
STUDYING SOFTWARE QUALITY USING TOPIC MODELS

by

TSE-HSUN CHEN

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

January 2013

Copyright c© Tse-Hsun Chen, 2013

Abstract

Software is an integral part of our everyday lives, and hence the quality of software

is very important. However, improving and maintaining high software quality is

a difficult task, and a significant amount of resources is spent on fixing software

defects. Previous studies have studied software quality using various measurable

aspects of software, such as code size and code change history. Nevertheless, these

metrics do not consider all possible factors that are related to defects. For instance,

while lines of code may be a good general measure for defects, a large file respon-

sible for simple I/O tasks is likely to have fewer defects than a small file responsible

for complicated compiler implementation details. In this thesis, we address this is-

sue by considering the conceptual concerns (or features). We use a statistical topic

modelling approach to approximate the conceptual concerns as topics. We then use

topics to study software quality along two dimensions: code quality and code tested-

ness. We perform our studies using three versions of four large real-world software

systems: Mylyn, Eclipse, Firefox, and NetBeans.

Our proposed topic metrics help improve the defect explanatory power (i.e., fit-

ness of the regression model) of traditional static and historical metrics by 4–314%.

We compare one of our metrics, which measures the cohesion of files, with other

i

topic-based cohesion and coupling metrics in the literature and find that our met-

ric gives the greatest improvement in explaining defects over traditional software

quality metrics (i.e., lines of code) by 8–55%.

We then study how we can use topics to help improve the testing processes. By

training on previous releases of the subject systems, we can predict not well-tested

topics that are defect prone in future releases with a precision and recall of 0.77 and

0.75, respectively. We can map these topics back to files and help allocate code in-

spection and testing resources. We show that our approach outperforms traditional

prediction-based resource allocation approaches in terms of saving testing and code

inspection efforts.

The results of our studies show that topics can be used to study software quality

and support traditional quality assurance approaches.

ii

Co-authorship

Earlier versions of the work in the thesis were published as listed below:

1. Explaining Software Defects Using Topic Models (Chapter 3)

Tse-Hsun Chen, Stephen W. Thomas, Meiyappan Nagappan, Ahmed E. Has-

san, 9th Working Conference on Mining Software Repositories (MSR). Zurich,

Switzerland. June 2-3, 2012 (acceptance rate: 18/64 (28%)).

My contribution: Drafting the research plan, collecting the data, analyzing

the data, writing and polishing the paper drafts, and presenting the paper.

2. Explaining Software Defects and Studying Cohesion and Coupling Using Topic

Models (Chapter 3)

Tse-Hsun Chen, Stephen W. Thomas, Meiyappan Nagappan, Ahmed E. Has-

san, to be submitted for the Journal of Empirical Software Engineering. Springer

Press (Impact Factor 1.854).

My contribution: Drafting the research plan, collecting the data, analyzing

the data, and writing and polishing the paper drafts.

iii

3. Studying the Effect of Testing on Code Quality using Topic Models (Chapter 4)

Tse-Hsun Chen, Stephen W. Thomas, Hadi Hemmati, Meiyappan Nagappan,

Ahmed E. Hassan, under review for the Journal of Empirical Software Engi-

neering. Springer Press (Impact Factor 1.854).

My contribution: Drafting the research plan, collecting the data, analyzing

the data, and writing and polishing the paper drafts.

iv

Acknowledgments

First, I would like to thank my dearest supervisor Dr. Ahmed E. Hassan for his great

supervision and support. Without his suggestions and advice, this thesis cannot be

possible. Ahmed, I really enjoy working under your supervision, and I will remem-

ber all the skills that I learned from you for the rest of my life. I greatly appreciate

your help during my MSc study.

I would also like to thank all the members at the Software Analysis and Intelli-

gence Lab (SAIL), who help me throughout my thesis. I feel very honored to have

the chance to work in this wonderful lab.

Thank you MSR for giving me the chance to explore the world, and to meet

someone special in my life.

I would like to dedicate my work to my parents and family for their continu-

ous support through out my life. Without them, this thesis would not have been

possible.

v

List of Notations and Abbreviations

α: Dirichlet prior for document-topic distributions in LDA

β: Dirichlet prior for topic-word distributions in LDA

δ: Topic membership cut-off

θ: a document-topic topic membership value matrix

θij: the topic membership value of topic j in document i

φ: word distribution matrix for topics

p2: Pearson correlation coefficient

z: a topic

D2: deviance explained

Dpre: pre-release defect density

Dpost: post-release defect density

f : a file

tf : term frequency

idf : inverse document frequency

II: number of iterations used for sampling LDA topics

K: number of topics in LDA

R2: coefficient of determination

vi

W ratio: proportion of a topic’s weight found in test and source code files

Wsource: a topic’s source code weight

Wtest: a topic’s test code weight

AIC: Akaike information criterion

CCBO: Conceptual Coupling between Object classes

CLCOM5: Lack of Cohesion on Methods

CVS: Concurrent Versions System

DTM: Defect-prone topic membership

GoF: Goodness of fit

GUI: Graphical user interface

HTHD: High testedness and high defect density

HTLD: High testedness and low defect density

LDA: Latent Dirichlet Allocation

LOC: Lines of Code

LSI: Latent Semantic Indexing

LTHD: Low testedness and high defect density

LTLD: Low testedness and low defect density

LM: Linear regression model

MAS: Maximum Asymmetry Score

MEV: Maximum Edge Value

MWE: Maximal Weighted Entropy

MIC: Maximal information coefficient

MINE: Maximal information-based nonparametric exploration

NDT: Number of defect-prone topics

vii

NT: Number of topics

PC: Principal Components

PCA: Principal Component Analysis

POST: Post-release defects

PRE: Pre-release defects

RTC: Relational topic-based coupling

RTM: Relational topic model

SVD: Singular Value Decomposition

SVN: Subversion

TM: Topic membership

UI: User interface

VIF: Variance Inflation Factor

XML: Extensible Markup Language

viii

Table of Contents

Abstract i

Co-authorship iii

Acknowledgments v

List of Notations and Abbreviations vi

List of Tables xi

List of Figures xiv

Chapter 1:
Introduction . 1

1.1 Research Statement . 4
1.2 Thesis Overview . 4
1.3 Thesis Contributions . 5
1.4 Organization of the Thesis . 5

Chapter 2:
Background and Related Work 7

2.1 Topic Models . 7
2.2 Source Code Preprocessing . 10
2.3 Defect Modeling . 11
2.4 Related Work . 13
2.5 Chapter Summary . 15

Chapter 3:
Using Topic Models to Study Code Quality 17

3.1 Choice of Subject Systems . 19
3.2 Case Study Design . 20
3.3 Results of Case Studies . 25

ix

3.4 Sensitivity Analysis for the Parameters of Our Approach 68
3.5 Threats to Validity . 70
3.6 Guideline for Implementing Our Approach 73
3.7 Chapter Summary . 74

Chapter 4:
Using Topic Models to Study Code Testedness 76

4.1 Choice of Subject Systems . 78
4.2 Case Study Design . 79
4.3 Results of Case Studies . 82
4.4 Sensitivity Analysis for the Parameters of Our Approach 104
4.5 Threats to Validity . 107
4.6 Guideline for Implementing Our Approach 112
4.7 Chapter Summary . 113

Chapter 5:
Summary and Conclusions . 115

5.1 Summary . 115
5.2 Limitations and Future Work . 117

x

List of Tables

3.1 Statistics of the subject systems. 20
3.2 Five-number summary and skewness of defect densities of all subject

systems. The defect densities are highly skewed, and most of the
topics have a density value close to zero. 26

3.3 Topic defect density information. 27
3.4 Top words and defect densities of the most/least defect-prone topics

in our subject systems. The number on the left-hand side of each
column represents the topic ID. 31

3.5 Continued from Table 3.4 . 32
3.6 Continued from Table 3.5 . 33
3.7 Continued from Table 3.6 . 34
3.8 Spearman correlation coefficients of each topic’s defect density across

software versions. 36
3.9 D2 improvement and AIC scores for static software metrics. 40
3.10 Continued from Table 3.9. 41
3.11 D2 improvement and AIC scores for historical software metrics. . . . 42
3.12 Continued from Table 3.11. 43
3.13 Average value of the regression coefficients of NT and NDT metrics. . 49
3.14 Summary of the topic-based cohesion and coupling metrics that we

compare in our study. Granularity indicates at which level the metric
is computed. 51

3.15 Pair-wise correlation between all topic-based cohesion and coupling
metrics and LOC. “*” indicates a p-value < 0.05. “**” indicates a
p-value < 0.01. “***” indicates a p-value < 0.001. 57

3.16 Continued from Table 3.15. Pair-wise correlation between all topic-
based cohesion and coupling metrics and LOC. “*” indicates a p-value
< 0.05. “**” indicates a p-value < 0.01. “***” indicates a p-value <
0.001. 58

xi

3.17 Continued from Table 3.16. Pair-wise correlation between all topic-
based cohesion and coupling metrics and LOC. “*” indicates a p-value
< 0.05. “**” indicates a p-value < 0.01. “***” indicates a p-value <
0.001. 59

3.18 Continued from Table 3.17. Pair-wise correlation between all topic-
based cohesion and coupling metrics and LOC. “*” indicates a p-value
< 0.05. “**” indicates a p-value < 0.01. “***” indicates a p-value <
0.001. 60

3.19 D2 improvement and AIC scores for topic-based cohesion and cou-
pling metrics. 61

3.20 Continued from Table 3.19. 62
3.21 Continued from Table 3.20. 63
3.22 Continued from Table 3.21. 64
3.23 D2 improvement when NT is added to the base model that is com-

posed of PCs of LOC and other state-of-the-art topic-based cohesion
and coupling metrics. “*” indicates a p-value < 0.05. “**” indicates
a p-value < 0.01. “***” indicates a p-value < 0.001. 67

3.24 D2 improvement when MWE is added to the base model that is com-
posed of PCs of LOC, CCBO, NT, and RTCs. “*” indicates a p-value
< 0.05. “**” indicates a p-value < 0.01. “***” indicates a p-value <
0.001. The column Base+MWE has the same number as the column
Base+NT in Table 3.23, because they both refer to the same full model. 68

3.25 Results of the parameter sensitivity analysis of the parameters on
software defect explanatory power. 71

3.26 Continued from Table 3.25. 72

4.1 Statistics of the subject systems, after preprocessing. 79
4.2 Summary of topics that belong to source code, test, and shared top-

ics. 84
4.3 Topic label and top words of selected test/source-only topics in our

subject systems. 87
4.4 Continued from Table 4.3. 88
4.5 Number of topics in each class. 92
4.6 Scores of MINE metrics computed between topic testedness and topic

post-release defect density. 97
4.7 Top words, testedness, and defect-density of selected topics from

each class of topics. 97
4.8 Precision, recall, and F-measure for classifying low-testedness and

defect-prone topics (class LTHD). 102

xii

4.9 Median LOC, defect density, and percentage overlap of the source
code files that are predicted to be in class LTHD and the most defect-
prone files predicted by the linear regression model. 105

4.10 Results of the parameter sensitivity analysis of the parameters that
may influence the MIC score. 108

4.11 Continued from Table 4.10. 109
4.12 Results of the parameter sensitivity analysis of the parameters that

may influence the prediction result. 110
4.13 Continued from Table 4.12. 111
4.14 Summary of the excluded source-only topics that belong to the class

LTHD, and the median defect density of these topics. 111

xiii

List of Figures

2.1 Example topic model in which three topics are discovered from three
source code files. 8

3.1 Process of calculating topic-based metrics. After preprocessing the
source code, we run LDA on all versions of the source code files to-
gether. Using the topics and topic memberships that LDA returns, we
calculate the topic-based metrics. 21

3.2 Box plots of the topic defect density of three versions of Mylyn, Fire-
fox, Eclipse, and NetBeans. The y-axis represent the topic defect
density. 25

3.3 Percentage improvement in D2 when NT is added to the base model. 44
3.4 Percentage improvement in AIC when NT is added to the base model. 44
3.5 Percentage improvement in D2 when TM is added to the base model. 45
3.6 Percentage improvement in AIC when TM is added to the base model. 45
3.7 Percentage improvement in D2 when NDT is added to the base model. 46
3.8 Percentage improvement in AIC when NDT is added to the base model. 46
3.9 Percentage improvement in D2 when DTM is added to the base model. 47
3.10 Percentage improvement in AIC when DTM is added to the base model. 47

4.1 Our process of applying topic models and calculating topic-based
metrics. 80

4.2 The W ratio of test topics in source code files. 85
4.3 Position of each class on the scatter plot of topic testedness v.s. topic

defect density. 91
4.4 Scatter plots of topic post-release defect density against topic tested-

ness for all versions of Mylyn. 94
4.5 Scatter plots of topic post-release defect density against topic tested-

ness for all versions of Eclipse. 95
4.6 Scatter plots of topic post-release defect density against topic tested-

ness for all versions of NetBeans. 96

xiv

Chapter 1

Introduction

Software quality is an important issue in software engineering because the cost of

fixing software defects can be prohibitively expensive (Slaughter et al., 1998). As

a result, researchers have tried to uncover the possible reasons for software defects

using different classes of software metrics, such as product metrics (i.e., size), pro-

cess metrics (i.e., time to fix a defect), and project metrics (i.e., team size) (Hall

et al., 2011; Kan, 2002). Indeed, such approaches have shown some success in

explaining the defect-proneness of certain software entities (e.g., methods, classes,

files, or modules) (Hall et al., 2011). However, these classes of metrics do not take

into account the actual conceptual concerns of the software system—the main soft-

ware requirements and design decisions (i.e., high level software features) that may

affect implementation details (Liu et al., 2009; Robillard and Murphy, 2007). For

instance, while lines of code may be a good general measure for defects, it is not

always so: the largest file in the Mylyn project (Foundation, 2012), for example,

has 2,771 lines of code but no defects. A much smaller file, with 23 lines of code,

does contain a defect in version 1.0.

1

CHAPTER 1. INTRODUCTION 2

In addition to using software metrics for identifying defects, testing is also

widely used for detecting defects prior to the release of a software system. Soft-

ware developers use test cases to uncover defects in software systems before a re-

lease to ensure software quality. Previous research has studied code coverage/test

coverage (i.e., the proportion of the source code files that have been tested) using

traditional testing criteria, such as statement coverage, path coverage, and function

coverage (Huang, 1975; Myers et al., 2004; Nagappan et al., 2007; Ntafos, 1988).

These metrics analyze code coverage from the code structure. However, these code

coverage approaches do not consider the conceptual concerns in the source code

files. Since testers test software at the level of concerns (Weyuker, 1998), by iden-

tifying which concerns require more testing, testers may gain insight about where

to allocate testing resources and how to improve code quality.

Recent research in Software Engineering proposes a new class of approaches

for predicting defects based on conceptual concerns (Chen et al., 2012; Linstead

et al., 2008; Liu et al., 2009; Maskeri et al., 2008; Nguyen et al., 2011). These

studies approximate concerns as topics using statistical topic models, such as latent

Dirichlet allocation (LDA) (Blei et al., 2003). Topics are a set of related words in

a given document, in our case source code or test files are examples of documents.

These works provide initial evidence that topics in software systems are related to

the defect-proneness of source code files, opening a new perspective for explaining

why some files are more defect-prone than others.

In this thesis, we build on this line of previous research. We study the relation-

ship between software quality and topics in source code files. In order to do this, we

propose using topics to study software quality along two dimensions: code quality

CHAPTER 1. INTRODUCTION 3

and code testedness.

In the first dimension, we propose a set of topic-based metrics. We want to

study if our new topic-based metrics can better explain software quality. Our metrics

outperform state-of-the-art topic-based cohesion and coupling metrics in explaining

the quality of code for several large open source software systems.

In the second dimension, we examine how we can use topics to support the

software testing process. We measure topic testedness by comparing the prevalence

of a topic in source code files to its prevalence in test files, and study the effect of

testing on software quality, at the abstraction level of topics. By testing the defect

prone topics that require more testing and that are discovered by our approach,

additional defects can possibly be located. In addition, because topics can be linked

back to source code files, managers and software developers can allocate more

testing resources on the files related to these topics, and thus improve software

quality and reduce maintenance costs. Our topic-based approach outperforms and

complements traditional prediction-based testing resource allocation approaches,

and helps uncover new sets of defect-prone files that may require more testing.

Although our results show that topics can be used to study software quality, the

approaches proposed in this thesis are dependent on the quality of the generated

topics. Hence it is important to use them in cases where the software systems have

sufficient linguistic data such as identifier names and comments in them for the

statistical topic models to generate good quality topics.

CHAPTER 1. INTRODUCTION 4

1.1 Research Statement

Prior research studies software quality from the perspective of structure, develop-

ment process, and developer interaction of a software system. However, these soft-

ware metrics do not consider the underlying conceptual concerns in source code

files. In this thesis, we approximate concerns as topics using statistical topic mod-

els, and we study the relationship between topics and software quality.'

&

$

%

Topics, which are approximations of software concerns, can be used to study

software quality by better explaining the quality of code and helping allocate

software quality assurance efforts effectively.

1.2 Thesis Overview

1. Using Topic Models to Study Code Quality (Chapter 3)?

We measure topic defect-proneness by considering the defect history of topics,

and study the defect-proneness of topics across different versions. We propose

a number of topic-based metrics, and study whether our metrics can help ex-

plain software defects. We show that our metrics outperform and complement

other topic-based cohesion and coupling metrics.

2. Using Topic Models to Study Code Testedness (Chapter 4)?

We measure topic testedness (i.e., how well a topic is tested) and use topics

to help improve the software testing process and ensure software quality. We

show that when a topic is well tested, it is less likely to be defect prone. To help

allocate testing resources, we show that we can obtain good precision and

CHAPTER 1. INTRODUCTION 5

recall when predicting less tested and defect prone topics for future releases

of the software. We also show that our approach can find other sets of defect

prone files that are not captured by traditional approaches.

1.3 Thesis Contributions

In this thesis, we empirically validate our results through case studies on many

versions of multiple large software systems. Our contributions are as follows:

1. Proposing a different view of studying software quality – using topics.

2. Proposing topics metrics which help explain software defects and comparing

them with current state-of-the-art metrics.

3. Proposing a topic-based technique to help improve the effectiveness of the

testing process in finding defects.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 briefly introduces some

topic modelling, source code preprocessing approaches, and regression analysis,

and discusses related works. Chapter 3 presents the first dimension of our study,

which is using topics to study code quality. We use topic defect information to define

topic defect density, and show that it is possible to study defects using topics. We

propose our topic-based metrics and examine if our metrics help traditional static

and historical metrics explain defects. We also compare our metric with other state-

of-the-art topic-based cohesion and coupling metrics. In Chapter 4, we use topic

CHAPTER 1. INTRODUCTION 6

models to study software quality from the perspective of code testedness. We show

how one can use our proposed approach to prioritize file inspection and testing

efforts. Finally, Chapter 5 concludes the thesis with a discussion of the limitations

and potential future research directions.

Chapter 2

Background and Related Work

2.1 Topic Models

Our goal is to determine which concerns are in each source code file. This informa-

tion is often not easily available, since developers do not often manually categorize

each file and a file may continue several concerns (Maskeri et al., 2008). In this

thesis, we approximate concerns using statistical topics, following the work of pre-

vious research (Baldi et al., 2008; Maskeri et al., 2008; Thomas et al., 2010). In

particular, we extract the linguistic data from each source code file, i.e., the identi-

fier names and comments, which helps to determine the functionality of a file (Kuhn

et al., 2007). We then treat the linguistic data as a corpus of textual documents,

which we use as a basis for topic modeling. In this section, we provide a brief

description of some topic modelling techniques that are used in this thesis.

7

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Top words

z1 os, cpu, memory, kernel
z2 network, speed, bandwidth
z3 button click mouse right

(a) Topics (Z).

z1 z2 z3

f1 0.3 0.7 0.0
f2 0.0 0.9 0.1
f3 0.5 0.0 0.5

(b) Topic memberships (θ).

Figure 2.1: Example topic model in which three topics are discovered from three
source code files (not shown). (a) The three discovered topics (z1, z2,
z3) are defined by their top (i.e., highest probable) words. (b) The
three source code files (f1, f2, f3) can now be represented by a topic
membership vector.

2.1.1 Latent Dirichlet Allocation

In latent Dirichlet allocation (LDA), a topic is a collection of frequently co-occurring

words in the corpus. Given a corpus of n documents f1, ..., fn, topic modeling ap-

proaches automatically discover a set Z of topics, Z = {z1, ..., zK}, as well as the

mapping θ between topics and documents (see Figure 2.1). The number of topics,

K, is an input that controls the granularity of the topics. We use the notation θij to

describe the topic membership value of topic zi in document fj.

Intuitively, the top words of a topic are semantically related and represent some

real-world concept. For example, in Figure 2.1a, the three topics represent the con-

cepts of “operating systems,” “computer networks,” and “user input.” The topic

membership of a document then describes which concepts are present in that doc-

ument: document f1 is 30% about operating systems and 70% about computer

networks.

More formally, each topic is defined by a probability distribution over all of the

unique words in the corpus. Given two Dirichlet priors, α and β, a topic model will

CHAPTER 2. BACKGROUND AND RELATED WORK 9

generate a topic distribution θj for fj based on α, and generate a word distribution

φi for zi based on β. Choosing the right parameter values for K, α, and β is more

of an art than a science, and depends on the size of the corpus and the desired

granularity of the topics (Wallach et al., 2009).

The topic membership values define links between topics and source code files.

In Figure 2.1b, the source code file f1 belongs to topic z1 and z2, because its mem-

bership values of these two topics are larger than 0. This is because f1 contains

words from topics z1 and z2, such as os, cpu, and network.

2.1.2 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is computed by applying singular value decomposi-

tion (SVD) on the term-document matrix. Each row of the term-document matrix

corresponds to a document (i.e., software entity), and the columns represent the

unique words in all the documents. For example, the index [i, j] in the matrix rep-

resents the number of occurrences of the word j in the document i. In addition

to word frequency count, other weight measures such as tf ∗ idf (term frequency-

inverse document frequency) are also often used. Tf ∗ idf measures the weight

(i.e., importance) of a word in a document given the whole corpus, where tf is the

term frequency in a document, and idf is the inverse document frequency. In this

thesis, we use tf ∗ idf instead of the raw word frequency count. SVD reduces the

dimensions in the term-document matrix by selecting the top K dimensions (i.e., K

topics) with the largest singular values. This reduction helps remove synonymy and

polysemy in the term-document matrix (Witten et al., 2011). Finally, by computing

the cosine distance between each row (document), we obtain a similarity score of

CHAPTER 2. BACKGROUND AND RELATED WORK 10

the documents.

2.1.3 Relational Topic Models

Chang et al. propose a variant of LDA, called Relational Topic Models (RTM), which

is able to predict whether two documents are related using their underlying top-

ics (Chang and Blei, 2009). RTM is able to give a linking probability between two

documents (how likely these two documents are related). RTM has recently been

used by Gethers et al. (Gethers and Poshyvanyk, 2010) to measure the coupling

between source code files.

2.2 Source Code Preprocessing

Source code files contain many human-readable information in identifier names and

comments. However, we cannot use the raw source code files as our text corpus for

running topic models, because programming language syntax and control structures

do not contain much information about the concerns in a file. Therefore, we first

collect the source code files from each version of each subject system, and then

preprocess the files using the preprocessing steps proposed by Kuhn et al. (Kuhn

et al., 2007). Namely, we first extract comments and identifier names from each file.

