
MINING UNSTRUCTURED SOFTWARE REPOSITORIES USING IR MODELS

by

STEPHEN W. THOMAS

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

December 2012

Copyright c© Stephen W. Thomas, 2012

Abstract

MINING SOFTWARE REPOSITORIES, which is the process of analyzing the data re-

lated to software development practices, is an emerging field which aims to

aid development teams in their day to day tasks. However, data in many

software repositories is currently unused because the data is unstructured, and therefore

difficult to mine and analyze. Information Retrieval (IR) techniques, which were developed

specifically to handle unstructured data, have recently been used by researchers to mine

and analyze the unstructured data in software repositories, with some success.

The main contribution of this thesis is the idea that the research and practice of using

IR models to mine unstructured software repositories can be improved by going beyond the

current state of affairs. First, we propose new applications of IR models to existing software

engineering tasks. Specifically, we present a technique to prioritize test cases based on their

IR similarity, giving highest priority to those test cases that are most dissimilar. In another

new application of IR models, we empirically recover how developers use their mailing list

while developing software.

Next, we show how the use of advanced IR techniques can improve results. Using a

framework for combining disparate IR models, we find that bug localization performance

can be improved by 14–56% on average, compared to the best individual IR model. In

addition, by using topic evolution models on the history of source code, we can uncover the

evolution of source code concepts with an accuracy of 87–89%.

i

Finally, we show the risks of current research, which uses IR models as black boxes with-

out fully understanding their assumptions and parameters. We show that data duplication

in source code has undesirable effects for IR models, and that by eliminating the duplica-

tion, the accuracy of IR models improves. Additionally, we find that in the bug localization

task, an unwise choice of parameter values results in an accuracy of only 1%, where optimal

parameters can achieve an accuracy of 55%.

Through empirical case studies on real-world systems, we show that all of our proposed

techniques and methodologies significantly improve the state-of-the-art.

ii

Acknowledgments

First, I would like to offer deep and sincere gratitude to my co-supervisors, Ahmed E. Hassan

and Dorothea Blostein. Leading by example, Ahmed pushed me to my limits. He provided

keen insight into the academic world and helped me make sense of it all. He gave me

resources, a sense of belonging, and encouragement to pursue my ideas. Dorothea brought

experienced yet fresh perspective on all my work, incredible encouragement, and solid

technical direction. She believed in me, helped me, and kept me on track. I am truly

grateful for the one-two punch of Ahmed and Dorothea that was easily the most significant

factor of my success.

I would also like to thank my committee members, Jim Cordy, Juergen Dingel, Prem

Devanbu, Greg Lessard, and Pat Martin. Through expert, well-delivered critique as well as

stimulating interaction, they helped me to shape my thesis and the ideas within.

I give thanks to my collaborators and coauthors: Bram Adams, Nicolas Bettenburg, Hadi

Hemmati, Meiyappan Nagappan, and of course Ahmed E. Hassan and Dorothea Blostein.

Draft after draft, experiment after experiment, they helped me navigate the complexities of

statistics, LATEX 2ε formatting, deadlines, related research, R code, and everything else that

is needed to release a scientific idea into the wild.

The Software Analysis and Intelligence Laboratory (SAIL), of which I was a member

since January 2010, was paramount to my success and defined my PhD experience. The

evolving cohort of undergraduates, Master’s students, doctoral students, post doctoral re-

searchers, and visiting scholars provided always-available interaction, feedback, motivation,

iii

and support. (And whether someone lives in the basement of the SAIL building or not, we

may never know.)

I would like to thank my Master’s supervisor and continued collaborator, Rick Snodgrass.

Although he was not directly involved in this thesis, he has been a constant mentor in my

academic life for more than five years. His sound advice, exceptional work ethic, brilliant

ideas, and friendship have meant a great deal to me.

Finally, the love and support of my friends and family, both near and far, are what got

me here in the first place, and keep me going to the next. A most special thanks goes to my

wife, Tandy. Without her, I would be lost. Her love fuels my day.

iv

Dedication

For Tandy and Addison, my special ladies

v

Table of Contents

Abstract i

Acknowledgments iii

Dedication v

List of Tables ix

List of Figures xi

Related Publications xiii

List of Notation and Abbreviations xv

I Prologue 2

Chapter 1: Introduction . 3
1.1 Thesis Statement . 6
1.2 Thesis Overview and Organization . 6
1.3 Contributions of Thesis . 8

Chapter 2: Background and State of the Art . 10
2.1 Mining Software Repositories . 10
2.2 Information Retrieval Models . 14
2.3 State of the Art . 28
2.4 Research Trends . 42

II New Applications of IR Models in Software Engineering 54

Chapter 3: Prioritizing Test Cases Using Topic Models 57
3.1 Motivation . 57
3.2 Background . 59
3.3 Proposal . 66

vi

3.4 Case Studies . 69
3.5 Results and Discussion . 75
3.6 Conclusion . 89

Chapter 4: Measuring the Interaction of Mail and Code 92
4.1 Motivation . 92
4.2 Proposal . 95
4.3 Case Studies . 100
4.4 Results and Discussion . 103
4.5 Conclusion . 113

III Advanced IR Techniques 115

Chapter 5: A Framework to Combine Disparate IR Models 118
5.1 Motivation . 118
5.2 Proposal . 119
5.3 Case Studies . 122
5.4 Results and Discussion . 131
5.5 Conclusion . 136

Chapter 6: Using Topic Evolution Models to Analyze Source Code Evolution . . . 137
6.1 Motivation . 137
6.2 Proposal . 139
6.3 Case Studies . 139
6.4 Results and Discussion . 147
6.5 Conclusion . 169

IV Understanding IR Model Assumptions and Parameters 172

Chapter 7: Addressing Data Duplication with the Diff Model 175
7.1 Motivation . 175
7.2 Proposal . 178
7.3 Case Studies . 180
7.4 Results and Discussion . 185
7.5 Conclusion . 193

Chapter 8: Understanding the Effects of Data Preprocessing and IR Model Pa-
rameters . 195

8.1 Motivation . 195
8.2 Proposal . 196
8.3 Case Study . 196
8.4 Results and Discussion . 200

vii

8.5 Conclusion . 207

V Epilogue 209

Chapter 9: Conclusion . 210
9.1 Main Contributions of Thesis . 211
9.2 Future Research Opportunities . 213

Bibliography . 215

viii

List of Tables

2.1 Example topics from JHotDraw source code version 7.5.1. 24
2.2 The stopword list we use in our case studies. 27
2.3 Article attributes. 49
2.4 Article characterization results of facets 1–4. 51
2.5 Article characterization results of facets 5 and 6. 53

3.1 A two dimensional classification of TCP techniques. 62
3.2 Systems under test. 71
3.3 Mean APFD results and comparisons for each technique. 76
3.4 The distances between four example test scripts in Derby. 79
3.5 Characteristics of the fault matrices of the systems under test. 83
3.6 Results of the parameter sensitivity analysis. 85
3.7 Mean APFD results for the string-based technique without and with text pre-

processing. 86

4.1 Systems under study. 100
4.2 Selected topics from Apache. 106
4.3 Selected topics from PostgreSQL. 107

5.1 Common IR parameters and values. 124
5.2 The IR family of classifiers we study. 125
5.3 The EM family of classifiers we study. 125
5.4 Studied systems. 126
5.5 Example bug reports in the three studied system. 126
5.6 Classifier sets under consideration. 130
5.7 Top-20 performance of the four manually-created classifier sets. 133
5.8 Improvement of classifier combination. 134

6.1 Characteristics of our two systems under study, JHotDraw and jEdit. 140
6.2 Example topics from JHotDraw and jEdit. 148
6.3 Results of the manual analysis (RQ1) for JHotDraw and jEdit. 158
6.4 Relationship between code changes and topic evolutions. 163
6.5 Characteristics of the discovered evolutions for JHotDraw and jEdit. 165

7.1 Change characteristics of JHotDraw and PostgreSQL. 178

ix

7.2 Results of our case studies on JHotDraw and PostgreSQL. 185
7.3 Example topic evolutions. 185
7.4 Precision and recall results of the experiments on the simulated data. 190

8.1 Summary of the classifier configurations used by existing work. 197
8.2 The best four and worst four configurations. 202
8.3 Performance dispersion amongst classifier configurations. 203
8.4 The results of Tukey’s HSD test. 203

x

List of Figures

2.1 A sample corpus. 15
2.2 The path from a raw corpus to an IR model. 19
2.3 Trends of LSI and LDA use. 43

3.1 Overview of our proposed topic-based TCP technique. 67
3.2 APFD results for each SUT and each technique. 77
3.3 Four abbreviated test scripts from Derby v1. 80

4.1 Example code snippet from PostSQL. 94
4.2 Our model of the interaction between emails and source code. 96
4.3 An overview of our technique. 96
4.4 Code weight ratio. 105
4.5 The four topic life cycle states. 105
4.6 Topic life cycle states over time. 110
4.7 State transition diagrams for topic life cycles. 111

5.1 An illustration of our classifier combination framework. 120
5.2 Our evaluation procedure. 127

6.1 Data characteristics over time for JHotDraw and jEdit. 142
6.2 Replication guide for our study. 143
6.3 Number of detected events for various δ thresholds. 145
6.4 Topic trendlines for JHotDraw. 149
6.5 Topic trendlines for jEdit. 150
6.6 Heatmap views of the 45 topic evolutions. 152
6.7 Example topic similarity matrices. 154
6.8 Topic similarity matrices indicating the stability of the topic models. 155
6.9 An excerpt from our manual analysis tool. 157
6.10 An example of an assignment change caused by noise in the LDA model. . . 160
6.11 Example topic evolutions from JHotDraw and jEdit. 161

7.1 A graphical depiction of the three topic evolution models. 177
7.2 Example of data duplication. 177
7.3 Sample topic evolutions from JHotDraw and PostgreSQL. 186
7.4 Sample topic evolutions for the simulated scenarios. 189

xi

7.5 Selected topics from the Diff model study. 192

xii

Related Publications

In all chapters of this thesis, and all related publications, I contributed in the following ways:

bringing the initial idea to the table; researching background material and related work;

collecting the necessary data for experiments and analysis (authoring tools and scripts if

necessary); conducting the experiments and analyses (authoring tools and scripts if neces-

sary); and writing and polishing all sections of the chapter and paper (including making

all figures and tables). My coauthors supported me in refining my initial ideas, pointing

me towards additional related work if necessary, and providing feedback on drafts of the

chapters and papers.

Parts of this thesis have been published as follows:

1. Stephen W. Thomas. Mining Software Repositories Using Topic Models. In: Proceed-

ings of the 33rd International Conference on Software Engineering (Doctoral Sympo-

sium), pages 1138-1139, 2011. [Chapter 1.]

2. Stephen W. Thomas. Mining Software Repositories with Topic Models. Technical Re-

port No. 2012-586, School of Computing, Queen’s University. 39+iv pages. February

2012. [Chapter 2.]

3. Stephen W. Thomas, Hadi Hemmati, Ahmed E. Hassan, and Dorothea Blostein. Static

Test Case Prioritization Using Topic Models. Empirical Software Engineering. 30 pages.

Accepted July 8, 2012. To appear. [Chapter 3.]

4. Stephen W. Thomas, Nicolas Bettenburg, Dorothea Blostein, and Ahmed E. Hassan.

xiii

Talk and Work: Recovering the Relationship between Mailing List Discussions and Devel-

opment Activity. Empirical Software Engineering. 24 pages. Second revision under

preparation. [Chapter 4.]

5. Stephen W. Thomas, Meiyappan Nagappan, Dorothea Blostein, and Ahmed E. Has-

san. The Impact of Classifier Configuration and Classifier Combination on Bug Localiza-

tion. IEEE Transactions on Software Engineering. 16 pages. Submitted May 2012.

[Chapters 5 and 8.]

6. Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea Blostein. Val-

idating the Use of Topic Models for Software Evolution. In: Proceedings of the 10th

International Working Conference on Source Code Analysis and Manipulation, pages

55-64, 2010. [Chapter 6.]

7. Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea Blostein. Study-

ing Software Evolution Using Topic Models. Science of Computer Programming. 23

pages. Accepted August 20, 2012. To appear. [Chapter 6.]

8. Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea Blostein. Model-

ing the Evolution of Topics in Source Code Histories. In: Proceedings of the 8th Working

Conference on Mining Software Repositories, pages 173-182, 2011. [Chapter 7.]

xiv

List of Notation and Abbreviations

α: in LDA, a smoothing parameter for document-topic distributions

β: in LDA, a smoothing parameter for topic-term distributions

θ: the document-topic matrix of a corpus

θd: the topic membership vector of document d

φ: the topic-term matrix of a corpus

A: the term-document matrix of a corpus

C: a corpus

d: a document

K: in LDA, the number of topics; in LSI, the reduction factor

N : the number of terms in a document

V : the vocabulary of a corpus

w: a term

z: a topic

APFD: Average Percentage of Faults Detected

AOP: Aspect Oriented Computing

CVS: Concurrent Versions System

EM: Entity Metric

ICA: Independent Component Analysis

xv

1

IR: Information Retrieval

LDA: Latent Dirichlet Allocation

LOC: Lines of Code

LSA: Latent Semantic Analysis

LSI: Latent Semantic Indexing

MSR: Mining Software Repositories

NLP: Natural Language Processing

PCA: Principal Component Analysis

PLSA: Probabilistic Latent Semantic Analysis

PLSI: Probabilistic Latent Semantic Indexing

SLOC: Source Lines of Code

SUT: System Under Test

SVD: Singular Value Decomposition

SVN: Subversion

TA: Testing Ability

TCP: Test Case Prioritization

UML: Unified Modeling Language

VCS: Version Control System

VSM: Vector Space Model

Part I

Prologue

2

CHAPTER 1

Introduction

Publications based on this chapter: Thomas (2011)

SOFTWARE DEVELOPMENT presents enormous challenges for both developers and man-

agers (Glass, 2003; Selby, 2005). One of the primary difficulties lies in the ever-

increasing complexity of the ever-changing source code. Changes lead to com-

plexity and bugs, which in turn lead to skyrocketing maintenance costs and unhappy cus-

tomers (Erlikh, 2000; Hassan, 2009; Lehman, 1980; Moad, 1990).

Researchers in software engineering have attempted to improve software development

by mining and analyzing software repositories, such as source code changes, email archives,

bug databases, and execution logs (Godfrey et al., 2008; Hassan, 2008). Research shows

that interesting and practical results can be obtained from mining these repositories, allow-

ing developers and managers to better understand their systems and ultimately increase

the quality of their products in a cost effective manner (Tichy, 2010). Particular success has

been experienced with structured repositories, such as source code, execution traces, and

change logs.

However, automated techniques to understand the unstructured textual data in software

repositories are still relatively immature (Hassan, 2008), even though 80–85% of the data

3

CHAPTER 1. INTRODUCTION 4

is unstructured (Blumberg and Atre, 2003; Grimes, 2008). Unstructured data is a current

research challenge because the data is often unlabeled, vague, and noisy (Hassan, 2008).

For example, the Eclipse bug database contains the following bug report titles:

– “NPE caused by no spashscreen handler service available” (#112600)

– “Provide unittests for link creation constraints” (#118800)

– “jaxws unit tests fail in standalone build” (#300951)

This data is unlabeled and vague because it contains no explicit links to the source code

entity to which it refers, or even to a topic or task from some pre-defined ontology. In-

structions such as “link creation constraints,” with no additional information or pointers,

are ambiguous at best. The data is noisy due to misspellings and typographical errors

(“spashscreen”), unconventional acronyms (“NPE”), and multiple phrases used for the same

concept (“unittests”, “unit tests”). The sheer size of a typical unstructured repository (for

example, Eclipse has received an average of 115 new bug reports a day for the last 10

years), coupled with its lack of structure, makes manual analysis extremely challenging and

in many cases impossible. The end result is that this unstructured data is still waiting to be

mined and analyzed.

Despite the challenges mentioned above, mining unstructured repositories has the po-

tential to benefit software development teams in several ways. For example, linking emails

to the source code entities that they discuss could provide developers access to the design

decisions made about that entity. Determining which source code entities are related to a

new bug report would significantly reduce the maintenance effort required to fix the bug.

Automatically creating labels for source code entities would allow developers to more easily

browse and understand the code, understand how certain concepts are changing over time,

and uncover relationships between entities. All of these tasks would help decrease mainte-

nance costs, increase software quality, and ultimately yield pleased, paying customers.

Advances in the field of Information Retrieval (IR), such as the development of statis-

tical topic models (Blei and Lafferty, 2009; Blei et al., 2003; Griffiths et al., 2007), have

helped make sense of unstructured data in other research communities, including the social

CHAPTER 1. INTRODUCTION 5

sciences (Griffiths et al., 2007; Ramage et al., 2009) and computer vision (Barnard et al.,

2003). IR models, such as the Vector Space Model (VSM) (Salton et al., 1975), Latent Se-

mantic Indexing (LSI) (Deerwester et al., 1990) and latent Dirichlet allocation (LDA) (Blei

et al., 2003), are models that automatically discover structure within an unstructured cor-

pus of documents, using the statistical properties of its word frequencies. IR models can be

used to index, search, cluster, summarize, and infer links within the corpus, all tasks that

were previously manually performed or not performed at all.

In addition to discovering structure, IR models are promising for several reasons. The

models require no training data, which makes them easy to use in practical settings (Blei

et al., 2003). The models operate directly on the raw, unstructured text without expen-

sive data acquisition or preparation costs. (The textual data is often preprocessed, for

example by removing common English-language stop words and removing numbers and

punctuation, but these steps are fast and simple (Marcus et al., 2004).) Most models, even

generative statistical models like LDA, are fast and scalable to millions of documents in real

time (Porteous et al., 2008). Some IR models are well equipped to handle both synonymy

and polysemy, as explained in Section 2.2. Finally, all IR models can be applied to any text-

based software repository, such as the identifier names and comments within source code,

bug reports in a bug database, email archives, execution logs, and test cases.

Indeed, researchers are beginning to use IR models to mine software repositories. Re-

cent studies focus on concept mining (e.g., Cleary et al., 2008; Grant et al., 2008; Marcus

et al., 2004, 2005; Poshyvanyk and Marcus, 2007; Poshyvanyk et al., 2006; Revelle et al.,

2010; van der Spek et al., 2008), constructing source code search engines (e.g., Bajracharya

and Lopes, 2010; Tian et al., 2009), recovering traceability links between artifacts (e.g.,

Antoniol et al., 2008; Asuncion et al., 2010; de Boer and van Vliet, 2008; De Lucia et al.,

2004, 2007; Hayes et al., 2006; Jiang et al., 2008; Lormans and Van Deursen, 2006; Lor-

mans et al., 2006; Marcus and Maletic, 2003; McMillan et al., 2009), calculating source

code metrics (e.g., Bavota et al., 2010; Gall et al., 2008; Gethers and Poshyvanyk, 2010;

Kagdi et al., 2010; Linstead and Baldi, 2009; Liu et al., 2009; Marcus et al., 2008; Ujhazi

et al., 2010), and clustering similar documents (e.g., Kuhn et al., 2005, 2007, 2008, 2010;

CHAPTER 1. INTRODUCTION 6

Lin et al., 2006; Maletic and Marcus, 2001; Maletic and Valluri, 1999).

Although recent studies have shown promising results, we performed a detailed analysis

of the literature (Section 2.4) and found several limitations. In particular, we find that most

studies to date:

– focus on only a limited number of software engineering tasks;

– use only basic IR models; and

– treat IR models as black boxes without fully understanding their underlying assumptions

and parameter values.

In this thesis, we present techniques and empirical case studies that in aggregate help to

alleviate these limitations and advance the state-of-the-art of using IR models in software

engineering research and practice.

1.1 Thesis Statement

Our goal in this thesis it to encourage researchers and practitioners to go beyond the current

state of affairs when using IR models to mine software repositories. We thus formulate our

thesis statement as follows:

“The research and practice of using IR models to mine software repositories can
be improved by (i) considering additional software engineering tasks, such as pri-
oritizing test cases; (ii) using advanced IR techniques, such as combining multiple
IR models; and (iii) better understanding the assumptions and parameters of IR
models.”

1.2 Thesis Overview and Organization

We organize the thesis into five parts.

Part I provides introductory material and reviews the current literature in using IR mod-

els to mine software repositories.

Part II demonstrates new applications of IR models to existing software engineering

tasks. By doing so, we hope to encourage researchers to move beyond the current, limited

CHAPTER 1. INTRODUCTION 7

set of software engineering tasks, and explore how IR models can help tackle other tasks.

We apply IR models to two new tasks. The first task, presented in Chapter 3, is test case

prioritization, which aims to uncover an ordering of a test suite that can detect as many

faults in the source code as early as possible. We apply an IR model to the linguistic content

of the test suite to calculate the similarity between test cases, and give highest priority

to those test cases which are most dissimilar. We find that such a technique outperforms

existing coverage-based prioritization techniques. The second application, presented in

Chapter 4, measures how developers use email to help them develop software. We apply

a statistical topic model jointly to the source code history and mailing list archives of a

software system. We define metrics that measure the amount of activity a certain topic

experiences in the source code and mailing list over time, and use these metrics to quantify

the information flow between the mailing list and source code. We find that there is indeed

a strong relationship between the two repositories, and our results can be used to help

managers guide documentation and training efforts and monitor project status, and can

help developers recover past email discussions pertaining to a given source code entity.

Part III presents advanced IR techniques applied to unstructured software repositories.

In Chapter 5 we present a framework to combine any number of disparate IR models. We

conduct a case study in the context of bug localization, and find that model combination

can significantly improve localization performance, even when the constituent models have

poor performance. In Chapter 6, we use an advanced IR technique—the Hall topic evolution

model—as a means to automatically analyze the evolution of source code concepts. We find

that the Hall model is able to accurately describe the actual changes made by developers,

giving managers and developers the ability to better monitor their source code and answer

questions such as “Who is working on what concepts” and “What concepts changed since

last week?”

Part IV examines the assumptions and parameters of IR models and argues that we

should move away from treating IR models as black boxes. In Chapter 7, we show that

current research violates an implicit assumption of IR models, specifically that data will not

be duplicated over time. We propose a new model, called the Diff model, which properly

CHAPTER 1. INTRODUCTION 8

satisfies the IR model’s assumption by removing any duplication. We show that the Diff

model produces more accurate topic evolutions and is therefore a better tool for software

development teams. In Chapter 8, we show that data preprocessing steps and IR model

parameters are critically important, even though they are often ignored by current research.

In the context of bug localization, we perform a large empirical case study to investigate

how sensitive the models are to these design decisions, and which design decisions are best.

Finally, Part V provides concluding remarks, summarizes the thesis contributions, and

outlines future research directions.

1.3 Contributions of Thesis

The conceptual contribution of this thesis is the argument that we, as a community of soft-

ware engineering researchers and practitioners, need to move beyond the current state of

affairs in using IR models to mine unstructured software repositories, and move towards

new applications, better IR techniques, and better understanding the parameters and as-

sumptions of IR models. The technical contributions of this thesis focus on the development

of tools and the invention of techniques to show how to realize our overarching goal of mov-

ing beyond the state of the art. The empirical contributions of this thesis are the application

of all proposed techniques on several long-lived, real-world open source systems.

The main contributions of this thesis can be summarized as follows.

• Performing software engineering applications that are novel for IR models, i.e.,

– proposing and evaluating a technique to prioritize test cases; and

– proposing and evaluating a technique to analyze the interaction of source code and

mailing lists.

• Using advanced IR techniques on software repositories, i.e.,

– proposing and evaluating a framework for combining disparate IR models; and

– describing and evaluating an advanced IR technique to analyze source code histories.

CHAPTER 1. INTRODUCTION 9

• Going beyond the black box of off-the-shelf IR models, i.e.,

– proposing and evaluating a technique that overcomes the data duplication problem in

large source code histories; and

– analyzing the sensitivity of IR models to data preprocessing and IR model parameters.

Further contributions of this thesis include:

– A review of IR models and their current uses in software engineering (Sections 2.2–2.3)

– Publicly-available datasets corresponding to each case study in the thesis (available on-

line (Thomas, 2012))

CHAPTER 2

Background and State of the Art

IN THIS CHAPTER, we first describe the field of mining software repositories. We then

introduce information retrieval models, starting with the seminal work in the 1980s

on the Vector Space Model. We then provide a chronological summary of previous

research that has used IR models to mine software repositories. Finally, we analyze the

trends and shortcomings of previous research.

2.1 Mining Software Repositories

Mining Software Repositories (MSR) is a field of software engineering research which aims

to analyze and understand the data repositories related to software development. The main

goal of MSR is to make intelligent use of these software repositories to support the decision-

making process of software development (Godfrey et al., 2008; Hassan, 2004, 2008; Hassan

and Holt, 2005).

Software development produces several types of repositories during its lifetime, detailed

in the following paragraphs. Such repositories are the result of the daily interactions be-

tween the stakeholders, as well as the evolutionary changes to various software artifacts,

10

CHAPTER 2. BACKGROUND AND STATE OF THE ART 11

such as source code, test cases, bug reports, requirements documents, and other documen-

tation. These repositories offer a rich, detailed view of the path taken to realize a software

system, but they must be transformed from their raw form into something usable (Godfrey

et al., 2008; Hassan, 2008; Hassan and Xie, 2010; Tichy, 2010; Zimmermann et al., 2005).

A prime example of mining software repositories is bug prediction. By mining the charac-

teristics of source code entities (such as size, complexity, number of changes, and number

of past bugs), researchers have shown how to accurately predict which entities are likely to

have future bugs and therefore deserve more quality control resources.

2.1.1 Types of Software Repositories

We now describe the most common types of software repositories. These repositories con-

tain a vast array of information about different facets software development, from human

communication to source code evolution.

Source Code Source code is the executable specification of a software system’s behav-

ior (Lethbridge et al., 2005). The source code repository consists of a number of documents

or files written in one or more programming languages. Source code documents are gen-

erally grouped into logical entities called packages or modules. While source code contains

structured data (e.g., syntax, program semantics, control flow), it also contains unstruc-

tured data, such as comments, identifier names, and string literals. This unstructured por-

tion of source code, even without the aid of the structured portion, has been shown to help

determine the high-level functionality of the source code (Kuhn et al., 2007).

Bug and Vulnerability Databases A bug database (or bug-tracking system) maintains in-

formation about the creation and resolution of bugs, feature enhancements, and other soft-

ware maintenance tasks (Serrano and Ciordia, 2005). Typically, when developers or users

experience a bug in a software system, they make a note of the bug in the bug database in

the form of an issue, which includes such information as what task they were performing

CHAPTER 2. BACKGROUND AND STATE OF THE ART 12

when the bug occurred, how to reproduce the bug, and how critical the bug is to the func-

tionality of the system. Then, one or more maintainers of the system investigate the issue,

and if they resolve the issue, they close the issue. All of these tasks are captured in the bug

database. Popular bug database systems include Bugzilla (Mozilla Foundation, 2012a) and

Trac (Edgewall Software, 2012), although many exist.

A vulnerability database stores a list of information security vulnerabilities and expo-

sures (Neuhaus and Zimmermann, 2010). The goal of a vulnerability database is to doc-

ument and share data (e.g., current vulnerabilities being found in large systems) between

communities and applications.

Mailing Lists and Chat Logs Mailing lists (or discussion archives), along with the chat logs

(or chat archives) are archivals of the textual communication between developers, man-

agers, and other project stakeholders (Shihab et al., 2010a). The mailing list is usually

comprised of a set of time-stamped email messages, which contain a header (containing the

sender, receiver(s), and time stamp), a message body (containing the text content of the

email), and a set of attachments (additional documents sent with the email). The chat logs

contain the record of the instant-messaging conversations between project stakeholders,

and typically contain a series of time-stamped, author-stamped text messages (Bettenburg

et al., 2009; Shihab et al., 2009a,b).

Revision Control Database A revision control database maintains and records the history

of changes (or edits) to a repository of documents. Developers typically use revision con-

trol databases to maintain the edits to the source code of the system. Popular revision

control databases (such as Concurrent Versions System (CVS) (Berliner, 1990), Subversion

(SVN) (Pilato et al., 2008)), or Git (Bird et al., 2009b; Software Freedom Conservancy,

2012) allow developers to: checkout a copy of the global repository to their local file sys-

tem; make local changes to existing documents, add new documents, delete existing docu-

ments, or alter the directory structure of the repository; and commit these local changes to

the global repository.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 13

Requirements and Design Documents Requirements documents, usually written in con-

junction with (or with approval from) the customer, are documents that list the required

behavior of the software system (Lethbridge et al., 2005). The requirements can be cat-

egorized as either functional, which specify the “what” of the behavior of the program, or

non-functional, which describe the qualities of the software (e.g., reliability or accessibility).

Design documents are documents that describe the overall design of the software sys-

tem, including architectural descriptions, important algorithms, and use cases. Design doc-

uments can take the form of diagrams (especially UML diagrams (Fowler and Scott, 2000))

or free-flowing text.

Execution Logs An execution log is a document that logs the output of a system during its

execution of one or more predefined test cases. The log generally contains a listing of which

methods were called at which times, the values of certain variables, and other details about

the state of the execution. Execution logs are useful when debugging the performance of

large-scale systems with thousands or millions of concurrent users, since individual bugs

are difficult to recreate on demand.

Software System Repositories A software system repository is a collection of (usually

open source) software systems. These collections often contain hundreds or thousands of

systems whose source code can easily be searched and downloaded for use by interested

parties. Popular repositories include SourceForge (Geeknet, 2012) and Google Code (Google,

2012).

2.1.2 Structured vs. Unstructured Data in Software Repositories

The term “unstructured data” is difficult to define and its usage varies in the literature (Bet-

tenburg and Adams, 2010; Manning et al., 2008). For the purposes of this thesis, we adopt

the definition given by Manning et al. (2008):

CHAPTER 2. BACKGROUND AND STATE OF THE ART 14

“Unstructured data is data which does not have clear, semantically overt,

easy-for-a-computer structure. It is the opposite of structured data, the

canonical example of which is a relational database, of the sort companies

usually use to maintain product inventories and personnel records.”

Unstructured data usually refers to natural language text, since such text has no explicit

data model. Most natural language text indeed has latent structure, such as parts-of-speech,

named entities, relationships between words, and word sense, that can be inferred by hu-

mans or advanced machine learning algorithms. However, in its raw, unparsed form, the

text is simply a collection of characters with no structure and no meaning to a data min-

ing algorithm. Examples of unstructured data in software repositories include: bug report

titles and descriptions; source code linguistic data (i.e., identifier names, comments, and

string literals); requirements documents; descriptions and comments in design documents;

mailing lists and chat logs; and source control database commit messages.

Structured data, on the other hand, has a data model and a known form. Examples

of structured data in software repository include: source code parse trees, call graphs,

inheritance graphs; execution logs and traces; bug report metadata (e.g., author, severity,

date); source control database commit metadata (e.g., author, date, list of changed files);

and mailing list and chat log metadata.

2.2 Information Retrieval Models

“Information retrieval (IR) is finding material (usually documents) of an unstructured nature

(usually text) that satisfies an information need from within large collections (usually stored

on computers).”

—Manning et al. (2008, p. 1)

IR is used to find specific documents of interest in a large collection of documents.

Usually, a user enters a query (i.e., a text snippet) into the IR system, and the system

returns a list of documents related to the query. For example, when a user enters the query

CHAPTER 2. BACKGROUND AND STATE OF THE ART 15

Predicting the incidence of
faults in code has been com-
monly associated with mea-
suring complexity. In this pa-
per, we propose complexity
metrics that are based on the
code change process instead
of on the code.

(a) Document d1.

Bug prediction models are
often used to help allocate
software quality assurance ef-
forts (for example, testing and
code reviews). Mende and
Koschke have recently pro-
posed bug prediction models
that are effort-aware.

(b) Document d2.

There are numerous studies
that examine whether or not
cloned code is harmful to
software systems. Yet, few
of these studies study which
characteristics of cloned code
in particular lead to software
defects (or faults).

(c) Document d3.

Figure 2.1: A sample corpus of three documents.

“software engineering” into the Google IR system, it searches every webpage ever indexed

and returns those that are somehow related to software engineering.

IR models—the internal workings of IR systems—come in many forms, from basic keyword-

matching models to statistical models that take into account the location of the text in the

document, the size of the document, the uniqueness of the matched term, and even whether

the query and document contain shared topics of interest (Zhai, 2008).

Common Terminology

IR models share a common vernacular, which we summarize below. To make the discussion

more concrete, we use a running example of a corpus of three simple documents shown in

Figure 2.1.

term (word or token) w: a string of one or more alphanumeric characters.

In our example, we have a total of 101 terms. For example, predicting, bug, there,

have, bug and of are all terms. Terms might not be unique in a given document.

document d: an ordered set of N terms, w1, . . . , wN .

In our example, we have three documents: d1, d2, and d3. d1 has N = 34 terms, d2

has N = 35 terms, and d3 has N = 32 terms.

query q: an ordered set of |q| terms created by the user, q1, . . . , q|q|.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 16

In our example, a user might query for “defects” (with |q|=1 term) or “cloned code”

(with |q|=2 terms).

corpus C: an unordered set of n documents, d1, . . . , dn.

In our example, there is one corpus, which consists of n = 3 documents: d1, d2, and

d3.

vocabulary V : the unordered set of m unique terms that appear in a corpus.

In our example, the vocabulary consists of m = 71 unique terms across all three

documents: code, of, are, that, to, the, software,

term-document matrix A: an m×n matrix whose ith, jth entry is the weight of term wi in

document dj (according to some weighting function, such as term-frequency).

In our example, we have

A =

d1 d2 d3
code 3 1 2
of 2 0 2
are 1 2 1
.

indicating that, for example, the term code appears in document d1 with a weight of

3, and the term are appears in document d2 with a weight of 2.

topic (concept) z: an m-length vector of probabilities over the vocabulary of a corpus.

In our example, we might have a topic

code of are that to the software . . .

z1 = 0.25 0.10 0.05 0.01 0.10 0.17 0.30 . . .

indicating that, for example, when a term is drawn from topic z1, there is a 25%

chance of drawing the term code and a 30% chance of drawing the term software.

(This example assumes a generative model, such as PLSI or LDA. See Section 2.2 for

the full definitions.)

CHAPTER 2. BACKGROUND AND STATE OF THE ART 17

topic membership vector θd: For document d, a K-length vector of probabilities of the K

topics.

In our example, we might have a topic membership vector

z1 z2 z3 z4 . . .

θd1 = 0.25 0.0 0.0 0.70 . . .

indicating that, for example, when a topic is selected for document d1, there is a 25%

chance of selecting topic z1 and a 70% chance of selecting topic z3 .

document-topic matrix θ (also called document-topic matrix D): an n byK matrix whose

ith, jth entry is the probability of topic zj in document di. Row i of θ corresponds to

θdi .

In our example, we might have a document-topic matrix

θ =

z1 z2 z3 z4 . . .

d1 0.25 0.0 0.0 0.70 . . .
d2 0.0 0.0 0.0 1.0 . . .
d3 0.1 0.4 0.2 0.0 . . .

indicating that, for example, document d3 contains topic z3 with probability 20%.

topic-term matrix φ (also called topic-term matrix T): a K by m matrix whose ith, jth

entry is the probability of term wj in topic zi. Row i of φ corresponds to zi.

In our example, we might have a topic-term matrix:

φ =

code of are that to the software . . .

z1 0.25 0.10 0.05 0.01 0.10 0.17 0.30 . . .
z2 0.0 0.0 0.0 0.05 0.2 0.0 0.05 . . .
z3 0.1 0.04 0.2 0.0 0.07 0.10 0.12 . . .
.

Some common issues arise with any language model:

synonymy: Two terms w1 and w2, w1 6= w2, are synonyms if they possess similar semantics.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 18

homonymy: A term w is a homonym if it has multiple semantics.

We note that the term semantic is hard to define and takes on different meanings in

different contexts. In the field of IR, often a manually-created oracle is used (e.g., Word-

Net (Miller, 1995)) to determine the semantics of a term (i.e., relationships with other

terms).

The Boolean Model

The Boolean model treats each document as a set of words, and allows queries with single

keywords coupled with Boolean expressions to combine keywords (i.e., AND, OR, and NOT).

Using the three example documents in Figure 2.1, the query “faults OR defects” will match

document d1 (because it contains the word “faults”) and d3 (because it contains the word

“defects”), but not d2 (because it contains neither “faults” nor ”defects”). The query “faults

AND defects” will not match any documents, because none of them contain both words.

While simple to understand and implement, the Boolean model suffers from many draw-

backs. First, too many documents may be matched if overly-general words are present in

the query (e.g., “it” or “the”). Second, too few documents may be matched if the query

is poorly formulated (e.g., “automobile” instead of “car”). Third, it is difficult to rank the

matched documents by how relevant they might be, since all terms are weighted equally.

The Vector Space Model

The Vector Space Model (VSM) is a simple algebraic model based on the term-document

matrix of a corpus (Salton et al., 1975). VSM represents documents by their column vector

in the term-document matrix: a vector containing the weights of the words present in the

document, and 0s otherwise. The similarity between two documents (or between a query

and a document) is calculated by comparing the similarity of the two vectors in the term-

document matrix. Example vector similarity measures include Euclidean distance, cosine

distance, Hellinger distance, or KL divergence. In VSM, two documents will only be deemed

CHAPTER 2. BACKGROUND AND STATE OF THE ART 19

VSM

te
rm

s

docs

Raw

corpus

te
rm

s

docs

d
o

c
s

topics

Preprocessed

VSM

Inputs

to
p
ic

s

termsTM

Topic Models

Figure 2.2: The path from a raw corpus to a basic IR model or a more advanced topic model
(TM). Here, “Topic Models” includes LSI, ICA, PLSI, LDA, and all LDA variants.

similar if they contain at least one shared term; the more shared terms they have, and the

higher the weight of those shared terms, the higher the similarity score will be.

VSM improves over the Boolean model in two ways. First, it allows for term weighting

schemes to be used, such as tf-idf (term frequency, inverse document frequency) weighting.

Weighting schemes help to downplay the influence of common terms in the query and pro-

vide a boost to documents that match rare terms in the query. Another improvement is that

the relevance between the query and a document is based on vector similarity measures,

which is more flexible than the strict Boolean model.

Topic Models

A topic model (or latent topic model) is an IR model designed to automatically extract topics

from a corpus of text documents (Anthes, 2010; Blei and Lafferty, 2009; Steyvers and Grif-

fiths, 2007; Zhai, 2008). Here, a topic is a collection of terms that co-occur frequently in

the documents of the corpus, for example {mouse, click, drag, right, left} and {user, account,

password, authentication}. Due to the nature of language use, the terms that constitute a

topic are often semantically related (Blei et al., 2003).

Topic models were originally developed as a means of automatically indexing, searching,

clustering, and structuring large corpora of unstructured and unlabeled documents. Using

topic models, documents can be represented by the topics within them, and thus the entire

CHAPTER 2. BACKGROUND AND STATE OF THE ART 20

corpus can be indexed and organized in terms of this discovered semantic structure. By

representing documents by the lower-dimensional topics, as opposed to terms, topic models

(i) uncover latent semantic relationships and (ii) allow faster analysis on text (Zhai, 2008).

Figure 2.2 shows the general process of creating basic IR models and more advanced topic

models from a raw corpus; we describe several topic modeling techniques below.

Latent Semantic Indexing Latent Semantic Indexing (LSI) (or Latent Semantic Analysis

(LSA)) is an information retrieval model that extends the VSM by reducing the dimension-

ality of the term-document matrix by means of Singular Value Decomposition (SVD) (Deer-

wester et al., 1990). During the dimensionality reduction phase, terms that are related (in

terms of co-occurrence) will be grouped together into topics1. This noise-reduction tech-

nique has been shown to provide increased performance over VSM in terms of dealing with

polysemy and synonymy (Baeza-Yates and Ribeiro-Neto, 1999).

SVD is a factorization of the original term-document matrix A that reduces the dimen-

sionality of A by isolating the singular values of A (Salton and McGill, 1983). Since A is

likely to be very sparse, SVD is a critical step of the LSI approach. SVD decomposes A into

three matrices: A = TSDT , where T is an m by r = rank(A) term-topic matrix, S is the r

by r singular value matrix, and D is the n by r document-topic matrix.

LSI augments the reduction step of SVD by choosing a reduction factor, K, which is

typically much smaller than the rank of the original term-document matrix r. Instead of

reducing the input matrix to r dimensions, LSI reduces the input matrix to K dimensions.

There is no perfect choice for K, as it is highly data- and task-dependent. In the literature,

typical values range between 50–300.

As in VSM, terms and documents are represented by row and column vectors, respec-

tively, in the term-document matrix. Thus, two terms (or two documents) can be compared

by some distance measure between their vectors (e.g., cosine similarity) and queries can

1The creators of LSI call these reduced dimensions “concepts”, not “topics”. However, to be consistent with
other topic modeling approaches, we will use the term “topics”.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 21

by formulated and evaluated against the matrix. However, because of the reduced dimen-

sionality of the term-document matrix after SVD, these measures are more equipped to deal

with noise in the data.

