In this thesis, we relied on our literature review and our experience using logs to support
software engineering activities. In the future, we intend to conduct more detailed developer

and operator studies regarding the use of logs in practice.

7.2.2 Log Repository

Important software engineering data, such as code and bug reports, are systematically
stored in software repositories, such as Git and JIRA. Although logs are extensively used
in practice, logs are archived as raw data typically in shared network folders. How to ef-
ficiently store, manage, and further leverage such big log data is an open question. We
plan to investigate approaches to systematically store such log data in a repository, man-
age the big log data in an efficient and effective way, and leverage the data for software

practitioners.

7.2.3 Domain-specific Language for Log Mining

Logs are often analyzed using scripting languages, such as Perl and Python. Such analysis
scripts are ad hoc and difficult to scale and maintain. Reusing log analysis techniques and
scaling such techniques to support large scale log data is challenging. Research should

explore the design of domain specific query and manipulation languages for logs to ease

Chapter 7: Summary, Contribution and Future Work 170

the reuse of log analysis techniques. Designing the language on top of web platforms, such
as Hadoop [Whi09] and Pig [ORS'08], is a promising direction, as it leads to efficient and

scalable analysis.

7.2.4 System Test Planing Using Field Logs

In this thesis, we propose leveraging of logs to support code quality improvement efforts
and large scale deployments. Logs can be leveraged in other software engineering activities.
In particular, we plan to leverage field logs to understand system behaviour in the field. We
plan to optimize system test plans based on such learned behaviour to achieve more realistic

and effective system testing.

171

Appendix

172

APPENDIX A

Selection Protocol and Summary of Surveyed Papers

Appendix A: Selection Protocol of Surveyed Papers 173

A.1 Selection Protocol of Surveyed Papers

There has been an extensive body of work that focuses on SLM. However, each study used
different types of logs, transformation techniques and analysis techniques to achieve various
goals. Therefore, there is a need to compare the prior work in order to better understand the
underlying assumptions and implications. In this appendix, we briefly explain the selection
protocol for our survey. The surveyed papers in this appendix are the prior research that is
reviewed in our literature review chapter (Chapter 2). The related research of this thesis is
beyond the selected papers for literature review. Those related research paper are presented
in the related work section of each chapter (Section 3.2, 4.6, 5.3 and 6.9).

We select the following venues to search for relevant literature review:
e ACM symposium on Operating Systems Principles (SOSP)

e All conferences and workshops from the USENIX association. One of the most presti-
gious conferences is the symposium on Operating Systems Design and Implementation

(OSDI)
e IEEE Transactions on Software Engineering (TSE)
¢ International Conference on Software Engineering (ICSE)
e ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE)
e IEEE International Conference on Software Maintenance (ICSM)
¢ IEEE International Conference on Software Testing, Verification and Validation (ICST)

e International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS)

e IEEE International Symposium on Software Reliability Engineering (ISSRE)

Appendix A: Selection Protocol of Surveyed Papers 174

e IEEE Working Conference on Mining Software Repositories (MSR)

We then include SLM work that is cited by the papers selected from these aforemen-

tioned venues. A summary of the related work is shown in Table A.2.

A.2 Summary of Surveyed Papers

Xu et al. [XHFT09b] propose an approach to abstract logs by analyzing source code. They
identify the logging statements from source code and create templates for each logging
statement. They match log lines with the templates to perform log abstraction. Rakbin et
al. [RXW™'10] create a graphical representation to further assist in abstracting identifiers in
logs.

However, source code of the systems is not always available. Jiang et al. [JHHF08a]
propose leveraging data mining and clone detection techniques to abstract logs into events.
Their approach mines large numbers of logs and group log lines by length of tokens. They
analyze each group of log lines and treat the exact matched tokens as static parts of the
logs. The non-matched tokens are treated as dynamic parts of the logs.

Nagappan et al. [NV10] leverage clustering techniques for log abstraction. They first
build a frequency table that has the number of times a particular word occurs in a particular
position in the log line. They identify the dynamic part of the logs by looking for the words
with low frequency at each position.

Makanju et al. [MZHMO09] use the Iterative Partitioning Log Mining algorithm to ab-
stract logs from the BlueGene/L supercomputer logs. They first group the logs by number
of tokens, then find the token position with the least number of unique values and split each
group using the unique values in this token position. Afterwards, they search for bijective
relationships between the set of unique tokens in two token positions to create a new par-
tition. Finally, they abstract logs based on the number of unique tokens in each position of

each partition. Due to the large number of logs and the evolution of systems, abstracting

Appendix A: Selection Protocol of Surveyed Papers 175

logs repeatedly is time consuming. Therefore, Fisher et al. [ZFW10] propose an approach
to learn the log formats incrementally.

The rich yet unstructured nature of logs has created a new market for log manage-
ment applications (e.g., Splunk [BGSZ10], XpoLog [xpo] and Logstash [logb]) that assist in
storing, querying and analyzing logs. Artemis [CCBGO8] is a log mining platform that col-
lects logs from distributed nodes, abstracts and stores data from logs into a database. The
platform supports visualizations to explore the data and a plugin interface for user-defined
analysis.

Lang et al. [Lan12] present a logging framework that gathers logs from all software or
hardware in an IT company. The platform archives logs and supports future search and
analysis on the logs. The platform is able is handle 100K lines of logs per second.

Jiang et al. [JHFHO8; JHHF08b] leverage logs to detect abnormal system behaviours.
Their approach transforms logs into event pairs. They identify the abnormal system be-
haviour by flagging the rarely occurring event pairs. Jiang et al. [JHHF09] also leverage
logs to detect performance degradations. They link the logs into sequences and measure
response times of the sequences using the time stamps associated with each log line. They
flag the instances of log sequences that have higher then normal response time.

Xu et al. [XHF"09b; XHF09a] propose an approach to detect system anomalies. They
first abstract the logs by matching logs with the logging statements from source code. They
distill the printed parameters and system state from the logs. Therefore, they extract a
matrix with each vector indicating the values of parameters and the system state. They
perform Principal Component Analysis to identify the usual and unusual correlations among
features to detect system anomalies. They use their approach on Google’s production logs.
Their experience shows that their approach works well on production logs [XHF"10]. Their
experiences of the advances and challenges of analyzing logs are reported [OGX12].

Salfner et al. [ST08] focus on processing error logs to predict system failures. Their

approach includes three steps: 1) abstracting error logs into error IDs, 2) grouping error log

Appendix A: Selection Protocol of Surveyed Papers 176

sequences and 3) filtering noise in the logs. Fulp et al. [FFHO08] transform logs into support
vector machines to predict system failures. They evaluate their technique by predicting the
failure of nodes in a cluster with over 1000 nodes.

Zhang et al. [ZCHC09] model the availability of IT service using the information re-
ported in the logs. They derive a Bayesian network structure to capture the causality be-
tween system components. Their approach is evaluated using a banking service named
Douglas.

Tricaud [Tri08] the use of parallel coordinates to visualize logs for detecting security
anomalies. A tool named Picviz is implemented to visualize logs by Parallel coordinates.

Lou et al. [LFY10] propose transforming logs into a matrix. They first detect invariants
by solving the matrix from historical logs. They analyze new logs by checking whether the
vector extracted from the logs violates the invariants. The logs that violate the invariance
are considered to indicate system failure.

Similarly Sandeep et al. [SSNT08] extract features from logs into vectors in a matrix.
They leverage the matrix to train a model for system performance and use the model to
predict performance based on new logs.

Tan et al. [TPK'08] propose SALSA, which transforms logs into a state-machine. They
compare the probability distributions of the durations from one state to another across
hosts to detect system anomalies. Tan et al. [TPKT09] further leverage the state-machine
generated by SALSA to visualize control and data flow from distributed systems. The vi-
sualization is used to detect performance issues, especially in Hadoop clusters [TKGN10].
SALSA and the visualization techniques are included in a platform named ASDF [BKT+10]
that aims to detect performance anomalies in large scale distributed platforms by analyzing
logs and performance counters.

Yuan et al. [YMX'10] design a tool named SherLog to assist in the diagnosis of field
failures. The tool analyzes the source code and the logs to generate what must or may

happen in terms of both control flow and data flow.

Appendix A: Selection Protocol of Surveyed Papers 177

Chukwa is a data collection system designed on top of Hadoop to collect logs and moni-
tor system health [RK10],

Kavulia et al. [KTGN10] leverage logs to study the execution of a commercial super
computing cluster based on Hadoop using field logs collected over a period of 10 months.
They first characterize the workload and job patterns. They then study the errors during
execution and find that better diagnosis and recovery approaches are needed. Finally, they
propose approaches to predict performance problems and workload changes.

Wei et al. [XHF09a] propose an online log analysis approach using frequent pattern
mining and distribution estimation techniques to capture the dominant patterns from the
system. Their technique can recover the frequent sequences of logs as well as the duration
of the sequences.

Nagappan et al. [NWV09] propose an approach to recover the system workload from
abstracted logs using Suffix Arrays and Longest Common Prefix. They first abstract the logs
then build Suffix Array and Longest Common Prefix from the logs. They use the values
in the Longest Common Prefix to detect patterns in logs. Their approach requires O(N) in
space and time to discover all possible patterns in N events from logs.

Hassan et al. [HMF™08] propose leveraging the rich information in logs to generate
workload information for capacity planning of large scale systems. Instead of recovering all
scenarios of a system, their approach uncovers a limited set of high workload scenarios with
high volume of repeating events. They compress the scenarios by compressing the repeated
events in these scenarios and use the measure of compression ratio to determine the most
critical scenarios.

Lou et al. [LFWL10] propose uncovering dependencies between system components
using logs. Their approach first transforms logs into keys and then it uses co-occurrence
analysis to detect dependent keys from each system component. Finally, their approach
leverages Bayesian decision theory to determine the dependency between each pair of keys.

Beschastnikh et al. [BBET11; BBST11; BABE11] design a tool named Synoptic, which

Appendix A: Selection Protocol of Surveyed Papers 178

infers concise and accurate system models from logs. Synoptic focuses on mining invariants
from the logs, such as log A needs to follow log B. Developers used Synoptic-generated
models to verify known bugs, diagnose new bugs, and increase their confidence in the
correctness of their systems.