Next, we split the identifier names according to common naming conventions, such

as camel case and underscores. Finally, we stem the words and remove common

English-language stop words.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

2.3 Defect Modeling

2.3.1 Types of Regression Models

Researchers in Empirical Software Engineering often use regression analysis to pre-

dict or understand the factors that lead to software defects. Various types of regres-

sion models are commonly used, and in particular, linear and logistic regressions

are the most popular ones (Golberg and Cho, 2004; Kutner et al., 2004). Given

some software quality metrics (i.e., dependent variables), linear regression models

the number of defects (i.e., independent variable) in files. Logistic regression, on

the other hand, models the probability of a file being defective or not. Lines of code,

number of pre-release defects, and code changes before release (code churn) are

commonly used to predict software defects (DAmbros et al., 2010; Gyimothy et al.,

2005; Oram and Wilson, 2010). Research on several open and commercial systems

shows that these three baseline metrics outperform most other more complex met-

rics in the literature today. Studies which propose new metrics must compare the

performance of their new metrics against these baseline metrics (Oram and Wilson,

2010).

2.3.2 Typical Steps in Regression Analysis

Removing Collinear Variables

Regression analysis is a type of statistical analysis, where the regression model is

trying to fit the value of the independent variables according some distributions

(e.g., normal distribution or Bernoulli distribution), given the dependent variables.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Therefore, if the dependent variables are collineared together (also called multi-

collinearity problem), then the results of the regression analysis (i.e., statistical

significance and confidence interval) may be inaccurate.

The Variance Inflation Factor (VIF) is often used to detect and remove collinear

variables. Variables that have a VIF score larger than 10 are removed, since these

variables might have multicollinearity problems (Kutner et al., 2004). Another com-

monly used approach is Principal Component Analysis (PCA). PCA transforms the

variables into a set of uncorrelated variables, called principal components (PCs) (Jol-

liffe, 2002). PCs can replace independent variables in regression models, and such

approach is called principal component regression analysis (Jolliffe, 2002).

Finding the Most Effective Variables and Examining Goodness of Fit

In some situations where we need to find a subset of the dependent variables that

are most effective for predicting (or understanding) the independent variable, re-

searchers use stepwise regression to do variable selection (Golberg and Cho, 2004;

Kutner et al., 2004). Stepwise regression in each step will add/remove a variable

to/from the regression model, while trying to optimize the goodness of fit.

Goodness of fit (GoF) measures how well a set of independent variables together

describe the dependent variable. For example, adjusted R2 and D2 are used to

measure GoF of linear and logistic regression models, respectively. The values of

adjusted R2 and D2 range from 0 to 1, where 0 indicates there is no relationship

between the dependent and the independent variables, and 1 indicates there is

a strong correlation between the dependent and the independent variables. The

problem with adjusted R2 and D2 is that their values increase when the number

CHAPTER 2. BACKGROUND AND RELATED WORK 13

of independent variables increases, which will give a more biased GoF measure.

Another GoF measuring criterion called Akaike information criterion (AIC) assigns

a penalty to regression models with more independent variables.

Base Model and the Explanatory Power of a Metric

To examine whether a new metric is adding any new information to a regression

model, we can add the metric to a regression model, and study the increase in GoF.

In this thesis, we call this increase in GoF the explanatory power of the new metric,

since it represents how this new metric improves the overall predictive power of

the regression model. The model that the new metric is added to is called the base

model.

2.4 Related Work

Approximating Concerns using Topic Models

Recently, many researchers used topic modeling approaches to understand software

systems from a different point of view than from the traditional structural and his-

torical views. For example, Kuhn et al. used Latent Semantic Indexing (LSI) to clus-

ter the files in a software system according to the similarity of word usage (Kuhn

et al., 2007). Maskeri et al. were the first to apply LDA to source code to uncover its

conceptual concerns (Maskeri et al., 2008). Linstead et al. and Thomas et al. used

topics to study the evolution of concerns in the source code (Linstead et al., 2008;

Thomas et al., 2010, 2011).

CHAPTER 2. BACKGROUND AND RELATED WORK 14

Predicting Defects using Topic Models

A few recent studies have tried to establish a link between topics and defects.

For example, Liu et al. propose a new metric, called Maximal Weighted Entropy

(MWE) (Liu et al., 2009), to measure the level of cohesion in a software system.

MWE, for each topic, captures the topic occupancy and distribution of each file, i.e.,

how many different topics a file contains. While this metric focuses on the cohe-

siveness of topics in a file, our proposed metrics focus on the defect-prone topics in

a file.

Nguyen et al. use LDA to predict defects (Nguyen et al., 2011). The authors

first apply LDA to the subject systems using K=5 topics, and for each source code

file they multiply the topic memberships by the file’s LOC. As a result, the authors

obtain five topic variables for each file, and use these variables to build a prediction

model. In this way, the authors provide initial evidence, that it is possible to explain

defects using topic-based metrics. In this thesis, we are interested in explaining

defects while also controlling for the standard defect explainers, i.e., LOC, churn,

and pre-release defects. In addition, we consider a larger number of topics in order

to capture more accurate and detailed conceptual concerns. We use Principal com-

ponent analysis (PCA) (Jolliffe, 2002) to extract the most effective topics and avoid

the possible problem of multicollinearity and minimize the effects of overfitting.

Capturing Software Cohesion and Coupling using Topic Models

Marcus et al. capture cohesion using LSI (Marcus and Poshyvanyk, 2005; Marcus

et al., 2008), and show that it is possible to predict defects using the level of cohe-

sion in a file (Marcus et al., 2008). Poshyvanyk et al. also use LSI to capture level

CHAPTER 2. BACKGROUND AND RELATED WORK 15

of coupling by the cosine similarity score among files (Poshyvanyk and Marcus,

2006). Ujhazi et al. propose two new cohesion and coupling metrics based on pre-

vious works by Marcus et al. and Poshyvanyk et al. (Marcus and Poshyvanyk, 2005;

Marcus et al., 2008; Poshyvanyk and Marcus, 2006), and provide a parametric ver-

sion (i.e., calculate the metrics based on a given parameter) of the metrics (Ujhazi

et al., 2010). In addition, Gethers et al. use relational topic models (Chang and

Blei, 2009) to uncover coupling among files (Gethers and Poshyvanyk, 2010), and

use the level of coupling for prioritizing file inspection work.

Other Uses of Topic Models in Software Engineering

Other uses of topic models in software engineering tasks include concept loca-

tion (Cleary et al., 2008; Lukins et al., 2010; Poshyvanyk et al., 2007; Rao and Kak,

2011; Revelle et al., 2011), traceability link recovering (Asuncion et al., 2010), and

building source code search engines (Tian et al., 2009).

2.5 Chapter Summary

In this chapter, we briefly introduce topic models, and different topic modelling

approaches. We also define how we preprocess the source code files in order to

apply topic models on them. We introduce basic background about model fitting

and regression analysis. We finally survey related works focused on four differ-

ent branches: capturing concerns using topic models, predicting defect using topic

models, measuring software cohesion and coupling using topic models, and other

CHAPTER 2. BACKGROUND AND RELATED WORK 16

uses of topic models in software engineering. In the next chapter, we perform a pre-

liminary study and examine whether we can use topics to study software quality.

Chapter 3

Using Topic Models to Study Code

Quality

Researchers have proposed various metrics based on measurable aspects of the

source code entities (e.g., methods, classes, files, or modules) of a software project

in an effort to explain the relationships between software development and soft-

ware defects. However, these metrics largely ignore the actual functionality, i.e.,

the conceptual concerns, of a software system, which are the main technical con-

cepts that reflect the business logic or domain of the system. For instance, while

lines of code may be a good general measure for defects, a large file responsible

for simple I/O tasks is likely to have fewer defects than a small file responsible for

complicated compiler implementation details. In this chapter, we study the effect

of conceptual concerns on code quality.

We use LDA to approximate software concerns as topics; we then propose various

metrics based on these topics to help explain the defect-proneness (i.e., quality) of

the files. Paramount to our proposed metrics is that they take into account the

17

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 18

defect history of each topic.

In particular, we aim to answer the following four research questions using case

studies on multiple versions of Mozilla Firefox, Eclipse, Mylyn, and NetBeans:

RQ1: Are some topics more defect-prone than others?

We find that some topics, such as those related to new features and the core

functionality of a system, have a much higher defect density than others (av-

erage skewness 7.25, where a skewness of 1 is already considered highly

skewed).

RQ2: Do defect-prone topics remain defect-prone over time?

We find that defect-prone topics remain so over time, indicating that prior

defect-proneness of a topic can be used to explain the future behavior of topics

and their associated files (average Spearman correlation is 0.54).

RQ3: Can our proposed topic-based metrics help explain why some files are

more defect-prone than others?

We find that including our proposed topic-based metrics provides additional

explanatory power (4 – 314% improvement) about the defect-proneness of

files over existing product and process metrics.

RQ4: How do our metrics compare with other topic-based cohesion and cou-

pling metrics?

We find that our metrics outperform other topic-based cohesion and coupling

metrics. Our metric can give improvement in defect explanatory power over

baseline metric (i.e., lines of code) by 8–55%, where other metrics give 8–

50% of improvement. Practitioners may benefit from including our metric

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 19

when analyzing code quality using cohesion and coupling.

Chapter Overview

Section 3.1 talks about the subject systems that we use to answer the research ques-

tions, and Section 3.2 describes the design of our case studies. Section 3.3 shows

the results of our case studies, and Section 3.4 shows the result of our the parame-

ter sensitivity analysis. We compare our metric with other topic-based cohesion and

coupling metrics in Section 3.3.4. Section 3.5 discusses potential threats to validity,

and Section 3.7 concludes the chapter with a brief summary of our findings.

3.1 Choice of Subject Systems

We focus on four large, real-world subject systems: Mylyn, Eclipse, Firefox, and

NetBeans (Table 3.1). For each system, we look at three different versions (ver-

sions 1.0, 2.0, and 3.0 of Mylyn, versions 2.0, 2.1, and 3.0 of Eclipse, versions 1.0,

1.5, and 2.0 of Firefox, and versions 4.0, 5.0, and 5.5.1 of NetBeans). Eclipse is a

popular IDE (integrated development environment), which has an extensive plugin

architecture. Mylyn is a popular plugin for Eclipse that implements a task man-

agement system. Firefox is a well-known open source web browser that is used by

millions of users. Finally, NetBeans is a popular module-based IDE which is imple-

mented in Java.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 20

Table 3.1: Statistics of the subject systems.

Total lines No. of Pre-release Post-release Programming
of code (K) files defects defects language

Mylyn 1.0 127 833 1,047 712 Java
Mylyn 2.0 136 923 2,015 1,012 Java
Mylyn 3.0 165 1,115 2,045 480 Java

Firefox 1.0 2,841 5,523 638 454 C/C++
Firefox 1.5 3,111 5,879 716 946 C/C++
Firefox 2.0 3,205 5,942 1,134 453 C/C++

Eclipse 2.0 797 6,716 7,634 1,691 Java
Eclipse 2.1 987 7,799 4,975 1,182 Java
Eclipse 3.0 1,305 10,496 7,421 2,679 Java

NetBeans 4.0 915 4,253 630 311 Java
NetBeans 5.0 1,957 8,849 1,339 217 Java
NetBeans 5.5.1 3,302 16,383 883 795 Java

3.2 Case Study Design

In this section, we describe our analysis process, depicted in Figure 3.1. We use

MALLET (McCallum, 2002) as our LDA implementation, which uses Gibbs sam-

pling to approximate the joint distribution of topics and words. We run MALLET

with 10,000 sampling iterations (II), and 1,000 of the iterations are used to opti-

mize α and β using hyperparameter optimization. In addition, we build the topics

using both unigrams (single words) and bigrams (pairs of adjacent words), since

bigrams help to improve the performance for word assignments in topic modeling

the best (Brown et al., 1992).

We apply LDA to all versions of the preprocessed files of a system at the same

time, an approach proposed by Linstead et al. (Linstead et al., 2008). For this study,

we use K=500 topics for all subject systems. Lukins et al. found that 500 topics is a

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 21

Preprocess

Preprocess

Preprocess

LDA

V1

V2

V3

Z

θ

Metric
Calculation

Static and
Historical

Topic Metrics

Topic Memberships

Figure 3.1: Process of calculating topic-based metrics. After preprocessing the
source code, we run LDA on all versions of the source code files to-
gether. Using the topics and topic memberships that LDA returns, we
calculate the topic-based metrics.

good number for Eclipse and Mozilla (Lukins et al., 2010), and we also feel this is a

reasonable choice for Mylyn and NetBeans (more discussions about the parameter

choices in Section 3.4).

3.2.1 Proposed Topic-based Metrics

To help explain the defect-proneness of source code files, we propose two categories

of topic-based metrics: static and historical. Static topic metrics use only a single

snapshot of the software system, while historical metrics use the defect history of

topics. In the formulation of our topic-based metrics, we also consider traditional

software metrics:

• LOC(fj) The lines of code of file fj.

• PRE(fj) The number of pre-release defects of file fj, which are those defects

related to fj up to six months before a given version.

• POST(fj) The number of post-release defects of file fj, which are those defects

found up to six months after a given version.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 22

Using these software metrics and the results from topic modeling (as explained in

Section 2.1.1), we propose the following topic-based metrics.

Topic Defect Density

The defect density of a source code file is a well-known software metric, defined as

the ratio of the number of defects in the file to its size. Using this ratio as motivation,

we define the pre-release defect density (DPRE) of a topic zi as

DPRE(zi) =

n∑
j=1

θij ∗
(

PRE(fj)
LOC(fj)

)
, (3.1)

where n is the total number of source code files and θij is the topic membership

of topic zi in source code file fj. Similarly, we define post-release defect density

(DPOST) of a topic zi as

DPOST(zi) =

n∑
j=1

θij ∗
(

POST(fj)
LOC(fj)

)
. (3.2)

Since the topic membership value represents the probability that a source code

file belongs to a certain topic, the topic defect density represents the possible num-

ber of defects in the topic per line of code across all files that contain the topic.

Static Topic-based Metrics

We propose static topic-based metrics to capture the number of topics a file contains,

and the topic membership of each file. We define the Number of Topics (NT) of a

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 23

file fj as

NT(fj) =
K∑
i=1

I(θij ≥ δ) (3.3)

where I is the indicator function that returns 1 if its argument is true, and 0 oth-

erwise. δ is a cut-off threshold that determines if a topic plays an important role

in a given file. The NT metric measures the level of cohesion in a file: files with a

large number of topics may be poorly designed or implemented, and thus may have

higher chances to have defects (Liu et al., 2009).

We define the Topic Membership (TM) of a file fj as the topic membership

values returned by the topic modeling approach:

TM(fj) = θj. (3.4)

The intuition behind this metric is that we assume different topics have different ef-

fects on the defect-proneness of a file. Some topics (e.g., a compiler-related topic)

may increase the defect-proneness of a file, but other topics (e.g., an I/O-related

topic) may actually decrease the defect-proneness. By using all the topic member-

ship values, the TM metric captures the full behavior of a file.

Historical Topic-based Metrics

We extend the static topic-based metric by considering the defect history of each

topic. In order to calculate the number of defect-prone topics in a file, we define

a defect-prone topic as a topic that has more defects than the average of all topics.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 24

The set of defect-prone topics, B, is defined by

B = {zi ∈ Z s.t. DPRE(zi) > µ(DPRE(Z))}, (3.5)

where µ(DPRE(Z)) is the mean of the topic defect densities of all topics.

We define the Number of Defect-prone Topics (NDT) in file fj by

NDT(fj) =
K∑
i=1

I((zi ∈ B) ∧ ((θij) ≥ δ)). (3.6)

We define the Defect-prone Topic Membership (DTM) metric of file fj as the

topic memberships of defect-prone topics:

DTM(fj) = θij where zi ∈ B. (3.7)

DTM is the same as TM, except it only contains the topic memberships of defect-

prone topics.

We set the membership threshold δ in Equations 3.3 and 3.6 to 1%. This value

prevents topics with small, insignificant memberships in a file from being counted

in that file’s metrics.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 25

●

●
●●
●

●

●
●●●●

●

●●

●

●

●
●

●

●

●●
●

●
●
●●
●
●

●

●●

●

●
●●

●

●●

●

●
●
●

●

●●
●

●

●●
●●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●
●
●
●●

●
●
●

●
●●

●●

●

●●
●

●●
●●
●●

●

●●
●●●●●●

●

●●

●

●●●●
●
●●●●●
●
●●●●
●
●
●●●
●●●●

●●●
●
●
●

●

●

●●●
●

Mylyn 1.0 Mylyn 2.0 Mylyn 3.0

0.
0

0.
2

0.
4

D
ef

ec
t D

en
si

ty
 (D

PO
ST

)

●
●●

●

●
●●●
●●
●

●

●

●●

●

●

●

●
●

●
●●●●

●

●●●●●
●
●●

●

●●

●

●●

●

●
●
●
●●
●
●
●

●

●

●●●

●

●

●●

●

●

●

●●

●

●●

●
●●

●
●●●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●●●●
●

●

●●●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●
●●

●
●
●●●

●

●●
●●
●●

●

●
●

●

●●

●
●

●

●

●

●●●●●●
●
●●●●●
●●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●

●

●●
●
●
●
●●
●
●
●
●●●●●

●

●●

Firefox 1.0 Firefox 1.5 Firefox 2.0

0.
00

0.
04

0.
08

D
ef

ec
t D

en
si

ty
 (D

PO
ST

)

●
●

●
●

●●

●
●●

●
●●●●●●
●
●●●●●

●

●

●

●●●●
●
●
●●
●●
●
●●
●

●●●
●●●●●
●
●●

●

●

●
●●

●
●

●
●●
●
●

●

●

●

●

●

●

●●●●●●●●

●

●●
●●●●
●●
●
●●●●

●●

●

●

●●●
●●●●●

●●
●●●●●●●

●

●

●

●
●

●

●
●

●
●

●
●●
●

●

●

●

●
●

●

●●

●

●

●●
●
●●●
●
●

●

●

●●
●
●

●
●
●

●

●

Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

0.
0

0.
5

1.
0

1.
5

D
ef

ec
t D

en
si

ty
 (D

PO
ST

)

●●
●
●
●

●●

●

●●●●
●
●

●●

●●●
●
●●

●

●

●●●

●

●
●●●●●●
●
●●
●
●●
●
●

●

●

●

●●●

●

●

●
●

●●
●
●●●
●
●●
●
●

●

●
●●
●
●
●●
●

●

●
●

●

●●●●●●

●

●●●
●●●●●●
●●●●●●●

●

●●●
●
●●

●
●
●

●●
●
●
●●
●

●

●

●

●●●
●●

●

●●

●

●

●

●
●●
●

●

●

●

●
●●●

●

●

●●

●

●

●
●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●●
●

●

●

Netbeans 4.0 Netbeans 5.0 Netbeans 5.5.1

0.
00

0.
10

D
ef

ec
t D

en
si

ty
 (D

PO
ST

)

Figure 3.2: Box plots of the topic defect density of three versions of Mylyn, Firefox,
Eclipse, and NetBeans. The y-axis represent the topic defect density.

3.3 Results of Case Studies

3.3.1 Are some topics more defect-prone than other topics?

Approach

We use Equation 3.2 to calculate the topic defect density (DPOST) for each topic

in the software system. We visualize the distribution of defect densities using box

plots, and we provide a table of the five number summary and skewness of the

densities. We then perform Kolmogorov-Smirnov non-uniformity tests to statisti-

cally determine if there is a significant difference between the defect densities of

the various topics.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 26

Table 3.2: Five-number summary and skewness of defect densities of all subject
systems. The defect densities are highly skewed, and most of the topics
have a density value close to zero.

Min. 1st Qu. Median 3rd Qu. Max. Skewness

Mylyn 1.0 0.00 0.00 0.00 0.01 0.33 7.18
Mylyn 2.0 0.00 0.00 0.01 0.02 0.50 7.41
Mylyn 3.0 0.00 0.00 0.00 0.01 0.18 6.00

Eclipse 2.0 0.00 0.00 0.01 0.03 1.66 13.28
Eclipse 2.1 0.00 0.00 0.01 0.03 1.16 7.92
Eclipse 3.0 0.00 0.01 0.02 0.06 1.25 4.90

Firefox 1.0 0.00 0.00 0.00 0.00 0.07 6.44
Firefox 1.5 0.00 0.00 0.00 0.00 0.09 5.88
Firefox 2.0 0.00 0.00 0.00 0.00 0.07 7.96

NetBeans 4.0 0.00 0.00 0.00 0.00 0.17 10.29
NetBeans 5.0 0.00 0.00 0.00 0.00 0.06 5.62
NetBeans 5.5.1 0.00 0.00 0.00 0.01 0.13 4.08

Results

The box plots of the density values of each software system are shown in Figure 3.2.

Box plots show outliers and the five-number summary of the data (minimum, first

quartile, median, third quartile, maximum). The actual values of the five-number

summary and skewness of the defect densities is shown in Table 3.2. The outliers in

Figure 3.2 are the defect-prone topics, which indicate that some topics have much

higher defect densities than others. Table 3.2 further indicates that most topics have

a low (almost zero) defect density value, and the values are significantly positively

skewed.

The number of topics and defect-prone topics for each system is consistent across

versions (Table 3.3). We find that Mylyn has more defect-prone topics than the

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 27

Table 3.3: For each system, we show the mean defect density value across all topics
(µ(DPOST)), the number and percentage of defect-prone topics (NDT),
the median number of topics in each file (Med. NT), and the median
number of defect-prone topics in each file (Med NDT).

K µ(DPOST) NDT Med. (NT) Med. (NDT)

Mylyn 1.0 500 0.01 139 (27.8%) 9 7
Mylyn 2.0 500 0.02 137 (27.4%) 9 7
Mylyn 3.0 500 0.01 128 (25.6%) 9 7

Eclipse 2.0 500 0.03 122 (24.4%) 9 5
Eclipse 2.1 500 0.03 124 (24.8%) 9 5
Eclipse 3.0 500 0.06 136 (27.2%) 10 6

Firefox 1.0 500 0.00 106 (21.2%) 5 3
Firefox 1.5 500 0.00 111 (22.2%) 5 3
Firefox 2.0 500 0.00 82 (16.4%) 5 2

NetBeans 4.0 500 0.00 106 (21.2%) 9 5
NetBeans 5.0 500 0.00 103 (20.6%) 9 5
NetBeans 5.5.1 500 0.01 147 (29.4%) 9 6

other three systems, while Firefox has the least number of defect-prone topics, and

Eclipse has the highest mean defect density among four systems. NetBeans, on the

other hand, has a similar median NT and NDT to that of Eclipse.

Finally, we apply the Kolmogorov-Smirnov test on the topic defect density values

of each version of each subject system to verify the non-uniformity illustrated by

our visualizations. If the p-value computed using Kolmogorov-Smirnov test is high,

then the data is more likely to be uniformly distributed. However, we find that

the p-values for all systems are significantly small (< 0.001), indicating that the

distribution of defect density values is indeed not uniform (Stapleton, 2008).

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 28

Discussion

To better understand why some topics are more defect-prone than others, we in-

vestigate the relevant words of the top three most and least defect-prone topics

(Table 3.4–3.7).

Mylyn. Mylyn, previously known as Mylar, is an Eclipse plugin for task manage-

ment. We find that the topics with the highest defect densities are (i) those deal-

ing with the Eclipse integration (topic 421), likely because the Eclipse plugin API

changes so often; (ii) those that are related to the core functionality of the system,

i.e., tasks and the task UI (topics 164 and 168); and (iii) those dealing with the test

suite of Mylyn (topic 400), likely because of adding test cases for new defect fixes.

On the other hand, the least defect-prone topics deal with images and color

(topics 405 and 178) and data compression (topic 175). We postulate that the logic

behind these functions may be simpler and better defined than that of the core

functionality topics.

Eclipse. Regarding Eclipse, two of the most defect-prone topics (topics 496 and

492) in Eclipse 2.0 are about CVS plug-ins. The build notes for this release indicate

that the plug-ins supporting CVS-related functionalities were first introduced in this

version, making it an active area of development. (In fact, according to Eclipse’s

defect repository, 17 defects relating to CVS remained unfixed after the 2.0 release.)

