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Abstract

Our increasing reliance on mobile devices has given rise to a new class of software

applications (i.e., mobile apps). Tens of thousands of mobile app developers have

developed hundreds of thousands of mobile apps that are available across multiple

platforms. These apps are used by millions of people around the world every day.

However, currently most software engineering research is performed on large desktop

or server applications like the Eclipse IDE and Apache HTTPD Server.

We believe that research efforts must begin to examine mobile apps. Mobile apps

are growing at a rapid pace, yet they differ from traditionally-studied desktop and

server applications.

In this thesis, we examine such apps by performing three quantitative studies.

First, we study differences in the size of the code bases and development teams of

desktop/server applications and mobile apps. We then study differences in the code,

dependency and churn properties of the mobile apps of two different mobile platforms.

Finally, we study the impact of size, coupling, cohesion and code reuse on the quality

of mobile apps.

Some of the most notable findings of this thesis are that mobile apps are much

smaller than traditionally-studied desktop/server applications and that most mobile

apps tend to be developed by only one or two developers. Mobile app developers
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tend to rely heavily on functionality provided by the underlying mobile platform

through platform-specific APIs. We find that Android app developers tend to rely on

the Android platform more than BlackBerry app developers rely on the BlackBerry

platform. We find that defects in Android apps tend to be concentrated in a small

number of source code files. We also find that source code files that depend on the

Android platform tend to have more defects.

Our results indicate that major differences exist between mobile apps and traditionally-

studied desktop/server applications. However, the mobile apps of two different mobile

platforms also differ. Further, our results suggest that mobile app developers should

avoid excessive platform dependencies and focus their testing efforts on source code

files that rely heavily on the underlying mobile platform. Given the widespread use

of mobile apps and the lack of research surrounding these apps, we believe that our

results will have significant impact on software engineering research.
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Chapter 1

Introduction

Mobile devices have changed the software development world by providing a platform

for the rapid emergence of a new class of software applications (i.e., mobile apps). Mo-

bile apps, commonly referred to as apps, distinguish themselves from the applications

that run on typical desktops or servers by their limited functionality, low memory

and CPU footprint, touch interfaces, and limited screen sizes and resolutions. Simi-

lar to web applications (Hassan and Holt, 2002), mobile apps are rapidly developed

by small teams who may only have limited experience with software development

(Butler, 2011; Gavalas and Economou, 2011; Lohr, 2010; Wen, 2011).

Mobile apps have become hugely popular among both consumers and developers

since Apple opened its App Store in 2008 (Chetan Sharma Consulting, 2010; Gartner

Inc., 2011). Downloads of mobile apps have risen from 7 billion in 2009 to 15 billion

in 2010 and 50 billion in 2012 (projected) (Chetan Sharma Consulting, 2010). The

annual number of mobile app downloads may even reach 183 billion by 2016 (In-

ternational Data Corp., 2011). Simultaneously, the number of mobile apps has also

increased. Table 1.1 shows the number of mobile apps available for the iOS, Android
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CHAPTER 1. INTRODUCTION 2

and BlackBerry mobile operating systems. Thousands of developers have been drawn

to mobile app ecosystems and more than 140,000 developers had made their apps

available through app stores by July 2011 (research2guidace, 2011).

Table 1.1: Number of Mobile Apps By Platform (Android Market, 2012; Apple App
Store, 2012; BlackBerry App World, 2012).

Company - Platform Number of Mobile Apps
September 2010 September 2011 September 2012

Apple - iOS 250,000 350,000 650,000
Google - Android 80,000 300,000 500,000
RIM - BlackBerry 10,000 15,000 100,000

Despite the ubiquity of mobile devices and the popularity of mobile apps, few

software engineering researchers have studied mobile apps. Software engineering re-

searchers have proposed and evaluated several empirical theories of how high quality,

successful software is developed and maintained. These “software engineering em-

pirical theories” aim to tie aspects of software artifacts (e.g., size and complexity)

(Chidamber and Kemerer, 1994), their development (e.g., number of changes) (Na-

gappan and Ball, 2005) and their developers (e.g., developer experience) (Bird et al.,

2011) to various definitions of software quality (e.g., number of defects). However,

such empirical theories have primarily been evaluated against large-scale projects such

as the Mozilla Firefox web browser, Eclipse IDE, Linux kernel and Apache HTTPD

web server (Brian et al., 2010). The relationship between these large-scale projects

and mobile apps and the applicability of these empirical theories to mobile apps is

unclear.
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1.1 Research Statement

The mobile app sector is rapidly becoming the largest sector of software today.

Yet there is very limited research done to understand the development practices

and the quality of such mobile apps. We believe that these mobile apps bring a

unique set of challenges to software engineering practice and research.

1.2 Thesis Overview

We conduct three empirical studies to better understand mobile app development

practices and the quality of such apps.

1. Revisiting Empirical Observations Using Mobile Apps (Chapter 3)

In our first study, we revisit several empirical observations regarding develop-

ment practices in the context of mobile apps. We also compare our findings to

traditionally-studied desktop/server applications.

We find that the development practices of mobile apps differ from traditionally-

studied systems – highlighting the need for software engineering researchers to

closely examine this rapidly growing sector.

2. Studying the Development of Mobile Apps Across the Android and BlackBerry

Platforms (Chapter 4)

In our second study, we seek to understand whether development practices vary

between different mobile platforms.

We find that development practices do differ between platforms – highlighting

the importance of using case studies from different platforms in future empirical

studies regarding mobile apps.
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3. Platform Dependence and Source Code Quality (Chapter 5)

In our third study, we examine the quality of mobile apps with a specific focus

on their dependence on their underlying mobile platform.

We find that their high dependence on their platform plays a significant role

in their quality; source code files are more defect-prone when they are highly

dependent on the mobile platform.

1.3 Major Thesis Contributions

In this thesis, we empirically study mobile apps and their dependence on mobile

platforms. In particular, we make three contributions to our understanding of mobile

apps.

1. This thesis presents the first study to explore some of the characteristics of mo-

bile app development and compares mobile apps to traditionally-studied desk-

top/server applications – highlighting the importance of studying such apps

and the risks of blindly applying prior empirical theories to the world of mobile

apps.

2. We present the first study of its kind to compare mobile apps across two of the

most popular mobile platforms.

3. We are the first to revisit empirical theories of software quality in the context

of mobile apps, while considering some of the unique characteristics of mobile

apps (i.e., high platform dependence).
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1.4 Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 describes keys terms

used throughout this paper and provides an overview of current research regarding

mobile apps.

Chapter 3 presents our study of two differences (i.e., the size of the code base and

development and the time to fix defects) between desktop/server applications and

mobile apps.

Chapter 4 presents a study of three differences (i.e., source code, dependency and

code churn) between Android and BlackBerry apps.

Chapter 5 presents a study of four factors (i.e., lines of code, coupling, cohesions

and the degree of dependence on a mobile platform) that influence the quality of

mobile apps.

Finally, Chapter 6 concludes the thesis with a discussion of our results, the lim-

itations and threats to validity of our research and potential directions for future

research.



Chapter 2

Background and Related Work

The rise of mobile apps is a relatively recent trend in software engineering. However,

mobile apps are beginning to garner interest within the software engineering com-

munity and the future importance of mobile apps is being recognized. Researchers

are beginning to explore the challenges, issues and opportunities in studying mobile

apps and platforms (Workshop on Mobile Software Engineering, 2011). For example,

the focus of the mining challenge at the international working conference on mining

software repositories (MSR) in 2012 was to uncover interesting findings related to the

Android platform (Shihab et al., 2012).

Researchers have also studied mobile apps from other perspectives.

Education – Teng and Helps have designed a project for an introductory level

operating systems course in which 35 students were asked to develop a mobile app

for one of the major mobile platforms. Upon completion of the course, the authors

surveyed the students to evaluate the overall development and learning experience

(Teng and Helps, 2010). The authors found that the majority of the students who

took the course felt that mobile app development is an important component of an
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CHAPTER 2. BACKGROUND AND RELATED WORK 7

information technology curriculum. Hu et al. have also developed a course focusing

on mobile app development (Hu et al., 2010). The course combines a detailed course

syllabus and hands-on-labs to give students an overview of mobile devices and mobile

platforms and prepare students to develop mobile apps.

Security – Enck et al. have studied Android’s security model and outlined the com-

plexity of developing secure mobile apps (Enck et al., 2009). Shabtai et al. performed

a security assessment of the Android platform, identified potential security threats

and provided solutions for mitigating these threats (Shabtai et al., 2010). Grace et

al. have performed large-scale studies of Android apps to detect zero-day Android

malware (Grace, Zhou, Zhang, Zou and Jiang, 2012) and security and privacy threats

from mobile app advertising libraries (Grace, Zhou, Jiang and Sadeghi, 2012).

However, to date, there are few studies of mobile apps from a software engineering

perspective

Research regarding mobile app development has largely focused on a small number

of specific issues.

Development tools and frameworks – Gasimov et al., Hammershoj et al., and

Tracy surveyed the challenges facing mobile app developers (Gasimov et al., 2010;

Hammershoj et al., 2010; Tracy, 2012). These challenges include working within a

highly fragmented marketplace and working within the constraints of mobile devices.

In addition, Gasimov et al. also surveyed the tools available to mobile app developers.

Charland and LeRoux compared two methods of mobile app development (i.e., web

apps and native apps) to identify the strengths and weaknesses of each method (Char-

land and LeRoux, 2011). Although web apps are cheaper to develop and deploy than

native apps, native apps have much better performance. However, the gap between
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web apps and native apps is quickly closing with new and improving technologies

(e.g., 3D in-browser gaming with WebGL).

Cross platform development – Wu et al. use a mobile web application engine that

can run C++ code on the Android platform through the Java Native Interface (Wu

et al., 2010). Xin presents two development tools, Swerve Studio and X-Forge, that

can be used to achieve cross-platform development for mobile games (Xin, 2009).

Research regarding the software quality aspects of mobile apps is largely lacking,

however, researchers are beginning to study the platforms that support these apps.

Maji et al. studied bug reports in the Android and Symbian platforms to understand

which modules are most defect-prone and how defects are fixed (Kumar Maji et al.,

2010). The authors determine that development tools, web browsers and multime-

dia modules are most defect-prone and that most defects are fixed with minor code

changes. The authors also determine that despite the high cyclomatic complexity of

the Android and Symbian platforms, defect densities are surprisingly low. In this

thesis, we study Android apps, not the Android platform itself. Han et al. have also

studied bug reports in the Android platform (Han et al., 2012). The authors used

topic analysis to compare the bug reports from two different Android vendors (i.e.,

HTC and Motorola). They found that bug report topics differed between the two

Android vendors and concluded that the fragmentation of the Android platform has

led to significant quality (i.e., compatibility and portability) issues.

Researchers are also beginning to study code reuse in mobile apps. Mojica et

al. performed a case study of code reuse in 4,323 Android apps and found that, on

average, 61% in the classes in a mobile app are reused by other mobile apps in the

same domain, e.g., social networking (Israel et al., 2012). The authors also found
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that 23% of the 534,057 classes in their case study inherit from a base class in the

Android platform. Given the wide-spread dependence on the Android platform, it is

important to study the source code quality implications of this dependence.

Finally, researchers are also beginning to study the larger mobile app ecosystem

(i.e,. mobile app stores). Harman et al. studied 32,108 paid (i.e., not free) mobile

apps in BlackBerry App World (Harman et al., 2012). The authors found that there

is a strong correlation between customer ratings and downloads, while there was no

correlation found between price and either ratings or downloads. The authors found

that these correlations are stronger within subdomains of the app store (e.g, games

and utilities).

In this thesis, we study mobile apps from a software engineering perspective (e.g.,

source code quality). Such research on mobile apps is largely lacking in the existing

software engineering literature.



Chapter 3

Revisiting Empirical Theories

Using Mobile Apps

Despite the ubiquity of mobile devices and the popularity of mobile apps, few software

engineering researchers have studied them. During the thirty-five years following Fred

Brooks’ seminal text, The Mythical Man Month (Brooks, 1975), the software engi-

neering community has proposed, evaluated and noted several theories of how high

quality, successful software is developed and maintained. These “software engineering

empirical theories” aim to tie aspects of software artifacts (e.g., size and complexity)

(Chidamber and Kemerer, 1994), their development (e.g., number of changes) (Na-

gappan and Ball, 2005) and their developers (e.g., developer experience) (Bird et al.,

2011) to definitions of quality (e.g., post-release defects). Such empirical theories

are derived from a large number of empirical observations. However, to date, most

observations have been made using large-scale projects such as Apache and Eclipse

(Brian et al., 2010). Determining how these empirical theories hold in mobile apps

may reduce the effort in developing and maintaining high quality mobile apps.

10
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Our existing software engineering knowledge may not hold in mobile apps due to

differences between the mobile app and desktop/server ecosystems. Two potentially

influential differences are 1) the hardware limitations and diversity of mobile devices

and 2) the distribution channel provided by app stores.

First, the hardware limitations of mobile devices has led to mobile apps with

small memory and CPU footprints that are intended for mobile devices with small

screen sizes. These hardware limitations may limit the scope of mobile apps. Indeed,

even the latest generation of mobile devices does not meet the minimum system

requirements for best-selling games (e.g., World of Warcraft) and applications (e.g,

Adobe Photoshop CS5). Further, the shift in usage from desktop/server systems to

mobile devices (mobile devices are intended to be used “on-the-go”) limits the scope

of mobile apps.

While the capabilities of mobile devices have been rapidly increasing (e.g., many

new devices boast dual-core processors) some of these limitations are characteristic

of mobile devices. This is particularly true of the screen size and resolution, which

limits the information and functionality displayed at one time. Further, the diver-

sity of hardware (e.g., accelerometers and touch interfaces with gesture recognition)

may complicate development as developers experiment with these features. A mobile

platform (e.g., Android) consists of numerous APIs that provide mobile apps with an

interface to these hardware accessories. In addition, platform APIs provide access to

commonly required functionality.

The diversity and limitations of mobile device hardware may limit the scope of

mobile apps. Therefore, our first research question compares the size of the code base

and development team of open source Android apps and desktop/server applications.
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Second, major mobile platforms (e.g., Android) provide centralized app stores for

users to download mobile apps. Centralized app stores are easily browsed and directly

available from a user’s device. Therefore, the effort to install mobile apps is minimal.

Further, the cost of listing a mobile app in an app store is very low (occasionally

there is no cost) while the potential to reach millions of consumers is high.

The low cost to enter the mobile market and the potential to generate revenue has

attracted a large number of developers (Chetan Sharma Consulting, 2010; ComScore

Inc., 2010; Gartner Inc., 2011). Tens of thousands of developers have made their apps

available through centralized app stores (All Facebook, 2010; research2guidace, 2011).

Further, development tools have been released to the general public so that anyone

can develop a mobile app, even without prior development experience (Butler, 2011;

Gavalas and Economou, 2011; Lohr, 2010; Wen, 2011). The large and constantly ex-

panding development community leads to high competition between developers. For

example, Google Play contains hundreds of competing weather apps, media players

and instant messaging apps.

The high competition between developers may affect the quality of mobile apps

for fear of losing users to competing apps. The emphasis on defect fixing may be

high and hence the defect fix times may be low. Therefore, our second research

question compares the time it takes to fix defects in open source Android apps and

desktop/server applications.

As a first step towards understanding how established software engineering em-

pirical theories hold in mobile apps, we perform an exploratory study to compare

mobile apps and desktop/server applications. Are there clear differences between the

size of the code base/development team and quality improvement process (i.e., the
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time it takes to fix a defect) of these two classes of software? We study fifteen open

source Android apps and five desktop/server applications (two large, commonly stud-

ied applications and three smaller Unix utilities). Our study addresses two research

questions:

• RQ1: How does the size of the code base compare between mobile apps and

desktop/server applications? – mobile apps and Unix utilities tend to have

smaller code bases than larger desktop/server applications. In addition, the

development of mobile apps and Unix utilities tends to be driven by one or two

core developers. Further, mobile apps tend to rely heavily on their underlying

platform.

• RQ2: How does the defect fix time compare between mobile apps and desk-

top/server applications? – mobile app developers typically fix defects faster

than desktop/server developers, regardless of the size of the project. In addi-

tion, defects in mobile apps tend to be concentrated in a smaller portion of the

source code files.