Independent Component Analysis Independent Component Analysis (ICA) (Comon, 1994)

is a statistical technique used to decompose a random variable into statistically indepen-

dent components (i.e., dimensions). Although not generally considered a topic model, it

has been used in similar ways to LSI to model source code documents in a K-dimensional

conceptual space.

Like LSI, ICA reduces the dimensionality of the term-document matrix to help reduce

noise and associate terms. However, unlike LSI, the resulting dimensions in ICA are statis-

tically independent of one another, which helps capture more variation in the underlying

data (Grant and Cordy, 2009).

Probabilistic LSI Probabilistic Latent Semantic Indexing (PLSI) (or Probabilistic Latent Se-

mantic Analysis (PLSA)) (Hofmann, 1999, 2001) is a generative model that addresses the

statistical unsoundness of LSI. Hofmann argues that since LSI uses SVD in its dimension-

reduction phase, LSI is implicitly making the unqualified assumption that term counts will

follow a Gaussian distribution. Since this assumption is not verified, LSI is “unsatisfactory

and incomplete” (Hofmann, 1999).

To overcome this assumption, PLSI defines a generative latent-variable model, where

the latent variables are topics in documents. At a high level, a generative model has the

advantages of being evaluable with standard statistical techniques, such as model checking,

cross-validation, and complexity control; LSI could not be evaluated with any of these tech-

niques. And since the latent variables are topics in documents, PLSI is also well-equipped

to more readily handle polysemy and synonymy.

The generative model for each term in the corpus can be summarized with the following

steps.

– Select a document di with probability P (di).

CHAPTER 2. BACKGROUND AND STATE OF THE ART 22

– Select a topic zk with probability P (zk|di).

– Generate a term wj with probability P (wj |zk).

Given the observations in a dataset (i.e., terms), one can perform inference against

this model to uncover the topics zi, ..., zk. We refer interested readers to the original arti-

cles (Hofmann, 1999, 2001).

As was shown in subsequent articles (e.g., Blei et al., 2003; Zhai, 2008), the generative

model of PLSI suffers from at least two critical problems. First, since d is used as an index

variable in the first step, the number of parameters that need to be estimated grows linearly

with the size of the corpus, which can lead to severe over-fitting issues. Second, since the zk

vectors are only estimated for documents in the training set, they cannot be easily applied

to new, unseen documents.

Latent Dirichlet Allocation Latent Dirichlet Allocation (LDA) is a popular probabilistic

topic model (Blei et al., 2003) that has largely replaced PLSI. One of the reasons it is so

popular is because it models each document as a multi-membership mixture of K corpus-

wide topics, and each topic as a multi-membership mixture of the terms in the corpus

vocabulary. This means that there is a set of topics that describe the entire corpus, each

document can contain more than one of these topics, and each term in the entire repository

can be contained in more than one of these topic. Hence, LDA is able to discover a set of

ideas or themes that well describe the entire corpus (Blei and Lafferty, 2009).

LDA is based on a fully generative model that describes how documents are created.

Intuitively, this generative model makes the assumption that the corpus contains a set of K

corpus-wide topics, and that each document is comprised of various combinations of these

topics. Each term in each document comes from one of the topics in the document. This

generative model is formulated as follows:

– Choose a topic vector θd ∼ Dirichlet(α) for document d.

– For each of the N terms wi:

– Choose a topic zk ∼ Multinomial(θd).

CHAPTER 2. BACKGROUND AND STATE OF THE ART 23

– Choose a term wi from p(wi|zk, β).

Here, p(wi|zk, β) is a multinomial probability function, α is a smoothing parameter for

document-topic distributions, and β is a smoothing parameter for topic-term distributions.

The two levels of this generative model allow three important properties of LDA to be

realized: documents can be associated with multiple topics, the number of parameters to

be estimated does not grow with the size of the corpus, and, since the topics are global and

not estimated per document, unseen documents can easily be accounted for.

Like any generative model, the task of LDA is that of inference: given the terms in

the documents, what topics did they come from (and what are the topics)? LDA per-

forms inference with latent variable models (or hidden variable models), which are machine

learning techniques devised for just this purpose: to associate observed variables (here,

terms) with latent variables (here, topics). A rich literature exists on latent variable mod-

els (Bartholomew, 1987; Bishop, 1998; Loehlin, 1987); for the purposes of this thesis, we

omit the details necessary for computing the posterior distributions associated with such

models. It is sufficient to know that such methods exist and are being actively researched.

For the reasons presented above, it is argued that LDA’s generative process gives it a

solid footing in statistical rigor—much more so than previous topic models (Blei et al.,

2003; Griffiths and Steyvers, 2004; Steyvers and Griffiths, 2007). As such, LDA may be

better suited to discover the latent relationships between documents in a large text corpus.

Table 2.1 shows example topics discovered by LDA from version 7.5.1 of the source code

of JHotDraw (Gamma, 2012), a framework for creating simple drawing applications. For

each topic, the table shows an automatically-generated two-word topic label, the top (i.e.,

highest probable) words for the topic, and the top three matching Java classes in JHotDraw.

The topics span a range of concepts, from opening files to drawing Bezier paths. The discov-

ered topics intuitively make sense and the top-matching classes match our expectations—

there seems to be a natural match between the “Bezier path” topic and the CurvedLinear

and BezierFigure classes.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 24

Label Top words Top 3 matching classes

file filter file uri chooser urichoos save filter set
jfile open

JFileURIChooser, URIUtil,

AbstractSaveUnsavedChangesAction

tool bar editor add tool draw action button
bar view creat

DrawingPanel, ODGDrawingPanel, PertPanel

undoabl edit edit action undo chang undoabl event
overrid

NonUndoableEdit, CompositeEdit,

UndoRedoManager

connect figur figur connector connect start end
decor set handl

ConnectionStartHandle,

ConnectionEndHandle, Connector

bezier path path bezier node index mask point
geom pointd

CurvedLiner, BezierFigure, ElbowLiner

Table 2.1: Example topics from JHotDraw source code version 7.5.1. The labels are
automatically-generated based on the most popular bigram in the topic.

Topic Evolution Models

Several advanced techniques have been proposed to extract the evolution of a topic in a

time-stamped corpus—how the usage of a topic (and sometimes the topic itself) changes

over time as the terms in the documents are changed over time. Such a model is usually an

extension to a basic topic model that accounts for time in some way. We call such a model

a topic evolution model.

Initially, the Dynamic Topic Model (Blei and Lafferty, 2006) was introduced. This model

represents time as a discrete Markov process, where topics themselves evolve according to

a Gaussian distribution. This model thus penalizes abrupt changes between successive time

periods, discouraging rapid fluctuation in the topics over time.

The Topics Over Time (TOT) (Wang and McCallum, 2006) model represents time as

a continuous beta distribution, effectively removing the penalty on abrupt changes from

the Dynamic Topic Model. However, the beta distribution is still rather inflexible in that it

assumes that a topic evolution will have only a single rise and fall during the entire corpus

history.

The Hall model (Hall et al., 2008) applies LDA to the entire collection of documents at

the same time and performs post hoc calculations based on the observed probability of each

document in order to map topics to versions. Linstead et al. (2008b) and Thomas et al.

(2010b) also used this model on a software system’s version history. The main advantage

CHAPTER 2. BACKGROUND AND STATE OF THE ART 25

of this model is that no constraints are placed on the evolution of topics, providing the

necessary flexibility for describing large changes to a corpus.

The Link model, proposed by Mei and Zhai (2005) and first used on software repos-

itories by Hindle et al. (2009), applies LDA to each version of the repository separately,

followed by a post-processing phase to link topics across versions. Once the topics are

linked, the topic evolutions can be computed in the same way as in the Hall model. The

post-processing phase must iteratively link topics found in one version to the topics found in

the previous. This process inherently involves the use of similarity thresholds to determine

whether two topics are similar enough to be called the same, since LDA is a probabilistic

process and it is not guaranteed to find the exact same topics in different versions of a cor-

pus. As a result, at each successive version, some topics are successfully linked while some

topics are not, causing past topics to “die” and new topics to be “born”. Additionally, it is

difficult to allow for gaps in the lifetime of a topic.

Applying IR to Source Code

Before IR models are applied to source code, several preprocessing steps are generally taken

in an effort to reduce noise and improve the resulting models.

– Characters related to the syntax of the programming language (e.g., “&&”, “->”) are re-

moved; programming language keywords (e.g., “if”, “while”) are removed.

– Identifier names are split into multiple parts based on common naming conventions, such

as camel case (oneTwo), underscores (one two), dot seperators (one.two), and capital-

ization changes (ONETwo)).

– Common English-language stopwords (e.g., “the”, “it”, “on”) are removed. See Table 2.2

for a full list.

– Word stemming is applied to find the root of each word (e.g., “changing” becomes

“chang”), typically using the Porter algorithm (Porter, 1980).

– In some cases, the vocabulary of the resulting corpus is pruned by removing words that

occur in, for example, over 80% or under 2% of the documents (Madsen et al., 2004).

CHAPTER 2. BACKGROUND AND STATE OF THE ART 26

The main idea behind these steps is to capture the semantics of the developers’ inten-

tions, which are thought to be encoded within the identifier names and comments in the

source code (Poshyvanyk et al., 2007). The rest of the source code (i.e., special syntax,

language keywords, and stopwords) are just noise and will not be beneficial to the results

of IR models. We have provided our preprocessing tool online (Thomas, 2012).

CHAPTER 2. BACKGROUND AND STATE OF THE ART 27

a able about above according accordingly across actually after afterwards again
against all allow allows almost alone along already also although always am
among amongst an and another any anybody anyhow anyone anything any-
way anyways anywhere apart appear appreciate appropriate are around as
aside ask asking associated at available away awfully b be became because
become becomes becoming been before beforehand behind being believe be-
low beside besides best better between beyond both brief but by c came can
cannot cant cause causes certain certainly changes clearly co com come comes
concerning consequently consider considering contain containing contains cor-
responding could course currently d definitely described despite did different
do does doing done down downwards during e each edu eg eight either else
elsewhere enough entirely especially et etc even ever every everybody every-
one everything everywhere ex exactly example except f far few fifth first five
followed following follows for former formerly forth four from further further-
more g get gets getting given gives go goes going gone got gotten greetings
h had happens hardly has have having he hello help hence her here hereafter
hereby herein hereupon hers herself hi him himself his hither hopefully how
howbeit however i ie if ignored immediate in inasmuch inc indeed indicate in-
dicated indicates inner insofar instead into inward is it its itself j just k keep
keeps kept know knows known l last lately later latter latterly least less lest
let like liked likely little look looking looks ltd m mainly many may maybe me
mean meanwhile merely might more moreover most mostly much must my
myself n name namely nd near nearly necessary need needs neither never nev-
ertheless new next nine no nobody non none noone nor normally not nothing
novel now nowhere o obviously of off often oh ok okay old on once one ones
only onto or other others otherwise ought our ours ourselves out outside over
overall own p particular particularly per perhaps placed please plus possible
presumably probably provides q que quite qv r rather rd re really reasonably
regarding regardless regards relatively respectively right s said same saw say
saying says second secondly see seeing seem seemed seeming seems seen self
selves sensible sent serious seriously seven several shall she should since six
so some somebody somehow someone something sometime sometimes some-
what somewhere soon sorry specified specify specifying still sub such sup sure
t take taken tell tends th than thank thanks thanx that thats the their theirs
them themselves then thence there thereafter thereby therefore therein theres
thereupon these they think third this thorough thoroughly those though three
through throughout thru thus to together too took toward towards tried tries
truly try trying twice two u un under unfortunately unless unlikely until unto
up upon us use used useful uses using usually uucp v value various very via
viz vs w want wants was way we welcome well went were what whatever
when whence whenever where whereafter whereas whereby wherein where-
upon wherever whether which while whither who whoever whole whom whose
why will willing wish with within without wonder would would x y yes yet you
your yours yourself yourselves z zero

Table 2.2: The stopword list we use in our empirical case studies throughout the thesis. We
obtain the list from the MALLET tool (McCallum, 2012). The list contains a total of 521
terms.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 28

2.3 State of the Art

In this section, we describe and evaluate related work that uses IR models to mine software

repositories and perform some software engineering task. We organize the work into sub-

sections by software engineering task. We provide a brief description of each task, followed

by a chronological presentation of the relevant articles.

2.3.1 Concept/Feature Location

The task of concept location (or feature location) is to identify the parts (e.g., documents or

methods) of the source code that implement a given feature of the software system (Ra-

jlich and Wilde, 2002). This is useful for developers wishing to debug or enhance a given

feature. For example, if the so-called file printing feature contained a bug, then a concept

location technique would attempt to automatically find those parts of the source code that

implement file printing (i.e., parts of the source code that are executed when the system

prints a file).

Related to concept location is aspect-oriented programming (AOP), which aims at pro-

viding developers with the machinery to easily implement aspects of functionality whose

implementation spans over multiple source code documents.

LSI-based Techniques

LSI was first used for the concept location task by Marcus et al. (2004), who developed a

technique to take a developer query and return a list of related source code documents. The

authors showed that LSI provides better results than existing methods (i.e., regular expres-

sions and dependency graphs) and is easily applied to source code, due to the flexibility

and light-weight nature of LSI. The authors also noted that since LSI is applied only to the

comments and identifiers of the source code, it is language-independent and thus accessible

for any system.

Marcus et al. (2005) demonstrated that concept location is needed in the case of Object-

Oriented (OO) programming languages, contrary to previous beliefs. The authors compared

CHAPTER 2. BACKGROUND AND STATE OF THE ART 29

LSI with two other techniques, namely regular expressions and dependency graphs, for lo-

cating concepts in OO source code. The authors concluded that all techniques are beneficial

and necessary, and each possesses its own strengths and weaknesses.

Poshyvanyk et al. (2006) combined LSI and Scenario Based Probabilistic ranking of

execution events for the task of feature location in source code. The authors demonstrated

that using the two techniques, when applied together, outperform either of the techniques

individually.

Poshyvanyk and Marcus (2007) combined LSI and Formal Concept Analysis (FCA) to

locate concepts in source code. LSI is first used to map developer queries to source code

documents, then FCA is used to organize the results into a concept lattice. The authors

found that this technique works well, and that concept lattices are up to four times more

effective at grouping relevant information than simple ranking methods.

Cleary et al. (2008) compared several IR (e.g., VSM, LSI) and NLP techniques for con-

cept location. After an extensive experiment, the authors found that NLP techniques do

not offer much of an improvement over IR techniques, which is contrary to results in other

communities.

van der Spek et al. (2008) used LSI to find concepts in source code. The authors con-

sidered the effects of various preprocessing steps, such as stemming, stopping, and term

weighting. The authors manually evaluated the resulting concepts with the help of domain

experts.

Grant et al. (2008) used ICA, a conceptually similar model to LSI, to locate concepts in

source code. The authors argued that since ICA is able to identify statistically independent

signals in text, it can better find independent concepts in source code. The authors showed

the viability of ICA to extract concepts through a case study on a small system.

Revelle and Poshyvanyk (2009) used LSI, along with static and dynamic analysis, to

tackle the task of feature location. The authors combined the different techniques in novel

ways. For example, textual similarity was used to traverse the static program dependency

graphs, and dynamic analysis removed textually-found methods that were not executed in

a scenario. The authors found that no technique outperformed all others across all case

CHAPTER 2. BACKGROUND AND STATE OF THE ART 30

studies.

Revelle et al. (2010) performed data fusion between LSI, dynamic analysis, and web

mining algorithms (i.e., HITS and PageRank) to tackle the task of feature location. The

authors found that combining all three techniques significantly outperforms any of the in-

dividual methods, and outperforms the state-of-the-art in feature location.

LDA-based Techniques

Linstead et al. (2007a) were the first to use LDA to locate concepts in source code in the

form of LDA topics. Their technique can be applied to individual systems or large collections

of systems to extract the concepts found within the identifiers and comments in the source

code. The authors demonstrated how to group related source code documents based on

comparing the documents’ topics.

Linstead et al. (2007b) applied a variant of LDA, the Author-Topic model (Rosen-Zvi

et al., 2004), to source code to extract the relationship between developers (authors) and

source code topics. Their technique allows the automated summarization of “who has

worked on what”, and the authors provided a brief qualitative argument as to the effec-

tiveness of this technique.

Maskeri et al. (2008) applied LDA to source code to extract the business concepts em-

bedded in comments and identifier names. The authors applied a weighting scheme for

each keyword in the system, based on where the keyword is found (e.g., class name, pa-

rameter name, method name). The authors found that their LDA-based technique is able

to successfully extract business topics, implementation topics, and cross-cutting topics from

source code.

Baldi et al. (2008) proposed a theory that software concerns are equivalent to the latent

topics found by statistical topic models. Further, they proposed that aspects are those latent

topics that have a high scattering metric. The authors applied their technique to a large set

of open-source systems to identify the global set of topics, as well as perform a more detailed

analysis of a few specific systems. The authors found that latent topics with high scattering

CHAPTER 2. BACKGROUND AND STATE OF THE ART 31

metrics are indeed those that are typically classified as aspects in the AOP community.

Savage et al. (2010) introduced a topic visualization tool, called TopicXP , which sup-

ports interactive exploration of discovered topics located in source code.

2.3.2 Traceability Recovery and Bug Localization

An often-asked question during software development is: “Which source code document(s)

implement requirement X?” Traceability recovery aims to automatically uncover links between

pairs of software artifacts, such as source code documents and requirements documents.

This allows a project stakeholder to trace a requirement to its implementation, for example

to ensure that it has been implemented correctly (or at all!). Traceability recovery between

pairs of source code documents is also important for developers wishing to learn which

source code documents are somehow related to the current source code file being worked

on. Bug localization is a special case of traceability recovery in which traceability links

between bug reports and source code are sought.

LSI-based Techniques

Marcus and Maletic (2003) were the first to use LSI to recover traceability links between

source code and documentation (e.g., requirements documents). The authors applied LSI to

the source code identifiers and comments and the documentation, then computed similarity

scores between each pair of documents. A user could then specify a similarity threshold to

determine the actual links. The authors compared their work to a VSM-based recovery

technique and found that LSI performs at least as good as VSM in all case studies.

De Lucia et al. (2004) integrated a traceability recovery tool, based on LSI, into a soft-

ware artifact management system called ADAMS. The authors presented several case studies

that use their LSI-based technique to recover links between source code, test cases, and re-

quirements documents. In subsequent work, De Lucia et al. (2006) proposed an incremen-

tal technique for recovering traceability links. In this technique, a user semi-automatically

interacts with the system to find an optimal similarity threshold between documents (i.e.,

CHAPTER 2. BACKGROUND AND STATE OF THE ART 32

a threshold that properly discriminates between related and unrelated documents). The

authors claimed that a better threshold results in fewer links for the developer to consider,

and thus fewer chances for error, making human interaction a necessity.

Hayes et al. (2006) evaluated various IR techniques for generating traceability links be-

tween various high- and low-level requirements, concentrating on the tf-idf and LSI models.

The authors implemented a tool called RETRO to aid a requirements analyst in this task.

The authors concluded that, while not perfect, IR techniques provide value to the analyst.

Lormans and Van Deursen (2006) evaluated different linking strategies (i.e., threshold-

ing techniques) for traceability recovering using LSI by performing three case studies. The

authors concluded that LSI is a promising technique for recovering links between source

code and requirements documents and that different linking strategies result in different

results. However, the authors observed that no linking strategy is optimal under all scenar-

ios. In subsequent work, Lormans (2007) introduced a framework for managing evolving

requirements (and their traceability links) in a software development cycle. Their technique

uses LSI to suggest candidate links between artifacts.

Lormans et al. (2006) used LSI for constructing requirement views, which are different

views of requirements. For example, one requirement view might display only requirements

that have been implemented. The authors implemented their tool, called ReqAnalyst, and

used it on several real-world case studies.

De Lucia et al. (2007) were the first to perform a human case study, which evaluated the

effectiveness of using LSI for recovering traceability links during the software development

process. The authors concluded that LSI is certainly a helpful step for developers, but that

its main drawback is the inevitable trade off between precision and recall.

Jiang et al. (2008) proposed an incremental technique to maintaining traceability links

as a software system evolves over time. The authors’ technique, called incremental LSI,

uses links (and the LSI matrix) from previous versions when computing links for the current

version, thus saving computation effort.

de Boer and van Vliet (2008) developed a tool to support auditors in locating documen-

tation of interest. The tool, based on LSI, suggests to the auditor documents that are related

CHAPTER 2. BACKGROUND AND STATE OF THE ART 33

to a given query, as well as documents that are semantically related to a given document.

Such a process gives the auditor, who is unfamiliar with the documentation, a guide to

make it easier to explore and understand the documentation of a system.

Antoniol et al. (2008) introduced a tool called Reuse or Rewrite (ReORe) to help stake-

holders decide if they should update existing code (for example, to introduce new func-

tionalities) or completely rewrite from scratch. ReORe achieves this by using a combination

of static (LSI), manual, and dynamic analysis to create traceability links between existing

requirements and source code. The stakeholders can then review the recovered traceability

links to decide how well the current system implements the requirements.

McMillan et al. (2009) used both textual (via LSI) and structural (via Evolving Inter-

operation Graphs) information to recover traceability links between source code and re-

quirements documents. The authors performed a case study on a small but well-understood

system, CoffeeMaker. The authors demonstrated that combining textual and structural in-

formation modestly improves traceability results in most cases.

Comparison Studies

While the majority of researchers only evaluate their technique with respect to a single topic

model, a few have directly compared the performance of multiple topic models.

Lukins et al. (2008, 2010) used LDA for bug localization. The authors first build an

LDA model on the source code at the method level, using the standard preprocessing steps.

Then, given a bug report, the authors compute the similarity of the text content of the

bug report to all source code documents. They then return the top ranked source code

documents. By performing case studies on Eclipse and Mozilla (on a total of 3 and 5 bug

reports, respectively), the authors find that LDA often outperforms LSI. We note that the

authors use manual query expansion, which may influence their results.

Nguyen et al. (2011) introduced a new topic model based on LDA, called BugScout, in

an effort to improve bug localization performance. BugScout explicitly considers past bug

reports, in addition to identifiers and comments, when representing source code documents,

CHAPTER 2. BACKGROUND AND STATE OF THE ART 34

using the two data sources concurrently to identify key technical concepts. The authors

applied BugScout to four different systems and found that BugScout improves performance

by up to 20% over LDA applied only to source code.

Rao and Kak (2011) compared several IR models for bug localization, including VSM,

LSI, and LDA, as well as various combinations. The authors performed a case study on a

small dataset, iBUGS (Dallmeier and Zimmermann, 2007), and concluded that simpler IR

models often outperform more sophisticated models.

Capobianco et al. (2009) compared the ability of four different techniques (Vector Space

Model, LSI, Jenson-Shannon, and B-Spline) to recover traceability links between source

code, test cases, and UML diagrams. The authors found that the B-Spline method outper-

forms VSM and LSI, and is comparable to the Jenson-Shannon method.

Oliveto et al. (2010) compared the effectiveness of four IR techniques for traceability

recovery: Jenson-Shannon, VSM, LSI, and LDA. The authors showed that LDA provides

unique dimensionality compared to the other four techniques.

Asuncion et al. (2010) introduced a tool called TRASE that uses LDA for prospectively,

as opposed to retrospectively, recovering traceability links amongst diverse artifacts in soft-

ware repositories. This means that developers can create and maintain traceability links as

they work on the system. The authors demonstrated that LDA outperforms LSI in terms of

precision and recall.

2.3.3 Source Code Metrics

Bug prediction (or defect prediction or fault prediction) tries to automatically predict which

parts (e.g., documents or methods) of the source code are likely to contain bugs. This task

is often accomplished by collecting metrics on the source code, training a statistical model

to the metrics of documents that have known bugs, and using the trained model to predict

whether new documents will contain bugs.

Often, the state of the art in bug prediction is advanced either by the introduction of new

metrics or by the use of a previously unexplored statistical model (e.g., Kamei et al. (2010),

CHAPTER 2. BACKGROUND AND STATE OF THE ART 35

Nguyen et al. (2010), Shihab et al. (2010b)). An entire suite of metrics have thus far

been introduced, counting somewhere in the hundreds. Additionally, dozens or hundreds

of statistical models have been applied with varying degrees of success.

The majority of metrics are measured directly on the code (e.g., code complexity, num-

ber of methods per class) or on the code change process (methods that are frequently

changed together, number of methods per change). However, researchers have used topic

models to introduce semantic or conceptual metrics, which are mostly based on the com-

ments and keywords in the source code.

LSI-based Metrics

Marcus et al. (2008) introduced a new class cohesion metric, called the Conceptual Cohe-

sion of Classes (C3), for measuring the cohesion of a program entity. The metric is based

on the semantic information in the class, such as identifier names and comments, and is

computed using LSI. Highly cohesive entities are thought to follow better design princi-

ples and are shown to correlate negatively with program faults. Bavota et al. (2010) used

the C3 metric in developing an technique to support the automatic refactoring of so-called

blob classes (i.e., classes that contain too much functionality and thus have a low cohesion

score). Kagdi et al. (2010) used a similar metric, the conceptual similarity between pairs of

source code methods, as a part of a novel change impact analysis technique.

Gall et al. (2008) extensively evaluated a suite of semantic metrics that are computed

on the design and requirements documents and on the source code of a system throughout

the development process. Some of the metrics are based on LSI. Through three case studies,

the authors found significant correlation between metrics measured on design and require-

ments documents and the same metrics measured source code, providing strong evidence of

the semantic similarity of these documents. The authors argued that tracking such metrics

can help in the detection of problematic or suspect design decisions early in the software

development process.

Ujhazi et al. (2010) defined two new conceptual metrics that measure the coupling and

CHAPTER 2. BACKGROUND AND STATE OF THE ART 36

cohesion of methods in software systems. Both metrics are based on a method’s represen-

tation in an LSI subspace. The authors compared their new metrics to an existing suite of

metrics (including those of Marcus et al. (2008)) and found that the new metrics provide

statistically significant improvements compared to previous metrics.

LDA-based Metrics

Linstead and Baldi (2009) applied LDA to the bug reports in the GNOME system with the

goal of measuring the coherence of a bug report, i.e., how easy to read and how focused

a bug report is. This coherence metric is defined as the tangling of LDA topics within the

report, i.e., how many topics are found in the report (fewer is better).

Liu et al. (2009) applied LDA to source code methods in order to compute a novel class

cohesion metric called Maximum Weighted Entropy (MWE). MWE is computed based on

the occupancy and weight of a topic in the methods of a class. The authors demonstrated

that this metric captures novel variation in models that predict software faults.

Gethers and Poshyvanyk (2010) introduced a new coupling metric, the Relational Topic-

based Coupling (RTC) metric, based on a variant of LDA called Relational Topic Models

(RTM). RTM extends LDA by explicitly modeling links between documents in the corpus.

RTC uses these links to define the coupling between two documents in the corpus. The

authors demonstrated that their proposed metric provides value because it is statistically

different from existing metrics.

2.3.4 Statistical Debugging and Root Cause Analysis

Andrzejewski et al. (2007) performed statistical debugging with the use of Delta LDA, a

variant of LDA. Statistical debugging is the task of identifying a problematic piece of code,

given a log of the execution of the code. Delta LDA is able to model two types of topics:

usage topics and bug topics. Bug topics are those topics that are only found in the logs of

failed executions. Hence, the authors were able to identify the pieces of code that likely

caused the bugs.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 37

Bose and Suresh (2008) used LSI as a tool for root cause analysis (RCA), i.e., identifying

the root cause of a software failure. The authors built and executed a set of test scenarios

that excersized the system’s methods in various sequences. Then, the authors used LSI

to build a method-to-test co-occurrence matrix, which clustered tests that execute similar

functionalities, helping to characterize the different manifestations of a fault.

Zawawy et al. (2010) presented a framework for reducing the size and complexity of ex-

ecution logs so that the manual work performed by a log analyst is reduced during RCA. The

reduction is accomplished by filtering the log by performing SQL queries and LSI queries.

The authors demonstrated that LSI leads to fewer false positives and higher recall during

the filtering process.

2.3.5 Software Evolution and Trend Analysis

Analyzing and characterizing how a software system changes over time, or the software

evolution (Lehman, 1980) of a system, has been of interest to researchers for many years.

Both how a software system changes (e.g., it grows rapidly every twelfth month) and why a

software system changes (e.g., a bug fix) can help yield insights into the processes used by

a specific software system as well as software development as a whole.

Linstead et al. (2008b) applied LDA to several versions of the source code of a system

in an effort to identify the trends in the topics over time. Trends in source code histories

can be measured by changes in the probability of seeing a topic at specific version. When

documents pertaining to a particular topic are first added to the system, for example, the

topics will experience a spike in overall probability.

In a similar effort, Thomas et al. (2010b) evaluated the effectiveness of topic evolution

models for detecting trends in the software development process. The authors applied LDA

to a series of versions of the source code and calculated the popularity of a topic over time.

The authors manually verified that spikes or drops in a topic’s popularity indeed coincided

with developer activity mentioned in the release notes and other system documentation,

providing evidence that topic evolution models provide a good summary of the software

CHAPTER 2. BACKGROUND AND STATE OF THE ART 38

history.

Hindle et al. (2009, 2010) applied LDA to commit log messages in order to see what

topics are being worked on by developers at any given time. The authors applied LDA to

the commit logs in a 30 day period, and then linked successive periods together using a

topic similarity score (i.e., two topics are linked if they share 8 out of their top 10 terms).

The authors found LDA to be useful in identifying developer activity trends.

Neuhaus and Zimmermann (2010) used LDA to analyze the Common Vulnerabilities

and Exposures (CVE) database, which archives vulnerability reports from many different

sources. The authors’ goal was to find the trends of each vulnerability, in order to see which

are increasing and which are decreasing. The authors found that their results are mostly

comparable to an earlier manual study on the same dataset.

2.3.6 Document Clustering

Document clustering is the task of grouping related documents together, usually to enhance

program understanding or reduce a developer’s searching effort (Kuhn et al., 2005, 2007).

Documents can be clustered using any of several possible attributes, including their seman-

tic similarity or dependency graphs.

Maletic and Marcus (2001); Maletic and Valluri (1999) first applied LSI to cluster source

code documents. The authors claimed that such a clustering can improve program com-

prehension during the maintenance and evolutionary phases of the software development

cycle. The authors found that LSI produces useful clusters and, since LSI is automated, can

be of significant value to developers.

In a similar effort, Kuhn et al. (2005, 2007) introduced a tool named HAPAX for cluster-

ing source code documents. The authors extended the work by Maletic and Marcus (2001)

by visualizing the resulting clusters and providing each cluster with a name based on all the

words in the class, not just the class names.

Lin et al. (2006) introduced a tool called Prophecy that allows developers to search the

Java API for groups of related functionalities. The authors applied LSI to the Javadocs of

CHAPTER 2. BACKGROUND AND STATE OF THE ART 39

the Java API to find similarities in their functionalities. A developer can then search the LSI

index to yield a cluster of related classes.

Kuhn et al. (2008, 2010) built a two dimensional map of a software system, where the

positions of entities and distances between entities are based on their vocabularies. LSI is

used to reduce the dimensionality of the document-term matrix so that similar documents

can be closely aligned on the map. This software cartography can help developers under-

stand the layout and relationships of their source code.

2.3.7 Organizing and Searching Software Repositories

Kawaguchi et al. (2006) presented a tool called MUDABlue for automatically organizing

large collections of open-source software systems (e.g., SourceForge and Google Code) into

related groups, called software categories. MUDABlue applies LSI to the identifier names

found in each software system. The authors demonstrated that MUDABlue can achieve

recall and precision scores above .80, compared with manually created tags of the systems.

Tian et al. (2009) developed LACT, a technique to categorize systems based on their

underlying topics. This work is similar in nature to Kawaguchi et al. (2006), except this

work employs LDA instead of LSI. The authors compared their technique to MUDABlue and

concluded that the techniques are comparable in effectiveness.

Linstead et al. (2008a,c) introduced and used an Internet-scale repository crawler, Sourcerer,

to analyze a large set of software systems. The authors applied LDA and the Author-Topic

model to extract the concepts in source code and the developer contributions in source

code, respectively. The authors also defined new techniques for searching for code, based

on the extracted topic model. Sourcerer can be used to analyze existing systems (i.e., view

most popular identifier names and LDA topics) as well as search for modules which contain

desired functionality.

Poshyvanyk and Grechanik (2009) proposed a technique called S3 for searching, select-

ing, and synthesizing existing systems. The technique is intended for developers wishing

to find code snippets from an online repository matching their current development needs.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 40

The technique builds a dictionary of available API calls and related keywords, based on

online documentation. Then, developers can search this dictionary to find related code

snippets. LSI is used in conjunction with Apache Lucene to provide the search capability.

2.3.8 Other Tasks

Marcus and Maletic (2001) were the first to detect high-level clones (Bellon et al., 2007;

Rahman et al., 2012; Roy et al., 2009) of source code methods by computing the semantic

similarity between pairs of methods. The authors used LSI to cluster related methods to-

gether in concept space (i.e., a K-dimensional representation of a document, based on the

document’s topic memberships), and tight clusters represents code clones. Despite low lev-

els of precision, the authors argued that this technique is cheap and can therefore be used

in conjunction with existing clone detection techniques to enhance the overall results.

Grant and Cordy (2009) used ICA to detect method clones. The authors argued that

since ICA can identify more distinct signals (i.e., topics) than LSI, then the conceptual space

used to analyze the closeness of two methods will be of higher effectiveness. The authors

performed a small case study on the Linux kernal package, but do not compare their results

to LSI.

Ahsan et al. (2009) aimed to create an automatic bug triaging system, which determines

which developer should address a given bug report. The authors extracted the textual

content from the titles and summaries of a system’s bug reports and applied LSI to obtain

a reduced term-document matrix. Then, various classifiers mapped each bug report to a

developer, trained on previous bug reports and related developers. In the best case, this

technique achieved 45% classification accuracy.

Bajracharya and Lopes (2009, 2010) applied LDA to a usage log of a popular code search

engine (Koders) to analyze the user queries over time. Their goal was to determine which

topics are the most popular search topics, and whether the search engine provides users

with the features that they need to identify the code they want. They found LDA to be an

effective tool for such a task.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 41

Dit et al. (2008) measured the cohesion of the content of a bug report by applying LSI

to the entire set of bug reports and then calculating a similarity measure on each com-

ment within a single bug report. The authors compared their metrics to human-generated

analysis of the comments and find a high similarity.

Grant and Cordy (2010) tackled the challenge of choosing the optimal number of topics

to input into LDA when analyzing source code. The authors’ technique varied the number

of topics and used a heuristic to determine how well a particular choice is able to identify

two pieces of code located in the same document. The authors concluded with general

guidelines and case studies.

Wu et al. (2008) tackled the challenge of building a semantic-based Web-service dis-

covery tool. Their technique, built on LSI, allows the automatic discovery of Web services

based on concepts, rather than keywords.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 42

2.4 Research Trends

In this section, we identify and describe the research trends in the area of mining unstruc-

tured repositories using IR models. We define a set of attributes that allow us to characterize

each article presented in Section 2.3. Additionally, we define six facets of related attributes,

summarized in Table 2.3.

First and foremost, we are interested in which IR model was primarily used in the study:

LSI, LDA or some other model. (Note that if an article evaluates its proposed technique,

which uses IR model X, against another technique, which uses IR model Y, we only mark

the article as using model X. However, if the main purpose of an article is to compare

various IR models, we mark the article with all IR models considered.) Second, we are

interested in the SE task that was being performed. We include a range of tasks to allow

a fine-grained view of that literature. Third, we document the repository being used in the

article. Fourth, we are interested in how the authors of the article evaluated their technique,

as some IR models are known to be difficult to objectively evaluate. Fifth, we are interested

in how the corpus was preprocessed, as there are several proposed techniques. Finally, we

are interested in which IR model tool was used in the article, along with which parameter

values were chosen for the tool, and how they were chosen.

We processed each of the articles in our article set and assigned attribute sets to each.

The results allow the articles to be summarized and compared along our six chosen facets.

The results are shown in Tables 2.4 and 2.5. Table 2.4 shows our first four facets:

which IR model was used, which software engineering task was being performed, which

repository was used, and how the authors evaluated their technique. Table 2.5 shows our

last two facets: which preprocessing steps were taken, and what IR modeling tools and

parameters were used. We now analyze the research trends of each facet.

2.4.1 Facet 1: Which IR Models Were Used?

The majority of articles that we surveyed (62%) use LSI as the primary IR model. This

majority is likely due to LSI’s earlier introduction than LDA (1990 vs. 2003) as well as its

CHAPTER 2. BACKGROUND AND STATE OF THE ART 43

Year

C
um

ul
at

iv
e

N
um

be
r

of
 A

rt
ic

le
s

0

10

20

30

40

● ●
● ● ●

●

●

●

●

●

●

●

2000 2002 2004 2006 2008 2010

● LSI
LDA

Figure 2.3: Trends of LSI and LDA use.

relative simplicity, speed, and ease of implementation.

Still, 37% of the articles used LDA or an LDA variant, indicating that LDA is indeed a

popular choice. In fact, as Figure 2.3 illustrates, the use of LDA is increasing rapidly since

its introduction into the software engineering field in 2006.

Most research uses LSI, and little research combines the results of different IR
models to improve their overall performance.

2.4.2 Facet 2: Which Software Engineering Task Was Supported?

The most popular software engineering tasks in the articles we surveyed are concept loca-

tion (31% of articles) and traceability link recovery (25% of articles). Concept location is an

ideal task for IR models, since many researchers (e.g., Baldi et al. (2008)) believe that the

topics discovered by a topic model are essentially equivalent (or can be directly mapped) to

the programming concepts in the source code.

Traceability link recovering is another task well-suited for IR models, since the goal of

traceability recovering is to find the textual similarity between pairs of documents. Thus,

using the document similarity metrics defined on the topic membership vectors of two doc-

uments is a direct implementation of traceability link recovery.

The tasks in the “other” category include bug triaging (Ahsan et al., 2009), search engine

CHAPTER 2. BACKGROUND AND STATE OF THE ART 44

usage analysis (Bajracharya and Lopes, 2009, 2010), auditor support for exploring the im-

plementation of requirements (de Boer and van Vliet, 2008), analyzing bug report quality

(Dit et al., 2008), estimating the number of topics in source code (Grant and Cordy, 2010),

clone identification (Grant and Cordy, 2009; Marcus and Maletic, 2001), finding related

code on the web (Poshyvanyk and Grechanik, 2009), and web service discovery (Wu et al.,

2008).

Most research performs concept location or traceability link recovery.

2.4.3 Facet 3: Which Repositories Were Mined?

The overwhelming majority (77%) of the articles mine the source code repository, with

the second most being requirements or design documents (23%). One possible reason

for the popularity of mining source code is that source code is usually the only repository

that is (easily) available to researchers who study open source systems. Requirements and

design documents are not created as often for open source systems, and if they are, they

are rarely accessible to researchers. Email archives are usually only available for large

systems, and when they are available, the archives are not usually in a form that is suited

for analysis without complicated preprocessing efforts, due to their unstructured nature.

Execution logs are most useful for analyzing ultra-large scale systems under heavy load,

which is difficult for researchers to simulate. Bug reports, although gaining in popularity,

are typically only kept for large, well-organized projects. In addition, we found that most

articles only considered a single snapshot of the repository, even when the repositories

history was available.

The majority of prior research mines only the source code of the system, and only
mines a single snapshot of the repository.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 45

2.4.4 Facet 4: How Were the IR Models Evaluated?

The most typical evaluation method used is task-specific (51% of articles surveyed). This

result makes sense, because most researchers are using IR models as a tool to accomplish

some software engineering task. Hence, the researchers evaluate how well their technique

performed at the given task, as opposed to how well the IR model fit the data, as is typically

done in the IR community.

Perhaps surprising is that 14% of articles performed a manual evaluation of the IR mod-

eling results—an evaluation technique that is difficult and time consuming. This may be

due to the seemingly “black-box” nature of IR models—documents are input, results are

output, and the rest is unknown. In articles that used topic models such as LDA, manual

evaluation is deemed to be the only way to be sure that the discovered topics make sense

for software repositories. This may also be due to the limited ground truth available for

many software engineering tasks.

Although articles in the IR and natural language processing communities tend to only

use statistical means to evaluate topic models, only a single article we surveyed used statis-

tical evaluation techniques (Maskeri et al., 2008). This is perhaps a result of the software

engineering community being task-focused, as opposed to model-focused. For example, a

traceability recovery technique is often evaluated on its accuracy of connecting two docu-

ments that are known to be related, as opposed to being evaluated on the model fit on the

corpus, which does not directly indicate how accurate the discovered traceability links are.

Most prior research uses task-specific or manual evaluation of the IR models.