A similar story holds for Eclipse 2.1, when integration for the Apache Ant build

system was actively developed, leading to many defects in topic 131.

Another set of defect-prone topics in Eclipse deals with low-level details such as

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 29

memory operations and message passing (topics 462, 169, and 233). We hypothe-

size that the logic needed to implement these topics are more complex, leading to

more defects.

The least defect-prone topics in Eclipse include those about bit-wise operations

(topic 116), arrays (topic 182), and parameter parsing (topic 192). One reason

that these might contain fewer defects is that errors in these topics may be observed

during run time (e.g., ”array out-of-bounds”) and are thus more easily detected by

developers during the testing phase of the project.

Firefox. One of the most defect-prone topics in Firefox 1.0 and 1.5 deals with

event handing (topic 101), which is responsible for dispatching events according

to network protocol responses. The topic is likely more defect-prone because the

network stack has been modified several times to enable the dynamic re-rendering

of complex webpages as they are being loaded.

Another defect-prone topic in Firefox 2.0 deals with accessing saved states (topic

80). The release notes for this version indicate that new features were introduced

that allow the browser to restore previous sessions, and that the tabbed browsing

functionality is updated.

Scanner Access Now Easy (SANE), an API that enables a scanner/digital camera

application to be created with JavaScript, is one of the least defect-prone topics in

all versions of Firefox (topic 280). Another topic that is not defect-prone deals with

Base64 encoding (topic 359—the characters are segments of encoded characters),

a known character standard.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 30

NetBeans. NetBeans 4.0 released several new features, such as: project system

based on Apache Ant (topic 219), code refactoring functionality, which uses a tree-

like structure to manipulate changes (topic 182), and GUI for controlling debug

and build operations (topic 372). These topics appear to be the most defect prone

topics. Topics related to sending queries (topic 484), code completion (topic 57),

parsing and manipulating Java code (topic 389), and using NetBeans to develop

Mobile Information Device Profile (MIDP) application (topic 97) are also more de-

fect prone. From the release notes of NetBeans, we find a possible reason these

topic are more defect prone: these features are relatively new in early versions of

NetBeans and so they have more defects reported after release of the software.

The least defect prone topics in NetBeans are about handling XML files (topic

236), handing database metadata (dmd) and metadata adaptor (topic 455), and

providing support for Java Platform (J2EE) customizer (topic 211). We hypothe-

size these topics are related to simpler tasks, where defects may be observed during

development. In addition, handling and storing software properties (topic 14),

parser generator that produces syntax trees (topic 73), and helper classes for creat-

ing NetBeans GUI tests (topic 39) are less defect prone.'

&

$

%

We find that different topics have different defect density, and most topics in

a system are not defect prone (average skewness 7.25, and a skewness of 1 is

already considered highly skewed). We find that topics that are related to new

features and the core functionality of a system tend to have a much higher defect

density than others.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 31

Table 3.4: Top words and defect densities of the most/least defect-prone topics in
our subject systems. The number on the left-hand side of each column
represents the topic ID.

Most Defect Prone Least Defect Prone
Topic Top words Density Topic Top words Density

ID ID

Mylyn 1.0

421 mylar, eclips, eclips mylar, 0.334 405 src, dest, base, <0.001
mylar intern, mylar task imag, fragment, imag pattern

164 task, list, task list, 0.182 178 lower color, part, put light <0.001
task ui, ui, plugin green lower, jface, medium

400 test, suit, test suit, 0.180 175 monitor, gzip, configur, <0.001
add test, add, suit add key, bugzilla attribut, iter

Mylyn 2.0

143 task, eclips, eclips mylyn, 0.502 405 src, dest, base, <0.001
mylyn, ui, task ui imag, fragment, imag pattern

457 eclips, mylyn, eclips mylyn, 0.244 178 lower color, part, put light, <0.001
intern, mylyn intern, core green lower, jface, medium

164 task, list, task list 0.207 175 monitor, gzip, configur, <0.001
task ui, ui, plugin key, bugzilla attribut, iter

Mylyn 3.0

143 task, eclips, eclips mylyn, 0.181 178 lower color, part, put light, <0.001
mylyn, ui, task ui green lower, jface, medium

457 eclips, mylyn, eclips mylyn, 0.111 310 aa, comparison check, comparison, <0.001
intern, mylyn intern, core check, check aa, aa comparison

168 repositori, task repositori, 0.092 6 select, caller, calle, <0.001
task core, repositori editor, part, foo

Continued in Table 3.5.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 32

Table 3.5: Continued from Table 3.4. Top words and defect densities of the
most/least defect-prone topics in our subject systems. The number on
the left-hand side of each column represents the topic ID.

Most Defect Prone Least Defect Prone
Topic Top words Density Topic Top words Density

ID ID

Eclipse 2.0

174 express, method, declar, 1.663 116 0xff, 0xff 0xff, src, <0.001
ast, node, astnod dst, 0xa, 0xf

496 option, local, seccion, 0.691 146 printer, data, printer data, <0.001
folder, ccv core, local option code, error, dispos

492 team, eclips team, eclips, 0.325 316 run, line, offset, <0.001
ccv, intern ccv, team intern style, length, item

Eclipse 2.1

143 form, toolkit, dfm, 1.164 192 arg, vtbl, arg arg, <0.001
nfm, ui, eclips ui guid, iidfrom, system

131 ant, eclips, task, 0.779 325 token, scribe, align, <0.001
eclips ant, ui, intern print, scribe print, space

233 bundl, recourc, resourc bundl, 0.572 116 0xff, 0xff 0xff, src, <0.001
kei, bundl resourc, messag dst, 0xa, 0xf

Eclipse 3.0

462 memori, block,render, 1.247 330 packet, print, id, <0.001
memori block, view, address command, stream, spy

169 transfer,data,code, 0.708 182 array, constant, array dim, <0.001
transfer data, java, object dim, pixbuf, paramet

131 ant, eclips, task, 0.700 270 pt, ph, pt arg, <0.001
eclips ant, ui, intern arg, pg, wm

Continued in Table 3.6.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 33

Table 3.6: Continued from Table 3.5. Top words and defect densities of the
most/least defect-prone topics in our subject systems. The number on
the left-hand side of each column represents the topic ID.

Most Defect Prone Least Defect Prone
Topic Top words Density Topic Top words Density

ID ID

Firefox 1.0

462 list, val, isvgvalu, 0.067 359 ghhd, sbz yxkgd, yxkgd, <0.001
modifi, observ, imethodimp sbz, yxkgd ghhd, vghle sbz

381 frame, svgframe, comptr, 0.038 280 sane, plugin, zoom, <0.001
queri, kid, add sane plugin, instanc, error

101 rv, rv rv, comptr, 0.038 361 child, border, spec, <0.001
nsresult, fail, fail rv num, color, col

Firefox 1.5

305 elem, rv, length, 0.088 359 ghhd, sbz yxkgd, yxkgd, <0.001
map, rv rv, comptr sbz, yxkgd ghhd, vghle sbz

413 xform, elem, model, 0.087 280 sane, plugin, zoom, <0.001
wrapper, instanc, xform xpath sane plugin, instanc, error

101 rv, rv rv, comptr, 0.078 335 ck, rv, pr, <0.001
nsresult, fail, fail rv log, modlog, log modlog

Firefox 2.0

168 param, info, pruint, 0.071 359 ghhd, sbz yxkgd, yxkgd, <0.001
xpttype, val, count sbz, yxkgd ghhd, vghle sbz

305 elem, rv, length, 0.061 100 frame, pfd, span, <0.001
map, rv rv, comptr psd, width, line

80 access, state, retval, 0.048 280 sane, plugin, zoom, <0.001
shell, node, comptr sane plugin, instanc, error

Continued in Table 3.7.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 34

Table 3.7: Continued from Table 3.6. Top words and defect densities of the
most/least defect-prone topics in our subject systems. The number on
the left-hand side of each column represents the topic ID.

Most Defect Prone Least Defect Prone
Topic Top words Density Topic Top words Density

ID ID

NetBeans 4.0

182 model, node, type, 0.168 236 node, layout, properti, <0.001
tree, tree model, unknown form, code, buf

372 grid, bag, grid bag, 0.058 211 level, sourc level, platform kei, <0.001
constraint, bag constraint, awt modul, chang, version

219 project, helper, ant, 0.050 455 prop, set, adaptor, <0.001
properti, project helper, evalu dmd, sqlexcept, max

NetBeans 5.0

57 path, cp, classpath, 0.058 236 node, layout, properti, <0.001
recourc, implement, java form, code, buf

484 queri, javadoc, binari, 0.045 211 level, sourc level, platform kei, <0.001
root, file, binari queri modul, chang, version

375 artifact, path, librari, 0.044 455 prop, set, adaptor, <0.001
project, ant, ant artifact dmd, sqlexcept, max

NetBeans 5.5.1

97 midp, compon, present, 0.127 14 properti, pw, tf, <0.001
vmd, modul vmd, modul properti sheet, sheet, text

389 token, token token, offset, 0.125 73 jj, kind, cur, <0.001
sequenc, lexer, token id state, activ, po

142 test, suit, junit, 0.110 39 jelli, mbean, constant, <0.001
test test, test suit, netbean jelli constant, nfwo, helper

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 35

3.3.2 RQ2: Do defect-prone topics remain defect-prone over

time?

Approach

In RQ1, we found that some topics are more defect-prone than other topics. In

order to verify that these topics are consistently defect-prone over time, we compute

the Spearman rank correlation of the topic defect density values among different

versions. Spearman rank correlation computes the correlation on the ranks of the

topic defect density, so a high correlation value will imply that the ranks of the

topic defect proneness are consistent across versions (i.e., the most defect topic is

still most defect prone in the next release).

Results

Table 3.8 shows the correlation of topic defect density among different versions of

a system. The correlation values are consistently medium to high between different

versions, which indicates that a defect-prone topic is still likely to be defect-prone

in the later versions. We also see evidence of this in Table 3.4, as several of the top

defect-prone topics are listed for each of the versions of a software system.

Therefore, it would be better to allocate more testing resources to previously-

identified defect-prone topics, as they are likely to remain defect-prone in later

releases.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 36

Table 3.8: Spearman correlation coefficients of each topic’s defect density across
software versions.

Mylyn 1.0 Mylyn 2.0 Mylyn 3.0

Mylyn 1.0 1.000 – –
Mylyn 2.0 0.673 1.000 –
Mylyn 3.0 0.483 0.493 1.000

Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

Eclipse 2.0 1.000 – –
Eclipse 2.1 0.529 1.000 –
Eclipse 3.0 0.438 0.530 1.000

Firefox 1.0 Firefox 1.5 Firefox 2.0

Firefox 1.0 1.000 – –
Firefox 1.5 0.536 1.000 –
Firefox 2.0 0.473 0.564 1.000

NetBeans 4.0 NetBeans 5.0 NetBeans 5.5.1

NetBeans 4.0 1.000 – –
NetBeans 5.0 0.612 1.000 –
NetBeans 5.5.1 0.588 0.563 1.000

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 37

'

&

$

%

The correlation of the topic defect density among different versions of a system

is consistently from mid to high, which implies that defect prone topics are

very likely to be defect prone in later versions. This information may help

practitioners allocate testing resources more effectively.

3.3.3 RQ3: Can our proposed topic-based metrics help explain

why some files are more defect-prone than others?

In the previous research questions, we have shown that topics have different levels

of defect proneness, and defect prone topics tend to remain so over time. To pro-

vide evidence for practitioners that topics can help quality assurance processes, we

examine the amount of additional deviance in post-release defects that our topic-

based metrics can explain, with respect to traditional baseline metrics (LOC, PRE,

and code churn) in this research question. This analysis allows us to verify empiri-

cally our theory that topic-based metrics provide additional explanatory power over

post-release software defects.

Approach

Explaining Software Defects. As previously mentioned, software metrics can be

classified as static or historical. Static metrics, such as lines of code (LOC), are ob-

tained from a single snapshot of the system (Crawford et al., 1985). On the other

hand, historical metrics require past information about the system, and include pre-

release defects (PRE) and code churn (i.e, changes to the code) (Bird et al., 2011).

As such, in this research question, we build two sets of models: those based on

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 38

static topic-based metric, and those based on historical topic-based metrics. (For a

more detailed discussion about the analysis approach that is used in this research

question, please refer to Section 2.3.) For a baseline static metric, we choose LOC,

because LOC is a good general software metric and has been used for benchmark-

ing (DAmbros et al., 2010; Rosenberg, 1997). For baseline historical metrics, we

choose PRE and code churn because they are a good measurement for defects (,

n.d.; Biyani and Santhanam, 1998), and have also been used as a baseline model

for comparing metrics (Bird et al., 2011). Moreover, LOC, PRE, and code churn

have been shown to be the best metrics for explaining defects, and researchers in

Empirical Software Engineering should compare their metrics with them (DAmbros

et al., 2010; Gyimothy et al., 2005; Oram and Wilson, 2010).

Our goal here is not to predict post-release defects. Instead, we want to see

how much improvement on explaining deviance (i.e., model fitness) in defects our

topic-based metrics can bring to the baseline metrics.

We use logistic regression with post-release defects as our dependent variable,

and report the percent deviance explained (D2) for each combination of indepen-

dent variables (i.e., metric combinations). (To eliminate any skew in the metric

values, we apply a log transformation on the metrics.) Here, the D2 measure is

similar to the adjusted R2 measure in linear regression, except that D2 quantifies

how much deviance a logistic regression model can explain.

Interpreting Results. A higher D2 value generally indicates a better model fit,

but when the number of independent variables is large, D2 may not be a good

measure. As the number of independent variables increases, D2 will always increase

regardless of the quality of the model. Thus, we also use another measure called

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 39

the Akaike information criterion (AIC). AIC can be used to compare the fitness

of different models, and it penalizes more complex models (Burnham Kenneth P.,

2004; Raftery, 1995). Models with lower AIC scores are better.

Recall that by the definition of our TM and DTM metrics (Equations 3.4 and 3.7),

each metric will produce many values for each file (K values in the case of TM, and

|B| values in the case of DTM). To avoid the problems of overfitting and multi-

collinearity, we use Principal Component Analysis (PCA) to reduce the dimension-

ality of the metrics (Jolliffe, 2002). PCA transforms the data into a smaller set of

uncorrelated variables while still capturing the patterns of the original data (Jolliffe,

2002). We choose the principal components (PCs) until either 90% of the variances

are explained, or when the increase in variance explained by adding a new PC is

less than the mean variance explained of all PCs (Jolliffe, 2002).

We perform stepwise regression on the PCs of TM and DTM metrics to make

our model more robust (Cureton and D’Agostino, 1993; Haan, 1977). Stepwise

regression is a variable selection approach, which adds or removes variables to the

model according to some criteria, which, in this thesis, we choose to use the AIC

score.

Results

We present the results in Tables 3.9–3.10 and 3.11–3.12. Table 3.9 shows the results

for static topic-based metric. We find that adding NT gives a significant improve-

ment in the deviance explained. All models have statistically significant (p-value ≤

0.05) improvement when NT is added to the model. In all the versions of Mylyn,

Firefox, and NetBeans, NT gives at least an 18% increase in D2 (Figure 3.3 and

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 40

Table 3.9: D2 improvement and AIC scores for static software metrics. The higher
the D2 the better the explanatory power; the lower the AIC scores the
better the explanatory power. Numbers in the parentheses are the D2 im-
provement or AIC score decreasement in percentage of the base model.
The best model of each version of the software is marked in bold.

System Model D2 AIC

Mylyn 1.0 Base(LOC) 0.09 1047.36
Base+NT 0.14 (+56%) 990.85 (-5%)
Base+TM 0.21 (+133%) 957.83 (-9%)

Mylyn 2.0 Base(LOC) 0.14 1078.35
Base+NT 0.19 (+36%) 1020.46 (-5%)
Base+TM 0.27 (+93%) 956.73 (-11%)

Mylyn 3.0 Base(LOC) 0.13 1159.74
Base+NT 0.20 (+54%) 1071.71 (-8%)
Base+TM 0.34 (+162%) 949.17 (-18%)

System Model D2 AIC

Firefox 1.0 Base(LOC) 0.12 2374.85
Base+NT 0.16 (+33%) 2256.41 (-5%)
Base+TM 0.20 (+67%) 2168.37 (-9%)

Firefox 1.5 Base(LOC) 0.15 3474.84
Base+NT 0.21 (+40%) 3241.09 (-7%)
Base+TM 0.28 (+87%) 2969.09 (-15%)

Firefox 2.0 Base(LOC) 0.14 2224.76
Base+NT 0.17 (+18%) 2152.19 (-3%)
Base+TM 0.24 (+71%) 1973.27 (-11%)

Continued in Table 3.10.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 41

Table 3.10: Continued from Table 3.9. D2 improvement and AIC scores for static
software metrics. The higher the D2 the better the explanatory power;
the lower the AIC scores the better the explanatory power. Numbers in
the parentheses are the D2 improvement or AIC score decreasement in
percentage of the base model. The best model of each version of the
software is marked in bold.

System Model D2 AIC

Eclipse 2.0 Base(LOC) 0.18 4584.26
Base+NT 0.18 (+0%) 4575.72 (-0%)
Base+TM 0.29 (+61%) 4003.58 (-13%)

Eclipse 2.1 Base(LOC) 0.11 4804.87
Base+NT 0.11 (+0%) 4793.48 (-0%)
Base+TM 0.28 (+87%) 2969.09 (-15%)

Eclipse 3.0 Base(LOC) 0.14 7591.93
Base+NT 0.14 (+0%) 7589.50 (-0%)
Base+TM 0.24 (+71%) 6800.06 (-10%)

System Model D2 AIC

NetBeans 4.0 Base(LOC) 0.07 1529.27
Base+NT 0.10 (+43%) 1476.20 (-3%)
Base+TM 0.29 (+314%) 1196.67 (-22%)

NetBeans 5.0 Base(LOC) 0.07 1650.94
Base+NT 0.10 (+43%) 1594.86 (-3%)
Base+TM 0.19 (+171%) 1477.02 (-11%)

NetBeans 5.5.1 Base(LOC) 0.07 4916.00
Base+NT 0.11 (+57%) 4727.63 (-4%)
Base+TM 0.17 (+143%) 4417.73 (-10%)

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 42

Table 3.11: D2 improvement and AIC scores for historical software metrics. The
higher the D2 the better the explanatory power; the lower the AIC
scores the better the explanatory power. Numbers in the parentheses
are theD2 improvement or AIC score decreasement in percentage of the
base model. The best model of each version of the software is marked
in bold. NDT is statistically significant in all systems except Mylyn 3.0,
Eclipse 2.1, and Eclipse 3.0.

System Model D2 AIC

Mylyn 1.0 Base(PRE+Churn) 0.21 917.38
Base+NDT 0.24 (+14%) 885.72 (-3%)
Base+DTM 0.30 (+43%) 824.24 (-10%)

Mylyn 2.0 Base(PRE+Churn) 0.22 987.04
Base+NDT 0.23 (+4%) 971.01 (-2%)
Base+DTM 0.34 (+55%) 882.19 (-11%)

Mylyn 3.0 Base(PRE+Churn) 0.28 957.31
Base+NDT 0.29 (+4%) 955.98 (-0%)
Base+DTM 0.36 (+29%) 909.83 (-5%)

System Model D2 AIC

Firefox 1.0 Base(PRE+Churn) 0.14 2299.70
Base+NDT 0.18 (+29%) 2204.47 (-4%)
Base+DTM 0.20 (+43%) 2152.08 (-6%)

Firefox 1.5 Base(PRE+Churn) 0.20 3255.54
Base+NDT 0.25 (+25%) 3081.35 (-5%)
Base+DTM 0.27 (+35%) 3005.55 (-8%)

Firefox 2.0 Base(PRE+Churn) 0.23 2008.67
Base+NDT 0.25 (+9%) 1951.41 (-3%)
Base+DTM 0.28 (+22%) 1892.53 (-6%)

Continued in Table 3.12.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 43

Table 3.12: Continued from Table 3.11. D2 improvement and AIC scores for his-
torical software metrics. The higher the D2 the better the explanatory
power; the lower the AIC scores the better the explanatory power. Num-
bers in the parentheses are the D2 improvement or AIC score decrease-
ment in percentage of the base model. The best model of each version
of the software is marked in bold. NDT is statistically significant in all
systems except Mylyn 3.0, Eclipse 2.1, and Eclipse 3.0.

System Model D2 AIC

Eclipse 2.0 Base(PRE+Churn) 0.17 4605.37
Base+NDT 0.20 (+18%) 4477.51 (-3%)
Base+DTM 0.30 (+76%) 3930.40 (-15%)

Eclipse 2.1 Base(PRE+Churn) 0.15 4586.50
Base+NDT 0.15 (+0%) 4586.19 (-0%)
Base+DTM 0.19 (+27%) 4366.09 (-5%)

Eclipse 3.0 Base(PRE+Churn) 0.17 7310.04
Base+NDT 0.17 (+0%) 7309.30 (-0%)
Base+DTM 0.24 (+41%) 6729.03 (-8%)

System Model D2 AIC

NetBeans 4.0 Base(PRE+Churn) 0.28 1182.89
Base+NDT 0.31 (+11%) 1138.08 (-4%)
Base+DTM 0.31 (+11%) 1145.90 (-3%)

NetBeans 5.0 Base(PRE+Churn) 0.14 1524.13
Base+NDT 0.17 (+21%) 1470.69 (-4%)
Base+DTM 0.21 (+50%) 1418.24 (-7%)

NetBeans 5.5.1 Base(PRE+Churn) 0.13 4612.55
Base+NDT 0.17 (+31%) 4366.69 (-5%)
Base+DTM 0.19 (+46%) 4306.96 (-7%)

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 44

Mylyn Firefox Eclipse NetBeans
0

10

20

30

40

50

60

V1

V2

V3

N
T

 %
 im

p
ro

ve
m

e
n

t i
n

 D
^2

Figure 3.3: Percentage improvement in D2 when NT is added to the base model.

Mylyn Firefox Eclipse NetBeans
0

1

2

3

4

5

6

7

8

9

V1

V2

V3

N
T

 %
 im

p
ro

ve
m

e
n

t i
n

 A
IC

Figure 3.4: Percentage improvement in AIC when NT is added to the base model.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 45

Mylyn Firefox Eclipse NetBeans
0

1

2

3

4

5

6

7

8

9

V1

V2

V3

N
T

 %
 im

p
ro

ve
m

e
n

t i
n

 A
IC

Mylyn Firefox Eclipse NetBeans
0

50

100

150

200

250

300

350

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
t i

n
 D

^2

Figure 3.5: Percentage improvement in D2 when TM is added to the base model.

Mylyn Firefox Eclipse NetBeans
0

1

2

3

4

5

6

7

8

9

V1

V2

V3

N
T

 %
 im

p
ro

ve
m

e
n

t i
n

 A
IC

Mylyn Firefox Eclipse NetBeans
0

50

100

150

200

250

300

350

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
t i

n
 D

^2

Mylyn Firefox Eclipse NetBeans
0

5

10

15

20

25

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
n

t i
n

 A
IC

Figure 3.6: Percentage improvement in AIC when TM is added to the base model.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 46

Mylyn Firefox Eclipse NetBeans
0

1

2

3

4

5

6

7

8

9

V1

V2

V3

N
T

 %
 im

p
ro

ve
m

e
n

t i
n

 A
IC

Mylyn Firefox Eclipse NetBeans
0

50

100

150

200

250

300

350

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
t i

n
 D

^2

Mylyn Firefox Eclipse NetBeans
0

5

10

15

20

25

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
n

t i
n

 A
IC

Mylyn Firefox Eclipse NetBeans
0

5

10

15

20

25

30

35

V1

V2

V3

ND
T

%
 Im

pr
o v

em
en

t i
n

D^
2

Figure 3.7: Percentage improvement in D2 when NDT is added to the base model.