In the course of addressing our research questions, we reevaluate three empirical

theories:

1. Core developers – empirical studies show that a small subset of the developers

(≈20%) are responsible for the majority (≈80%) of the development and main-

tenance of an application(Dinh-Trong and Bieman, 2005; Geldenhuys, 2010;

Loukas et al., 2011; Mockus et al., 2000, 2002).
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2. Defect Reporters – empirical studies show that the number of people reporting

defects is an order of magnitude larger than the number of developers (Dinh-

Trong and Bieman, 2005; Mockus et al., 2002).

3. Defect distribution – empirical studies show that the majority of defects (≈80%)

occur in a small subset (≈20%) of the source code files (Gittens et al., 2005;

Ostrand et al., 2005).

The chapter is organized as follows: Section 5.1 describes the setup of our case

study and Section 5.2 describes and discusses the results. In Section 5.3, we outline

the threats to the validity of our case study. Finally, Section 5.4 concludes the chapter.

3.1 Case Study Setup

This section outlines our approach to exploring the differences between mobile apps

and desktop/server applications. First, we selected representative mobile apps and

desktop/server applications. Second, we measured the size of the code base and

the time it takes to fix defects for each of the subject apps/applications. We then

compared the measurements across the subjects.

3.1.1 Mobile App Selection

In this chapter, we study mobile apps written for the Android platform. The Android

platform is the largest (by user base) and fastest growing mobile platform. In addition,

the Android platform itself is open source and has more free mobile apps than any

other major mobile platform (Distimo, 2011a).
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Mobile apps for Android devices are primarily hosted in Google Play (Android

Market, 2012). The Android Market classifies mobile apps into two groups (i.e., free

and paid) and records details such as cost and the number of times each app has

been installed in the previous 30 days. We use the Android Market to list the top

2,000 free apps and the top 2,000 paid apps (2,000 is the maximum number of apps

that the Android Market ranks). However, we limit our study to free Android apps,

because 1) the majority (63%) of Android apps are free (Distimo, 2011a), 2) free apps

are downloaded significantly more than paid mobile apps (Distimo, 2011b) and 3) the

source code repositories and issue tracking systems are not available for paid apps.

The term “free” within Google Play refers to mobile apps that are downloaded at

no cost. Free apps are not necessarily open source. One reason is that many of these

apps are developed internally by organizations as mobile interfaces to their online

services (e.g., Facebook, Google Maps and Skype). Another reason is that many paid

apps have versions that are available for free. This is because a common revenue

model is to use a multi-tiered structure (e.g., a free app with ads and a paid app

without ads, or a limited-time demo version and a paid app). However, we are unable

to study these apps because they are only available as bytecode files (i.e., we do not

have access to their source code repositories or issue tracking systems). Therefore,

we must determine which apps in the top 2,000 free app list are open source.

While most Android apps are hosted in Google Play, there are other app stores as

well (Android Market, 2012; Chetan Sharma Consulting, 2010). One such app store,

albeit a small one, is the FDroid repository (F-Droid, 2012). The FDroid repository

exclusively lists free and open source (FOSS) Android apps that are also listed in

Google Play. The FDroid repository contains links to the homepage, source code
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repository and issue tracking system (if available). However, it does not contain any

information regarding the user base, e.g., the number of downloads.

We select apps for our case study by cross-referencing the list of the top 2,000

free apps in Google Play, with the list of apps in the FDroid repository. Mobile apps

in the resulting list are 1) popular amongst users (allowing us to study “successful”

apps) and 2) open source (allowing us to access their source code and issue tracking

systems). The resulting list contains twenty mobile apps. However, we exclude five

mobile apps from our case study: three did not have an issue tracking system, one

had a different source control system (other than SVN/GIT) and one was a mobile

port of a desktop application (we could not differentiate the code of the mobile app

from the desktop application). Therefore, our case study includes fifteen open source

Android apps.

Our selection of mobile apps based on popularity (downloads) has one caveat.

The number of downloads is not an ideal measure of success (unlike user retention or

engagement). However, it is the best measure currently available.

Table 5.1 contains the list of mobile apps that we include in our case study. We

assign an ID to each mobile app for brevity. For each of the selected mobile apps,

Table 5.1 contains 1) a brief description, 2) the minimum number of downloads during

July 2011 (Google Play releases monthly download numbers within ranges), 3) the

date of the first commit to the repository (our analysis was performed on the source

code repository and issue tracking system from the date of the first commit until

August 8, 2011) and 4) link to the homepage (which contains links to the source

code and issue tracking systems). Table 5.1 contains mobile apps from a number of

different domains, including utilities, networking, multimedia and games.
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Table 3.1: Selected Mobile Apps

ID Name Description Downloads First Commit Homepage

M1 3 Music Player >500,000 26/01/2010 github.com/fabrantes/rockonnggl/

M2 Apps Organizer Utility >1,000,000 15/08/2009 code.google.com/p/appsorganizer/

M3 Barcode Scanner Utility >10,000,000 23/10/2007 code.google.com/p/zxing/

M4 ConnectBot SSH Client >1,000,000 16/11/2007 code.google.com/p/connectbot/

M5 Cool Reader E-Book Reader >500,000 09/03/2007 sourceforge.net/projects/crengine/

M6 Frozen Bubble Game >1,000,000 15/11/2009 code.google.com/p/frozenbubbleandroid/

M7 K-9 Mail Email Client >1,000,000 27/10/2008 code.google.com/p/k9mail/

M8 KeePassDroid Password Vault >100,000 01/24/2009 google.com/p/keepassdroid/

M9 Quick Settings Utility >1,000,000 25/05/2010 code.google.com/p/quick-settings/

M10 Reddit is fun Social Networking >100,000 07/30/2009 github.com/talklittle/reddit-is-fun/

M11 Scrambled Net Game >500,000 26/07/2009 code.google.com/p/moonblink/

M12 Sipdroid VOIP client >500,000 04/04/2009 code.google.com/p/sipdroid/

M13 Solitaire Game >10,000,000 18/11/2008 code.google.com/p/solitaire-for-android/

M14 Tricorder Game >500,000 25/10/2009 code.google.com/p/moonblink/

M15 Wordpress CMS Client >500,000 10/09/2009 android.svn.wordpress.org/

Table 3.2: Selected Desktop/Server Applications

ID Name Description First Commit Last Commit Homepage

D1 Apache HTTP Server HTTP Server 07/03/1996 07/02/2011 httpd.apache.org/

D2 Eclipse UI Component User Interface 05/23/2001 09/12/2011 eclipse.org/eclipse/development/

D3 aspell Spell Checker 01/01/2000 01/01/2004 savannah.gnu.org/cvs/?group=aspel

D4 joe Text Editor 04/19/2001 04/19/2005 sourceforge.net/projects/joe-editor/

D5 wget File Retriever 02/12/1999 01/11/2003 savannah.gnu.org/bzr/?group=wget
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3.1.2 Desktop/Server Application Selection

In this chapter, we use two types of desktop/server applications.

First, we study large, commonly studied desktop applications. In particular, we

study the User Interface (UI) component of the Eclipse platform and the Apache

HTTP server projects. These applications are two of the most commonly studied

desktop/server applications in software engineering literature (Brian et al., 2010). We

have extended our analysis to these projects so that our results may be viewed in the

context of two of the most commonly studied desktop/server software applications.

We do not claim that these projects are the baseline against which all projects should

be measured. However, we wish to determine the similarities and differences between

these two projects and our mobile apps as a first step towards understanding how

the software engineering empirical theories developed from studying desktop/server

applications hold in mobile apps.

Second, we study smaller Unix utilities. In particular, we study the aspell, joe

and wget Unix utilities. These applications are rarely studied by software engineer-

ing researchers, however, they may be more similar to mobile apps than the larger,

more commonly studied desktop/server applications. Similar to mobile apps, these

applications have small feature sets and are readily available to large user bases (typ-

ically pre-installed on all Unix-like operating systems). To enhance the similarity

between these applications and mobile apps, we consider only the first four years of

development (i.e., four years from the date of the initial commit to the source code

repository). Therefore, the modified aspell, joe and wget data sets represent relatively

young projects with small feature sets that are available to a large user base (these

characteristics are very similar to the mobile apps in our case study).
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Table 3.2 contains the list of desktop/server applications that we include in our

case study. We have assign an ID to each desktop/server application for brevity. For

each desktop/server application, Table 3.2 contains 1) a brief description and 2) link

to the homepage (which contains links to the source code and issue tracking systems).

3.1.3 Research Questions

As a first step toward determining how existing software engineering knowledge holds

in mobile apps, we perform an exploratory study comparing mobile apps and desk-

top/server applications. We study fifteen open source Android apps, two large desk-

top/server applications (Apache HTTP server and Eclipse UI component) and three

smaller Unix utilities (aspell, joe and wget) to address the following two research

questions:

• RQ1: How does the size of the code base compare between mobile apps and

desktop/server applications?

• RQ2: How does the defect fix time compare between mobile apps and desk-

top/server applications?
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3.2 Case Study Results

RQ1: How does the size of the code base compare between

mobile apps and desktop/server applications?

Motivation

Many problems typically addressed by software engineering researchers and faced by

developers are caused by large code bases and development teams. For example, the

difficulty of code navigation increases as the code base grows. In addition, the size of

the code base, the number of source code files and lines of code, has been shown to

be highly correlated to the complexity of a software application (Herraiz et al., 2007;

Lind and Vairavan, 1989). The difficulty of understanding, evolving and maintaining

a software application is strongly tied to the complexity of the application. Therefore,

we measure the size of the code base of mobile apps and compare it to small Unix

utilities and large desktop/server applications.

Approach

We explore the size of the code base by extracting the total number of lines of code

and number of source code files. We use the Understand tools by Scitools (Scitools,

2012) to extract these metrics. Understand is a mature toolset of static source code

analysis tools for measuring and analyzing software projects written in a number of

programming languages. Table 3.3 presents the total number of source code files

and lines of code in the code base of each mobile app and desktop/server application.

These measurements were made on the latest version of the projects, either 1) August

8, 2011 for the mobile apps in Table 5.1 or 2) the date of the last commit for the

desktop/server applications in Table 3.2.
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Table 3.3: Size of the Code Base

ID #Files LOC

M1 69 20,050
M2 131 12,282
M3 237 22,785
M4 229 32,692
M5 39 14,014
M6 15 2,846
M7 157 47,927
M8 306 23,808
M9 63 5,288
M10 43 10,524
M11 6 2,332
M12 250 24,259
M13 14 4,196
M14 32 5,470
M15 64 17,287
Median 64 14,014

D1 386 123,293
D2 2,360 276,980
Median 1373 200,137

D3 129 12,311
D4 91 27.419
D5 61 17,376
Median 91 17,376

Table 3.4: Size of the Development Team

ID #Devs LOC/#Devs #Core Devs LOC/#Core Devs

M1 4 5,013 1 20,050
M2 1 12,282 1 12,282
M3 11 2,071 2 11,393
M4 12 2,724 1 32,692
M5 12 1,168 2 7,007
M6 1 2,846 1 2,846
M7 16 2,995 4 11,982
M8 4 5,952 1 23,808
M9 1 5,288 1 5,288
M10 21 501 1 10,524
M11 1 2,332 1 2,332
M12 22 1,103 5 4,852
M13 2 2,098 1 4,196
M14 2 2,735 1 5,470
M15 2 8,644 1 17,287
Median 4 2,735 1 10,524

D1 96 1,284 27 4,566
D2 71 3,901 18 15,388
Median 84 2,593 23 9,977

D3 3 4,104 1 12,311
D4 6 4,570 2 13,710
D5 6 2,896 1 17,376
Median 6 4,104 1 13,710
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Results

Size of the Code Base

From Table 3.3, we find that the size of the selected mobile apps ranges between

2,332 and 47,927 lines of code with a median value of 14,014. This is the same order

of magnitude as aspell, joe and wget. However, this value is approximately 9 times

smaller than the Apache HTTP server project and 20 times smaller than the Eclipse

UI component (note that the Eclipse UI component is only one component of the

larger Eclipse development environment).

From Table 3.3, we find that many games tend to be small. For example, M6 is

2,846 LOC, M11 is 2,332 LOC, M13 is 4,196 LOC and M14 is 5,470 LOC. These apps

offer simple board games, puzzles and card games. Conversely, the largest mobile

app, M7, is a full-fledged email client designed to replace the default email client that

ships with an Android device. M7 has an extensive feature set, including support

for IMAP, POP3 and Exchange 2003/2007, multiple identities, customizable viewing

preferences and alternate themes.

Since the selected mobile apps tend to have small code bases, we further explore

two factors that may influence the size of the code base. First, we explore the size of

the development team. Second, we explore platform usage.

Discussion

Size of the Development Team

One factor that may influence the size of the code base is the number of developers.

If few developers contribute to a project, then the size of the project is limited by the

developers combined effort.
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We explore the size of the development team by extracting the number of devel-

opers and the number of source code commits that each developer makes to a project.

We extract the commit logs from the source code repository and isolate the commit-

ter field for each source code commit, i.e., a commit that includes at least one source

code file (e.g., “.java,” or “.c” files). To measure the number of unique developers,

we extract the local part of each email address (i.e., the characters before the @ sym-

bol), and count the number of unique local parts across all source code commits. We

then count the number of source code commits made by each developer. We perform

manual checks to verify that the list of developers contains only unique entries and

we merge any uncaught cases (e.g., john doe@gmail.com and doe.john@google.com).

We then calculate the minimum number of developers who, when combined, are re-

sponsible for at least 80% of the commits. These “core” developers are responsible for

the majority of the development and maintenance effort (Mockus et al., 2000, 2002).

Table 3.4 presents the number of developers and core developers for each mobile app

and desktop/server application and the average number of lines of code per developer

and core developer.

From Table 3.4, we find that the number of core developers participating in the

development and maintenance of one of the selected mobile app is approximately

the same as the number of developers participating in aspell, joe and wget, but

much smaller than the number of core developers participating in the Apache HTTP

server and Eclipse UI component. We also find that, despite the large variability in

the number of developers among the selected mobile apps, from 1 to 22 developers,

the number of core developers is one in three quarters of the selected mobile apps.

Therefore, the development of mobile apps tends to be driven by a single developer.
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Figure 3.1: Size of the code base and development team.

We further explore the size of the development team by comparing the size of the

code base and development team. Figure 3.1 shows the number of developers plotted

against the number of lines of code in the code base. Figure 3.1 also shows a trend

line generated by fitting a straight line to the data from our mobile apps.

From Figure 3.1, we find that the number of developers among the selected mobile

apps increases as the number of lines of code increases. However, this trend line is not

a perfect fit to the data, indicating that the relationship between the size of the code

base and development team varies between projects. This is supported by Table 3.4.

From Table 3.4, we find that the average number of lines of code per developer varies

significantly, from 501 to 12,282 LOC.
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There are many reasons why mobile apps have varying number of developers.

Some developers request that the user community contribute towards the project. For

example, the core developer of M10 informed users that he was unable to continue

maintaining the project and asked the user community contribute. Conversely, some

developers act as gate keepers to their source code repository and are responsible for

each commit. For example, the developer of M2 asked that translations of his app be

submitted via email, whereas translators were given commit privileges in M11 (many

of whom would later contribute defect fixes).

Platform Usage

Another factor that may influence the size of the code base is the reuse of existing

functionality through libraries. The Android and Java APIs (Android apps are writ-

ten in Java) provide basic and commonly required functionalities, thereby reducing

the size of the code base and the amount of functionality that the development team

must implement themselves.

We explored the extent of platform usage by extracting the number of references

(e.g., method calls) to the Android library. We used the Understand tool to extract,

for each source code file in the subject mobile apps, a list of classes on which the file

depends. We classify these dependencies into one of the following categories based

on the class name:

• Platform – a dependency on a class that is part of the mobile platform (e.g.,

android.app.Activity).

• Other – a dependency on a class in the code base or Java platform (e.g.,

java.io.IOException).
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Figure 3.2: Size of the code base and platform usage.

We then determine platform usage, i.e., the ratio of the number of platform de-

pendencies to the total number of dependencies. Figure 3.2 presents platform usage

plotted against the number of source code files for each mobile app.