Nagappan et al. [NR11] transform logs into Directed Cyclic Graphs. They create a tool
to transform the logs into graphs and apply existing graph-based algorithms to analyze the
logs.

Fu et al. [FLL*13] recover system execution patterns by extracting a sequence of logs.
They propose an algorithm to mine the execution patterns from the logs. From the extracted
patterns, they learn essential contextual factors, such as parameter values in logs, which
cause the execution of a branch of a system.

Weigert et al. [WHF11] propose transforming logs into a distributed graph to support
large scale analysis. They perform experiments with a distributed cluster with 50 nodes and
39 million log lines, with a latency of only 10 ms.

Yuan et al. [YZPT11] propose a tool named Log Enhancer, which automatically adds
more context to log lines. The tool analyzes the variable values that are directly included in
the conditions for the logging statements. It then analyzes the data flow of these variable
values to understand why these conditions hold. The tool enhances the logging statements
by printing the values of variables that can still be accessed.

Jiang et al. [JAST10] leverage logs to speed up the user acceptance testing. Their ap-
proach mines a repository of logs to estimate the reliability of the system under different
execution scenario.

Recent work by Yuan et al. [YPZ12] studies the logging characteristics of four open
source systems. They quantify the pervasiveness and the benefit of software logging. They
also find that developers modify logs because they often cannot get the correct log message
on the first attempt.

Yuan et al. [YPH'12] empirically study the efficacy of logging practices and find that

Appendix A: Selection Protocol of Surveyed Papers 179

more than half of the failures could not easily be diagnosed using existing logs. There-
fore, they design a tool called Errlog, which insert logging statements into source code in
locations where the exceptions are not well-logged.

King et al. [KW13] perform an empirical study on the logging mechanism for electrical
health record systems. They find 14 security events and 2 data elements in logs that are
not explicitly addressed by system documents, highlighting the lack of traceability between
logs and system documentation

Selsky et al. [SMO5] propose a uniformed logging architecture, which uses XML to de-
fine the logging format and stores logs from multiple sources in a central storage. Such
architecture potentially supports correlating logs from different sources.

Rouillard [Rou04] designs a program named SEC, Simple Event Corrector, which trans-
forms logs into vectors of events. The program can perform various analyses on the events
to detect problems during system execution.

Sah et al. [ST02] present a log managing system, which is designed specifically to man-
age large scale enterprise logs. The system collects logs from distributed nodes and supports
SQL and Perl to analyze the logs.

Dunlap et al. [DKCT02] propose ReVirt, a virtual machine logging mechanism that pro-
vides enough information for instruction-by-instruction replaying a long-term execution of
a virtual machine. Such logging mechanism is used to enable better intrusion analysis with
little overhead.

Jiang et al. [JHPT09] study the characteristics of customer problem troubleshooting
using logs of an industrial storage system. They observe that the customer problems with
attached logs were resolved sooner than those without logs.

Girardin et al. [GB98] propose visualizing logs using a spring layout. The visualization
is used to assist in the detection of anomalies and break-in attempts of a firewall system.

Glass [Gla02] designs a log monitor daemon for BSD UNIX. The log monitor can suc-

cessfully recognize security holes.

Appendix A: Selection Protocol of Surveyed Papers 180

Cordero et al. [CWO08] design replayable logs for monitoring voting machines. The logs
provide a comprehensive, trustworthy, replayable record of essentially everything the voter
saw and did in the voting booth.

Krizak [Kri10] designs a platform that collects logs via syslog from distributed nodes.
The platform supports log analysis plugins to perform various analyses on the collected
logs.

Antonyan et al. [ADK*09] perform automated analysis on the voting machine logs. The
logs are transformed into a State Diagram. Their analysis of the event logs shows that there
are some deviations from the prescribed and expected use such voting terminals.

Bing et al. [BEOO] design a program named SHARP to extend UNIX logging. The pro-
gram improves monitoring of systems by extending the existing syslog infrastructure with
programmable modules.

Logothetis et al. [LTWY11] present In-situ, a MapReduce based platform for log analysis.
The platform aims to process up to 10 MB of logs per second.

Takada et al. [TKO2] design MieLog, an interactive visual log browser. The browser
supports visualization and interactive views of logs. The browser also abstract logs and
support statistical analysis on logs, such as finding unusual log messages.

Stearley et al. [SBB12] design an approach that transforms logs into a state machine
and leverages the state machine to identify failure-related logs.

Baxter et al. [BEO"12] design automated methods to detect errors in election audit logs.
They perform statistical analysis on the voting flow recovered by logs and suggest resource
allocation for the system.

Garduno et al. [GKT™12] propose Theia, a visualization approach that assists in program
diagnosis of Hadoop cluster. Theia includes three visualization views: anomaly heat map,

job execution stream and job execution detail.

Appendix A: Selection Protocol of Surveyed Papers 181

Veeraraghavan et al. [VIW'11] propose an approach that improves logs using the sim-
pler and faster mechanisms of single-processor record and replay, yet still achieve the scal-
ability offered by multiple cores, by using an additional execution to parallelize the record
and replay of an application.

Zawawy et al. [ZKM10] present a log mining framework for log reduction and interpre-
tation. The platform abstracts and aggregates logs from distributed systems. The platform
supports further analysis on the aggregated logs.

Kodre et al. [KZR08] leverage statistical sampling techniques on logs to identify a small
fraction of test cases to execute while still retaining a high degree of confidence in the
code-quality.

Mizan et al. [MF12] generate a layered queuing network based performance model
from logs. The model can then be analyzed to locate bottlenecks in both the hardware and
software.

Pecchia et al. [PR12] perform an empirical study based on a data set of 17,387 exper-
iments where failures have been induced by means of software fault injection into three
systems. The study shows that the system architecture, placement of the logging instruc-
tions and specific supports provided by the execution environment, significantly increase
the accuracy of logs at run-time.

Banerjee et al. [BSC10] leverage web logs to assess the reliability of Software as a Ser-
vice (SaaS) suites. They classify logs based on the effects of their outcomes on SaaS usabil-
ity.

Mariani et al. [MPO8] propose an approach to automatically identify failure causes from
logs. Their approach abstracts logs into events and transforms logs into finite state ma-
chines. They compare the logs from system execution with and without failure in order to
identify the failure-related logs.

Andrews et al. [AZ0O] propose transforming software unit test logs into state machines

and propose a log file analysis language for software unit testing.

182

Appendix A: Selection Protocol of Surveyed Papers

3urIoITUOW WAISAS s3o1 swmn-uni [0TY]uornog
uonpensqe 30[SIUIAD s3o1 swn-uni [eg0AHHC]3uelr
uonpensqe 30[SIUIAD s3o1 swmn-uni [SOHAH]3uelr
3unsal aremijos 1818y sired s3of uoneordde [q80dHH]uelr
3unsa) aremijos owmn asuodsal 2ouanbas s3o1 uoneordde [60AHH]3uelr
3unsal aremijos Aqeqoid 3unenores sjusad s3of uonedrdde [0T . Svr]8uelr
UOI310939p A[ewiouR SISATeue donei1s sjuawazels 3ur3d3of [ZT HdA]ueng
Jjuowaoxdur 301 SIsATeue dne1s sjuawalels ur3d3of [TT dZAJueng
Apn3s Tedtrdwa sjuawasels 3ur3d3of [ZTIZdA]ueng
3o uonedrdde
UO0112919p A[ewouer SISA[eue d1els sjuaurazels 3urd3of [OT XINA]ueng
UO01I919p A[ewouer uoneZI[ensiA QuIydRUI LIS s3o1 uuiopzerd [OINOM.L]ueL
UO012919p A[ewouer uoneZI[ensiA QuIYdRUI LIS s3o1 wropyerd [60-d.L]uel
uoMd3319p ATewioue 2dueIsIp asim-Ired Jurredurod QuIYdRUI 3)BIS s3o[wiopyerd [80 Md.L]uel
UO0112919p A[ewouer $10129A 3UIAJOS X1yewt s3o1 wuiopzerd [0T L AdTInOT
£A1091]) UOISIDAp URIS9ARq
AI9A0091 [opOW WISAS SISA[BUER 90USIINII0-0D SJUDAD s3o[wrojerd [OTIMATINOT
[eoD sisA[eue 307 uoneuLIojsues) 307 UO13193[[0d 30T 1aded

JIom pare[al ururwt 301 Jo Arewrwing 1y 9[qeL

183

Appendix A: Selection Protocol of Surveyed Papers

AI2A0021 [opOW WIISAS swylrod[e paseq-ydeid ydeid s3o[swmn-uni [TTYN]ueddedeN
AI2A0031 peOPJIOM xga1d uowruwod 1s93u0|
A19A0231 peop{IOM Keire xygjns sAelIe XIjjns S30[awn-uni [60AMN]ueddedeN
uzopyerd 3oj S9LI9S QW s30[swn-uni [01ZSDHd]exoumg
UO0112919p A[ewouer 3o woperd [0T AHX]INX
uonoensqe 30| syuaurale)s 3urd3of
UOI109319p A[ewioue vod XIIjeuW 3o wojperd [80 AHX]NX
UONBWIISD UONNALIISIP
uondensqe 30| Sururu uraied jusnbaiy oouanbas syuswalels 3urd3of
uond319p Afewioue ‘vod ‘XLjew s3o1 wiopyerd [e60 AHXINX
UONBWIISY UONNALIISIP
uonoensqe 30[Sururur uraied juanbaiy 2ouanbas syuswaress 3urd3o]
uond319p AfeuwIoue ‘vod XLjeU s3o1 wrojzerd [960 L AHXINX
uondensqe 30] SJU9AD s3o[wxoperd [0T - MXd]uIgyey
Apmas Teorrrdurs s3of wrroprerd [2TXD011uIO
uonda19p AfeUIoue
A19A0231 peopjIOM UOISS21331 TBaUl] oouanbas s3o[woperd [0OIND.II]eAMARY
uond319p Afewioue UoneZI[eNSIA auryoewW els s3o1 wiopyerd [0T LIdg]a1eg