Mylyn Firefox Eclipse NetBeans
0

1

2

3

4

5

6

7

8

9

V1

V2

V3

N
T

 %
 im

p
ro

ve
m

e
n

t i
n

 A
IC

Mylyn Firefox Eclipse NetBeans
0

50

100

150

200

250

300

350

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
t i

n
 D

^2

Mylyn Firefox Eclipse NetBeans
0

5

10

15

20

25

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
n

t i
n

 A
IC

Mylyn Firefox Eclipse NetBeans
0

5

10

15

20

25

30

35

V1

V2

V3

ND
T

%
 Im

pr
o v

em
en

t i
n

D^
2

Mylyn Firefox Eclipse NetBeans
0

2

4

6

8

10

12

V1

V2

V3

N
D

T
 %

 Im
p

ro
ve

m
e

n
t i

n
 A

IC

Figure 3.8: Percentage improvement in AIC when NDT is added to the base model.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 47

Mylyn Firefox Eclipse NetBeans
0

1

2

3

4

5

6

7

8

9

V1

V2

V3

N
T

 %
 im

p
ro

ve
m

e
n

t i
n

 A
IC

Mylyn Firefox Eclipse NetBeans
0

50

100

150

200

250

300

350

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
t i

n
 D

^2

Mylyn Firefox Eclipse NetBeans
0

5

10

15

20

25

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
n

t i
n

 A
IC

Mylyn Firefox Eclipse NetBeans
0

5

10

15

20

25

30

35

V1

V2

V3

ND
T

%
 Im

pr
o v

em
en

t i
n

D^
2

Mylyn Firefox Eclipse NetBeans
0

2

4

6

8

10

12

V1

V2

V3

N
D

T
 %

 Im
p

ro
ve

m
e

n
t i

n
 A

IC

Mylyn Firefox Eclipse NetBeans
0

10

20

30

40

50

60

70

80

V1

V2

V3

D
T

M
 %

 Im
p

ro
ve

m
e

n
t i

n
 D

^2

Figure 3.9: Percentage improvement in D2 when DTM is added to the base model.

Mylyn Firefox Eclipse NetBeans
0

1

2

3

4

5

6

7

8

9

V1

V2

V3

N
T

 %
 im

p
ro

ve
m

e
n

t i
n

 A
IC

Mylyn Firefox Eclipse NetBeans
0

50

100

150

200

250

300

350

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
t i

n
 D

^2

Mylyn Firefox Eclipse NetBeans
0

5

10

15

20

25

V1

V2

V3

T
M

 %
 Im

p
ro

ve
m

e
n

t i
n

 A
IC

Mylyn Firefox Eclipse NetBeans
0

5

10

15

20

25

30

35

V1

V2

V3

ND
T

%
 Im

pr
o v

em
en

t i
n

D^
2

Mylyn Firefox Eclipse NetBeans
0

2

4

6

8

10

12

V1

V2

V3

N
D

T
 %

 Im
p

ro
ve

m
e

n
t i

n
 A

IC

Mylyn Firefox Eclipse NetBeans
0

10

20

30

40

50

60

70

80

V1

V2

V3

D
T

M
 %

 Im
p

ro
ve

m
e

n
t i

n
 D

^2

Mylyn Firefox Eclipse NetBeans
0

2

4

6

8

10

12

14

16

V1

V2

V3

D
T

M
 %

 Im
p

ro
ve

m
e

n
t i

n
 A

IC

Figure 3.10: Percentage improvement in AIC when DTM is added to the base model.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 48

3.4). However, we find that the performance of NT is not as high in Eclipse.

Both TM and DTM, on the other hand, give significant improvements in all three

subject systems. We find that the TM metric improves the deviance explained by

61–314%, compared to the baseline model (Figure 3.5 and 3.6).

Table 3.11 – 3.12 shows the results for historical topic-based metrics. We find

that NDT gives a promising improvement in D2 over the base model (Figure 3.7

and 3.8). This implies that topics with high pre-release defects are more likely to

have post-release defects, and having more defect-prone topics may have negative

effects on the code quality. The improvement of NDT is not as large for Eclipse 2.1

and 3.0. However, the improvements achieved by the DTM metric are consistent

across all versions of all systems. DTM also help explain defects more than NDT,

except for NetBeans 4.0 where NDT has a lower AIC score than that of DTM. We

find that, overall, DTM improves the explanatory power over the baseline model by

11–76% (Figure 3.9 and 3.10).

Discussion

One possible explanation as to why the improvement of NDT in Eclipse is not as

high as in the other systems is because topics in Eclipse have higher defect density

(Table 3.3). Since topics are generally more defect-prone, the overall explanatory

power of NDT decreases. On the other hand, DTM contains a more general infor-

mation about all the defect-prone topics, which better explains defects.

To see the effects of NT and NDT in our logistic regression models, Table 3.13

shows the average coefficients of these metrics across the three versions of each

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 49

Table 3.13: Average value of the regression coefficients of NT and NDT metrics.

Mylyn Firefox Eclipse NetBeans

NT 1.73 1.26 0.06 1.32
NDT 1.71 0.85 0.24 0.90

subject system. Both NT and NDT have positive coefficients in all the subject sys-

tems, which implies that as the number of topics or defect-prone topics increases, a

file will have higher chances to be defect-prone. However, the coefficients of NDT

in Firefox, Eclipse, and NetBeans, and NT in Eclipse are smaller than one, which

means the effects are relatively minor.

Our findings show that the number of topics in a file has a strong relationship

with defects, and files having more defect-prone topics will more likely to be defect-

prone.'

&

$

%

All of our proposed topic-based metrics can help improve the baseline metrics in

terms of defect explanatory power. We find that, the more topics a file has, the

higher the chance that the file may be defect-prone; and the more defect prone

topics a file has, the higher the chance that the file may be defect prone.

3.3.4 RQ4: How do our metrics compare with other topic-based

cohesion and coupling metrics?

Maintaining a high cohesion and low coupling among software files during devel-

opment can help reduce maintenance costs and improve reliability of a software

system (Fenton, 1991; Macro and Buxton, 1987). Researchers have used various

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 50

software structures, such as interactions among variables and methods, to measure

cohesion and coupling in software systems (Allen and Khoshgoftaar, 1999; Bieman

and Kang, 1998; Briand et al., 1998; Chae et al., 2000). Recently, many stud-

ies have measured cohesion and coupling using a different approach, namly topic

models (Chen et al., 2012; Gethers and Poshyvanyk, 2010; Liu et al., 2009; Marcus

and Poshyvanyk, 2005; Marcus et al., 2008; Poshyvanyk and Marcus, 2006; Ujhazi

et al., 2010). These approaches measure cohesion and coupling using the concern

similarity or scattering in source code files. The NT metric that we propose in Sec-

tion 3.2.1 also measures the level of cohesion of a source code file, i.e., more topics

implies low cohesion, and in RQ3 we find that this metric is statistical significant

when explaining software defects.

In this RQ, we compare the defect explanatory power of state-of-the-art topic-

based cohesion and coupling metrics with our metric, NT. We do not include NDT in

the comparison because NDT is considering the defect history of topics, and current

state of the art only considers static information (i.e., source code). In addition, TM

and DTM contain more than one variable. If we compare these three topic based

metrics with current state of the art, the comparison will be unfair.

By identifying which metrics perform best, and whether the metrics are highly

correlated with each other, practitioners can use the most effective combination of

metrics and avoid possible problems of overfitting and multicollinearity. State-of-

the-art topic-based cohesion and coupling metrics are already outperforming other

traditional cohesion and coupling metrics, so we do not include traditional cohesion

and coupling metrics in our study (Gethers and Poshyvanyk, 2010; Liu et al., 2009;

Marcus and Poshyvanyk, 2005; Marcus et al., 2008; Poshyvanyk and Marcus, 2006;

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 51

Table 3.14: Summary of the topic-based cohesion and coupling metrics that we
compare in our study. Granularity indicates at which level the metric is
computed.

Metric Type Granularity Topic Model Preferred Cited Paper
Metric
Value

CLCOM5 cohesion method LSI low (Ujhazi et al., 2010)
CCBO coupling file LSI low (Ujhazi et al., 2010)
RTCs coupling file RTM low (Gethers and Poshyvanyk, 2010)
MWE cohesion method LDA high (Liu et al., 2009)
NT cohesion file LDA low This Chapter

Ujhazi et al., 2010). In addition, we can study whether NT can explain more defects

than the current state of the art. The goal of this research question is to compare the

defect explanatory power of our NT metric with existing topic-based cohesion and

coupling metrics, and help practitioners decide which metrics should be included

when analyzing cohesion and coupling of software systems using topic models.

Approach

We want to compare NT (Equation 3.3) with the cohesion and coupling metrics

proposed by Gethers et al. (Gethers and Poshyvanyk, 2010), Liu et al. (Liu et al.,

2009), and Ujhazi et al. (Ujhazi et al., 2010), since these metrics use different

topic modeling approaches. Moreover, because these metrics analyse cohesion and

coupling based on topics, the results might have some overlap and some metrics

might be highly correlated to others. Therefore, we examine whether there are

correlated, and how these metrics differ in defect explanatory power. Table 3.14

shows the summary of these metrics, and we briefly describe these metrics below.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 52

Measuring Cohesion and Coupling using Latent Semantic Indexing. Ujhazi et

al. measure conceptual cohesion using a topic modelling approach called Latent

Semantic Indexing (LSI) (Ujhazi et al., 2010) (for more information about LSI, see

Section 2.1.2).

Ujhazi et al. propose a cohesion metric called CLCOM5, which is defined by

computing the cosine similarity among all the methods within a source code file

(i.e., each document in LSI is a method, and the corpus is the file). If a method is

very similar to many other methods in the same file, then this file has low cohesion.

If the similarity score between each pair of methods within the same file is larger

than some threshold, then a score of one is added to the file (i.e., the file’s coupling

score plus one). The authors find the optimal threshold for the cosine similarity

score to be between 0.7 to 0.8 through empirical analysis. In this thesis, we use the

average of these thresholds, 0.75.

Ujhazi et al. also propose a coupling metric called CCBO at the file level (i.e.,

each document in LSI is a file, and the corpus is all the files in the software system).

If a file is similar to many other files in the same software system, then this file is

highly coupled. The authors compute the cosine similarity among all the source

code files in a software system, and assign a coupling score of one if the score is

larger than a threshold (same threshold range as that in CLCOM5).

Measuring Coupling using Relational Topic Models Gethers et al. (Gethers and

Poshyvanyk, 2010) propose a coupling metric using a variant of LDA, called rela-

tional topic model (RTM) (Chang and Blei, 2009) (see Section 2.1.3). RTM predicts

the linking probability among documents using the underlying topics, so if the top-

ics in a file is very similar to many other files in the same system (i.e., have high

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 53

linking probability), then this file is highly coupled. Let RTC(f1, f2) (Relational

Topic-based Coupling between f1 and f2) be the probability that a link exists be-

tween file f1 and f2. Gethers et al. then define RTCs for a source code file fi as

RTCs(fi) = 1/n ∗
n∑

j∈F

RTC(fi, fj), (3.8)

where n is the number of files in the system, and F is the set of all source code files.

Measuring Cohesion using Topic Distributions and Occupancies Liu et al. pro-

pose a cohesion metric using LDA (see Section 2.1.1), called Maximal Weighted

Entropy (MWE) (Liu et al., 2009), to measure the level of cohesion in software

systems at the method level. For each topic, Liu et al. compute the topic occupancy

and distribution in a source code file, and the MWE is the product of the maximum

occupancy and distribution among all topics. The occupancy of topic zi in all the

methods of a source code file is defined as

O(zi) = 1/m(f) ∗
m(f)∑
j=1

θij, (3.9)

where m(f) is the number of methods in the source code file f , and θij is the topic

membership value of topic zi in method j. Occupancy measures the average of a

topic’s membership value across all methods in a file (on average, how much does

this topic exist in this file).

Liu et al. use information entropy to measure the distribution of topics in a

source code file. Information entropy measures the uncertainty of the topics (Ihara,

1993), so if a topic is distributed uniformly in the methods of a file, then the entropy

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 54

value will be low; otherwise, the entropy value will be high. Topic distribution of

topic zi in a file is defined as

D(ti) = 1/log(m(f)) ∗ E(zi), (3.10)

where E(zi) is the information entropy value for zi computed across all the methods

in a file.

Therefore, MWE of a source code file f is defined as

MWE(f) = maxi∈Z(O(zi) ∗D(zi)), (3.11)

where Z is the set of topics in a file.

Implementation and Experiment Procedures We implement and compute all of

the above-mentioned metrics using K = 500 and II = 10,000, the same as our

previous research questions. These parameters may slightly affect the results, but

we want to do a controlled experiment where the parameters are the same. For

implementing RTCs, we use the recommended α (50/K)and β (0.1) values as in

the software package that Gethers et al. use. We use the MALLET optimized α and

β for implementing MWE. The experiment procedures are as follows:

• We first examine the pair-wise correlation between all topic-based metrics

and LOC, and study whether these topic-based metrics are capturing different

information than LOC. We use LOC as our baseline metric and remove any

metrics that are highly correlated to LOC, because most software complex-

ity metrics are correlated with LOC, and LOC is one of the best metrics for

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 55

explaining defects (Oram and Wilson, 2010).

• We study how much D2 and AIC improvement each metric gives over the base

model. Again, we use LOC as the baseline metric, since these metrics are all

using a single snapshot of the current software system.

• We perform PCA analysis on LOC and all the topic-based cohesion and cou-

pling, except NT. We use the resulting PCs as the base model, and examine the

D2 improvement when NT is added to the model. By doing this experiment,

we can examine whether NT can bring any additional improvements to all

of LOC and state-of-the-art topic-based cohesion and coupling metrics when

explaining defects.

Results and Discussion

Correlation Analysis. LOC is one of the most effective metrics for explaining code

quality, and all software complexity metrics are highly correlated with LOC (Oram

and Wilson, 2010). Prior research also recommend further study to compare their

metrics with LOC (Oram and Wilson, 2010). Therefore, we use LOC as a baseline

metric, and study if the topic-based metrics are bringing new information to LOC.

We perform a correlation analysis to remove any metrics that are highly correlated

with LOC (0.6) to ensure that all the topic-based metrics are capturing different

information than LOC.

In Table 3.15 – 3.18, we see that CLCOM5 is highly correlated with LOC in

every subject system (0.65 – 0.77). Due to such high correlation with the baseline

metric, we remove CLCOM5 in the future analysis. We also find that NT has a

relatively high correlation with MWE (-0.01 – -0.65). However, these two metrics

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 56

are not highly correlated with LOC. In addition, even if they are highly correlated,

one metric may still outperform the other when explaining defects, so we will keep

these two metrics and perform a more detailed comparison. Furthermore, NT is

considerably simpler metric to measure compared to MWE, and we are curious

about NT’s overall performance compared to MWE, the more complex metric.

Improvement in Defect Explanatory Power of Each Topic-base Cohesion and

Coupling Metric. Table 3.19 – 3.22 shows the improvement of each metric over

the base model (LOC) in all the subject systems. Our NT metric generally gives the

greatest improvement (on average 30%), except for Eclipse 2.0 and 3.0, and Net-

Beans 4.0; however, no topic-based cohesion and coupling metrics give improve-

ment in these systems. Note that, since some of the metrics are computed at the

method level (then aggregated to obtain a file level metric), source code files that

do not have methods (i.e., interfaces) are excluded, and as a result the D2 and AIC

score for the base model are slightly different from that of RQ3 (dataset is slightly

different due to exclusion of some files that do not have methods). We find that 364

files were excluded from all versions of Mylyn (a total of 37 defects are excluded);

790 files were excluded from all versions of Firefox (17 defects); 6,236 files were

excluded from all versions of Eclipse (330 defects); and 9,143 files were excluded

from all versions of NetBeans (469 defects).

MWE gives the second best improvement over the base model (12%). RTCs,

which gives 6% improvement on average, is not statistically different from the base

model in most of the subject systems: low level of statistical significance indicates

that the effect of RTCs likely happened by chance. CCBO gives about 3% improve-

ment, but is not statistically significant in 7 out of 12 versions of the four software

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 57

Table 3.15: Pair-wise correlation between all topic-based cohesion and coupling
metrics and LOC. “*” indicates a p-value < 0.05. “**” indicates a p-
value < 0.01. “***” indicates a p-value < 0.001.

Mylyn 1.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.48*** — — — —
RTCs 0.35*** -0.34*** — — —

CCBO -0.16*** 0.23*** -0.07 — —
CLCOM5 0.12** -0.04 -0.04 -0.12** —

LOC 0.33*** -0.39*** 0.01 -0.19*** 0.65***

Mylyn 2.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.48*** — — — —
RTCs -0.01 -0.03 — — —

CCBO -0.18*** 0.17*** 0.05 — —
CLCOM5 0.10** -0.04 -0.07* -0.09** —

LOC 0.33*** -0.39*** -0.04 -0.18*** 0.66***

Mylyn 3.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.51*** — — — —
RTCs 0.00 -0.02 — — —

CCBO -0.31*** 0.17*** 0.01 — —
CLCOM5 0.11*** -0.01 0.00 -0.08* —

LOC 0.37*** -0.36*** 0.01 -0.17*** 0.68***

Continued in Table 3.16.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 58

Table 3.16: Continued from Table 3.15. Pair-wise correlation between all topic-
based cohesion and coupling metrics and LOC. “*” indicates a p-value
< 0.05. “**” indicates a p-value < 0.01. “***” indicates a p-value <
0.001.

Firefox 1.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.65*** — — — —
RTCs -0.24*** 0.39*** — — —

CCBO -0.56*** 0.55*** 0.47*** — —
CLCOM5 0.27*** -0.25*** -0.33*** -0.21*** —

LOC 0.44*** -0.53*** -0.47*** -0.38*** 0.77***

Firefox 1.5
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.65*** — — — —
RTCs -0.02 0.02 — — —

CCBO -0.55*** 0.54*** 0.02 — —
CLCOM5 0.26*** -0.24*** -0.01 -0.19*** —

LOC 0.41*** -0.49*** 0.00 -0.33*** 0.77***

Firefox 2.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.65*** — — — —
RTCs 0.01 -0.01 — — —

CCBO -0.55*** 0.54*** -0.01 — —
CLCOM5 0.26*** -0.24*** -0.01 -0.19*** —

LOC 0.41*** -0.49*** -0.01 -0.32*** 0.77***

Continued in Table 3.17.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 59

Table 3.17: Continued from Table 3.16. Pair-wise correlation between all topic-
based cohesion and coupling metrics and LOC. “*” indicates a p-value
< 0.05. “**” indicates a p-value < 0.01. “***” indicates a p-value <
0.001.

Eclipse 2.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.48*** — — — —
RTCs 0.33*** -0.36*** — — —

CCBO -0.49*** 0.33*** -0.12*** — —
CLCOM5 0.02 -0.04** 0.04** 0.04** —

LOC 0.27*** -0.41*** 0.22*** -0.15*** 0.72***

Eclipse 2.1
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.50*** — — — —
RTCs 0.00 0.00 — — —

CCBO -0.48*** 0.32*** 0.01 — —
CLCOM5 0.06*** -0.03* 0.01 0.04** —

LOC 0.32*** -0.39*** 0.02 -0.15*** 0.73***

Eclipse 3.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.49*** — — — —
RTCs 0.00 0.00 — — —

CCBO -0.40*** 0.35*** 0.03* — —
CLCOM5 0.08*** -0.02 0.02 0.05*** —

LOC 0.33*** -0.38*** 0.01 -0.15*** 0.73***

Continued in Table 3.18.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 60

Table 3.18: Continued from Table 3.17. Pair-wise correlation between all topic-
based cohesion and coupling metrics and LOC. “*” indicates a p-value
< 0.05. “**” indicates a p-value < 0.01. “***” indicates a p-value <
0.001.

NetBeans 4.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE 0.01 — — — —
RTCs 0.03 -0.30*** — — —

CCBO 0.00 0.18*** -0.01 — —
CLCOM5 0.05** -0.01 0.08*** 0.04 —

LOC 0.07*** -0.32*** 0.22*** -0.06** 0.69***

NetBeans 5.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.40*** — — — —
RTCs 0.01 -0.01 — — —

CCBO -0.33*** 0.10*** -0.01 — —
CLCOM5 0.10*** -0.02 0.00 0.00 —

LOC 0.31*** -0.34*** -0.01 0.01 0.69***

NetBeans 5.5.1
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.47*** — — — —
RTCs -0.02 0.00 — — —

CCBO -0.34*** 0.15*** -0.01 — —
CLCOM5 0.11*** 0.01 0.01 -0.02* —

LOC 0.35*** -0.31*** 0.01 -0.05*** 0.69***

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 61

Table 3.19: D2 improvement and AIC scores for topic-based cohesion and coupling
metrics. Numbers in the parentheses are the D2 increase or AIC score
decrease in percentage of the base model. The best model of each ver-
sion of the software is marked in bold. * indicates the metric is statisti-
cally significant (i.e., p-value < 0.05).

System Model D2 AIC

Mylyn 1.0 Base(LOC) * 0.06 958.06
Base+NT * 0.09 (+50%) 924.94 (-3%)
Base+CCBO 0.06 (+0%) 959.25 (-0%)
Base+RTCs * 0.09 (+50%) 930.94 (-3%)
Base+MWE * 0.08 (+33%) 940.42 (-2%)

Mylyn 2.0 Base(LOC) * 0.10 947.11
Base+NT * 0.14 (+40%) 908.48 (-4%)
Base+CCBO 0.10 (+0%) 949.02 (-0%)
Base+RTCs 0.10 (+0%) 949.10 (-0%)
Base+MWE * 0.12 (+20%) 922.96 (-3%)

Mylyn 3.0 Base(LOC) * 0.11 1075.17
Base+NT * 0.17 (+55%) 1004.44 (-7%)
Base+CCBO * 0.13 (+18%) 1059.42 (-1%)
Base+RTCs 0.11 (+0%) 1077.05 (-0%)
Base+MWE * 0.13 (+18%) 1057.65 (-2%)

Continued in Table 3.20.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 62

Table 3.20: Continued from Table 3.19. D2 improvement and AIC scores for topic-
based cohesion and coupling metrics. Numbers in the parentheses are
the D2 increase or AIC score decrease in percentage of the base model.
The best model of each version of the software is marked in bold. *
indicates the metric is statistically significant (i.e., p-value < 0.05).

System Model D2 AIC

Firefox 1.0 Base(LOC) * 0.12 2330.13
Base+NT * 0.17 (+42%) 2189.26 (-6%)
Base+CCBO * 0.13 (+8%) 2299.17 (-0%)
Base+RTCs * 0.13 (+8%) 2300.87 (-0%)
Base+MWE * 0.15 (+25%) 2253.79 (-3%)

Firefox 1.5 Base(LOC) * 0.15 3399.67
Base+NT * 0.22 (+47%) 3114.63 (-8%)
Base+CCBO 0.15 (+0%) 3399.25 (-0%)
Base+RTCs 0.15 (+0%) 3400.12 (-0%)
Base+MWE * 0.17 (+13%) 3305.37 (-3%)

Firefox 2.0 Base(LOC) * 0.14 2166.52
Base+NT * 0.18 (+29%) 2069.98 (-4%)
Base+CCBO 0.14 (+0%) 2168.13 (-0%)
Base+RTCs 0.14 (+0%) 2167.94 (-0%)
Base+MWE * 0.17 (+21%) 2099.11 (-3%)

Continued in Table 3.21.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 63

Table 3.21: Continued from Table 3.20. D2 improvement and AIC scores for topic-
based cohesion and coupling metrics. Numbers in the parentheses are
the D2 increase or AIC score decrease in percentage of the base model.
The best model of each version of the software is marked in bold. *
indicates the metric is statistically significant (i.e., p-value < 0.05).