From Figure 3.2, we find that, as the number of source code files increases, the

extent of platform usage also decreases. This indicates that the smaller mobile apps

in our case study tend to depend on the Android platform more heavily than the

larger mobile apps.

Platform usage is high (42%) in M9 (Quick Settings). The app is designed to

interface with the Android platform and give users control over device settings, e.g.,
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screen brightness. In contrast, platform usage is low (7% and 11% respectively) in

M8 (KeePassDroid) and M5 (Cool Reader). KeePassDroid is a port of the KeePass

Password safe and Cool Reader is a cross-platform e-reader.

Uncovering the rationale for the relatively small code bases in mobile apps requires

more analysis of other systems and consumer usage trends (are consumer demands

satisfied by mobile apps with limited functionality?), however, our current findings

suggest the following:

One potential factor that may have led to relatively small code bases may be the

fact that fewer developers contribute to mobile app projects. Another potential factor

that may have led to relatively small code bases is the reuse of source code. Mobile

app developers tend to leverage the functionality provided by the Android platform.

We find that mobile app and Unix utilities have smaller code bases and devel-

opment teams compared to commonly studied desktop/server applications. We

also find that mobile apps tend to rely heavily on the underlying mobile platform.

RQ2: How does the defect fix time compare between mobile

apps and desktop/server applications?

Motivation

Software quality is a major draw for users, and with access to thousands of mobile

apps through the app store, users demand the highest quality. If a user installs a low

quality app from the app store, he or she can typically find and install a replacement

from the app store within minutes. Competition may force developers to place a
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greater emphasis on fixing defects, or risk losing users to competing apps. Thus, the

emphasis on defect fixing, and hence defect fix times, may differ between mobile apps

and desktop/server applications. Therefore, we must compare the defect fix times of

mobile apps and desktop/server applications.

Approach

We explore the time it takes to fix defects by extracting the list of issues that have

been resolved as “closed” with a “fixed” status from the issue tracking system. We do

not include issues that we classify as “not a bug,” “duplicates” or “not reproducible”,

because these issues did not involve any time to fix. The resulting issues describe

unique defects that have been fixed. We then calculate the number of days between

the date the issue was opened and the date it was closed. For issues with multiple

close dates (i.e., issues that have been reopened) we take the last close date. We then

calculate the percentage of defects that have been fixed within one week, one month

and one year of being reported. Figure 3.3 presents these measures for each mobile

app and desktop/server application and Table 3.5 presents the median value of these

measures across all 1) mobile apps, 2) large desktop/server applications and 3) Unix

utilities.

Table 3.5: Median Percentage of Defects Fixed in One Week/Month/Year

Week Month Year
Mobile Apps 36 68 100
Large Desktop/Server Applications 33 69 92
Unix Utilities 21 36 80
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Figure 3.3: Percentage of Defects Fixed in One Week, One Month and One Year.
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Results

Defect Fix Times

From Figure 3.3, we find that developers of four of the selected mobile apps fix 50%

of reported defects in one week and developers of eleven of the selected mobile apps

fix 33% of reported defects in one week. This is greater than the aspell, joe and wget

utilities, which fix 24%, 21% and 17% of the reported defects in one week respectively.

This is also greater than the Eclipse UI component, where 19% of the reported defects

are fixed in one week. However, it is less than the Apache HTTP server, where 46%

of the reported defects are fixed in one week.

The number of defects fixed within one week in M6 (Frozen Bubble) is zero because

only a single defect was reported in total (it was fixed in twenty-six days).

From Table 3.5, we find that the defect fix times in the selected mobile apps are

more similar to large desktop/server applications than Unix utilities. For example,

the median percentage of defects fixed within one week is 36% in mobile apps and

33% in large desktop/server applications compared to only 21% in Unix utilities.

From Figure 3.3, the percentage of reported defects fixed in one year in D4 is

61%, compared to 80% in D3 and 80% in D5. However, the developers of D4 close

groups of defects at the same time. For example, between May 5, 2003 and February

1, 2006, the developers did not close any issues, however, on February 2, 2006, ten

issues were closed (on average, these ten issues were open for three years). Therefore,

it is possible that developers fix defects within a short time span, but fail to update

the issue tracking system until a later date.

Since the defect fix times of the selected mobile apps tends to be less than the

defect fix times of large desktop/server applications, we explore two factors that may
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influence the defect fix time. First, we explore the number of defects reported in the

issue tracking system. Second, we explore the distribution of defects across source

code files.

Discussion

Number of Reported Defects

One factor that may influence the time it takes to fix defects is the number of defects

reported in the issue tracking system. If few defects are reported in the issue tracking

system, then fewer defects need to be fixed and developers can focus more of their

attention on these defects.

We explore the number of defects reported by counting the number of issues in

the issue tracking system that have been marked as defects. Similar to our analysis of

defect fix times, we do not include issues that we classify as “not a bug,” “duplicates”

or “not reproducible.” However, unlike our analysis of defect fix times, we do not

limit our analysis to issues that have been closed. This is because we are including

defects that have been reported, but have yet to be fixed.

We also explore the number of reporters who have reported at least one defect

in the issue tracking system. This analysis is similar to our identification of unique

developers, except that we use the list of people who have reported issues, instead of

the list of people who have committed source code.

Table 3.6 presents the number of reported defects and the number of users report-

ing defects from the issue tracking system for each of the selected mobile app and

desktop/server application. We find that few defects are reported and few users re-

port defects in both mobile apps and Unix utilities compared to large desktop/server
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applications.

Android users primarily download apps through Google Play, where they can

also rate apps and provide comments. However, user ratings and comments do not

provide the same level of structure as issue tracking systems. The developers of M7

have specifically asked users to report defects in their issue tracking system.

Table 3.6: Number of Defects Reported and Unique Defect Reporters

ID Reporters Reported Defects

M1 4 21
M2 13 15
M3 267 342
M4 315 425
M5 8 20
M6 6 7
M7 1,293 2,518
M8 178 192
M9 99 120
M10 18 62
M11 6 7
M12 591 803
M13 77 100
M14 33 38
M15 15 98
Median 33 98

D1 3,425 5,104
D2 1,206 6,287

Median 2316 5696

D3 35 268
D4 26 64
D5 25 55
Median 26 64

From Table 3.6, we find that the greatest number of defects are reported in

M7 (email client), M12 (VOIP client), M4 (SSH client) and M3 (barcode scanner).
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Whereas, few defects are reported in mobile apps related to entertainment, M1 and

M5 (multimedia players), M6, M11 and M14 (games) and M10 (social networking).

Distribution of Defects

Another factor that may influence the time it takes to fix defects is the distribution

of defects across source code files. If defects tend to be concentrated in a few files

and developers are aware of these files, then they may be able to locate these defects

with less effort. Ostrand et al. found that, in large software systems, most defects

are found within a small subset of the source code files (Ostrand et al., 2005). The

authors found that 80% of the defects are found within 20% of the source code files

(this is often referred to as the 80-20 rule). Hence, developers can prioritize their

code reviews and test cases to focus on these files and reduce the effort required to

locate most defects.

We explore the distribution of defects across source code files by extracting the

number of defect fixing changes made to each source code file. We assume that each

defect fixing change corresponds to a defect in the source code file. We find defect

fixing changes by mining the commit log messages for a specific set of key words (Has-

san, 2008a; Mockus and Votta, 2000). The keywords (i.e., “bug(s)”, “fix(es,ed,ing)”,

“issue(s)”, “defect(s)” and “patch(s)” are developed based on manual analysis of a

large sample of commit log messages. We find the total number of defects in a source

code file by counting the number of times the file is changed by the set of defect fixing

changes.

We were unable to use the issues reported in the issue tracking system because

these tend not to include information regarding how the defect was fixed (e.g., the
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Figure 3.4: Percentage of All Defects in the Top 20% Most Defect-Prone Files.

location of the defect). We were also unable to trace defect fixing changes to spe-

cific issues in the issue tracking system because mobile app developers tend not to

reference specific issues in their commit messages. Hence, heuristics based on the

commit message need to be used to identify defect fixing changes despite the lack of

a connection between the source code repository and issue tracking system.

We extract the number of defects in each source code file. We then calculate the

number of defects in the top 20% most defect-prone files by sorting the list of files

by the number of defects in descending order and summing the number of defects in

the first 20% of the list. Figure 3.4 presents the percentage of defects in the top 20%

most defect-prone files for each mobile app and desktop/server application.

We find that the concentrations of defects in a few defect-prone files is the highest
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across the selected mobile apps, followed by large desktop/server applications and

finally Unix utilities.

In our first research question, we found that the size of the selected mobile apps is

small. Combined with the distribution of defects across source code files, mobile app

developers can find the majority of defects in a very small number of files, typically

in the 10s of files.

From Figure 3.4, we find that a higher percentage of defects are concentrated

in the top 20% most defect-prone files in mobile apps, compared to desktop/server

applications. At least 80% of the defects are concentrated in the top 20% most defect-

prone files in nine of our mobile apps and at least 70% of the defects are concentrated

in the top 20% most defect-prone files in thirteen of our mobile apps.

Finding the rationale for the relatively quick defect fix times in the selected mobile

apps requires more analysis on other systems; however, our current findings suggest

the following:

One potential factor that may have led to relatively quick defect fix times may

be the fact that fewer defects are being reported by users. However, the number

of people reporting defects appears to be related to the application type. Another

potential factor that may have led to relatively quick defect fix times may be the

distribution of defects across source code files. Defects tend to be concentrated in a

few files, therefore, if developers are aware of these files, then they may be able to

locate these defects with less effort.

We find that mobile app developers tend to fix defects in less time than desk-

top/server application developers, regardless of the size of the project. In addition,
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fewer defects tend to be reported in mobile apps and Unix utilities. Further, de-

fects in mobile apps tend to be concentrated in a smaller portion of the source

code files.

3.3 Threats to Validity

3.3.1 Threats to Internal Validity

Threats to interval validity describe concerns regarding alternate explanations for our

results.

Wget was first released in January 1996 and Aspell was first released in September

1998; however, the development history of this time is not available. Therefore, the

first three years of the publicly available source code repository and issue tracker do

not correspond to the first three years of development.

The number of downloads is not an ideal measure of success (unlike user retention

or engagement) (Localytics, 2011), however, it is the best measure currently available.

In addition, we only have the number of downloads during a single month. Without

a longer term trend, it is unclear whether this number is an anomaly (i.e., a month

with an unusually low or high number of downloads) or whether it represents an

increase or decrease over the previous months. Therefore, it is possible that we have

mistakenly included or excluded mobile apps from our analysis.
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3.3.2 Threats to Construct Validity

Threats to construct validity describe concerns regarding the measurement of our

metrics.

The number of unique developers was found by counting the number of unique

local parts (i.e., the characters before the @ symbol) for each developer who made

at least one commit to a source code file in the repository. Similarly, the number of

unique reporters was found by counting the number of unique local parts for each

reporter who submitted at least one defect report. While we did perform a manual ver-

ification of this analysis, it is possible that we misidentified two local parts as either

unique or distinct. For example, john doe@gmail.com and admin@my project.com

were counted as two distinct developers/reporters, although they may be a single de-

veloper/reporter with multiple (distinct) email address. Conversely, j doe@gmail.com

and j doe@yahoo.com were counted as one distinct developer/reporter, although they

may be two distinct developers/reporters (e.g., John Doe and Jane Doe). Further-

more, the number of unique developers is based on the list of people who commit to

the source code repository and the number of unique reporters is based on the list of

people who submit issues to the issue tracking system. This does not capture people

who submit code or issues using other mediums (e.g., email or forums).

The time to fix a defect was calculated by counting the number of days between

the date an issue describing a unique defect was opened and the date it was closed.

It is possible that the defect was fixed within one week, but the issue tracking system

was not immediately updated to reflect the fix. In addition, this analysis does not

take into account defects that were not reported within the issue tracking system.

This may be particularly true in mobile apps with only one or two developers.
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The number of defects in each source code file was measured by identifying the

source code files that were changed in a defect fixing change. Although this technique

has been found to be effective (Hassan, 2008a; Mockus and Votta, 2000), it is not

without flaws. We identified defect fixing changes by mining the commit logs for a set

of keywords. Therefore, we are unable to identify defect fixing changes (and therefore

defects) if we failed to search for a specific keyword, if the committer misspelled the

keyword or if the committer failed to include any commit message. We are also unable

to determine which source code files have defects when defect fixing modifications and

non-defect fixing modifications are made in the same commit. However, such problems

are common when mining software repositories (Hassan, 2008b).

3.3.3 Threats to External Validity

Threats to external validity describe concerns regarding the generalizability our re-

sults.

The studied mobile apps and desktop/server applications represent a small subset

of the total number of mobile apps and desktop/server applications available. We

have limited our study to open source mobile apps and desktop/server applications.

In addition, we have only studied the mobile apps of a single mobile platform (i.e.,

the Android Platform). Therefore, it is unclear how our results will generalize to

1) closed source mobile apps and desktop/server applications and 2) other mobile

platforms.
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3.4 Conclusions

This chapter presents an exploratory study to compare mobile apps and desktop/server

applications, as a first step toward understanding how the software engineering em-

pirical theories developed by studying desktop/server will hold in mobile apps. We

study fifteen open source Android apps and five desktop/server applications (two

large, commonly studied systems and three smaller Unix utilities).

We find that, in some respects, mobile apps are similar to Unix utilities and differ

from large desktop/server applications. Mobile apps and Unix utilities are smaller

than traditionally studied desktop/server applications, e.g., the Apache HTTP server

and Eclipse compiler. This is true in terms of the size of the code base (the number

of source code files and lines of code) and the development team. Furthermore, we

find that the number of core developers, i.e., those responsible for at least 80% of the

commits, is very small in both mobile apps and Unix utilities, typically only one or

two. We also find that few users report defects and few defects are reported in both

mobile apps and Unix utilities.

We also find that, in other respects, mobile apps differ from both Unix utilities

and large desktop/server applications. We find that mobile app developers place a

great deal of emphasis on rapidly responding to quality issues and most projects fix

over a third of reported defects within one week and two thirds within one month.

This is greater for the Eclipse UI component and the aspell, joe and wget utilities,

which typically fix only 20% of the defects in one week and 40% of the defects in

one month. However, developers of the Apache HTTP server project fix 46% of all

reported defects in one week and 96% of all reported defects in one month. We also

find that the concentrations of defects in a few defect-prone files is the highest in
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mobile apps, followed by large desktop/server applications and finally Unix utilities.

Most mobile apps have more than 80% of the defects in 20% of the most defect-prone

files. This compares to two third and half for large desktop/server applications and

Unix utilities respectively.

Finally, we observe that many mobile apps depend highly on their underlying

platform (i.e., the Android platform). A lower dependence on the platform indicates

that developers do not rely significantly on the platform APIs. For example, their

app may be simple or self-contained, or the platform may be too difficult to use.

Such mobile apps may be easily ported to other platforms. Conversely, a higher

dependence on the platform indicates that mobile app developers heavily exploit

platform APIs. However, this leads to platform “lock-in”, which may complicate

porting to other platforms and potentially introduces instability due to the rapid

evolution of mobile platforms. While these issues are relevant to all software that is

built on an underlying platform or framework, it is particularly acute in mobile apps.

This is because the Android platform averages one major release every year. Hence,

researchers, should look at the impact of platform dependence on quality and how

backward compatibility issues could affect quality. We will study the relationship

between platform dependence and quality in Chapter 5.

Although we found that differences do exist between mobile apps and traditionally-

studied desktop/server applications, the underlying cause(s) of these differences are

unclear. However, the purpose of this study was to establish that such differences do

exist and to motivate a reexamination of software engineering empirical theories in

the context of mobile apps.

In particular, we reexamine three software engineering empirical theories and
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found that:

1. Core developers – a small subset of the developers are responsible for the ma-

jority of the development and maintenance of mobile apps, Unix utilities and

desktop/server applications. However, the number of core developers in both

mobile apps and Unix utilities is much smaller than the number of core devel-

opers in desktop/server applications.

2. Defect Reporters – the number of people reporting defects is typically an order

of magnitude larger than the number of developers of mobile apps, Unix utili-

ties and desktop/server applications. However, the number of people reporting

defects in both mobile apps and Unix utilities is much smaller than the number

of people reporting defects in desktop/server applications.