2.4.5 Facet 5: How Was the Data Preprocessed?

Of the articles that analyzed a source code repository, 54% mention that they include the

identifiers, 42% mention that they include the comments, and 14% mention that they in-

clude string literals. The relatively high percentages for identifiers and comments seems to

follow the idea that the semantics of the developers’ intention is captured by their choice of

CHAPTER 2. BACKGROUND AND STATE OF THE ART 46

identifier names and comments (Poshyvanyk et al., 2007).

The majority of articles that analyzed source code created “documents” at the method

level (33%), with a close second being the class level (25%). 9% of the articles left the

choice of method or class as an input to their tool and reported results on both. 29% of the

articles did not specify the level of granularity used.

The majority of articles that analyzed source code chose to tokenize terms (53%). One

reason for this is that identifier names in source code are often written in a form that lends

itself to tokenization (e.g., camelCase and under score). By tokenizing these identifier

names, the terms are being broken down into their base form and generating a larger

likelihood of finding meaningful topics.

To further reduce the size of the vocabulary and increase the effectiveness of IR models,

27% of articles report stemming words, 49% report removing stop words, and 11% report

pruning the vocabulary by removing overly- and/or underly-used terms.

In general, many articles were unclear as to how they preprocessed the textual data,

even though this step may have a large impact on the results of IR models. For example,

30% of the articles we surveyed did not mention the document granularity of their tech-

nique (e.g., an entire class or an individual method) and 65% of the articles did not indicate

whether they used word stemming, a common preprocessing step in the IR community.

Data preprocessing techniques are not well documented and are not consistent
across current research.

2.4.6 Facet 6: Which Tools Were Used, and What Parameter Values Were

Used?

For LDA-based articles, GibbsLDA (Phan et al., 2008) was the most frequently reported

tool used (6 times). The only other tool that was used in more than one article was

Dragon (Zhou et al., 2007). For LSI-based articles, no tool was used by more than on

article.

Not reporting the value of K was the norm, with 49% of articles giving no indication of

CHAPTER 2. BACKGROUND AND STATE OF THE ART 47

their choice. Of those that did, values ranged between 5 and 500, with the most frequent

values being between 100 and 200.

43% of the articles that did specify the value of K did not specify why that particular

value was used. Of the articles that did specify why, 54% came to an optimal value by testing

a range of K values and evaluating each in some way (usually task-specific). A single article

used an expert’s opinion on what the number of topics should be (“The number of topics for

each program are chosen according to domain expert advice.” (Andrzejewski et al., 2007))

although the actual value was not reported.

The reporting of other input parameters, such as α, β, and the number of sampling

iterations (in the case of LDA) was even more scarce. 77% of the articles that used LDA did

not indicate the number of iterations sampled. Of those that did, values ranged between

1000 and 3500, with 3000 being the norm.

Key study design decisions are not well documented. For instance, 49% of the
articles we studied did not report the value of K (topics or reduction factor) used
in the topic model, even though it is well known that this choice greatly affects
the output of the IR model, and thus the results of the study.

2.4.7 Conclusions

The trends identified above reveal many potentials for advancement of the state of the

art. First, only the software engineering tasks of concept location or traceability linking

are typically addressed, leaving many tasks under explored. In Part II of this thesis, we go

beyond these typical tasks and present two software engineering tasks that have not been

previously performed with IR models.

Second, most research only uses basic IR models, such as LSI or VSM. In addition, most

research only uses a single IR model, even though research in other communities indicates

that combining multiple models can improve overall performance (Misirli et al., 2011). We

address these problems in Part III by showing how more advanced IR models and combining

the results of multiple models can help to enhance performance.

Finally, research is inconsistent as to which data preprocessing steps are performed,

CHAPTER 2. BACKGROUND AND STATE OF THE ART 48

and most articles lack any justification as to why some steps are performed and others are

not. In addition, parameter values are often not reported, and when they are, they are not

justified or consistent with previous research. Most research rarely explores the sensitivity

of IR models to their parameters. We tackle these problems in Part IV of the thesis.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 49

Facet Attribute Description

IR Model LSI uses LSI
LDA uses standard LDA
Other uses ICA, PLSI, or a variant of LDA

SE Task doc. clustering performs a clustering of documents
concept loc. concept/feature location or aspect-oriented programming
metrics derives source code metrics (usually, but not always, for bug pre-

diction)
trend/evolution analyzes/predicts source code evolution
traceability uncovers traceability links between pairs of artifacts (including

bug localization)
bug predict./debug predicts bugs/faults/defects in source code, uses statistical debug-

ging techniques, or performs root cause analysis
org./search coll. operates on collections of systems (search, organize, analyze)
other any other SE task, including bug triaging and clone detection

Repository source code uses source code, revision control repository, or software system
repository

email uses email, chat logs, or forum postings
req./design uses requirements or design documents
logs uses execution logs or search engine logs
bug reports uses bug reports or vulnerability reports

Evaluation statistical uses IR modeling statistics, like log likelihood or perplexity
task specific uses an task specific method (e.g., classification accuracy)
manual performs a manual evaluation
user study conducts a user study

Preprocessing identifiers includes source code identifiers
comments includes source code comments
string literals includes string literals in source code
tokenize splits camelCase and under scores
stem stems the terms in the corpus
stop performs stop word removal
prune removes overly common or overly rare terms from vocabulary

Tool Use tool name of the used IR model implementation
K value for LDA and LSI, the value chosen for the number of topics, K
K justif. justification given for the chosen K
iterations number of sampling iterations run (if LDA or LDA variant)

Table 2.3: The final set of attributes we collected on each article.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 50

IR model task repository evaluation

LS
I

LD
A

ot
he

r

do
c.

cl
us

te
ri

ng

co
nc

ep
t

lo
c.

m
et

ri
cs

tr
en

d/
ev

ol
ut

io
n

tr
ac

ea
bi

lit
y

bu
g

pr
ed

./
de

bu
g

or
g.

/s
ea

rc
h

co
ll.

ot
he

r

so
ur

ce
co

de

em
ai

l

re
q.

/d
es

ig
n

lo
gs

bu
g

re
po

rt
s

st
at

is
ti

ca
l

ta
sk

sp
ec

ifi
c

m
an

ua
l

us
er

st
ud

y

Ahsan et al. (2009) o o o . o . .
Andrzejewski et al. (2007) . o o o . . o . .
Antoniol et al. (2008) o o . . . o . o o .
Asuncion et al. (2010) . o o . . . o o o . o . o . .
Bajracharya and Lopes (2009) . o o . . . o
Bajracharya and Lopes (2010) . o o . . . o
Baldi et al. (2008) . o . . o o . o
Bavota et al. (2010) o o o o . .
Bose and Suresh (2008) o . . o o o . . o . .
Capobianco et al. (2009) o o . . . o . o . . . o . .
Cleary et al. (2008) o . . . o o o . .
de Boer and van Vliet (2008) o o . . o . . o
De Lucia et al. (2004) o o . . . o . o . . . o . .
De Lucia et al. (2006) o o . . . o . o . . . o . .
De Lucia et al. (2007) o o . . . o . o . . . o . .
Dit et al. (2008) o o o . o o .
Gall et al. (2008) o o o . o
Gethers and Poshyvanyk (2010) . o . . . o o o . .
Grant et al. (2008) . . o . o o
Grant and Cordy (2009) . . o o o
Grant and Cordy (2010) . o o o o . .
Hayes et al. (2006) o o o . . . o . .
Hindle et al. (2009) . o o o
Hindle et al. (2010) . o o o
Jiang et al. (2008) o o . . . o . o . . . o . .
Kagdi et al. (2010) o o o o . .
Kawaguchi et al. (2006) o o . o
Kuhn et al. (2005) o . . o o
Kuhn et al. (2007) o . . o o
Kuhn et al. (2008) o . . o . . o o o . .
Kuhn et al. (2010) o . . o . . o o
Lin et al. (2006) o . . o o o o .
Linstead et al. (2007a) . o . . o o . . . o . o
Linstead et al. (2007b) . o . . o o o
Linstead et al. (2008c) . o . o o o . . . o o o
Linstead et al. (2008a) . o . o o o o o
Linstead et al. (2008b) . o . . o . o o
Linstead and Baldi (2009) . o . . . o o
Linstead et al. (2009) . o . . o . o . . . o o
Liu et al. (2009) . o . . . o . . o . . o o . .

continued on next page

CHAPTER 2. BACKGROUND AND STATE OF THE ART 51

continued from previous page
IR model task repository evaluation

LS
I

LD
A

ot
he

r
do

c.
cl

us
te

ri
ng

co
nc

ep
t

lo
c.

m
et

ri
cs

tr
en

d/
ev

ol
ut

io
n

tr
ac

ea
bi

lit
y

bu
g

pr
ed

./
de

bu
g

or
g.

/s
ea

rc
h

co
ll.

ot
he

r

so
ur

ce
co

de
em

ai
l

re
q.

/d
es

ig
n

lo
gs

bu
g

re
po

rt
s

st
at

is
ti

ca
l

ta
sk

sp
ec

ifi
c

m
an

ua
l

us
er

st
ud

y

Lormans and Van Deursen (2006) o o . . . o . o . . . o . .
Lormans et al. (2006) o o o . . . o . .
Lormans (2007) o o o o . . . o . .
Lukins et al. (2008) . o o . . . o . . . o . o . .
Lukins et al. (2010) . o o . . . o . . . o . o . .
Maletic and Valluri (1999) o . . o o
Maletic and Marcus (2001) o . . o o o .
Marcus and Maletic (2001) o o o o .
Marcus and Maletic (2003) o o . . . o . o . . . o . .
Marcus et al. (2004) o . . . o o o o .
Marcus (2004) o . . o o o . o . . . o . o
Marcus et al. (2005) o . . . o o o .
Marcus et al. (2008) o o . . o . . o o . .
Maskeri et al. (2008) . o . . o o o . . .
McMillan et al. (2009) o o . . . o . o . . . o o o
Neuhaus and Zimmermann (2010) . o o o
Oliveto et al. (2010) o o o . . . o o . .
Ossher et al. (2009) . o . . o . o . . o . o
Poshyvanyk et al. (2006) o . . . o o o . .
Poshyvanyk and Marcus (2007) o . . . o o o . .
Poshyvanyk et al. (2007) o . . . o o o . .
Poshyvanyk and Grechanik (2009) o . . . o o o
Revelle and Poshyvanyk (2009) o . . . o o o . .
Revelle et al. (2010) o . . . o o o . .
Savage et al. (2010) . o . . o o
Thomas et al. (2010b) . o o o o .
Tian et al. (2009) . o o . o
Ujhazi et al. (2010) o o . . o . . o o . .
van der Spek et al. (2008) o . . . o o o .
Wu et al. (2008) o o . . . o
Zawawy et al. (2010) o o o . . o . .

Percentage ‘o’ 62 37 3 15 31 17 14 25 8 8 6 77 1 23 11 10 1 51 14 1

Table 2.4: Article characterization results of facets 1–4. The attributes are described in
Table 2.3.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 52

preprocessing tools

id
en

ti
fie

rs
co

m
m

en
ts

st
ri

ng
s

gr
an

ul
ar

it
y

to
ke

ni
ze

st
em

st
op

pr
un

e

to
ol

K
va

lu
e

ju
st

if.
of
K

it
er

at
io

ns

Ahsan et al. (2009) ? ? ? bug report ? N Y Y MATLAB 50-500 vary -
Andrzejewski et al. (2007) - - - ? ? ? ? ? own ? expert 2000
Antoniol et al. (2008) ? ? ? method Y Y Y ? own ? ? -
Asuncion et al. (2010) ? ? ? ? ? Y Y ? own ? ? ?
Bajracharya and Lopes (2009) - - - query Y ? N ? Dragon 50-500 vary ?
Bajracharya and Lopes (2010) - - - query Y ? N ? Dragon 50-500 vary ?
Baldi et al. (2008) Y N N class Y ? Y ? ? 125 vary ?
Bavota et al. (2010) ? ? ? method ? ? ? ? ? ? ? -
Bose and Suresh (2008) - - - ? ? ? ? ? ? ? ? -
Capobianco et al. (2009) ? ? ? class ? ? Y ? ? ? ? -
Cleary et al. (2008) Y Y Y ? Y Y Y Y ? 300 ? -
de Boer and van Vliet (2008) - - - req. N ? Y ? ? 5 ? -
De Lucia et al. (2004) Y ? ? ? Y ? Y ? own ? ? -
De Lucia et al. (2006) ? ? ? ? ? N ? ? own ? ? -
De Lucia et al. (2007) Y N N ? Y ? Y Y own ? ? -
Dit et al. (2008) ? ? ? bug report Y ? Y ? ? 300 ? -
Gall et al. (2008) Y Y ? class ? ? ? ? own ? ? -
Gethers and Poshyvanyk (2010) Y Y ? class Y ? ? ? lda-r 75, 125, 225 vary ?
Grant et al. (2008) Y Y Y method ? ? ? Y own 10 ? -
Grant and Cordy (2009) Y N Y method ? ? ? Y ? ? ? -
Grant and Cordy (2010) Y N ? method Y ? ? ? GibbsLDA 50-300 vary ?
Hayes et al. (2006) - - - ? ? Y Y ? own 10-100 vary -
Hindle et al. (2009) - - - commit msg ? ? Y Y lda-c 20 vary ?
Hindle et al. (2010) - - - commit msg ? ? ? ? ? ? ? ?
Jiang et al. (2008) ? ? ? ? ? ? ? ? own ? ? -
Kagdi et al. (2010) Y Y ? method ? ? ? ? ? ? ? -
Kawaguchi et al. (2006) Y N N system ? ? ? Y own ? ? -
Kuhn et al. (2005) Y Y ? class/method Y Y Y ? ? 200-500 ? -
Kuhn et al. (2007) Y Y ? class Y Y Y ? own 15 ? -
Kuhn et al. (2008) ? ? ? class ? ? ? ? own ? ? -
Kuhn et al. (2010) Y Y Y class ? ? ? ? own 50 ? -
Lin et al. (2006) N Y N class ? Y Y ? own ? ? -
Linstead et al. (2007a) ? ? ? class Y ? Y ? own 100 vary 3000
Linstead et al. (2007b) ? ? ? ? Y ? Y ? TMT 100 vary 3000
Linstead et al. (2008c) ? ? ? ? Y ? Y ? ? 100 vary 3000
Linstead et al. (2008a) ? ? ? ? Y ? Y ? ? 100 vary 3000
Linstead et al. (2008b) Y ? ? class Y ? Y ? ? 100 vary ?
Linstead and Baldi (2009) ? ? ? bug report Y ? Y ? ? 100 vary 3500
Linstead et al. (2009) ? ? ? ? ? ? ? ? ? ? ? ?
Liu et al. (2009) Y Y ? method Y ? Y ? GibbsLDA 100 ? 1000

continued on next page

CHAPTER 2. BACKGROUND AND STATE OF THE ART 53

continued from previous page
preprocessing tools

id
en

ti
fie

rs

co
m

m
en

ts

st
ri

ng
s

gr
an

ul
ar

it
y

to
ke

ni
ze

st
em

st
op

pr
un

e

to
ol

K
va

lu
e

ju
st

if.
of
K

it
er

at
io

ns

Lormans and Van Deursen (2006) ? ? ? ? ? Y Y ? TMG ? ? -
Lormans et al. (2006) - - - ? ? ? ? ? own ? ? -
Lormans (2007) - - - ? ? ? ? ? own ? ? -
Lukins et al. (2008) Y Y Y method Y Y Y ? GibbsLDA 100 ? ?
Lukins et al. (2010) Y Y ? method N N N ? GibbsLDA 100 vary ?
Maletic and Valluri (1999) Y Y Y class/method ? ? ? ? ? 250 vary -
Maletic and Marcus (2001) Y Y Y class/method ? ? ? ? ? 350 ? -
Marcus and Maletic (2001) Y Y Y class/method ? ? ? ? own 350 ? -
Marcus and Maletic (2003) Y Y Y class Y ? ? ? ? ? ? -
Marcus et al. (2004) Y Y N ? Y ? ? ? ? ? ? -
Marcus (2004) Y Y ? class/method Y ? ? ? ? ? ? -
Marcus et al. (2005) Y Y N ? ? ? ? ? ? ? ? -
Marcus et al. (2008) Y Y N method ? ? ? ? ? ? ? -
Maskeri et al. (2008) Y Y ? class Y Y Y ? own 30 ? ?
McMillan et al. (2009) Y ? ? method Y Y Y ? own 25-75 ? -
Neuhaus and Zimmermann (2010) - - - report N Y Y ? ? 40 ? ?
Oliveto et al. (2010) ? ? ? ? ? Y Y Y ? 250 vary ?
Ossher et al. (2009) ? ? ? ? ? ? ? ? ? ? ? ?
Poshyvanyk et al. (2006) Y Y ? method ? ? ? ? ? ? ? -
Poshyvanyk and Marcus (2007) Y Y N method Y N N N ? ? ? -
Poshyvanyk et al. (2007) Y Y N method Y N N N ? 500 ? -
Poshyvanyk and Grechanik (2009) ? ? ? ? ? ? ? ? ? ? ? -
Revelle and Poshyvanyk (2009) Y ? ? method ? ? ? ? ? ? ? -
Revelle et al. (2010) Y Y Y method Y Y ? ? ? ? ? -
Savage et al. (2010) Y Y ? class Y Y Y ? JGibbLDA input ? input
Thomas et al. (2010b) Y Y ? class Y Y Y ? MALLET 45 previous ?
Tian et al. (2009) Y Y ? system Y ? Y ? GibbsLDA 40 vary ?
Ujhazi et al. (2010) Y Y N method Y Y Y ? ? ? ? -
van der Spek et al. (2008) Y Y N method Y N Y ? SVDLIBC input vary -
Wu et al. (2008) - - - log Y Y Y ? JAMA ? ? -
Zawawy et al. (2010) - - - log ? Y Y ? ? ? ? -

Percentage ‘Y’ 54 42 14 - 48 27 49 11 - - - -
Percentage ‘N’ 1 7 15 - 4 8 7 3 - - - -
Percentage ‘?’ 27 32 52 30 48 65 44 86 48 49 70 25

Table 2.5: Article characterization results of facets 5 and 6. The attributes are described in
Table 2.3. A ‘Y’ means the article stated that it included this attribute or performed this step;
a ‘N’ means the article stated that it did not include this attribute or perform this task; a ‘?’
means the article did not state either way; and a ‘-’ means this attribute is not applicable to
this article.

Part II

New Applications of IR Models in

Software Engineering

54

55

In Section 2.4, we found that most research to date uses IR models to perform the

software engineering tasks of either concept location or traceability linking. In this part of

the thesis, we present additional software engineering tasks that can be solved using basic

IR models: test case prioritization, and measuring the information flow between mailing

lists and source code. Our use of IR models in solving these tasks is novel, and shows that

research in software engineering can move beyond the limited applications of IR models to

achieve new and exciting results.

– Chapter 3: Prioritizing test cases using topic models. Typically, test cases are priori-

tized by maximizing the amount of source code that is covered, known as the code cover-

age of the test cases. Such prioritization techniques ignore the linguistic data present in

test cases, i.e., the identifier names, comments, and string literals that help to determine

the functionality of the test cases. In this chapter, we prioritize test cases by applying

LDA, a statistical IR model, to the linguistic data of the test cases. We use the resultant

topics to determine the similarity between test cases, giving highest priority to those test

cases that are most dissimilar. Through case studies on two open source systems, Apache

Ant and Apache Derby, we find that our technique outperforms traditional code coverage

techniques by up to 30% in the average percentage of faults detected.

– Chapter 4: Measuring the interaction between mailing lists and source code. Under-

standing how distributed development teams communicate over email, and how email

discussions affect source code implementation, can help managers guide documentation

and training efforts and monitor project status. In addition, developers need to recover

past email discussions pertaining to a given source code entity. In this chapter, we apply

LDA jointly to the source code and mailing list of a system to uncover the shared topics

and their behavior over time. We find that the discovered topics are sometimes more

active in either the source code or mailing list, are sometimes equally active in both, and

are sometimes inactive altogether. Through case studies on two open source systems,

PostgreSQL and Apache HTTP Server, we find that, for example, topics are first heavily

discussed in the mailing list for a short period of time before being implemented in the

56

source code, confirming previous intuition of distributed software development practices.

Our technique can also be used to determine which topics are being implemented in a

certain time period, or which topics were being discussed on the mailing list.

CHAPTER 3

Prioritizing Test Cases Using Topic Models

Software development teams use test suites to test changes to their source code. In many situations,
the test suites are so large that executing every test for every source code change is infeasible, due
to time and resource constraints. Development teams need to prioritize their test suite so that as
many distinct faults as possible are detected early in the execution of the test suite. We consider the
task of static black-box test case prioritization (TCP), where test suites are prioritized without the
availability of the source code of the system under test (SUT). We propose a new static black-box
TCP technique that represents test cases using a previously unused data source in the test suite: the
linguistic data of the test cases, i.e., their identifier names, comments, and string literals. Our tech-
nique applies topic models to the linguistic data to approximate the functionality of each test case,
allowing our technique to give high priority to test cases that test different functionalities of the SUT.
We compare our proposed technique with existing static black-box TCP techniques in a case study
of multiple real-world open source systems: several versions of Apache Ant and Apache Derby. We
find that our static black-box TCP technique outperforms existing static black-box TCP techniques,
and has comparable or better performance than two existing execution-based TCP techniques.

Publications based on this chapter: Thomas et al. (2012c)

3.1 Motivation

SOFTWARE DEVELOPMENT TEAMS typically create large test suites to test their source

code (Ali et al., 2009). These test suites can grow so large that it is cost pro-

hibitive to execute every test case for every new source code change (Rothermel

et al., 2001). For example, at Google, developers make more than 20 source code changes

57

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 58

per minute, resulting in 100 million test cases executed per day (Kumar, 2010). In these

situations, developers need to prioritize the test suite so that test cases that are more likely

to detect undetected faults are executed first. To address this challenge, researchers have

proposed many automated test case prioritization (TCP) techniques (Elbaum et al., 2002;

Rothermel et al., 2001). Most of these TCP techniques use the execution information of the

system under test (SUT): the dynamic run-time behavior, such as statement coverage, of

each test case (Chen et al., 2011; Simao et al., 2006). While execution information is a rich

information source for the TCP technique, execution information may be unavailable for

several reasons (Zhang et al., 2009):

– Collecting execution information can be cost prohibitive, both in terms of time and re-

sources.

– For large systems, execution information will be quite large, making storage and mainte-

nance costly.

– Execution information must be continuously updated as source code and test cases evolve.

To address situations in which the execution information is not available, researchers

have proposed TCP techniques based on specification models of the tests (Hemmati et al.,

2012; Korel et al., 2007). These models describe the expected behavior of the SUT and test

suite. However, specification models are also sometimes not available, for similar reasons:

the models may be cost prohibitive to manually generate, or the maintenance of the models

as source code and test cases evolve may be cost prohibitive.

To address situations when neither the execution information nor specification mod-

els are available, researchers have recently developed static TCP techniques. In particular,

Zhang et al. (2009) and Mei et al. (2011) propose techniques based on the static call graph

of the test cases. Additionally, Ledru et al. (2011) treat each test case as a string of char-

acters, and prioritize test cases by using a simple string edit distance to determine the

similarity between test cases. In these techniques, the goal is to give high priority to test

cases that are highly dissimilar (e.g., because they invoke different methods, or have high

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 59

string distances), thereby maximizing test case diversity and casting a wide net for detect-

ing unique faults (Hemmati et al., 2010b, 2011). While static TCP techniques do not have

as much information to work with as those based on execution information or specification

models, static techniques are less expensive and are lighter weight, making them applicable

in many practical situations.

However, existing static TCP techniques make little or no use of an important data source

embedded within test cases: their linguistic data, i.e., the identifier names, comments, and

string literals that help to determine the functionality of the test cases (Kuhn et al., 2007).

In this chapter, we propose a new static TCP technique that uses the unstructured linguistic

data of test cases to help differentiate their functionality. Our technique uses LDA to create

topics from the linguistic data, and prioritizes test cases that contain different topics. The

main advantage of our technique, compared to existing black-box static TCP techniques, is

that topics abstractly represent test cases’ functionality, which is robust to trivial differences

in the test’s source code and can capture more information than call graphs alone.

3.2 Background

Test case prioritization (TCP) is the task of ordering the test cases within the test suite of

a system under test (SUT), with the goal of maximizing some criteria, such as the fault

detection rate of the test cases (Wong et al., 1997). Should the execution of the test suite

be interrupted or stopped for any reason, the more important test cases (with respect to the

criteria) have been executed first. More formally, Rothermel et al. (2001) define the TCP

task as follows.

Definition 1 (Test case prioritization) Given: T , a test suite; PT , the set of permutations of T ;

and f , a performance function from PT to the real numbers. Find: T ′ ∈ PT s.t. (∀T ′′ ∈ PT)(T ′′ 6=
T ′)[f(T ′) ≥ f(T ′′)].

In this definition, PT is the set of all possible prioritizations of T and f is any func-

tion that determines the performance of a given prioritization. The definition of perfor-

mance can vary, as developers will have different goals at different times (Rothermel et al.,

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 60

2001). Developers may first wish to find as many faults as possible; they may later wish to

achieve maximal code coverage. In these scenarios, the task definition of TCP is the same,

but the performance function f being optimized changes. Researchers have proposed and

evaluated many techniques to solve the TCP task, based on a range of data sources and

prioritization algorithms; Yoo and Harman have conducted a thorough survey of such tech-

niques (Yoo and Harman, 2010). In general, each TCP technique tries to achieve optimal

prioritization based on the following steps (Hemmati et al., 2010a).

1. Encode each test case by what it covers, i.e., what it does, based on the elements in

the available dataset. For example, the elements may be the program statements of

the SUT that the test case covers.

2. Prioritize test cases using a distance maximization algorithm, based on maximizing

either coverage or diversity.

(a) Maximize coverage. Prioritize test cases so that the maximum number of elements

are covered. The intuition behind this strategy is that by maximizing element

coverage, the technique tests as much of the SUT as possible and increasing its

chances of fault detection.

(b) Maximize diversity. First, determine the similarity (equivalently distance) be-

tween test cases, for some definition of similarity (e.g., intersection of statements

covered). Then, prioritize test cases by maximizing their dissimilarity. The intu-

ition for this strategy is that pairs of test cases that are similar will likely detect

the same faults, and therefore only one needs to be executed.

Researchers have proposed many distance maximization algorithms, including greedy

algorithms, clustering, and genetic algorithms (Hemmati et al., 2010a).

In this chapter, we categorize TCP techniques primarily based on step 1 above, i.e., how

the technique encodes the test cases into elements, resulting in the following five categories.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 61

Definition 2 (White-box execution-based prioritization) Prioritization based on the dynamic

execution behavior of the test cases, with access to the source code of the SUT. Test cases are

encoded by which source code elements they execute. Requires the source code of the SUT and test

cases to be instrumented, compiled, and executed.

Definition 3 (Black-box execution-based prioritization) Prioritization based on the dynamic exe-

cution behavior of the test cases, using the execution logs of the source code. Test cases are encoded

using the contents of their execution logs. Does not require the actual source code of the SUT, but

instead assumes that execution log files are available for each test case.

Definition 4 (Grey-box Model-based prioritization) Prioritization based on specification models

(e.g., state diagrams) of the SUT and test cases. Test cases are encoded by which paths they take on

the specification model. Does not require execution information. Requires specification models to

be created and maintained.

Definition 5 (White-box static prioritization) Prioritization based on the source code of the SUT

and test cases. Test cases are encoded based on some aspect of the static snapshot of the source code

of the SUT and test cases. Does not require execution information or specification models. Requires

access to the source code of the SUT and test cases.

Definition 6 (Black-box static prioritization) Prioritization based on the source code of the test

cases. Test cases are encoded based on some aspect of the source code of the test cases. Does not

require execution information, specification models, or source code of the SUT. Only requires source

code of the test cases.

Table 3.1 categorizes related work, which we now summarize.

3.2.1 White-box Execution-based Prioritization

Most existing TCP techniques are white-box execution-based (also called dynamic coverage-

based): they use the dynamic execution information of the test cases to prioritize them (Yoo

and Harman, 2010). Many of these technique aim to maximize source code coverage. For

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 62

Table 3.1: A two dimensional classification of TCP techniques, based on the data avail-
able (execution information, specification models, or static source code) and maximization
strategy (coverage-based or diversity-based).

Max.
strategy

Execution-based Model-based Static

White-box Black-box Grey-box White-box Black-box

Coverage e.g., Elbaum et al.
(2002); Feldt et al.
(2008); Jones and
Harrold (2003)

Sampath et al.
(2008)

Korel et al. (2007) Zhang et al.
(2009)

this thesis

Diversity
Ramanathan et al.
(2008); Simao et al.
(2006); Yoo et al.
(2009)

–
Hemmati et al.
(2010a,b, 2012)

–
Ledru et al.
(2009, 2011);
Mei et al. (2011),
this thesis

example, Wong et al. (1997) present a coverage-based technique to prioritize test cases

in the context of regression testing, taking into account the changes in the source code

between versions and giving high priority to those test cases that likely test the changed

portions of the source code. Rothermel et al. (2001) present a family of coverage-based

techniques, all based on statement-level execution information, and define the Average

Percentage of Fault-Detection (APFD) metric that is widely used today for evaluating the ef-

fectiveness of TCP techniques. Many subsequent studies also use statement-level execution

information in the source code as the basis for prioritization cases (Feldt et al., 2008; Jiang

et al., 2009; Jones and Harrold, 2003; Leon and Podgurski, 2003; Masri et al., 2007; Mc-

Master and Memon, 2006), differing mainly in coverage metric definition or maximization

algorithm.

Other work prioritizes test cases by maximizing test case diversity. For example, Yoo

et al. (2009) use a clustering algorithm to differentiate test case’s execution profiles. Simao

et al. (2006) build a feature vector for each test case (which can include any desired aspect

of the test case), and then use a neural network to identify test cases with the most dissimilar

features. Ramanathan et al. (2008) build a graph of test cases similarity and experiment

with different graph orders for test case prioritization. In building the graph, the authors

consider standard execution information as well as additional heuristics, such as memory

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 63

operations.

3.2.2 Black-box Execution-based Prioritization

It is possible for execution-based TCP techniques to not require access to the source code of

the SUT. For example, Sampath et al. (2008) focus on prioritizing test cases for web systems,

where logs of user behavior (i.e., data requests sent to the web server) are available to the

prioritization algorithm. The user data in the logs contains the dynamic execution scenarios

for the user, which captures the execution information of the SUT without actually requiring

access to its source code. Using the data in the logs, Sampath et al. consider a number of

strategies to prioritize test cases based, most of which try to maximize the method coverage

of the SUT.

To the best of our knowledge, there have been no proposed black-box execution-based

techniques based on maximizing the diversity of test cases. However, this could be achieved

by, for example, clustering the elements in the user data logs of a web system, and then

selecting test cases from different clusters.

3.2.3 Grey-box Model-based Prioritization

For situations in which the execution behavior of the SUT is not available, due to time,

budget, or resource constraints, researchers have proposed techniques based on the spec-

ification models of the source code (Hemmati et al., 2010a,b, 2012; Korel et al., 2007).

Specification models represent the expected behavior of the source code (via e.g., a UML

state diagram) and test cases (e.g., paths on the state diagram). Specification models relate

each test case to an execution path in the state model. By definition, all model-based TCP

techniques are gray-box, in that they require knowledge of the internal data structures and

architecture of the SUT, but do not explicitly require the source code of the SUT during the

prioritization of the test suite.

For example, Korel et al. (2007) compute the difference between two versions of the

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 64

specification model of a SUT, and give high priority to those test cases whose models inter-

sect with the difference. In effect, the authors are maximizing the coverage of the model

in the new version. The authors also propose a set of heuristics to enhance this basic tech-

nique.

Hemmati et al. (2010a,b) explore a number of diversity-based algorithms which operate

on the similarity between test cases’ paths in the state model, and give high priority to

those test cases whose paths are most dissimilar. The authors consider a wide range of

maximization algorithms including genetic algorithms, clustering algorithms, and greedy

algorithms.

In these model-based TCP techniques, the specification models of the SUT and test cases

are required. Developers must create and maintain these specification models of the source

code and test cases, which may not always be feasible due to the time and labor required.

3.2.4 White-box Static Prioritization

If both the execution behavior and specification models of the SUT are unavailable, then

the TCP technique must rely only on static snapshots of the source code of the SUT and/or

the test cases themselves (Ledru et al., 2011). We call this static TCP, which is our focus in

this chapter. Among static techniques, some require access to the source code of the SUT

(white-box) and others do not (black-box).

An example of a white-box static TCP technique is the call graph-based technique, pro-

posed by Zhang et al. (2009) and later extended by Mei et al. (2011). The call graph-based

technique uses the static call graph of test cases to approximate their dynamic source code

coverage. After statically extracting the call graph of each test case, the authors define a

Testing Ability (TA) metric that measures the number of source code methods that a test

invokes, taking into account the methods invoked by the already-prioritized test cases. (In

their work, Zhang et al. refer to this technique as “JuptaA”, while Mei et al. refer to it as

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 65

“JUPTA”.) The authors define the TA metric by

TA(Ti, PS) =
∑

m∈Rel(Ti,PS)
FCI(m)

where Ti is a test case under consideration, PS is the set of already-prioritized test cases,

Rel(Ti, PS) is a function that returns the set of methods relevant to Ti but not covered by

the already-prioritized test cases PS, and the function FCI(m) represents the probability

that method m contains a fault. Zhang et al. and Mei et al. treat all methods equally, and

therefore FCI(m)=1 for all m.

The call graph-based technique is coverage-based and prioritizes test cases using a

greedy algorithm that iteratively computes the TA metric on each unprioritized test case.

Initially, the test case with the highest TA metric is added to PS. Then, at each iteration,

the greedy algorithm adds to PS the test case with the highest TA value. In this way,

the greedy algorithm attempts to maximize the number of source code methods that are

covered by the prioritized test suite.

In the above white-box static TCP technique, the maximization strategy is based on

maximizing code coverage. To the best of our knowledge, no white-box static TCP technique

has been proposed that maximizes based on test case diversity.

3.2.5 Black-box Static Prioritization

An example of a black-box static TCP technique is the string-based technique, proposed by

Ledru et al. (2009, 2011). The string-based technique treats test cases as single, continuous

strings of text. The technique uses common string distance metrics, such as the Levenshtein

edit distance, between test cases to determine their similarity. The intuition is that if two

test cases are textually similar, they will likely test the same portion of source code and

therefore detect the same faults.

To measure the distance between two strings (i.e., test cases), Ledru et al. consider

several distance metrics, including Euclidean, Manhattan, Levenshtein, and Hamming. The

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 66

authors find that the Manhattan distance has the best average performance for fault detec-

tion.

To maximize diversity between strings, Ledru et al. use a greedy algorithm, similar to

that of the call graph-based technique, that always prioritizes the test case which is furthest

from the set of already-prioritized test cases. To do so, Ledru et al. define a distance

measure between a single test case and a set of test cases. For a test case Ti, the set

of already-prioritized test cases PS, and a distance function d(Ti, Tj) which returns the

distance between Ti and Tj , the authors define the distance between Ti and PS to be:

AllDistance(Ti, PS, d) = min{d(Ti, Tj) | Tj ∈ PS, j 6= i}. (3.1)

The authors choose the min operator because it assigns high distance values to test cases

which are most different from all other test cases.

Similar to the greedy algorithm in the call graph-based technique, the greedy algorithm

in the string-based technique iteratively computes the AllDistance metric for each unprior-

itized test case, giving high priority to the test with the highest AllDistance value at each

iteration.

Despite its simplicity, this basic technique shows encouraging results that inspire us to

consider the textual information to help differentiate test cases.

In this chapter, during the evaluation of our proposed technique (which we present

next), we also implement a black-box static TCP technique that maximizes test cases by

maximizing coverage, rather than diversity. Our implementation is a modification of the

white-box call graph-based technique, and is described further in Section 3.4.1.

3.3 Proposal

We propose a new black-box static TCP technique that takes advantage of an additional

data source in the test scripts: the developer knowledge contained in the identifier names,

comments, and string literals (Kuhn et al., 2007), collectively called linguistic data. We

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 67

Test
Suite

te
s
ts

topics

Topic
Vectors

te
s
ts

tests

Distance
Matrix

Maximization

Algorithm

Prioritized
Test Suite

Preprocess &

Topic Modeling

Figure 3.1: Overview of our proposed topic-based TCP technique.

apply a topic modeling technique (Section 2.2) to the test case linguistic data to abstract

test cases into topics, which we use to compute the similarity between pairs of test cases.

The motivation for using topic modeling stems from recent research that found that the

topics discovered from linguistic data are good approximations of the underlying business

concerns, or functionality, in the source code (Kuhn et al., 2007; Maskeri et al., 2008). We

hypothesize that when two test cases contain the same topics, the test cases are similar in

functionality and will detect the same faults.

Our proposed TCP technique performs the following steps (see Figure 3.1).

1. Preprocess the test suite (i.e., set of individual test cases) to extract the linguistic data

(i.e., identifier names, comments, and string literals) for each test case.

2. Apply topic modeling to the preprocessed test suite, resulting in a vector of topic

memberships for each original test case (i.e., a vector describing the probability that

the test case is assigned to each topic).

3. Define the distance between pairs of test cases based on their topic membership vec-

tors. Many standard distance metrics are applicable (Blei and Lafferty, 2009), includ-

ing Manhattan distance and Kullback-Leibler (Kullback and Leibler, 1951) distance.

4. Finally, prioritize test cases by maximizing their average distances to already-prioritized

test cases, using any of several distance maximization algorithms (e.g., greedy, clus-

tering, or genetic algorithms).

The key benefit of using topic modeling is that it uses a test script’s linguistic data to

provide an approximation of the business concerns of the test script. Business concerns

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 68

often cannot be deduced from a test script’s call graph alone. For example, consider how

the call graph-based technique treats the following two example test scripts.

/* Read in the default color data for the menu bar, pull-down menus,
* mouse hovers, and button down indicators. */
String defaultColors = readFileContents("default_color_options.dat");
...

/* Read in the terrain map data for Tucson, AZ. The file contains elevation
* points of the terrain in a 10x10 meter grid. */
String terrain = readFileContents("tucson_map.dat");
...

Despite their obvious differences in functionality (which can be seen from the comments

and identifier names), the call graph-based technique will consider these two test snip-

pets to be identical, since they both make a single method call to the same method (i.e.,

readFileContents()). In this case, the linguistic data serves to help identify that the test

snippets perform different functions, even if their call graphs are similar.

Additionally, while the string-based technique does use the comments and identifier

names during the calculation of string distances, it does so in an overly rigid manner. Con-

sider the following three example test scripts, which illustrate the effect of identifier names

on the similarity measure computed by the string-based technique:

/* Test 1 */ int printerID=getPrinter();
/* Test 2 */ int printerID; int x; x=getPrinter(); printerID=x;
/* Test 3 */ int compiler=getCompiler();

Here, tests 1 and 2 use similar identifier names and are identical in terms of execution

semantics, but they are considered relatively dissimilar due to the number of edits required

to change one string into the other, compared to the strings’ lengths. On the other hand,

tests 1 and 3 have a higher string similarity, even though they have no common identifier

names nor functional similarities.

We compare our proposed technique to two existing black-box static TCP techniques in

a detailed case study on several real-world systems. We find that our topic-based technique

increases the average fault detection rate over existing techniques by as much 31%, showing

improved performance across all studied systems.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 69

3.4 Case Studies

We are interested in the following research question.

Is our proposed topic-based TCP technique more effective than existing black-box static TCP

techniques?

In this research question, we relate the term effectiveness to the standard APFD evalua-

tion measure (Rothermel et al., 2001). To answer this question, we perform a detailed case

study on multiple real-world software systems. We now describe the details and design

decisions of our study.

3.4.1 Techniques Under Test

We implement and test the following static black-box TCP techniques.

– Black-box call graph-based. To provide a fair comparison with our proposed topic-based

technique, we have implemented a black-box version of the call graph-based technique.

Our implementation uses TXL (Cordy, 2006) to extract the static call graph of the test

cases without relying on the source code. Essentially, our implementation extracts a

list of method names invoked by each test case, but does not continue down the call

graph further into the source code, as we assume the source code is unavailable. We

then prioritize the test cases using the same greedy algorithm used by the white-box call

graph-based technique described in Section 3.2.4.

– String-based. We have implemented the black-box static technique proposed by Ledru

et al. (2011), which uses the string edit distance between test cases to maximize test case

diversity.

– Topic-based. This technique, proposed in Section 3.3, uses an abstracted representation

of test cases, based on topic modeling, to maximize test case diversity.

As a baseline technique, we implement and test the random technique.

– Random. This technique randomizes the order of the test cases.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 70

3.4.2 Systems Under Test

We obtain data from the Software-artifact Infrastructure Repository (SIR), a public reposi-

tory containing fault-injected software systems of various sizes, domains, and implementa-

tion languages (Do et al., 2005). The SIR is a superset of the popular Siemens test suite.