System Model D2 AIC

Eclipse 2.0 Base(LOC) * 0.12 4197.38
Base+NT * 0.13 (+8%) 4174.70 (-0%)
Base+CCBO * 0.13 (+8%) 4155.80 (-0%)
Base+RTCs * 0.13 (+8%) 4194.66 (-0%)
Base+MWE * 0.13 (+8%) 4196.62 (-0%)

Eclipse 2.1 Base(LOC) * 0.10 4110.59
Base+NT * 0.10 (+0%) 4106.49 (-0%)
Base+CCBO 0.10 (+0%) 4112.54 (-0%)
Base+RTCs 0.10 (+0%) 4111.78 (-0%)
Base+MWE * 0.10 (+0%) 4096.07 (-0%)

Eclipse 3.0 Base(LOC) * 0.11 6717.16
Base+NT 0.11 (+0%) 6719.12 (-0%)
Base+CCBO * 0.11 (+0%) 6710.12 (-0%)
Base+RTCs 0.11 (+0%) 6718.76 (-0%)
Base+MWE * 0.11 (+0%) 6680.56 (-0%)

Continued in Table 3.22.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 64

Table 3.22: Continued from Table 3.21. D2 improvement and AIC scores for topic-
based cohesion and coupling metrics. Numbers in the parentheses are
the D2 increase or AIC score decrease in percentage of the base model.
The best model of each version of the software is marked in bold. *
indicates the metric is statistically significant (i.e., p-value < 0.05).

System Model D2 AIC

NetBeans 4.0 Base(LOC) * 0.04 1062.50
Base+NT 0.04 (+0%) 1064.35 (-0%)
Base+CCBO * 0.04 (+0%) 1058.13 (-0%)
Base+RTCs 0.04 (+0%) 1064.50 (-0%)
Base+MWE * 0.04 (+0%) 1064.35 (-0%)

NetBeans 5.0 Base(LOC) * 0.06 871.55
Base+NT * 0.08 (+33%) 849.41 (-3%)
Base+CCBO 0.06 (+0%) 871.37 (-0%)
Base+RTCs 0.06 (+0%) 873.39 (-0%)
Base+MWE 0.06 (+0%) 867.02 (-0%)

NetBeans 5.5.1 Base(LOC) * 0.04 3616.50
Base+NT * 0.08 (+50%) 3474.94 (-4%)
Base+CCBO * 0.04 (+0%) 3613.90 (-0%)
Base+RTCs 0.04 (+0%) 3618.25 (-0%)
Base+MWE * 0.04 (+0%) 3605.71 (-0%)

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 65

systems.

From the results, we can see that NT outperforms other metrics whenever topic-

based cohesion and coupling metrics can help explain software defects. Also, NT

is statistically significant in most of the systems. This implies the effect of NT most

likely does not happen by chance, and is more stable than other topic-based cohe-

sion and coupling metrics. Another advantage of NT is that NT can be applied to

source code files that do not have any methods, whereas MWE can only work on

the files that have methods. In our case study, hundreds of defects are removed in

Eclipse and NetBeans because these defects are in the files that do not have any

methods. If we use MWE, then these defects will be ignored. NT is also more in-

tuitive and much simpler to measure than other metrics. By studying how many

topics a source code file has, practitioners can determine if redesign of such file is

required to increase file cohesion and decrease maintenance difficulty.'

&

$

%

NT gives the best improvement over the base model in terms of helping explain

defects, and is statistically significant in most systems. NT is easier to interpret

and much simpler to implement than other metrics, which can also help prac-

titioners during maintenance (i.e., identify and redesign source code files that

contain more topics).

Does NT give improvements to state-of-the-art when explaining defects?

In Table 3.19 – 3.22, we have shown how each metric helps explain defects, and

NT generally gives the best improvement to the base model. However, since some

metrics have some overlapping information (i.e., moderate correlation), we want

to study whether NT gives additional improvement in explaining defects to all other

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 66

state-of-the-art topic-based cohesion and coupling metrics and LOC.

We apply PCA analysis on all the metrics except NT (i.e., apply on LOC and

other state-of-the-art topic-based cohesion and coupling, except CLCOM5), and use

the resulting PCs as independent variables in the regression model. We use this

model as our base model, and examine the improvement in explaining defects when

NT is added to the model. PCA transforms the metrics into a set of uncorrelated

PCs, so all the PCs are not correlated with each other. This solves the problem of

multicollinearity and the order of the metrics does not matter in regression models

anymore (Golberg and Cho, 2004; Kutner et al., 2004).

We report the D2 improvement in explaining defects when NT is added to the

base model in Table 3.23. We also report the regression coefficient and the level

of statistical significance (p-value). We find that adding NT gives statistically sig-

nificant improvement to the combined model (LOC and state-of-the-art topic-based

cohesion and coupling metrics), and NT gives 2.9 – 97% improvement over the

base model. The coefficient of NT is all positive, except in Eclipse 2.0. Positive

coefficients imply that if a file has more topics, then it is more likely to be defect-

prone. We do not report the coefficients for the system that NT is not statistically

significant.

Since NT and MWE have a moderate correlation relationship, we perform the

same analysis using MWE, and study how much improvement MWE gives. Ta-

ble 3.24 shows the result of the study. The column Base + MWE has the same result

has the column Base + NT, because these two columns report the D2 of the full

model. We include this column in the table for the ease of comparison.

We can see that the base models in Table 3.24 have higher D2 values than that

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 67

Table 3.23: D2 improvement when NT is added to the base model that is composed
of PCs of LOC and other state-of-the-art topic-based cohesion and cou-
pling metrics. “*” indicates a p-value < 0.05. “**” indicates a p-value
< 0.01. “***” indicates a p-value < 0.001.

System D2 of Base D2 of Base+NT % D2 Inc. NT Coeff. p-Val
Mylyn 1.0 0.095 0.109 14.737 0.893 ***
Mylyn 2.0 0.124 0.145 16.935 1.202 ***
Mylyn 3.0 0.140 0.180 28.571 1.565 ***

Firefox 1.0 0.163 0.181 11.043 0.995 ***
Firefox 1.5 0.173 0.227 31.214 1.666 ***
Firefox 2.0 0.170 0.192 12.941 1.014 ***
Eclipse 2.0 0.137 0.141 2.920 -0.409 ***
Eclipse 2.1 0.103 0.103 0.000 —
Eclipse 3.0 0.118 0.118 0.000 —

Netbeans 4.0 0.053 0.053 0.000 —
Netbeans 5.0 0.067 0.092 37.313 1.232 ***

Netbeans 5.5.1 0.043 0.085 97.674 1.762 ***

in Table 3.23, which implies that including NT in the model explains more defects

than including MWE in the model. In addition, MWE gives less improvement to the

base models when compared to NT in Table 3.23. However, MWE gives a better

improvement in Eclipse 2.1, 3.0, and NetBeans 4.0 (but these software systems also

exclude many source code files that do not have methods). We find that although

MWE and NT have a moderate correlation, NT still gives more improvements to the

base model compared to MWE. Moreover, NT is much simpler to implement and

works on files without methods.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 68

Table 3.24: D2 improvement when MWE is added to the base model that is com-
posed of PCs of LOC, CCBO, NT, and RTCs. “*” indicates a p-value <
0.05. “**” indicates a p-value< 0.01. “***” indicates a p-value< 0.001.
The column Base+MWE has the same number as the column Base+NT
in Table 3.23, because they both refer to the same full model.

Base Base+MWE % Inc. MWE Coeff. p-Val
Mylyn 1.0 0.106 0.109 2.830% —
Mylyn 2.0 0.138 0.145 5.072% -1.084 **
Mylyn 3.0 0.180 0.180 0.00% —

Firefox 1.0 0.177 0.181 2.256% -1.153 ***
Firefox 1.5 0.226 0.227 0.442% -0.654 *
Firefox 2.0 0.183 0.192 4.918% -1.600 ***
Eclipse 2.0 0.137 0.141 2.920% -0.890 ***
Eclipse 2.1 0.100 0.103 3.000% -0.884 ***
Eclipse 3.0 0.111 0.118 6.306% -1.480 ***

Netbeans 4.0 0.041 0.053 29.268% -1.770 ***
Netbeans 5.0 0.091 0.092 1.099% —

Netbeans 5.5.1 0.084 0.085 1.190% 0.727 *

'

&

$

%

NT gives improvements to LOC and all other state-of-the-art topic-based cohe-

sion and coupling metrics. Although NT has a moderate correlation with MWE,

NT gives more improvement to MWE. In addition, our previous finding (if a

file has more topics then it is more likely to be defect prone) still holds when

controlling for LOC and other cohesion and coupling measures.

3.4 Sensitivity Analysis for the Parameters of Our Ap-

proach

In our approach, we use several parameter values for LDA and the metrics that

we define: two Dirichlet priors for smoothing (α and β), the number of iterations

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 69

(II), the number of topics (K), and δ in NT and NDT. We perform a parameter

sensitivity analysis to see how these parameters affect the defect explanatory power

of our topic-based metrics. We do not change the parameters of the topic-based

cohesion and coupling metrics in 3.3.4, since we are interested in comparing how

these metrics can help explain defects when controlling for the parameters.

In particular, we use our previous setting as a baseline (II=10,000, K=500,

and δ=1%), and we change the value of each parameter to a lower and higher

value (9,000 and 11,000 for II, 400 and 600 for K, and 0.5% and 2% for δ), and

report the D2 of NT and NDT. In this study, for α and β, we use the values as

optimized by MALLET (McCallum, 2002).

We choose PCs until either 90% of variances are explained or the increase in

variance explained by the next PC is less than the mean of the variance explained

by all PCs (for Equation 3.4 and 3.7). We choose the parameter based on previous

study (Jolliffe, 2002), and different numbers may give slightly different results.

However, in our case studies, the 90% cut-off is almost never met, because we

always first encounter a PC whose variance explained is smaller than the mean.

Therefore, we keep this PCA cut-off the same throughout this section.

Table 3.25 – 3.26 shows the results of the sensitivity analysis. We list the baseline

D2 of the regression models, and report the newD2 when the parameter is changed.

We can see that D2 is very stable across the parameters changes. In most cases, D2

values remain unchanged, and in the worst case, D2 only changes by 0.02 (10%).

We find that the results of RQ3 are consistent when the parameters change, which

implies that our results are not particular sensitive to the parameters that we choose

in the thesis.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 70

We also find that the result of our RQ1 and RQ2 still holds (most topics are not

defect-prone, and defect-prone topics tend to be defect prone in future releases).

The skewness and the correlation of topic defect densities across different release

remain high. We manually check the topic label of the most defect-prone topics

when K and II change, and we notice that the topic labels are still very similar to

the labels in Table 3.4–3.7.

3.5 Threats to Validity

3.5.1 Parameter Sensitivity Analysis

Our approach involves the choice of several parameters, and there is no automated

technique to find the optimal values for them. However, as shown in Section 3.4,

our results are not sensitive to the parameters that we choose. Nevertheless, further

research is required to understand the effects of these parameters on the results

(e.g., change all the parameters at the same time).

3.5.2 Representing Concerns as Topics

Topic models are based on machine learning techniques, which involves some ran-

domized algorithms. Therefore, each computation may result in slightly different

topic distributions. We use a relatively large number of Gibbs sampling iterations

(10,000) to approximate topics distributions, which hopefully gives us more stable

results.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 71

Table 3.25: Results of the parameter sensitivity analysis of the parameters. The
baseline parameters and their values are shown in the table. For each
system, we show theD2 when the parameter changes. The values in the
parentheses indicate the increase/decrease from the baseline D2 score.
* indicates the metric is statistically significant (p-value < 0.05).

Baseline Values: K=500, II=10,000, δ=0.01

NT NDT
Lower Higher Lower Higher

Mylyn 1.0 (Baseline D2: LOC+NT = 0.14, PRE+CHURN+NDT = 0.24)

K=400 0.14* (—) K=600 0.14* (—) K=400 0.23* (-0.01) K=600 0.24* (—)
II=9K 0.14* (—) II=11K 0.14* (—) II=9K 0.24* (—) II=11K 0.24* (—)

δ=0.005 0.14* (—) δ=0.02 0.14* (—) δ=0.005 0.24* (—) δ=0.02 0.22* (-0.02)

Mylyn 2.0 (Baseline D2: LOC+NT = 0.19, PRE+CHURN+NDT = 0.23)

K=400 0.19* (—) K=600 0.18* (-0.01) K=400 0.23* (—) K=600 0.23* (—)
II=9K 0.19* (—) II=11K 0.19* (—) II=9K 0.23* (—) II=11K 0.23* (—)

δ=0.005 0.19* (—) δ=0.02 0.19* (—) δ=0.005 0.24* (+0.01) δ=0.02 0.22* (-0.01)

Mylyn 3.0 (Baseline D2: LOC+NT = 0.20, PRE+CHURN+NDT = 0.29)

K=400 0.21* (+0.01) K=600 0.20* (—) K=400 0.29* (—) K=600 0.29* (—)
II=9K 0.20* (—) II=11K 0.20* (—) II=9K 0.29 (—) II=11K 0.29 (—)

δ=0.005 0.20* (—) δ=0.02 0.20* (—) δ=0.005 0.29* (—) δ=0.02 0.29 (—)

Firefox 1.0 (Baseline D2: LOC+NT = 0.16, PRE+CHURN+NDT = 0.18)

K=400 0.16* (—) K=600 0.16* (—) K=400 0.18* (—) K=600 0.18* (—)
II=9K 0.16* (—) II=11K 0.16* (—) II=9K 0.18* (—) II=11K 0.18* (—)

δ=0.005 0.16* (—) δ=0.02 0.15* (-0.01) δ=0.005 0.18* (—) δ=0.02 0.17* (-0.01)

Firefox 1.5 (Baseline D2: LOC+NT = 0.21, PRE+CHURN+NDT = 0.25)

K=400 0.21* (—) K=600 0.21* (—) K=400 0.25* (—) K=600 0.25* (—)
II=9K 0.20* (-0.01) II=11K 0.20* (-0.01) II=9K 0.25* (—) II=11K 0.25* (—)

δ=0.005 0.21* (—) δ=0.02 0.20* (-0.01) δ=0.005 0.26* (+0.01) δ=0.02 0.24* (-0.01)

Firefox 2.0 (Baseline D2: LOC+NT = 0.17, PRE+CHURN+NDT = 0.25)

K=400 0.17* (—) K=600 0.17* (—) K=400 0.25* (—) K=600 0.24* (-0.01)
II=9K 0.17* (—) II=11K 0.17* (—) II=9K 0.25* (—) II=11K 0.25* (—)

δ=0.005 0.17* (—) δ=0.02 0.17* (—) δ=0.005 0.25* (—) δ=0.02 0.24* (-0.01)

Continued in Table 3.26.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 72

Table 3.26: Continued from Table 3.25. Results of the parameter sensitivity analysis
of the parameters. The baseline parameters and their values are shown
in the table. For each system, we show the D2 when the parameter
changes. The values in the parentheses indicate the increase/decrease
from the baseline D2 score. * indicates the metric is statistically signifi-
cant (p-value < 0.05).

Baseline Values: K=500, II=10,000, δ=0.01

NT NDT
Lower Higher Lower Higher

Eclipse 2.0 (Baseline D2: LOC+NT = 0.18, PRE+CHURN+NDT = 0.20)

K=400 0.18 (—) K=600 0.18* (—) K=400 0.18* (-0.02) K=600 0.18* (-0.02)
II=9K 0.18* (—) II=11K 0.18* (—) II=9K 0.20* (—) II=11K 0.20* (—)

δ=0.005 0.18* (—) δ=0.02 0.18* (—) δ=0.005 0.19* (-0.01) δ=0.02 0.21* (+0.01)

Eclipse 2.1 (Baseline D2: LOC+NT = 0.11, PRE+CHURN+NDT = 0.15)

K=400 0.11* (—) K=600 0.11* (—) K=400 0.15 (—) K=600 0.15 (—)
II=9K 0.11* (—) II=11K 0.11* (—) II=9K 0.15 (—) II=11K 0.15 (—)

δ=0.005 0.11* (—) δ=0.02 0.11* (—) δ=0.005 0.15* (—) δ=0.02 0.15 (—)

Eclipse 3.0 (Baseline D2: LOC+NT = 0.14, PRE+CHURN+NDT = 0.17)

K=400 0.14 (—) K=600 0.14* (—) K=400 0.17* (—) K=600 0.17 (—)
II=9K 0.14* (—) II=11K 0.14 (—) II=9K 0.17 (—) II=11K 0.17 (—)

δ=0.005 0.14* (—) δ=0.02 0.14 (—) δ=0.005 0.17 (—) δ=0.02 0.18* (+0.01)

NetBeans 4.0 (Baseline D2: LOC+NT = 0.10, PRE+CHURN+NDT = 0.31)

K=400 0.10* (—) K=600 0.10* (—) K=400 0.31* (—) K=600 0.30* (-0.01)
II=9K 0.10* (—) II=11K 0.10* (—) II=9K 0.30* (-0.01) II=11K 0.30* (-0.01)

δ=0.005 0.10* (—) δ=0.02 0.09* (-0.01) δ=0.005 0.30* (-0.01) δ=0.02 0.30* (-0.01)

NetBeans 5.0 (Baseline D2: LOC+NT = 0.10, PRE+CHURN+NDT = 0.17)

K=400 0.11* (+0.01) K=600 0.10* (—) K=400 0.18* (+0.01) K=600 0.17* (—)
II=9K 0.10* (—) II=11K 0.10* (—) II=9K 0.17* (—) II=11K 0.17* (—)

δ=0.005 0.11* (+0.01) δ=0.02 0.10* (—) δ=0.005 0.18* (+0.01) δ=0.02 0.17* (—)

NetBeans 5.5.1 (Baseline D2: LOC+NT = 0.11, PRE+CHURN+NDT = 0.17)

K=400 0.10* (-0.01) K=600 0.11* (—) K=400 0.17* (—) K=600 0.18* (+0.01)
II=9K 0.11* (—) II=11K 0.11* (—) II=9K 0.18* (+0.01) II=11K 0.18* (+0.01)

δ=0.005 0.11* (—) δ=0.02 0.10* (-0.01) δ=0.005 0.18* (+0.01) δ=0.02 0.16* (-0.01)

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 73

3.5.3 Using Defects as an Indicator of Code Quality

In this chapter, we study software quality from the perspective of code quality. We

use defects as an indicator of code quality. However, this indicator may be subjec-

tive, and other indicators of code quality such as performance may also be included

in future research.

3.5.4 Subject Systems

We considered three versions of Mylyn, Firefox, Eclipse, and NetBeans, and answer

our research questions based on these systems. However, the results that we found

on these systems may not necessarily generalize to all software systems.

3.5.5 Results in Eclipse

We find that topic-based cohesion and coupling metrics give less improvement in

Eclipse compared to other studied software systems. Moreover, although the coeffi-

cients of NT is small in Eclipse, they are negative, which contradicts with our finding

in other studied software systems. A further study on Eclipse is needed to discover

the reason these topic-based cohesion and coupling metrics are not working as well.

3.6 Guideline for Implementing Our Approach

In this section, we provide a step-by-step guideline to help practitioners implement

our approach and use it on their software systems.

1. Obtain the source code of the software system.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 74

2. Obtain the defect history (i.e., how many pre-release and post-release defects

a file has) for the source code files of the older versions of the software system.

3. Preprocess the source code. Take only the identifier names and comments

from the source code files, remove common English stopwords, and finally

stem the words (Section 2.2).

4. Use the MALLET tool (McCallum (2002)) to apply LDA on the preprocessed

source code (Section 3.2).

5. Compute the topic metrics (NT, NDT, TM, and DTM) proposed in Section 3.3.3.

The defect information that is used by NDT and DTM is from the previous ver-

sion of the software system.

6. Sort the files according to their NT and NDT values. Investigate the files with

the highest values, and decide whether a refactoring of such files is necessary

to increase file cohesion and decrease maintenance difficulty.

7. Train the regression model using TM and DTM as independent variables (other

metrics such as LOC can also be added to the model), and the post-release de-

fect information from the previous version. Apply the model on the current

version of the software system to predict which files are more defect-prone.

More testing resources may be allocated to these files.

3.7 Chapter Summary

In this chapter, we aim to understand the relationship between the conceptual con-

cerns in source code files, i.e., their technical content, with their defect-proneness.

CHAPTER 3. USING TOPIC MODELS TO STUDY CODE QUALITY 75

To do so, we approximated the concerns in each file with statistical topics, and pro-

posed new metrics on these topics. In particular, we considered the defect history of

each topic, which we hypothesized would help better explain the defect-proneness

of the files.

To evaluate our new metrics, we performed a detailed case study on four large,

real-world systems: Mylyn, Mozilla Firefox, Eclipse, and NetBeans. The highlights

of our study results include:

• Some topics are much more defect-prone than others.

• A topic’s defect-proneness holds over time.

• The more topics a file has, the higher the chances it has defects.

• The more defect-prone topics a file has, the higher are still the chances that it

has defects.

• Our proposed topic-based metrics provide better defect explanatory power

over existing static (i.e., LOC) and historical (i.e., PRE and churn) metrics,

suggesting that our metrics provide additional information about the qual-

ity of the code. Further study should consider using such metrics alongside

traditional metrics for building defect prediction models.

• Our NT metric, which measures the level of cohesion in a file, outperforms

other topic-based cohesion and coupling metrics, and practitioners may ben-

efit from including our metric when studying software cohesion and coupling

using topic models.

Chapter 4

Using Topic Models to Study Code

Testedness

In previous chapter, we have shown that it is possible to study software quality using

topics from the perspective of code quality. We show that topics bring benefits to

current static and historical metrics when explaining defects. In this chapter, we

want to study software quality in another dimension using topics, namely code

testedness.

Testing is one of the most practical approaches for detecting defects prior to the

release of a software system. Therefore, through testing, the quality of a system can

be improved. Previous research has proposed many approaches to help determine

which files need more testing. However, testers typically create test cases based on

the features (or conceptual concerns) of the system. In this chapter, we examine the

relationship between the conceptual concerns in source code and those in test files.

Same as the previous chapter, we use a statistical topic modeling approach (LDA)

to approximate the conceptual concerns from the source code files as topics.

76

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 77

We define testedness by how much a piece of source code is tested in test files.

We measure how well-tested a topic is, and how defect-prone it is. Our overarching

hypothesis is that when a topic is highly tested, it will be less defect-prone. Our

study helps to understand at a high level which concerns need more testing by

identifying topics that likely contain defects, but are not well-tested. By testing the

topics discovered by our approach, additional defects can possibly be located. In

addition, because topics can be linked back to source code files (see Section 2.1.1),

managers and software developers can allocate more testing resources on the files

related to these topics, and thus improve code quality and reduce maintenance

costs. To evaluate our approach, we perform an in-depth case study on three large,

real-world software systems, focusing on the following research questions.

RQ1: How shared are the topics between source code files and test files?

To answer this question, we measure the proportion of a topic found in test

code and source code. We find that in all three systems under study, between

48% and 78% of topics are shared between source code and test files.

RQ2: Are more tested topics less defect-prone?

We find four classes of topics: (i) those that are highly tested and have low

defect-density (25% of the topics); (ii) those that are less tested and have

high defect density (21%); (iii) those that are less tested and have low defect-

density (54%); and (iv) those that are better tested and have higher defect-

density (4%). We find that well-tested topics are likely to be less defect-prone.

We also describe the relationships between topic testedness and defect density

as non-coexistence (well-tested topics are less defect-prone).