3. Defect distribution – the majority of defects occur in a small subset of the source

code files mobile apps, Unix utilities and desktop/server applications. However,

defects tend to be concentrated in a smaller portion of the source code files of

mobile apps.

Future studies could include browser plugins and desktop widgets. Similar to

mobile apps, these applications are often developed by small teams and are dependent

on an underlying platform. However, we believe that our key findings hold. Therefore,

many software engineering empirical theories should be reexamined in the context of

mobile apps and other small applications.

Our findings suggest that mobile app developers may be faced with unique chal-

lenges. For example, many mobile apps have a very high frequency of releases (e.g.,

K9Mail typically has two internal releases every week and one release to Google Play
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every month). These quick release cycles may be required to remain competitive

within the marketplace.

We observe that some mobile apps do not follow a formal development or mainte-

nance process. These apps are developed in an ad hoc manner to get to the market-

place as quickly as possible. For example, as we discussed in Subsection 5.1.1, three

mobile apps were excluded from our case study because they did not have a public

issue tracking system. These apps had been downloaded hundreds of thousands of

times, and yet they did not have a system in place where users could report defects.

In addition, the source code repositories of eleven mobile apps in our case study do

not contain any test cases. Such ad hoc development and maintenance processes may

adversely affect the quality or maintainability of mobile apps. Researchers should also

investigate the relationship between these two factors (frequent releases and lack of

formal testing) and the quality of code. Khomh et al. have studied the Mozilla Firefox

project and found that a shorter release cycle 1) allows defects to be fixed faster and

2) does not introduce significantly more defects (Khomh et al., 2012). However, sev-

eral open questions remain. Does such a high frequency of releases mitigate the lack

of testing? If new releases can be pushed with ease, then does the quality of a par-

ticular release matter as much? Is the project in a constant beta testing state? Does

the platform provide the sufficient support for building high quality apps quickly? Is

the frequent release only influenced by the demand factor in the app store? Are the

developers of mobile apps more skilled or do they have more resources at hand? Or,

are mobile apps themselves less complex to develop?

Another challenge that mobile app developers may face is project continuity. Many

mobile apps have very small development teams, often with only one or two core
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developers. In large scale systems, stringent code ownership policies are typically

associated with high quality software. However, stringent code ownership policies

in mobile apps lead to a continuity issue. In mobile apps, knowledge is typically

concentrated with a small number (one or two) developers who become critical to

the future development and maintenance of the project. If these developers withdraw

from the project, a significant portion of the collective knowledge becomes unavailable

and the future of the project may be called into question. This is compounded by the

ad hoc nature of mobile app development discussed previously. However, as we have

seen in the smaller Unix utilities, software projects with small teams have been able

to mitigate the issue of continuity. Hence, researchers should explore the development

practices of these utilities, in addition to large desktop software, to understand the

relationship between code ownership and project continuity.

Our findings suggest that mobile apps may be faced with unique challenges and,

in order to support the thousands of mobile app developers, researchers should begin

to study mobile apps alongside traditionally studied desktop/server applications.

In the following chapters, we delve deeper into mobile app development practices

of two different mobile platforms (Chapter 4) and the relationship between platform

dependency and mobile app quality Chapter 5).



Chapter 4

Exploring the Development of

Mobile Apps

In the previous chapter we performed an exploratory study to compare fifteen open-

source mobile apps and five open-source desktop/server applications. We found that

mobile apps differ from traditionally studied desktop/server applications in many

ways. However, our study was restricted to Android apps, the largest (by user base)

and fastest growing mobile platform. In this chapter we study the difference between

the mobile apps of two different platforms.

Although the number of mobile apps has seen an explosive growth in the past

few years (Butler, 2011; ComScore Inc., 2010; International Data Corp., 2011), the

number of mobile apps available on each of the popular mobile platforms (Apple’s

iPhone, Google’s Android and Research In Motion’s BlackBerry) is not equal.

The number of mobile apps available on each platform is affected by many factors,

including marketing, public perception and the overall development experience (Mu-

rai, 2011; Nielsen Co., 2011b). Notwithstanding the considerable differences presented

44
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in Table 1.1, four of the top five most popular mobile apps on each platform are ac-

tually the same. This can be seen in Table 4.1, which shows the most popular mobile

apps by platform based on a survey of 4,000 mobile app users in August 2010 (Nielsen

Co., 2010a). Further, a 2012 study by the independent research firm Distimo found

that 33% of mobile apps are available for multiple platforms, including many of the

most popular apps (Distimo, 2012). Therefore, in order to reach the largest consumer

base, mobile app developers need to develop for each of these mobile platforms.

Table 4.1: Most Popular mobile apps By Platform (Nielsen Co., 2010a).

iPhone Android BlackBerry

1. Facebook 1. Google Maps 1. Facebook
2. Weather Channel 2. Facebook 2. Weather Channel

3. Google Maps 3. Weather Channel 3. Google Maps
4. iPod/iTunes 4. Pandora 4. Pandora

5. Pandora 5. YouTube 5. Twitter

However, companies have a hard time porting and maintaining their mobile apps

on multiple mobile platforms. First, the explosion of new mobile devices, operating

systems and frameworks has resulted in a highly fragmented market (Gasimov et al.,

2010). Developers need to make their code aware of different features and quirks of

the supported devices, and update their mobile app for every new major device or

new version of the operating system. Second, development tools have been released

freely to the general public so that anyone can develop a mobile app, even without

prior development experience (Butler, 2011). However, to our knowledge there have

been no detailed studies on the mobile app development or maintenance processes.

A good understanding of these processes is necessary to grasp the speed and scale

of mobile app development as well as the need for mechanisms to defend against
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platform changes and maintain backwards comparability.

The purpose of this study is to further explore the new world of mobile apps by

comparing the mobile apps of different mobile platforms. Mobile apps are expected to

be one of the major challenges for software maintenance and program understanding

in the near future. This software, and the hardware it relies on, is constantly and

rapidly evolving. When mobile apps first rose to prominence in 2008 there were

very few mobile platforms. Now, three years later, there are several major mobile

platforms, each of which have taken turns as the most popular one (Nielsen Co.,

2010c, 2011a,b). Developers need to target multiple platforms in response to shifting

consumer preferences. However, amidst market pressure and with limited resources

and experience, how companies do (and should do) this is an open research question.

As a first step towards addressing this question, we perform an exploratory study

to compare the differences between mobile apps for different platforms: are there clear

differences in code characteristics, dependencies and churn? We study mobile apps

that have feature-equivalent versions for different platforms. In total, we selected

three pairs of mobile apps from two platforms. Our study addresses the following

three research questions:

• RQ1: How different are the code characteristics between platforms? – We find

that less code is required to implement a feature on the Android platform.

BlackBerry mobile apps include and customize more third party source code.

• RQ2: How different are the number and type of dependencies between platforms?

– We find that Android mobile apps rely much more on the underlying platform

than BlackBerry mobile apps do. Over 50% of the dependencies on the Black-

Berry platform can be attributed to user interface APIs. Mobile apps written
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for either the Android or BlackBerry platforms rely on the Java APIs for at

least one third of their dependencies.

• RQ3: How different is the amount of code churn between platforms? – We find

that the maintained third party library code changes very little. Code churn is

very high on both platforms.

This chapter is organized as follows: Section 4.1 describes the setup of our case

study and Section 4.2 describes and discusses the results of our case study. Section 4.3

outlines the threats to validity. Finally, Section 4.4 concludes the chapter.

4.1 Case Study Setup

This section outlines our approach to explore the development of mobile apps. First,

we select mobile apps that have feature-equivalent versions for the Android and Black-

Berry platforms. Second, we measure the source code, dependency and churn prop-

erties of theses mobile apps. We then compare the measurements across the subject

mobile apps.

4.1.1 Mobile App Selection

We select mobile app pairs for our case study based on the following criteria.

• Open-source – mobile apps must be open source, as we require access to the

source code repository.

• Feature equivalence – we require mobile app pairs that have feature-equivalent

versions that run on different platforms. This requirement allows us to directly
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compare the effort it takes to implement equivalent functionality on the two

platforms, possibly written by different developers (or companies).

• Programming language equality – we require that mobile app pairs are devel-

oped in the same programming language. This requirement simplifies our case

study, since it is hard to compare the source code characteristics of a mobile

app written in Objective-C for the Apple iPhone platform versus a mobile app

written in Java for the Google Android or RIM BlackBerry platforms.

We select the Android and BlackBerry platforms as the focus of our study, because

1) they are two of the most popular mobile platforms and 2) mobile apps for these

platforms are written mostly in Java (Butler, 2011; Nielsen Co., 2011a,b).

We select three mobile apps (i.e., WordPress, Google Authenticator and Facebook

SDK) for our case study. To ensure that the mobile app pairs are feature equivalent,

we verify feature differences using feature lists on the mobile app webpages, change

logs for each release and feature requests in the forum or issue tracking systems.

WordPress is one of the most popular content management systems in use today.

The WordPress mobile app is open-source, available on the Android and BlackBerry

platforms and the features of both versions are nearly identical (W3Techs - Web

Technology Surveys, 2012; WordPress for Android, 2012; WordPress for BlackBerry,

2012). The WordPress mobile apps allow users to manage their blog or web page

from their mobile device. Source code for the WordPress for Android mobile app was

first committed to the repository in September 2009, while code for the BlackBerry

mobile app was first committed to the repository in April 2009.

Google Authenticator is a mobile app that allows users to generate 2-step verifica-

tion codes on their mobile devices without an Internet connection. This adds an extra
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layer of security to a user’s Google Account (e.g., Gmail) by requiring the user to have

access to his/her phone (in addition to the typical username and password) (Google

Authenticator, 2012). Both versions of the Google Authenticator mobile apps are de-

veloped by Google. Hence, developers for both the Android and BlackBerry versions

of the Google Authenticator mobile app share the same source code repository and

bug database. Source code for both versions of the Google Authenticator mobile app

was first committed to the repository in March 2010.

The Facebook SDK is an open source project that allows developers to integrate

Facebook’s functionality into their own mobile apps (Facebook SDK for Android,

2012; Facebook SDK for BlackBerry, 2012). The Facebook SDK for BlackBerry

was developed by Research in Motion, whereas the Facebook SDK for Android was

developed by Facebook. Source code for the Facebook SDK for Android was first

committed to the repository in May 2010. Source code for the Facebook SDK for

BlackBerry was first committed to the repository in July 2010.

The source code for each version of these mobile apps is available in the repositories

listed in Table 4.2. We perform our analysis on the source code in the repository up

to, and including, the last commit which was tagged as a release. The specific release

of each mobile apps is listed in Table 4.2.

4.1.2 Source Code Properties

We use the Understand tool by SciTools (Scitools, 2012) to extract the metrics in

Table 4.3 for each mobile app. Understand is a static analysis toolset for measuring

and analyzing the source code of small- to large-scale software projects written in a

number of programming languages.
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Table 4.2: mobile app Repositories.

WordPress
Android android.svn.wordpress.org 1.4.0
BlackBerry blackberry.svn.wordpress.org 1.4.6.2

Google Authenticator
Android google-authenticator.googlecode.com/hg 0.54
BlackBerry google-authenticator.googlecode.com/hg 1.1.2

Facebook SDK
Android github.com/facebook/facebook-android-sdk.git 1.5.0
BlackBerry facebook-bb-sdk.svn.sourceforge.net 0.4.5

Table 4.3: Source Code Volume Metrics.

Metric Definition

Files Total Number of Files Containing
Source Code

Classes Total Number of Classes
Lines Code Total Number of Lines of Code
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We measure the source code volume metrics for the entire mobile app, and for

two subsets of the mobile app base: mobile app specific source code and third party

library source code.

Third party libraries consist of reusable software components developed and main-

tained by developers unaffiliated with the mobile app. For example, CWAC (Com-

monsWare Android Components) is a collection of open source libraries specifically

developed to help Android mobile app developers tackle common and recurring issues

(CommonsWare Android Components, 2012). Mobile apps often include, customize

and maintain the source code of third party libraries, therefore it is important to

study the project-specific source code metrics and the maintained third party library

source code independently.

In order to identify third party libraries, we examine the projects’ directory struc-

ture looking for utility directories or directories commonly associated with third party

libraries (e.g., src/com/ on the BlackBerry platform). In all six mobile apps, the third

party libraries are included as .java files. Therefore, we are able to examine each

source code file for license agreements, disclaimers, documentation or links to other

projects in the source code comments.

After we classify each source code file as either third party or project-specific, we

compare the source code volume metrics for both groups of files to determine how

much of the mobile app the developers have to develop and maintain themselves (i.e.,

everything other than the third party code).
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4.1.3 Dependency Properties

Similar to desktop and web applications, mobile apps make use of APIs that provide

access to functionality that the developers would otherwise have to implement them-

selves. Three types of APIs are provided to developers: the Java API, the platform

API (i.e., Android- or BlackBerry-specific APIs) and third party libraries. Android

developers have access to nearly all of the Java 2 Standard Edition APIs, whereas

BlackBerry developers have access to the Java 2 Micro Edition.

We use the Understand tool introduced in Section 4.1.2 to extract, for each class

in the mobile app, a list of classes on which the class depends. We classify these

dependencies into one of the following categories based on the class name:

• Language dependency - dependency on a class that is part of the Java plat-

form (e.g., java.io.IOException or java.lang.Thread).

• User Interface dependency - dependency on a class that is part of the device

platform and that is responsible for the user interface (e.g., android.view or

net.rim.device.api.ui).

• Platform dependency - dependency on a class that is part of the device plat-

form and not responsible for the user interface (e.g., android.app.Activity or

net.rim.device.api.system.EventLogger).

• Third Party dependency - dependency on a class that is part of a third party

library.

• Project dependency - dependency on some class in the mobile app code base

other than a third party class.
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Listing 4.1: Hello, World - An Android Developer’s First mobile app (Android De-
velopers, 2012).

1 import android . app . Ac t i v i ty ;
2 import android . os . Bundle ;
3 import android . widget . TextView ;
4
5 public class HelloAndroid extends Act iv i ty {
6 public void onCreate ( Bundle savedIns tanceState ) {
7 super . onCreate ( savedIns tanceState ) ;
8 TextView tv = new TextView ( this ) ;
9 tv . setText ( ”Hel lo , Android” ) ;
10 setContentView ( tv ) ;
11 }
12 }

Understand extracts and counts the following types of class dependencies:

• Calls - call to a method in another class

• Casts - cast to an object type defined in another class

• Creates - creation of an object whose type is defined in another class

• Extends - extending another class

• Implements - implementing an interface

• Sets - setting a variable or object defined in another class

• Typeds - use of an object type defined in another class

• Uses - use of a variable or object defined in another class

As an example of this analysis, consider the “Hello, World” code for the Android

in Listing 4.1 (Android Developers, 2012). From this example, Understand extracts

the class dependencies in Table 4.4.
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Table 4.4: Listing 4.1 Class Dependencies

Dependency Cause Line
android.app.Activity HelloAndroid Extends Activity 5
android.os.Bundle savedInstanceState Typeds Bundle 6

android.widget.TextView

tv Typeds TextView 8
HelloAndroid.onCreate Creates TextView 8
HelloAndroid.onCreate Calls TextView 8
HelloAndroid.onCreate Calls setText 9

In this study, we count the total and unique number of dependencies on each

dependency category. For example, we can summarize the dependency information

of Listing 4.1 as in Table 4.5. Such a class dependency summary is a measure of how

strongly a mobile app is tied to Java, the underlying platform, the UI, third party

libraries or itself. For example android.widget.TextView is the only dependency in

Table 4.4 that is an Android UI API (android.widget.TextView is responsible for

providing the functionality for text boxes). From Table 4.4, there are four total User

Interface dependencies (i.e., four dependencies on android.widget.TextView) and

one unique User Interface dependency (i.e., android.widget.TextView).

Table 4.5: Listing 4.1 Class Dependency Summary

Dependency Class
Number of Dependencies

Total Unique
Language 0 0
User Interface 3 1
Platform 2 2
Third Party 0 0
Project 0 0
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We define the “platform dependency ratio” (PDR) as the ratio between the num-

ber of platform and user interface dependencies, and the total number of dependencies.