The dataset for each system includes the fault-injected source code, test cases, and fault

matrices (i.e., a description of which faults are detected by which test cases) for several

versions of the system. The faults were manually injected by humans in an attempt to pro-

vide realistic and representative errors made by programmers. We choose this repository

because it contains many real-world, open-source systems and many previous TCP studies

have used it, providing an opportunity for fair comparison.

Table 3.2 summarizes the five systems under test that we use from SIR. The failure rate

of each system indicates the portion of test cases that detect at least one fault. We selected

these five systems based on the following criteria.

– The test cases are written in a high-level programming language (e.g., unit tests).

– The fault matrix contains at least five faults.

– The fault matrix contains at least ten test cases.

The first criterion is required since we use static TCP techniques (which are based on anal-

ysis of the source code of the test cases); see Section 3.5.2 for a discussion. The last two

criteria ensure that the datasets are large enough to draw reasonable conclusions from our

results.

Both Ant and Derby are maintained by the Apache Foundation (Apache Foundation,

2012c), and both are written in the Java programming language. Ant is a command line

tool that helps developers manage the build system of their software (Apache Foundation,

2012b). Derby is a lightweigth relational database management system (Apache Founda-

tion, 2012d). We consider the versions of Derby as different systems under test because

the injected faults are not propagated between versions. Each version is injected with new

faults in new locations in the source code. Additionally, test cases are added and removed

between versions. (An exception is Derby v4, which is very similar to Derby v3, so we only

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 71

Table 3.2: Systems under test (from the Software-artifact Infrastructure Repository (Do
et al., 2005)).

System Version
Release SLOC No. of No. of Failure

date (K) faults tests rate

Ant v7 1.5.3 4/2003 90 6 105 17%
Derby v1 10.1.2.1 11/2005 420 7 98 21%
Derby v2 10.1.3.1 6/2006 416 9 106 34%
Derby v3 10.2.1.6 10/2006 517 16 120 22%
Derby v5 10.3.1.4 8/2007 571 26 53 64%

include Derby v3 in our case study.) Thus, for the purposes of our case study, we treat each

version of Derby as an independent system.

These datasets provide us with test oracles on which to evaluate the techniques under

test. Specifically, the datasets include a fault matrix which indicates which faults each test

is able to detect. As the fault matrix is unknown in practice, we only use the fault matrix

to evaluate the relative performance of each TCP technique; the fault matrices are not

accessible to any of the TCP techniques during the prioritization process.

3.4.3 Data Preprocessing

We preprocess the text of the test cases for the topic-based techniques in the standard way

when applying topic modeling techniques to source code (Section 2.2). Specifically, we split

identifier names, remove stop words, and stem those that remain. We did not preprocess

the test cases in the string-based technique, to be consistent with the technique of Ledru

et al. (2011).

3.4.4 Distance Metrics and Maximization Algorithms

For our case study, we fix the distance metric to be used by both string-based and topic-

based techniques. We use the Manhattan distance metric, because it is applicable to both

TCP techniques and Ledru et al. found it to be optimal for string-based TCP (Ledru et al.,

2011).

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 72

For distance maximization, we implement the greedy algorithm used by previous re-

search (Elbaum et al., 2002). Namely, our implementation first uses the AllDistance metric

(Equation 3.1) to determine the test case that is most dissimilar from the set of all test

cases, and adds it to the (initially empty) set of already-prioritized test cases, PS. Then,

our implementation iteratively finds the test case that is most dissimilar (again, based on the

AllDistance metric) to all the test cases in PS, and adds it to PS. If two or more test cases

have the same dissimilar value, the tie is broken randomly. The implementation continues

in this way until all test cases have been prioritized.

3.4.5 Topic Modeling Technique

Our proposed topic-based TCP technique can use any of several underlying topic modeling

techniques. In this case study, we use the well-known LDA model (Blei et al., 2003).

We use the lda package (Chang, 2012) of the R programming environment (Ihaka and

Gentleman, 1996) as our LDA implementation. As LDA is a generative statistical model that

uses machine learning algorithm to approximate the ideal set of topics, some randomness

is involved. Given a different random number seed, LDA may produce a slightly different

set of topics (Blei et al., 2003). The lda package uses collapsed Gibbs sampling (Porteous

et al., 2008) as the machine learning algorithm to approximate topics.

To use LDA, we must specify four parameters: the number of topics, K; the document-

topic smoothing parameter, α; the topic-word smoothing parameter, β; and the number of

Gibbs sampling iterations to execute, II. For a given corpus, there is no provably optimal

choice for K (Wallach et al., 2009). The choice is a trade-off between coarser-grained

topics (smaller K) and finer-grained topics (larger K). Setting K to extremely small values

results in topics that approximate multiple concerns (imagine only a single topic, which will

contain all of the concerns in the corpus!), while setting K to extremely large values results

in topics that are too fine and nuanced to be meaningful. Common values in the software

engineering literature range from 5 to 500 topics, depending on the number of documents,

granularity desired, and task to perform (Griffiths et al., 2007). We seek topics of medium

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 73

granularity, and thus use K=N/2.5 topics per system (rounded to the nearest integer),

where N is the number of documents in the SUT. Thus, we use K = 42, 39, 42, 48, and 21

for the five systems listed in Table 3.2, respectively. For α, β, and the number of iterations

II, we use the defaults in the lda package (which are α=0.1, β=0.1, and II=200) across

all five systems, as these values are not dependent on the number of documents in the SUT.

(We investigate parameter sensitivity in Section 3.5.2.)

3.4.6 Random Samples of Performance

To mitigate the effect of randomization and to capture the variation in the performance of

each TCP technique, we run each technique several times with different random number

seeds. Doing so allows us to quantify the expected behavior of each TCP technique, as well

as calculate statistics on the variability of each technique.

In particular, for the topic-based technique, we first run the topic modeling technique

30 times, each with the same parameters (i.e., K, α, β, and number of iterations) but

a different initial random seed. This results in a set of 30 topic models (i.e., the topics

themselves as well as the topic membership vectors for each test case), each showing a

slight variation. We compute the distance matrices for each of the 30 topic models. We

then execute the greedy maximization algorithm 30 times for each distance matrix, which

causes ties to broken in different ways.

For string-based techniques, there is no randomization when computing the distance

matrix, because only deterministic processes are being executed; the process of comput-

ing the distance between the raw strings is deterministic. Instead, we apply the greedy

algorithm 900 times, randomly breaking ties in different ways, in order to collect an equal

number of samples as the topic-based technique. Similarly, for the call-graph technique, we

apply the greedy algorithm 900 times, randomly breaking ties in different ways. For the

random prioritization technique, we compute 900 random prioritizations.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 74

3.4.7 Analysis and Evaluation Metrics

We use a standard metric to evaluate the performance of the different techniques: average

percentage of fault-detection (APFD) (Rothermel et al., 2001). APFD captures the average of

the percentage of faults detected by a prioritized test suite. APFD is given by

APFD = 100 ∗
(

1− TF1 + TF2 + · · ·+ TFm
nm

+
1

2n

)
, (3.2)

where n denotes the number of test cases, m is the number of faults, and TFi is the number

of tests which must be executed before fault i is detected. As a TCP technique’s effectiveness

increases (i.e., more faults are detected with fewer test cases), the APFD metric approaches

100. (We note that APFD is bounded in the range of [100∗ (1− (1/2n)), 100∗ (1− (3/(2n))].)

To compare and contrast the APFD values of the different TCP techniques, we use three

metrics. The first, %∆, is the percent difference between the mean APFD results of two

techniques:

%∆(µ1, µ2) =
µ2 − µ1
µ1

, (3.3)

where µ1 and µ2 are the mean APFD results of two TCP techniques. Second, we use the

Mann-Whitney U statistical test (also known as the Mann-Whitney-Wilcoxon test) to de-

termine if the difference between the APFD results are statistically significant. The Mann-

Whitney U test has the advantage that the sample populations need not be normally dis-

tributed (non-parametric). If the p-value of the test is below a significance threshold, say

0.01, then the difference between the two techniques is considered statistically significant.

While the Mann-Whitney U test tells us whether two techniques are different, it does not

tell us how much one technique outperforms another, i.e., the effect size. To quantify the ef-

fect size between the techniques, our third metric is the Vargha-Delaney A measure (Vargha

and Delaney, 2000), which is also robust to the shape of the distributions under compari-

son (Arcuri and Briand, 2011). The A measure indicates the probability that one technique

will achieve better performance (i.e., higher APFD) than another technique. When the A

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 75

measure is 0.5, the two techniques are equal. When the A measure is above or below 0.5,

one of the techniques outperforms the other.

3.5 Results and Discussion

We wish to evaluate the effectiveness of topic-based TCP with respect to other state-of-

the-art static techniques. To do so, we compare the APFD results (Equation 3.2) of the

topic-based technique (TOPIC) against three baselines: 1) the random TCP technique

(RANDOM); 2) the call graph-based technique (CALLG); and 3) the string-based technique

(STRG).

3.5.1 Results

Table 3.3 and Figure 3.2 present and compare the APFD results for the five systems under

test. Figure 3.2 shows boxplots for each technique, which summarize the distribution of

the 900 random samples that we collected for each technique. Table 3.3 shows the mean

APFD values along with comparisons between techniques using the Mann-Whitney U test (to

determine if the techniques are statistically different) and the Vargha-Delaney A measure

(to quantify how different the techniques are). We use the figure and table to make the

following observations.

First, we find in Table 3.3 that the differences between techniques are almost always

statistically significant according to the Mann-Whitney U test (i.e., the resulting p-values

are <0.01), with one exception (Ant v7: TOPIC compared to CALLG). This indicates that

the techniques capture different aspects of the tests and that the techniques result in signif-

icantly different prioritizations. In the exceptional case, TOPIC and CALLG exhibit equiva-

lent effectiveness, as the p-value is ≥0.01.

Second, TOPIC always outperforms RNDM, as determined by higher mean APFD values

and a effect sizes ≥ 0.5. In the best case, TOPIC outperforms RNDM by 20%; on average

TOPIC outperforms RNDM by 7.2%.

Third, TOPIC outperforms CALLG in all but one system under test. In Ant v7, the

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 76

Table 3.3: Mean APFD results (µ) and comparisons for each technique: random (RNDM),
call-graph (CALLG), string (STRG), and topic (TOPIC). Each technique is compared to
TOPIC using percent change in mean (%∆), the p-value of the Mann-Whitney U test (p-
val), and the Vargha-Delaney A measure (A); see Section 3.4.7 for definitions of these
metrics. We bold the best technique(s) for each SUT.

RNDM CALLG STRG TOPIC

µ µ µ µ
vs. RNDM vs. CALLG vs. STRG

%∆ p-val A %∆ p-val A %∆ p-val A

Ant v7 70.6 85.5 77.2 84.8 20.1 <0.001 0.94 -0.9 0.515 0.49 9.8 <0.001 0.94
Derby v1 90.7 91.8 90.4 93.7 3.4 <0.001 0.64 2.1 <0.001 0.77 3.7 <0.001 0.86
Derby v2 91.5 87.6 90.3 94.6 3.3 <0.001 0.69 8.0 <0.001 0.97 4.8 <0.001 0.91
Derby v3 92.7 93.4 93.5 94.0 1.3 <0.001 0.55 0.6 <0.001 0.67 0.5 <0.001 0.67
Derby v5 89.1 73.8 82.1 96.4 8.1 <0.001 0.86 30.5 <0.001 1.00 17.4 <0.001 1.00

performance of TOPIC is not statistically different from the performance of CALLG: the p-

value is ≥0.01 and the effect size is very close to 0.5. However, in each of the other four

systems under test, TOPIC outperforms CALLG by up to 31% and by 10.3% on average.

Finally, TOPIC always outperforms STRG. In the best case, TOPIC outperforms STRG

by 17%; TOPIC outperforms STRG by 7.2% on average.

We conclude that our proposed topic-based TCP technique is more effective than
state-of-the-art static techniques when applied to the studied systems.

3.5.2 Discussion

We now discuss our results to better understand the characteristics of our proposed topic-

based technique. We start by providing a detailed example from our case study. We then

compare the topic-based technique against a well known, execution-based technique, lever-

aging the fact that both techniques were tested on similar datasets. We then examine how

the characteristics of each SUT’s fault matrix affect the results of the tested TCP techniques.

We then examine how sensitive the results of the topic-based technique is to its parameters.

We then investigate whether the string-based technique is sensitive to the preprocessing

steps. We outline practical advantages and disadvantages of the techniques. Finally, we

enumerate potential threats to the validity of our case study.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 77

●

●

RNDM CALLG STRG TOPIC

50
60

70
80

90
10

0
A

P
F

D

(a) Ant v7.

●

●

●
●

●

●●
●●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●
●

●
●
●

●
●
●

●●
●
●●
●

●
●
●
●
●
●

●
●
●
●●
●
●●
●
●●
●

●
●
●
●●
●
●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●●
●
●
●
●

●
●
●
●●
●

●
●
●

●
●
●
●
●
●

●
●
●

●●
●

●●
●
●●
●

RNDM CALLG STRG TOPIC

50
60

70
80

90
10

0
A

P
F

D

(b) Derby v1.

●
●
●
●
●
●
●

●
●●●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

RNDM CALLG STRG TOPIC

50
60

70
80

90
10

0
A

P
F

D

(c) Derby v2.

●
●

●

●
●●
●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

RNDM CALLG STRG TOPIC

50
60

70
80

90
10

0
A

P
F

D

(d) Derby v3.

●

●

●●

●

●

●

●

●●●●

●

●●●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●●●●●

●

●●●●●●

●

●●●●

●

●●●●

●

●●

●

●●●●●●●●

●

●●

●

●●

●

●●●●

●

●●

RNDM CALLG STRG TOPIC

50
60

70
80

90
10

0
A

P
F

D

(e) Derby v5.

Figure 3.2: APFD results for each system under test (different subplots) and each tech-
nique (different boxes): random (RNDM), call graph (CALLG), string (STRNG), and topic
(TOPIC). The boxplot show the distributions of 900 random repetitions of each technique
(Section 3.4.6).

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 78

Comparison of Similarity Measures: An Example

To understand our technique in more depth, we present an example from our case study.

Figure 3.3 contains an example from version v1 of the Derby DBMS. In this example, we

compare one test script, metadataMultiConn.java, against all other test scripts in the suite

using the similarity measures from the three static TCP techniques: topics, call graphs, and

string distances. metadataMultiConn.java is a test script that tests the metadata columns of

a DBMS using multiple connections. Our desire is to have a similarity measure that rates

metadataMultiConn.java as highly similar to test scripts that also test metadata columns,

such as odbc metadata.java, dbMetaDataJdbc30.java, or metadata.java.

Figure 3.3 contains a snippet of metadataMultiConn.java along with snippets of three

other test scripts, the closest for each of the three static TCP techniques. Table 3.4 shows the

actual distances between the test scripts. According to the topic-based similarity measure,

metadataMultiConn.java is closest to the metadata.java test script. As metadata.java also

primarily exists to test metadata columns, the similarity with metadataMultiConn.java meets

our desired similarity requirement.

However, with either the call-graph based or string-based similarity measures, meta-

data.java is only the 26th or 64th most similar to metadataMultiConn.java, respectively,

indicating that these measures were unable to capture the similarity between these two

scripts. Additionally, these measures did not rate any of our other desired metadata-related

files as highly similar to metadataMultiConn.java. Using the string-based similarity measure,

an unrelated test script named backupRestore1.java is considered the closest to metadata-

MultiConn.java, even though they share no obvious funtionalities. (backupRestore1.java

creates a table in memory, backs it up on the hard disk, and restores it into memory.) The

call graph-based similarity measure considers executeUpdate.java to be the most similar

to metadataMultiConn.java, even though executeUpdate.java deals primarily with testing

Derby’s Statement::executeUpate() method, and has nothing to do with metadata columns

nor multiple database connections.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 79

Table 3.4: The distances between four example test scripts in Derby: metadataMulti-

Conn.java (a), metadata.java (b), backupRestore1.java (c), and executeUpdate.java (d).
Figure 3.3 contains snippets of these test scripts. We also show the rank of each distance,
out of 98 total test scripts.

Topic-based String-based Call graph-based

Dist. Rank Dist. Rank Dist. Rank

(a) vs. (b) 0.401 1 293892 26 44 64
(a) vs. (c) 1.837 41 131250 1 37 44
(a) vs. (d) 1.952 57 400366 56 20 1

In this example, topic-based similarity better determine the similarity between
pairs of test cases than existing string-based or call-graph based measures.

Comparison to Execution-based Results

While not the primary focus of our chapter, we now wish to compare our results with

those of popular white-box execution-based TCP techniques to gain an understanding of

the performance differences. The most popular white-box execution-based techniques are

based on basic block coverage, where a block can be defined as an individual statement

or a method (Elbaum et al., 2002; Yoo and Harman, 2010). Specifically, we consider the

results of Zhang et al. (2009), who have reported the APFD results for the Ant system under

test for two variations of their white-box execution-based technique, both based on method

coverage information, which is consistent with our technique. Their first technique, called

Method-total (MTT), orders tests cases based on the coverage of methods. Their second

technique, called Method-additional (MAT), orders test cases based on the coverage of

methods not yet covered.

We note that the mean APFD results reported for CALLG by Zhang et al. (87.8%) is

quite similar to the results we report in this chapter (85.5%), encouraging us that our

implementation of their technique is accurate, and that the comparisons above are fair.

The studies performed by Zhang et al. and this chapter are slightly different. Zhang et

al. test 8 versions of Ant, and compute only one random sample per version. The results

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 80

public class metadataMultiConn {
...

Connection conn = ij.startJBMS();
conn.setAutoCommit(autoCommit);
Connection conn1 = getConnection(args, false);
metadataCalls(conn1);
Connection conn2= getConnection(args, false);
metadataCalls(conn2);
...
DatabaseMetaData dmd = conn.getMetaData();
...
DatabaseMetaData dmd = conn1.getMetaData();
...

}

(a) metadataMultiConn.java

/** Test of database meta-data. This program simply calls each of the meta-data
* methods, one by one, and prints the results. */

public class metadata extends metadata_test {
...
ResultSetMetaData rsmd = s.getMetaData();
...
for (int i=1; i<=numCols; i++) {

System.out.print("[" + rsmd.getColumnTypeName(i) + "]");
}
...

(b) metadata.java

public class backupRestore1{
...
Connection conn = ij.startJBMS();
conn.setAutoCommit(false);
...
//just open to a file in existing backup, so that rename will fail on next backup
rfs = new RandomAccessFile("extinout/mybackup/wombat/service.properties" , "r");
...
PreparedStatement insStmt = conn.prepareStatement(...);
insStmt.setBinaryStream(2, new ByteArrayInputStream(blob1), blob1.length);
insStmt.setAsciiStream(3, new ByteArrayInputStream(clob1), clob1.length);
...

}

(c) backupRestore1.java

class executeUpdate{
...
Statement stmt = conn.createStatement();
int rowCount = stmt.executeUpdate("create table exup(a int)");
if (rowCount != 0)

System.out.println("FAIL - non zero return count on create table");
else

System.out.println("PASS - create table");
...

}

(d) executeUpdate.java

Figure 3.3: Four abbreviated test scripts from Derby v1. Full versions are online (Thomas,
2012). Table 3.4 shows the static TCP similarities between them.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 81

they report are the mean APFD value across the 8 versions. We, on the other hand, collect

900 samples from a single version of Ant, and report the mean of these 900 samples. (We

only tested a single version Ant, because the remaining versions did not meet the size

requirements we imposed in Section 3.4.2.) Even though this is not an exact comparison,

it can still shed some light in the comparison of the techniques. Zhang et al. present the

mean APFD value for MTT and MAT to be 64.7% and 87.5%, respectively. Our results

for the mean APFD value for TOPIC is 84.1%. Thus, TOPIC outperforms one execution-

based technique, and has similar performance to another. Given that the execution-based

techniques have much more information available, we find these results encouraging.

Our topic-based TCP technique has similar or better performance to execution-
based techniques, even though the topic-based technique requires less informa-
tion.

Effects of the Characteristics of Fault Matrices on Results

A fault matrix represents which faults each test case can detect. Rows represent test cases

and columns represent faults: if entry i, j is 1, then test case Ti detects fault fj . Fault

matrices are not known in advance by practitioners (hence the need for TCP techniques),

but each system has a fault matrix nonetheless.

The success of any TCP technique depends on the characteristics of the system’s un-

derlying fault matrix (Rothermel et al., 2002). If, for example, all test cases can detect all

faults, then developers can use any TCP technique (even random!) and achieve identical

results. Similarly, if each test case can detect exactly one fault, and each fault is detected by

exactly one test case (an unsorted diagonal fault matrix), again all possible TCP techniques

will achieve identical results, assuming that faults have equal importance. Prioritization

techniques become necessary when the fault matrix is between these two extremes.

The characteristics of the fault matrices in the systems under test vary widely, which

helps explain the differences in APFD results. Table 3.5 quantifies various characteristics of

each fault matrix: the number of faults and tests; the failure rate; the average number of

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 82

faults detected by each test case; the average number of test cases that detect each fault;

the percentage of tests that detect no faults; the percentage of tests that detect at least half

of the faults; and the percentage of tests that detect all of the faults.

Ant v7 has the lowest failure rate, lowest average number of faults per test case, and

lowest average number of test cases that detect each fault. Additionally in Ant v7, no test

cases can detect more than 50% of the faults, and 83% of the tests do not detect any faults at

all. Thus, detecting faults in Ant v7 is relatively difficult, and performance by all techniques

is generally the worst for Ant v7, compared to the other systems under test. Additionally,

RNDM has worse performance for Ant v7 than any other system under test, since random

guessing is likely to choose tests that detect no faults.

Derby v5 has the largest percentage of tests that can detect all of faults, the smallest

percentage of tests that detect no faults, and the largest average number of faults detected

per test case. These three characteristics combined indicate that faults are relatively easy

to detect, compared to other systems. Thus, TCP techniques become less important, as the

probability of selecting a valuable test case at random is high. Indeed, RNDM has signifi-

cantly better performance than the CALLG and STRG techniques in this system. However,

TOPIC is still able to outperform RNDM, highlighting that TOPIC is valuable even in the

extreme case of easy-to-detect faults.

In the other three systems under test (Derby v1, Derby v2, and Derby v3), the fault

matrices have more middle-of-the-road characteristics: they lie somewhere between the ex-

treme cases of Ant v7 (faults are harder to detect) and Derby v5 (faults are easier to detect).

In these systems, we found that the performance differences between the techniques under

test were the smallest. Even still, TOPIC consistently outperformed the other techniques,

indicating that TOPIC is the best choice even for systems with average characteristics.

TCP performance depends on the system’s underlying fault matrix. However,
our proposed topic-based technique is robust to all types of fault matrices: those
where faults are easy to detect, hard to detect, or some middle ground.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 83

Table 3.5: Characteristics of the fault matrices of the systems under test.

Faults Tests Failure
rate (%)

Avg. faults
per test

Avg. tests
per fault

% tests detecting X% faults

X=0 X=50 X=100

Ant v7 6 105 17.1 0.21 3.67 82.9 0.0 0.0
Derby v1 7 98 21.4 0.69 9.62 78.6 9.2 5.1
Derby v2 9 106 34.0 0.92 10.89 66.0 7.5 3.8
Derby v3 16 120 21.7 1.66 12.47 78.3 10.0 6.7
Derby v5 26 53 64.2 4.37 8.90 35.8 13.2 7.5

Run Time

To compare run times of the three static techniques, we ran a single instance of each tech-

nique on modest hardware (Ubuntu 9.10, 2.8 GHz CPU, 64GB RAM) and modest software

(in R, the lda package for LDA, the man package for Manhattan distance, and our own im-

plementation of the greedy algorithms) for our largest system under test, Derby v3. The

topic-based technique ran in 23.1 seconds (22.9 to extract topics, <1 to compute the dis-

tance matrix, and <1 to run the greedy algorithm). The string-based technique ran in 29.6

seconds (29.15 to compute the distance matrix and <1 to run the greedy algorithm). Com-

puting the distance matrix is longer for the string-based technique because the length of

each string is much longer than the topic vectors. The call graph-based technique ran in

168.5 seconds (168.4 to extract the call graph of all tests using TXL and <1 to run the

greedy algorithm).

The run times of all techniques, even with these unoptimized implementations, is trivial

compared to the run time of most test cases (Hemmati et al., 2012; Rothermel et al., 2001).

Further, the techniques scale: LDA can run on millions of documents in real time (Porteous

et al., 2008) and many parts of all three techniques can be parallelized, such as extracting

call graphs and computing distance matrices.

Parameter Sensitivity of LDA

In our experiment, the topic-based TCP technique used the LDA topic model to automati-

cally create topics that are used to compare test cases. As described in Section 3.4.5, LDA

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 84

depends on four input parameters: the number of topics, K; document-topic and topic-

word smoothing parameters, α and β; and the number of sampling iterations, II. In our

experiment, we fixed these values based on the characteristics of the SUTs. In this section,

we investigate how sensitive our results are to the chosen parameter values.

For each of the four parameters, we compare two values to the baseline value used in

our case study: some value smaller than the baseline value; and some value larger than the

baseline value. For K, we consider K ′/2 and K ′ ∗ 2, where K ′ is the original value of K

used in our case study. For α, we consider α′/2 and α′ ∗ 2. For β, we consider β′/2 and

β′ ∗ 2. Finally, for II, we consider II ′/10 and II ′ ∗ 10. We keep constant all other settings

and design decisions from our original case study (see Section 3.4).

Table 3.6 summarizes the values tested for each parameter and shows the results. We

find that changing the values of the four parameters sometimes results in a change in mean

APFD, but never by a large magnitude. Some parameter changes result in an increased

mean APFD, and some parameter changes result in a decreased mean APFD. Some results

are statistically significant, while others are not. We make two conclusions. First, although

there is some variability in the results, and more work is needed to fully quantify the pa-

rameter space, we find that parameter values do not play a pivotal role in the results of the

topic-based TCP technique. Second, the results of our original case study are not biased by

showing only the results of the best possible parameter values.

Our topic-based TCP technique is not particularly sensitive to parameter values.

Effects of Preprocessing on String-based TCP

In our experiment, we implemented the string-based technique exactly as described by

Ledru et al. (2011) in an effort to provide a fair comparison. In particular, we computed the

string edit distance between two test scripts using their raw, unprocessed text. In our topic-

based technique, before we compute the distance between test scripts, we perform a text

preprocessing step that removes programming language punctuation and keywords, splits

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 85

Table 3.6: Results of the parameter sensitivity analysis. For each SUT, we show the baseline
mean APFD, which are a result of the parameter values used in the original case study. We
then change the value of each parameter and report the resulting mean APFD, along with
a comparison with the baseline mean APFD, using the p-value of the Mann-Whitney U test
(p-val), and the Vargha-Delaney A measure (A); see Section 3.4.7 for definitions of these
metrics.

Lower Higher
Value change µ p-val A Value change µ p-val A

Ant v6 (Baseline: µ=84.8 using K=42, α=0.1, β=0.1, and II=200)

K=21 83.6 <0.001 0.41 K=84 84.3 <0.001 0.45
α=0.05 83.0 <0.001 0.38 α=0.20 85.2 0.912 0.50
β=0.05 83.0 <0.001 0.36 β=0.20 83.8 <0.001 0.44
II=20 82.4 <0.001 0.32 II=2000 83.9 <0.001 0.45

Derby v1 (Baseline: µ=93.7 using K=39, α=0.1, β=0.1, and II=200)

K=19 91.0 <0.001 0.30 K=78 94.0 0.774 0.50
α=0.05 92.0 <0.001 0.32 α=0.20 93.5 0.652 0.51
β=0.05 92.1 <0.001 0.41 β=0.20 92.3 <0.001 0.40
II=20 92.3 <0.001 0.39 II=2000 89.4 <0.001 0.17

Derby v2 (Baseline: µ=94.6 using K=42, α=0.1, β=0.1, and II=200)

K=21 91.2 <0.001 0.23 K=84 95.3 <0.001 0.58
α=0.05 89.8 <0.001 0.11 α=0.20 94.5 0.008 0.54
β=0.05 94.1 0.353 0.51 β=0.20 93.3 <0.001 0.42
II=20 91.7 <0.001 0.29 II=2000 88.9 <0.001 0.09

Derby v3 (Baseline: µ=94.0 using K=48, α=0.1, β=0.1, and II=200)

K=24 87.4 <0.001 0.16 K=96 92.1 <0.001 0.32
α=0.05 91.0 <0.001 0.21 α=0.20 94.7 <0.001 0.58
β=0.05 91.4 <0.001 0.33 β=0.20 93.2 0.222 0.48
II=20 91.5 <0.001 0.36 II=2000 87.7 <0.001 0.10

Derby v5 (Baseline: µ=96.4 using K=21, α=0.1, β=0.1, and II=200)

K=10 93.1 <0.001 0.23 K=42 96.0 <0.001 0.44
α=0.05 90.4 <0.001 0.10 α=0.20 90.6 <0.001 0.09
β=0.05 95.8 <0.001 0.39 β=0.20 94.3 <0.001 0.32
II=20 95.2 <0.001 0.36 II=2000 94.7 <0.001 0.33

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 86

Table 3.7: Mean APFD results for the string-based technique without and with text prepro-
cessing. We compare the two using the p-value of the Mann-Whitney U test (p-val), and the
Vargha-Delaney A measure (A); see Section 3.4.7 for definitions of these metrics.

Without preprocessing With preprocessing p-val A

Ant v6 77.22 77.21 0.264 0.486
Derby v1 90.38 90.38 0.549 0.508
Derby v2 90.30 90.30 0.392 0.512
Derby v3 93.52 93.51 0.031 0.472
Derby v5 82.05 82.06 0.516 0.509

compound identifiers, removes stopwords, and performs word stemming, as is common

with topic models (see Section 2.4). To determine whether the difference in performance

between the string-based technique and topic-based technique is due to the techniques

themselves, and not the text preprocessing step, we perform a simple experiment. Namely,

we execute the string-based technique using the preprocessed test scripts (i.e., those used by

the topic-based technique), and compare the results to those of the string-based technique

using the raw test scripts. We keep constant all other settings and design decisions from our

original case study (see Section 3.4).

Table 3.7 shows the results. We use the Mann-Whitney U test and the Vargha-Delaney

A measure (see Section 3.4.7) to compare the two versions of the string-based technique.

In all five SUTs, the p-value of the Mann-Whitney U test is greater than 0.01, indicating that

there is not a significant difference between the two versions of the string-based technique.

In addition, the A measure is always close to 0.5, further indicating that the two versions of

the technique are comparable. Thus, we conclude that the performance of the string-based

TCP technique is not dependent on the text preprocessing step, and that the success of the

topic-based technique is not due solely to its text preprocessing.

The performance of the string-based TCP technique is not dependent on the text
preprocessing step, and that the success of the topic-based technique is not due
solely to its text preprocessing.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 87

Practical Advantages of Static Techniques

Compared to existing execution-based techniques (based on code coverage information)

and model-based techniques (based on specification models of the source code), static tech-

niques enjoy several practical advantages.

First, there is no need to collect coverage information, a process that can be time-,

money-, and resource-expensive due to the need to instrument and execute the entire test

suite. Similarly, there is no need to create specification models of the SUT, also a process

that can be time- and labor-intensive.

Second, there is no need to store coverage information on disk, which can become

quite large and cumbersome for large systems with many tests. The data needed for static

techniques are the test cases themselves, which are already being stored on disk.

Finally, with black-box static techniques, there is no need to maintain the coverage in-

formation or specification models as the source code and test cases evolve. Since black-box

static techniques work directly on the test cases themselves, these techniques are indepen-

dent of source code or model changes.

Scope of Static Techniques

Despite the advantages of static techniques over execution-based or model-based tech-

niques, static techniques may not be appropriate for some TCP tasks.

First, static techniques work best on tests written in a high-level programming language.

Static techniques will not perform well with short tests, or those written in command form.

For example, the test cases of the Unix bash shell are specified as short scripts, such as eval

$1=\"\${$1:-$2}\". These types of tests do not have enough linguistic data or an extractable

call graph for static techniques to gather data and diversify test cases.

Second, static techniques are not currently equipped to deal with input file or command

line arguments to the tests. For example, say a single test case is executed against multiple

different input files (e.g., matrices or configuration files) which cause the test case to exhibit

vastly different behavior. Here, static TCP techniques will only operate on the text in the

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 88

test case itself, and not in its associated input files, and thus the TCP technique may miss a

valuable characteristic of the test case.

Another consideration of the call graph-based and topic-based techniques (but not string-

based) is that these techniques treat test cases as unordered bags of words. Thus, these

techniques cannot capture sequences of operations in test cases. For example, if one test

case opened a connection to a database, inserted rows, and then closed the connection,

while another test case opened a connection to a database, closed the connection, and then

inserted rows (intentionally creating an error), a bag of words model would not differen-

tiate the two: in the case of the call graph technique, the same methods are being called

and therefore the test cases would be identical; in the case of the topic-based technique,

the same topics are present in the test cases, and the distance metric would not detect a

difference.

3.5.3 Potential Threats to Validity

Our case study provides an initial evaluation of a promising static TCP technique, and we

are encouraged by the results. However, we note the following internal and external threats

to the validity of our study.

Internal Validity. One potential threat to the validity of our results is our limited access

to large, high-quality datasets. In particular, some of the SUTs exhibit characteristics that

may not be representative of real-world systems. For example, for some SUTs, multiple test

cases were able to detect all the faults in the system (Section 3.5.2). However, our results

are still based on carefully selected systems from the widely-used SIR repository (Do et al.,

2005).

The topic-based technique requires the topic modeling parameters—K, α, β, and the

number of iterations—to be specified beforehand. However, there is currently no method

for determining the optimal values of each parameter for any given dataset (Wallach et al.,

2009), and empirically estimating the optimal values is not feasible without performing a

large number of case studies. This problem is shared by topic modeling techniques in other

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 89

communities, such as analyzing scientific literature (Griffiths and Steyvers, 2004) and bug

localization (Lukins et al., 2010). Some research has proposed heuristics for determining

the number of topics in source code (Grant and Cordy, 2010). In addition, as we found in

Section 3.5.2, our results are not particularly sensitive to the exact values of the parameters.

Still, further research is required to fully understand the parameter space.

Finally, the topic-based technique is based on a machine learning algorithm, which in-

herently involves randomness to infer the topics from the test scripts. As a result, different

random number seeds may yield slightly different results. We mitigated this effect in our

case study by executing 30 iterations of the topic-based technique, each with a different

random number seed, and reporting the average of the results. Practitioners can mitigate

the effects of randomness by using a sufficiently large number of Gibbs sampling iterations.

External Validity. Despite testing as many systems as possible from the publicly-available

SIR repository, we still have only studied a limited set of systems. Our systems were all

written in Java, were medium sized, and did not cover all possible system domains and

testing paradigms. We therefore cannot quantify with any certainty how generalizable our

results will be to other systems.

3.6 Conclusion

Many test case prioritization (TCP) techniques require the execution behavior or specifica-

tion model of each test case. In this chapter, we considered the situation in which these

information sources are not available, so-called static TCP. Further, we considered black-box

static TCP, in which the source code of the system under test is not available. To this end,

we proposed a new topic-based black-box static TCP technique, which uses topic modeling

to abstract each test case into higher-level topics, based on the test cases’ unstructured lin-

guistic data. Using these topics, we calculated the dissimilarity between pairs of test cases,

and gave high priority to those test cases that were most dissimilar, thereby diversifying our

prioritization and casting a wide net for detecting unique faults.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 90

Given the unstructured linguistic data in the test cases, there is a spectrum of text anal-

ysis methods that can be used to differentiate test cases. On the shallow extreme, one could

use the simplest text comparison possible i.e., string equivalence, to compare test cases.

While this technique is fast and simple, it has the potential to miss important aspects of

the test cases and be misled by trivialities in the test scripts. On the deep extreme of the

spectrum, one could use full natural language processing, complete with grammars, parse

trees, and parts-of-speech tagging. This technique is powerful, but requires training data,

is inefficient, and is error-prone, making the automation of TCP difficult. Somewhere in

the middle of the spectrum is topic modeling, which uses a bag-of-word model and word

co-occurrences to approximate the functionality from each test case. We feel that topic

modeling is a good trade-off for comparing test cases, because it is fast and unsupervised,

yet still offers strong discrimination between test cases.

In a detailed case study of five real-world systems, we compared our topic-based TCP

technique to three baseline TCP techniques: random prioritization; a black-box version of

call graph-based prioritization, and string-based prioritization. We found that the proposed

topic-based prioritization outperforms existing black-box static techniques by up to 31%,

and is always at least as effective as the baseline techniques. These results indicate that

making use of the linguistic data in test cases is an effective way to statically prioritize test

cases. Further, our technique enjoys the advantage of being lightweight, in that it does not

require the execution behavior or specification models of the system under test, and instead

operates directly on the test scripts themselves.

Although our technique can stand on its own, our technique can also complement exist-

ing techniques. The heart of a TCP technique is the similarity measure that is used to assess

similarity of test cases. More sources of information are better: in the future one could

combine the strengths of existing TCP techniques by combining the various sources of in-

formation to make a more informed similarity measure. In this scenario, the contribution

of this chapter (i.e., a technique to extract useful information from the linguistic content of

test cases) could be used to enhance any TCP technique, since even execution-based and

model-based techniques always have the source code of test cases available.

CHAPTER 3. PRIORITIZING TEST CASES USING TOPIC MODELS 91

In future test case prioritization work, we could fine tune our topic-based technique

by investigating the effect of using different distance metrics between test cases, such as

the Kullback-Leibler and Hellinger distance metrics. Likewise, we could consider additional

distance maximization algorithms, such as hill climbing, genetic algorithms, and simulated

annealing. We could consider other IR models, such as the Vector Space Model and Latent

Semantic Indexing, for determining the similarities between test cases. Finally, we could

perform additional case studies, containing additional SUTs as well as execution-based and

model-based TCP techniques, to further verify our results.

CHAPTER 4

Measuring the Interaction Between Mailing Lists and Source Code

In this chapter, we consider a second new application of IR models in software engineering. We
tackle the challenge of understanding how developers use their mailing list while developing soft-
ware, which can provide insights into the development process, as well as pave the way for new tools
to better manage the design decisions of the system. We present an IR-based technique to discover
high-level topics in the mailing list and source code histories of a software system. Analysis of the
extracted topics, and their interactions over time, allows us to discover and characterize relation-
ships between the two repositories. Case studies on two open-source systems (Apache HTTP Server
and PostgreSQL) show that topics can be used to establish a high-level relationship between the
mailing list and source code. Our technique can thus be used to document the decisions and design
processes behind software changes and makes this data accessible to practitioners and researchers.

Publications based on this chapter: Thomas et al. (2012b)

4.1 Motivation

CONSIDER THE TYPICAL life cycle of an open source software system. Brian comes

up with a new idea, hacks together a prototype, and uses it for his own purpose.

As his tool seems to be useful for a wider range of tasks, Brian uploads it to

a public code repository with a dedicated mailing list. Soon, feature requests and bug

reports trickle in via email, exposing critical flaws in the system’s original design. Bernard

and Beverley soon contribute small bug fixes. Beverley proposes novel restructurings to

the architecture, whereas Bernard has ideas on how to scale up Brian’s system. Based on

92

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 93

the mailing list discussions of the three developers and other users, Brian’s tool undergoes

several iterations of restructuring and maintenance. After heated discussions on choosing

the right XML parser, plans are made for an official 2.0 release. Right after their new release,

the whole process repeats again.

When trying to understand the design of a software system like Brian’s system, prac-

titioners and researchers usually turn to the source code, as it is the most concrete and

executable specification of a software system. Various complex mining techniques exist to

abstract this concrete specification into a more semantic model of the concerns (conceptual

units) that collaborate to implement the system (Robillard and Murphy, 2002). These tech-

niques especially recover functional concerns such as the main algorithm, caching logic,

and synchronization.

However, as illustrated in our fictitious example, the majority of the human thought

process that went into the development iterations of Brian’s tool is not directly encoded

into the source code. Rather, it was only captured in mailing list discussions, bug reposito-

ries or even IRC chats. Although concern mining techniques might be able to reconstruct

some of the intermediate design decisions (Adams et al., 2010) by analyzing several re-

leases of Brian’s tool, these techniques are still unable to record deprecated design options,

nonfunctional topics like performance and reliability, and more process-related topics such

as testing and release management.

Our overarching research goal in this chapter is to recover this relationship between the

mailing list (where design decisions are discussed and made) and the source code (where

design decisions are implemented). Even though mailing lists are usually accessible to the

project developers, the sheer size of this repository (often with thousands of emails from

hundreds of users) makes it impractical to manually read, organize, or gain insight from.

Tools are thus needed to aid developers in recovering the conceptual links between mailing

lists and source code.