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 78

RQ3: Can we automatically identify defect-prone topics that are not well-

tested?

To answer this question, we use a naive Bayes classifier to do cross-release

prediction, and identify defect-prone topics that are not well-tested. We find

that by training on previous releases of a system, we can obtain, on average,

a precision of 0.77 and a recall of 0.75 when classifying topics according to

their testedness and defect density in later releases. By linking topics to source

code files, practitioners can allocate additional testing resources to these parts

of the code more effectively.

Chapter Overview

Section 4.1 talks about the subject systems that we use to answer the research ques-

tions, and Section 4.2 describes the design of our case studies. Section 4.3 shows

the results of our case studies, and Section 4.4 shows the results of our parame-

ter sensitivity analysis. In Section 4.5, we discuss potential threats to validity, and

finally conclude the chapter with a summary in Section 4.7.

4.1 Choice of Subject Systems

We use the same three subject systems as before: Mylyn, Eclipse, and NetBeans

(Table 4.1). Firefox is not included in this chapter because Firefox is implemented

in C/C++ and do not have heuristically identifiable unit test files. The numbers

are slightly different from Table 3.1, because we also check out the test files in the

repositories, and separate source code and test files according to some heuristics

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 79

Table 4.1: Statistics of the subject systems, after preprocessing.

Total lines No. of No. of Total lines Post-release
of source source test of test defects
code (K) files files code (K)

Mylyn 1.0 126 830 165 20 712
Mylyn 2.0 135 921 173 21 1,012
Mylyn 3.0 165 1,115 217 29 480

Eclipse 2.0 797 6,722 1,011 237 1,692
Eclipse 2.1 987 7,845 1,290 430 1,182
Eclipse 3.0 1,305 10,545 1,835 600 2,679

NetBeans 4.0 840 3,874 502 95 287
NetBeans 5.0 1,758 7,880 1,246 234 194
NetBeans 5.5.1 2,913 14,522 2,238 438 739

(more about the heuristics in Section 4.2.1). We choose these three systems be-

cause they all have unit tests for testing. Unit test files are usually large enough to

contain enough linguistic data (i.e., identifier names and comments) from which

we can extract conceptual concerns. If the test files were too small (for example,

simple one-line scripts), then our methodology may not have enough information

to capture meaningful topics (Titov and McDonald, 2008). In addition, these three

systems differ in size and number of defects.

4.2 Case Study Design

In this section, we describe our analysis process, depicted in Figure 4.1. Again, we

use MALLET (McCallum, 2002) as our LDA implementation, and we run MALLET

with the same setting as in the previous chapters (10,000 sampling iterations, 500

topics). We also build the topics using both unigrams (single words) and bigrams

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 80

Preprocess

Preprocess

Preprocess

LDA
Identify
Shared
Topics

Zk

θij

Topic Metrics

V3
Source

V3
Test

V2
Source

V2
Test

V1
Source

V1
Test

SVN

Topic Memberships

Figure 4.1: Our process of applying topic models and calculating topic-based met-
rics. We preprocess test file and source code files and run LDA on all
versions of the data together. We first obtain shared topics using the
topic and topic membership values returned by LDA. We then calculate
the topic-based metrics on shared topics only.

(pairs of adjacent words). We apply LDA to all versions of the preprocessed source

code and test files of a system at the same time.

In this section we describe how we identify test files, and describe Maximal

Information Coefficient (MIC), an approach we use to uncover the relationship be-

tween topic testedness and defect-proneness.

4.2.1 Identifying Test Files

Unfortunately, it is difficult to automatically identify which source code files are in

fact test files, as test files are not explicitly marked in any way. To do so, we use a

heuristic similar to that of Zaidman et al. (Zaidman et al., 2008). First we check out

the entire source code repository. We extract all source code files that have a file

path which contains the test keywords junit or test, since the subject systems use the

JUnit testing framework. For example, we would extract the source code files under

the folder src/test/, but not src/UI/. However, it is possible that a file may not be re-

lated to testing even though its path contains one of these test keywords. For exam-

ple, in Eclipse 2.0, the source code file .../core/tests/harness/PerformanceTimer.java

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 81

is a utility class that is used for helping other test cases, but itself is not used for

testing. To increase the confidence of identifying test files, we make sure the name

of the source code files also contains at least one test keyword. Therefore, a file is

identified as a test file if and only if both its name and path contains at least one

test keyword. Table 4.1 shows the number of test files that are identified using this

heuristic.

4.2.2 Maximal Information Coefficient

Maximal information coefficient (MIC) is an approach that was recently developed

to discover different kinds of relationships, such as linear and functional, between

pairs of variables (Reshef et al., 2011). Recently, MIC has been shown to be useful

in finding relationships in software engineering data (Posnett et al., 2012). Since

the relationship between topic testedness and defects may not be linear, we use MIC

to find any possible non-linear relationships in the data that cannot be discovered

by the commonly used Pearson or Spearman correlation coefficients.

MIC provides generality, i.e. finding many different kinds of relationships, and

equitability, i.e. gives a similar score to different relationships with the same amount

of noise. In this way, MIC can be viewed as the coefficient of determination (R2)

in linear regression analysis, except MIC is not limited to a simple linear relation-

ship. We use the following maximal information-based nonparametric exploration

(MINE) measures that are computed from MIC using the tool Reshef et al. pro-

vide (Reshef et al., 2012):

• MIC - p2: a measure of the linearity of the relationship, where p is the Pearson

correlation coefficient. Since MIC value is close to p2 when the relationship is

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 82

linear, if MIC - p2 is close to zero, then the relationship is linear; if MIC - p2 is

close to MIC, then the relationship is non-linear.

• MAS: a measure of the departure from monotonicity, i.e., a function that pre-

serves a given order. MAS is always ≤ MIC. If MAS is very close to MIC, then

the relationship is not monotonic; otherwise, the relationship is monotonic.

• MEV: a measure of the non-functionality, i.e., whether the relationship can

pass a vertical line test (Stewart, 2009). If the relationship is functional be-

tween two variables, then when one variable changes, the other variable will

also change according to some mathematical functions. MEV is also always

≤ MIC, and when MEV is close to zero, the relationship is non-functional;

otherwise, the relationship is functional.

4.3 Results of Case Studies

4.3.1 How shared are the topics between source code and test

files?

In this question, we investigate how topics are shared between source code and test

files. To do so, we check whether topics are evenly distributed between these two

types of files. If topics are only present in either one of the file types (source code

or test), then we cannot examine the effect of testing on code quality using topics,

since there is no overlap between the topics in them. By determining which topics

are shared, we will also determine which topics are not shared: those that are not

found in test files (source-only topics), and those that are not found in source code

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 83

files (test-only topics). Excluding not-shared topics will allow us to remove possible

outlier topics (i.e., topics about assert will be high tested but low defect prone,

because they are keywords in test files; however these topics are not present in

source code files) in our further analysis in RQ2 and RQ3.

Approach

We calculate the test weight of a topic zi, which measures the total lines of testing

code in the topic as

Wtest(zi) = 1/LOCtest

n∑
j=1

θij ∗ LOC(fj), (4.1)

where LOC(fj) is the lines of code of file fj, and LOCtest is the total LOC of all test

files.

Similarly, we define source Wsource, the weight metric for source code files, as

Wsource(zi) = 1/LOCsource

n∑
j=1

θij ∗ LOC(fj), (4.2)

where LOCsource is the total LOC of all source code files.

We normalize the weight metrics above by LOC because LOC is different be-

tween test code and source code files. This normalization helps eliminate possible

influences by the size difference of the two file types. To find shared topics between

source code and test files, we define the W ratio metric of topic zi as

W ratio(zi) =
Wtest(zi)

Wtest(zi) +Wsource(zi)
. (4.3)

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 84

Table 4.2: Summary of topics that belong to source code, test, and shared topics.
Percentage of shared topics is calculated as the number of shared topics
over the total number of topics (500 topics).

No. of source- No. of test- No. of shared % shared
only topics only topics topics topics

Mylyn 1.0 245 3 252 50%
Mylyn 2.0 256 2 242 48%
Mylyn 3.0 241 17 239 48%

Eclipse 2.0 208 33 269 54%
Eclipse 2.1 177 42 281 56%
Eclipse 3.0 141 40 319 64%

NetBeans 4.0 132 27 341 68%
NetBeans 5.0 119 27 354 71%
NetBeans 5.5.1 90 21 389 78%

The W ratio metric allows us to determine the proportion of a topic’s weight found

in test files and, conversely, source code files.

There are two possible methods to determine source-only topics (e.g., topics

about mutators and accessors, or printing) and test-only topics (e.g., topics about

assert): (i) by manual inspection of the topics; or (ii) by removing topics according

to some predefined thresholds. To avoid any potential bias that could stem from

manual inspection, we use W ratio values of 0.05 and 0.95 as thresholds to remove

topics that are more prevalent in source code or test files (see Section 4.4 and 4.5

for a discussion of threshold values and excluding topics). Topics that have a W

ratio less than 0.05 are more prevalent in source code files; topics with a weighted

ratio larger than 0.95 are more prevalent in test files. The topics that have a W ratio

between 0.05 and 0.95 are the shared topics that we seek.

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 85

●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●
●●●
●●●●●●
●●●
●●●
●●●●
●●●●●●
●●●●●●●

●●●
●●●
●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●●●●●●●

●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●

●●
●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)

W
 R

at
io

(a) Mylyn 1.0.

●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●
●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●

●●●
●●●
●●●●●●●

●●●●
●●●●●●●

●●●●
●●●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●●●●
●●●●●●●●

●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●

●●●●
●●

0 100 200 300 400 500
0.

0
0.

4
0.

8

Topic ID (Sorted)

W
 R

at
io

(b) Mylyn 2.0.

●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●

●
●●●
●●●●●●
●●●●●●●

●●●●●●●
●●●
●●●
●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●
●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●
●●●●●
●●●●
●●●●●●
●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)

W
 R

at
io

(c) Mylyn 3.0.

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●

●●
●●●●
●●●
●●●
●●
●●●
●●
●
●●●●●
●●
●●
●●●●●●
●●●●●
●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)

W
 R

at
io

(d) Eclipse 2.0.

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●
●●●●●
●●●●●●
●●●
●●●●●●●●

●●●●
●●
●●
●●●●
●●
●●●●●
●●●
●●
●●●●●●
●●●
●●●●
●●●
●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)

W
 R

at
io

(e) Eclipse 2.1.

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●
●●●●●●●

●●●●
●●●●●
●●●
●●●
●●●
●●●●●●
●●
●●●●●●
●●●●●
●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)
W

 R
at

io

(f) Eclipse 3.0.

●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●
●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●
●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)

W
 R

at
io

(g) NetBeans 4.0.

●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●
●●●●
●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)

W
 R

at
io

(h) NetBeans 5.0.

●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●
●●●●●●●●

●●●●●
●●●●●
●●
●●●●
●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●●●●

●●●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)

W
 R

at
io

(i) NetBeans 5.5.1.

Figure 4.2: The W ratio of test topics in source code files. The dashed lines indicate
the cut-off thresholds of 0.05 and 0.95. There are three different cate-
gories of topics shown in the figures: source-only topics (left), test-only
topics (right), and shared topics (middle).

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 86

Results

Figure 4.2 shows the weighted topic ratio of each version of each subject system.

The figure illustrates that topics belong to three different categories: source-only

topics (left), test-only topics (right), and shared topics (middle). In all the subject

systems of our case study, we find that 48–78% of the topics are being shared be-

tween source code files and test files, using our chosen threshold value (Table 4.2).

Since a majority of topics are shared, we can study code coverage using topic mod-

els.

Discussion

To understand which topics are identified as not-shared topics (source-only or test-

only topics) and what these topics represent, we look at the top words of some

representative test and source code topics (Table 4.3 – 4.4).

Mylyn Since Mylyn is a task management system, it requires many GUI and con-

trol related features. Thus, the source-only topics in Mylyn are related to sorting,

adding, removing, and monitoring tasks or operations (topics 20, 32, 55). Topic 41

is related to synchronizing tasks with the user interface, and topics 190 and 282 are

related to accessing source code repositories such as Bugzilla.

Topics 171 and 331 are related to test keywords in Mylyn, which do not appear

often in source code files. We look at test files related to topic 198, and find that

they are about launching JUnit plugin tests; for example, launching Mylyn Plug-

in Development Environment UI configuration tests. Other test topics are about

testing hypertext structure bridging (topic 496), testing shared task directory (topic

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 87

Table 4.3: Topic label and top words of selected test/source-only topics in our sub-
ject systems. The number on the left-hand side of each column represents
the topic number.

Test-Only Topics Source-Only Topics
Label Top Words Label Top Words

Mylyn 1.0

171 eclips debug configur, launch, test, 20 sort sort, order, sort order,
eclips, junit, launch configur action, view, categori

198 program arg arg, program, configur, 55 progress work, progress, progress monitor
program arg, plugin, add monitor total work, total, tick

Mylyn 2.0

331 assert enable enabl, assert enabl, test assert, 41 set synchron, task task, update,
accompani, enabl test, distribut synchronize manag, data manag, set

496 structur bridge web, bridg, recourc, 190 select index version, repositori, combo,
structur bridg, structur, web resourc valid, server, repositori version

Mylyn 3.0

60 sandbox share, share data, bob, 32 add task add, add task, command,
share data data, sandbox, folder servic, id, task viewer

444 assert wizard wizard, histori, assert, 282 mylyn core, repositori, repositori repositori,
size, histori context, page task core connector, throw, repositori attach

Test-Only Topics Source-Only Topics
Label Top Words Label Top Words

Eclipse 2.0

101 return qualify code, test, qualifi, 8 search scope scope, search, pattern,
creat, creat test, code creat search scope, limit, privat

291 assert target file, project, exist, 48 submission handler servic, submiss, shell,
exit assert, workspac, exit assert command, bind, activ

Eclipse 2.1

59 nl unit, nl, nl nl, 277 content offset content, offset, local,
source, type, assert attribut, local content, content offset

445 assert equal assert, equal, test, 243 gdk color gdk, gtk, window,
assert equal, public test, length gdk color, style, set

Eclipse 3.0

424 test suit test, suit,test suit, 12 print print, packet, id,
add, test test, add test command, stream, println

468 item assert select,test,equal, 124 handl gtk gtk, handl, widget,
equal assert, assert equal, number handl gtk, gtk widget, signal

Continued in Table 4.4.

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 88

Table 4.4: Continued from Table 4.3. Topic label and top words of selected
test/source-only topics in our subject systems. The number on the left-
hand side of each column represents the topic number.

Test-Only Topics Source-Only Topics
Label Top Words Label Top Words

NetBeans 4.0

0 test suit test, suit, test suit, 18 content pane pane, set, layout,
junit, nb, nb test add, pane add, border

295 property test test, exclud, testbag, 470 mutator method method, pattern, properti,
config, includ, set setter, set, getter

NetBeans 5.0

38 cvs test cvsroot, test, set, 33 text area area, text, text area,
cv, cvss, crso jtext area, area set, set

390 test editor test, action, editor, 182 paint component paint, compon, paint compon,
node, test editor, netbean test draw, item, substitut

NetBeans 5.5.1

10 jframe test test, frame, assert, 106 slide bar slide, tab, bar,
jframe, set, visibl bound, slide bar, compon

79 perform test test, perform, perform test, 125 mdb password, mdb, factori,
pass, method, pass test connect factori, connect, set

60), and testing task import wizard (topic 444).

Eclipse Source code topics in Eclipse are related to searching (topic 8) and GUI

(topics 124 and 243). Topics that are about converting packets to human readable

form (topic 12), key binding service (topic 48), and servlet to interface client (topic

277) are more often found in source code files. On the other hand, test topics in

Eclipse all contain some test keyword that do not occur in source code files.

NetBeans NetBeans has source code topics related to GUIs (topics 18, 33, 182,

and 106), mutator and accessor (topic 470), and message driven beans initialization

(topic 125). Test topics in NetBeans are also related to different kinds of software

components testing, such as editor (topic 390) and CVS (topic 38).

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 89

In general, we would like to see only keywords that are specific in either source-

only or test-only topics, such as assert, in the not-shared topics. However, based on

the results above, our source-only topics also contain some topics, which naturally

should have appeared in test files, and are excluded. We discuss about possible

threats to the validity of such exclusions of the not-shared topics in Section 4.5.'

&

$

%

About 48%–78% of the topics are shared between source code and test files,

which implies that we can study topic testedness by comparing the prevalence of

a topic in these two types of files. In addition, we find that the not-shared topics

are mostly about keyword topics that only exist in source code or test files.

4.3.2 Are more tested topics less defect-prone?

In this question, we want to understand the relationships between how tested a

topic is and its defect density. We hypothesize that topics that are more tested will

be less defect prone, and topics that are less tested will be more defect prone. If the

hypothesis holds, then practitioners can focus on testing source code files related

defect-prone topics to improve code quality.

Approach

Researchers have proposed different metrics to capture the code coverage of test

files. In this chapter, we want to study code coverage at the abstraction level of

topics, and examine the effect of topic testedness (i.e., how well is a topic tested) on

the post-release defect density of each topic. We define the testedness of topic zi as

Testedness(zi) =
Wtest(zi)

Wsource(zi)
(4.4)

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 90

where Wtest(zi) and Wsource(zi) are the computed weight metrics (Equation 4.1 and

4.2) for test and source code files, respectively. We normalize the weight metrics

according to the total lines of code in test files and source code files to take the size

difference between both file types into the account. The intuition behind this metric

is that if a topic is more prevalent in the test files, then the topic is better tested.

We use the Equation 3.2 to quantify the average post-release defect density in each

topic.

We draw scatter plots of topic post-release defect density against topic testedness

to visually see the relationships between them (Figure 4.3). Note that we also

exclude all the not-shared topics as identified in RQ1.

We classify topics into four different classes as shown in Figure 4.3:

• Class LTHD: low testedness and high defect density

• Class LTLD: low testedness and low defect density

• Class HTLD: high testedness and low defect density

• Class HTHD: high testedness and high defect density

We classify topics that have a testedness and defect density value smaller than the

third quartile of all topics to be class LTLD. Topics that have a defect density larger

than or equal to the third quartile and have a testedness value smaller than the third

quartile are classified as class LTHD. Class HTLD includes the points that are highly

tested (larger than the third quartile) but have lower defect-proneness (smaller than

the third quartile). Finally, there is a few topics that are classified as high tested and

high defect prone by our approach (HTHD).

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 91

HTLDLTLD

LTHD

Topic Testedness
D

ef
ec

t
D

en
si

ty

HTHD

Figure 4.3: Position of each class on the scatter plot. The bottom left corner has
low tested and low defect prone (LTLD) topics. The upper left corner
has low tested and high defect prone topics. The rest of topics are high
tested and low defect prone (HTLD). There is only a few topics that are
high tested and high defect prone (HTHD).

We use the MIC score and MINE measures (see Section 4.2.2) to describe and

verify the relationships that we observe in the scatter plots.

Results

Table 4.5 summarizes the number of topics in each class. Class LTHD has the least

number of topics among all classes, except HTHD, and class LTLD has significantly

more topics than other classes. This implies that there exist less defect-prone topics

that are not well-tested, and it would be desirable to focus testing on these topics.

Figure 4.4–4.6 shows the scatter plots of the relationship between topic testedness

and defect density for each version of each system. Due to the approach we use

to automatically classify the topics, topics in HTHD are usually at the boundary

between LTHD and HTLD, and they do not necessarily have very high testedness

nor defect density. The topics in other classes are distributed along the X and Y

axes.

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 92

Table 4.5: Number of topics in each class.

LTHD LTLD HTLD HTHD

Mylyn 1.0 55 134 55 8
Mylyn 2.0 56 125 56 5
Mylyn 3.0 56 125 56 5

Eclipse 2.0 52 142 52 13
Eclipse 2.1 60 150 60 11
Eclipse 3.0 72 167 72 8

NetBeans 4.0 72 183 73 13
NetBeans 5.0 60 205 60 29
NetBeans 5.5.1 72 219 73 25

The relationship between topic testedness and defect-proneness. Table 4.6

shows the MINE and MIC scores, indicating that there is a non-coexistence relation-

ship between testedness and post-release defect density (Reshef et al., 2011). In

our case, this relationship indicates that when a topic is well-tested, then it is less

defect prone.

A non-coexistence relationship happens when one variable is more dominant,

the other variable is less dominant (cannot both have high values). Topics in

class HTLD have a relatively low defect density compared to the other two classes.

In addition, topics in class LTHD always have the highest defect density amongst all

topics, and their testedness are also low. Although there are some outliers (HTHD),

where a few relatively well-tested topics have a higher defect density value, most

topics follow the non-coexistence pattern: when a topic is defect-prone, it is usually

not well-tested; when a topic is well-tested, its defect-density is usually low. Topics in

class LTLD are usually related to configuration tasks or trivial operations, which are

not usually tested. However, topics in LTLD also have low defect density, so we are

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 93

not interested in testing these topics.

In order to support our argument that the discovered relationships are non-

coexistence and not random, we check the linearity, monotonicity, and functional-

ity of the relationship between two variables (Table 4.6). In all subject systems,

the p values are all negative, and the differences between MIC and MIC−p2 are very

small. This indicates that the relationship between topic testedness and post-release

defect density is non-linear (Reshef et al., 2011). For example, a not well-tested

topic can be either in LTHD or LTLD, since testedness and defect density are not di-

rectly proportional to each other. In addition, the relatively small MAS values imply

that the relationship is monotonic, which provides more evidence the relationship

is non-coexistence; i.e., when one variable increases, the other variable will also

increase/decrease accordingly. For example, when testedness increases, topic de-

fect density decreases. The values for MEV are all very close to MIC, which means

there is a functional relationship. For example, post-release defect density can be

computed as some function of testedness. Although the relationship is non-linear,

negative p values indicate that when the value of testedness increases, post-release

defect density decreases (negative correlation). Taken in aggregate, the results in

Table 4.6 support our hypothesis that there is a non-coexistence relationship be-

tween topic testedness and topic post-release defect density (well-tested topics are

usually less defect prone), and this relationship is not random nor non-functional.

Discussion

We list one concrete example of a topic in each class from the subject systems we

used in our case study in Table 4.7. (We note that there are many other examples in

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 94

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●●

●

●

●

● ●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Topic Testedness

D
ef

ec
t D

en
si

ty
 (D

P
O

S
T
)

● LTHD
LTLD
HTLD
HTHD

(a) Mylyn 1.0.

● ●

●

●● ●

●
●●●

●

●

● ● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●
●

●
●

●
●● ●

●

●

●

●

●
● ● ●

●

●●

●●

●
●

●

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Topic Testedness
D

ef
ec

t D
en

si
ty

 (D
P

O
S

T
)

● LTHD
LTLD
HTLD
HTHD

(b) Mylyn 2.0.

●●

●

●

●
●

●
●

●

●
●

●● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

0 5 10 15

0.
00

0.
05

0.
10

0.
15

Topic Testedness

D
ef

ec
t D

en
si

ty
 (D

P
O

S
T
)

● LTHD
LTLD
HTLD
HTHD

(c) Mylyn 3.0.

Figure 4.4: Scatter plots of topic post-release defect density against topic tested-
ness for all versions of Mylyn. Each point represents a topic. Black
points (class LTHD) are low-tested and defect-prone topics; red points
(class LTLD) are low-tested and less defect-prone topics; green points
(class HTLD) are highly-tested and less defect-prone topics; and blue
points (class HTHD) are highly-tested and high defect-prone topics.
Continued in Figure 4.5

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 95

●

●

●

●
●
●
●●

●

●●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Topic Testedness

D
ef

ec
t D

en
si

ty
 (D

P
O

S
T
)

● LTHD
LTLD
HTLD
HTHD

(a) Eclipse 2.0.