PDR =
User Interface + Platform

Language + User Interface + Platform + Third Party + Project
(4.1)

A low platform dependency ratio indicates that developers do not rely significantly

on the platform APIs. For example, their mobile app may be simple or self-contained,

or the platform may be too difficult to use. Such mobile apps can be easily ported

to other platforms. Conversely, a high platform dependency ratio indicates that mo-

bile app developers heavily exploit platform APIs. However, this leads to platform

“lock-in”, which complicates porting to other platforms and potentially introduces

instability due to the rapid evolution of mobile device platforms. For example, List-

ing 4.1 has a platform dependency ratio of 100%, i.e. it is highly tied to the Android

platform and might need to be rewritten completely to port it to another platform.

The effort required to port a mobile app from one platform to another depends

on a number of factors (e.g., the number and complexity of features and the platform

dependency ratio). In our specific case study, we study three pairs of feature equiva-

lent mobile apps. Therefore, we expect that the platform dependency ratio is a good

measure of platform lock-in.

4.1.4 Code Churn Properties

Source code is constantly changing throughout the development process in response

to maintenance and evolution activities. Code churn measures how much source code

changes over time. We measure code churn using the following metrics:
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• Number of files changed per change set.

• Number of project specific files changed per change set.

• Number of third-party files changed per change set.

• Number of lines changed per change set.

• Number of project-specific lines changed per change set.

• Number of third party lines changed per change set.

For our metrics, we ignore the initial commit, since this would heavily skew the

churn metrics, as well as change sets that did not change any Java source code file.

In addition, we measure the number of non-white space lines of code. We did not

include changes to comment lines, since these are hard to detect from the change set

diffs. We calculate our line churn metrics as the sum of all the added and deleted

lines, for each file, for each commit.

Given the wide variety of source code repository formats, we use the following

tools/commands to extract the number of changes, changed files and changes lines

from the following repository formats:

• Subversion (svn) - We use statsvn (StatSVN, 2012) to extract the total number

of changes and total number of changed lines for each file and directory in

a project. Statsvn is an open source tool for generating project development

metrics that characterize developer activity, project growth and code churn.

• GIT - we use git log --numstat, a standard git command (git-log, 2012), on

the entire repository to extract the number of lines added and deleted from each

file during each commit.
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• Mercurial (hg) - we use hg churn -f ‘\%s’, a standard mercurial extension

(ChurnExtension, 2012), on each file in the repository to extract the number of

lines modified in each file in each commit.

4.2 Case Study Results

This section presents the results of our case study on the three pairs of mobile apps

selected in Section 4.1.1.

RQ1: How different are the code characteristics between plat-

forms?

Motivation

Source code volume metrics have been shown to be highly correlated to the com-

plexity of a software system (Herraiz et al., 2007; Lind and Vairavan, 1989). The

complexity of a software system measures the difficulty of understanding, evolving

and maintaining the system. We measure and compare the source code volume met-

rics for each pair of mobile apps to determine if differences between the Android and

BlackBerry platforms require developers on either platform to write more complex

source code when implementing similar functionality.

We also measure and compare the source code volume metrics for the mobile app

and third party libraries. Reuse of third party libraries has many possible benefits

including reduced development time and increased quality. However, third party

software has potential drawbacks, as mobile app developers should ensure their copy

of the third party API is always in sync and up to date with the most recent updates



CHAPTER 4. EXPLORING THE DEVELOPMENT OF MOBILE APPS 58

and bug fixes, although they may not be familiar with the third party library code. In

addition, mobile app developers can be negatively impacted if support for the third

party library or parts of its functionalities are is abandoned.

Approach

We use the methodology presented in Section 4.1.2 to extract source code volume

metrics from each mobile app. Table 4.6 presents the results of these metrics and

the percentage of increase of each metric for the BlackBerry version relative to the

Android version for each mobile app pair. After identifying which source code files

belong to third party code, and which files contain actual mobile app code, we extract

the source code volume metrics of both groups of files. Table 4.8 presents the values

of these metrics and the percentage (in parentheses) of the total code base for each

category of each mobile app pair.

To better understand the distribution of project-specific file sizes, we visualize the

file size, in terms of the number of lines of code, using bean plots. Bean plots are an

alternative to box plots to summarize and compare the distribution of different sets

of data (Kampstra, 2008). The x-axis of a bean plot shows the estimated density of

the distribution and varies between 0 to 1. Figure 4.1, 4.2 and 4.3 also show the

median file size of each mobile app (solid black line).

Results

Table 4.6 shows that a mobile app written for the BlackBerry platform contains two

(+125%) to more than six (+553%) times as many lines of code as the equivalent

Android mobile app. The differences in number of files are even larger (+850%).
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Table 4.6: Global Source Code Volume Metrics and Difference Relative to Android.

WordPress
Metric Android BlackBerry Difference
# Files 55 241 +338%
# Classes 360 575 +60%
# Lines Code 15,928 35,775 +125%

Google Authenticator
Metric Android BlackBerry Difference
# Files 10 31 +210%
# Classes 26 61 +135%
# Lines Code 1,344 3,322 +147%

Facebook SDK
Metric Android BlackBerry Difference
# Files 6 57 +850%
# Classes 12 77 +542%
# Lines Code 777 5,070 +553%

Table 4.7: Breakdown of Source Code Volume Metrics Across Project-Specific Code.

WordPress
Metric Android BlackBerry Difference
# Files 40 (73%) 211 (88%) 528%
# Classes 331 (92%) 543 (94%) 164%
# Lines of Code 12,948 (81%) 30,764 (86%) 237%

Google Authenticator
Metric Android BlackBerry Difference
# Files 10 (100%) 17 (55%) 170%
# Classes 26 (100%) 47 (77%) 181%
# Lines of Code 1,344 (100%) 1,421 (43%) 106%

Facebook SDK
Metric Android BlackBerry Difference
# Files 6 (100%) 21 (37%) 350%
# Classes 12 (100%) 33 (43%) 275%
# Lines of Code 777 (100%) 1,723 (34%) 222%
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Table 4.8: Breakdown of Source Code Volume Metrics Across Third Party Code.

WordPress
Metric Android BlackBerry Difference
# Files 15 (27%) 30 (12%) 200%
# Classes 29 (8%) 32 (6%) 110%
# Lines of Code 2,980 (19%) 5,011 (14%) 168%

Google Authenticator
Metric Android BlackBerry Difference
# Files 0 (0%) 14 (45%) —
# Classes 0 (0%) 14 (23%) —
# Lines of Code 0 (0%) 1,901 (57%) —

Facebook SDK
Metric Android BlackBerry Difference
# Files 0 (0%) 36 (63%) —
# Classes 0 (0%) 44 (57%) —
# Lines of Code 0 (0%) 3,347 (66%) —

Figure 4.1: Distribution of file sizes across the WordPress mobile app project-specific
files.
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Figure 4.2: Distribution of file sizes across the Google Authenticator mobile app
project-specific files.

Figure 4.3: Distribution of file sizes across the Facebook SDK project-specific files.
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This difference is not merely due to differences in coding style of the developers

developing the Android and BlackBerry apps, since the Google Authenticator mobile

apps (developed by the same company) also show these differences. If source code

volume is a good indicator of development effort, more effort seems to be needed

on the BlackBerry platform. However, since most BlackBerry mobile apps contain

both their own source code, as well as the source code for third party libraries, it is

necessary to break down the volume metrics across mobile app and third party code

(Table 4.8).

Table 4.8 shows that in two of the three mobile app pairs the BlackBerry mo-

bile apps contain more lines of code in third party libraries than in project-specific

source code (57% in Google Authenticator and 66% in the Facebook SDK). On the

other hand, third party libraries are either not included (Facebook SDK and Google

Authenticator) or make up approximately 19% of the lines of code (WordPress) of

Android mobile apps. When looking only at the project-specific code, these Black-

Berry mobile apps are still up to two times as large as the corresponding Android

mobile app.

From Figure 4.1, 4.2 and 4.3, Android mobile app developers tend to write much

larger files (with respect to lines of code) than BlackBerry mobile app developers.

First, from Figure 4.1 and Figure 4.2, Android mobile apps have more outliers, i.e.,

more files that are significantly larger than the median file size. This is particularly

true in the WordPress for Android mobile app, where a significant amount of Word-

Press code is concentrated in a few files. Second, from Figure 4.2 and Figure 4.3, the

median file size of an Android mobile app is more than twice the median file size of

the feature-equivalent BlackBerry mobile app.
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Note, however, that the area of bean plots is standardized to 1 (i.e., the bean plots

cannot be used to compare the total code size of the mobile apps in each pair).

Less source code is required for Android mobile apps than feature equivalent

BlackBerry mobile apps. Android mobile app developers typically write larger

source code files and tend to concentrate more code into fewer files. BlackBerry

mobile apps include more third party libraries in their code base.

RQ2: How different are the number and type of dependencies

between platforms?

Motivation

We study the API usage properties of each mobile app to uncover how mobile apps

depend on language, platform, user interface and third party APIs, and on their own

classes. Since mobile app developers need to port their mobile apps to multiple plat-

forms, a high platform dependency ratio (defined in Section 4.1.3) negatively impacts

the porting process by increasing the amount of code that needs to be rewritten).

Approach

We use the methodology presented in Section 4.1.3 to extract the number of depen-

dencies for each class in the mobile app. Table 4.9 presents our measurements for

these key metrics and the percentage of the total number of dependencies (in paren-

theses) for each category of dependencies and each mobile app pair. Table 4.9 also

presents the percentage of increase in the metrics for the BlackBerry version relative
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to the Android version of each mobile app. Finally, Table 4.10 presents the platform

dependency ratio, defined in Equation 4.1 in Section 4.1.3, for each mobile app.

Table 4.9: Source Code Dependency Metrics.

WordPress
Dependency Android BlackBerry Difference
Language 5860 (43%) 6720 (33%) +15%
Platform 3593 (27%) 600 (3%) -83%
User Interface 1961 (15%) 2473 (12%) +26%
Third Party 365 (3%) 665 (3%) +82%
Project Specific 1724 (13%) 10132 (49%) +488%

Google Authenticator
Dependency Android BlackBerry Difference
Language 312 (33%) 949 (58%) +204%
Platform 269 (28%) 43 (3%) -84%
User Interface 223 (23%) 154 (9%) -31%
Third Party 0 (0%) 192 (12%) —
Project Specific 156 (16%) 300 (18%) +92%

Facebook SDK
Dependency Android BlackBerry Difference
Language 252 (42%) 1176 (38%) +367%
Platform 170 (29%) 79 (3%) -54%
User Interface 31 (5%) 99 (3%) +219%
Third Party 0 (0%) 1101 (36%) —
Project Specific 140 (24%) 606 (20%) +333%

Results

Table 4.9 and Table 4.10 expose several interesting trends. (1) Android mobile apps

rely much more on platform and user interface APIs than their BlackBerry equiv-

alents (platform dependency ratios of 41%, 51% and 34% on the Android platform
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Table 4.10: Mobile app Platform Dependency Ratios.

mobile app Android BlackBerry

WordPress 41% 15%
Google Authenticator 51% 12%
Facebook SDK 34% 6%

compared to 15%, 12% and 6% on the BlackBerry platform). (2) BlackBerry mo-

bile apps depend heavily on project-specific classes, far more than they rely on the

BlackBerry platform (49% of WordPress dependencies, 18% of Google Authenticator

dependencies and 20% of Facebook SDK dependencies compared to 3% non-User In-

terface dependencies). (3) BlackBerry mobile apps rely on the underlying platform

primarily for the user interface libraries. In the WordPress and Google Authentica-

tor BlackBerry mobile apps, 80% of the platform dependencies are on user interface

libraries. (4) For Android, the Android and Java APIs appear to provide most of

the dependencies of the mobile apps. Even excluding the user interface APIs, over

25% of the Android mobile app dependencies are on the Android platform, leading

to a relatively high platform dependency ratio (41% for WordPress, 51% for Google

Authenticator and 34% for Facebook SDK). (5) Finally, in all three Android mo-

bile apps, third party dependencies account for fewer dependencies than any other

dependency category.

Results

From Table 4.9, it seems that the extent to which each mobile app depends on third

party libraries seems to fluctuate from 0% in the Google Authenticator mobile app

and Facebook SDK for Android to 36% in the Facebook SDK for BlackBerry. Manual
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analysis shows that these third party libraries are especially used for implementing

functionality that is missing from a language or platform API. Examples of missing

functionality on the BlackBerry platform are the Java Script Object Notation protocol

and regular expression support, and on both platforms the module for XML-Remote

Procedure Calls.

Java Script Object Notation (JSON) is a light weight data interchange format

for language-independent client-server communication(Java Script Object Notation,

2012). Within the BlackBerry version of the WordPress mobile app, JSON is used

for geocoding and fetching of page statistics from the WordPress back-end. JSON

is included in the Android API org.json (Android API, 2012), but on the Black-

Berry platform, prior to version 5.0.0, mobile app developers needed to include their

own implementation of the JSON format (Android API, 2012; BlackBerry API 5,

2012; BlackBerry API 6, 2012). Although JSON is included in version 6.0.0 of the

BlackBerry platform, mobile app developers still need to maintain a third party im-

plementation of JSON to preserve backwards compatibility.(BlackBerry API 6, 2012).

Regular expressions are typically used for search and replace operations in strings

and extraction of substrings. Regular expression functionality is included in the stan-

dard Java library java.util.regex (Android API, 2012), which is not available on

the J2ME platform that is supported by the BlackBerry platform. The WordPress

for BlackBerry mobile app uses the Jakarta Regexp regular expression package from

the Apache Jakarta Project (Jakarta Regexp, 2012) to determine the number of char-

acters in a comment, post or page, before posting to a web site or blog.

XML-RPC is a lightweight mechanism for exchanging data and invoking web

services. XML-RPC is used by both the Android and BlackBerry versions of the
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WordPress mobile app. The WordPress for BlackBerry mobile app uses the kXML-

RPC implementation, a J2ME XML-RPC implementation built on top of the kXML

parser (android-xmlrpc, 2012). The WordPress for Android mobile app uses the

android-xmlrpc implementation, a very thin XML-RPC client library for the Android

platform (kXML-RPC, 2012).

Apart from missing functionality, third party libraries are also used as an alter-

native to poorly implemented functionality in the language or platform APIs. One

example of poorly implemented functionality on the Android platform is the visual-

ization of lists of thumbnails off the Internet. The third party Thumbnail module

from the CommonsWare Android Components library allows a mobile app to load

and cache thumbnail images transparently in the background to avoid tying up the

user interface thread (CommonsWare Android Components, 2012). The module has

been included in the WordPress for Android mobile app. Since this module requires

the use of the Cache module, the latter module has also been included in the Word-

Press for Android mobile app (CommonsWare Android Components, 2012). In this

case, including one third party library requires the inclusion of a second third party

library.

Android mobile apps rely primarily on the Android APIs, whereas BlackBerry

mobile apps rely on Java libraries and project-specific classes in the mobile app.

Android mobile apps contain little to no third party libraries. More than half of

the dependencies on the BlackBerry platform are on user interface APIs. Android

mobile apps have a much higher platform dependency ratio than feature equivalent

BlackBerry mobile apps.
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RQ3: How different is the amount of code churn between

platforms?

Motivation

Given the rapid pace and high pressure of the mobile app development market, we

want to characterize the effort needed to develop each mobile app. We also explore

the code churn properties of the third party libraries to determine the amount of

effort needed to maintain them, i.e., do mobile app developers highly customize such

libraries, or mainly clone them.

Approach

We use the methodology presented in Section 4.1.4 to extract the code churn prop-

erties for each mobile app. Table 4.11 presents the values of these metrics and the

percentage of the total number of changes (in parentheses) for each class of each

mobile app pair.

We also visualize the line churn using a box plot. Box plots graphically depict the

smallest observation, lower quartile, median, upper quartile, and largest observation

using a box. Circles correspond to outliers. Figure 4.4, 4.5 and 4.6 depict the line

churn characteristics across all commits.

We also examine the growth of the mobile apps in size (lines of code) over time.

Figure 4.7 shows this evolution for the WordPress BlackBerry mobile app over the

project’s lifetime (from May 2009 to March 2011).
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Table 4.11: Code Churn Metrics.