184

Appendix A: Selection Protocol of Surveyed Papers

UONIB[2.110D

urioperd 301 SJU9AD s30[awn-unt [SOINS] AS[oS

Apnis [eotdurs s3o1 uoneordde [ET] Sun]
uzojyed 3of s3o[wxoperd [zTueT] Sueq

AI9A0231 [opowl UIdISAS sjueLIBAUL JUTUTUI ydeid sgo[swn-unt [TT,Hdgd]YIuIseydsag
AI9A0031 [opowI UIdISAS sjueLIBAUL UTUTUI ydei3 sgo[swn-unt [TT,SIg]YIuIseydsag
A19A0231 [opowI UIaISAS sjueLIBAUL UTUTUI ydeid sdo[own-un1 [T 1HIVI]PIUISeydsag
A19A0031 peOP[IOM uorssarduod soouanbas S30[awn-uni [80 AINH]uesseH
UO0112919p A[ewoue auryoew 103094 11oddns soouanbas s3o[woprerd [80HAA]dnA
UO0112919p A[ewouer 3urnaly soouanbas 30[awn-uni [80.LS]Ioujres
uondIIp AeUIou® UONBZI[BNSIA so1eUIp100D [afTeIRd 3o1 wropzerd [80LLL]pnesui],
wrojield sisATeue 30| SIUAD s30[awn-unt [80DgDD]NIRID
uondIAp AeUIoue 15910J Wopuel XLIJRUI s30[awn-uni [80 NSS]deapues
UO011I919p A[ewouer SISA[eue [opowl uersAeq ydeid s30[awn-unt [60DHDZ]3ueyz
uonoensqe 30] SJUDAD s30[awn-uni [0TMAZ]InyZ
uonoensqe 30] SIUAD 3o woperd [60INHZIN | nfueyen
AI9A0031 [opowl UIaISAS ydeid painqruasip s30[awn-unt [TTAHM]319319M
AI9A0031 [opowI UIdISAS UonedYISSe[d pasiazadns ydeid S30[awn-uni [T T1d]Ind
uonodensqe 30] SIUDAD s30[awn-unt [0IAN]ueddedeN

185

Appendix A: Selection Protocol of Surveyed Papers

Jusuraroxduwr 30[

s3of wroprerd [T, MTA] URARYSRIRISOA

UO0112919p A[ewour

uonezIensia

s3o[woperd

[ZT.+IXD] ounpien

K19A0021 peOP[IOM

SISA[eue [ed1IsSHels

s3o1 uoneordde

[ZT.0Hd] Ie1xeg

UO01I919p A[ewouer

ouIyoel 21els

s3o[woperd

[Z199S] As[1ea1g

UONB[2II0D SISATeuR [ed1ISIIE)S

uondd19p AfeuwIoue UONBZI[ENSIA SJUDAD S30[awn-unI [ZOM.L] epeyeL
urzojyed 30f s3o[swn-uni [TTAMIT] suaylo307]
duriojruow WaIsAS s3o[wojerd [00Ag] 3uig
wrrogyerd 3o s3o[woprerd [0T>4] unjqey
AI9A0021 peOPJIOM weiderp jels s3o[uonedrdde [60 IAV] ueduoiuy
uzojied 30f s9ouanbas s3o[wxojerd [0TID]] ezl
duriojruowW WaISAS 3o1 uoneordde [80OMD] 019p10D
Jurrojiuow waisAs s3o[wrojerd [Zoe[D] sseH
uondd19p Afewioue UONBZI[ENSIA SJUDAD S30[awn-unI [869D] uIpieIlD)
Apnis 1edtrdwo s3o[wojerd [60 dH[] Suelr
UOI109319p A[ewioue s3o[wojerd [20. DAl derung
uzojyed 30y s3o[swmn-uni [20.S] yes

uorssa1durod UOIIB[2.LI0D
UO0112919p A[ewoue UOTIB[9110D soouonbas s3o[uoneordde [-onoy] pie[noy

186

Appendix A: Selection Protocol of Surveyed Papers

Mﬁ_umwu 2IeMljJos

SuUIyoel 93k]Ss 211Uy

3oy uoneordde

[00ZV] smaipuy

UOI10919p AJewou®

J31p ydeid QuIyoRU 3BIS 21Uy

s30[awn-unt

[80dIN] TueLIe]N

Apnis [eotdurs

s3o[woperd

[01DS4d] 93(1oueg

Apnis [eotrdurs

s30[awn-unt

[2Tdd] eryodad

UO[10919p AJewOou®

yIomiau Jurenanb paraker

s30[awn-unt

[CTAIN] uezIN

Mﬁﬁwwu °IeMlJos

Sool1

s30[own-unt

[80Y9Z>1] 21poY

urojyed 3of

SJU9A9

s30[awn-unt

[0TIADIZ] Amemez

Bibliography 187

Bibliography

[ADK*09]

[AHM™08]

[APO1]

[AZOO]

Tigran Antonyan, Seda Davtyan, Sotirios Kentros, Aggelos Kiayias, Laurent
Michel, Nicolas Nicolaou, Alexander Russell, and Alexander Shvartsman. Au-
tomating voting terminal event log analysis. In EVT/WOTE09: Proceedings of
the 2009 conference on Electronic voting technology/workshop on trustworthy
elections, pages 15-15, Berkeley, CA, USA, 2009. USENIX Association. [180,
185]

N. Ayewah, D. Hovemeyer, J.D. Morgenthaler, J. Penix, and William Pugh. Us-
ing static analysis to find bugs. Software, IEEE, 25(5):22-29, 2008. [4, 11]

Annie I. Antén and Colin Potts. Functional paleontology: system evolution as
the user sees it. In ICSE 2000: Proceedings of the 23rd International Conference
on Software Engineering, pages 421-430, Toronto, Ontario, Canada, 2001. IEEE
Computer Society. [95]

James H. Andrews and Yingjun Zhang. Broad-spectrum studies of log file anal-
ysis. In ICSE 2000: Proceedings of the 22nd international conference on Software
engineering, pages 105-114, New York, NY, USA, 2000. ACM. [181, 186]

Bibliography 188

[BABE11]

[BBA109]

[BBET11]

[BBST11]

[BDL10]

Ivan Beschastnikh, Jenny Abrahamson, Yuriy Brun, and Michael D. Ernst. Syn-
optic: Studying logged behavior with inferred models. In ESEC/FSE ’11: Pro-
ceedings of the 8th Joint Meeting of the European Software Engineering Confer-
ence and ACM SIGSOFT Symposium on the Foundations of Software Engineering
Tool Demonstration Track, pages 448-451, Szeged, Hungary, September 2011.
[20, 177, 184]

Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein,
Vladimir Filkov, and Premkumar Devanbu. Fair and balanced?: bias in bug-
fix datasets. In ESEC/FSE ’09: Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 121-130, New York, NY, USA,
2009. ACM. [133]

Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, Arvind Krishnamurthy, and
Thomas E. Anderson. Mining temporal invariants from partially ordered logs.
In SLAML ’11: Managing Large-scale Systems via the Analysis of System Logs and
the Application of Machine Learning Techniques, pages 3:1-3:10, New York, NY,
USA, 2011. ACM. [20, 177, 184]

Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and
Michael D. Ernst. Leveraging existing instrumentation to automatically infer
invariant-constrained models. In ESEC/FSE ’11: Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of soft-
ware engineering, pages 267-277, New York, NY, USA, 2011. ACM. [17, 18,
20, 30, 108, 161, 177, 184]

Alberto Bacchelli, Marco D’Ambros, and Michele Lanza. Are popular classes

Bibliography 189

[BEOO]

[Bei84]

[Bel99]

[BEO'12]

[BGMD10]

[BGSZ10]

more defect prone? In FASE ’10: Proceedings of the 13th international confer-
ence on Fundamental Approaches to Software Engineering, pages 59-73, Berlin,

Heidelberg, 2010. Springer-Verlag. [111]

Matthew Bing and Carl Erickson. Extending unix system logging with sharp. In
LISA ’00: Proceedings of the 14th USENIX conference on System administration,
pages 101-108, Berkeley, CA, USA, 2000. USENIX Association. [180, 185]

Boris Beizer. Software system testing and quality assurance. Van Nostrand Rein-

hold Co., New York, NY, USA, 1984. [68]

Thoms Bell. The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes,
24(6):216-234, October 1999. [4, 11]

Patrick Baxter, Anne Edmundson, Keishla Ortiz, Ana Maria Quevedo, Samuel
Rodriguez, Cynthia Sturton, and David Wagner. Automated analysis of election
audit logs. In EVT/WOTE’12: Proceedings of the 2012 international conference
on Electronic Voting Technology/Workshop on Trustworthy Elections, pages 9-9,
Berkeley, CA, USA, 2012. USENIX Association. [180, 185]

Christian Bird, Harald Gall, Brendan Murphy, and Premkumar Devanbu. An
analysis of the effect of code ownership on software quality across windows,
eclipse, and firefox. Technical Report 541, University of California, Davis,

Davis, California, USA, 2010. [112]

Ledion Bitincka, Archana Ganapathi, Stephen Sorkin, and Steve Zhang. Opti-
mizing data analysis with a semi-structured time series database. In SLAML’10:
Proceedings of the 2010 workshop on Managing systems via log analysis and ma-
chine learning techniques, pages 7-7, Vancouver, Canada, 2010. USENIX. [1, 2,
16, 27, 61, 175, 183]

Bibliography 190

[BH10]

[BH13]

[BJOS8]

[BKT*10]

[BKZ11]

[BLR10]

[BMSO03]

Nicolas Bettenburg and Ahmed E. Hassan. Studying the impact of social struc-
tures on software quality. In ICPC ’10: Proceedings of the 18th International
Conference on Program Comprehension, pages 124-133, Washington, DC, USA,
2010. IEEE Computer Society. [111, 112, 116]