Recent work has proposed recovering traceability links between emails and source code,

based on keywords and regular expressions that look for class names in emails (Bacchelli

et al., 2009; Baysal and Malton, 2007). Although these techniques are useful for certain

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 94

if (options.username)
{

/*
* The \001 is a hack to support the deprecated -u option which
* issues a username prompt. The recommended option is -U
* followed by the name on the command line.
*/

if (strcmp(options.username, "\001") == 0)
username = simple_prompt("User name: ", 100, true);

else
username = pg_strdup(options.username);

}

Figure 4.1: Example code snippet from PostSQL.

scenarios, we also need a technique to find more conceptual links that often can not be

obtained by regular expressions alone.

Suppose Brian, our fictional developer, is now working on the popular open source

DBMS, PostgreSQL. Brian is making a change to the psql/startup.c file, which handles

global configuration options when the database is invoked. Figure 4.1 shows a curious

excerpt from the code that mentions a hack to get around a deprecated command line

option. Brian wonders why this option was deprecated in the first place, and why it is still

supported with a hack. Surely, there is a reason and history why this is the case; how can

he learn more about it?

On December 9, 2007, a message titled “whats the deal with -u?” was sent to the Post-

greSQL developer mailing list. What followed was a 21-message discussion that examined

in detail the reasons for deprecating the -u option, whether it was redundant with the -U

and-W options, and what the typical use-cases were for all three of these options. This

discussion would not only answer Brian’s questions about the design decisions regarding

why the -u option was deprecated, but would also give him a list of developers who are

familiar with the issue (i.e., the developers involved in this mailing list discussion). How-

ever, the discussion never mentions the phrase startup.c or any of the function names in

startup.c, so current linking techniques, based on keyword matching, would not be able

to find this discussion for Brian.

In this chapter, we hypothesize that topics are shared between source code and mailing

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 95

lists, and that we can recover this relationship using LDA. We further hypothesize that,

by analyzing the shared topics between source code and mailing lists, we can begin to

understand the life cycle of topics, from planning to eventual development. This motivates

our research questions:

RQ1: How similar are the topics that are discussed in the mailing list and implemented

in the source code? Intuitively, we expect that mailing list discussions primarily talk about

the source code. However, it is not obvious that the two repositories will share topics,

which are automatically discovered from the data based on the co-occurrences of words. It

is possible, for example, that the source code uses a different vocabulary than the mailing

list (e.g., “class” instead of “object”), which would mean that the topics would not be similar

and therefore we could not use them for further analysis. We therefore wish to quantify the

similarity of the topics in the two repositories.

RQ2: What is the temporal relationship between topic activity in the mailing list and

topic activity in the source code? We wish to investigate the knowledge flow between the

mailing list and source code. We hypothesize that topics will enter certain states at different

points in time, such as a discussion/planning state, when the topic is active on the mailing

list for some time before it is changed in the code, followed by an implementation state,

when there is less discussion but more code changes. We wish to characterize and quantify

this relationship and interaction.

4.2 Proposal

As conceptualized in Figure 4.2 and depicted in Figure 4.3, our technique to discover and

evaluate topics shared between a project’s mailing list and source code consists of mining

data from the project’s repositories and preprocessing the data so that LDA can be applied

(Step A); applying LDA to the preprocessed data (Step B); and computing metrics on the

output of LDA to analyze the results (Step C). In the following we discuss each step of our

technique in more detail and outline implementation specific design choices.

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 96

Topic F

Code

Changes

Topic A

Topic B

Topic A

Topic B

Topic B

Topic C
Topic C

Topic F

Topic A

Topic B

Topic X

Topic Z

Topic A

Topic A

Topic Z
Topic D

Email

Discussions

Email

Discussions
Code

Changes

Topic A activity

time

Figure 4.2: Our model of the interaction between emails and source code. Emails discuss
certain topics, and later those topics are changed in the source code. The activity for a topic
can be measured over time across both repositories.

Mailing

List

Step A

Parameters

DiffLDA

Source

Code

Preprocess

Preprocess

Step B Step C

Metrics

and

Analysis

Topics

Document

Memberships

Figure 4.3: An overview of our technique.

4.2.1 Data Preprocessing

We collect mailing list data using an in-house tool, which downloads and processes mailing

list archives in mbox format (Robles et al., 2009). We then collect the standard release

versions of the source code from the system archives.

The preprocessing step for the mailing list involves various cleansing operations (Betten-

burg et al., 2009). We first remove noise from each message, including personal signatures,

quotes of previous emails, and other lines of little contribution to the content of the dis-

cussion, such as “On May 3rd, Brian wrote:”. We then remove copies of messages that are

incorrectly sent multiple times by the mail server, remove attachments, and reconstruct dis-

cussion threads. We remove English language stop words, such as “the” and “it”, and finally

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 97

stem each word into its base form.

The preprocessing step for the code (Section 2.2) involves extracting identifier names

and comments, splitting, removing stopwords, and pruning rare and common words.

4.2.2 Applying LDA

We discover topics by applying the LDA model to the mail documents and source code

documents at the same time. This process results in a set of topics, as well as a description

of which topics are in which documents.

To apply LDA to the source code histories, we use the Diff model (Thomas et al., 2011),

which computes LDA on the changes (diffs) between versions of a document instead of

the versions themselves. The Diff model has been shown to reduce data duplication is-

sues found in source code histories, which degrade the effectiveness of the topics that LDA

discovers (Thomas et al., 2011). We combine the output of the Diff model with the prepro-

cessed mail documents into one large corpus, which we use as input into the LDA model.

4.2.3 Metric Computation and Analysis

We are interested in the characteristics of each discovered topic, and how the mailing list

interacts with the source code through these topics. We calculate metrics of the general

behavior or use of a topic, such as how often a topic is mentioned in the mailing list, the

total presence of a topic in the source code, and when a topic was added, removed, or

changed in the source code.

To describe our analysis, we briefly introduce some notation. We say that there is a total

of n = nc + nm source code and mail documents input into LDA. LDA discovers K topics,

z1, . . . , zK , where each topic is a distribution (which sums to 1) over the words in the corpus

vocabulary. Additionally, LDA produces an n×K document-topic matrix θ, where the entry

θik is the probability that topic zk appears in document di.

Since in Step B we apply LDA to both code and mail documents at the same time, we

introduce the following notation, which allows an easier description of our analysis.

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 98

– Document di contains a timestamp τ(di), a type t(di) ∈ {c,m} (code or mail), and a

number of words |di|.

– For code documents (t(di) = c), there are v timestamps (versions) of the corpus, V =

{V1, ..., Vv}.

– For mail documents (t(di) = m), there are p periods in the corpus, P = {P1, ..., Pp}.

– To make our equations general, we define the notion of a time unit T , which can be either

a timestamp or a period. Time unit T contains |T | documents.

– Docs(T, x) = {di | τ(di) ∈ T, t(di) = x} denotes all documents of type x in time unit T .

With this notation, we can isolate documents at specific times or periods and of specific

types (mail or code), making analysis straightforward. We calculate several topic metrics

of interest, which can be organized into two groups: those measured on the source code

documents and those measured on the mail documents.

Source Code Metrics

The code support of a topic measures the number of source code documents that contain

this topic with membership greater than the threshold δ:

Supportc(zk, T) =
∑

di∈Docs(T,c)

I(θik ≥ δ),

where I is a function which returns 1 if its argument is true and 0 otherwise. The code

weight of a topic measures the total presence of a topic in the source code, which is the

same as the total number of words across all source code documents that come from this

topic:

Weightc(zk, T) =
∑

di∈Docs(T,c)

θik · |di|. (4.1)

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 99

The code churn of a topic represents the number of source code documents matching this

topic that have changed in a given time period:

Churn(zk, T) =
∑

di∈Docs(T,c)

I(θik ≥ δ) · Churn(di, T), (4.2)

where Churn(di, T) is the churn of document di, that is, a binary indicator of whether the

document has changed since its previous version.

Mail Metrics

The mail support and mail weight of a topic, Supportm and Weightm, are defined in a

similar way as their code counterparts, except on mail documents. Mail support measures

the number of emails that contain this topic in time unit T , while mail weight measures the

total number of words in the mailing list that come from the given topic.

Source Code and Mail Metrics

Finally, we define the code weight ratio of a topic,

WeightRatioc(zk) =
Weightc(zk)/nc

Weightc(zk)/nc + Weightm(zk)/nm
, (4.3)

where

Weightc(zk) = max
Vj

Weightc(zk, Vj) and

Weightm(zk) = sum
Pj

Weightm(zk, Pj),

to be the ratio of a topic that is found in the source code documents (versus the mail docu-

ments). The mail weight ratio is the inverse of the code weight ratio (i.e., WeightRatiom(zk) =

1−WeightRatioc(zk)). We use the max operator on code documents because each version of

the code is mostly similar to the previous version, and hence summation would artificially

inflate the weight ratio.

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 100

Table 4.1: Systems under study.

Apache PostgreSQL

Mailing List

Dates Jan. 2006–Apr. 2010 Jan. 2000–Dec. 2008
Number of messages 16,130 140,192
Number of threads 4,006 20,442
Number of total words1 912,467 5,768,355

Source Code

Dates Nov. 2005–Aug. 2010 May 2000–Nov. 2008
Releases 2.2.0–2.3.8 7.0.0–8.3.5
Number of releases 16 46
Number of files2 258 844
Number of SLOC2 149,564 501,202
Number of total words1 6,702,992 40,491,956
1After preprocessing. 2In latest release.

Although many additional metrics can be measured (Thomas et al., 2010b), the met-

rics presented above will allow us to perform the analysis needed to answer our research

questions.

4.3 Case Studies

4.3.1 Systems Under Study

We study the data from two open-source systems: PostgreSQL and Apache HTTP Server

(Table 4.1). PostgreSQL is a large open source database system that has been actively de-

veloped for over 15 years (PostgreSQL, 2012). PostgreSQL is a natural choice for our study

due to its thorough documentation, rich source code and mailing list repositories, and large

practical impact over the years. Apache HTTP Server (hereafter Apache) is an open-source

web server developed by the Apache Software Foundation (Apache Foundation, 2012a).

Apache is a popular web server and undergoes rigorous software maintenance practices.

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 101

4.3.2 Study Design

We now describe the choices and parameters in our study. Unfortunately, there are no

perfect methods for determining optimal values for each parameter described below, but in

order to increase the repeatability of our case studies, we note each choice explicitly and

present our motivation behind it.

Message Granularity. Threads are collections of logically related email messages, for exam-

ple, an initial question and all the subsequent replies. Our data includes a thread identifier

for each individual message in the mailing list, allowing us to aggregate the messages of

each thread into a single document. Aggregating to this coarser level of granularity has the

benefits of larger document size (a benefit for LDA) and more context for messages. Many

individual messages only contain implicit references to previous messages in the thread,

such as “Sure, I’ll fix that”. Taken on an individual basis, such messages lack any context

and thus will not be useful for our purposes. We thus aggregate messages into threads for

our study.

LDA Implementation. We use MALLET version 2.0.6 (McCallum, 2012). In addition to

other useful features, MALLET has the ability to automatically generate a two-word label

for each topic, based on commonly occurring bi-grams in the documents containing the

particular topic. The generated label helps human readers better understand the nature of

the topic.

LDA Parameters. The LDA model requires four input parameters: the number of topics,

K; the number of sampling iterations; and α and β, smoothing parameters. We run 10,000

sampling iterations, after which the model has converged (Griffiths and Steyvers, 2004).

MALLET automatically optimizes for α and β using state-of-the-art techniques (McCallum,

2012).

To determine the number of topics, K, we use a standard technique (Griffiths and

Steyvers, 2004): we vary K and evaluate the fit of the model to our data by computing

the log likelihood. We consider values of 25, 50, 100, 200, 300, 400, 500, 600, 700, 800,

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 102

900, and 1,000. For PostgreSQL data, we found that the log likelihood is monotonically

increasing in our range of K values, but experiences diminishing returns as K increases

beyond 200. As we are aiming for a balance between a good model fit (high likelihood)

and low model complexity (low K), we set K to 200. Analogously, we set K to 100 for the

Apache data.

Binary membership threshold (δ). By design, LDA yields a membership value for each

topic in each document, ranging from 0.0 (document has no membership in this topic) to

1.0 (document has full membership in this topic). However, in some situations we need

to determine, in a binary way, whether a document contains a topic. We have observed

in practice that many documents have a small but nonzero membership for topics that

the document is obviously not associated with, a result of the probabilistic nature of the

LDA model. To account for this, we introduce a parameter, δ, that is used as a cut-off

point for membership values to determine whether a topic is in a document. Ideally, δ

would cause noisy memberships to be discarded while preserving true memberships. After

experimentation, we found that the results of our analysis are relatively insensitive to the

exact value and feel that δ =0.10 represents a reasonable choice.

Shared topic threshold (ψ). To determine if a topic is shared or not (Research Question

1), we investigate the code weight ratio metric, i.e., how much of a topic that is found in

the code versus in the mail. A code weight ratio of 0.0 means that the topic is never in the

code, and a code weight ratio of 1.0 means that a topic is never in the mail, both indicating

the topic is not shared between the two repositories. Due to noise in the LDA probabilistic

process, ratios of, for example, 0.01 may occur for topics that are not really in the code. To

account for this, we say that a topic is not shared if it has a ratio below ψ = 0.05 or above

1−ψ = 0.95.

Churned and discussed thresholds (γc and γm). To determine, in a binary way, if a topic

has churned or not churned in a certain release, we introduce a threshold γc = 1.0. We

categorize a topic zk as churned in time unit T if Churn(zk, T) ≥ γc (i.e., at least one file

as changed), and as not churned otherwise. Similarly, we define a discussed threshold γm =

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 103

1.0, meaning a topic is discussed in period P if at least γm message(s) occurred in P , and

not discussed otherwise.

4.4 Results and Discussion

4.4.1 Topic similarity between the mailing list and source code (RQ1)

Approach

As explained in Section 4.2, we use our technique to discover topics from the source code

and mailing list. We measure the code weight ratio (Equation 4.3) of the discovered topics

to determine how much of a topic is found in the code versus how much of the topic is

found in the mail. An extreme code weight ratio (i.e., 0.0 or 1.0) for a topic indicates that

the topic is not shared between the source code and mailing list, while moderate values

indicate that the topic is shared by both.

Findings

We find that the mailing list and source code share many topics. Tables 4.2 and 4.3 present

selected topics from each studied system. We show a selection of topics specific to the

code (high code weight ratio, low mail weight ratio), specific to the mail (low code weight

ratio, high mail weight ratio), and shared between code and mail (similar ratios). The

code-specific topics mostly deal with low-level programming concepts, such as errors, pa-

rameter validation, threads, and bytes, as well as data-structure/implementation concepts,

such as queues and parsing. The mail-specific topics deal with meta-system concepts, such

as version control, patches, revisions, work schedules, and compilation (e.g., make). The

balanced topics contain concepts such as text search, user authentication, sessions, and

bucket brigades (data containers in Apache).

Figure 4.4 presents the code weight ratio of each topic. The figure illustrates that there

is a range of percentages: some topics are found only in the code (top right), most topics

are found to varying degrees in both the code and mail (middle), and some topics are found

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 104

only in the mail (bottom left). Using cut-off values of .05 and .95 (Section 4.3.2), we see

that 58% (Apache) and 64% (PostgreSQL) of the topics are shared—they are found in both

the mailing list and source code. This provides evidence for our hypothesis that the mailing

list and source code discuss similar topics. For the remainder of this chapter, we remove

topics that are not shared and focus our analysis on those topics that are. There are now 58

and 129 topics in Apache and PostgreSQL, respectively.

We find that between 58% and 64% of the topics are shared between the mailing
list and source code.

4.4.2 The temporal relationship between topic activity in the mailing list and

source code (RQ2)

Approach

In Section 4.2.3, we defined the mail support and code churn metrics for a topic. As these

two metrics are orthogonal, we define four possible topic life cycle states, shown in Fig-

ure 4.5: Inactive (topic has low code churn and low mail support), Discussion (low code

churn and high mail support), Implementation (high code churn and low mail support),

and Active (high code churn and high mail support). We categorize each topic at each

version into one of these four states by comparing the topic’s mail support and code churn

metrics to thresholds that divide the plot region into the four states. We use mail support

and churn thresholds of 1.0 and 1.0, respectively (Section 4.3.2). We now investigate more

closely the characteristics and patterns of topic churn and mail support, as defined by the

four topic life cycle states.

Findings

We find that we can characterize the high-level information flow between the mailing list

and source code. Figure 4.6 shows a heatmap of topic life cycle states over time. The

heatmap shows that many topics enter all four states at least once in their lifetime (26%

in Apache, 54% in PostgreSQL), while even more topics enter three or more states (72% in

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 105

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
od

e
W

ei
gh

t R
at

io

●●●●●●●●●●●●
●●●●●

●●
●●●●●●

●●●
●●●●

●●●●●
●●●

●●
●●
●●●

●●●
●●●●

●●
●●●●

●●●
●
●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Topic ID (Sorted)

(a) Apache: 58% of topics are shared.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
od

e
W

ei
gh

t R
at

io

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●
●●●●●

●●●
●●
●●●●●●

●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

Topic ID (Sorted)

(b) PostgreSQL: 64% of topics are shared.

Figure 4.4: Ratio of a topic found in the code (code weight ratio). Each dot is a topic, and
the topics are sorted from lowest ratio to highest.

Mail Support

Low High

Code Churn High Implementation Active
Low Inactive Discussion

Figure 4.5: The four topic life cycle states, based on the code churn and mail support
metrics.

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 106

Ta
bl

e
4.

2:
Se

le
ct

ed
to

pi
cs

fr
om

A
pa

ch
e.

O
nl

y
B

al
an

ce
d

To
pi

cs
ar

e
fu

rt
he

r
co

ns
id

er
ed

fo
r

R
Q

2
an

d
R

Q
3.

k
La

be
l

To
p

W
or

ds
W

ei
gh

tR
at

io
c

Su
pp

or
t c

W
ei

gh
t c

Su
pp

or
t m

W
ei

gh
t m

Ex
am

pl
e

Co
de

-s
pe

ci
fic

To
pi

cs

91
cm

d
pa

rm
cm

d
ar

g
pa

rm
er

r
co

nfi
g

fil
en

am
se

rv
er

0.
99

9
10

6
22

66
9

21
50

63
pf

d
de

sc
po

lls
et

ri
ng

de
sc

po
llf

d
pf

d
po

ll
se

t
nu

m
0.

99
9

23
49

10
6

11
93

er
ro

r
ap

lo
g

th
re

ad
ch

ild
pi

d
se

rv
er

pr
oc

es
s

w
or

ke
r

m
pm

lis
te

n
0.

99
9

34
20

14
1

15
45

79
bu

fb
uf

bu
fl

en
si

ze
by

te
nb

yt
e

io
v

st
r

ba
se

0.
99

8
10

9
11

07
7

17
34

77
m

im
e

m
ag

ic
re

q
va

ri
an

t
ty

pe
re

c
m

im
e

co
nt

en
t

ch
ar

se
t

ac
ce

pt
0.

99
8

24
10

85
5

9
49

78
fp

ri
nt

fs
td

er
r

fp
ri

nt
fp

ri
nt

fs
td

er
r

ar
gv

ex
it

ar
gc

er
r

op
ti

on
0.

99
8

82
83

16
18

37

Ex
am

pl
e

M
ai

l-s
pe

ci
fic

To
pi

cs

10
ap

r
ap

r
ap

r
ut

il
po

ol
su

cc
es

s
re

vi
si

on
co

pi
in

de
x

w
or

k
0.

00
4

1
59

27
66

28
51

2
80

ht
tp

d
ht

tp
d

ht
tp

d
tr

un
k

ur
lm

od
ul

m
od

ifi
au

th
or

lo
g

da
te

0.
00

8
4

13
3

26
86

29
28

7
21

op
en

so
ur

c
lis

t
ap

ac
h

ht
tp

d
pr

oj
ec

t
de

ve
lo

p
us

er
as

fp
eo

pl
0.

00
9

5
20

5
40

74
40

23
5

39
at

ta
ch

pa
tc

h
pa

tc
h

tr
un

k
ba

ck
po

rt
co

m
m

it
w

or
k

pr
op

os
fix

re
vi

ew
0.

01
0

3
19

3
48

49
36

46
4

68
re

le
as

re
le

as
re

le
as

vo
te

ht
tp

d
te

st
ta

g
ta

rb
al

al
ph

a
st

ar
t

0.
01

5
2

14
0

22
89

16
43

9
10

0
m

ak
e

se
ns

m
ak

e
w

or
k

m
od

th
in

g
do

n
ti

m
e

co
de

go
od

0.
02

8
29

14
12

99
44

90
98

6

Ex
am

pl
e

Ba
la

nc
ed

To
pi

cs

13
ur

iu
ri

ur
iu

rl
m

et
ho

d
pa

th
re

qu
es

t
re

di
re

ct
lo

ca
t

in
te

rn
0.

50
6

36
45

35
99

7
80

70
53

ta
bl

he
ad

er
he

ad
er

ta
bl

po
ol

xf
fh

dr
ke

ic
on

te
nt

er
r

0.
55

1
52

48
89

60
1

72
53

85
ho

ok
ho

ok
ho

ok
ha

nd
le

r
ru

n
m

od
ul

fu
nc

ti
on

co
nfi

g
pr

e
da

ta
0.

56
7

47
42

42
77

7
59

22
24

st
at

u
st

at
u

st
at

u
er

ro
r

co
de

su
cc

es
s

se
t

er
r

re
tu

rn
in

te
rn

0.
56

7
96

54
71

10
31

76
26

82
se

ss
io

n
se

s-
si

on
se

ss
io

n
se

t
ad

d
fo

rm
sa

ve
ke

ir
eq

ue
st

ba
se

0.
60

2
11

33
03

32
5

39
78

5
bu

ck
et

br
ig

ad
bu

ck
et

br
ig

ad
al

lo
c

da
ta

cr
ea

t
re

ad
in

se
rt

ct
x

0.
60

3
56

10
38

2
73

4
12

46
3

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 107

Ta
bl

e
4.

3:
Se

le
ct

ed
to

pi
cs

fr
om

Po
st

gr
eS

Q
L.

O
nl

y
B

al
an

ce
d

To
pi

cs
ar

e
fu

rt
he

r
co

ns
id

er
ed

fo
r

R
Q

2
an

d
R

Q
3.

k
La

be
l

To
p

W
or

ds
W

ei
gh

tR
at

io
c

Su
pp

or
t c

W
ei

gh
t c

Su
pp

or
t m

W
ei

gh
t m

Ex
am

pl
e

Co
de

-s
pe

ci
fic

To
pi

cs

8
er

rc
od

er
rc

od
er

rc
od

er
ep

or
t

er
rm

sg
er

ro
r

in
va

lid
pa

ra
m

et
sy

nt
ax

un
de

fin
0.

99
9

19
5

23
51

5
67

14
7

14
4

co
nn

co
nn

co
nn

m
sg

st
at

u
er

ro
r

m
es

sa
g

so
ck

el
s

bu
ffe

r
0.

99
8

54
18

42
6

65
24

7
13

2
lin

e
gr

am
st

r
lin

e
m

ak
e

gr
am

ca
t

iv
al

ty
pe

op
t

0.
99

8
38

29
36

3
82

46
5

27
fp

ri
nt

fs
td

er
r

st
de

rr
pr

in
tf

fp
ri

nt
fb

uf
ch

ar
ar

gv
ex

it
en

di
f

0.
99

7
15

7
22

30
9

94
36

2
15

7
pt

r
pt

r
pt

r
cu

r
st

at
e

le
n

w
or

d
el

s
en

tr
iv

al
0.

99
7

92
15

65
5

83
29

8
10

ds
t

ds
t

fr
ee

ct
x

ui
nt

ds
t

ke
il

en
in

it
bu

f
0.

99
7

85
14

55
9

44
30

7

Ex
am

pl
e

M
ai

l-s
pe

ci
fic

To
pi

cs

19
8

ca
nd

lp
ha

ha
rd

ba
ck

up
dr

iv
e

lif
e

av
en

u
hi

ll
pe

nn
sy

lv
an

ia
dr

ex
el

0.
00

3
0

34
57

90
64

96
4

19
5

pe
rl

py
th

on
pe

rl
py

th
on

tc
lp

lp
er

ll
an

gu
ag

m
od

ul
sp

ic
or

e
0.

00
4

0
14

31
49

22
82

3
14

2
po

st
gr

sq
l

ph
p

po
st

gr
sq

la
pa

ch
lin

ux
bu

ild
ad

m
in

m
id

dl
ew

ar
0.

00
5

0
16

31
43

20
64

9
42

ca
nd

lp
ha

ba
ck

up
dr

iv
e

ha
rd

lif
e

ph
a

ca
nd

lr
oa

d
sq

ua
r

0.
00

5
0

62
75

28
80

06
8

18
6

w
eb

si
te

em
ai

ly
ah

oo
si

te
on

lin
po

st
gr

es
ql

ic
q

ys
cr

ap
pi

ur
l

0.
00

5
0

24
44

34
31

15
8

84
re

d
ha

t
rp

m
in

st
al

po
st

gr
es

ql
bu

ild
pa

ck
ag

re
d

ha
t

ta
r

0.
01

0
0

85
60

17
55

90
0

Ex
am

pl
e

Ba
la

nc
ed

To
pi

cs

87
ou

te
r

jo
in

jo
in

qu
er

io
ut

er
cl

au
s

se
le

ct
pl

an
ne

r
op

ti
m

pl
an

0.
35

1
30

44
41

50
90

52
08

1
5

en
ab

ld
is

ab
l

op
ti

on
en

ab
ld

is
ab

lfl
ag

se
t

co
nfi

gu
r

m
od

e
tu

rn
0.

36
2

25
28

77
58

17
32

21
3

41
pr

ep
ar

st
at

em
st

at
em

cu
rs

or
pr

ep
ar

ex
ec

ut
fe

tc
h

qu
er

id
ec

la
r

pa
ra

m
et

0.
36

6
26

37
30

42
45

41
03

1
18

8
hb

a
co

nf
pa

ss
w

or
d

us
er

au
th

us
er

na
m

au
th

en
t

sh
ad

ow
co

nn
ec

t
en

-
cr

yp
t

0.
37

4
29

29
59

30
44

31
45

9

10
5

st
ar

t
po

st
-

m
as

t
po

st
m

as
t

ba
ck

en
d

pr
oc

es
s

pi
d

st
ar

t
se

rv
er

ex
it

st
ar

tu
p

0.
38

3
36

70
00

72
00

71
49

4

13
7

te
xt

se
ar

ch
w

or
d

se
ar

ch
te

xt
ts

ea
rc

h
co

nfi
gu

r
in

de
x

en
gl

is
h

fu
nc

ti
on

0.
38

6
15

23
23

27
21

23
42

5

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 108

Apache, 79% in PostgreSQL). The most common state in both studied systems is the Active

state (55% in Apache, 51% in PostgreSQL), and the least common is the Inactive state for

Apache (9%) and the Implementation state for PostgreSQL (6%).

Another class of observations we can make from Figure 4.6 is the characteristics of

releases (columns):

– In release 6 (Apache), most topics are in the Active state (78% of all topics).

– In release 11 (Apache), most topics are in the Discussion state (46%).

– In release 14 (Apache), most topics are in the Implementation state (47%).

– In release 22 (PostgreSQL), most topics are in the Discussion state (90%).

Figure 4.7 shows state transition diagrams for Apache and PostgreSQL. Each node in

the diagram is one of the states of a topic; the edge weights between the nodes are the

median probability of a topic transitions from one state to another. We make the following

observations.

– When a topic is being discussed, it is most likely to become active in the next state.

– When a topic is active, it is most likely to stay active in the next state.

– When a topic is inactive, it is equally likely to enter any of the other three states.

– When a topic is being implemented, it is most likely to stay implemented or become active

(Apache) or to become inactive (PostgreSQL).

Note that a lack of an edge indicates that the median probability across all topics was 0

for that transition, i.e., at least half of the topics never made that transition. This is different

than saying a topic never made that transition. Indeed, all transitions were made at least

once, but some transitions were less frequent than others.

The state transition diagrams for Apache and PostgreSQL differ in a few ways.

– Topics in Apache are much more likely to be in the Implementation state (21% vs. 6%),

and once there, much more likely to stay there (67% vs. 12%).

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 109

– Topics in Apache spend less time in the Discussion state than in PostgreSQL (16% vs.

35% in PostgreSQL), and once there, less likely to stay (10% vs. 38%).

– Topics in Apache rarely enter the Inactive phase compared to PostgreSQL.

The topic life cycle heatmap, as well as state transition diagrams, provide initial insight

into how topics are being discussed and implemented in the systems under study, and pro-

vide a method to easily describe the current state of a topic at any given time. For example,

if a developer is interested in finding discussions about a certain topic, she can use the

heatmap as a guide. If the topic is Inactive for several releases in a row, she need not look

at the source code or emails from the time period, and instead focus on the documents from

another period.

Topic life cycle states can measure the information flow between the mailing list
and source code of a system.

4.4.3 Discussion

In this chapter, we have empirically demonstrated a sharing of topics across both the source

code itself and developer emails. In addition, our empirical study has shown that topics are

not static artifacts, but evolve over time, entering a variety of life cycle states as develop-

ment moves on. In the following, we highlight the broader implications of our findings, for

both practitioners and researchers alike.

Until now, only anecdotal evidence has existed about the information overlap in mailing

lists and source code. Our results provide empirical evidence that suggest that methods

to find traceability links between mailing lists and source code have a realistic chance of

succeeding. Through our case studies, we have found that between 58%–64% of the topics

in the mailing list can be also found in the source code, suggesting not only that traceability

methods might succeed, but also that topic models may be a good tool to help discover the

links.

In addition, designers and developers of IDEs could use these results to improve the

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 110

2 3 4 5 6 7 8 9 10 11 12 13 14

(a) Apache.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

(b) PostgreSQL.

Figure 4.6: Topic life cycle states over time. Rows represent topics, while columns are
versions of the code. The color of each cell indicates the state of development that the topic
is currently in: white is Inactive, light gray is Discussion, dark gray is Implementation, and
black is Active. Rows are sorted by number of state changes.

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 111

Inactiv.
.09

Discus.
.16

Active
.55

Imple.
.21

.25

.25

.25

.25

.10

.33

.17

.19

.56
.17

.12

.67

(a) Apache.

Inactiv.
.07

Discus.
.35

Active
.51

Imple.
.06

.25

.25

.25

.23

.38

.50

.33

.57

.25

.25

.25

.12

(b) PostgreSQL.

Figure 4.7: State transition diagrams for topic life cycles. Edge weights show the probability
of transitioning from one state to another, and are averaged (median) across all topics.
Weights inside the nodes indicate how often topics were in that state. Colors are the same
as in Figure 4.6.

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 112

functionality of their tools, taking a step towards software explanation. By linking the de-

sign decisions and discussions about a source code unit to the implementation of that unit,

practitioners can go back in time and understand the rationale behind changes. Imagine

right-clicking a piece of code in an IDE and selecting “Show me why this piece of code came

to be written the way it is now” and the IDE displays the discussions related to the topic

that the piece of code is related to. We argue that providing access to such discussions

would greatly enhance developers’ abilities to fully understand the code. This is somewhat

different than current techniques (for example, Bacchelli et al. (2011)), which only create

traceability links between a class and a discussion if the discussion explicitly mentions the

class name. Using topics as the method to link code with discussions is sure to find addi-

tional relevant discussions which do not explicitly mention the class name; this is indeed

the purpose of topic models (Blei and Lafferty, 2009). However, there may be a price to

pay in terms of the precision of the links; more work is needed to quantify this trade-off.

Additionally, our technique can be used to determine which topics require the most

discussion and which require the most implementation. This information can be used to

guide training decisions or documentation efforts.

Finally, project stakeholders can use our technique to monitor the progress of a topic’s

development. Consider the following example. A team decides to develop a new printing

feature in their system. The team spends time discussing and deliberating over the best

implementation strategy: should they use Java’s own Printing API, the GDSPrinting API,

or develop their own from scratch to better suite their needs? How should the user spec-

ify printing options—under the Settings tab or in a new dialog box? After these types of

decisions have been made, the team begins to make code changes to the required classes.

These actions can all be observed at fine-grain level, for example by listing all email dis-

cussions and source code changes containing the “printing” topic. They can also be viewed

at a higher level, as the life cycle state of the “printing” topic goes from the initial Inactive

state, then to the Discussion state, followed by the Implementation and Active states, and

finally back to the Inactive state. Stakeholders can thus use shared topics as a means to

monitoring the status of the system, in addition to the methods they already use, such as

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 113

number of bugs fixed and number of tests passed.

4.4.4 Threats to Validity and Future Work

Data preprocessing. Preprocessing the mailing list and source code so that information re-

trieval methods can be applied is a challenging task (Bettenburg et al., 2009). Although we

were able to remove some noise from our datasets, our techniques are not perfect and affect

the quality of our results. More work is needed to find better preprocessing techniques.

Parameter choices. As stated previous in Section 4.3.2, our study involved the use of

many parameters that control, for example, the number of topics and message granularity,

as well as thresholds to polarize values. Although we experimented with each parameter to

determine reasonable values, we cannot be sure we have chosen optimally.

Additional case studies. We have performed detailed case studies on two world-class soft-

ware systems whose source code and mailing lists are rich with information. Still, additional

case studies are needed to determine how generalizable our results are.

Finer-grained analysis. We have analyzed the release versions of the source code, giving

us a clear snapshot of the code over time. However, we may be missing important details

that can only be found by analyzing each revision of the source code repository.

4.5 Conclusion

Our overarching research goal is to make intelligent use of the mailing list to support source

code maintenance. As source code design decisions often take place in the mailing list,

and not in the source code itself, the mailing list has great potential to help maintainers

understand the insight behind the current state of the source code.

However, the mailing list is often large and difficult to digest. Finding appropriate

emails for a given concept is not an easy task, as Boolean searches are often not sufficient.

We therefore propose the use of IR models to find a higher-level conceptual link between

the mailing list and source code.

CHAPTER 4. MEASURING THE INTERACTION OF MAIL AND CODE 114

In this chapter, we demonstrated that LDA was able to discover topics that were shared

between the mailing list and source code, a trait not immediately obvious given the different

nature of the two repositories. Case studies on PostgreSQL and Apache revealed that LDA

was indeed able to discover a large portion of shared topics, providing evidence for the

conceptual links we seek.

In addition to finding conceptual links, we also used topics to study the relationship

(i.e., topic life cycle states) between the mailing list and source code. We hypothesized

(and found) patterns in how topics transition between different states: sometimes topics are

discussed for a period of time on the mailing list, followed by a period of implementation.

Other times, topics are inactive altogether. But most of the time, topics are discussed and

implemented at the same time. We quantified these states and described how topics evolve

through them by creating a state transition diagram for each of our case studies.

This chapter represents a first step towards our research goal: we can find shared topics,

and we can use these topics to study the relationship between the mailing list and source

code. Implications of our findings include empirical evidence that traceability links can be

established between mailing lists and source code using topic models, that IDE developers

should consider adding support for mailing lists directly into the IDE, and that systems can

be monitored using topic life cycle state changes.

Part III

Advanced IR Techniques

115

116

We found in Section 2.4 that most research to date uses basic IR techniques, such as VSM

or LSI. Further, most research only uses at most one IR model. In this part of the thesis,

we present two advanced IR techniques that both enhance the state-of-the-art in mining

unstructured software repositories. In the first, we present a framework for combining

multiple IR models. In the second, we use an advanced IR model, namely a topic evolution

model, to analyze source code evolution over time. Our results indicate that researchers

and practitioners should consider advanced IR techniques, in addition to the traditional

basic IR techniques, to increase the effectiveness of their techniques.

– Chapter 5: A framework to combine disparate IR models. Most research to date builds

only a single IR model, with a single set of parameter values for the model. However, in

many situations, multiple IR models each have different strengths that can be harnessed.

We present a framework to combine the results of any number of disparate IR models,

which allows the strengths of individual models to be harnessed. We evaluate our frame-

work in the context of bug localization, where the goal is to identify which source code

entities need to be changed to fix a given bug report. We conduct two experiments on

three real-world software systems: Eclipse, Mozilla, and IBM Jazz. We find that model

combination is powerful: our framework achieves improved performance over the best

individual IR models, even when the constituent models do not perform well individually.

– Chapter 6: Using topic evolution models to analyze source code evolution. Currently,

researchers and practitioners usually monitor the evolution of source code by plotting nu-

meric metrics—such as lines of code or number of bugs closed—over time. However, this

monitoring technique does not provide insight into which features or implementation

topics are being added or modified. In this chapter, we use an advanced IR technique,

namely a topic evolution model, applied to multiple versions of source code, to uncover

the evolution of source code topics over time. In two detailed case studies, we manu-

ally analyze the topics and their evolutions to determine whether they correspond with

actual changes made by developers. Through case studies on two open source systems,

JHotDraw and jEdit, we find that the evolutions accurately describe developer changes

117

87–89% of the time. Using this advanced IR technique brings new capabilities and in-

sights to both developers and managers.

CHAPTER 5

A Framework to Combine Disparate IR Models

Most research to date uses a single IR model to mine unstructured software repositories. However,
different IR models excel in different areas, and we postulate that combining the results of disparate
IR models will likely achieve better results than any individual model. In this chapter, we propose the
use of an advanced IR technique, that of IR model combination. We evaluate the advanced technique
in the context of bug localization and find that combination almost always achieves better perfor-
mance compared with the best individual model, often with significant performance increases.

Publications based on this chapter: Thomas et al. (2012d)

5.1 Motivation

BUG LOCALIZATION is defined as a classification task: given n source code entities

and a (unstructured, natural language text) bug report, classify the bug report as

belonging to one of the n entities (Lukins et al., 2010). The classifier returns a

ranked list of possibly-relevant entities, along with a relevancy score for each entity in the

list. An entity is considered relevant if it indeed needs to be modified to resolve the bug

report, and irrelevant otherwise.

Current bug localization research uses IR classifiers to locate source code entities that

are textually similar to bug reports, based on the unstructured text fields in the bug report.

However, current research only uses the results of a single IR model, even though various

118

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 119

IR classifier configurations each have their own strengths and weaknesses, and each may

be more appropriate in different situations. This leads to the idea that: rather than trying

to determine a single classifier that performs best in every situation, we can use an en-

semble (i.e., combination) of classifiers to robustly localize bugs in many situations. We

further postulate that this technique would easily extend to any kind of bug localization

classifier: we can combine IR-based classifiers with dynamic analysis classifiers, defect pre-

diction classifiers, or any classifier that somehow solves the bug localization task, partially

or wholly. As long as the classifiers are uncorrelated in their wrong answers (i.e., the clas-

sifiers make different mistakes from each other), then combining them will likely improve

performance (Ho et al., 1994). Given the nature of the bug localization task, which has

many possible wrong answers for a given bug report (i.e., all the source code entities that

are unrelated to the bug report), combining models is likely to perform well (Misirli et al.,

2011).

5.2 Proposal

We propose a framework for combining multiple classifiers that can together achieve better

bug localization results than any single classifier. The main intuition behind classifier com-

bination is that when a particular source code entity is returned high in the list for many

classifiers, then we can guess with high confidence that the entity is relevant for the bug

report. There is a rich literature in the pattern recognition community for combining classi-

fiers, also known as classifier ensembles, voting experts, or hybrid methods (Ho et al., 1994;

Kittler et al., 1998; Misirli et al., 2011). No matter the name used, the fundamental idea is

the same: individual classifiers often excel in different cases and make different mistakes.

Specifically, our proposed framework (illustrated in Figure 5.1) for combining multiple

bug localization classifiers has two main constituents. First, any number of classifiers are

created, based on the available input data and the given bug report. Second, the classifiers

are combined using any of several combination techniques, such as Borda count (Van Erp

and Schomaker, 2000), score addition, or Reciprocal Rank Fusion (Cormack et al., 2009).

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 120

Name Score

fileC

fileD

fileB

1.00

0.67
0.58

...

C1

Name Score

fileC

fileB

fileL

1.00

0.85
0.70

...

C2

Name Score

fileE

fileG

fileC

1.00

0.75

0.25
...

C3

Name Score

fileC

fileB

fileA

2.25

1.43
0.62

...

C1,2,3

Figure 5.1: An illustration of our classifier combination framework. Here, three classifiers
are created, based on the available input data and the given bug report. Then, the classifiers
are combined, using score addition, to produce a single ranked list of source code entities.
In this example, fileC bubbles up to the top of the combined list since it is high on each of
the three classifiers’ lists.

We now describe each constituent in more detail.

5.2.1 Classifiers

As previously mentioned, classifiers can come in many forms. IR-based classifiers attempt to

find textual similarities between the given bug report and the available source code entities.