WordPress
Metric Android BlackBerry
Total # File Changes 660 2760
Average # File Changes/File 12.00 11.45
# Third Party File Changes 47 (7%) 59 (2%)
# Project File Changes 613 (93%) 2701 (98%)
Total # Line Changes 23276 46823
Average # Line Changes/Lines 1.04 0.89
# Third Party Line Changes 245 (1%) 648 (1%)
# Project Line Changes 23031 (99%) 46175 (99%)

Google Authenticator
Metric Android BlackBerry
Total # File Changes 12 12
Average # File Changes/File 1.20 0.39
#Third Party File Changes 0 (0%) 0 (0%)
#Project File Changes 12 (100%) 12 (100%)
Total #Line Changes 306 94
Average # Line Changes/Lines 0.16 0.02
# Third Party Line Changes 0 (0%) 0 (0%)
# Project Line Changes 306 (100%) 94 (100%)

Facebook SDK
Metric Android BlackBerry
Total # File Changes 329 38
Average # File Changes/File 54.83 0.67
# Third Party File Changes 0 (0%) 5 (13%)
# Project File Changes 329 (100%) 33 (87%)
Total # Line Changes 2979 473
Average # Line Changes/Lines 1.80 0.05
# Third Party Line Changes 0 (0%) 23 (5%)
# Project Line Changes 2979 (100%) 450 (95%)
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Figure 4.4: Line Churn Characteristics of the WordPress mobile app.
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Figure 4.5: Line Churn Characteristics of the Google Authenticator mobile app.
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Figure 4.6: Line Churn Characteristics of the Facebook SDK.
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Figure 4.7: Size (lines of code) of the WordPress for BlackBerry mobile app from May
2009 to March 2011

Results

From Table 4.11, we can see that although Android mobile apps have fewer commits

to their repositories, the average number of times a file is changed is much higher

for Android mobile apps. For example, the average number of times a file is changed

in Android Facebook SDK is 54.83 compared to 0.67 for the BlackBerry mobile app.

In this case, Table 4.11 and Figure 4.6 show that Android mobile apps see many

small changes, whereas BlackBerry mobile apps see fewer larger changes. On the

other hand, Figure 4.4 and Figure 4.6 show that changes to BlackBerry mobile apps

typically affect more lines of code, even though Android mobile apps contain more

outliers. This indicates that although the size of most changes to Android mobile

apps is relatively small, there are a number of relatively large changes.

From Table 4.11, Figure 4.4, 4.5 and 4.6, third party source code, on either
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platform, experiences very little code churn after the initial import. This suggests

that these libraries are mostly just copied to make the projects self-contained, rather

than to heavily customize them. Only for the WordPress mobile app, many large

changes are made. We check the repository and find that 80% of these changes

correspond to refactoring or fixing of defects in the kXML-RPC third party library.

Without access to the third party library source code mobile app developers would

not be able to fix or refactor these libraries themselves.

Figure 4.7 shows the growth of the WordPress for BlackBerry mobile app (lines

of code) over time. The other five mobile apps show a similar pattern, except for the

mobile apps with shorter project histories. Those mobile apps show very little growth

after the initial commit.

Source code files in Android mobile apps change more frequently than source

code files in BlackBerry mobile apps, but typically see smaller changes. Third

party libraries typically change very little.

4.3 Threats to Validity

4.3.1 Threats to Internal Validity

Threats to interval validity describe concerns regarding alternate explanations for our

results.

The Facebook SDK for BlackBerry was developed by Research In Motion (the

company behind the BlackBerry) itself. This may have introduced bias into our

study of platform dependencies, since the developers have intimate knowledge of
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the BlackBerry platform and may be biased towards relying more on BlackBerry

APIs. However, the results in Table 4.9 seem to contradict this. Similarly, the

Google Authenticator mobile apps for Android and BlackBerry were both developed

by Google (the company behind Android). Since these developers were simultaneously

developing the same mobile app for the Android and BlackBerry platforms, they may

have been biased towards using Java APIs (as opposed to device-specific APIs), as

well as Android APIs. Table 4.9 suggests that such a bias is possible.

Given that mobile apps like the ones that we analyzed are typically only a couple

of years old, they do not have the stable project histories of long-lived, commonly

studied projects like Linux and Apache. This may have biased our code churn metrics.

Given this short history, it is not yet known which mobile apps are (or will be) either

successful or representative of good development style.

4.3.2 Threats to Construct Validity

Threats to construct validity describe concerns regarding the measurement of our

metrics.

We investigated feature equivalence between each mobile app pairs using feature

lists on the mobile app webpages, change logs for each release and feature requests in

the forum or issue tracking systems. However, we did not verify that the functioning

versions (i.e., installed and operating on a mobile device) had these features. This may

have introduced false positives into the Mobile App Selection process (i.e., two mobile

apps that are thought to be feature equivalent, are, in fact, not feature equivalent). In

addition, although two mobile apps may be feature equivalent, the features may have

been implemented very differently (e.g., simple and straight-forward user interface
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compared to a more complicated interface).

The identification of third-party libraries in each mobile app was done using heuris-

tics and manual analysis. It is possible that some third-party libraries were misiden-

tified using this approach.

4.3.3 Threats to External Validity

Threats to external validity describe concerns regarding the generalizability our re-

sults.

The studied mobile apps represent a small subset of the total number of mobile

apps available on the Android and BlackBerry platforms. In addition, we did not

consider mobile app games, which are the most commonly downloaded mobile apps

(Nielsen Co., 2010a,b), since we were unable to acquire a pair of feature-equivalent

mobile app games. Finally, the Google Authenticator mobile app and the Facebook

SDK are rather small, approximately 5,000 lines of code. However, we do not know

whether these are typical sizes for a mobile app or an outlier. The results of our case

study may not generalize to other mobile apps or platforms.

4.4 Conclusions

This chapter presents an exploratory study of mobile apps on two popular mobile

platforms, as a first step toward understanding the development and maintenance

process of mobile apps. In particular, we study the source code, dependency and code

churn properties of three pairs of feature-equivalent mobile apps on the Android and

BlackBerry platforms in order to address the question of how mobile app developers
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can target multiple platforms with limited resources.

Mobile apps written for the BlackBerry platform are more than twice the size of

feature-equivalent Android mobile apps. Missing functionality in the BlackBerry and

Java 2 ME APIs has forced BlackBerry mobile app developers to rely on third party

libraries that have increased the size (lines of code) of the mobile app.

BlackBerry mobile apps rely less on BlackBerry-specific APIs and more on Java

APIs and other classes in the mobile app. On the other hand, Android mobile app

developers leverage more Android and Java SE APIs. However, heavy reliance on

the Android platform has led to a greater degree of platform lock-in in these Android

mobile apps. Therefore, developers who wish to target both the BlackBerry and

Android platforms should write their mobile apps for the BlackBerry platform then

port their mobile apps to the Android platform.

While mobile apps on both platforms experience a high degree of churn due to

constant and rapid evolution, included third party libraries experience very little

churn and therefore require little effort by mobile app developers to maintain.

Although Android apps and BlackBerry apps are both written in Java and in-

tended to run on mobile devices, significant differences exist between the mobile apps

of these two platforms.



Chapter 5

Platform Dependence and Source

Code Quality

In the previous chapter, we performed a study of three pairs of functionally equivalent

mobile apps from two popular mobile platforms (i.e., the Android and BlackBerry

platforms), as a first step toward understanding the development and maintenance

process of mobile apps. We found that BlackBerry apps are much larger and rely

more on third party libraries. As such, they are less susceptible to platform changes

since they rely less on the underlying platform. On the other hand, Android apps

tended to rely heavily on the Android platform. Therefore, in this chapter, we study

the relationship between source code quality and mobile platform dependency.

A mobile platform (e.g., Android) consists of numerous APIs that provide mobile

apps with access to commonly required functionality or an interface to the operating

system and hardware accessories. In the previous chapter, we found that developers

depend heavily on platform APIs to build their mobile apps. The reason is three-

fold. One, similar to web applications (Hassan and Holt, 2002), mobile apps are

78
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rapidly developed by small teams who may only have limited experience with software

development (Butler, 2011; Gavalas and Economou, 2011; Lohr, 2010; Wen, 2011).

Two, the rapid succession of mobile technologies and fierce competition amongst

developers forces them to release new features at break-neck speed, without sacrificing

quality. Three, the proliferation of mobile devices means that developers cannot make

any assumptions about the environment in which their mobile apps will be operating,

and hence prefer to use a standard environment. According to industry experts,

leveraging the functionality provided by underlying mobile platforms is the catalyst

behind the rapid development of many mobile apps (Black Duck Software Inc., 2011).

However, too much API usage of the underlying mobile platform can lock an

app into that platform. This does not only have repercussions on the portability

of the app to other platforms (sometimes requiring a complete rewrite), but also

has a major impact on the quality of the app. For example, the rapid evolution of

mobile platforms makes it hard for app developers to keep their app working on newer

platform versions, leading to defects and inconsistencies that impact the end user.

The software engineering community has proposed, evaluated and noted several

theories of how quality software is created and maintained. These “software engi-

neering empirical theories” aim to tie aspects of software artifacts (e.g., size and

complexity) (Chidamber and Kemerer, 1994), their development (e.g., number of

changes) (Nagappan and Ball, 2005) and their developers (e.g., developer experience)

(Bird et al., 2011) to definitions of quality (e.g., post-release defects). Such empiri-

cal theories are derived from a large number of empirical observations. However, to

date, most observations have been made using large-scale projects such as Apache

and Eclipse (Brian et al., 2010).
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Dependency metrics have been used to enhance the prediction of defects in soft-

ware systems. Schröter et al. showed that import dependencies can predict software

defects (e.g., importing compiler packages is riskier than importing UI packages)

(Schröter et al., 2006). Zimmerman and Nagappan (Zimmermann and Nagappan,

2008) performed a study of Windows Server 2003 to determine how models predicting

software defects may be enhanced by using metrics based on Social Network Analysis

(SNA). The authors show that SNA metrics improved the prediction of post-release

failures by 10%. This study was replicated by Nguyen et al. who found similar results

in the Eclipse project (Nguyen et al., 2010).

Since dependency metrics have been shown to be highly related to defects in source

code files (Nguyen et al., 2010; Zimmermann and Nagappan, 2008), we are interested

in analyzing whether this finding holds as well for mobile apps when dependencies

are interpreted as “platform dependencies.” Therefore, in this chapter, we address

the following three research questions:

• RQ1: Are source code files that depend on the Android platform more defect-

prone? – We find that source code files that rely on the Android platform tend

to be more defect-prone.

• RQ2: Does the degree of platform dependency contain unique information re-

garding defects? – We find that the ratio of platform dependencies to the total

number of dependencies significantly increases our ability to explain defects in

source code files.

• RQ3: Which source code metrics have the largest impact on source code quality?

– We find that increasing coupling or decreasing cohesion has a large negative

impact on source code quality while increasing the platform dependency ratio
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has a negative impact on source code quality that is consistent across most

mobile apps.

This chapter is organized as follows: Section 5.1 describes the setup of our case

study and Section 5.2 discusses the results of our case study. Section 5.3 outlines the

threats to validity. Finally, Section 5.4 concludes the chapter.

5.1 Case Study Setup

This section outlines our approach to understanding the relationship between source

code quality and mobile platform dependency. First, we selected mobile apps for

our case study. Second, we extracted source code and dependency metrics from the

selected mobile apps. Finally, we calculated whether each source code file was defect-

prone or defect-free.

5.1.1 Mobile App Selection

In this chapter, we studied mobile apps written for the Android platform. The An-

droid platform is the largest (by user base) and fastest growing mobile platform. In

addition, the Android platform itself is open-source and has more free and open-

source mobile apps than any other major mobile platform (Black Duck Software Inc.,

2010, 2011, 2012; Distimo, 2011a).

Mobile apps for Android devices are primarily hosted in Google Play (formerly

the Android Market) (Android Market, 2012). Google Play records details such as

cost, user ratings, reviews and the number of downloads in the previous 30 days for

each mobile app. However, Google Play is lacking in two key metrics, i.e., the number
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of cumulative downloads and the development status (open-source or closed-source).

Therefore, we supplement the information provided by Google Play with information

from two additional sources.

First, we use FDroid, a third-party mobile app store, that exclusively contains

free and open-source (FOSS) Android apps that are also listed in Google Play. As of

May 1, 2012, the FDroid repository contained 236 FOSS Android apps.

Second, we use AppBrain, a third-party interface to Google Play, to get the num-

ber of cumulative downloads (App Brain, 2012).

We use the data provided by these three sources and the following criteria to select

our case study subjects.

• Open-source – mobile apps must be open-source in order to access their source

code repositories. This limits the number of potential case study subjects to

236, i.e., the number of mobile apps in the FDroid repository.

• Large user community – “successful” mobile apps have hundreds of thousands

of downloads every month (Android Market, 2012). Therefore, in order to study

what successful mobile apps are doing “right,” we look at the mobile apps with

at least 250,000 cumulative downloads (the highest download bracket) (Android

Market, 2012; App Brain, 2012). This limits the number of potential case study

subjects to 56.

• Simplicity – the code base for the mobile app must be easily identified. For

example, Firefox for Android was excluded because we could not differentiate

the source code of the mobile version from the desktop version because they

share the same source code repository. This limits the number of potential case

study subjects to 44.
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• Significant code base – mobile apps must have at least 200 source code files.

In regression modelling, a general rule of thumb is that at least 10 cases are

required per independent variable (Harrell et al., 1984). In our experience,

approximately 20% of the source code files in a mobile have are defect-prone,

therefore, we need mobile apps with at least 200 source code files in order to

build a regression model with four variables (see Subsection 5.1.2). This limits

the number of potential case study subjects to 5.

Table 5.1 contains the final list of mobile apps that we include in our case study.

We perform our case study on the entire source code history and repository as of May

1, 2012.

Table 5.1: Mobile Apps Included in Our Case Study

Project Description Homepage

ConnectBot SSH Client github.com/kruton/connectbot/
FBReader E-Book Reader github.com/geometer/FBReaderJ
KeePassDroid Password Vault github.com/bpellin/keepassdroid
Sipdroid VOIP Client code.google.com/p/sipdroid/
XBMCRemote Remote Control code.google.com/p/android-xbmcremote/

5.1.2 Source Code Metrics

We used the Understand tool by SciTools (Scitools, 2012) to extract source code

metrics from each of the subject mobile apps. Understand is a static analysis toolset

for measuring and analyzing the source code of small- to large-scale software projects

written in a number of programming languages. We extracted the following metrics

for each class in each of the subject mobile apps.
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• Lines of code – total number of lines of code (LOC).

• Coupling – number of coupled classes (Coupling). Class A is said to be coupled

to class B if class A uses a type, data, or member from class B.

• Cohesion – average cohesion for each class data member (Cohesion). Class A is

said to be cohesive if a high percentage of class A’s methods use each of class

A’s variables.

5.1.3 Dependency Metrics

We also used the Understand tool to extract the class dependencies for each mobile

app. Class dependencies describe how each class in a mobile app depends on 1) other

classes in the mobile app and 2) external libraries, e.g., the Java library, the Android

library and (possibly) third-party libraries. Whereas coupling measures the total

number of unique coupled classes, class dependencies measures the intensity of the

coupling for each coupled class, e.g., is class A depending on class B for one method

call, five method calls, or five methods calls and two data types? Therefore, we are

better able to measure the degree of dependence between two classes. Further, class

dependencies can be mapped to the higher level structures (e.g., packages or projects)

in which the class is located (e.g., android.app.Activity is a class in the Android

platform).

In this study, we are interested in the relationship between source code quality

and mobile platform dependency (i.e., when an Android app depends on the Android

platform). Therefore, for each class in a mobile app, we calculate the total number of

dependencies on classes in the Android platform (Platform) in addition to the total

number of dependencies (Dependencies).
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We calculate each metric at the file level. We calculate lines of code, coupling,

the number of platform dependencies and the total number of dependencies at the

file level by summing each metric over every class in a source code file. We calculate

cohesion at the file level by averaging the cohesion of each class in the file, weighted

by the number of lines of code in the class.