●
●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●
●
●●

●

●
●●●●●

●

●

●

●●

●

●●●
●
●●●

●
●●

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Topic Testedness
D

ef
ec

t D
en

si
ty

 (D
P

O
S

T
)

● LTHD
LTLD
HTLD
HTHD

(b) Eclipse 2.1.

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Topic Testedness

D
ef

ec
t D

en
si

ty
 (D

P
O

S
T
)

● LTHD
LTLD
HTLD
HTHD

(c) Eclipse 3.0.

Figure 4.5: Scatter plots of topic post-release defect density against topic tested-
ness for all versions of Eclipse. Each point represents a topic. Black
points (class LTHD) are low-tested and defect-prone topics; red points
(class LTLD) are low-tested and less defect-prone topics; green points
(class HTLD) are highly-tested and less defect-prone topics; and blue
points (class HTHD) are highly-tested and high defect-prone topics.
Continued in Figure 4.6.

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 96

● ●

●

●

● ●
●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

0 5 10 15

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Topic Testedness

D
ef

ec
t D

en
si

ty
 (D

P
O

S
T
)

● LTHD
LTLD
HTLD
HTHD

(a) NetBeans 4.0.

●●
●

●

●

●

●

●

●

●
●

●

●

●
●●●

● ●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

0 5 10 15

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Topic Testedness
D

ef
ec

t D
en

si
ty

 (D
P

O
S

T
)

● LTHD
LTLD
HTLD
HTHD

(b) NetBeans 5.0.

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●●

●

●

●

●

●● ●
●

● ●
●●

●

●

● ●

●

●

●

●

●

●

●

0 5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Topic Testedness

D
ef

ec
t D

en
si

ty
 (D

P
O

S
T
)

● LTHD
LTLD
HTLD
HTHD

(c) NetBeans 5.5.1.

Figure 4.6: Scatter plots of topic post-release defect density against topic tested-
ness for all versions of NetBeans. Each point represents a topic. Black
points (class LTHD) are low-tested and defect-prone topics; red points
(class LTLD) are low-tested and less defect-prone topics; green points
(class HTLD) are highly-tested and less defect-prone topics; and blue
points (class HTHD) are highly-tested and high defect-prone topics.

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 97

Table 4.6: Scores of MINE metrics computed between topic testedness and topic
post-release defect density.

MIC MIC-p2 MAS MEV p

Mylyn 1.0 0.38 0.36 0.12 0.38 -0.12
Mylyn 2.0 0.40 0.37 0.10 0.39 -0.18
Mylyn 3.0 0.26 0.22 0.04 0.25 -0.20

Eclipse 2.0 0.20 0.18 0.02 0.19 -0.12
Eclipse 2.1 0.21 0.20 0.02 0.21 -0.11
Eclipse 3.0 0.24 0.21 0.08 0.24 -0.16

NetBeans 4.0 0.24 0.22 0.07 0.24 -0.13
NetBeans 5.0 0.20 0.20 0.02 0.20 -0.02
NetBeans 5.5.1 0.19 0.19 0.03 0.19 -0.08

Table 4.7: Top words, testedness, and defect-density of selected topics from each
class of topics.

Top words Testedness Median of Defect Median of
Testedness Density Defect Density

class LTHD: Mylyn 1.0

417 task, mylar, eclips, 1.03 1.116 0.283 0.004
eclips mylar, mylar task

class LTLD: Eclipse 2.1

494 sheet, cheat, cheat sheet, 0.22 0.343 <0.001 0.008
resourc, properti sheet

class HTLD: NetBeans 5.5.1

206 frame, jintern, jintern frame, 2.40 0.644 <0.001 0.002
intern, intern frame, pane

class HTHD: Eclipse 3.0

206 breakpoint, debug, ijava, 2.65 0.387 0.12 0.002
thread, core, suspend

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 98

each case study system for each class.) The topic on task-related actions and Eclipse

integration is more defect-prone in Mylyn 1.0. As we can see from Table 4.7, the

testedness of this topic is also very low, and it is classified as class LTHD. This topic

corresponds to tasks management in Mylyn.

Conversely, the stack map frame topic in NetBeans 5.5.1 is a topic that is highly

tested and has a very low defect density. It is therefore classified as class HTLD.

This topic corresponds to one of the basic operations in NetBeans for controlling

the stack, on which many higher-level functions rely. The topic on property sheets

is used for displaying program properties to developers in Eclipse IDE. This is not

a core functionality in Eclipse. Hence it neither requires much testing nor does it

have many defects. Debugging related functionality in Eclipse are tested more, but

it also has a relatively high defect density.'

&

$

%

We define topic testedness and defect density, and classify topics into four classes

according to these two metrics. We find when a topic is well-tested, then it is

usually less defect prone; and when a topic is defect prone, then it is usually

well-tested. We verify that this relationship exists and is not random using the

MIC score and MINE measures.

4.3.3 Can we identify defect-prone topics that need more tests

in future releases?

In RQ2, we see evidence that highly tested topics are usually less defect-prone.

Therefore, it will be beneficial to know which topics require more testing in future

releases, since we can link topics to source code files or identify the defect-prone

concerns using the top words in the topics (Section 2.1.1). In this question, we

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 99

want to predict the defect-prone topics that may require more testing. Topics that

are less tested can be classified into two categories: high defect-prone and less

defect-prone. If we could automatically identify those topics that are less tested

and more defect-prone, then practitioners could put more testing resources on the

source code files or concerns related to these topics, reducing time and cost in the

testing phase before releases. Even though topics in class LTLD are low tested, we

are not interested in them, since they have low defect-density. By avoiding further

testing on topics in class LTLD, we can avoid the unnecessary allocation of testing

resources.

Approach

We build a classifier to predict the class (i.e., class LTHD, LTLD, or HTLD) to which

a topic belongs. We exclude the topics in HTHD in our analysis, because the main

focus of this research question is to predict the topics in LTHD. In addition, HTHD

has much smaller number of topics, which may affect the overall quality of the clas-

sifier (Provost, 2000). We use the following topic-based metrics as the independent

variables (i.e., features) in the classifier: topic weight, support, scatter, and churn

density. These topic-based metrics are defined below.

The weight of a topic measures the total lines of code in the topic as

W(zi) =

n∑
j=1

θij ∗ LOC(fj), (4.5)

where LOC(fj) is the lines of code of file fj. Since size is a well-known predictor for

software defects, we include this metric in the classifier.

The support of a topic measures how many files contain the topic, and is defined

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 100

as

Support(zi) =
n∑

j=1

I(θij ≥ δ), (4.6)

where I is the indicator function that returns 1 if its argument is true, and 0 oth-

erwise. We set the membership threshold δ in Equation 4.6 to 1% to remove in-

significant topics in files when computing the support metric for each topic. A more

detailed analysis on this threshold value is presented in Section 4.4.

The scatter of a topic measures how spread out the topic is across all source

code files, based on the information entropy of the topic memberships values. We

define the scatter of a topic zi as

Scatter(zi) = −
n∑

j=1

log(θij) ∗ θij, (4.7)

Scatter is a measure of the level of coupling of a topic. If a topic is highly scattered,

then the topic is implemented across many different source code files, increasing

maintenance difficulty.

Topic churn density measures the number of changes per lines of code that is

made to the part of files related to the topic. We define topic churn density as

DCHURN(zi) =

n∑
j=1

θij ∗
(

CHURN(fj)

LOC(fj)

)
, (4.8)

where CHURN(fj) is the total number of prior changes to source code file fj before

release. Previous research has shown that if the code in a topic is changed more

often, then this topic is more likely to be defect-prone (Nagappan and Ball, 2005).

The above-mentioned metrics measure the structure and history of a topic, which

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 101

may affect the topic testing and maintenance practice, and its defect-density.

Previous studies have shown that a naive Bayes classifier is an effective algo-

rithm for defect prediction (Menzies et al., 2007; Turhan and Bener, 2009), thus

we use naive Bayes in this chapter. We train the classifier on older releases, and

predict on newer releases. For example, we train our classifier using Eclipse 2.0,

and predict the class in which the topics in Eclipse 2.1 belong. To avoid the problem

of having highly correlated independent variables in the classifier, we use principal

component analysis (PCA) to transform these variables into a new set of uncor-

related variables (Turhan and Bener, 2009). We select the principal components

(PCs) until either 90% of the variances are explained, or when the increase in vari-

ance explained by adding a new PC is less than the mean variance explained of all

PCs (Jolliffe, 2002).

Since we are interested in finding the defect-prone topics that require more

testing, we only report the precision and recall for classifying topics in this class (i.e.,

class LTHD). Our goal is not predicting defects, but rather, helping practitioners

allocate testing resources more effectively.

Results

We show the classification results in Table 4.8. In all the studied system, we ob-

tain, on average, a precision of 0.77 and a recall of 0.75, which means that most of

the low-tested and defect-prone topics are classified correctly. Mylyn has the best

classification result among three systems, possibly because Mylyn has a larger pro-

portion of test files. In Table 4.1, we can see that although Mylyn is the smallest

system among the three, it has relatively more test files. NetBeans, on the other

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 102

Table 4.8: Precision, recall, and F-measure for classifying low-testedness and
defect-prone topics (class LTHD).

Train on Test on Precision Recall F-measure

Mylyn 1.0 Mylyn 2.0 0.88 0.80 0.84
Mylyn 2.0 Mylyn 3.0 0.82 0.71 0.76

Eclipse 2.0 Eclipse 2.1 0.79 0.63 0.70
Eclipse 2.1 Eclipse 3.0 0.84 0.79 0.81

NetBeans 4.0 NetBeans 5.0 0.65 0.60 0.62
netbeans 5.0 NetBeans 5.5.1 0.64 0.86 0.73

hand, has the least proportion of test files, which also yields the lowest F-measure.

Therefore, if a system has more test files, we can classify the topics more accurately.

Since we obtain high precision and recall values for all subject systems, we conclude

that practitioners can use our approach to reliably identify those defect-prone top-

ics that require more testing and allocate more testing resources on these specific

topics, improving the overall code quality.

Discussion

Testers usually write test cases to test features (or concerns) in software systems (Weyuker,

1998), and topics can be viewed as an approximation of features (Baldi et al.,

2008). The results above show that we can predict which topics are low tested

and defect prone, which has the potential to help testers allocate testing resources.

Further, to show that our approach can be used to complement current prediction-

based resource allocation methods for finding defects, we perform an additional

experiment that compares our approach with existing approaches.

Namely, we use our prediction model to identify LTHD topics, resulting in a list

of possibly-defect-prone topics. We link these topics to their corresponding source

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 103

code files using a topic membership value of 0.5, so if a source code file has a

membership value larger than 0.5 in any of the LTHD topics, then this file belongs

to LTHD. We choose the relatively high value of 0.5 because it helps us find the

source code files that truly belong to the topic (a file can only belong to one topic

which has a membership value > 0.5), and helps to limit the number of linked files

that must be examined by testers.

To compare our approach with prediction-based resource allocation approaches,

we build a linear regression model (LM) as a baseline for comparison. We use code

churn and LOC as the independent variables in the model and predict the number

of defects (Bird et al., 2011). We select the top n files predicted by our approach

and the top n files selected by LM, and examine their similarities and differences.

(n is determined by the number of files that belong to LTHD, which is different for

each system.)

Table 4.9 shows the median LOC, defect density, and percentage of overlap be-

tween the source code files predicted by our approach and the LM model. In all

studied systems, our approach identifies files with fewer LOC and higher overall

defect densities. Previous studies have used prediction models to predict defect den-

sity to help allocate software quality assurance efforts (Kamei et al., 2010; Mende

and Koschke, 2010). In our study, our approach outperforms the traditional ap-

proach (LM) in terms of saving efforts in code inspection and testing.

We note that the actual number of defects in the files identified by LM is higher,

because the sheer size of each file is much larger. However, our approach can serve

to complement LM, since the overlap between the files identified by our approach

and LM is small (0–6.2%), which is because our approach identifies files of much

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 104

fewer LOC. In addition, developers are already aware that larger files are usually

more defect prone and thus require more testing, meaning that our approach can

help developers to also find the smaller files that require more testing. By using the

two approaches in concert, developers and testers can locate additional defects.'

&

$

%

We can predict defect prone and less tested topics with an average precision and

recall of 0.77 and 0.75. In addition, we find that our approach outperforms

traditional prediction-based resource allocation approaches in terms of saving

testing and code inspection efforts. Our approach is able to identify parts of

the systems that are defect prone and not well-tested, and help practitioners

allocate testing resources more effectively.

4.4 Sensitivity Analysis for the Parameters of Our Ap-

proach

Our topic modeling approach (LDA) involves the choice of several input parameters,

each of which may influence the results of our case study. In particular, LDA takes

four parameters as input: number of topics (K), number of iterations (II), and two

Dirichlet priors used for smoothing (α and β). In addition, we define three other

parameters: W ratio (used to determine shared topics), δ (used in Equation 4.6),

and PCA cut-off (used to determine number of PCs in the naive Bayes classifier).

We perform a sensitivity analysis to determine how sensitive our results are to

our particular parameter value choices. We define a baseline set of parameter val-

ues, which are those values used in the aforementioned three research questions. In

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 105

Table 4.9: Median LOC, defect density, and percentage overlap of the source code
files that are predicted to be in class LTHD and the most defect-prone files
predicted by the linear regression model. The numbers in the parenthe-
ses indicate the percentage improvement of our approach over LM in
terms of the defect density of the returned files. % files is the percentage
of the source code files in a system that is used for comparing the two
approaches.

Studied System Prediction % files Median Defect Density % overlapping
Approach (n) LOC (Defect/KLOC) files

Mylyn 2.0 Topic-based 2.6 % 56.5 9.83 (+45%) 0 %
LM 652.0 6.76

Mylyn 3.0 Topic-based 1.3 % 52.0 4.94 (+82%) 0 %
LM 947.0 2.72

Eclipse 2.1 Topic-based 4.2 % 23.0 4.08 (+274%) 1.8 %
LM 450.0 1.09

Eclipse 3.0 Topic-based 5.9 % 22.0 5.76 (+210%) 2.1 %
LM 633.0 1.86

NetBeans 5.0 Topic-based 5.2 % 78.0 0.39 (+56%) 2.0 %
LM 447.0 0.25

NetBeans 5.5.1 Topic-based 12.5% 64.0 0.48 (+4%) 6.2 %
LM 376.0 0.46

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 106

particular, the baseline values are: K=500, II=10,000, W cut-off=0.05, δ=0.01,

and PCA cut-off=90%. (We use MALLET optimized α and β (McCallum, 2002).)

We increase and decrease each parameter value independently to study the sensi-

tivity of each parameter. For K, we consider K ± 100, which are 400 and 600. For

II, we consider II ± 1, 000, which are 9,000 and 11,000. For the W cut-off, we

consider half and double of the baseline value, which are 0.025 and 0.1. For δ, we

consider δ/2 and δ ∗ 2, which are 0.005 and 0.02. Finally, we consider two different

PCA cut-off parameters, which are 80% and 95%.

For each parameter, we repeat the experiments in RQ2 and RQ3, and report

the MIC score from RQ2 (we study what is the relationship between topic defect

density and topic testedness, and we found a non-coexistence relationship), and

the precision and recall from RQ3 (we study if we can find not well-tested topics

and defect-prone topics). Table 4.10 – 4.11 shows only the parameters that may

influence the MIC score, since the topics will be slightly different when K, II, and

W cut-off change (the other two parameters cannot change the MIC score, since

they do not change the topics). Table 4.12 – 4.13 shows the precision and recall

of all the parameters that may influence the classification result. Note that, since

we are doing cross-release prediction, the precision and recall of the first version of

each subject system are not possible.

In this chapter, we follow the guidelines of previous work (Chen et al., 2012;

Lukins et al., 2010) for choosing K=500 for Eclipse and Mylyn. We also used

K=500 for NetBeans, since the size of NetBeans is similar to that of Eclipse (Ta-

ble 4.1). We see from Table 4.10 – 4.11 that in most cases, when K, W cut-off

change, and II change, the MIC scores remain stable. Changing K varies the MIC

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 107

score by an average of 13% from the baseline value; changing II varies the MIC

score by an average of 8%; and changing W cut-off varies the MIC score by an av-

erage of 8%. These three parameters determine the number of data points (topics)

and topic accuracy in the dataset, which has a direct effect on the overall relation-

ship between topic testedness and defect density. One thing to note is that the

MINE measures of all the systems follow the same pattern as described in RQ2,

which supports our hypothesis that the relationship is non-coexistence.

4.5 Threats to Validity

4.5.1 Parameter Sensitivity Analysis

Our results may be affected by changing the parameters (i.e., K, II, W cut-off,

δ, and PCA cut-off). Although we performed a parameter sensitivity analysis in

Section 4.4, we only change one variable at a time. Further research is required

to understand the effects of these parameters on the results (e.g., change all the

parameters at the same time).

Since it is possible the source-only topics that are excluded in RQ1 belong to the

class LTHD, we study how many such topics are there and how defect prone they

are (Table 4.14). We find that most of the excluded topics do not belong to LTHD

(81%–94%), and these topics have a low overall defect density. Therefore, these

topics do not significantly affect our results.

We use the third quantile of topic testedness and defect density to classify topics

into three classes. However, this threshold can be changed, and more advanced

clustering algorithms may be used. This clustering decision may affect the final

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 108

Table 4.10: Results of the parameter sensitivity analysis of the parameters that may
influence the MIC score. The baseline parameters and their values are
shown in the table. For each system, we show the MIC score when
the parameter changes. The values in the parentheses indicate the in-
crease/decrease from the baseline MIC score.

Baseline Values: K=500, II=10,000, W cut-off=0.05

Lower Higher
New Value MIC New Value MIC

Mylyn 1.0 (Baseline MIC = 0.38)

K=400 0.29 (-0.09) K=600 0.52 (+0.14)
II=9K 0.44 (+0.06) II=11K 0.37 (-0.01)

W cut-off=0.025 0.35 (-0.03) W cut-off=0.1 0.39 (+0.01)

Mylyn 2.0 (Baseline MIC = 0.40)

K=400 0.39 (-0.01) K=600 0.55 (+0.15)
II=9K 0.41 (+0.01) II=11K 0.41 (+0.01)

W cut-off=0.025 0.38 (-0.02) W cut-off=0.1 0.41 (+0.01)

Mylyn 3.0 (Baseline MIC = 0.26)

K=400 0.29 (+0.03) K=600 0.32 (+0.06)
II=9K 0.27 (+0.01) II=11K 0.27 (+0.01)

W cut-off=0.025 0.36 (+0.10) W cut-off=0.1 0.25 (-0.01)

Eclipse 2.0 (Baseline MIC = 0.20)

K=400 0.25 (+0.05) K=600 0.21 (+0.01)
II=9K 0.22 (+0.02) II=11K 0.19 (-0.01)

W cut-off=0.025 0.21 (+0.01) W cut-off=0.1 0.21 (+0.01)

Eclipse 2.1 (Baseline MIC = 0.21)

K=400 0.18 (-0.03) K=600 0.20 (-0.01)
II=9K 0.22 (+0.01) II=11K 0.20 (-0.01)

W cut-off=0.025 0.25 (+0.04) W cut-off=0.1 0.22 (+0.01)

Eclipse 3.0 (Baseline MIC = 0.24)

K=400 0.25 (+0.01) K=600 0.23 (-0.01)
II=9K 0.21 (-0.03) II=11K 0.20 (-0.04)

W cut-off=0.025 0.25 (+0.01) W cut-off=0.1 0.22 (-0.02)

Continued in Table 4.11.

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 109

Table 4.11: Continued from Table 4.10. Results of the parameter sensitivity anal-
ysis of the parameters that may influence the MIC score. The baseline
parameters and their values are shown in the table. For each system,
we show the MIC score when the parameter changes. The values in
the parentheses indicate the increase/decrease from the baseline MIC
score.

Baseline Values: K=500, II=10,000, W cut-off=0.05

Lower Higher
New Value MIC New Value MIC

NetBeans 4.0 (Baseline MIC = 0.24)

K=400 0.19 (-0.05) K=600 0.25 (+0.01)
II=9K 0.23 (-0.01) II=11K 0.29 (+0.05)

W cut-off=0.025 0.27 (+0.03) W cut-off=0.1 0.26 (+0.02)

NetBeans 5.0 (Baseline MIC = 0.20)

K=400 0.21 (+0.01) K=600 0.19 (-0.01)
II=9K 0.23 (+0.02) II=11K 0.21 (+0.01)

W cut-off=0.025 0.21 (+0.01) W cut-off=0.1 0.19 (-0.01)

NetBeans 5.5.1 (Baseline MIC = 0.19)

K=400 0.18 (-0.01) K=600 0.18 (-0.01)
II=9K 0.18 (-0.01) II=11K 0.20 (+0.01)

W cut-off=0.025 0.20 (+0.01) W cut-off=0.1 0.19 (—)

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 110

Table 4.12: Results of the parameter sensitivity analysis of the parameters that may
influence the prediction result. The baseline parameters and their val-
ues are shown in the table. For each system, we show the precision
and recall when the parameter changes. The values in the parentheses
indicate the increase/decrease from the baseline precision and recall.

Baseline Values: K=500, II=10,000, W cut-off=0.05, δ=0.01, PCA cut-off=90%

Lower Higher
New Value Precision Recall New Value Precision Recall

Mylyn 2.0 (Baseline Precision = 0.88, Base Recall = 0.80)

K=400 0.85 (-0.03) 0.80 (—) K=600 0.80 (-0.08) 0.81 (+0.01)
II=9K 0.84 (-0.04) 0.82 (+0.02) II=11K 0.90 (+0.02) 0.80 (—)

W cut-off=0.025 0.89 (+0.01) 0.84 (+0.04) W cut-off=0.1 0.84 (-0.04) 0.84 (+0.04)
δ=0.005 0.88 (—) 0.82 (+0.02) δ=0.02 0.86 (-0.02) 0.79 (-0.01)

PCA cut-off=80% 0.88 (—) 0.80 (—) PCA cut-off=95% 0.88 (—) 0.80 (—)

Mylyn 3.0 (Baseline Precision = 0.82, Base Recall = 0.71)

K=400 0.80 (-0.02) 0.73 (+0.02) K=600 0.68 (-0.14) 0.72 (+0.01)
II=9K 0.78 (-0.04) 0.74 (+0.03) II=11K 0.80 (-0.02) 0.71 (—)

W cut-off=0.025 0.78 (-0.04) 0.66 (-0.05) W cut-off=0.1 0.83 (+0.01) 0.71 (—)
δ=0.005 0.82 (—) 0.73 (+0.02) δ=0.02 0.83 (+0.01) 0.71 (—)

PCA cut-off=80% 0.82 (—) 0.71 (—) PCA cut-off=95% 0.82 (—) 0.71 (—)

Eclipse 2.1 (Baseline Precision = 0.79, Base Recall = 0.63)

K=400 0.82 (+0.03) 0.63 (—) K=600 0.85 (+0.06) 0.72 (+0.09)
II=9K 0.77 (-0.02) 0.67 (+0.04) II=11K 0.80 (+0.01) 0.61 (-0.02)

W cut-off=0.025 0.79 (—) 0.62 (-0.01) W cut-off=0.1 0.78 (-0.01) 0.65 (+0.02)
δ=0.005 0.79 (—) 0.63 (—) δ=0.02 0.81 (+0.02) 0.63 (—)

PCA cut-off=80% 0.79 (—) 0.63 (—) PCA cut-off=95% 0.79 (—) 0.63 (—)

Eclipse 3.0 (Baseline Precision = 0.84, Base Recall = 0.79)

K=400 0.78 (-0.06) 0.84 (+0.05) K=600 0.77 (-0.07) 0.86 (+0.07)
II=9K 0.80 (-0.04) 0.79 (—) II=11K 0.84 (—) 0.78 (-0.01)

W cut-off=0.025 0.82 (-0.02) 0.78 (-0.01) W cut-off=0.1 0.84 (—) 0.81 (+0.02)
δ=0.005 0.84 (—) 0.81 (+0.02) δ=0.02 0.81 (-0.03) 0.79 (—)

PCA cut-off=80% 0.84 (—) 0.79 (—) PCA cut-off=95% 0.84 (—) 0.79 (—)

Continued in Table 4.13.