Nicolas Bettenburg and AhmedE. Hassan. Studying the impact of social inter-
actions on software quality. Empirical Software Engineering, 18(2):375-431,
2013. [112]

R.S. Brower and H.S. Jeong. Beyond description to derive theory from qual-
itative data. In Boca Raton, editor, Handbook of Research Methods in Public

Administration, pages 823-839. Taylor Francis, 2008. [79]

Keith Bare, Soila P. Kavulya, Jiaqi Tan, Xinghao Pan, Eugene Marinelli, Michael
Kasick, Rajeev Gandhi, and Priya Narasimhan. Architecting dependable sys-
tems vii. chapter ASDF: an automated, online framework for diagnosing per-
formance problems, pages 201-226. Springer-Verlag, Berlin, Heidelberg, 2010.
[14, 176, 183]

Liliane Barbour, Foutse Khomh, and Ying Zou. Late propagation in software
clones. In ICSM ’11: Proceedings of the 2011 27th IEEE International Conference
on Software Maintenance, pages 273-282, Washington, DC, USA, 2011. IEEE

Computer Society. [118]

Alberto Bacchelli, Michele Lanza, and Romain Robbes. Linking e-mails and
source code artifacts. In ICSE ’10: Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1, pages 375-384, 2010.
[27]

Elisa L. A. Baniassad, Gail C. Murphy, and Christa Schwanninger. Design pat-

tern rationale graphs: linking design to source. In ICSE ’03: Proceedings of the

Bibliography 191

[BNJO3]

[BSC10]

[BvDDTO7]

[BWO8]

[BW10]

[CCBGO8]

[CMRHO09]

25th International Conference on Software Engineering, pages 352-362, 2003.
[27]

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
J. Mach. Learn. Res., 3:993-1022, March 2003. [88, 111]

Sean Banerjee, Hema Srikanth, and Bojan Cukic. Log-based reliability analysis
of software as a service (saas). In ISSRE ’10: Proceedings of the 2010 IEEE 21st
International Symposium on Software Reliability Engineering, pages 239-248,
Washington, DC, USA, 2010. IEEE Computer Society. [181, 186]

Magiel Bruntink, Arie van Deursen, Maja D’Hondt, and Tom Tourwé. Sim-
ple crosscutting concerns are not so simple: analysing variability in large-scale
idioms-based implementations. In AOSD ’07: Proceedings of the 6th interna-
tional conference on Aspect-oriented software development, pages 199-211, Van-

couver, British Columbia, Canada, 2007. ACM. [32, 68]

Raymond P.L. Buse and Westley R. Weimer. Automatic documentation infer-
ence for exceptions. In ISSTA ’08: Proceedings of the 2008 international sympo-

sium on Software testing and analysis, pages 273-282, 2008. [29]

Raymond P.L. Buse and Westley R. Weimer. Automatically documenting pro-
gram changes. In ASE ’10: Proceedings of the IEEE/ACM international conference
on Automated software engineering, pages 33-42, 2010. [29]

Gabriela F. Cretu-Ciocarlie, Mihai Budiu, and Moisés Goldszmidt. Hunting for
problems with artemis. In WASL’08: Proceedings of the First USENIX conference
on Analysis of system logs. USENIX Association, 2008. [175, 184]

Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts, and James D. Herbsleb.

Bibliography 192

[com]

[CORO6]

[Corll]

[CTNH12]

[CWO08]

[CZD109]

Software dependencies, work dependencies, and their impact on failures. IEEE

Transaction on Software Engineering, 35:864-878, November 2009. [118]

America’s most wanted - a metric to detect persistently faulty machines in
hadoop. http://hadoopblog.blogspot.com/2010/06/americas-most-wanted-

metric-to-detect.html Last Verified on January 2014. [155]

Domenico Cotroneo, Salvatore Orlando, and Stefano Russo. Failure classifi-
cation and analysis of the java virtual machine. In ICDCS ’06: Proceedings of
the 26th IEEE International Conference on Distributed Computing Systems, pages

17—, Washington, DC, USA, 2006. IEEE Computer Society. [156]

James R. Cordy. Excerpts from the txl cookbook. In GTTSE '09: Proceedings of
the 3rd international summer school conference on Generative and transforma-
tional techniques in software engineering III, pages 27-91, Berlin, Heidelberg,
2011. Springer-Verlag. [70]

Tse-Hsun Chen, Stephen W. Thomas, Meiyappan Nagappan, and Ahmed E.
Hassan. Explaining software defects using topic models. In MSR 2012: Pro-
ceedings of 9th IEEE Working Conference of Mining Software Repositories, pages
189-198. IEEE, 2012. [111]

Arel Cordero and David Wagner. Replayable voting machine audit logs. In
EVT ’08: Proceedings of the conference on Electronic voting technology, pages

2:1-2:14, Berkeley, CA, USA, 2008. USENIX Association. [180, 185]

Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen, and Rainer
Koschke. A Systematic Survey of Program Comprehension through Dynamic
Analysis. IEEE Transactions on Software Engineering, 35:684-702, 2009. [1, 4,
11, 61]

Bibliography 193

[CZvDT09]

[DFL*T12]

[DGO8]

[DKC*02]

[DPH10]

[DR12]

[ds2]

Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen, and Rainer
Koschke. A systematic survey of program comprehension through dynamic
analysis. IEEE Transaction on Software Engineering, 35:684-702, September
2009. [161]

Rui Ding, Qiang Fu, Jian-Guang Lou, Qingwei Lin, Dongmei Zhang, Jiajun
Shen, and Tao Xie. Healing online service systems via mining historical issue
repositories. In ASE 2012: Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering, pages 318-321, 2012. [30]

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107-113, January 2008. [66, 116, 142,
152]

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Pe-
ter M. Chen. Revirt: enabling intrusion analysis through virtual-machine log-
ging and replay. SIGOPS Operating System Review, 36(SI):211-224, December
2002. [179, 185]

Wim De Pauw and Stephen Heisig. Visual and algorithmic tooling for system
trace analysis: a case study. SIGOPS Operating Systems Review, 44(1):97-102,
March 2010. [18]

Barthélémy Dagenais and Martin P. Robillard. Recovering traceability links be-
tween an api and its learning resources. In ICSE 2012: Proceedings of the 2012
International Conference on Software Engineering, pages 47-57, Piscataway, NJ,

USA, 2012. IEEE Press. [27]

Dell dvd store. http://linux.dell.com/dvdstore/ Last Verified on January 2014.
[14, 68]

Bibliography 194

[eba]

[ec2]

[FDCD12]

[FFHOS8]

[FLL*13]

[FN99]

[FOGGO5]

[FWGO07]

Ebay is powered by hadoop. http://wiki.apache.org/hadoop/PoweredBy Last
Verified on January 2014. [138]

Amazon ec2. https://aws.amazon.com/ec2/ Last Verified on January 2014.

[159]

Danyel Fisher, Rob DeLine, Mary Czerwinski, and Steven Drucker. Interactions
with big data analytics. interactions, 19(3):50-59, May 2012. [100, 138, 141,
152, 157, 159]

Errin W. Fulp, Glenn A. Fink, and Jereme N. Haack. Predicting computer sys-
tem failures using support vector machines. In WASL’08: Proceedings of the
First USENIX conference on Analysis of system logs, pages 5-5, Berkeley, CA,
USA, 2008. USENIX Association. [18, 176, 184]

Qiang Fu, Jian-Guang Lou, Qingwei Lin, Rui Ding, Dongmei Zhang, and Tao
Xie. Contextual analysis of program logs for understanding system behaviors.
In MSR ’13: Proceedings of the 10th Working Conference on Mining Software
Repositories, pages 397-400, Piscataway, NJ, USA, 2013. IEEE Press. [18, 178,
184]

N.E. Fenton and M. Neil. A critique of software defect prediction models. IEEE

Transactions on Software Engineering, 25(5):675-689, 1999. [110]

Michael Fischer, Johann Oberleitner, Harald Gall, and Thomas Gschwind. Sys-
tem evolution tracking through execution trace analysis. In IWPC '05: Pro-
ceedings of the 13th International Workshop on Program Comprehension, pages

237-246, Washington, DC, USA, 2005. IEEE Computer Society. [161]

Beat Fluri, Michael Wursch, and Harald C. Gall. Do Code and Comments Co-

Evolve? On the Relation between Source Code and Comment Changes. In

Bibliography 195

[FWGGO09]

[GB98]

[GDGO6]

[GGO8]

[Gil]

[GJKT97]

WCRE ’07:Proceedings of the 14th Working Conference on Reverse Engineering,
pages 70-79, Vancouver, BC, Canada, 2007. IEEE Computer Society. [95]

Beat Fluri, Michael Wiirsch, Emanuel Giger, and Harald C. Gall. Analyzing the
co-evolution of comments and source code. Software Quality Control, 17:367—

394, December 2009. [95]

Luc Girardin and Dominique Brodbeck. A visual approach for monitoring logs.
In LISA '98: Proceedings of the 12th USENIX conference on System administra-
tion, pages 299-308, Berkeley, CA, USA, 1998. USENIX Association. [179,
185]

Orla Greevy, Stéphane Ducasse, and Tudor Girba. Analyzing software evolution
through feature views: Research Articles. J. Softw. Maint. Evol., 18:425-456,
November 2006. [12, 95]

Michael W. Godfrey and Daniel M. German;. The past, present, and future of
software evolution. In FoSM: Frontiers of Software Maintenance, pages 129—

138, Beijing, China, October 2008. [96]

Brian R Gilstrap. An introduction to the java logging api.
http://www.onjava.com/pub/a/onjava/2002/06/19/log.html Last Verified on
January 2014. [114]

Harald Gall, Mehdi Jazayeri, René Klosch, and Georg Trausmuth. Software
Evolution Observations Based on Product Release History. In ICSM '97: Pro-
ceedings of the International Conference on Software Maintenance, pages 160—

166, Bari, Italy, 1997. IEEE Computer Society. [94]

Bibliography 196

[GKMSO00] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. Predicting fault inci-
dence using software change history. IEEE Transaction on Software Engineering,