Entity metric-based (EM-based) use entity metrics (Zimmermann et al., 2007), such as lines

of code, to classify which source code entities likely to have the largest number of bugs,

independent of the given bug report. In fact, we consider any variant of any technique that

returns a ranked list of source code entities as a classifier. Formally, we define the result set

of a classifier Ci, which operates on a given bug report qj , as

Ci(qj) =
{(
r(dk), s(dk)

)
∀dk ∈ D

}
where r(dk) is the rank of entity dk, s(dk) is the score of entity dk, according to Ci, and D

is the set of all entities. The result set of a classifier consists of a rank and a (relevancy)

score for every source code entity in the system. Note that scores need not be unique; in

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 121

fact, many entities may be assigned a score of 0. In this case, they all share a rank of M + 1,

where M is the number of entities that received a non-zero score.

5.2.2 Combination Techniques

Given a set of |C| classifiers, we may combine them in any of several ways. A simple rank-

only combination is the Borda Count method (Van Erp and Schomaker, 2000), which was

originally devised for political election systems. For each source code entity dk, the Borda

Count method assigns points based on the rank of dk in each classifier’s result set. For

example, if classifier Ci assigned dk a rank of 1, then the Borda Count for dk would be M -1,

where M is the number of entities that received a non-zero score in Ci. The entity as rank

2 would receive a score of M -2, and so on. The Borda count scores for all C classifiers are

tallied for each entity, and the entity with the highest total Borda Count score is ranked

first, and so on. Formally, the score for an entity dk is defined as

Borda(dk) =
∑
Ci∈C

Mi − r(dk | Ci), (5.1)

where Mi is the number of entities that received a non-zero score in Ci, and r(dk | Ci) is the

rank of entity dk in Ci. The entities are then ranked according to their total Borda score.

Instead of using the ranks, the scores of each classifier can also be used. For example,

the score of each entity dk and each classifier Ci is summed to produce a total score for each

entity:

ScoreAddition(dk) =
∑
Ci∈C

s(dk | Ci). (5.2)

Usually, the scores of each classifier are scaled to be in the same range (e.g., [0,1]) before

combination to avoid unintentionally weighting the importance of certain classifiers. How-

ever, equations 5.1 and 5.2 can be modified to explicitly weight certain classifiers differently

from others.

We note that the result of combining |C| classifiers defines a new classifier. This classifier

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 122

can itself be combined with other classifiers. In this way, a hierarchy of classifiers can be

constructed. However, in this chapter, we only consider one level of combination.

5.3 Case Studies

This case study investigates the performance improvements that can be achieved by combin-

ing classifiers, using the framework introduced in Section 5.2. In this section, we describe

two experiments: one based on a small number of manually-created classifier sets, and

another based on a larger number of randomly-created classifier sets.

Classifiers Under Test

We consider two families of classifiers: IR-based classifiers and entity metrics-based classi-

fiers.

IR-based Classifiers IR-based classifiers are based on IR models. We build classifiers

based on three popular IR models, defined in Section 2.2: VSM, LSI, and LDA. Based on all

the possible combinations of parameter values for these models (shown in Tables 5.1 and

5.2), we build a total of 3,168 IR-based classifiers. We describe the motivation behind the

chosen parameter values in Chapter 8 of this thesis; in this chapter, we simply use this large

set of classifiers as a means to evaluate classifier combination.

Entity Metric-based Classifiers The past decade has been very active for research in the

area of bug prediction (D’Ambros et al., 2012). Briefly, this research aims at measuring

features of the source code, such as lines of code (LOC), past bugginess, change proneness,

and logical coupling between classes, to predict which source code entities contain bugs.

Entity Metric-based (EM-based) classifiers use the insight from the bug prediction liter-

ature that many entity metrics are highly correlated with an entity’s bug count. To this end,

EM-based classifiers first calculate one or more metrics on the source code entities. Then,

the classifiers rank the source code entities based on the metrics. For example, a higher

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 123

LOC metric indicates more bugs, so one EM-based classifier would sort the entities by their

LOC metric.

Observe that, unlike IR-based classifiers, the rankings of EM-based classifers are not

based on the given bug report, so the same ranked list will be created for every bug report.

Still, we note (and the bug prediction literature confirms) that since bugs are highly con-

centrated in a small number of source code entities, this list is likely to be fairly accurate

for any given bug report.

The EM-based classifiers have only a single parameter: which entity metric is used to

determine the bugginess of an entity. We consider four metrics, shown in Table 5.3: the

lines of code (LOC) of the entity; the churn (i.e., number LOC that were added, deleted,

or changed since the previous version) of an entity; the cumulative bug count (i.e., the

number of bugs that have been associated with this entity in the past) of the entity; the new

bug count (i.e., the number of bugs only since the previous version) of an entity. Previous

research has shown that these metrics are good predictors of entity bugginess, so we expect

the metrics to have reasonable performance for bug localization.

Naming Classifiers A classifier in either family is defined by a configuration—a set of

parameter values that specify the behavior of the classifier. We use the parameter values to

succinctly describe a particular configuration. For example, VSM.A1.B3.C0.D1.E2 defines a

VSM-based classifier which uses the bug report title for queries (A1), trains the VSM model

on identifiers and comments from the source code entities (B3), performs no preprocessing

(C0), uses tf-idf term weighting (D1), and uses the overlap similarity measure (E2). (We

omit a parameter if it only has a single value, such as the LDA similarity metric.) Similarity,

EM.M1 defines an EM-based classifier that uses the LOC metric M1.

Studied Systems

We study three software systems: Eclipse JDT, Mozilla mailnews, and Jazz (Table 5.4).

Eclipse is a large, popular integrated development environment (IDE) written in Java (Eclipse

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 124

Table 5.1: The IR configuration parameters and their values that are common to all of of
the classifiers we study.

Parameter Value

Bug report represention A1 (Title only)
A2 (Description only)
A3 (Title+description)

Entity represention B1 (Identifiers only)
B2 (Comments only)
B3 (Idents+comments)
B4 (PBR-All)
B5 (PBR-10 only)
B6 (Idents+comments+PBR-All)

Preprocessing steps C0 (None)
C1 (Split only)
C2 (Stop only)
C3 (Stem only)
C4 (Split+stop)
C5 (Split+stem)
C6 (Stop+stem)
C7 (Spit+stop+stem)

Foundation, 2011). Eclipse JDT is the subset of Eclipse that implements Java develop-

ment tools. Mozilla is an application suite concerned mostly with web browsing and email

clients (Mozilla Foundation, 2012b). Written mostly in C++, Mozilla is one of the largest

and most active open-source systems to date; due to its size and the requirements of our

case study, we only consider the largest module of Mozilla, mailnews. Jazz is a propriety

IDE developed by IBM (IBM, 2012).

We choose these systems mainly for two reasons. First, these systems are large, active,

real-world systems, which allow us to perform a realistic evaluation of the classifiers under

test. Second, each system carefully maintains bug tracking databases and source code ver-

sion control repositories, which will allow us to build our ground-truth datasets to evaluate

the classifiers. Table 5.5 gives example bug reports.

Data Collection

We begin by obtaining the raw bug data from the bug tracking database and the source

code from the version control system (VCS) for each studied system.

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 125

Table 5.2: The IR family of classifiers we study. We show the configuration parameters and
the values that we consider for each of the three underlying IR models: VSM, LSI, and LDA.

Parameter Value

Parameters for VSM only

Term weight D1 (tf-idf)
D2 (Sublinear tf-idf)
D3 (Boolean)

Similarity metric E1 (Cosine)
E2 (Overlap)

Parameters for LSI only

Term weight F1 (tf-idf)
F2 (Sublinear tf-idf)
F3 (Boolean)

Number of topics G32 (32 topics)
G64 (64 topics)
G128(128 topics)
G256 (256 topics)

Similarity metric H1 (Cosine)

Parameters for LDA only

Number of topics J32 (32 topics)
J64 (64 topics)
J128 (128 topics)
J256 (256 topics)

α L1 (Optimized based on K)

β M1 (Optimized based on K)

Number of iterations N1 (Until model convergence)

Similarity metric K1 (Conditional probability)

Table 5.3: The EM family of classifiers we study. We show the configuration parameters and
the values we consider.

Parameter Value

Metric M1 (Lines of code)
M2 (Churn)
M3 (New bug count)
M4 (Cumulative bug count)

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 126

Table 5.4: Studied systems.

Eclipse Jazz Mozilla
(JDT) (All) (mailnews)

Domain IDE IDE Web
Language Java Java C/C++/Java
License Open Closed Open
Years considered 2002–2009 2007–2008 2004–2006
Snapshots 16 8 10
Bugs (preprocessed) 3,898 2,818 1,368
Source code files 1,882–2,559 756–887 319–332
KSLOC 232–506 133–168 173–193

Table 5.5: Example bug reports in the three studied systems, and their relevant source code
entities.

System Bug ID Title Relevant entity(s)

Eclipse 102645 “[open type] Open Type history shows stale
visibility info in type history”

util.TypeInfo.java

106638 “[misc] Support BiDi chs in logical expr in java
editor”

JavaSourceViewer.java

100062 “[formatting] Code formatter is broken on test
case from bug 99999”

CodeFormatterVisitor.java

100302 “StackOverflowError during completion” CompletionParser.java

Jazz 28284 “Create button enabled for process iterations
while editor is loading”

processpart.java

18317 “Move team area dialog should not allow to
show archived areas.”

teamareamovewizard.java

21247 “Offer to switch to edit mode when I start typ-
ing in the over page”

wikiformpage2.java

30963 “Error messages in bluesdev server log for
I20070912-2000”

auditableserver.java

Mozilla 105964 “Drop 20 bytes off each imgRequest object” imgRequest.cpp

24668 “[DOGFOOD]Crash when clicking on Finish
on Account Setup”

xpcwrappedjsclass.cpp

11001 “[4.xP] Table spacing borders incorrect at
http://www.choochem.com”

nsElementTable.cpp

222023 “regression: pref parser should accept single-
quote delimited strings”

prefread.cpp

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 127

Time

Bug
#1

Bug
#2

Bug
#3

Bug
#4

Bug
#5

Bug
#6

Source

Code v1

Source

Code v2

Source

Code v3

Figure 5.2: Our evaluation procedure. First, we take snapshots of the studied systems’
source code at 6 month intervals to build the classifiers. For each bug report under test, we
use the classifiers built on the most recent (relative to the bug report) snapshot.

Creating the Ground Truth To create the ground truth data that we use to evaluate

relevancy, we use the syntactic analysis portion of the popular SZZ linking algorithm to

link resolved bug reports to the version control system that were changed to resolve the

bug (Sliwerski et al., 2005). The algorithm parses the commit log messages from the source

code repository (e.g., CVS or SVN), looking for messages such as “Fixed Bug #45433” or

similar variations. If found, the algorithm establishes a link between all the source code

entities in the commit transaction with the identified bug ID. The algorithm uses several

heuristics that in concert find fairly accurate links (Sliwerski et al., 2005). The result is a

reliable set of links between bug reports and source code entities, which we use to evaluate

the classifiers under test.

Source Code Preprocessing We work at the file level of granularity. We preprocess the

source code entities at each snapshot according to the specified classifier configuration.

Bug Report Preprocessing After collecting bug reports from the bug repositories, we

preprocess them in the following manner. First, we remove bug reports that meet one or

more of the following conditions.

– Bug report not marked as “FIXED”

– Bug report does not result in at least one entity change. Some bugs, such as bug #6994 in

Eclipse, deal with meta-source code issues, such as configuring an IDE correctly to build

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 128

the system. Fixing these bugs results in no actual entity changes, and thus no links are

created.

– Bug report has empty title field after pre-processing

– Bug report links to build or configuration files (we are only interested in source code

entities)

We preprocess the remaining bug reports according to the specified classifier configuration.

For a given classifier, the same preprocessing steps are applied to the source code and bug

reports.

Evaluation Procedure

Ideally, for each bug report in our testing set, we would take a snapshot of the source code

at the exact time the bug report was filed, build all classifiers using data from that snapshot,

and perform the classification. This process would provide the most accurate and realistic

evaluation scenario, because it uses the source code that the classifiers would have available

in a real-world situation. However, doing so would be too computationally expensive for

our evaluation, as we are evaluating thousands of bugs and thousands of classifiers, each

taking upwards of several minutes to build using our unoptimized research prototypes. As a

compromise, we first take snapshots of each system’s source code from the studied systems’

VCS at six month intervals over the duration of the system and precompute the classifiers

at each snapshot (Figure 5.2). Given a bug report during evaluation, we determine the

most recent snapshot of the source code and use the corresponding precomputed classifiers.

This process allows us to consider temporally appropriate source code for each bug report

without requiring substantial computation.

For each classifier under test, we perform the following procedure. For every bug report

in each studied system, we determine the nearest snapshot, and use the corresponding

classifier to obtain the ranked list of source code entities. Using the ground truth, we

determine the rank of the first relevant entity on the list.

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 129

Performance Metrics

To measure the performance of a individual classifier, we use the top-k accuracy metric.

The top-k accuracy metric measures the percentage of bug reports in which at least one

relevant source code entity was returned in the top k results. Formally,

top-k(Cj) =
1

|Q|

|Q|∑
i=1

I
(
∃d ∈ D | rel(d, qi) ∧ r(d | Cj , qi) ≤ k

)
,

where |Q| is the number of queries (i.e., bug reports), qi is an individual query, rel(d, qi)

returns whether entity d is relevant (using truth information) to query qi, r(d|Cj , qi) is the

rank of d given by Cj in relation to qi, and I is the indicator function, which returns 1 if its

argument is true and 0 otherwise. For example, a top-20 accuracy value of .25 indicates that

for 25% of the bug reports, at least one relevant source code entity was returned in the top

20 results. Previous work has set k to 20, with the idea that 20 is a reasonable number of

entities for a developer to search through before growing impatient and resorting to other

means of bug localization (Nguyen et al., 2011).

Other metrics which are commonly used for evaluating IR models, such as precision,

recall, and mean average precision (MAP), are inappropriate for our purposes. In bug

localization, the task is to locate the first relevant entity for a given bug report, and therefore

there is at most one correct answer in the list of returned entities; precision, recall, and MAP

metrics are appropriate only when there are many possible correct answers.

Experiment 1: Manually-created Classifier Sets

In this experiment, we investigate whether combining the best-performing classifier config-

urations (as identified in Section 8) can improve performance.

As noted in Section 5.2, classifier combination works best when the individual classifiers

err in different ways. Thus, choosing classifiers that are likely to result in the most uncor-

related mistakes—such as those based on different data sets or those based on different

underlying IR models—is likely to have the best result. Accordingly, we consider classifier

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 130

Table 5.6: Classifier sets under consideration.

|C| C = Classifiers

CS1 5 VSM.A1.B3.C7.D1.E1, VSM.A2.B3.C7.D1.E1, VSM.A1.B5.C7.D1.E1, VSM.A2.B5.C7.D1.E1,
EM.M3

CS2 5 LDA.A1.B3.C7.J256, LDA.A2.B3.C7.J256, LDA.A1.B5.C7.J256, LDA.A2.B5.C7.J256, EM.M3
CS3 5 LSI.A1.B3.C7.F2.G128, LSI.A2.B3.C7.F2.G128, LSI.A1.B5.C7.F2.G128, LSI.A2.B5.C7.F2.G128,

EM.M3
CS4 13 CS1 ∪ CS2 ∪ CS3

sets that are based on different input data representations.

Recall that for IR-based classifiers, two data sources must be represented: that of the

source code entity, and that of the bug report. We define a set of four VSM-based classifiers,

shown in Table 5.6 as CS1, as follows. The first classifier in the set uses the entities’ tex-

tual content (B3: identifiers and comments) and the bug reports’ titles (A1), and optimal

settings for the other three parameters (preprocessing, term weighting, and similarity mea-

sure). The second classifier uses the the entities’ textual content (B3) and the bug reports’

descriptions (A2), again with optimal settings for the other three parameters. The third

classifier uses the entities’ past bug reports (B5) and the bug reports’ titles (A1), and the

fourth classifier uses the entities’ past bug reports (B5) and the bug reports’ descriptions

(A2). Finally, the set also includes the best-performing EM classifier, EM.M3.

We define similar sets based on LDA (CS2 in Table 5.6) and LSI (CS3). Finally, we

combine CS1–CS3 into a new set, CS4.

These classifier sets each contain five classifiers that (a) operate on independent data

representations (e.g., the identifiers and comments will be very different from the past

bug reports) and (b) have optimal values for the other parameters. Thus, we expect that

combining these classifiers will increase overall performance.

For each of the classifier sets defined above, we consider two combination techniques:

the Borda count method (BRD) and the score addition method (ADD), each described

previously in Section 5.2.2. We run each classifier set on all 8,084 bugs reports in the three

studied systems, and calculate the top-20 performance of each classifier set.

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 131

Experiment 2: Randomly-generated Classifier Sets

We conduct a second experiment to investigate whether classifier combination helps in

situations where the best configuration of each classifier is not known in advance.

Similar to Experiment 1, we define classifier sets with five classifiers: four based on

different IR data sources, and one based on entity metrics. However, in this experiment, we

do not use the optimal values for the other parameters. Instead, we let them vary randomly.

Specifically, we randomly build a classifier set with the following classifiers (using regu-

lar expression notation): VSM.A1.B3.*.*.*, VSM.A2.B3.*.*.*, VSM.A1.B5.*.*.*, VSM.A1.B5.*.*.*,

and EM.*. We build 50 such sets, each time randomly choosing values for the varying pa-

rameters (i.e., “*”). We do the same for LDA and LSI, yielding a total of 150 randomly-

generated classifier sets. (We provide a description of the resultant sets online (Thomas,

2012).) Doing so allows us to examine the effects of many situations: combining good clas-

sifiers with bad classifiers; bad with bad; and so on. It also allows us to determine whether

combination only helps in the case of optimally-performing classifiers, or whether it helps

in the general case.

For each classifier set, we again consider two combination techniques: the Borda count

method (BRD) and the score addition method (ADD). We run each classifier set on all 8,084

bugs reports in the three studied systems, and calculate the top-20 performance metric.

5.4 Results and Discussion

Experiment 1: Manually-created Classifier Sets

Table 5.7 shows the top-20 performance of the four classifier sets, as well as their rela-

tive performance improvements over the best individual classifier in the sets, for both the

Borda count and score addition methods. The relative improvement of classifier set CS is

calculated as

RI(CS) =
top-20(CS)−maxCi∈CS

(
top-20(Ci)

)
maxCi∈CS

(
top-20(Ci)

) .

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 132

In all three studied systems, classifier combination improves performance for all classi-

fier sets, often significantly. In Jazz, for example, classifier set CS2, which combines four

LDA configurations and EM.M3, results in a 95% relative improvement over the best in-

dividual classifier, going from a top-20 performance of 33% to a top-20 performance of

64%. We find similar results for each other studied systems, classifier sets, and combina-

tion techniques, indicating that combining the best-performing classifiers can improve bug

localization performance.

Combining IR classifiers results in a 10.3%–95% improvement in top-20 perfor-
mance. Both the Borda count and score addition combination techniques always
lead to improved performance in our experiments.

Experiment 2: Randomly-generated Classifier Sets

Table 5.8 shows the percentage of the 150 classifier sets that were improved by combi-

nation, in terms of top-20 performance. Overall, classifier combination helps in the large

majority of sets. In Eclipse, 93% or 84% of the classifier sets had a better performance

after combination, depending on whether the Borda count or score addition methods were

used, respectively. In Mozilla, the results were even better: 88% or 96% of the classifier

sets improved after combination. The best results came in Jazz, where 97% and 100% of

classifiers sets were improved.

Table 5.8 also quantifies the amount of improvement the classifier sets experienced after

combination. The mean relative improvements for Eclipse were 37% and 35% for the Borda

count and score addition methods, respectively. This means that for a random combination

of classifiers, one can expect performance to improve by at least 35%. The same is true

for the other two studied systems: in Jazz, the mean relative improvements were 56% and

54%, and in Mozilla they were 14% and 19%.

Even with a random set of classifiers, classifier combination improves the top-
20 performance in a large majority (84%–100%) of cases, and by a significant
amount (+14%–+56%).

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 133

Ta
bl

e
5.

7:
To

p-
20

pe
rf

or
m

an
ce

of
th

e
fo

ur
m

an
ua

lly
-c

re
at

ed
cl

as
si

fie
r

se
ts

,
C
S
1–
C
S
4

(s
ee

Ta
bl

e
5.

6)
,

an
d

th
ei

r
re

la
ti

ve
im

pr
ov

em
en

ts
ov

er
th

e
be

st
in

di
vi

du
al

cl
as

si
fie

r
in

th
e

se
ts

.

Pe
rf

or
m

an
ce

of
Pe

rf
or

m
an

ce
of

co
m

bi
ne

d
cl

as
si

fie
rs

be
st

in
di

vi
du

al
B

or
da

R
el

at
iv

e
Sc

or
e

R
el

at
iv

e
cl

as
si

fie
r

co
un

t
im

pr
ov

em
en

t
(%

)
ad

di
ti

on
im

pr
ov

em
en

t
(%

)

Ec
lip

se

C
S
1
:

4
V

SM
+

B
es

t
EM

0.
46

7
0.

70
6

+
51

.2
0.

66
6

+
42

.7
C
S
2
:

4
LD

A
+

B
es

t
EM

0.
40

5
0.

52
2

+
28

.9
0.

46
4

+
14

.8
C
S
3
:

4
LS

I
+

B
es

t
EM

0.
40

5
0.

70
8

+
75

.1
0.

66
1

+
63

.3
C
S
4
:

4
V

SM
+

4
LD

A
+

4
LS

I
+

B
es

t
EM

0.
46

7
0.

69
9

+
49

.5
0.

64
0

+
37

.0

Ja
zz

C
S
1
:

4
V

SM
+

B
es

t
EM

0.
57

6
0.

73
9

+
28

.4
0.

73
7

+
28

.1
C
S
2
:

4
LD

A
+

B
es

t
EM

0.
33

0
0.

64
3

+
95

.0
0.

56
8

+
72

.2
C
S
3
:

4
LS

I
+

B
es

t
EM

0.
43

8
0.

73
2

+
67

.3
0.

72
1

+
64

.7
C
S
4
:

4
V

SM
+

4
LD

A
+

4
LS

I
+

B
es

t
EM

0.
57

6
0.

69
7

+
21

.1
0.

69
4

+
20

.7

M
oz

ill
a

C
S
1
:

4
V

SM
+

B
es

t
EM

0.
73

9
0.

84
4

+
14

.2
0.

83
7

+
13

.3
C
S
2
:

4
LD

A
+

B
es

t
EM

0.
66

7
0.

78
7

+
18

.0
0.

71
7

+
7.

6
C
S
3
:

4
LS

I
+

B
es

t
EM

0.
70

3
0.

83
6

+
18

.9
0.

82
0

+
16

.6
C
S
4
:

4
V

SM
+

4
LD

A
+

4
LS

I
+

B
es

t
EM

0.
73

9
0.

81
5

+
10

.3
0.

81
8

+
10

.7

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 134

Table 5.8: Improvement of classifier combination in 150 randomly-generated classifier sets.
We show the percentage of classifier sets in which the performance of the combination
was better than the performance of the best individual classifier in the set. We also report
summary statics of the relative improvement that combination provides.

% of sets improved Relative improvements provided by combination
by combination Min 1st Qu. Med. Mean 3rd Qu. Max.

Eclipse Borda count 92.7 -20.0 17.7 39.4 37.2 55.1 121.0
Score addition 84.0 -33.9 14.7 36.9 35.1 55.9 95.0

Jazz Borda count 97.3 -16.3 37.6 56.8 56.1 72.8 142.2
Score addition 100.0 0.3 43.0 54.4 54.3 65.7 114.3

Mozilla Borda count 88.0 -37.7 7.3 14.4 13.9 22.2 53.7
Score addition 96.0 -6.1 12.5 17.8 19.2 24.3 56.5

Discussion

The goal of this case study was to determine whether classifier combination improves bug

localization performance. In Experiment 1, which combined the best-performing individual

classifiers, we found that classifier combination always improves performance. In Exper-

iment 2, which combined random sets of classifiers, we found that classifier combination

usually (i.e., at least 84% of the time, and up to 100% of the time) improves performance.

These results provide strong evidence that classifier combination is a valuable method for

improving bug localization performance.

We saw the smallest relative improvements in Mozilla, and the largest in Eclipse. We

note that individual classifiers in Mozilla already have high performance (i.e., top-20 values

above .80), leaving little room for improvement for combination. Individual classifiers in

Eclipse, on the other hand, have relatively worse performance (a maximum top-20 value of

0.54).

In general, the Borda count combination method worked better than the score addition

method. In all four manually-created classifier sets, and all studied systems (Table 5.7), the

Borda count offered a greater improvement than score addition (with one exception: the

Borda count method in CS4 in Mozilla had a relative improvement of 10.3%, compared to

score addition’s 10.7%). In addition, when considering the 150 randomly-created classifier

sets, the Borda count method offered better mean and median relative improvements over

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 135

score addition, for the Eclipse and Jazz systems (Table 5.8). In Mozilla, the mean and

median relative improvements of Borda and score addition were comparable.

In these experiments, we combined sets of five component classifiers, based on the logic

that classifiers using different data sources as input will result in uncorrelated errors. We

also investigated combining all 3,172 component classifiers of Case Study 1. Surprisingly,

we found that the top-20 performance of their combination to be comparable to the top-

20 performance of the best individual classifier. (Specifically, the relative improvements

ranged from -2% to +12%, depending on the studied system and combination method

used.) Given that the set of 3,172 contains many classifiers with very low performance, it

is encouraging that their combination still achieves such high performance.

5.4.1 Threats to Validity

This section discusses potential threats to the validity of our case studies.

Internal Validity

One potential threat to the internal validity of our case studies is our truth data collection

technique, which was based on part of the SZZ algorithm (Sliwerski et al., 2005). Even

though the SZZ algorithm is the state-of-the-art algorithm for linking bug reports to source

code entities, given a bug repository and a history of source code changes, recent research

has discussed the algorithm’s linking biases (Bachmann et al., 2010; Bird et al., 2009a;

Nguyen et al., 2010).

External Validity

Even though we performed three extensive case studies on large, active, real-world systems,

our results still must be considered in context. In particular, our datasets represent only

a fraction of all real-world systems, domains, programming languages, and development

paradigms, so we cannot definitively say that our results will hold for all possible systems.

CHAPTER 5. A FRAMEWORK TO COMBINE DISPARATE IR MODELS 136

5.5 Conclusion

In this chapter, we cast the bug localization task as one of classification, and introduced

an advanced IR framework to combine the results of disparate classifiers—such as those

based on IR models, entity metrics, dynamic analysis, or any algorithm whatsoever—using

well-known combination techniques.

Combining various classifiers greatly improved bug localization performance. In all

three studied systems, we found that combining classifiers resulted in better performance

than any individual classifier, both when the individual classifiers were optimal and when

the individual classifiers were suboptimal. This is true no matter the underlying classifiers

used, or the specific combination technique used.

By identifying how to combine individual classifiers in the most effective way, our results

have substantially improved the state-of-the-art in bug localization. We conclude that even

in the face of unstructured text in bug reports and unstructured linguistic data in source

code, IR models can effectively localize bugs and reduce maintenance efforts and costs for

developers.

Since bug localization has only recently gained the attention of researchers, there are

many exciting avenues to explore in future work. The most obvious avenue is the addition

of classifier families to the combination framework presented in Section 5.2. Existing clas-

sifier families include those based on PageRank (Page et al., 1999; Revelle et al., 2010), for-

mal concept analysis (Poshyvanyk and Marcus, 2007), dynamic analysis (Poshyvanyk et al.,

2007), static analysis (McMillan et al., 2011), and BugScout, a variant of LDA (Nguyen

et al., 2011). Additional IR models can be considered, such as BM25F (Robertson et al.,

2004), and other variants of LDA, such as the Relational Topic Model (Chang and Blei,

2009). Recently, researchers have proposed query expansion techniques (Carpineto and Ro-

mano, 2012), which may be a useful preprocessing step to any IR-based classifiers. Finally,

we have yet to fully investigate many possible combination techniques, such as variants of

the Borda count and Reciprocal Rank Fusion (Cormack et al., 2009).

CHAPTER 6

Using Topic Evolution Models to Analyze Source Code Evolution

Studying concept evolution in source code can help developers and managers monitor the changes
to source code at a conceptual level, as opposed to a file or method level. In this chapter, we propose
a technique based on an advanced IR model, named the Hall topic evolution model, that uses the
history of the source code to extract the evolution of concepts over time. We perform case studies on
JHotDraw and jEdit to determine whether the the inferred conceptual evolutions are valid and useful
for developers. We find that 87–89% of the inferred evolutions correspond well with actual code
change activities by developers, meaning that software development teams can use these evolutions
as a means to automatically monitor and analyze their source code evolution.

Publications based on this chapter: Thomas et al. (2010b, 2012a)

6.1 Motivation

CONTEMPORARY SOFTWARE DEVELOPMENT development consists of multiple devel-

opers working together. The developers often make changes to the source code

in parallel and in rapid succession. Developers may work on disparate aspects of

the source code at the same time, and the end result is that the software is evolving faster

than any single person can easily comprehend, or even monitor.

Traditional software evolution monitoring techniques involve counting the number of

lines of code in the source code over time, or counting the number of changes to a source

code module, or counting the number of bugs fixed to date. While useful to some extent,

137

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 138

these techniques do not answer the questions that developers often ask (Bradley and Mur-

phy, 2011; de Alwis and Murphy, 2008; Fritz and Murphy, 2010): What is being changed in

the source code? What are the important concepts in the code, and which concepts are being

actively developed right now? Who is responsible for which concepts? As source code files are

often not tagged into conceptual units, it is difficult to automatically monitor the evolution

of software at this level.

Understanding how the use of a concept evolves in a software repository over time,

however, could provide many benefits for project stakeholders (Linstead et al., 2008b). For

example, stakeholders could monitor the drift of a concept, i.e., when the implementation

of a concept in the source code gradually diverges from the original design (similar to archi-

tectural drift (Perry and Wolf, 1992)). Because of refactoring, re-engineering, maintenance

and other development tasks, a concept that was once focused and modularized may be-

come more scattered across the system over time, getting out-of-sync with the mental model

that designers and architects have about the system. Automatically discovering and moni-

toring these concept drifts would be a useful technique for developers and project managers

wishing to keep their system in good health. Concept evolutions could also be used by new-

comer developers wishing to quickly understand the history of certain aspects of the system,

such as when specific features were added or removed from the system. Additionally, topic

evolutions could be used to monitor the day-to-day development tasks, answering questions

such as “Who is working on what concepts?” and “What concepts changed since last week?”

Recently, researchers have applied topic evolutions models, such as LDA and the Hall

model (Section 2.2), to the version history of a source code repository to uncover the evo-

lutions of topics (Linstead et al., 2008b). These applications of topic evolution models

all make one key assumption: that topic evolution models, when applied to source code

histories, describe the changes made to the source code in way that is useful to a project

stakeholder. But this assumption is not trivially validated: topic models were built for natu-

ral language corpora, which source code clearly is not. Further, changes to source code are

often frequent and random, violating assumptions by many topic evolution models. Even

if topic evolution models can be successfully applied to source code changes, it is not clear

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 139

whether these discovered evolutions will represent the high-level concepts in which prac-

titioners are interested. Our goal in this chapter, then, is to determine if topic evolution

models provide an accurate account of the changes to source code.

6.2 Proposal

We propose to use the Hall topic evolution model (Section 2.2) to abstract the source code

into high-level topics, which will act as representations of the conceptual units embedded in

the source code. Further, we will use the evolutions of the topics to monitor how the source

code concepts evolve over time. We hypothesize that the Hall topic evolution models can

be applied to source code to uncover a set of underlying concepts, providing an approxi-

mate and inexpensive model of the evolution of concepts in a software system, which can

help answer the questions that developers have. A preliminary study found evidence that

supported this proposition (Linstead et al., 2008b), but more work is needed to fully under-

stand and quantify how well topic evolution models can represent the actual source code

evolution.

We will evaluate the effectiveness of the Hall model by performing manual analyses

on the discovered topics on real-world software systems. Given a discovered topic and

its evolution (i.e., whether the popularity of that topic is increasing or decreasing at any

given time), We can manually examine the source code changes, commit log messages,

and change notes of the system to determine if the discovered evolution aligns with reality.

Doing this for all topic evolutions will give me a good sense to how well the topic models

are able to represent source code evolution.

6.3 Case Studies

We conduct a detailed case study of two real world system, focusing on the following re-

search questions.

RQ1 How well do the discovered topic evolutions correspond to actual change activities in the

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 140

JHotDraw jEdit

Purpose Drawing framework Text editor
Implementation language Java Java
License Open source Open source
Time period considered Feb. 2001–Aug. 2010 Dec. 2000–Dec. 2004
Number of releases 13 12
Lines of code (thousands) 9.4–84 57–157
Number of source code documents 160–613 248–427
Number of committers 11 120

Table 6.1: Characteristics of our two systems under study, JHotDraw and jEdit.

source code?

We wish to determine the accuracy of topic evolution models. Given a set of change

events in a discovered topic evolution, as well as a set of change activities to the

source code, what is the correspondence?

RQ2 What is the relationship between code change categories and topic evolution?

For those evolutions that are meaningful, we wish to perform a descriptive study to

determine the common relationships between evolutions and code change categories

(i.e., bug fixes, feature additions, and refactorings).

RQ3 What are the patterns of topic evolution?

We wish to quantify and study how topics evolve, to gain insight into both the abstract

notion of topic evolution as well as into the development processes of the studied

systems.

Answering RQ1 allows us to evaluate the use of topic models for studying the evolution

of source code, bringing us one step closer towards a robust software monitoring technique

built upon topic evolution models (Section 6.4.2). Answering RQ2 and RQ3 allows us to

better understand why and how topics evolve in source code, strengthening our under-

standing of the results of topic models and software evolution in general (Sections 6.4.3

and 6.4.4).

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 141

6.3.1 Systems Under Study

We address our research questions by performing in-depth case studies on the source code

histories of two well-known software systems, JHotDraw and jEdit. JHotDraw is a medium-

sized, open source, 2-D drawing framework developed in the Java programming language

(Gamma, 2012). It was originally developed as an exercise of good program design and

has become the de facto standard system for experiments and analysis in topic and con-

cern mining (for example, by Robillard and Murphy (2007) and Binkley et al. (2006)).

JHotDraw is a good choice for our purposes due to its good design practices and manage-

able size for manual analysis. We consider 13 release versions of JHotDraw (5.2.0–7.5.1).

These versions were released over a nine year period and saw a growth of over 600% in the

number of lines of code, several complete restructurings, and the addition of several new

features (see Table 6.1 and Figures 6.1a–6.1c). During this time, 11 individual developers

committed changes to the code base.

jEdit is a medium-sized, open source text editor written in the Java programming lan-

guage (Pestov, 2012). jEdit focuses on providing rich features for developers, including

syntax highlighting, macro scripting, and a comprehensive plug-in environment. jEdit is a

good choice for our study because it is well organized, has extensive documentation, and

has a manageable size for manual analysis. We consider 12 release versions of jEdit (3.0.0–

4.2.0). The versions span a four year period where the code base grew by almost 200% (see

Table 6.1 and Figures 6.1d–6.1f). During this time, 120 individual developers committed

changes to the code base.

6.3.2 Data Preprocessing

We preprocess the source code histories of each system by applying the typical source code

preprocessing steps required by any information retrieval technique (Section 2.2). We split

identifier names, remove stop words, stem, and prune the vocabulary (remove those that

occur in more than 80% or less than 2% of the documents). For JHotDraw, the preprocess-

ing resulted in a total of 2.3M words (comprised of 964 unique words) in 5,833 documents,

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 142

20
0

40
0

60
0

Version Number

N
um

be
r

of
 F

ile
s

1 2 3 4 5 6 7 8 9 10 11 12 13

(a) Number of documents in JHot-
Draw.

20
40

60
80

Version Number

K
S

LO
C

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) KSLOC in JHotDraw.

50
15

0
25

0

Version Number

N
um

be
r

of
 W

or
ds

 (
K

)

1 2 3 4 5 6 7 8 9 10 11 12 13

(c) Number of words (×1,000) in
JHotDraw.

25
0

35
0

45
0

Version Number

N
um

be
r

of
 F

ile
s

1 2 3 4 5 6 7 8 9 10 11 12

(d) Number of documents in jEdit.

60
10

0
14

0

Version Number

S
LO

C

1 2 3 4 5 6 7 8 9 10 11 12

(e) KSLOC in jEdit.

12
0

16
0

20
0

24
0

Version Number

N
um

be
r

of
 W

or
ds

 (
K

)

1 2 3 4 5 6 7 8 9 10 11 12

(f) Number of words (×1,000) in
jEdit.

Figure 6.1: Data characteristics over time (version number) for JHotDraw and jEdit. In (c)
and (f), we show the number of words remaining after the preprocessing steps have been
performed.

an average of 394 words per document. For jEdit, the preprocessing resulted in a total of

1.9M words (816 unique) in 3,744 documents, an average of 507 words per document.

6.3.3 Topic Modeling Technique

For the LDA computation, we used MALLET version 2.0.6 (McCallum, 2012). MALLET is a

highly scalable Java implementation of the Gibbs sampling algorithm. We ran for 10,000

sampling iterations, the first 1,000 of which were used for parameter optimization (Griffiths

and Steyvers, 2004). We allowed MALLET to use hyper-optimization for the α and β input

parameters, which are smoothing parameters for the model. Figure 6.2 provides a brief

replication guide for our study.

In addition to discovering topics, MALLET also automatically discovers a two- or three-

word label for each topic that helps describe the topic in a compact way (e.g., “mouse click”,

“file format”). The label is based on commonly-occurring n-grams (i.e., co-located words) in

the documents containing the topic. Although not all of the discovered labels are ideal (i.e.,

what a human would create) and sometimes produce double words (e.g., “elem elem”), we

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 143

1. Collect source code data. This can be performed by either checking out copies from the system’s software
configuration manager (e.g., SVN, CVS, Git) or by downloading source code snapshots from the system’s
webpage. Either way, the end result should be a collection of source code snapshots corresponding to
the versions of interest (in our case, major releases).

2. Preprocess the data. Isolate source code identifiers and comments. Split the words based on common
naming schemes. Convert all letters to lower case. Remove stop words. Stem each word. Remove overly
common words (those that appear in more than 80% of the documents) and rare words (less than 2%).

3. Transform the data into MALLET format. If input-dir is the name of the top-level directory containing
the preprocessed source code documents, and ${MALLET-BIN} is the path to the MALLET executable,
then the command
${MALLET-BIN} import-dir --input input-dir --output data.mallet --keep-sequence

will create the output file data.mallet .

4. Discover the topics. Run the command
${MALLET-BIN} train-topics \
--input data.mallet \
--num-topics 45 \
--num-iterations 10000 \
--optimize-burn-in 1000 \
--optimize-interval 100 \
--output-doc-topics allfiles.txt \
--output-topic-keys topics.dat \
--topic-word-weights-file wordweights.dat \
--word-topic-counts-file topiccounts.dat \
--xml-topic-phrase-report topic-phrases.xml

substituting the number of topics, iterations, etc. as desired.

5. Analyze the data. The output file wordweights.dat contains the unnormalized, unsorted word weights
for each topic. The output file allfiles.txt contains the resulting topic memberships for each input
document. The output file topic-phrases.xml contains the topic labels for each topics. Using these
documents, compute topic metrics according to Equations 6.1, 6.2, and 6.3 on each slice of time (i.e.,
all documents at each version). Perform additional analyses and visualizations as desired. In our case,
we relied on the R statistical environment (Ihaka and Gentleman, 1996).

Figure 6.2: Replication guide for our study. For each system under test, perform these steps.

find the labels to be useful. For the remainder of this chapter, when we present a label for

a topic, we are presenting the label automatically discovered by MALLET.

Choosing the Number of Topics (K)

For any given corpus, there is no provably optimal choice for K (Wallach et al., 2009). The

choice is a trade-off between coarser topics (smaller K) and finer-grained topics (larger

K). Setting K to extremely small values results in topics that contain multiple concepts

(imagine only a single topic, which will contain all of the concepts in the corpus!), while

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 144

setting K to extremely large values results in topics that are too fine to be meaningful and

only reveal the idiosyncrasies of the data. Our goal in this study is to discover topics of

medium granularity, so we seek a non-extreme value for K.

Previous work has used 45 topics for JHotDraw, arguing that 45 discovers topics of

medium granularity (Baldi et al., 2008; Thomas et al., 2010b). To be comparable to these

studies, we also set K to 45 for both JHotDraw and jEdit. However, as we show in Sec-

tion 6.4.1, the discovered topics are stable (i.e., not particularly sensitive to the exact value

of K) in at least the range of 30–60.