Finally, we also calculate the platform dependency ratio, i.e., the ratio of the

number of platform dependencies to the total number of dependencies (i.e., the num-

ber of platform dependencies plus the number of other dependencies). The platform

dependency ratio is the dependency metric that will be used in our defect models.

5.1.4 Source Code Quality

Source code quality can be measured in a number of ways. One commonly used tech-

nique is to use the number of defects in a file as a measure of quality. In practice, this

number is typically approximated by the number of defect fixing changes made to the

source code file. This technique assumes that each defect fixing change corresponds

to a defect in the source code file.

We find the total number of defects in a source code file by counting the number of

times the file is changed by a defect fixing change. When developers contribute source

code to a source code repository, they are prompted to provide an explanation (i.e.,

commit log message) of what they changed and why the change was made. Hence, we

can find the number of defect fixing changes by mining these commit log messages for

a specific set of key words (Hassan, 2008a; Mockus and Votta, 2000). These keywords

are “fix(ed,es)”, “bug(s)”, “defect(s)” and “patch(s)”.

Although many mobile apps record a list of tasks (e.g., defects to be fixed and
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features to be implemented) in an issue tracking system, we are unable to use these

issues because these tend not to include information regarding how the defect was

fixed (e.g., the location of the defect). Hence, heuristics based on the commit message

are the only way to identify defect fixing changes due to the lack of a connection

between the source code repository and issue tracking system.

5.2 Case Study Results

This section presents the results of our case study on the mobile apps selected in

Subsection 5.1.1.

Preliminary Data Analysis

Prior to answering our research questions, we perform a preliminary analysis of the

data by calculating descriptive statistics. Table 5.2 presents the mean, standard

deviation (SD), minimum (Min) and maximum (Max) values, skew and kurtosis for

each metric extracted from each project. It is necessary to study these descriptive

statistics, skew and kurtosis in particular, in order to determine if transformations

are required before the data can be modelled.

Skew is a measure of the amount of asymmetry in a distribution, i.e., the difference

between the left and right sides of the distribution. Skew can have a positive or

negative value, where a positive skew indicates that most values are concentrated to

the left of the mean, with extreme values to the right and a negative skew indicates

that most values are concentrated to the right of the mean, with extreme values to the

left. -0.5 ≤ skew ≤ 0.5 indicates that the distribution is approximately symmetric.
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Kurtosis (excess kurtosis) is a measure of the “peakness” of a distribution with

respect to the normal distribution, i.e., the shape of the peak and tails of the distri-

bution compared to the normal distribution. Kurtosis can have a positive or negative

value, where a positive kurtosis indicates that the peak is higher and sharper and

the tails are longer and thicker than the normal distribution and a negative kurtosis

indicates that the peak is lower and broader and the tails are shorter and thinner

than the normal distribution. -0.5 ≤ kurtosis ≤ 0.5 indicates that the shape of the

distribution does not differ significantly from the normal distribution.

Table 5.2: Preliminary Data Analysis

Project Metric Mean SD Min Max Skew Kurtosis

ConnectBot LOC 152.10 223.34 4 1,300.00 2.54 6.98
Coupling 13.07 25.66 0 196.00 4.59 25.00
Cohesion 55.49 32.24 0 100.00 0.09 -1.44
Platform 10.11 23.16 0 93.33 2.20 3.42

FBReader LOC 85.00 126.51 2 1,199.00 3.37 17.39
Coupling 12.38 15.28 0 114.00 2.84 10.28
Cohesion 66.44 32.36 0 100.00 -0.31 -1.37
Platform 9.71 18.90 0 96.43 2.08 3.68

KeePassDroid LOC 80.61 104.73 3 799.00 3.56 17.34
Coupling 9.54 11.97 0 79.00 3.20 12.45
Cohesion 62.24 33.55 0 100.00 -0.22 -1.34
Platform 13.00 27.32 0 100.00 1.97 2.47

Sipdroid LOC 105.40 152.99 5 837.00 2.41 5.89
Coupling 11.02 16.79 0 111.00 3.22 11.87
Cohesion 60.10 36.60 0 100.00 -0.11 -1.63
Platform 13.17 26.57 0 94.44 1.75 1.53

XBMCRemote LOC 155.80 194.86 4 1,367.00 2.78 10.14
Coupling 23.68 29.46 0 208.00 2.52 8.23
Cohesion 49.11 31.53 0 100.00 0.39 -1.02
Platform 15.93 25.19 0 95.83 1.33 0.54

From Table 5.2 we find that LOC, Coupling and Platform have a high (≥ 0.5)
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positive skew, i.e., the metrics are concentrated to the left of the mean, with extreme

values to the right, and high positive kurtosis, i.e., the peaks are higher and sharper

and the tails are longer and fatter than the normal distribution. This effect can be

seen in Figure 5.1. Figure 5.1 presents the distribution of LOC across the source

code files of one of the studied mobile apps, i.e., ConnectBot. From Figure 5.1 and

Table 5.2, we find that the source code files in the ConnectBot project vary between

4 and 1,300 LOC, but there is a peak at around 35 LOC (the left side of Figure 5.1).

We find similar distributions in all of our subject mobile apps. Therefore, we log

transform LOC, Coupling and Platform.

From Table 5.2 we find that Cohesion has high (≤ -0.5) negative kurtosis, i.e.,

peaks are lower and broader and the tails are shorter and thinner than the normal

distribution. We find similar distributions in all of our subject mobile apps. Therefore,

we square-root transform Cohesion.

In the remainder of this chapter, whenever we refer to LOC, Coupling, Cohesion

or Platform, we actually are referring to the transformed values.

RQ1: Are source code files that depend on the Android plat-

form more defect-prone?

Motivation

Mobile apps are known to be highly dependent on both the Android and Java plat-

forms. In the previous chapter, we defined the “platform dependency ratio” as the

ratio of platform dependencies to the total number of dependencies. A low platform

dependency ratio indicates that developers do not rely significantly on the platform

APIs. For example, their app may be simple or self-contained, or the platform may



CHAPTER 5. PLATFORM DEPENDENCE AND SOURCE CODE QUALITY 89

Figure 5.1: Distribution of lines of code across the source code files of ConnectBot.
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be too difficult to use. Conversely, a high platform dependency ratio indicates that

mobile app developers rely heavily on the platform APIs. However, this leads to

platform “lock-in,” which may complicate porting to other platforms and potentially

introduces instability due to the rapid evolution of mobile platforms. For example,

the Android platform has undergone a major release every year. Therefore, we believe

that developers should be aware of the consequences of depending on these platforms.

Approach

We used three techniques to determine whether source code files that are tightly

coupled to the Android platform are more defect-prone.

First, we split the source code files of each mobile app into two subsets: defect-free

source code files, which have never experienced a defect, and defect-prone source code

files, which have experienced at least one defect. We then visualize the distribution of

platform dependency ratios across source code files with and without defects using box

plots. Box plots graphically depict the smallest observation, lower quartile, median,

upper quartile, and largest observation using a box. Circles correspond to outliers.

Second, use a paired t-test (parametric test) and a paired Wilcoxon signed rank

test (non-parametric test) to determine if the difference between the platform depen-

dency ratios across each subset, i.e., defect-free and defect-prone source code files, is

statistically significant. The paired Wilcoxon signed rank test is resilient to strong

departures from the t-test assumptions, therefore, the Wilcoxon test helps ensure that

non-significant t-test results are not simply due to violations of the t-test assumptions.

Finally, we measured the spearman correlation between the platform dependency

ratio and the number of defects.
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Results

Table 5.3 shows the total number of commits to the source code repository, the

number of source code files and the total number of lines of code in each mobile app.

It also shows the number and percentage of source code files that are defect-prone

and the the size (in lines of code) of the defect prone source code files. We can see

that in ConnectBot, KeePassDroid and Sipdroid, up to 83% of the source code files

are defect-free, while in FBReader and XBMCRemote around half of the source code

files are defect-free.

Table 5.3: Percentage of Defect-Prone Source Code Files

Project # Commits # Files # Lines of Code % Defect-Prone Files
Number Size

ConnectBot 476 201 30,572 34 (17%) 20,225 (66%)
FBReader 4685 405 34,423 220 (54%) 8,100 (24%)
KeePassDroid 492 257 20,717 49 (19%) 15,155 (73%)
Sipdroid 622 202 21,290 53 (26%) 8,989 (42%)
XBMCRemote 781 301 46,895 121 (40%) 25,179 (54%)

We then visualize the distribution of platform dependency ratios across source

code files with and without defects for each mobile app using box plots. Figures 5.2a,

5.2b, 5.2c, 5.2d and 5.2e present these box plots.

From Figures 5.2a, 5.2c, 5.2d and 5.2e, we find that defect-prone source code files

tend to rely on the platform libraries more than defect-free source code files. The me-

dian platform dependency ratio in defect-prone source code files across all mobile apps

is 3.25 (26%), whereas the median platform dependency ratio in defect-free source

code files across all mobile apps is 0. Further, in all cases except FBReader, most

defect-prone source code files have at least some dependence on the platform (median
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(a) ConnectBot (b) FBReader

(c) KeePassDroid (d) Sipdroid

(e) XBMCRemote

Figure 5.2: Distribution of platform dependency ratios across the defect-free and
defect-prone source code files
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≥ 0), whereas most source code files that are defect-free also have no dependencies

on the platform (the log transform of zero is zero).

However, from Figure 5.2b, we find that one project, i.e., FBReader, does not ap-

pear to show a significant difference between the distribution of platform dependency

ratios across source code files with and without defects. It is interesting to note that

FBReader is an outlier in many respects. From Table 5.3, we find that FBReader has

many more commits and source code files than any other project. Further, we find

that the source code files of FBReader are generally more defect-prone.

The outlier status of FBReader is also clear from Table 5.4, which presents the

results of a paired t-test and a paired Wilcoxon signed rank test performed to deter-

mine if the difference between the distribution of platform dependency ratios across

source code files with and without defects, seen in Figures 5.2a, 5.2b, 5.2c, 5.2d

and 5.2e, are statistically significant. The values in bold indicate that the difference

is statistically significant (p ≤ 0.05). Again, the difference between the distribution

of platform dependency ratios across source code files with and without defects is

statistically significant in all mobile apps except FBReader.

Table 5.4: T-Tests and Wilcoxon Tests

Project t-test Wilcoxon test

ConnectBot 2.77 * 10−12 3.41 * 10−21

FBReader 9.68 * 10−2 9.12* 10−2

KeePassDroid 1.93 * 10−5 1.29 * 10−7

Sipdroid 8.87 * 10−9 1.44 * 10−12

XBMCRemote 2.59 * 10−35 2.50 * 10−33

Finally, Table 5.5 presents the spearman correlation between the platform depen-

dency ratio and the number of defects, as well as the spearman correlation between
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LOC and the number of defects. We select LOC for comparison (i.e., a baseline)

because it has been shown to be highly correlated with defects (Chidamber and Ke-

merer, 1994; Nagappan and Ball, 2005; Shihab et al., 2010; Zimmermann et al., 2007).

Indeed, from Table 5.5, we find that LOC of a source code file has a moderately pos-

itive correlation (median of 0.38) with the number of defects in that source code file

for all of our mobile apps. This correlation is similar to the observed correlation in

desktop applications. For example, Zimmerman et al. (Zimmermann et al., 2007)

found a correlation of 0.40 between LOC and defects in Eclipse.

Table 5.5: Correlation Between Source Code Metrics and Defects

Project LOC Platform

ConnectBot 0.38 0.67
FBReader 0.44 -0.06
KeePassDroid 0.16 0.33
Sipdroid 0.43 0.53
XBMCRemote 0.21 0.72

Median 0.38 0.53

From Table 5.5, we find that the spearman correlation between the platform de-

pendency ratio and the number of defects (Platform) is higher than the spearman

correlation between LOC and defects in four of the five mobile apps. The median

Platform correlation is 0.53, which indicates a strong positive relationship, and is

greater than the median LOC correlation.

Source code files that are more tightly coupled to the Android platform tend

to be more defect-prone than source code files that are less tightly coupled to the

Android platform.
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RQ2: Does the degree of platform dependency contain unique

information regarding defects?

Motivation

In our previous research question, we found that there is a moderate positive relation-

ship between the platform dependency ratio and defects. In this research question,

we study whether the platform dependency ratio contributes unique information to

our understanding of defect-proneness. In particular, we study whether combining

traditional source code metrics with the platform dependency ratio can enhance our

ability to explain the defect-proneness of source code files.

Approach

We built logistic regression models and used two techniques to determine whether the

platform dependency ratio can help in explaining defects. Logistic regression models

allow us to determine the relationship between the platform dependency ratio and

defect-proneness while controlling for other metrics, i.e., lines of code, coupling and

cohesion.

In order to build logistic regression models, we first characterized each source code

file as either defect-prone (at least one defect) or defect-free (no defects).

We then build two logistic regression models for each mobile app. The first model

(Traditional model) was built using traditional metrics (LOC, Coupling and Cohesion

(Chidamber and Kemerer, 1994; Nagappan and Ball, 2005)). The second model (Full

model) was built using both traditional metrics and Platform.

We remove any overly influential observations, i.e., data points that may have a

disproportionate influence on the value of one or more of the estimated coefficients
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in the regression models. We analyze the impact that each observation has on our

model using dfbeta residuals. The dfbeta residual approximates the influence of

each observation by calculating, for each coefficient, the ratio of the change in the

coefficient when an individual observation is removed to the coefficient’s standard

error. In small data sets, overly influential observations will have dfbeta residuals

with absolute values greater than 1 (Cohen et al., 2002; der Meera et al., 2010). We

removed overly influential observations and rebuilt our models on the new data sets.

We then assess the statistical significance of each coefficient in the new Full model

to determine which metrics are statistically significant when modelling defects.

Finally, we compare the two models by calculating the change in explanatory

power from the Traditional model to the Full model. The explanatory power of a

logistic regression model varies between 0-100% and quantifies the variability of the

data set that is explained by the model. An explanatory power of 100% indicates

that our model can perfectly explain the data set.

Results

We calculated dfbeta residuals for each coefficient in each model. Figure 5.3 presents

these dfbeta residuals for the coefficient modelling LOC in ConnectBot.

From Figure 5.3, we find that there are two overly influential observations (obser-

vation 106 and 123). Therefore, we removed these observations from the ConnectBot

data set (no other mobile app project had any overly influential observations). We

repeated this procedure for each coefficient in each project. We then rebuilt our

models.

Table 5.6 presents the coefficients in the full model, i.e., the models built with both
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Figure 5.3: DFBeta residuals for the coefficient modelling lines of code in ConnectBot.
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traditional metrics and the platform dependency ratio, for each mobile app (recall

that these metrics were transformed in Subsection 5.2). The coefficients in bold are

statistically significant (p ≤ 0.05).

Table 5.6: Coefficients in the Full Model of each Mobile App.

Project (Intercept) LOC Coupling Cohesion Platform

ConnectBot -0.562 -0.522 1.461 -0.572 0.967
FBReader -3.017 0.718 0.247 0.033 -0.241
KeePassDroid -1.120 -0.897 1.902 -0.173 0.212
Sipdroid -2.972 0.170 0.897 -0.186 0.483
XBMCRemote -1.875 0.288 -0.287 -0.071 1.084

From Table 5.6, we find that Platform is significant in four mobile apps and

Coupling is significant in three mobile apps. This is strong evidence that dependency

metrics can be used to explain defects in source code files. Further, LOC is statistically

significant in only two mobile apps. Cohesion is statistically significant in three mobile

apps. It is interesting to note that, despite being related measures, coupling and the

platform dependency ratio appear to complement each other. Coupling is statistically

significant in KeePassDroid whereas the platform dependency ratio is not and the

platform dependency ratio is statistically significant in FBReader and XBMCRemote

whereas coupling is not statistically significant.

It is interesting to note that KeePassDroid was ported from another platform,

whereas ConnectBot, FBReader, Sipdroid and XBMCRemote were developed as An-

droid apps. This may explain why all traditional metrics (i.e., LOC, Coupling and

Cohesion) are statistically significant in KeePassDroid but Platform is not significant.