26:653-661, July 2000. [113, 124]

[GKTT12] Elmer Garduno, Soila P. Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya
Narasimhan. Theia: visual signatures for problem diagnosis in large hadoop
clusters. In LISA ’12: Proceedings of the 26th international conference on Large
Installation System Administration: strategies, tools, and techniques, pages 33—

42, Berkeley, CA, USA, 2012. USENIX Association. [180, 185]

[Gla02] Brett Glass. Log monitors in BSD UNIX. In BSDC ’02: Proceedings of the BSD
Conference 2002 on BSD Conference, pages 14-14, Berkeley, CA, USA, 2002.
USENIX Association. [179, 185]

[GNCT09] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan M.
Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan,
and Utkarsh Srivastava. Building a high-level dataflow system on top of Map-

Reduce: the Pig experience. Proc. VLDB Endow., 2(2):1414-1425, 2009. [158]

[GT00] Michael W. Godfrey and Qiang Tu. Evolution in Open Source Software: A Case
Study. In ICSM ’00: Proceedings of the International Conference on Software
Maintenance, pages 131-142, San Jose, California, USA, 2000. IEEE Computer
Society. [94]

[GWS06] RL Graham, TS Woodall, and JM Squyres. The Practice of Programming. 2006.
[2, 104]

[hada] Hadoop. http://hadoop.apache.org Last Verified on January 2014. [116]

[hadb] Hadoop 0.18.0 release notes. http://hadoop.apache.org/docs/r0.18.0/releasenotes.html
Last Verified on January 2014. [74, 79]

Bibliography 197

[hadc]

[HarO1]

[Has05]

[Has08]

[Has09]

[HBB*T12]

[HHO04]

[HH10]

Hadoop stream. http://hadoop.apache.org/common/ doc-

s/10.20.2/streaming.html Last Verified on January 2014. [76]

F.E. Harrell. Regression Modeling Strategies With Applications to Linear Models,
Logistic Regression, and Survival Analysis. Springer, 2001. [125]

Ahmed E. Hassan. Mining software repositories to assist developers and support

managers. PhD thesis, University of Waterloo, 2005. [52, 72, 117]

Ahmed E. Hassan. Automated classification of change messages in open source
projects. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied com-
puting, pages 837-841, New York, NY, USA, 2008. ACM. [133]

Ahmed E. Hassan. Predicting faults using the complexity of code changes. In
ICSE ’09: Proceedings of the 2009 IEEE 31st International Conference on Software
Engineering, pages 78-88, Washington, DC, USA, 2009. IEEE Computer Society.
[111, 118]

T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic liter-
ature review on fault prediction performance in software engineering. IEEE

Transactions on Software Engineering, 38(6):1276-1304, 2012. [110]

Ahmed E. Hassan and Ric C. Holt. Using development history sticky notes to
understand software architecture. In IWPC '04: Proceedings of the 12th IEEE In-
ternational Workshop on Program Comprehension, pages 183-192, Washington,

DC, USA, 2004. IEEE Computer Society. [27, 29]

I. Herraiz and A.E. Hassan. Beyond lines of code: Do we need more complexity
metrics? In Andy Oram and Greg Wilson, editors, Making Software: What

Really Works, and Why We Believe It? OReilly Media, 2010. [112]

Bibliography 198

[HMF™08] Ahmed E. Hassan, Daryl J. Martin, Parminder Flora, Paul Mansfield, and Dave
Dietz. An Industrial Case Study of Customizing Operational Profiles Using Log
Compression. In ICSE ’08: Proceedings of the 30th international conference on
Software engineering, pages 713-723, Leipzig, Germany, 2008. ACM. [2, 18,
27,33, 61,177, 184]

[HPOO] Idris His and Colin Potts. Studying the Evolution and Enhancement of Software
Features. In ICSM ’00:Proceedings of the International Conference on Software
Maintenance, pages 143-151, San Jose, California, USA, 2000. IEEE Computer

Society. [95]

[HWO09] Daging Hou and Yuejiao Wang. An empirical analysis of the evolution of
user-visible features in an integrated development environment. In CASCON
’09:Proceedings of the 2009 Conference of the Center for Advanced Studies on
Collaborative Research, pages 122-135, Toronto, Ontario, Canada, 2009. ACM.
[95]

[[BAH12] Walid M. Ibrahim, Nicolas Bettenburg, Bram Adams, and Ahmed E. Hassan.
On the relationship between comment update practices and software bugs.

Journal of Systems and Software, 85(10):2293-2304, 2012. [29, 113]

[ibm] Infosphere streams. http://www-03.ibm.com/software/products/en/infosphere-

streams Last Verified on January 2014. [62]

[IBY*07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: distributed data-parallel programs from sequential building blocks.

SIGOPS Oper. Syst. Rev., 41:59-72, March 2007. [139, 142]

[IG96] R. Thaka and R. Gentleman. R: a language for data analysis and graphics.
Journal of computational and graphical statistics, pages 299-314, 1996. [117]

Bibliography 199

[JAST10]

[jboa]

[jbob]

[jdt]

[JHO6]

[JHFHO8]

[JHHFO08a]

Zhen Ming Jiang, Alberto Avritzer, Emad Shihab, Ahmed E. Hassan, and Par-
minder Flora. An industrial case study on speeding up user acceptance testing
by mining execution logs. In SSIRI ’10: Proceedings of the 2010 Fourth Inter-
national Conference on Secure Software Integration and Reliability Improvement,
pages 131-140, Washington, DC, USA, 2010. IEEE Computer Society. [17, 178,
182]

Jboss application server. http://www.jboss.org/jbossas Last Verified on January

2014. [116]

Jbossprofiler. https://community.jboss.org/wiki/JBossProfiler Last Verified on

January 2014. [116]
Eclipse jdt. http://www.eclipse.org/jdt Last Verified on January 2014. [70]

Zhen Ming Jiang and Ahmed E. Hassan. Examining the evolution of code
comments in postgresql. In MSR ’06: Proceedings of the 2006 international
workshop on Mining software repositories, pages 179-180, Shanghai, China,
2006. ACM. [95]

Zhen Ming Jiang, Ahmed E. Hassan, Parminder Flora, and Gilbert Hamann. Ab-
stracting execution logs to execution events for enterprise applications (short
paper). In Proceedings of the 2008 The Eighth International Conference on Qual-
ity Software, QSIC’08, pages 181-186, Washington, DC, USA, 2008. IEEE Com-
puter Society. [175, 182]

Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. An
automated approach for abstracting execution logs to execution events. Jour-
nal of Software Maintenance and Evolution: Research and Practice, 20(4):249—

267, 2008. [15, 16, 17, 69, 94, 147, 174, 182]

Bibliography 200

[JHHFO08b]

[JHHFO09]

[JHPT09]

[jme]

[JW91]

[KBMSO08]

[KKS06]

Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora.
Automatic identification of load testing problems. In ICSM ’08: Proceedings of
24th IEEE International Conference on Software Maintenance, pages 307-316,

Beijing, China, 2008. IEEE. [2, 13, 14, 15, 16, 18, 27, 61, 109, 150, 175, 182]

Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora.
Automated performance analysis of load tests. In ICSM ’09: 25th IEEE In-
ternational Conference on Software Maintenance, pages 125-134, Edmonton,

Alberta, Canada, 2009. IEEE. [2, 14, 15, 16, 17, 20, 27, 61, 109, 175, 182]

Weihang Jiang, Chongfeng Hu, Shankar Pasupathy, Arkady Kanevsky, Zhenmin
Li, and Yuanyuan Zhou. Understanding customer problem troubleshooting
from storage system logs. In FAST ’09: Proccedings of the 7th conference on
File and storage technologies, pages 43-56, Berkeley, CA, USA, 2009. USENIX
Association. [109, 179, 185]

Apache jmeter. http://jmeter.apache.org/ Last Verified on January 2014. [68]

J.E. Jackson and J. Wiley. A user’s guide to principal components, volume 19.

Wiley Online Library, 1991. [125]

Jay Kothari, Dmitriy Bespalov, Spiros Mancoridis, and Ali Shokoufandeh. On
evaluating the efficiency of software feature development using algebraic man-
ifolds. In ICSM °08: International Conference on Software Maintenance, pages

7-16, Beijing, China, 2008. [95, 161]

Johannes Koskinen, Markus Kettunen, and Tarja Systa. Profile-based approach
to support comprehension of software behavior. In ICPC ’06: Proceedings of the
14th IEEE International Conference on Program Comprehension, pages 212-224,

Washington, DC, USA, 2006. IEEE Computer Society. [12]

Bibliography 201

[Kril0]

[KTGN10]

[KW13]

[KZRO8]

[Lan12]

[LFWL10]

Paul Krizak. Log analysis and event correlation using variable temporal event
correlator (vtec). In LISA'10: Proceedings of the 24th international conference on
Large installation system administration, pages 1-11, Berkeley, CA, USA, 2010.
USENIX Association. [180, 185]

Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An analysis of
traces from a production mapreduce cluster. In CCGRID ’10: Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting, pages 94-103, Washington, DC, USA, 2010. IEEE Computer Society.
[15, 18, 20, 177, 183]

Jason King and Laurie Williams. Cataloging and comparing logging mecha-
nism specifications for electronic health record systems. In HealthTech ’13:
Proceedings of the 2013 USENIX Workshop on Health Information Technologies,

Berkeley, CA, USA, 2013. USENIX Association. [179, 184]

Ravidutta Kodre, Hadar Ziv, and Debra Richardson. Statistical sampling based
approach to alleviate log replay testing. In Proceedings of the 2008 International
Conference on Software Testing, Verification, and Validation, ICST ’08, pages

533-536, Washington, DC, USA, 2008. IEEE Computer Society. [181, 186]

David Lang. Building a 100k log/sec logging infrastructure. In LISA '12: Pro-
ceedings of the 26th international conference on Large Installation System Admin-
istration: strategies, tools, and techniques, pages 203-214, Berkeley, CA, USA,