In the Hall model, each version of the source code will not necessarily contain all K

topics. Since all of the versions are applied to the LDA model at once, and LDA is looking

for a total of K topics, some versions may contain fewer than K topics. Imagine, for

example, that new XML functionality is inserted into the code at version V2, and that LDA

discovers a topic representing XML concepts. Since no code dealt with XML in version V1,

this topic will not appear in V1. We say that the topic is born at V2, and that V1 has at

most K-1 topics. Similarly, a topic dies if all source code related to the topic is removed at

some version. Thus, the number of topics K represents the total number of topics that exist

across all time in the corpus, not necessarily at each point in time.

Choosing the Change Threshold (δ)

Due to the probabilistic nature of the LDA model, the same word in a given document may

be assigned to different topics in different versions of the document. For example, the word

“button” in a document d could be assigned to a “GUI”-related topic in version V1, and then

assigned to a “dialog box”-related topic in version V2. Because of this small, unlikely, and

statistically uninteresting change, both topics will experience a small change in their metric

values (i.e., the weight metric will increase or decrease by 1).

To account for these small, probabilistic changes in topics over time, we introduce the

δ threshold for determining if a metric value has changed significantly from one version to

the next. This threshold, used in Equation 6.4 to classify changes as spikes, drops, or stays,

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 145

0 20 40 60 80 100

0
20

0
40

0
60

0

δ (%)

N
um

be
r

of
 E

ve
nt

s

●

●

●
●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

(a) JHotDraw.

0 20 40 60 80 100

0
20

0
40

0
60

0

δ (%)

N
um

be
r

of
 E

ve
nt

s

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

(b) jEdit.

Figure 6.3: Number of detected events (spikes and drops) for various δ thresholds, accord-
ing to Equation 6.4. The vertical dashed lines represents the “knee” in the curve, which we
use as our cut-off value.

will help weed out uninteresting changes while preserving the interesting ones. Our goal is

to set the threshold to a value that will achieve this balance.

Figure 6.3 shows the number of events (i.e., spikes and drops) as a function of δ. When

δ is zero, there are many events; almost one for every topic at every version. Many of these

are obviously not interesting, as the metric’s value only changes by less than 0.1%. In this

chapter, we are interested in studying major topic events, so we choose a δ value of 5%

for both systems, as this appears to weed out many uninteresting events without weeding

out too many major events (i.e., near the “knee” of the curves in Figure 6.3). We note that

different thresholds may be appropriate for other systems and other tasks, depending on

the desired sensitivity to change.

6.3.4 Topic Evolution Metrics

We measure how a topic changes over time by computing metrics on the topic at each point

in time and comparing the values. In this section we describe three metrics that can be used

to characterize topic evolutions, although many more exist.

The assignment of a topic is the sum of the topic memberships of all documents in that

topic, which gives an indication of the total presence of the topic throughout the code (Baldi

et al., 2008). A higher topic assignment means that a larger portion of the code is related

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 146

to the topic. We define the assignment of topic zk at version Vj as

A(zk, Vj) =

|Vj |∑
i=1

θdij [k]. (6.1)

The weight of a topic is similar to its assignment, but in addition considers the length of

each document. The weight metric exactly captures how many words in the entire corpus

were generated by a topic, whereas the assignment metric captures the portion of docu-

ments that were generated by a topic, and therefore can be skewed by small documents.

We define the weight of topic zk at version Vj by

W(zk, Vj) =

|Vj |∑
i=1

θdij [k] ∗ |dij |. (6.2)

The scattering of a topic is the normalized entropy of that topic over all documents (Baldi

et al., 2008). Entropy is a common metric used in information theory to determine how

uncertain, or spread out, a distribution is (Shannon, 2001); we normalize it by the number

of documents to account for differing numbers of documents in each version. A topic with

a high entropy value will be more spread throughout the system than a topic with a low

entropy value. We define the scattering of topic zk at version Vj by

S(zk, Vj) =
1

|Vj |
∗

− |Vj |∑
i

θdij [k] ∗ log(θdij [k])

 . (6.3)

Other topic metrics, which we only briefly describe, are: the tangle of a topic, which

indicates how many other topics a given topic is usually co-located with in a document; the

α-support of a topic, which indicates the number of documents that have a membership

of α or higher in the topic; the turnover of a topic, which captures the number of new

documents matching the topic at a given version, compared to the previous version; and

the similarity between two topics, which describes how similar the word distributions are

between the two topics.

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 147

Finally, the evolution E of a metric m of a topic zk is a time-indexed vector of metric

values for that topic: E(zk,m) = [m(zk, V1),m(zk, V2), ...,m(zk, Vv)].

We define a change event in a topic evolution as an increase (spike), decrease (drop), or

no change (stay) in a metric value between successive versions. We classify a change event

as a spike or a drop if there is at least a δ% increase or decrease in metric value compared to

the previous version, and as a stay otherwise. Formally, for a metric m of topic zk at version

Vj , the change c = (m(zk, Vj)−m(zk, Vj−1))/(m(zk, Vj−1)) is classified as

Event(m, zk, Vj) =

spike if c ≥ δ, or if m(zk, Vj−1) = 0

and m(zk, Vj) > 0;

drop if c ≤ −δ;
stay otherwise.

(6.4)

In later sections, we will use the notion of change events to characterize and validate topic

evolutions.

6.4 Results and Discussion

We first examine the discovered topics in both a qualitative and quantitative fashion in order

to obtain a intuition about the topics: do they make sense? What do they look like? Are

they stable? We then present the results of our three research questions in turn.

6.4.1 Examining the Discovered Topics

Before we begin our analyses of the discovered topic evolutions and their ability to de-

scribe actual changes in source code, we familiarize ourselves with the nature of the topics

and evolutions discovered by our technique. To do so, we examine a few selected topics,

consider various visualizations of their evolutions, and examine the stability of the topics.

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 148

Label Top words Top 3 related docs

JHotDraw

“bezier path” path bezier node index coord mask point
geom

BezierPath.java (0.92), GrowStroke.java
(0.59), BezierPointLocator.java (0.56)

“elem elem” attribut elem param child full attr re-
turn type

IXMLElement.java (1.00),
XMLAttribute.java (1.00),
XMLElement.java (1.00)

“input stream” stream read end encod length offset line
charact

PIReader.java (0.54), ContentReader.java
(0.52), CDATAReader.ja va (0.50)

jEdit

“abbrev abbrev” abbrev mode expand line global ex-
pans set

Abbrevs.java (1.00),
AbbrevsOptionPane.java (0.44), AddAbbre
vDialog.java (0.29)

“gnu regexp” index input match token retoken re-
match current

RE.java (1.00), RETokenRepeated.java
(1.00), REMatchEnumer ation.java (1.00)

“plugin manag” plugin jar instal string edit version list
return

PluginList.java (1.00),
JARClassLoader.java (0.53), PluginList
Handler.java (0.51)

Table 6.2: Example topics from JHotDraw and jEdit. The labels are automatically generated
by MALLET. The top words define the topic, and we display the documents with the three
highest membership values (shown in parenthesis) for each topic.

The Topics Themselves

The full listing of the topics discovered by our technique is given in Figures 6.4 and 6.5 for

JHotDraw and jEdit, respectively. We find topics that span a range of concepts, including

“mous motion”, “affin transform”, “zoom factor”, and “undoable edit” topics in JHotDraw

and “xml pars”, “tool bar”, “bin dir”, “font”, “hyper search”, and “gnu regexp” topics in jEdit.

Table 6.2 shows selected topics, their top (stemmed) words, and their top three matching

documents for each system. The groupings of top words seem to make sense to a human

reader, based on their semantic similarities. Anyone who is familiar with XML, for example,

will agree that the words “attribute”, “element”, and “child” naturally go together in this

context. Further, the top documents seem to be a natural fit with both the given topic and

the other topic documents. Just as other communities have found topics to make sense and

be useful for their purposes, we find source code topics to be coherent and useful.

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 149

Label Top Words Trend Label Top Words Trend

1. method invok
method except object invok re-
sourc param target obj

24. zoom factor
grid bag constraint awt swing
javax set add

2. input stream
stream read end encod length
offset line charact

25. menu item
action menu add window view
item set jmenu

3. buf append
elem attribut write buf append
creat figur ixmlel

26. creation tool
tool figur creat mous draw cre-
ation view prototyp

4. open elem
elem attribut current add ob-
ject write docum ioexcept

27. bezier path
path bezier node index coord
mask point geom

5. stop color
color gradient space paint focu
fraction stop arrai

28. attribut kei object
elem attribut read str style in-
herit ioexcept number

6. reader reader
reader param system elem ex-
cept entiti line data

29. scroll pane
set layout add pane swing edi-
tor line javax

7. properti chang
properti listen chang enabl
event action handler updat

30. chang listen
listen event figur chang remov
draw list invalid

8. attribut kei
button editor add attribut ac-
tion label tool draw

31. connect figur
connect figur connector start
end target point draw

9. suit add
flavor suit transfer data drag
focu compon clipboard

32. intern frame
border frame bar pane desktop
set compon window

10. attribut kei
color stroke kei attribut handl
bound fill transform

33. storag format
format file draw input output
filter extens storag

11. undoabl edit
action edit undo label redo util
bundl chang

34. code code
code point pointd param curv
digit bound max

12. buffer imag
imag buffer draw render width
height hint set

35. tree model
font list node famili collect se-
lect tree path

13. attribut kei
attribut kei set figur object map
entri draw

36. affin transform
transform rectangl figur width
draw stroke handl clone

14. color chooser
color compon slider index icon
model space system

37. text holder
text font figur holder edit area
size tab

15. draw view
view draw editor select con-
strain figur activ set

38. figur figur
figur draw child composit chil-
dren add list remov

16. undo activ
public command return undo
activ figur set undoabl

39. start time
link code return param task
target method figur

17. junit doclet
test junit method doclet begin
end javadoc except

40. inset inset
inset layout width height left
bound size top

18. mous motion
handl select figur mous view
draw event evt

41. field set
field gbc set button grid label
opac bag

19. elem elem
attribut elem param child full
attr return type

42. content produc
draw set paramet applet con-
tent url input produc

20. poli line
point line angl width rectangl
pointd height corner

43. stroke dash
stroke color map put fill width
dash text

21. locat locat
handl locat owner bound trans-
form pointd figur point

44. recent file
view file applic app action
project set chooser

22. displai box
figur public box displai draw
decor return read

45. option pane
code sheet pane messag listen
option dialog compon

23. icon icon
icon descriptor bean properti
event gen method color

Figure 6.4: Topic trendlines for JHotDraw. For each topic, we show the automatically-
generated topic label, the top eight words in the topic, and the trend line of topic assignment
evolution.

Visualizing the Evolutions

To better understand the topic evolutions, we experiment with two visualization techniques,

each with its own advantages and disadvantages.

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 150

Label Top Words Trend Label Top Words Trend

1. tree model
tree event node path model se-
lect result mous

24. font font
font print color style size text
width privat

2. out write
log url error privat return elem
file els

25. parser rule
rule token context line set last
parser keyword

3. plugin manag
plugin jar instal string edit ver-
sion list return

26.
token begin to-
ken

activ move liter state kind start
token check

4. action listen
action list add con button select
label set

27. text area
text area regist edit select caret
set public

5. hyper search
search replac set view buffer
matcher find edit

28. flag invalid
offset size defin flag type stack
format endif

6. gjt jedit
view macro action edit record
code repeat buffer

29. bin dir
instal size dir system public
progress oper directori

7. pars except
token node scope except con-
sum close pars scan

30. path path
file path directori browser view
session entri filter

8. set text
add set box border action lay-
out panel listen

31. gjt jedit
public return param edit com-
pon pre comp gjt

9. line line
line select caret start end offset
buffer int

32. bug fix revision
revision syntax set fix bit bug
updat improv

10. buf append
append path buf return length
str compar case

33. bsh java
method type return bsh variabl
object interpret space

11. xml pars
read buffer entiti attribut ex-
cept encod elem type

34. model model
model tabl row col entri public
return size

12. text area
line color text highlight area
gutter set font

35. menu item
menu item action add histori
set mous popup

13. compil header
file log script launcher path re-
turn modul server

36. dockabl window
window dockabl position width
entri contain height top

14. edit properti
line marker edit return buffer
properti set file

37. gnu regexp
index input match token reto-
ken rematch current mymatch

15. option pane
option edit properti pane set
box select add

38. instal instal
str instal kei path data reg er-
ror log

16. abbrev abbrev
abbrev mode expand line
global expans set hashtabl

39. simpl node
node eval type interpret jjt
simpl callstack child

17. icon icon
icon menu properti color re-
turn edit code style

40. kei bind
kei bind event shortcut return
evt code case

18. view view
buffer view file edit log properti
set return

41. eval error
object type error primit eval
field obj interpret

19. tool bar
pane edit bar tool text buffer
split area

42. color color
color style tabl option set add
border background

20. work thread
thread request progress work
run log pool abort

43. buffer buffer
buffer view edit set properti up-
dat jedit pane

21. input stream
stream read code buffer length
size write input

44. edit properti
mode properti edit set tab line
indent size

22. line line
line offset fold info method
buffer start count

45. sourc file
error eval except interpret mes-
sag file sourc target

23. word sep
index word text length start
charact return end

Figure 6.5: Topic trendlines for jEdit. For each topic, we show the automatically-generated
topic label, the top eight words in the topic, and the trend line of topic assignment evolution.

Line charts. Figure 6.11 shows a traditional line chart view of the weight evolutions of

four selected topics. The layout of a line chart is just as one would expect: the x-axis shows

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 151

time and the y-axis shows the metric value at each point in time. Line charts are helpful for

closely inspecting an individual topic evolution: to visualize the periods of spikes and drops

and quickly reveal periods of activity and interest in the topic. The line chart is intuitive to

understand but requires considerable space, especially when visualizing hundreds of topics.

For a complete listing of the discovered topics, Figures 6.4 and 6.5 show all of the topics

discovered for both systems, along with a simplified line chart to save space and give a

quick impression of the general behavior of the topic evolution. The simplified line charts

include up to four thick circles on the trend lines, indicating the first and last values on the

line as well as the minimum and maximum values.

Heatmaps. Figure 6.6 shows a heatmap view of the assignment evolutions for both JHot-

Draw and jEdit. The color of each cell represents the assignment value for a topic at a

particular time, where darker colors indicate higher assignment values. This visualization

allows us to quickly and compactly compare and contrast the trends exhibited by the various

topics. For example, Figure 6.6a indicates that some topics in JHotDraw (e.g., “undo activ”,

bolded in the figure) become increasingly active during the initial versions of the system,

but then die at later versions. Other topics do not see any activity until later versions, such

as the “color chooser” topic (bolded in the figure).

An interesting quality of the heatmap visualization is the ability to visually detect dif-

ferent phases of development, or releases with many changes to many topics. For example,

there is a visual wall effect in Figure 6.6a between versions V4 and V5, evidenced by a large

color change in several topics. This suggests that there was a large development effort that

concurrently affected multiple concepts. Indeed, version V5 was a major release that expe-

rienced a multitude of refactorings and changes to the core framework of the system (cf.

large drop in Figure 6.1a).

Examining Topic Stability

The topics discovered from statistical topic models are a result of the input data, the input

parameters, and the statistical sampling methods. Topic stability refers to how stable the

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 152

1 2 3 4 5 6 7 8 9 10 11 12 13

method invok
input stream
buf append
open elem
stop color
reader reader
properti chang
attribut kei
suit add
attribut kei
undoabl edit
buffer imag
attribut kei
color chooser
draw view
undo activ
junit doclet
mous motion
elem elem
poli line
locat locat
displai box
icon icon
zoom factor
menu item
creation tool
bezier path
attribut kei
scroll pane
chang listen
connect figur
intern frame
storag format
code code
tree model
affin transform
text holder
figur figur
start time
inset inset
field set
content produc
stroke dash
recent file
option pane

(a) JHotDraw.

1 2 3 4 5 6 7 8 9 10 11 12

tree model
out write
plugin manag
action listen
hyper search
gjt jedit
pars except
set text
line line
buf append
xml pars
text area
compil header
edit properti
option pane
abbrev abbrev
icon icon
view view
tool bar
work thread
input stream
line line
word sep
font font
parser rule
token begin
text area
flag invalid
bin dir
path path
gjt jedit
bug fix
bsh java
model model
menu item
dockabl window
gnu regexp
instal instal
simpl node
kei bind
eval error
color color
buffer buffer
edit properti
sourc file

(b) jEdit.

Figure 6.6: Heatmap views of the 45 topic evolutions discovered from the JHotDraw and
jEdit source code. Darker cells indicate a higher assignment metric value. Rows are topics
(shown with their automatically-generated topic labels) while columns are versions.

discovered topics are across these factors (Steyvers and Griffiths, 2007). For example, it

would be undesirable if changing K from 45 to 46 would cause a completely new, unrelated

set of topics to be discovered and all of our results to be affected. Likewise, sampling for

a few more or less iterations ideally should not have a large impact on the topics. In this

section, we investigate topic stability.

Topic stability is determined by measuring the Kullback-Leibler (KL) distance (Cover

and Thomas, 2006) between pairs of topics in different runs (or instantiations) of the topic

model (Steyvers and Griffiths, 2007). The KL distance between two topics is given by

KL(z1, z2) =
1

2

N∑
i=1

φz1 [i] log2
φz1 [i]

φz2 [i]
+

1

2

N∑
i=1

φz2 [i] log2
φz2 [i]

φz1 [i]
, (6.5)

taking care to align the word orders in the word vectors. By computing the KL distance

matrix for pairs of topics in each run, reordering the matrix in a greedy fashion so that the

most similar topics are on the diagonal, and viewing the output as a heatmap, we can get

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 153

a sense for how similar the topics are in the two runs. If the topics are indeed similar, that

is, each topic in run 1 has a corresponding topic in run 2, then we can be confident that

the topics are stable in the two runs. For example, Figure 6.7a shows a similarity matrix of

JHotDraw compared against itself, which will be the most stable case possible. A dark line

down the diagonal indicates that, indeed, each topic in run 1 is very similar to a topic in run

2 (which are the same in this case). Figure 6.7b, on the other hand, shows the similarity

matrix of the topics discovered from JHotDraw measured against those of jEdit, which we

do not expect to be very similar. Less than 10 of the topics show high similarity (e.g., both

systems have an “input stream” topic), but most topics are more dissimilar and appear in

the figure as random noise.

Figure 6.8 shows the results of topic stability for JHotDraw and jEdit for different num-

bers of topics (K = 30, 45, and 60), different numbers of sampling iterations (I=9,000 and

10,000), and different amounts of input data (all versions at once with K=45 and only the

latest version with K=42). Overall, we find that the topics in both JHotDraw and jEdit are

moderately to very stable, as indicated by the presence of dark diagonals that span most

topics.

The discovered topics are moderately stable to increases in K or I.

6.4.2 Manual Analysis of Validity (RQ1)

Our first research question examines the meaningfulness of topic evolution models applied

to source code: do the discovered topics evolve because of actual change activity in the

source code? If so, then topic evolution models may be an appropriate tool for understand-

ing the change history of source code. However, if the discovered topic evolutions do not

correspond well with the change activity in the source code, then topic evolutions are not a

good choice.

We determine the meaningfulness of the discovered topic evolutions by analyzing in

detail the change events of the evolutions. In particular, we perform a manual analysis of

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 154

10 20 30 40

10
20

30
40

Topic IDs (run 2)

To
pi

c
ID

s
(r

un
 1

)

(a) JHotDraw vs. itself.

10 20 30 40

10
20

30
40

Topic IDs (run 2)

To
pi

c
ID

s
(r

un
 1

)

(b) JHotDraw vs. jEdit.

Figure 6.7: Example topic similarity matrices. (a) JHotDraw is compared against itself,
which yields the most stable topics possible, indicated by the black diagonal. (b) JHotDraw
is compared against a completely different system, jEdit, which yields completely unstable
topics, indicated by a lack of a strong diagonal.

a random subset of the discovered change events of the evolutions. We selected enough

random samples to yield a 90% confidence level with a margin of error of 10% (Scheaffer

and McClave, 1994), Our sample size, n, for each type of event of each system is calculated

as

n =
t

1 + t−1
N

where N is the total number of events of this type, t = (Z2p(1 − p))/B2, B = 0.10 and

1 − α = 0.90, so Z = zα/2 = z0.05 = 1.645 (Scheaffer and McClave, 1994). Since we have

no prior knowledge on the probability p of each event, we set p to 0.5. To account for

differing numbers of spikes, drops, and stays, we sample each event independently. Thus,

this calculation totals 132 out of 540 events for JHotDraw and 113 out of 495 events for

jEdit.

In our study, there are four possible outcomes for each event:

– True positive. A spike or drop event is detected in a topic’s evolution, and the source code

exhibits a change relating to that topic.

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 155

5 10 15 20 25 30

10
20

30
40

Topic IDs (run 2)

To
pi

c
ID

s
(r

un
 1

)

(a) JHotDraw, K=45 vs. 30.

10 20 30 40 50 60
10

20
30

40
Topic IDs (run 2)

To
pi

c
ID

s
(r

un
 1

)

(b) JHotDraw, K=45 vs. 60.

10 20 30 40

10
20

30
40

Topic IDs (run 2)

To
pi

c
ID

s
(r

un
 1

)

(c) JHotDraw, I=10K vs. 9K.

10 20 30 40

10
20

30
40

Topic IDs (run 2)

To
pi

c
ID

s
(r

un
 1

)

(d) JHotDraw,K=42 (latest ver-
sion) vs. 45 (all versions).

5 10 15 20 25 30

10
20

30
40

Topic IDs (run 2)

To
pi

c
ID

s
(r

un
 1

)

(e) jEdit, K=45 vs. 30.

10 20 30 40 50 60

10
20

30
40

Topic IDs (run 2)
To

pi
c

ID
s

(r
un

 1
)

(f) jEdit, K=45 vs. 60.

10 20 30 40

10
20

30
40

Topic IDs (run 2)

To
pi

c
ID

s
(r

un
 1

)

(g) jEdit, I=10K vs. 9K.

10 20 30 40

10
20

30
40

Topic IDs (run 2)

To
pi

c
ID

s
(r

un
 1

)

(h) jEdit, K=42 (latest version)
vs. 45 (all versions).

Figure 6.8: Topic similarity matrices indicating the stability of the topic models. Each cell is
the KL distance between pairs of topics. Darker cells mean less distance (more similarity).
A column having one dark cell indicates that the topic in run 2 is very similar to exactly one
topic in run 1.

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 156

– False positive. A spike or drop event is detected in a topic’s evolution, but the source code

does not exhibit a change relating to that topic.

– True negative. A stay event is detected in a topic’s evolution, and the source code does

not exhibit a change relating to that topic.

– False negative. A stay event is detected in a topic’s evolution, but the source code exhibits

a change relating to that topic.

To aid us in our manual analysis, we developed a tool that randomly selects a given

number of spike, drop, and stay events in the evolution of the weight metric. We choose the

weight metric because it most accurately depicts the number of lines added and removed

for a topic, making manual analysis more intuitive. For each event selected (between two

versions Vj and Vj+1), the tool presents the following information.

– The topic label and the 10 most probable words.

– A plot showing the weight evolution, with the selected change event highlighted.

– A description of the change event (i.e., metric values before and after the event).

– A list of the top 15 documents matching the topic at version Vj . For each document, the

tool lists the document’s membership for this topic, the size of the document, a link to

the diff between versions Vj and Vj+1 of the document, and a link to the SCM entry for

the document.

– A list of the top 15 documents matching the topic at version Vj+1 (along with the metrics

and links just mentioned).

Figure 6.9 shows an excerpt from the tool. The excerpt shows a single change event,

in this case a spike between versions V12 and V13 of JHotDraw. In the tool, the “diff” and

“scm” words are clickable, taking the user to a web page containing the diff report of the

document between the two versions or the SCM entry for that documents, respectively. In

addition, when the user clicks on the version numbers (e.g., 7.5.1), the release notes for

that version are displayed.

Armed with this information, we examined the system documentation (including re-

lease notes, commit logs, and source code comments), looking for evidence that supported

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 157

0
20

00
60

00
10

00
0

A
ss

ig
nm

en
t

1 2 3 4 5 6 7 8 9 10 11 12 13

Topic 14 (Hall)

Hall Change Event #26

Change from version id 12 (7.4.1) to 13 (7.5.1) (dates 2010-01-17 to 2010-08-01)
Change in assignment from 28.70 to 38.09 (+32.70%)

Topic words: “color chooser”, {color compon slider index icon model space system rgb chooser track}

Top 15 documents that match at version 12 (SCM link: 7.4.1):

Version 12 Version 13
Name Package Theta Size Theta Size
AbstractColorSystem.java org.jhotdraw.color 1.00 25 NA NA diff scm
AbstractHarmonicRule.java org.jhotdraw.color 1.00 34 1.00 38 diff scm
CMYKNominalColorSystem.java org.jhotdraw.color 1.00 98 NA NA diff scm
HSLRGBColorSystem.java org.jhotdraw.color 1.00 154 NA NA diff scm
HSLRYBColorSystem.java org.jhotdraw.color 1.00 169 NA NA diff scm
HSVRYBColorSystem.java org.jhotdraw.color 1.00 134 NA NA diff scm
RGBColorSystem.java org.jhotdraw.color 1.00 37 NA NA diff scm
HSVRGBColorSystem.java org.jhotdraw.color 0.99 110 NA NA diff scm
HarmonicRule.java org.jhotdraw.color 0.97 32 1.00 32 diff scm
DefaultColorSliderModel.java org.jhotdraw.color 0.91 420 0.92 547 diff scm
Colors.java org.jhotdraw.draw.action 0.91 32 NA NA diff scm
SimpleHarmonicRule.java org.jhotdraw.color 0.90 106 0.90 101 diff scm
ColorSystem.java org.jhotdraw.color 0.88 56 NA NA diff scm
ColorTrackImageProducer.java org.jhotdraw.color 0.87 241 0.88 264 diff scm
CompositeColor.java org.jhotdraw.color 0.84 121 0.40 554 diff scm

Top 15 documents that match at version 13 (SCM link: 7.5.1):

Version 12 Version 13
Name Package Theta Size Theta Size
AbstractHarmonicRule.java org.jhotdraw.color 1.00 34 1.00 38 diff scm
HarmonicRule.java org.jhotdraw.color 0.97 32 1.00 32 diff scm
PaletteColorSliderModel.java org.jhotdraw.gui.plaf.palette.colorchooser NA NA 0.95 129 diff scm
HSLPhysiologicColorSpace.java org.jhotdraw.color NA NA 0.95 210 diff scm
ColorSquareImageProducer.java org.jhotdraw.color NA NA 0.94 298 diff scm
HSVPhysiologicColorSpace.java org.jhotdraw.color NA NA 0.94 178 diff scm
QuantizingColorWheelImageProducer.java org.jhotdraw.color NA NA 0.94 296 diff scm
HSLColorSpace.java org.jhotdraw.color NA NA 0.94 185 diff scm
CMYKNominalColorSpace.java org.jhotdraw.color NA NA 0.93 193 diff scm
DefaultColorSliderModel.java org.jhotdraw.color 0.91 420 0.92 547 diff scm
HSVColorSpace.java org.jhotdraw.color NA NA 0.92 149 diff scm
PolarColorWheelImageProducer.java org.jhotdraw.color NA NA 0.92 294 diff scm
SimpleHarmonicRule.java org.jhotdraw.color 0.90 106 0.90 101 diff scm
AbstractColorWheelImageProducer.java org.jhotdraw.color NA NA 0.89 123 diff scm
ColorTrackImageProducer.java org.jhotdraw.color 0.87 241 0.88 264 diff scm

26

Figure 6.9: An excerpt from our manual analysis tool.

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 158

Spikes Drops Stays Total

Sample Valid (%) Sample Valid (%) Sample Valid (%) Sample Valid (%)
size size size size

JHotDraw 53/251 87±10 26/42 96±10 53/247 89±10 132/540 89±10
jEdit 47/150 83±10 10/11 80±10 56/334 91±10 113/495 87±10

Table 6.3: Results of the manual analysis (RQ1) for JHotDraw and jEdit. Valid spikes and
drops correspond to true positives, whereas valid stays correspond to true negatives.

each change event. If the change event clearly corresponded to an actual change activity

in the source code, then we classified the event as valid. Examples of clear correspondence

for spikes and drops include: a direct mention of the topic in the release notes; multiple

new documents being added to or deleted from the system that match the topic; and mul-

tiple matching documents being heavily modified. For stay events, we looked for a lack of

change, including the topic not being mentioned in the release notes, related documents

remaining unchanged, and no new related documents being added or deleted. In any case,

if we found no such correspondence, then we classified the event as invalid.

Results

Table 6.3 shows our results. After performing the manual analysis of the selected change

events, we found that almost all (89% and 87% for JHotDraw and jEdit, respectively) of

the randomly selected events correspond to actual change activities in the source code (i.e.,

true positives and true negatives), backed by at least one source of system documentation.

In these cases, there was a clear correspondence between the topic changes and the changes

in the source code.

We found that the change events that were not backed by documentation and did not

correspond to change activity in source code (i.e., false positives) were largely caused by

one of the following issues.

Noisy membership changes. As LDA is a probabilistic model, it is possible that a given

document will be assigned slightly different topic memberships on different executions of

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 159

the model. In the Hall model, two successive versions of a document, although exactly the

same in textual content, might be assigned slightly different topic memberships. Further,

if this happens for several documents that all match a given topic, then the topic’s metrics

will change, even though the source code never did (see Figure 6.10).

Confounded topics. Ideally, LDA will discover topics that perfectly represent single real-

world concepts. However, due to noise in the data, suboptimal parameter choices, and the

sampling techniques of the inference algorithm, LDA sometimes discovers topics in which

two or more logical concepts coexist—the topic is confounded with multiple logical con-

cepts. Furthermore, these concepts do not necessary have an equal representation in the

topic. In these cases, the evolutions for a topic can appear spurious and incorrect, due to

a lighter concept receiving a legitimate spike or drop, while the larger concept should not

experience any, or vice versa. An example of this is the “view” topic in jEdit. This topic

contains the words “view”, “buffer”, and “edit”, clearly representing the concept of different

editor views of a file (i.e., buffer). This topic also contains the words “properti” and “set”,

representing the concept of managing properties (e.g., global properties or plugin proper-

ties). This single topic thus represents two concepts, a result of these concepts frequently

being co-located in the source code. As a result, at versions when the “property” concept is

changed, the “view” topic will exhibit a spike or drop, even though no code related to the

“editor views” concept was actually changed.

We found that the majority (89–91%) of stay events were valid (true negatives). Many

topics indeed exhibited periods of inactivity: none of their related documents were changed,

no new documents were added that matched the topic, and there was no mention of the

topic in the system documentation. However, in a few cases, large refactorings or document

name changes occurred that the topic evolutions were unable to detect (false negatives). In

these cases, even though documents were moved from one directory to another and meth-

ods were moved from one document to another, the topic weight metric remained the same

or very similar. As a result, the topic evolution exhibited a stay and the project stakeholders

would not be informed about these changes. We note that in some refactorings, enough

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 160

Version V9 Version V10

z18 z18
EditServer.java 0.69 EditServer.java 0.60
Install.java 0.43 Install.java 0.30
LatestVersionPlugin.java 0.55 LatestVersionPlugin.java 0.29

... ...
A(z18, V9) = 4.22 A(z18, V10) = 3.22

Figure 6.10: An example from jEdit of an assignment change caused by noise in the LDA
model. The topic memberships for topic 18 (“view”) are shown for three documents for
versions V9 and V10. In this example, none of the text in the three documents changed
between the two versions, but due to the probabilistic processes of LDA, some of their topic
memberships did change slightly. As a result, the assignment metric for this topic changes
between the two versions.

changes were made to produce a spike or drop in the topic, which were detected by our

technique.

Examples

Figure 6.11a shows a change event for the “view” topic in jEdit that we classified as invalid.

In this example, the weight metric decreased by 23% between versions V9 and V10, which is

indeed a drop according to our definition in Equation 6.4. However, after manual analysis,

it became clear that no actual changes occurred to any of the source code documents that

matched this topic. The change in metric value was caused by noise in the LDA model: four

of the seven documents that matched this topic received a lower topic membership in V10

than they did in V9, even though no changes occurred to any of the documents during this

period.

On the other hand, Figure 6.11b shows a change event from JHotDraw that we classified

as valid. The evolution for the “color chooser” topic experiences a large spike (87%) in the

weight metric between versions V12 and V13. The release notes for version V13 include

the description: “An UI delegate for JColorChooser has been added to the “Palette” look and

feel”. Additionally, new source code documents like DefaultColorSliderModel.java and

HSLColorSpace.java were added into the org.jhotdraw.color package, both matching

the “color chooser” topic. Thus, there is a clear correspondence between the spike event in

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 161

55
00

65
00

75
00

85
00

Version Number

W
ei

gh
t

1 2 3 4 5 6 7 8 9 10 11 12

(a) An invalid drop in jEdit’s “view” topic.

0
40

00
80

00
12

00
0

Version Number

W
ei

gh
t

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) A valid spike in JHotDraw’s “color chooser” topic.

30
00

50
00

Version Number

W
ei

gh
t

1 2 3 4 5 6 7 8 9 10 11 12

(c) A spike in jEdit’s “macro action” topic, which was
caused by the addition of new functionality (Apple-
Script).

50
0

15
00

30
00

Version Number
W

ei
gh

t
1 2 3 4 5 6 7 8 9 10 11 12 13

(d) A spike in JHotDraw’s “elem elem” (XML) topic,
which was caused by the addition of a new library
(NanoXML).

Figure 6.11: Example topic evolutions from JHotDraw and jEdit. The selected change event
is highlighted by the vertical dashed lines.

the topic evolution and the actual change activity in the source code.

In both of our case studies, we found that the majority of topics evolve due to
actual change activities in the source code, with only a small minority of change
events caused by noise or confounded topics in the probabilistic LDA model. We
conclude that topic evolution models are appropriate and useful for describing
source code evolution.

6.4.3 Investigation of Code Change Categories (RQ2)

In this section, we investigate the relationship between topic evolutions and source code

change categories. Longo et al. (2008) recently proposed three categories of software evo-

lution interventions (i.e., reasons for software evolution):

C1. Corrective evolution (i.e., bug fixes)

C2. Refactoring (i.e., code improvement and adaptation)

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 162

C2.1. Adoption of coding conventions and style

C2.2. Adoption of new framework or libraries

C2.3. Improvement of the internal structure of the code

C3. New functionalities and features

We refer to each item above as a change category. These change categories are not mutually

exclusive—it is possible, for example, for the adoption of new libraries to also result in new

features, or for bug fixes to result in improvement of the internal structure of the code.

We adopt this taxonomy as a high-level model for why software changes. We revisit

our two systems under study, JHotDraw and jEdit, and manually analyze the valid change

events from the randomly-selected subset of change events. (We use the same subset as we

did in RQ1.) We do not consider stay events because by definition stay events involve no

code changes. We again use our analysis tool, now with the goal of determining to which

change category (or change categories) each change event belongs. We investigate system

documentation and source code changes to determine whether each spike or drop is related

to a bug fix, refactoring, or new functionalities or features.

Results

Table 6.4 shows the results of manually classifying each randomly-selected change event as

one of the five possible change activities. We make a few observations below.

– JHotDraw and jEdit do not exhibit the same behaviors. For example, JHotDraw develop-

ment is less concerned with bug fixes (8% compared to 64%) while being more concerned

with internal improvement (79% compared to 28%). This makes sense, because the de-

velopment history of JHotDraw was focused on the internal design of the system with

emphasis placed on increasing the use of design patterns and standard libraries.

– New coding conventions (C2.1) do not occur often for either system (4% and 6%).

– Drops are rarely caused by the addition of new functionalities or features. This makes

intuitive sense, because adding features involves adding new code, which always causes

spikes in the weight metric for one or more topics.

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 163

JHotDraw jEdit

All Spikes Drops All Spikes Drops

C1. Corrective evolution (i.e., bug fixes) 8% 11% 4% 64% 67% 50%

C2. Refactoring
C2.1. New coding conventions 4% 2% 8% 6% 5% 13%
C2.2. New frameworks, libraries, etc. 10% 4% 0% 2% 3% 0%
C2.3. Internal improvement 79% 70% 96% 28% 26% 38%

C3. New functionalities and features 19% 46% 8% 49% 59% 0%

Table 6.4: Relationship between code changes and topic evolutions in JHotDraw and jEdit.
The columns may add up to more than 100% because the categories are not mutually
exclusive.

– Drops in JHotDraw almost always indicate one of the refactoring change activities. Drops

in jEdit, on the other hand, could indicate any change activity.

Examples

Figure 6.11c shows an example spike at version V11 in the evolution of the “macro action”

topic in jEdit. In our manual analysis, we classified this spike as being related to the addi-

tion of new functionality (C3). This topic deals primarily with the macro scripting language

feature in jEdit. The release notes for version V11 include the line: “You can [now] run

AppleScripts (compiled, uncompiled and standalone)”, referring to the new capability of run-

ning scripts written in the AppleScript language. This capability was realized by adding

new documents at version V11, for example the AppleScriptHandler.java which has a

membership of 0.88 in the “macro action” topic.

Figure 6.11d shows an example spike at version V5 in the evolution of the “elem elem”

(XML) topic in JHotDraw. In our manual analysis, we classified this spike as being related

to the addition of a new library. The release notes for version V5 include the line: ”Added

a tweaked version of NanoXML back into the framework”. The NanoXML library consists of

24 documents, many of which match the “elem elem” topic with a membership of 0.50 or

higher. Thus, this spike was related to the addition of a new library.

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 164

We have found that topics evolve due to a variety of underlying change activities,
including bug fixes, refactoring efforts, and the addition of new functionalities.
For this reason, we conclude that topic evolutions are a convenient and meaningful
analysis tool for understanding source code evolution.

6.4.4 Exploring Evolution Patterns (RQ3)

We now examine topic evolution patterns. Our goal is to quantify common and uncommon

behavior and explore the tendencies of topic evolutions.

Results

Table 6.5 summarizes the types and amounts of change events in the discovered topic evo-

lutions for the two systems, for both the assignment and weight metrics. In both systems,

there are more spikes than drops in the weight metric, consistent with the overall code

growth over the studied periods. On average, a topic’s weight evolution in JHotDraw has

4 spikes, 1 drop, and 7 stays; compare this to jEdit’s relatively inactive 1 spike, 0 drops,

and 10 stays. When a spike does occur, it does so by a median of 670 (JHotDraw) and 537

(jEdit) non-unique words (i.e., the median spike contains an addition of 670 and 537 non-

unique words into the source code), but much smaller and larger spikes do occur. When a

drop occurs, it is marked by the removal of a median of 838 (JHotDraw) and 365 (jEdit)

non-unique words. In total, the weight evolutions in JHotDraw exhibited 251 spikes, 42

drops, and 247 stays, while jEdit exhibited 150 spikes, 11 drops and 334 stays.

We identify the following patterns of the evolution of the weight metric and provide

relevant examples.

Overall Growth. Ninety-six percent (JHotDraw and jEdit) of topics have a higher weight in

the last version of the source code than they do in the first, indicating total overall growth

over the lifetime of the source code. This can also be observed from Figure 6.6, in which

most topics appear darker towards the end of their lifetime. For example, in JHotDraw, the

“input stream” topic (topic 2) has a weight of 306.0 in version V1 and a weight of 4,920.8

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 165

JHotDraw jEdit

Min. Median Mean Max. Min Median Mean Max.

Number of assignment spikes 0.0 2.0 1.9 4.0 0.0 0.0 0.5 3.0
Number of assignment drops 0.0 0.0 0.4 2.0 0.0 0.0 0.0 1.0
Number of assignment stays 7.0 10.0 9.7 12.0 8.0 11.0 10.5 11.0
Assignment change (spikes) 0.1 2.7 5.8 147.9 1.0 2.0 2.8 13.7
Assignment change (drops) -147.4 -3.2 -11.9 -1.0 -2.4 -2.0 -1.9 -1.2

Number of weight spikes 1.0 4.0 3.9 6.0 0.0 1.0 1.4 4.0
Number of weight drops 0.0 1.0 0.8 4.0 0.0 0.0 0.1 2.0
Number of weight stays 4.0 7.0 7.4 11.0 7.0 10.0 9.5 11.0
Weight change (spikes) 39.0 670.0 1589.0 72230.0 54.9 537.5 903.3 7090.0
Weight change (drops) -68210.0 -838.1 -3749.0 -68.9 -614.2 -365.6 -352.4 -99.1

Table 6.5: Characteristics of the discovered evolutions for JHotDraw and jEdit, for the
assignment and weight metrics.

in version V13, capturing the increasing capabilities of JHotDraw for reading various input

file formats. In jEdit, the “hyper search” topic (topic 5) increased its weight from 2,623.0

in version V1 to 4,453.3 in version V12, as the searching functionality in jEdit was greatly

enhanced over time.