From Table 5.6, we find that the platform dependency ratio is statistically sig-

nificant and appears to enhance traditional source code metrics. To verify this, we
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compare the explanatory power of a logistic regression model (Traditional) built us-

ing traditional metrics (LOC, Coupling and Cohesion) and a logistic regression model

(Full) built using both traditional metrics and the platform dependency ratio. We

perform ANOVA analysis to determine if the difference between the Traditional and

the Full model is statistically significant. The values in bold indicate that the increase

in explanatory power is statistically significant. Table 5.7 presents this data, as well

as the median explanatory power across all five Traditional models (one for each mo-

bile app) and all five Full models (one for each mobile app). Values in bold (in the

Full column) indicate that the platform dependency ratio is statistically significant

in this model (p ≤ 0.05).

Table 5.7: Deviance Explained by Traditional and Full Models

Project Traditional Full Difference

ConnectBot 42.33 59.15 +40%
FBReader 11.58 13.09 +13%
KeePassDroid 21.89 23.31 +7%
Sipdroid 29.98 35.79 +19%
XBMCRemote 5.45 40.42 +641%

Median 21.89 35.79 +63%

From Table 5.7, we find that adding the platform dependency ratio to our models

increases the explanatory power. The median explanatory power using traditional

source code metrics is 21.89 and the median explanatory power using traditional

source code metrics combined with Platform is 35.79 (a 63% increase).

The smallest increase in deviance explained (7%) is in KeePassDroid, where the

difference between the Full model and the Traditional model is not statistically sig-

nificant. As previously mentioned, KeePassDroid was ported from another platform
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and the platform dependency ratio is not a statistically significant predictor. Con-

versely, the largest increase in deviance explained (641%) is in XBMCRemote. This

may because XBMCRemote has a greater portion of its source code files depending

on the Android platform. Table 5.8 presents the percentage of source code files that

depend on the Android Platform.

Table 5.8: Percentage of Source Code Files Depending on the Android Platform.

Project % Source Code Files

ConnectBot 21%
FBReader 30%
KeePassDroid 24%
Sipdroid 24%
XBMCRemote 36%

Median 24%

From Table 5.8, we find that a greater portion of the source code files in XBM-

CRemote depend on the Android platform compared to any other mobile apps.

The platform dependency ratio can help in explaining defects in source code

files.

RQ3: Which source code metrics have the largest impact on

source code quality?

Motivation

In our previous research question, we found that the platform dependency ratio can

help in explaining defects in source code files. In this research question we study which
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source code metrics have the largest impact on source code quality. In particular, we

study the effects of a proportional increase in each source code metric. For example,

does doubling LOC introduce more defects relative to doubling the number of coupled

classes?

Approach

In the previous research question, we built a logistic regression model for each mobile

using both traditional metrics (LOC, Coupling and Cohesion) and Platform. Here,

we calculate the change in defect-proneness due to a proportional increase of each

source code metric to determine which source code metric has the largest impact on

source code quality.

To do that, we first calculate the average value of each source code metric, i.e.,

LOC, Coupling, Cohesion and Platform. Similar to Shihab et al. (Shihab et al.,

2011), a baseline hypothetical source code file is built using the average value for

each source code metric. Four hypothetical files are constructed by increasing each

source code metric in the baseline by 10%, one at a time (keeping the other metrics

constant at their average value). Table 5.9 shows the hypothetical source code files

for ConnectBot.

We use the logistic models built in the previous question to predict the defect-

proneness for each hypothetical source code file. The defect-proneness is the prob-

ability that a source code file is defect-prone. Finally, we calculate the change in

defect-proneness of each hypothetical source code file compared to the baseline.
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Table 5.9: Hypothetical Source Code Files Used to Assess the Impact of Each Source
Code Metric on Defect-Proneness.

File LOC Coupling Cohesion Platform

Baseline 4.23 1.92 7.10 0.73
File1 4.65 1.92 7.10 0.73
File2 4.23 2.11 7.10 0.73
File3 4.23 1.92 7.80 0.73
File4 4.23 1.92 7.10 0.81

Results

Table 5.10 presents the change in defect-proneness from a 10% increase in each metric

over the baseline (average) values. For example, the first value in the first row, -

19.26%, indicates that increasing LOC by 10%, decreases the probability that a source

code file is defect-prone by 19.26%. The values in bold in Table 5.10 correspond to a

10% increase in a metric that was found to be statistically significant in Table 5.6.

Table 5.10: Impact of an Increase in Each Source Code Metric on Defect-Proneness.

Project LOC Coupling Cohesion Platform

ConnectBot -19.26% 30.89% -32.56% 7.10%
FBReader 11.71% 2.33% 1.14% -1.04%
KeePassDroid -26.63% 37.36% -10.78% 1.69%
Sipdroid 5.44% 15.01% -10.49% 3.66%
XBMCRemote 7.80% -4.48% -2.79% 8.51%

Median 5.44% 15.01% -10.49% 3.66%

From Table 5.10, we find that Coupling and Cohesion have the greatest impact on

defects. “High cohesion and low coupling leads to high quality” is a classic software

engineering concept (Chidamber and Kemerer, 1994).
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Although the platform dependency ratio does not have the greatest effect on

defect-proneness, it is the most consistent. The range (i.e., the difference between

the maximum and minimum values) for LOC, Coupling and Cohesion are 38.34%,

41.84% and 33.7% respectively, whereas the range for Platform is only 9.55%.

From Table 5.10, we see that the platform dependency ratio has the smallest im-

pact on source code quality, despite its ability to significantly increase the explanatory

power of our models. This may because the average platform dependency ratio is low

and only a subset of the source code files (20%-36%) actually depend on the platform.

This can be seen in Tables 5.2, 5.8 and 5.9. Therefore, knowing that a source code file

has any dependence on the platform may be enough to identify defect-prone source

code files.

Finally, LOC has an inconsistent impact on source code quality. A 10% increase

in LOC in FBReader, Sipdroid and XBMCRemote increases defect-proneness by,

on average, 8%, whereas a 10% increase in LOC in ConnectBot and KeePassDroid

decreases defect-proneness by, on average, 23%.

Coupling has the largest impact on source code quality while Platform has the

most consistent impact on source code quality.

5.3 Threats to Validity

5.3.1 Threats to Construct Validity

Threats to construct validity describe concerns regarding the measurement of our

metrics.
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The number of defects in each source code file was measured by identifying the

source code files that were changed in a defect fixing change. Although this technique

has been found to be effective (Hassan, 2008a; Mockus and Votta, 2000), it is not

without flaws. We identified defect fixing changes by mining the commit logs for a set

of keywords. Therefore, we are unable to identify defect fixing changes (and therefore

defects) if we failed to find a specific keyword, if the committer misspelled the keyword

or if the committer failed to include any commit message. We are also unable to

determine which source code files have defects when defect fixing modifications and

non-defect fixing modifications are made in the same commit.

5.3.2 Threats to External Validity

Threats to external validity describe concerns regarding the generalizability our re-

sults.

We have limited our study to a very small subset of open-source mobile apps. In

addition, we have only studied the mobile apps of a single mobile platform (i.e., the

Android Platform). Finally, we did not consider mobile app games, which are the

most commonly downloaded mobile apps, because we were unable to find mobile app

games that met our requirements (Nielsen Co., 2010a,b). Therefore, it is unclear how

our results will generalize to 1) other mobile apps, 2) close-source mobile apps and

3) other mobile platforms.

In addition to the aforementioned threats to validity, our selection of mobile apps

excluded, by necessity, mobile apps with small code bases, short histories and poor

documentation. Therefore, it is unclear how our results will generalize to these types

of mobile apps.
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The dependency metrics used in this study are very simple. For example, we do not

consider the functionality provided by the dependency, the complexity of setting up

the dependency or the source code quality of the source or target of the dependency.

Therefore, our results may not apply to other types of dependency metrics.

Other more complex dependency metrics should be explored, especially given that

our results indicate that the platform dependency ratio plays a significant role in the

defect-proneness of a source code file.

5.4 Conclusions

This chapter presented a study of the relationship between source code quality and

mobile platform dependency. In particular, we studied whether source code files

that are tightly coupled to the Android platform are more defect-prone, whether

the platform dependency ratio can help in explaining defects and which source code

metrics have the largest impact on source code quality. We answered these questions

by studying five open-source mobile apps written for the Android platform.

We find that source code files that are more tightly coupled to the Android plat-

form tend to be more defect-prone. However, the underlying reasons remain unclear,

are Android APIs hard to use? Are they more buggy? Do developers avoid relying on

a rapidly evolving platform? We intend to address these questions in future studies.

In the mean time, developers looking to prioritize their testing efforts should consider

testing source code files with the highest platform dependency ratios.

We also find that mobile apps do exhibit some of the classical relationships between

source code metrics and quality, e.g., “high cohesion and low coupling lead to high

quality” (Chidamber and Kemerer, 1994), but not necessarily others, e.g., “larger
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source code files are more defect prone” holds in three of the five studied mobile

apps. Developers should focus on creating cohesive classes coupled to the minimum

number of classes.

In the future we intend to extend our analysis to additional mobile apps and

mobile platforms. We also intend to divide the dependencies into finer categories.

For example, instead of treating the entire Android platform as one category, it could

be split into User Interface APIs, Networking APIs, Persistent Data APIs, etc.



Chapter 6

Conclusions and Future Work

This chapter summarizes our findings from the previous chapters. We also present

the limitations of our results and outline directions for future work.

6.1 Summary

Despite the ubiquity of mobile devices and the popularity of mobile apps, few re-

searchers have studied mobile apps from a software engineering perspective. Software

engineering researchers have proposed and evaluated several theories of how high

quality, successful software is developed and maintained. However, such software en-

gineering concepts have primarily been evaluated against large-scale projects. The

relationship between these large-scale projects and mobile apps and the applicability

of these software engineering concepts to mobile apps is unclear.

Hence, we perform three quantitative studies to validate our research hypothesis:

107
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The mobile app sector is rapidly becoming the largest sector of software today.

Yet there is very limited research done to understand the development practices

and the quality of such mobile apps. We believe that these mobile apps bring a

unique set of challenges to software engineering practice and research.

We find that the scale of mobile apps is much smaller than traditionally studied

desktop/server applications. The development of a mobile app tends to be driven by

only one of two developers. These developers tend to rely heavily on functionality pro-

vided by the underlying mobile platform through platform-specific APIs. However,

the degree to which developers rely on these platform APIs varies between platforms.

Developers of BlackBerry apps are less dependent on BlackBerry APIs than Android

developers are on Android APIs. Finally, defects in Android apps tend to be concen-

trated in a small number of source code files that are tightly coupled to the Android

platform.

In this thesis, we presented evidence to support our hypothesis that mobile apps

differ from traditionally studied desktop/server applications. Researchers should be-

gin to study mobile apps alongside these traditionally studied desktop/server appli-

cations given the increasing popularity of mobile apps. We also presented differences

between Android apps and Blackberry apps. Mobile app developers who wish to

target both the BlackBerry and Android platforms should write their mobile apps

for the BlackBerry platform then port their mobile apps to the Android platform.

Finally, we believe that the developers of mobile apps and mobile platforms should

be aware of the positive relationship between platform dependence and defects. How-

ever, further investigation is required to understand why this relationship exists in
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order to facilitate the development and maintenance of high quality of mobile apps.

6.2 Limitations and Future Work

The limitations of each our of three studies were presented in their respective chapters.

However, there are some limitations that crosscut all three of our studies and threaten

the validity of our thesis.

The mobile apps selected for our case studies represent a small subset of the total

number of mobile apps available. In addition, we have limited our studies to open

source mobile apps. Further, the studies in Chapter 3 and Chapter 5 were limited to

mobile apps from a single mobile platform (i.e., the Android Platform). Therefore, it

is unclear how our results will generalize to 1) closed source mobile apps and 2) other

mobile platforms. In the future, we can extend our studies to these types of mobile

apps. Despite this limitation, we believe that the mobile apps in our case study are a

good representation of the larger mobile app ecosystem. The Android platform is the

largest and fastest growing mobile platform. In addition, there are more open source

mobile apps on the Android platform than any other mobile platform (Black Duck

Software Inc., 2010, 2011, 2012).

The metrics selected to compare mobile apps to desktop/server applications in

Chapter 3 and Android apps to Blackberry apps Chapter 4 represent a small subset

of the total number of dimensions along which software projects can be compared.

Therefore, it is unclear how our results may change when comparing along other

dimensions. In the future, we can extend our studies to include comparisons along

additional dimensions. Despite this limitation, we believe that our comparisons were

sufficient to address our research questions.
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Finally, our results indicate that there is a statistically significant relationship

between source code quality and platform dependence. However cause of this rela-

tionship is unclear. Are Android APIs poorly documented? Are they difficult to

use? Are they buggy? Should developers avoid relying on specific APIs? Future

work should address these questions by contacting developers for their input. Despite

this limitation, we believe that the existence of a statistically significant relationship

between source code quality and platform dependence is cause for concern given the

high degree of platform dependence.
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Schröter, A., Zimmermann, T. and Zeller, A. (2006), Predicting component failures at

design time, in ‘Proceedings of the International Symposium on Empirical Software

Engineering’, pp. 18–27.

Scitools (2012), ‘Understand Your Code’, http://scitools.com/. Last viewed: 20-

Oct-2012.



BIBLIOGRAPHY 121

Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S. and Glezer, C. (2010),

“Google Android: A Comprehensive Security Assessment”, Security and Privacy

Magazine , Vol. 8, pp. 35–44.

Shihab, E., Jiang, Z. M., Ibrahim, W. M., Adams, B. and Hassan, A. E. (2010),

Understanding the impact of code and process metrics on post-release defects: a

case study on the eclipse project, in ‘Proceedings of the International Symposium

on Empirical Software Engineering and Measurement’, pp. 29–39.

Shihab, E., Kamei, Y. and Bhattacharya, P. (2012), Mining challenge 2012: The an-

droid platform, in ‘Proceedings of the International Working Conference on Mining

Software Repositories’, p. to appear.

Shihab, E., Mockus, A., Kamei, Y., Adams, B. and Hassan, A. E. (2011), High-impact

defects: a study of breakage and surprise defects, in ‘Proceedings of the ACM

SIGSOFT symposium and the European Conference on Foundations of Software

Engineering’, pp. 300–310.

StatSVN (2012), ‘StatSVN - Repository Statistics’, http://statsvn.org/. Last

viewed: 20-Oct-2012.

Teng, C.-C. and Helps, R. (2010), Mobile application development: Essential new

directions for IT, in ‘Proceedings of the International Conference on Information

Technology: New Generations’, pp. 471–475.

Tracy, K. W. (2012), “Mobile application development experiences on apple’s ios and

android os”, Potentials , Vol. 31, pp. 30–34.



BIBLIOGRAPHY 122

W3Techs - Web Technology Surveys (2012), ‘Usage Statistics and Market

Share of Content Management Systems for Websites’, http://w3techs.com/

technologies/overview/content_management/all. Last viewed: 20-Oct-2012.

Wen, H. (2011), http://radar.oreilly.com/2011/06/

google-app-inventor-programmers-mobile-apps.html. Last viewed: 20-

Oct-2012.

WordPress for Android (2012), ‘WordPress for Android’, http://android.

wordpress.org/. Last viewed: 20-Oct-2012.

WordPress for BlackBerry (2012), ‘WordPress for BlackBerry’, http://blackberry.

wordpress.org/. Last viewed: 20-Oct-2012.

Workshop on Mobile Software Engineering (2011), ‘Workshop on mobile software

engineering’, http://mobileseworkshop.org/. Last viewed: 20-Oct-2012.

Wu, Y., Luo, J. and Luo, L. (2010), Porting mobile web application engine to the

android platform, in ‘Proceedings of the International Conference on Computer

and Information Technology’, pp. 2157–2161.

Xin, C. (2009), Cross-platform mobile phone game development environment, in ‘Pro-

ceedings of the International Conference on Industrial and Information Systems’,

pp. 182–184.

Zimmermann, T. and Nagappan, N. (2008), Predicting defects using network analy-

sis on dependency graphs, in ‘International Conference on Software Engineering’,

pp. 531–540.



BIBLIOGRAPHY 123

Zimmermann, T., Premraj, R. and Zeller, A. (2007), Predicting defects for eclipse,

in ‘International Workshop on Predictor Models in Software Engineering’, p. 9.