2012. USENIX Association. [175, 184]

Jian-Guang Lou, Qiang Fu, Yi Wang, and Jiang Li. Mining dependency in dis-
tributed systems through unstructured logs analysis. SIGOPS Operating System

Review, 44(1):91-96, March 2010. [17, 18, 177, 182]

Bibliography 202

[LFY*10]

[loga]

[logb]

[LPF*09]

[LRW197]

[LTWY11]

[MAL]

[MF12]

Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. Mining in-
variants from console logs for system problem detection. In USENIXATC’10:
Proceedings of the 2010 USENIX conference on USENIX annual technical confer-
ence, pages 24-24, Berkeley, CA, USA, 2010. USENIX Association. [17, 176,
182]

Log4j. http://logging.apache.org/log4j/1.2/ Last Verified on January 2014.
[30, 71, 113, 118]

logstash. http://logstash.net/ Last Verified on January 2014. [1, 19, 27, 175]

Yixun Liu, D. Poshyvanyk, R. Ferenc, T. Gyimothy, and N. Chrisochoides. Mod-
eling class cohesion as mixtures of latent topics. In ICSM 2009: Proceedings of
the 2009 IEEE International Conference on Software Maintenance., pages 233—
242, 2009. [110]

M M. Lehman, J F. Ramil, P D. Wernick, D E. Perry, and W M. Turski. Metrics
and Laws of Software Evolution - The Nineties View. In Proceedings of the 4th
International Symposium on Software Metrics, pages 20-32, Albuquerque, NM,

USA, 1997. IEEE Computer Society. [94, 96]

Dionysios Logothetis, Chris Trezzo, Kevin C. Webb, and Kenneth Yocum. In-
situ mapreduce for log processing. In USENIXATC ’11: Proceedings of the 2011
USENIX conference on USENIX annual technical conference, pages 9-9, Berkeley,
CA, USA, 2011. USENIX Association. [180, 185]

Mallet: A machine learning for language toolkit. http://mallet.cs.umass.edu/

Last Verified on January 2014. [89]

Ahmad Mizan and Greg Franks. Automated performance model construction

through event log analysis. In ICST ’12: Proceedings of the 2012 IEEE Fifth

Bibliography 203

[MGFO07]

[MHO02]

[Moc10]

[MooO01]

[MPO8]

[MPSO08]

International Conference on Software Testing, Verification and Validation, pages

636-641, Washington, DC, USA, 2012. IEEE Computer Society. [181, 186]

T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to
learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2-13,
2007. [132]

Audris Mockus and James D. Herbsleb. Expertise browser: a quantitative ap-
proach to identifying expertise. In ICSE '02: Proc. of the 24th International

Conference on Software Engineering, pages 503-512, 2002. [47, 56]

Audris Mockus. Organizational volatility and its effects on software defects. In
FSE ’10: Proc. of the 18th ACM SIGSOFT International Symp. on Foundations of
software engineering, pages 117-126, New York, NY, USA, 2010. ACM. [128]

Leon Moonen. Generating robust parsers using island grammars. In WCRE "01:
Proceedings of the Eighth Working Conference on Reverse Engineering, page 13,
Washington, DC, USA, 2001. IEEE Computer Society. [84]

Leonardo Mariani and Fabrizio Pastore. Automated identification of failure
causes in system logs. In ISSRE '08: Proceedings of the 2008 19th International
Symposium on Software Reliability Engineering, pages 117-126, Washington,
DC, USA, 2008. IEEE Computer Society. [181, 186]

Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis
of the efficiency of change metrics and static code attributes for defect predic-
tion. In ICSE 2008: Proceedings of the 30th international conference on Software

engineering, pages 181-190, New York, NY, USA, 2008. ACM. [111, 134]

Bibliography 204

[MTF11]

[MVO00]

[MWOO]

[MWSOO08]

[MZHMO09]

[NAH10]

[NBO5]

Prashanth Mundkur, Ville Tuulos, and Jared Flatow. Disco: a computing plat-
form for large-scale data analytics. In Erlang ’11: Proc. of the 10th ACM SIG-
PLAN workshop on Erlang, pages 84-89, New York, NY, USA, 2011. ACM. [142]

Audris Mockus and Lawrence G. Votta. Identifying reasons for software
changes using historic databases. In ICSM ’00: Proceedings of the International
Conference on Software Maintenance, pages 120—, Washington, DC, USA, 2000.
IEEE Computer Society. [118, 133]

Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell

Labs Technical Journal, 5:169-180, 2000. [112]

Andrew Meneely, Laurie Williams, Will Snipes, and Jason Osborne. Predict-
ing failures with developer networks and social network analysis. In SIGSOFT
'08/FSE-16: Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, pages 13-23, New York, NY, USA, 2008.
ACM. [111]

Adetokunbo Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios. Ex-
tracting message types from BlueGene/I’s logs. In WASL 2008: Proceedings of
the ACM SIGOPS SOSP Workshop on the Analysis of System Logss, New York, NY,
USA, 2009. ACM. [174, 184]

Thanh H. D. Nguyen, Bram Adams, and Ahmed E. Hassan. Studying the impact
of dependency network measures on software quality. In ICSM ’10: Proceedings
of the 2010 IEEE International Conference on Software Maintenance, pages 1-10,

Washington, DC, USA, 2010. IEEE Computer Society. [110]

Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures

Bibliography 205

[NBO7]

[NBZ06]

[NNH99]

[NNP11]

[NR11]

[NV10]

to predict system defect density. In ICSE '05: Proceedings of the 27th interna-
tional conference on Software engineering, pages 284-292, New York, NY, USA,
2005. ACM. [111]

Nachiappan Nagappan and Thomas Ball. Using software dependencies and
churn metrics to predict field failures: An empirical case study. In ESEM "07:
Proceedings of the First International Symposium on Empirical Software Engi-
neering and Measurement, pages 364-373, Washington, DC, USA, 2007. IEEE
Computer Society. [106, 111]

Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to
predict component failures. In ICSE 06: Proceedings of the 28th international
conference on Software engineering, pages 452-461, New York, NY, USA, 2006.
ACM. [106, 110, 118, 124, 134]

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program

Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999. [4, 11]

Tung Thanh Nguyen, Tien N. Nguyen, and Tu Minh Phuong. Topic-based de-
fect prediction (nier track). In ICSE ’11: Proceedings of the 33rd International
Conference on Software Engineering, pages 932-935, New York, NY, USA, 2011.
ACM. [111]

Meiyappan Nagappan and Brian Robinson. Creating operational profiles of
software systems by transforming their log files to directed cyclic graphs. In
TEFSE ’11: Proceedings of the 6th International Workshop on Traceability in
Emerging Forms of Software Engineering, pages 54-57, New York, NY, USA,
2011. ACM. [16, 17, 178, 183]

M. Nagappan and M.A. Vouk. Abstracting log lines to log event types for min-

ing software system logs. In MSR 2010: Proceedings of the 7th IEEE Working

Bibliography 206

[NWV09]

[OA96]

[0GX12]

[ORS'08]

[PBMW99]

[PDDF13]

Conference on Mining Software Repositories, pages 114 -117, may 2010. [17,
174, 184]

Meiyappan Nagappan, Kesheng Wu, and Mladen A. Vouk. Efficiently extract-
ing operational profiles from execution logs using suffix arrays. In ISSRE’09:
Proceedings of the 20th IEEE International Conference on Software Reliability En-
gineering, pages 41-50, Bengaluru-Mysuru, India, 2009. IEEE Press. [2, 16,
18, 27, 61, 177, 183]

Niclas Ohlsson and Hans Alberg. Predicting fault-prone software modules in
telephone switches. IEEE Transaction on Software Engineering, 22:886-894,
December 1996. [110]

Adam Oliner, Archana Ganapathi, and Wei Xu. Advances and challenges in log

analysis. Commun. ACM, 55(2):55-61, February 2012. [175, 183]

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-
drew Tomkins. Pig latin: a not-so-foreign language for data processing. In
SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 1099-1110, New York, NY, USA, 2008. ACM. [158,
170]

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical Report 1999-66,

Stanford InfoLab, November 1999. [150]

Daryl Posnett, Raissa D'Souza, Premkumar Devanbu, and Vladimir
Filkov. Dual ecological measures of focus in software development. In ICSE
"13: Proceedings of the 2013 International Conference on Software Engineering,

pages 452-461, Piscataway, NJ, USA, 2013. IEEE Press. [112]

Bibliography 207

[pgf]l phfouine. http://pgfouine.projects.postgresql.org/ Last Verified on January
2014. [66]

[PNMO08] Martin Pinzger, Nachiappan Nagappan, and Brendan Murphy. Can developer-
module networks predict failures? In SIGSOFT '08/FSE-16: Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of software
engineering, pages 2-12, New York, NY, USA, 2008. ACM. [111]

[pos] Postgresql release notes of 8.3. http://www.postgresql.org/docs/8.3/static/release-

8-3.html Last Verified on January 2014. [76]

[PR12] A. Pecchia and S. Russo. Detection of software failures through event logs: An
experimental study. In ISSRE ’12: 2012 IEEE 23rd International Symposium on
Software Reliability Engineering, pages 31-40, 2012. [181, 186]

[PTZ09] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. Listening to programmers-
Taxonomies and characteristics of comments in operating system code. In ICSE
'09: Proceedings of the 31st International Conference on Software Engineering,

pages 331-341, Washington, DC, USA, 2009. IEEE Computer Society. [29]

[RD11] Foyzur Rahman and Premkumar Devanbu. Ownership, experience and defects:
a fine-grained study of authorship. In ICSE ’11: Proceedings of the 33rd Interna-
tional Conference on Software Engineering, pages 491-500, New York, NY, USA,
2011. ACM. [112]

[RD13] Foyzur Rahman and Premkumar Devanbu. How, and why, process metrics are
better. In ICSE ’13: Proceedings of the 2013 International Conference on Software
Engineering, pages 432-441, Piscataway, NJ, USA, 2013. IEEE Press. [111]

[Rei95] S.P. Reiss. The Field programming environment: A friendly integrated environ-

ment for learning and development, volume 298. Springer, 1995. [161]