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 111

Table 4.13: Continued from Table 4.12. Results of the parameter sensitivity analysis
of the parameters that may influence the prediction result. The baseline
parameters and their values are shown in the table. For each system,
we show the precision and recall when the parameter changes. The val-
ues in the parentheses indicate the increase/decrease from the baseline
precision and recall.

Baseline Values: K=500, II=10,000, W cut-off=0.05, δ=0.01, PCA cut-off=90%

Lower Higher
New Value Precision Recall New Value Precision Recall

NetBeans 5.0 (Baseline Precision = 0.65, Base Recall = 0.60)

K=400 0.60 (-0.05) 0.63 (+0.03) K=600 0.67 (+0.02) 0.58 (-0.02)
II=9K 0.63 (-0.02) 0.59 (-0.01) II=11K 0.64 (-0.01) 0.59 (-0.01)

W cut-off=0.025 0.65 (—) 0.57 (-0.03) W cut-off=0.1 0.65 (—) 0.63 (+0.03)
δ=0.005 0.65 (—) 0.60 (—) δ=0.02 0.63 (-0.02) 0.60 (—)

PCA cut-off=80% 0.65 (—) 0.60 (—) PCA cut-off=95% 0.65 (—) 0.60 (—)

NetBeans 5.5.1 (Baseline Precision = 0.64, Base Recall = 0.86)

K=400 0.67 (+0.03) 0.94 (+0.08) K=600 0.65 (+0.01) 0.79 (-0.07)
II=9K 0.68 (+0.04) 0.88 (+0.02) II=11K 0.65 (+0.01) 0.85 (-0.01)

W cut-off=0.025 0.66 (+0.02) 0.86 (—) W cut-off=0.1 0.62 (-0.02) 0.85 (-0.01)
δ=0.005 0.65 (+0.01) 0.86 (—) δ=0.02 0.61 (-0.03) 0.85 (-0.01)

PCA cut-off=80% 0.64 (—) 0.86 (—) PCA cut-off=95% 0.64 (—) 0.86 (—)

Table 4.14: Summary of the excluded source-only topics that belong to the class
LTHD, and the median defect density of these topics.

System % Source-only Topics Median Defect
that are in LTHD Density

Mylyn 1.0 10 % 3.9 ∗ 10−3
Mylyn 2.0 16 % 6.3 ∗ 10−3
Mylyn 3.0 7 % 1.8 ∗ 10−3

Eclipse 2.0 19 % 6.9 ∗ 10−3
Eclipse 2.1 8 % 4.9 ∗ 10−3
Eclipse 3.0 11 % 8.4 ∗ 10−3

NetBeans 4.0 6 % 5.1 ∗ 10−6
NetBeans 5.0 8 % 3.5 ∗ 10−6
NetBeans 5.5.1 8 % 2.9 ∗ 10−4

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 112

result. Further analysis is needed to examine the effect of topic clustering on the

results of our study.

4.5.2 Classifier Choice

The goal of this chapter is to provide initial evidence that it is possible to analyze

code coverage using topic models, and to identify topics of the source code files that

require more testing. We choose a naive Bayes classifier, which is shown to have

a good performance in classifying defective files (Menzies et al., 2007; Turhan and

Bener, 2009). However, other models may also be used, and different models may

have slightly different classification performance.

4.5.3 Subject Systems

In our case study, we considered in detail three versions of Mylyn, Eclipse, and Net-

Beans. However, these three systems may not necessarily be representative of all

possible software systems. Further studies are needed to determine the generaliz-

ability of our results.

4.6 Guideline for Implementing Our Approach

In this section, we provide a step-by-step guideline to help practitioners implement

our approach and use it on their software systems.

1. Obtain both the source code and test files of the software system (use the

heuristic in Section 4.2.1 to identify test files).

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 113

2. Obtain the defect history (i.e., how many pre-release and post-release defects

a file has) for the source code files of the previous version of the software

system.

3. Preprocess the source and test code. Take only the identifier names and com-

ments from the source and test code files, remove common English stopwords,

and finally stem the words (Section 2.2).

4. Use the MALLET tool to apply LDA on the preprocessed source and test code

(Section 4.2).

5. Compute the topic metrics proposed in Section 4.3.1. Determine which classes

the topics are in, and train a classifier using the topic testedness and post-

release defect information from the previous version. The goal is to identify

which topics are low-tested and high defect-prone.

6. Using the classifier built using the data from previous version, and predict

which topics are more defect-prone and not well-tested. Allocate more testing

resources on these topics.

4.7 Chapter Summary

In this chapter, we have studied the effect of topic testedness, i.e., the extent to

which a topic is tested, on code quality. We proposed new topic-based metrics to

study this relationship. We performed a detailed case study on three large, real-

world systems: Mylyn, Eclipse, and NetBeans. The summary and highlights of our

findings include:

CHAPTER 4. USING TOPIC MODELS TO STUDY CODE TESTEDNESS 114

• Test files and source code files share a significant number of topics.

• Defect density and testedness have a non-coexistence relationship, i.e., cannot

both have high values. Highly tested topics are unlikely to have high defect

density; high defect density topics have low testedness.

• We are able to predict, with high recall and precision, whether an under-tested

topic is at risk of containing defects, which can help practitioners allocate

testing sources more effectively.

• Our approach outperforms traditional prediction-based resource allocation

methods in terms of allocating testing and code inspection resources.

• Our proposed method is not sensitive to the particular thresholds that we

used.

Chapter 5

Summary and Conclusions

We conclude the thesis in this chapter, and summarize our findings and results to

our research questions. We also discuss limitations of our approaches and possible

future research directions.

5.1 Summary

Software quality plays an important role in software engineering, since it directly

affects the quality of the product that the customers receive. Researchers have tried

to uncover possible reasons (different software development activities) which may

possibly lead to higher defects in the software. However, despite their successes,

previous approaches do not consider the concerns in the software when studying

software quality. For example, lines of code (LOC) is shown to be one of the best

predictors for defects. However, a large file that is responsible for simple tasks, such

as storing constant or pre-defined values, may have very low or no defects.

In this thesis, we approximate concerns in software systems as topics using topic

115

CHAPTER 5. SUMMARY AND CONCLUSIONS 116

models, and study software quality using topics. Our goal is to examine how we can

use topics to help explain software defects and assist software quality assurance.

To do so, we perform case studies on four large real-world software systems in

Chapter 3 and three software systems in Chapter 4, and we find that:�

�

�

�
Topics can help explain software defects and help allocate quality assur-

ance efforts.

We study software quality using topics along two dimensions: code quality and

code testedness. We summarize our findings in the following:

Using Topic Models to Study Code Quality

In Chapter 3, we perform a preliminary study, and examine whether there are some

relationships between topics and defects. We use number of defects in a file to rep-

resent the code quality. We propose an approach to measure the defect-proneness

of a topic (i.e., topic defect density) using the defect history of topics. We find

that only a few topics in a system is defect prone, and these defect prone topics

seem to remain defect-prone over time. We look at the words that are related to

these defect-prone topics, and find that topics related to new features and the core

functionality are likely to be more defect-prone.

We propose various topic-based metrics, which we use to study code quality. For

static topic-based metrics, we have number of topics (NT) and topic memberships

(TM), and for historical topic-based metrics, we have number of defect-prone topics

(NDT) and defect-prone topic memberships (DTM). We show that our metrics can

give improvements (4–314%) to the baseline models (LOC, or PRE and churn) in

explaining defects. We compare NT with other state-of-the-art topic-based cohesion

CHAPTER 5. SUMMARY AND CONCLUSIONS 117

and coupling metrics, and examine their defect explanatory power. Our metric, NT,

gives the greatest improvement over the LOC (2.9 97%), and we show that NT is

not highly correlated with LOC. In addition, NT is much simpler to implement than

other topic-based cohesion and coupling metrics.

Using Topic Models to Study Code Testedness

In Chapter 4, we study code testedness (how much a piece of code is tested)

using topic models. Since testers usually test the systems at the level of con-

cerns (Weyuker, 1998), identifying which concerns may require testing help pri-

oritize testing efforts. We show that topics that are well tested are unlikely to be

defect prone, and topics that are defect prone are usually less tested (we describe

this relationship as non-coexistence). Through empirical studies, we show that we

are able to obtain a precision and recall of 0.77 and 0.75 when predicting defect

prone and less tested topics in future releases of the system. Finally, we show our

approach is able to save code inspection efforts, and it finds a different set of defect

prone files than the ones that are found by traditional approaches (only 0–6.2%

overlap).

5.2 Limitations and Future Work

The work presented in this thesis has a number of limitations. More detailed limita-

tions and threats to validity of our specific works are described in previous chapters

(Section 3.5 and 4.5). In this section, we discuss the overall limitations and possible

future research directions.

CHAPTER 5. SUMMARY AND CONCLUSIONS 118

• Even though we have experimented our approaches with four large real-world

systems, our results may still not be generalizable to all software systems. For

example, in Eclipse, our NT metric and other topic-based cohesion and cou-

pling metrics do not give any improvement in deviance explained (less than

1%) to the baseline model. Further studies are required to inspect possible

reasons these metrics do not work as well in some systems.

• We make the assumption that the defect information that we obtain from the

commit logs are correct. For example, when a developer fixes a file, he/she

always includes certain related messages (i.e., bug fixed) when committing

changes to the file. However, the data may contain some noises, which may

affect our results.

• Our approaches depend on the quality of the topics that are generated using

identifier names and comments in software systems. If the quality of the topics

is low, then the overall performance of our approaches may be affected.

• We use LOC, or PRE and churn as base metrics for comparison. Although these

metrics are found to be the most effective metrics for explaining software

quality, there may be some other confounding variables that may affect the

results of our metrics.

• Our approaches involve choosing parameter values. However, through sen-

sitivity analysis in Chapter 3 and 4, we find out that our approaches are not

particular sensitivity to the parameter values that we choose.

• In this thesis, we capture concerns from source code and test files, but other

information, such as email and bug reports, is also available. It would be

CHAPTER 5. SUMMARY AND CONCLUSIONS 119

interesting to find out the relationships between, for example, email discus-

sions and software defects. In addition, by adding more linguistic information

to source code files (i.e., commit messages of the files), would we achieve a

higher defect explanatory power?

Bibliography

(n.d.).

Allen, E. B. and Khoshgoftaar, T. M. (1999), Measuring coupling and cohesion: An

information-theory approach, in ‘Proceedings of the 6th International Symposium

on Software Metrics’, pp. 119–127.

Asuncion, H. U., Asuncion, A. U. and Taylor, R. N. (2010), Software traceability

with topic modeling, in ‘Proceedings of the 32nd International Conference on

Software Engineering’, pp. 95–104.

Baldi, P. F., Lopes, C. V., Linstead, E. J. and Bajracharya, S. K. (2008), A theory of

aspects as latent topics, in ‘Proceedings of the 23rd ACM SIGPLAN Conference

on Object-oriented Programming Systems Languages and Applications’, pp. 543–

562.

Bieman, J. M. and Kang, B.-K. (1998), “Measuring design-level cohesion”, IEEE

Transactions on Software Engineering , Vol. 24, pp. 111–124.

Bird, C., Nagappan, N., Murphy, B., Gall, H. and Devanbu, P. (2011), Don’t touch

my code!: Examining the effects of ownership on software quality, in ‘Proceedings

120

BIBLIOGRAPHY 121

of the 19th Symposium on the Foundations of Software Engineering and the 13rd

European Software Engineering Conference’, pp. 4–14.

Biyani, S. and Santhanam, P. (1998), Exploring defect data from development and

customer usage on software modules over multiple releases, in ‘Proceedings of

the 9th International Symposium on Software Reliability Engineering’, pp. 316–

320.

Blei, D. M., Ng, A. Y. and Jordan, M. I. (2003), “Latent Dirichlet allocation”, Journal

of Machine Learning Research , Vol. 3, pp. 993–1022.

Briand, L. C., Daly, J. W. and Wüst, J. (1998), “A unified framework for cohesion

measurement in object-oriented systems”, Empirical Software Engineering , Vol. 3,

pp. 65–117.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D. and Lai, J. C. (1992),

“Class-based n-gram models of natural language”, Computational Linguistics ,

Vol. 18, pp. 467–479.

Burnham Kenneth P., A. D. R. (2004), “Multimodel inference: Understanding AIC

and BIC in model selection”, Sociological Methods Research , Vol. 33, pp. 467–479.

Chae, H. S., Kwon, Y. R. and Bae, D.-H. (2000), “A cohesion measure for object-

oriented classes”, Software Practice & Experience , Vol. 30, pp. 1405–1431.

Chang, J. and Blei, D. (2009), Relational topic models for document networks, in

‘Proceedings of the 12th International Conference on Articial Intelligence and

Statistics’.

BIBLIOGRAPHY 122

Chen, T.-H., Thomas, S. W., Nagappan, M. and Hassan, A. (2012), Explaining soft-

ware defects using topic models, in ‘Proceedings of the 9th Working Conference

on Mining Software Repositories’.

Cleary, B., Exton, C., Buckley, J. and English, M. (2008), “An empirical analysis of

information retrieval based concept location techniques in software comprehen-

sion”, Empirical Software Engineering , Vol. 14, pp. 93–130.

Crawford, S. G., McIntosh, A. A. and Pregibon, D. (1985), “An analysis of static

metrics and faults in c software”, Journal of Systems and Software , Vol. 5, pp. 37–

48.

Cureton, E. and D’Agostino, R. (1993), Factor Analysis: An Applied Approach,

Lawrence Erlbaum Associates.

DAmbros, M., Lanza, M. and Robbes, R. (2010), An extensive comparison of bug

prediction approaches, in ‘Proceedings of the 7th Conference on Mining Software

Repositories’, pp. 31–41.

Fenton, N. (1991), Software metrics: a rigorous approach, Chapman & Hall.

Foundation, E. (2012), Mylyn. http://www.eclipse.org/mylyn/.

Gethers, M. and Poshyvanyk, D. (2010), Using relational topic models to capture

coupling among classes in object-oriented software systems, in ‘Proceedings of

the 26th International Conference on Software Maintenance’, pp. 1–10.

Golberg, M. and Cho, H. (2004), Introduction to regression analysis.

BIBLIOGRAPHY 123

Gyimothy, T., Ferenc, R. and Siket, I. (2005), “Empirical validation of object-

oriented metrics on open source software for fault prediction”, IEEE Transactions

on Software Engineering , Vol. 31, pp. 897–910.

Haan, C. (1977), Statistical methods in hydrology, Iowa State University Press.

Hall, T., Beecham, S., Bowes, D., Gray, D. and Counsell, S. (2011), “A systematic re-

view of fault prediction performance in software engineering”, IEEE Transactions

on Software Engineering , Vol. PP.

Huang, J. C. (1975), “An approach to program testing”, ACM Comput. Surv. , Vol. 7,

pp. 113–128.

Ihara, S. (1993), Information Theory for Continuous Systems, World Scientific.

Jolliffe, I. (2002), Principal component analysis, Springer-Verlag.

Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K.-i., Adams, B. and Hassan,

A. E. (2010), Revisiting common bug prediction findings using effort-aware mod-

els, in ‘Proceedings of the 2010 IEEE International Conference on Software Main-

tenance’, pp. 1–10.

Kan, S. H. (2002), Metrics and Models in Software Quality Engineering, 2nd edn,

Addison-Wesley Longman Publishing Co., Inc.

Kuhn, A., Ducasse, S. and Ǵırba, T. (2007), “Semantic clustering: Identifying topics

in source code”, Information and Software Technology , Vol. 49, pp. 230–243.

Kutner, M., Nachtsheim, C. and Neter, J. (2004), Applied linear regression models.

BIBLIOGRAPHY 124

Linstead, E., Lopes, C. and Baldi, P. (2008), An application of latent Dirichlet allo-

cation to analyzing software evolution, in ‘Proceedings of Seventh International

Conference on Machine Learning and Applications’, pp. 813–818.

Liu, Y., Poshyvanyk, D., Ferenc, R., Gyimothy, T. and Chrisochoides, N. (2009),

Modeling class cohesion as mixtures of latent topics, in ‘Proceedings of the 25th

International Conference on Software Maintenance’, pp. 233 –242.

Lukins, S. K., Kraft, N. A. and Etzkorn, L. H. (2010), “Bug localization using latent

dirichlet allocation”, Information and Software Technology , Vol. 52, pp. 972–990.

Macro, A. and Buxton, J. (1987), The craft of software engineering, Addison-Wesley.

Marcus, A. and Poshyvanyk, D. (2005), The conceptual cohesion of classes, in ‘Pro-

ceedings of the 21st IEEE International Conference on Software Maintenance’,

pp. 133–142.

Marcus, A., Poshyvanyk, D. and Ferenc, R. (2008), “Using the conceptual cohesion

of classes for fault prediction in object-oriented systems”, IEEE Transactions on

Software Engineering , Vol. 34, pp. 287–300.

Maskeri, G., Sarkar, S. and Heafield, K. (2008), Mining business topics in source

code using latent Dirichlet allocation, in ‘Proceedings of the 1st India Software

Engineering Conference’, pp. 113–120.

McCallum, A. K. (2002), Mallet: A machine learning for language toolkit.

http://mallet.cs.umass.edu.

BIBLIOGRAPHY 125

Mende, T. and Koschke, R. (2010), Effort-aware defect prediction models, in ‘Pro-

ceedings of the 2010 14th European Conference on Software Maintenance and

Reengineering’, pp. 107–116.

Menzies, T., Greenwald, J. and Frank, A. (2007), “Data mining static code attributes

to learn defect predictors”, IEEE Transactions on Software Engineering , Vol. 33,

pp. 2–13.

Myers, G., Badgett, T., Thomas, T. and Sandler, C. (2004), The Art of Software

Testing, 2nd edn.

Nagappan, N. and Ball, T. (2005), Use of relative code churn measures to predict

system defect density, in ‘Proceedings of the 27th international conference on

Software engineering’, ICSE ’05, pp. 284–292.

Nagappan, N., Williams, L., Vouk, M. and Osborne, J. (2007), Using in-process

testing metrics to estimate post-release field quality, in ‘Proceedings International

Symposium on Software Reliability Engineering’, pp. 209–214.

Nguyen, T. T., Nguyen, T. N. and Phuong, T. M. (2011), Topic-based defect predic-

tion, in ‘Proceedings of the 33rd International Conference on Software Engineer-

ing’, pp. 932–935.

Ntafos, S. (1988), “A comparison of some structural testing strategies”, IEEE Trans-

actions on Software Engineering , Vol. 14, pp. 868 –874.

Oram, A. and Wilson, G. (2010), Making Software: What Really Works, and Why We

Believe It, O’Reilly Series, O’Reilly Media, Incorporated.

BIBLIOGRAPHY 126

Poshyvanyk, D., Gueheneuc, Y., Marcus, A., Antoniol, G. and Rajlich, V. (2007),

“Feature location using probabilistic ranking of methods based on execution sce-

narios and information retrieval”, IEEE Transactions on Software Engineering ,

pp. 420–432.

Poshyvanyk, D. and Marcus, A. (2006), The conceptual coupling metrics for object-

oriented systems, in ‘Proceedings of the 22nd IEEE International Conference on

Software Maintenance’, pp. 469–478.

Posnett, D., Devanbu, P. and Filkov, V. (2012), Mic check: A correlation tactic for

ESE data, in ‘Proceedings of the 9th Working Conference on Mining Software

Repositories’.

Provost, F. (2000), Machine learning from imbalanced data sets 101 (extended

abstract), in ‘Proceedings of the AAAI2000 Workshop on Imbalanced Data Sets’.

Raftery, A. (1995), “Bayesian model selection in social research (with discussion)”,

Sociological Methodology , Vol. 25, pp. 111–163.

Rao, S. and Kak, A. (2011), Retrieval from software libraries for bug localization:

A comparative study of generic and composite text models, in ‘Proceeding of the

8th Working Conference on Mining Software Repositories’, pp. 43–52.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turn-

baugh, P. J., Lander, E. S., Mitzenmacher, M. and Sabeti, P. C. (2011), Detecting

novel associations in large data sets, Vol. 334, pp. 1518–1524.

Reshef, D., Reshef, Y., Sabeti, P. and Mitzenmacher, M. (2012), Mine: maximal

information-based nonparametric exploration. http://www.exploredata.net/.

BIBLIOGRAPHY 127

Revelle, M., Gethers, M. and Poshyvanyk, D. (2011), “Using structural and textual

information to capture feature coupling in object-oriented software”, Empirical

Software Engineering , Vol. 16, pp. 773–811.

Robillard, M. P. and Murphy, G. C. (2007), “Representing concerns in source code”,

ACM Transactions on Software Engineering and Methodology , Vol. 16, p. 3.

Rosenberg, J. (1997), Some misconceptions about lines of code, in ‘Proceedings of

the 4th International Symposium on Software Metrics’, pp. 137–142.

Slaughter, S. A., Harter, D. E. and Krishnan, M. S. (1998), “Evaluating the cost of

software quality”, Communications of the ACM , Vol. 41, pp. 67–73.

Stapleton, J. (2008), Models for probability and statistical inference: theory and ap-

plications.

Stewart, J. (2009), Calculus: Concepts and Contexts, Stewart’s Calculus Series, Cen-

gage Learning.

Thomas, S., Adams, B., Hassan, A. and Blostein, D. (2010), Validating the use of

topic models for software evolution, in ‘Proceedings of the 10th International

Working Conference on Source Code Analysis and Manipulation’, pp. 55–64.

Thomas, S. W., Adams, B., Hassan, A. E. and Blostein, D. (2011), Modeling the

evolution of topics in source code histories, in ‘Proceedings of the 8th Working

Conference on Mining Software Repositories’, pp. 173–182.

Tian, K., Revelle, M. and Poshyvanyk, D. (2009), Using latent Dirichlet allocation

for automatic categorization of software, in ‘Proceedings of the 6th International

Working Conference on Mining Software Repositories’, pp. 163–166.

BIBLIOGRAPHY 128

Titov, I. and McDonald, R. (2008), Modeling online reviews with multi-grain topic

models, in ‘Proceedings of the 17th international conference on World Wide Web’,

pp. 111–120.

Turhan, B. and Bener, A. (2009), “Analysis of naive bayes assumptions on soft-

ware fault data: An empirical study”, Data and Knowledge Engineering , Vol. 68,

pp. 278–290.

Ujhazi, B., Ferenc, R., Poshyvanyk, D. and Gyimothy, T. (2010), New conceptual

coupling and cohesion metrics for object-oriented systems, in ‘Proceedings of the

2010 10th IEEE Working Conference on Source Code Analysis and Manipulation’,

pp. 33–42.

Wallach, H., Mimno, D. and McCallum, A. (2009), “Rethinking LDA: Why priors

matter”, Proceedings of Neural Information Processing Systems, Vancouver, BC .

Weyuker, E. (1998), “Testing component-based software: a cautionary tale”, IEEE

Software , Vol. 15, pp. 54 –59.

Witten, I., Frank, E. and Hall, M. (2011), Data Mining: Practical Machine Learning

Tools and Techniques, Elsevier Science.

Zaidman, A., Rompaey, B. V., Demeyer, S. and Deursen, A. v. (2008), Mining soft-

ware repositories to study co-evolution of production & test code, in ‘Proceedings

of the 1st International Conference on Software Testing, Verification, and Valida-

tion’, pp. 220–229.