Bibliography 208

[RGNOS8]

[RK10]

[RMO2]

[Rou04]

[RS11]

[rub]

[RXW110]

David Rothlisberger, Orla Greevy, and Oscar Nierstrasz. Exploiting Runtime
Information in the IDE. In ICPC ’08: Proceedings of the 2008 The 16th IEEE
International Conference on Program Comprehension, pages 63-72, Washington,

DC, USA, 2008. IEEE Computer Society. [161]

Ariel Rabkin and Randy Katz. Chukwa: a system for reliable large-scale log col-
lection. In LISA'10: Proceedings of the 24th international conference on Large in-
stallation system administration, pages 1-15, Berkeley, CA, USA, 2010. USENIX.
[20, 66, 76, 116, 162, 177, 182, 185]

Martin P. Robillard and Gail C. Murphy. Concern graphs: finding and describ-
ing concerns using structural program dependencies. In ICSE '02: Proceedings
of the 24th International Conference on Software Engineering, pages 406-416,
2002. [27]

John P. Rouillard. Real-time log file analysis using the simple event correlator
(sec). In LISA '04: Proceedings of the 18th USENIX conference on System admin-
istration, pages 133-150, Berkeley, CA, USA, 2004. USENIX Association. [179,
185]

Vladimir V. Rubanov and Eugene A. Shatokhin. Runtime verification of linux
kernel modules based on call interception. In ICST ’11: Proceedings of the 2011
Fourth IEEE International Conference on Software Testing, Verification and Vali-
dation, pages 180-189, Washington, DC, USA, 2011. IEEE Computer Society.
[12]

Rubbos. http://jmob.ow2.org/rubbos.html Last Verified on January 2014. [14]

Ariel Rabkin, Wei Xu, Avani Wildani, Armando Fox, David Patterson, and

Randy Katz. A graphical representation for identifier structure in logs. In

Bibliography 209

[ST02]

[SAH10]

[SAH11]

[san]

[SBB12]

[SBS*10]

SLAML’10: Proceedings of the 2010 workshop on Managing systems via log anal-
ysis and machine learning techniques, pages 3-3, Berkeley, CA, USA, 2010.
USENIX Association. [174, 183]

Adam Sah et al. A new architecture for managing enterprise log data. In
LISA 02: Proceedings of the 16th USENIX conference on System administration,
volume 2, pages 121-132, 2002. [179, 185]

Weiyi Shang, Bram Adams, and Ahmed E. Hassan. An experience report on
scaling tools for mining software repositories using mapreduce. In ASE ’10:
Proceedings of the IEEE/ACM international conference on Automated software

engineering, pages 275-284, New York, NY, USA, 2010. ACM. [19]

Weiyi Shang, Bram Adams, and Ahmed E. Hassan. Using Pig as a data prepa-
ration language for large-scale mining software repositories studies: An expe-
rience report. Journal of Systems and Software, 2011. In Press. [52, 72, 116,
117]

Sans consensus project - information system audit logging requirements.
http://www.sans.org/security-resources/policies/info_sys_audit.pdf Last Veri-

fied on January 2014. [32]

Jon Stearley, Robert Ballance, and Lara Bauman. A state-machine approach to
disambiguating supercomputer event logs. In Proceedings of 2012 Workshop on

Managing Systems Automatically and Dynamically, 2012. [180, 185]

Gehan M. K. Selim, Liliane Barbour, Weiyi Shang, Bram Adams, Ahmed E. Has-
san, and Ying Zou. Studying the impact of clones on software defects. In WCRE
’10: Proceedings of the 2010 17th Working Conference on Reverse Engineering,
pages 13-21, Washington, DC, USA, 2010. IEEE Computer Society. [94]

Bibliography 210

[Sea99]

[ShalO]

[Shal2]

[Shil12]

[SJAT11]

[SJA'13]

C.B. Seaman. Qualitative methods in empirical studies of software engineering.
Software Engineering, IEEE Transactions on, 25(4):557 -572, Jul/Aug 1999.
[31]

Weiyi Shang. Enabling large-scale mining software repositories (msr) studies
using web-scale platforms. Master’s thesis, Queen’s University, 2010. [52, 72,

116, 117]

Weiyi Shang. Bridging the divide between software developers and operators
using logs. In ICSE 2012: Proceedings of the 2012 International Conference
on Software Engineering, pages 1583-1586, Piscataway, NJ, USA, 2012. IEEE
Press. [30]

Emad Shihab. An Exploration of Challenges Limiting Pragmatic Software Defect
Prediction. PhD thesis, Queen’s University, 2012. [105]

Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Michael W.
Godfrey, Mohamed Nasser, and Parminder Flora. An exploratory study of the
evolution of communicated information about the execution of large software
systems. In WCRE ’11: Proceedings of the 2011 18th Working Conference on Re-
verse Engineering, pages 335-344, Washington, DC, USA, 2011. IEEE Computer
Society. [27, 66, 104, 109, 145]

Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Michael W.
Godfrey, Mohamed Nasser, and Parminder Flora. An exploratory study of the
evolution of communicated information about the execution of large software
systems. Journal of Software: Evolution and Process, pages n/a-n/a, 2013. [27,
109]

Bibliography 211

[SJAHO09]

[SJTH*13]

[SJIT10]

[SMO5]

[Smi03]

[SMK*11]

Weiyi Shang, Zhen Ming Jiang, Bram Adams, and Ahmed E. Hassan. Mapre-
duce as a general framework to support research in mining software reposito-
ries (msr). In MSR ’09: Proceedings of the 2009 6th IEEE International Work-
ing Conference on Mining Software Repositories, pages 21-30, Washington, DC,

USA, 2009. IEEE Computer Society. [52, 72, 116, 117]

Weiyi Shang, Zhen Ming Jiang, Hadi Hemmati, Bram Adams, Ahmed E. Has-
san, and Patrick Martin. Assisting developers of big data analytics applications
when deploying on hadoop clouds. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 402—-411, Piscataway, NJ,
USA, 2013. IEEE Press. [56]

Emad Shihab, Zhen Ming Jiang, Walid M. Ibrahim, Bram Adams, and Ahmed E.
Hassan. Understanding the impact of code and process metrics on post-release
defects: a case study on the eclipse project. In ESEM ’10: Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, pages 4:1-4:10, New York, NY, USA, 2010. ACM. [94, 112,
116, 119, 124, 128]

Matt Selsky and Daniel Medina. Gulp: a unified logging architecture for au-
thentication data. In LISA '05: Proceedings of the 19th conference on Large
Installation System Administration Conference, pages 1-1, Berkeley, CA, USA,
2005. USENIX Association. [179, 184]

Michael Smithson. Confidence Intervals. Sage Publications, Thousand Oaks,

CA, USA, 2003. [133]

Emad Shihab, Audris Mockus, Yasutaka Kamei, Bram Adams, and Ahmed E.
Hassan. High-impact defects: a study of breakage and surprise defects. In

ESEC/FSE ’11: Proc. of the 19th ACM SIGSOFT symp. and the 13th Euro. conf.

Bibliography 212

[soa]

[Sor09]

[spl]

[SPVS11]

[SSNT08]

[SSRT08]

[STO8]

on Foundations of software engineering, pages 300-310, NY, USA, 2011. ACM.
[128]

Summary of sarbanes-oxley act of 2002. http://www.soxlaw.com/ Last Verified

on January 2014. [2, 104]

S. Sorkin. Large-scale, unstructured data retreival and analysis using splunk.

Technical paper; Splunk Inc, 2009. [141]
Splunk. http://www.splunk.com/ Last Verified on January 2014. [62]

Giriprasad Sridhara, Lori Pollock, and K. Vijay-Shanker. Generating parameter
comments and integrating with method summaries. In ICPC ’11: Proceedings of
the 2011 IEEE 19th International Conference on Program Comprehension, pages

71-80, 2011. [29]

S. Ratna Sandeep, M. Swapna, Thirumale Niranjan, Sai Susarla, and Sid-
dhartha Nandi. Cluebox: a performance log analyzer for automated trou-
bleshooting. In WASL’08: Proceedings of the First USENIX conference on Analysis
of system logs, pages 1-1, Berkeley, CA, USA, 2008. USENIX Association. [18,
176, 184]

Carolyn B. Seaman, Forrest Shull, Myrna Regardie, Denis Elbert, Raimund L.
Feldmann, Yuepu Guo, and Sally Godfrey. Defect categorization: making use
of a decade of widely varying historical data. In ESEM ’08: Proceedings of the
Second ACM-IEEE international symposium on Empirical software engineering

and measurement, pages 149-157, New York, NY, USA, 2008. ACM. [107]

Felix Salfner and Steffen Tschirpke. Error log processing for accurate failure

prediction. In WASL’08: Proceedings of the First USENIX conference on Analysis

Bibliography 213

[TJHT08]

[TKO02]

[TKGN10]

[TPK*08]

[TPK*09]

of system logs, pages 4—4, Berkeley, CA, USA, 2008. USENIX Association. [17,
18, 175, 184]

D. Thakkar, Zhen Ming Jiang, A.E. Hassan, G. Hamann, and P. Flora. Retriev-
ing relevant reports from a customer engagement repository. In ICSM 2008:
Proceedings of the 24th IEEE International Conference on Software Maintenance,,

pages 117-126, 2008. [43]

Tetsuji Takada and Hideki Koike. Mielog: A highly interactive visual log
browser using information visualization and statistical analysis. In LISA ’02:
Proceedings of the 16th USENIX conference on System administration, pages 133—

144, Berkeley, CA, USA, 2002. USENIX Association. [180, 185]

Jiaqgi Tan, Soila Kavulya, Rajeev Gandhi, and Priya Narasimhan. Visual, log-
based causal tracing for performance debugging of mapreduce systems. In
ICDCS ’10: Proceedings of the 2010 IEEE 30th International Conference on Dis-
tributed Computing Systems, pages 795-806, Washington, DC, USA, 2010. IEEE
Computer Society. [14, 176, 182]

Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and Priya Narasimhan.
Salsa: analyzing logs as state machines. In WASL’08: Proceedings of the 1st
USENIX conference on Analysis of system logs, pages 6-6, San Diego, California,
2008. USENIX. [14, 16, 66, 108, 162, 176, 182]

Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and Priya Narasimhan.
Mochi: visual log-analysis based tools for debugging hadoop. In HotCloud
2009: Proceedings of the 2009 conference on Hot topics in cloud computing,

Berkeley, CA, USA, 2009. USENIX Association. [14, 18, 176, 182]

Bibliography 214

[Tri08]

[VIW'11]

[VMO3]

[VMV95]

[WHF11]

[Whi09]

[Win]

[WSDNO09]

Sebastien Tricaud. Picviz: finding a needle in a haystack. In WASL’08: Pro-
ceedings of the First USENIX conference on Analysis of system logs, pages 3-3,
Berkeley, CA, USA, 2008. USENIX Association. [17, 176, 184]

Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Pe-
ter M. Chen, Jason Flinn, and Satish Narayanasamy. Doubleplay: parallelizing
sequential logging and replay. In ASPLOS XVI: Proceedings of the sixteenth in-
ternational conference on Architectural support for programming languages and

operating systems, pages 15-26, New York, NY, USA, 2011. ACM. [181, 185]

Davor Cubrani¢ and Gail C. Murphy. Hipikat: recommending pertinent soft-
ware development artifacts. In ICSE '03: Proceedings of the 25th International
Conference on Software Engineering, pages 408-418, Washington, DC, USA,
2003. IEEE Computer Society. [27]

A. von Mayrhauser and A.M. Vans. Program comprehension during software

maintenance and evolution. Computer, 28(8):44-55, 1995. [27]

Stefan Weigert, Matti Hiltunen, and Christof Fetzer. Mining large distributed
log data in near real time. In SLAML ’11: Managing Large-scale Systems via
the Analysis of System Logs and the Application of Machine Learning Techniques,
pages 5:1-5:8, New York, NY, USA, 2011. ACM. [178, 184]

T. White. Hadoop: The Definitive Guide. Oreilly & Associates Inc, 2009. [14,
20, 100, 138, 139, 142, 158, 170]

N Wingfield. Virtual product, real profits: Players spend on zynga’s games, but

quality turns some off. Wall Street Journal. [138]

Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. Predicting

build failures using social network analysis on developer communication. In

Bibliography 215

[XHF*08]

[XHFT09a]

[XHFT09b]

[XHF10]

[xpo]

[YMX'10]

ICSE ’09: Proceedings of the 31st International Conference on Software Engineer-

ing, pages 1-11, Washington, DC, USA, 2009. IEEE Computer Society. [111]

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. Min-
ing console logs for large-scale system problem detection. In SysML 2008: 3rd
Workshop on Tackling System Problems with Machine Learning Techniques, pages
1-6, December 2008. [183]

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. On-
line system problem detection by mining patterns of console logs. In ICDM '09:
Proceedings of the 2009 Ninth IEEE International Conference on Data Mining,
pages 588-597, Washington, DC, USA, 2009. IEEE Computer Society. [15, 18,
19, 175, 177, 183]

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan.
Detecting large-scale system problems by mining console logs. In SOSP ’09:
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems princi-
ples, pages 117-132, Big Sky, Montana, USA, 2009. ACM. [15, 18, 19, 53, 108,
162, 174, 175, 183]

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. Ex-
perience mining google’s production console logs. In SLAML’10: Proceedings of
the 2010 workshop on Managing systems via log analysis and machine learning
techniques, pages 5-5, Berkeley, CA, USA, 2010. USENIX Association. [175,
183]

Xpolog. http://www.xpolog.com/ Last Verified on January 2014. [1, 27, 175]

Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar

Pasupathy. Sherlog: error diagnosis by connecting clues from run-time logs.

Bibliography 216

[YPH'12]

[YPZ12]

[YZPT11]

[ZCHCO09]

[ZFW10]

In ASPLOS XV: Proceedings of the fifteenth edition of ASPLOS on Architectural
support for programming languages and operating systems, pages 143-154, New

York, NY, USA, 2010. ACM. [15, 176, 182]

Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee, Xiaoming
Tang, Yuanyuan Zhou, and Stefan Savage. Be conservative: enhancing failure
diagnosis with proactive logging. In Proceedings of the 10th USENIX conference
on Operating Systems Design and Implementation, OSDI'12, pages 293-306,
Berkeley, CA, USA, 2012. USENIX Association. [20, 178, 182]

Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging prac-
tices in open-source software. In ICSE 2012: Proceedings of the 2012 Inter-
national Conference on Software Engineering, pages 102-112, Piscataway, NJ,

USA, 2012. IEEE Press. [2, 15, 104, 109, 178, 182]

Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Im-
proving software diagnosability via log enhancement. In ASPLOS ’11: Pro-
ceedings of the sixteenth international conference on Architectural support for
programming languages and operating systems, pages 3-14, Newport Beach,

California, USA, 2011. ACM. [15, 17, 19, 27, 30, 108, 133, 178, 182]

Rui Zhang, Eric Cope, Lucas Heusler, and Feng Cheng. A bayesian network
approach to modeling it service availability using system logs. In WASL’09:
Proceedings of the Second USENIX conference on Analysis of system logs, pages
1-1, Berkeley, CA, USA, 2009. USENIX Association. [176, 184]

Kenny Q. Zhu, Kathleen Fisher, and David Walker. Incremental learning of
system log formats. SIGOPS Oper. Syst. Rev., 44(1):85-90, March 2010. [175,
184]

Bibliography 217

[ZKM10]

[ZKZH12]

[ZNO08]

[ZNW10]

[ZPZ07]

Hamzeh Zawawy, Kostas Kontogiannis, and John Mylopoulos. Log filtering and
interpretation for root cause analysis. In ICSM ’10: Proceedings of the 2010 IEEE
International Conference on Software Maintenance, pages 1-5, Washington, DC,

USA, 2010. IEEE Computer Society. [181, 186]

Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E. Hassan. An empirical
study of the effect of file editing patterns on software quality. In WCRE ’12:
Proceedings of the 2012 19th Working Conference on Reverse Engineering, pages
456-465, Washington, DC, USA, 2012. IEEE Computer Society. [112]

Thomas Zimmermann and Nachiappan Nagappan. Predicting defects using
network analysis on dependency graphs. In ICSE '08: Proceedings of the 30th
international conference on Software engineering, pages 531-540, New York,

NY, USA, 2008. ACM. [110]

Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. Searching
for a needle in a haystack: Predicting security vulnerabilities for windows vista.
In ICST ’10: Proceedings of the 2010 Third International Conference on Software
Testing, Verification and Validation, pages 421-428, 2010. [132]

Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects
for eclipse. In PROMISE '07: Proceedings of the Third International Workshop
on Predictor Models in Software Engineering, pages 9—, Washington, DC, USA,
2007. IEEE Computer Society. [116]

	Abstract
	Declaration
	Acknowledgments
	Dedication
	Related Publications
	Contents
	List of Tables
	List of Figures
	Introduction
	Research Hypothesis
	Thesis Overview
	Chapter 2: Literature review
	Chapter 3: What are the challenges in understanding logging statements?
	Chapter 4: How do logging statements evolve?
	Chapter 5: Prioritizing code review and testing efforts using logs and their churn
	Chapter 6: Verifying the deployment of Big Data Analytic applications using logs

	Thesis Contributions
	Thesis Organization
	I Literature Review
	Literature Review of Software Log Mining Research
	Introduction
	Log Collection
	Log Transformation
	Log Analysis
	Log Mining Research Goals
	Summary

	II Studying the Challenges Associated with Understanding and Evolving Logging Statements
	What are the Challenges in Understanding Logging Statements?
	Introduction
	Related Work
	Preliminary Study
	RQ1: What Types of Information are Missing in Log Lines?
	RQ2: Can Development Knowledge Provide Information about Log Lines?
	RQ3: Can Development Knowledge Resolve Real-world Inquiries?
	RQ4: Can Experts Assist in Resolving Inquiries of Log Lines?
	Automatically Providing Development Knowledge for Log Lines
	Approach
	An example

	Threats to Validity
	Chapter Summary

	How Do Logging Statements Evolve?
	Introduction
	A Motivating Example
	Case Study Setup
	Studied systems
	Uncovering logs and logging statements

	Case Study Results
	RQ1: How much do logs change over time?
	RQ2: What types of modifications happen to logs?
	RQ3: What information is conveyed in short-lived logs?

	Threats to Validity
	External validity
	Internal validity
	Construct validity

	Related Work
	Non-code based evolution studies
	Traceability between Logs and Log Processing Apps

	Chapter Summary

	III Log Engineering Approaches to Support Software Development Activities
	Prioritizing Code Review and Testing Efforts Using Logs and Their Churn
	Introduction
	Motivating Study
	Background and Related Work
	Log Analysis
	Software defect modeling

	Log-related Metrics
	Log-related product metrics
	Log-related process metrics

	Case Study Setup
	Extracting high-level source change information
	Identifying the Logging Statements

	Case Study Results
	Preliminary Analysis
	Results

	Threats to Validity
	Chapter Summary

	Verifying the Deployment of Big Data Analytic Applications Using Logs
	Introduction
	A Motivating Example
	Large Scale Data Analysis Platforms: Hadoop
	The MapReduce programming model
	Components of Hadoop

	Approach
	Execution Sequence Recovery
	Generating reports

	Case Study
	Subject applications
	The experiment's environment setting

	Case Study Results
	Discussion
	Limitations and Threats to Validity
	External validity
	Construct validity

	Related Work
	Dynamic software understanding
	Hadoop log analysis

	Chapter Summary

	IV Conclusions and Future Work
	Summary, Contribution and Future Work
	Thesis contributions
	Future research
	Formally Investigating the Use of Logs in Software Engineering Activities
	Log Repository
	Domain-specific Language for Log Mining
	System Test Planing Using Field Logs

	Selection Protocol and Summary of Surveyed Papers
	Selection Protocol of Surveyed Papers
	Summary of Surveyed Papers