Similarly, only 4% (JHotDraw and jEdit) of topics have a lower weight in the last version

than they do in the first version. For example, in JHotDraw, the “displai box” topic (topic

22) has a large weight in the first version of the source code, but almost no weight in the

last version. This indicates the removal of the “display box” topic. (In this case, the removal

occurred at version V5, when a new jhotdraw.draw package was added to refactor older

classes such as RectangleFigure.java, which contained the “displai box” topic.) No topics

in either JHotDraw or jEdit had the same weight in the last version as they did in the first

version.

Major Events. Ninety-six percent (JHotDraw) and 16% (jEdit) of topics have at least one

change event that changed the weight metric value by more than 75% of the previous

version, indicating a major change of some kind. (To calculate this measure, we only in-

cluded changes that involved an actual metric change of 50.0, to avoid scenarios where

small changes to small values result in large percentage changes, for example when a topic

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 166

weight changes from 2.0 to 4.0, i.e., a 100% increase that is obviously not important.) As

JHotDraw was completely refactored and rewritten several times, it makes sense that most

topics will exhibit major events. For example, the weight of the “color chooser” topic (topic

14) changed from 5,838.4 in version V12 to 10,930.3 in version V13, a percentage difference

of +87%. As previously noted in Section 6.4.2, the color chooser module of JHotDraw was

heavily modified in version V13, changing its GUI look and feel and adding several new

classes.

Births and Deaths. Seven percent of topics in JHotDraw die at some point (i.e., have a

positive weight value in some version Vj followed by a zero value in the remaining ver-

sions Vj+1, ..., Vn), indicating the removal of features and deletion of code. For example, in

JHotDraw, the “undo activ” topic (topic 16) is removed at version V5. (The corresponding

release notes include the entry “Undo/Redo is now implemented based on the Swing undo

package”, indicating that JHotDraw no longer implements its own undo/redo functionality,

and instead uses an off-the-shelf package in Swing.)

In jEdit, on the other hand, no topics die. This could mean that either jEdit is more

stable and all features are useful, or that when features are removed, the obsolete code is

not deleted.

Likewise, 45% (JHotDraw) and 7% (jEdit) first appear (i.e., are born) at some version

Vj , j > 1. This indicates that JHotDraw has experienced a significant change between the

first and last versions, since almost half of the topics were not present in the first version.

For example, in JHotDraw, the “junit doclet” topic (topic 17) is first introduced in version

V2, which corresponds to when JUnit testing was first added to the system. jEdit is relatively

more stable, but still exhibits some completely new topics. For example, the “instal” topic

(topic 38) first appears in version V5. Three new packages were added in this version, all

related to an enhanced installation procedure for jEdit: windows.jeditshell.jedinstl,

windows.jeditshell.jeditinit, and windows.jeditshell.jeditlauncher.

Constant Topics. Whereas none of the topics in JHotDraw are constant (i.e., experience no

spikes or drops), 22% of the topics in jEdit are. While these topics do exhibit some change

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 167

over time, the change is always less than the δ threshold. This finding reveals that no

feature or concept is safe from change in JHotDraw, likely due to the constant-improvement

mentality of the system. On the other hand, features and concepts in jEdit follow more the

“if it is not broken, do not fix it” paradigm. For example, the “xml pars” topic (topic 11),

which captures jEdit’s XML parsing feature, exhibits hardly any changes, and when it does,

the changes are trivial.

Changes per Version. On average, 60% (JHotDraw) and 7% (jEdit) of topics change in any

given version. This implies that each release in JHotDraw brings changes to many topics

concurrently, possibly indicating a hidden coupling of the code or perhaps the aggressive

nature of the developers. On the other hand, fewer topics are changed at each release in

jEdit, indicating either a more modular code design or a more focused development cycle.

Unstable Topics. We call a topic unstable if it exhibits both more spikes and drops than

stays—the topic metric rapidly spikes and drops in succession. Such a behavior could indi-

cate a poorly designed topic that undergoes constant refactorings. We observe that only 5%

(JHotDraw) and 0% (jEdit) of topics are unstable. An example unstable topic in JHotDraw

is the “content produc” topic (topic 42), which represents the abstract concept of producing

content in the included sample applications. Since the sample applications change signif-

icantly from version to version in order to highlight the changes made to the JHotDraw

framework, the topic experiences unstable behavior.

Spike-only Topics. Forty-three percent (JHotDraw) and 74% (jEdit) of topics exhibit spikes

without also exhibiting drops. No topics (JHotDraw and jEdit) exhibit drops without spikes.

This is due to the tendency of source code of the studied systems to only grow over time

(Figures 6.1b and 6.1e) as features and functionalities are added.

An example in JHotDraw is the “attribut kei” topic (topic 8), which is related to GUI

buttons (which change internal attributes based on attribute keys). As JHotDraw grows

over time and more GUI functionality is added, this topic experiences many spikes. In jEdit,

the topic “out write” (topic 2), which captures the logging functionality of jEdit, is added to

more and more of jEdit’s classes over time, and rarely removed from a class.

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 168

Overall, the topic evolutions in JHotDraw are very active, as evidenced by their
overall growth (96%), the number of major events (95%), few constant topics
(0%), and many changed topics per version (60%). This is consistent with JHot-
Draw’s active development cycle and multiple redesign efforts. Comparatively, the
topic evolutions in jEdit are more calm: many are constant (22%), and few are
changed per version (7%). This is consistent with jEdit’s more mature and stable
system status. Topics in both systems tend to grow, not shrink, as does the size of
the source code. Finally, topics can be born and can die—not all topics exist in
every version of the source code, representing major new or deleted features and
concepts in the source code.

6.4.5 Potential Threats to Validity

Internal Validity. Our work involves choosing several parameters for LDA computation,

perhaps most importantly the number of topics, K. Also required for LDA is the number of

sampling iterations, as well as prior distributions for topic and document smoothing param-

eters, α and β. There is currently no theoretically guaranteed method for choosing optimal

values for these parameters, even though the resulting topics are obviously affected by this

choice. To counteract this limitation, we use the same value for K as previous work (Baldi

et al., 2008; Thomas et al., 2010b) and let MALLET automatically choose optimal values

for α and β (McCallum, 2012).

Additionally, our choice of δ (metric change threshold) was based on finding a knee in a

curve of change events. We used this data-driven technique in an attempt to choose a value

that eliminated most noisy changes and preserved most actual changes. Still, our results

are affected by this subjective choice to some degree.

We performed several preprocessing steps on the source code documents, such as split-

ting, stemming, stopping, and pruning. Although most research to date also performs some

combination of these steps before applying information retrieval models to source code (see

Section 2.4), there is currently no guidance or consensus on which steps are actually neces-

sary or beneficial for topic evolution models. (We note that in Chapter 8, we found that all

preprocessing steps add value.)

We performed a detailed manual analysis of the discovered topic evolutions. However,

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 169

as we were familiar with the details of the topic modeling techniques, it is possible that we

were unknowingly biased (overly harsh or overly generous) during evaluation. Our work

could be enhanced by also having outsiders to our study manually analyze the discovered

topic evolutions. Further, as only the first author performed the manual analysis, our work

can be enhanced by having additional people perform the analysis and comparing results.

External Validity. We have focused our in-depth analysis efforts on JHotDraw and jEdit,

due to their robust designs, extensive documentation, and manageable sizes. However, our

results may be dependent on these qualities and thus generalize poorly to systems with

worse designs. Furthermore, as both JHotDraw and jEdit are medium-sized open-source

systems, we cannot yet be sure if our results generalize well to small or large sized open-

source systems, or to any closed-source systems. We also cannot generalize our results with

any confidence to systems from different communities, such as databases or web browsers.

Additional case studies are needed to investigate these alternatives.

6.5 Conclusion

In this chapter, we performed a detailed investigation of the usefulness of an advanced

IR model, the Hall topic evolution model, for analyzing software evolution. We applied

the Hall topic evolution modeling technique to the history of the unstructured linguistic

data of the source code a software system and computed metrics on the discovered topics.

We found that most of these metric changes correspond well with actual software change

activities (87–89%), such as corrective evolution, internal improvements, and the addition

of new features. The change events that we found to be inaccurate or invalid were mostly

caused by noise in the probabilistic LDA model, although they did not occur often. Our

case studies on JHotDraw and jEdit support the notion that topic models are useful tools

for mining the unstructured source code data of a software system in order to uncover its

conceptual evolution.

There are many ways to extend this research. First, improved topic evolution models can

be used. We have found that some of the incorrectly discovered change events (i.e., spikes,

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 170

drops, and stays) in our technique are due to noise in the Hall model. Since LDA is a prob-

abilistic process based on sampling techniques, some randomness is inevitable when LDA

assigns topics to documents. This randomness is responsible for some false-alarm change

events. We believe that performing one or more smoothing operations on the discovered

evolutions may mitigate this issue, further improving the usefulness of our technique. In

addition, some of the incorrectly discovered change events are due to confounded topics,

i.e., those topics that try to represent more than one real-world concept. In future work we

wish to explore the possibility of automatically detecting and removing (or splitting) these

topics to further increase the accuracy of our technique.

Recently, a new topic evolution model, called the Diff model (Thomas et al., 2011),

has been developed specifically for source code histories. The Diff model is an extension

to the Hall model that applies LDA only to the changes of a document between successive

versions, as opposed to the full document of each version. The idea is that since source

code changes relatively infrequently, a given document is likely to be mostly similar to its

previous version. This similarity can bias the topics that LDA discovers by skewing the word

co-occurrence frequencies. The Diff model has been shown to provide modest to significant

improvement over the Hall model, in terms of topic distinctness, evolution accuracy, and

evolution sensitivity (Thomas et al., 2011).

A second avenue for future work is the improvement of the way in which we detect

change events. In this chapter, we used a simple technique to detect change events, namely

Equation 6.4, which is based on the δ threshold. In future work, we would like to explore

more advanced detection techniques, such as trend detection or time-series analysis. More

advanced techniques could help deal with noise in the LDA model and help detect slowly-

spiking or slowly-dropping topics.

Finally, we could consider additional metrics. In this thesis, we focused primarily on

the assignment and weight metrics, which give different views on the overall presence of

a topic in the source code. These metrics allowed us to perform our initial studies on

the correspondence between changes in topic metrics and change activity in source code.

However, additional metrics exist for topics, as outlined in Section 6.3.4. We hypothesize

CHAPTER 6. USING TOPIC EVOLUTION MODELS TO ANALYZE SOURCE CODE
EVOLUTION 171

that some of these metrics (or a combination of metrics) can be useful for automatically

determining the type of change activity to the source code. For example, a refactoring or

restructuring of the source code will likely result in a decreased scatter metric, while the

weight metric will mostly stay unchanged or increase.

Part IV

Understanding IR Model

Assumptions and Parameters

172

173

In Section 2.4, we found that researchers tend to use IR models as black boxes, without

fully understanding their assumptions and parameter sensitivities. In this part, we take

steps towards opening the black box to gain a better understanding of how IR models

should be applied to unstructured software repositories.

– Chapter 7: Addressing data duplication with the Diff model. The state-of-the-art topic

evolution model that has been used in previous software engineering research contains

the implicit assumption that each document will occur exactly once over time. However,

researchers either were not aware of this assumption, or have chosen to ignore it, because

source code repositories violate this assumption: most source code documents do not

change from version to version, resulting in many duplicates over time. In this chapter,

we find that this data duplication negatively affects the results of topic evolution models.

We propose the Diff model that alleviates this problem by removing all such duplication

before applying the topic evolution model. Through case studies on two open source

systems, JHotDraw and PostgreSQL, we compare the Diff model against the state-of-the-

art topic evolution model, one which software engineering researchers have used in the

past, and find our proposed Diff model produces more distinct topics and more accurate

topic evolutions.

– Chapter 8: Understanding the effects of data preprocessing and IR model param-

eters. Many researchers do not consider the effects of data preprocessing (e.g., split-

ting identifiers, word stemming, removing stop words) or IR model parameters (e.g.,

term weighting, similarity measures) on model performance. As a result, research is

inconsistent in the choices of preprocessing steps and parameter values, leaving future

researchers and practitioners in a state of flux. Worse, their particular choices are far

from ideal, resulting in decreased model performance. In this chapter, we embark in a

large empirical study in the context of bug localization to determine whether these de-

sign decisions matter, and if so, which particular choices are best. Through case studies

on three real-world systems, Eclipse, Mozilla, and IBM Jazz, we find definitively that the

174

preprocessing steps and IR model parameters are significantly important to bug local-

ization results, as the performances between difference choices can vary by an order of

magnitude. practices for making these design decisions.

CHAPTER 7

Addressing Data Duplication with the Diff Model

Studying the evolution of topics in a software system is an emerging technique to automatically
shed light on how the system is changing over time: which topics are becoming more actively
developed, which ones are dying down, or which topics are lately more error-prone and hence
require more testing. Existing techniques for modeling the evolution of topics in software systems
violate the implicit assumption of the underlying IR models that documents are unique across time.
To address this issue, we propose the Diff model, which applies a topic model only to the changes
of the documents in each version instead of to the whole document at each version. A comparative
study with a state-of-the-art topic evolution model shows that the Diff model can detect more distinct
topics as well as more sensitive and accurate topic evolutions, which are both useful for analyzing
source code histories.

Publications based on this chapter: Thomas et al. (2011)

7.1 Motivation

RECENT RESEARCH HAS found that topic evolution models are a valid and useful

way to automatically describe and monitor the changes to source code con-

cepts (Thomas et al., 2010b). Indeed, case studies have provided evidence in

this direction.

175

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 176

However, we maintain that topic evolution models (Section 2.2) were designed for cor-

pora in which the documents are unique across time. This is true, for example, for confer-

ence proceedings: it is not the case that an article one year is only slightly updated and re-

published the next year. Instead, each article (i.e., the specific combination of words within

an article) is unique across time. However, source code repositories are typically updated

incrementally, with each version making only small changes to the previous. Therefore,

we would expect to see significant overlap in the data (i.e., word co-occurrences) between

versions, especially when the systems have a long version history.

Consider, for example, two open source systems, 13 versions of JHotDraw (Gamma,

2012) and 46 versions PostgreSQL (PostgreSQL, 2012) (Table 7.1). We make two key

observations.

1. Most files are not altered between versions. On average, between 16% (PostgreSQL)

and 36% (JHotDraw) of the source code files experienced some change between versions,

measured by the number of files that had any change activity (i.e., lines added, removed,

or modified). In other words, on average at least 64% (JHotDraw) and up to 84% (Post-

greSQL) of the source code files are exact duplicates from release to release. These unal-

tered documents will obviously have the same word co-occurrences as their previous ver-

sions, since no changes were made.

2. Most changes are very small. For the average file that experienced a change between

versions, only 0.1% (both PostgreSQL and JHotDraw) of its words actually changed, mea-

sured as the number of changed words over the number of total words in the file. Almost

all of a file’s content remains unaltered, and hence the word co-occurrences will largely be

the same.

We hypothesize that the above observations affect the results obtained by the Hall

model. Recall that the Hall model applies LDA to all versions of all files. Since we know

that most files are not changed at all between versions, and even the files that are changed

are not changed by much, we can conclude that the word co-occurrences that LDA operates

on will be skewed in the direction of the duplicated files.

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 177

LDAdij

zk

ÇLM¶

(a) The Hall model applies
LDA to all versions at the
same time.

LDAdi1

zk1

Çi1

LDAdiv

zkv

Çiv

«

(b) The Link model applies LDA to each version separately,
then links the topics across versions.

/LM¶

LDA

zk

ÇLM¶

/LM¶

dLM¶

dij

diff

a

d

z¶k

Ç¶LM¶

post

(c) The Diff model adds a diff step to isolate the changes between versions
of each document and a post-processing step to reconstruct the membership
vectors. Here, dij′ , is the next version of dij .

Figure 7.1: A graphical depiction of the three topic evolution models.

a

b

c

a

b

d

a

b

c

a

b

c

a

b

c

a

b

c

a

b

d

a

b

d

a

b

d

a

b

d

Topic 1: a,b

LDA

Topic 1: a,b,c

Topic 2: a,b,d

LDA

Figure 7.2: On the left, a repository without duplication (2 unique files, 3 words each)
yields a preferable topic. On the right, a repository with duplication (2 files, 4 unchanged
versions each) yields confounded topics (should only be a single topic {a, b}).

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 178

Min. Med. Mean Max.

JHotDraw % files changed per version <0.1 33.8 35.9 89.5
% words changed per changed file <0.1 0.1 0.2 35.2

PostgreSQL % files changed per version <0.1 6.3 15.9 73.8
% words changed per changed file <0.1 0.1 0.2 17.7

Table 7.1: Change characteristics of JHotDraw and PostgreSQL.

7.2 Proposal

In order to address the data duplication effect found in source code histories, we propose

a simple but effective topic evolution model, the Diff model. The key idea is that the

Diff model prepends a diff step to the Hall model to isolate the changes between successive

versions of each document. This diff step effectively removes all duplication and leaves only

the changed portion of the document, hence ridding the corpus of the duplication effect.

The Diff model can be thought of as an extension to the Hall model, since the models are

largely the same. However, as we will show in this chapter, the diff step is critical when

applying topic evolution models to software repositories with duplication.

7.2.1 Diff Model Description

Figure 7.1c depicts the Diff model process. For each source code document dij in the system,

we first compute the edits between successive versions Vj and Vj′ (j′ = j + 1) using the

GNU diff file comparison tool (GNU, 2010). diff classifies each edit as an add or delete,

depending on whether the edit resulted in more or fewer lines of code, respectively. If an

existing line is modified, it is considered by diff to be deleted and then added again. For

each version of each document, we create two delta documents, δaij′ and δdij′ . We place all

the added lines between dij and dij′ into δaij′ and all the deleted lines into δdij′ . We use the

notation |δaij′ | to represent the number of words in δaij′ .

We must handle two special cases: 1) When we encounter a new document di at version

Vj (either because j = 1 or di is a new document), we classify the entire document as added

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 179

words, and thus we add the entire document to the delta document δaij; and 2) when a

document di is removed at version Vj , we classify the entire document as deleted words,

and thus add the entire document to the delta document δdij .

Next, we apply LDA to the entire set of delta documents, resulting in a set of extracted

topics and membership values for each delta document.

Finally, we post-process the output of LDA to compute the membership values of the

original documents at each point in time. The corresponding θdij vector of a document di
at version Vj is defined recursively as

θdij =
θdiĵ

∣∣∣diĵ∣∣∣+ θδaij
∣∣δaij∣∣∣∣∣diĵ∣∣∣+

∣∣δaij∣∣ − ϕ

θdiĵ
∣∣∣diĵ∣∣∣− θδdij ∣∣δdij∣∣∣∣∣diĵ∣∣∣− ∣∣δdij∣∣

 (7.1)

where ϕ() is the normalizing function and ĵ = j − 1 is the index of the previous version

of document di. ϕ() accounts for the scenario when more words matching a given topic

were subtracted than were in the previous version of the document for that topic (e.g.,

subtracting 20 words about topic A when the previous version only had 10 words about

topic A), which is unlikely but possible because LDA is a probabilistic process.

The intuition behind Equation 7.1 is that for each version of a document, we adjust the θ

vector by adding the lines of the δa document and subtracting the lines of the δd document,

thus arriving at a representative state of the document at each version. This cumulative

definition is necessary since we only model the changes at each version, but we want to

know the θ vector for the entire document at each version.

7.2.2 On The Origin of the Diff Model

The Diff model was originally motivated by our own experiences and struggles when apply-

ing the Hall model to source code histories. In a previous study, we applied the Hall model

to the source code history of JHotDraw to study its evolutions of topics (Thomas et al.,

2010b). At the time, the Hall model was the known standard for such a task, and we found

the results to be acceptable.

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 180

In a subsequent study, we applied the Hall model to a repository with significantly more

versions than JHotDraw, and hence, more duplication. Understanding the topic evolutions

in this case proved to be difficult, and we felt there was something wrong with the topics

and evolutions. After considerable investigation, we hypothesized the cause of the problem

to be the duplication effect, and the Diff model was created to address this issue.

We note that the Diff model can be viewed as an extension to the Hall model, for two

primary reasons. First, after the diff step, the Hall and Diff models perform equivalent

actions on the data. Second, when applied to a traditional corpus with no duplication (i.e.,

a history of conference proceedings), the diff step will have no effect—it will essentially be

a noop. Thus, as we will show, the Diff model improves the results of Hall on repositories

that have duplication; on all other repositories, the two models are equivalent.

7.3 Case Studies

We now perform an empirical evaluation of the Diff and Hall models. As was described

in Section 7.1, we hypothesize that when the Hall model is applied to a repository with

duplication, it will generate imperfect topics that confound multiple concepts. On the other

hand, the Diff model will create more distinct topics that stand on their own and thus allow

the documents to be described more naturally. In fact, producing distinct topics is known

to be a desirable property for topic models (Blei et al., 2010).

In addition, because the topics discovered by the Diff model are more distinct and bet-

ter describe the documents, we hypothesize that the resulting topic evolutions will more

accurately describe the changes to the repository.

We now formulate the research hypotheses that we focus on in our case study.

Hypothesis 1. The removal of data duplication will result in more distinct topics.

Hypothesis 2. More distinct topics will allow the discovery of more sensitive evolutions.

Hypothesis 3. More distinct topics will allow the discovery of more accurate evolutions.

We test our first two hypotheses by conducting an experiment on real-world open source

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 181

systems (Section 7.3.1), and we build a simulated system, whose properties are well-known,

to test our third hypothesis (Section 7.3.2).

7.3.1 Experiment 1: Evaluation on Real-World Systems

Our goal in this section is to determine whether there is a difference between the Hall and

Diff models in the distinctness of the discovered topics and the sensitivity of the discovered

topic evolutions.

Studied Systems

We applied both models to the source code histories of two open source systems: JHot-

Draw (Gamma, 2012) and PostgreSQL (PostgreSQL, 2012). JHotDraw is a medium-sized

drawing framework implemented in Java and has been the subject of many previous stud-

ies. PostgreSQL is a large database management system and is chosen due to its extensive

documentation.

Our JHotDraw dataset consists of 13 releases (versions 5.2.0–7.5.1). The latest release

contains 613 files totaling 84K source lines of code (SLOC). Our PostgreSQL dataset is

comprised of 46 release versions (versions 7.0.0–8.3.5). The latest release contains 844

files totaling 501K SLOC.

Study Setup

We preprocessed the source code of each system using the steps described in Section 2.2.

Namely, we isolated identifier names and comments from the source code, removed stop-

words, split identifiers, performed word stemming, and pruned the vocabulary so that

overly common (>80%) or overly rare (<2%) words are removed. For JHotDraw, the pre-

processing resulted in a total of 2.3M words (964 of which are unique) in 5,833 documents.

For PostgreSQL, the preprocessing resulted in 40M words (2,867 of which are unique) in

29,559 documents.

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 182

For the LDA computation, we used MALLET version 2.0.6 (McCallum, 2012). We ran

for 10,000 sampling iterations, the first 1,000 of which were used to optimize the α and β

parameters (Griffiths and Steyvers, 2004). We modeled JHotDraw with K = 45 topics and

PostgreSQL with K = 100 topics. We chose more topics for PostgreSQL because it has a

larger, more complex code base.

Evaluation Measures

A change event in a topic evolution is an increase (spike), decrease (drop), or no change in

a metric value (stay) between successive versions. We classify a change event as a spike or

drop if there is at least a 20% increase or decrease in metric value compared to the previous

version, and as a stay otherwise. Formally, for a metric m of topic zk at version Vi, the

change c = (m(zk, Vi)−m(zk, Vi−1))/m(zk, Vi−1) is classified as

Event(m, zk, Vi) =

spike if c ≥ 0.2, or if m(zk, Vi−1) = 0

and m(zk, Vi) > 0;

drop if c ≤ −0.2;

stay otherwise.

(7.2)

A distinct topic is one that stands on its own—it is not similar to any other discovered

topics. We define the topic distinctness of a topic zi as the mean KL divergence between

the word membership vectors of zi and zj , ∀j 6= i:

TD(φzi) =
1

K − 1

K∑
j=1,j 6=i

KL(φzi , φzj). (7.3)

A higher TD measure indicates that a topic is more distinct. We use the TD measure to test

Hypothesis 1.

We define the evolution sensitivity of an evolution E(zi) as the mean number of de-

tected spikes per version of the system:

ES(E(zi)) =
|{Detected spikes and drops in E(zk)}|

(v − 1)
. (7.4)

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 183

If a detected evolution has more spikes and drops, then we say it is more sensitive than

an evolution with fewer spikes and drops. We use the evolution sensitivity measure to

test Hypothesis 2. To ensure that the detected spikes are not false positives, we manually

investigate topic evolutions in a controlled environment in Section 7.3.2.

7.3.2 Experiment 2: Evaluation on Simulated Data

We now test Hypothesis 3 by quantifying the accuracy of each model when applied to source

code histories—whether each model is able to detect source code changes correctly and

completely. Hypothesis 2 concluded that the Diff model created more sensitive topic evolu-

tions, but it might be the case that the model is overly sensitive, discovering false-positive

change events. To investigate this possibility, we must assess the accuracy of the discovered

change events.

Since there is no public dataset for evaluating the accuracy of topic evolution models,

we perform a controlled experiment on a manually-created simulated software system. We

have created two simple scenarios with a representative variety of source code changes

so that we could exactly determine whether the evolutions extracted by the models were

accurate— that is, whether the change events detected by each model correspond to the

actual changes that we introduced in the source code (precision) and whether the detected

evolutions contained all the changes that we introduced in the source code (recall).

Data Generation

We built the simulated software system by starting with the backend.access (version 8.2.1)

subsystem of PostgreSQL. The backend.access subsystem contains 58 source code files and

8 subdirectories, and is responsible for implementing functionalities such as hash tables,

transactions, and NBTrees. We chose this subsystem due to its medium size and clear

functionality definitions.

We created two simulated scenarios as follows. First, we made ten duplicates of all 58

source code files in the backend.access to create ten (unchanged) versions of the package.

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 184

We called these versions (V1–V10) the baseline scenario.

The first scenario modifies the baseline scenario by introducing three documents from

the unrelated timezone subsystem at version V5, then removing all three documents at

version V6. Thus, there are 58 files in versions V1–V4, 61 files in version V5, and again 58

files in versions V6–V10. This scenario simulates two typical actions: the introduction of new

functionality and the removal of existing functionality.

The second scenario starts with the documents of the first scenario and makes the fol-

lowing two additions: 1) Eight documents from the unrelated ecpg subsystem were inserted

in versions V9 and V10. The first half of each document was inserted in version V9, while the

second half of each document was inserted at version V10. 2) Five documents from the un-

related backend.regex subsystem were inserted in version V1, they remained (unchanged)

in versions V2 and V3, and were removed at version V4.

Study Setup

We preprocessed the source code of each system under study using the steps described

in Section 2.2 in the same way as we did for the real-world systems (Section 7.3.1). For

Scenario 1, the preprocessing resulted in a total of 1.2M words (3,629 of which are unique)

in 583 documents. For Scenario 2, the preprocessing resulted in a total of 1.2M words

(3,666 of which are unique) in 614 documents.

For the actual LDA computation, we used the same setup as in Section 7.3.1, with the

exception that we modeled each simulated scenario using K = 20 topics.

Evaluation Measures

To quantify the accuracy of each model, we calculate precision and recall. The precision

of a model describes how many of the discovered change events were correct. We compute

the precision of an evolution E(zk) as

P (E(zk)) =
|{Correct events in E(zk)}|

|{All discovered events in E(zk)}| . (7.5)

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 185

Hall Diff p-value

JHotDraw Mean topic distinctness 3.72 4.43 <0.001
Spikes per version 9.58 15.17 <0.001

PostgreSQL Mean topic distinctness 2.56 3.64 <0.001
Spikes per version 2.58 4.49 <0.001

Table 7.2: Results of our case studies on JHotDraw and PostgreSQL.

Diff topic 63: acl role privileg mode oid grant owner roleid
Diff topic 40: stmt creat comment defel command defnam
Hall topic 68: oid stmt tupl comment owner rel creat acl list

Table 7.3: The “ACL” and “commands” topics from Diff, and the “ACL-commands” topic
from Hall. The words in Diff topic 63 are emphasized and the words in Diff topic 40 are
underlined in the Hall topic 68.

We are able to determine which discovered change events are correct since we have man-

ually created the changes in the simulated system. For example, we expect to see a spike at

version V5 in the evolution relating to the timezone subpackage, since we first added the

timezone documents at V5.

The recall of a model describes how many of the truth events were discovered by the

model. We compute the recall of an evolution E(zk) as

R(E(zk)) =
|{Correct events in E(zk)}|

|{Truth events}| . (7.6)

We are able to determine which truth events exist because we manually created the truth

events in the source code.

7.4 Results and Discussion

We now present the results of our two experiments.

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 186

0
5

1
0

2
0

3
0

Version Number

A
s
s
ig

n
m

e
n
t

1 2 3 4 5 6 7 8 9 10 11 12 13

l l l l

l l

l

l

l
l l l l

Diff

Hall

(a) Similar evolutions: the “menu icon” topic.

0
5

1
0

2
0

3
0

Version Number

A
s
s
ig

n
m

e
n
t

1 2 3 4 5 6 7 8 9 10 11 12 13

l l l l l

l l l

l l l

l l

Diff

Hall

(b) Dissimilar evolutions: the “color gradient” topic.

1
2

3
4

5

Version Number

A
s
s
ig

n
m

e
n
t

1 4 7 10 14 18 22 26 30 34 38 42 46

l

l

l

l l l l

l
l l l l l

l l l

l
l l l l l l

l l
l l l

l

l

l l l l l l l
l

l
l l

l l l l l

Diff

Hall

(c) Similar evolutions: the “multi xact” topic.

1
2

3
4

5
6

7
8

Version Number

A
s
s
ig

n
m

e
n
t

10 11 12 13 14 15

l l

l
l

l l

l l

l
l

l l

Diff: ACL

Diff: commands

Hall: ACL+commands

(d) Evolutions for the “ACL” and “commands” topics.

Figure 7.3: Sample topic evolutions from the case studies on JHotDraw ((a), (b)) and
PostgreSQL ((c), (d)). In all plots, the dashed black line (with circles as points) shows the
evolution discovered by the Hall model while the solid blue line (with crosses as points)
shows the evolution discovered by the Diff model.

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 187

7.4.1 Experiment 1: Real-World Systems

To illustrate the kind of evolutions that are discovered by the two models, Figures 7.3a–7.3c

show three discovered evolutions. Figures 7.3a and 7.3c show examples of evolutions that

were similar between the two models for JHotDraw and PostgreSQL, respectively. In these

cases, the topics themselves contained similar words and thus their evolutions followed

similar paths. Figure 7.3b shows example evolutions from JHotDraw that were different

between the two models, despite the topics being similar.

After computing our evaluation measures on the resulting topics and evolutions, we

make the following two observations.

Observation 1. The Diff model produces more distinct topics than the Hall model, support-

ing Hypothesis 1.

Table 7.2 shows the topic distinction measures for the two models for both JHotDraw

and PostgreSQL (Equation 7.3). In both systems, the Diff model produces significantly more

distinct topics, supporting our first research hypothesis.

To illustrate this, consider the following example from the case study on PostgreSQL.

The lockcmds.c document is responsible for taking a lock command from the user, checking

the access control list (ACL) to see if the user has permissions, and performing a lock on

a table if the user does have permissions. Thus, the document contains the concepts of

“commands” and “access control lists”. In the Diff model, this document is matched to two

topics: topic 63 (with membership .25), which describes access control lists, and topic 40

(with membership .58), which describes commands. Under the Hall model, lockcmds.c is

assigned to only one topic, topic 68 (with membership 0.93), which confounds the locking

and commands concepts into a single topic. Table 7.3 shows theses topics and highlights

the similarity between Hall’s topic 68 and the two Diff topics, 63 and 40. The Hall topic

68 is less distinct, with a topic distinctness of 2.49, compared to the relatively distinct Diff

topic distinctnesses of 3.46 (topic 40) and 3.49 (topic 63).

Observation 2. The Diff model is more sensitive to detecting changes in the data than the

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 188

Hall model, supporting Hypothesis 2.

Table 7.2 shows the results of evolution sensitivity for the two models for both JHot-

Draw and PostgreSQL, measured as the mean number of detected spikes per version (Equa-

tion 7.4). In both systems, the Diff model detects significantly more spikes than the Hall

model. This finding supports our second hypothesis and is in part a result of Observation

1: since the topics in the Diff model are more distinct, new documents will be matched to

more topics, and thus there will be more spikes in the evolution. On the other hand, the

Hall model finds less distinct topics (i.e., each topic has multiple concepts confounded),

and new documents will tend to be matched to fewer topics, resulting in fewer spikes in the

evolution.

To illustrate this difference, consider again the lockcmds.c file from PostgreSQL, which

was first added to the system at version V12 along with a group of similar files. Figure 7.3d

shows the evolutions produced by the Diff and Hall models that match the lockcmds.c file.

Under the Diff model, two topics received spikes between version V11 and V12, which were

the topics for ACLs and commands. Under the Hall model, however, only a single topic

received a spike, which was the confounded ACL and commands topic.

The Diff model produces more distinct topics and more sensitive topic evolutions.

7.4.2 Experiment 2: Simulated Data

Scenario 1 (Single Change): This scenario contains 10 unchanging versions of 58 docu-

ments, with the exception that three documents from the unrelated timezone subsystem

were inserted at version V5, and removed at version V6.

Expectations: We expect to see a spike in a timezone related topic at version 5, a drop at

version 6, and no change in assignment to any other topic at any other time.

Results: Figure 7.4a shows the discovered topic evolutions for the timezone related topics.

(Figure 7.5 shows the actual topics.) In this scenario, the Diff model creates a topic just for

these timezone documents—the evolution has a value of 0 at all versions except at version

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 189

0
1

2
3

4
5

Version Number

A
s
s
ig

n
m

e
n
t

1 2 3 4 5 6 7 8 9 10

l l l l

l

l l l l l

Diff

Hall

(a) The timezone topic evolutions in Scenario 1.

0
2

4
6

Version Number

A
s
s
ig

n
m

e
n
t

1 2 3 4 5 6 7 8 9 10

l l
l

l

l

l l l

l l

Diff

Hall

(b) The timezone topic evolutions in Scenario 2.

0
2

4
6

Version Number

A
s
s
ig

n
m

e
n
t

1 2 3 4 5 6 7 8 9 10

l l
l

l

l

l l l

l l

Diff

Hall

(c) The regex topic evolutions in Scenario 2.
0

2
4

6

Version Number

A
s
s
ig

n
m

e
n
t

1 2 3 4 5 6 7 8 9 10

l l
l

l

l

l l l

l l

Diff

Hall

(d) The ecpg topic evolutions in Scenario 2.

Figure 7.4: Sample topic evolutions for the simulated scenarios. In all plots, the dashed
black line (with circles as points) shows the evolution discovered by the Hall model, while
the solid blue line (with crosses as points) shows the evolution discovered by the Diff model.

V5, where it spikes to an assignment value of around 3.0, then drops again at version V6.

Indeed, all three of the timezone documents have high memberships in this topic, and

low memberships in all other topics. Likewise, no documents besides the three timezone

documents have a non-zero membership in this topic.

The Hall model, on the other hand, does not create a topic solely for the timezone

documents. Instead, the Hall model assigns the three timezone documents to an existing

topic that already had a non-zero assignment value from other, unrelated documents. This

topic spikes and drops at versions V5 and V6, respectively. In this case, we say that the

discovered evolution is incorrect, because the change events are discovered in a topic that

is not related to the timezone documents.

Table 7.4 lists the precision and recall measures for Scenario 1 across all topics. In this

scenario, there is only one truth spike and one truth drop. Since the Hall model found two

incorrect events and no correct events, it achieves a precision and recall measure of 0.0.

The Diff model, on the other hand, correctly discovered the truth spike and drop without

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 190

Hall model Diff model

Precision Recall Precision Recall

Scenario 1 (Single Change) Spikes 0.0 0.0 1.0 1.0
Drops 0.0 0.0 1.0 1.0

Scenario 2 (Multiple Changes) Spikes 0.60 1.0 0.75 1.0
Drops 0.66 1.0 0.66 1.0

Table 7.4: Precision and recall results of the experiments on the simulated data.

spurious events, achieving precision and recall values of 1.0. In all cases, the Diff model

achieves higher recall and precision measures, and Hypothesis 3 is supported.

Scenario 2 (Multiple Changes): This scenario is the same as Scenario 2 except that eight

documents from the ecpg subsystem are added at version V9 and five documents from the

backend.regex subsystem are present (and unchanging) in versions V1–V3.

Expectations: We expect to see a spike for the timezone related topic at version V5, fol-

lowed by a drop at version V6. We also expect to see a spike for the ecpg related topic at

version V9 and a drop in the backend.regex related topic at version V4.

Results: Figures 7.4b–7.4d show the discovered topic evolutions for the three subpackages

involved in the scenario. (Figure 7.5 shows the actual topics.) The Hall evolutions in the

three figures are actually showing the same topic, because only a single topic was created to

house the timezone, ecpg, and backend.regex related documents. While the three figures

show that the expected events were indeed discovered by the Hall method (i.e., a drop at

version V4, a spike and drop at version V5 and V6, and a spike at version V9), the topic itself

confounds three separate concepts and hence is not easy to interpret (further supporting

Hypothesis 1).

The Diff model, on the other hand, captured all three subpackages in their own distinct

topics, each having the expected change events.

Table 7.4 shows the precision and recall results. In this case, since the Hall model

created a new topic for the newly introduced documents, and captured all of the expected

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 191

change events correctly, we say that all of the evolutions in Figures 7.4b–7.4d are correct.

However, other topic evolutions discovered spurious change events, causing the precision

score to be less than 1. The Diff model also discovered a few spurious change events

(including the drop shown at version V4 in Figure 7.4d), and also receives a precision score

less than 1. Even still, Hypothesis 3 is supported because the Diff model outperforms the

Hall model.

The Diff model produces more accurate topic evolutions than the Hall model.

7.4.3 Further Evaluation of Accuracy

Our case studies on real-world systems have confirmed our first two hypotheses: the Diff

model results in more distinct, understandable topics, and it is more sensitive for detecting

the changes in a source code repository. Furthermore, our study on a simple, manually-

created simulated system provides support for our third hypothesis—that the Diff model

produces evolutions that are more accurate.

These initial results, based on mathematical metrics and simulated data, are encour-

aging. We plan to further test our hypotheses by conducting a user study to determine

the usefulness of the models for practitioners. We have already performed an initial user

study to this effect, where the first author blindly rated events (spikes and drops) in the

topic evolutions of JHotDraw and PostgreSQL against system documentation to determine

whether the events were justified (Thomas et al., 2010a). The results of this initial study

were positive, with precision scores of 92% for the Diff model, compared to 69% for the

Hall model. We are currently preparing a larger scale user study to confirm these findings.

7.4.4 Threats to Validity

Parameter Choices. During our studies, we had to choose values for several model param-

eters, including the number of topics (K); the delta threshold for classifying an event as a

spike or drop; the number of sampling iterations to run in LDA; and the pruning parameters

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 192

Scenario 1: Diff: Topic 7 (Label: seq search)
Words time year case continu const offset type rule hentri
Docs scheck.c, strftime.c, localtime.c

Scenario 1: Hall: Topic 17 (Label: normal transact)
Words transact clog xid accum entri statu subtran commit datum
Docs reloptions.c, transam.c, ginbulk.c

Scenario 2: Diff: Topic 2 (Label: offset posix section)
Words time case year continu type tmp offset const result
Docs scheck.c, strftime.c, localtime.c

Scenario 2: Hall: Topic 9 (Label: ecpglog ecpgget)
Words var case chr state struct break reg end assert
Docs scheck.c, strftime.c, localtime.c

Scenario 2: Diff: Topic 5 (Label: case sql)
Words case sqlca ecpg break connect ecpgt var lineno pval
Docs error.c, data.c, descriptor.c

Scenario 2: Diff: Topic 14 (Label: scan consist fine)
Words chr state reg assert end var struct begin subr
Docs regexec.c, regcomp.c, rege dfa.c

JHotDraw: Diff: Topic 6 (Label: icon icon)
Words icon descriptor bean properti event gen method color set
Docs JAttributeSliderBeanInfo, ODGPropertiesPanelBeanInfo, AbstractToolBarBeanInfo

JHotDraw: Diff: Topic 12 (Label: color color)
Words color gradient space index compon rgb model system min
Docs ColorSystem, HSLRGBColorSystem, HSLRYBColorSystem

JHotDraw: Hall: Topic 23 (Label: icon icon)
Words icon descriptor bean properti event gen method color set
Docs JAttributeTextArea, JDisclosureToolBar, JLifeFormattedTexArea

JHotDraw: Hall: Topic 5 (Label: stop color)
Words color gradient space paint focu fraction stop arrai linear
Docs LinearGradientPaintContext, GradientPaintContext, MultipleGradientPaint

JHotDraw: Hall: Topic 14 (Label: color chooser)
Words color compon slider index icon model space system rgb
Docs AbstractHarmonicRule, HSLRGBColorSystem, HSLRYBColorSystem

PostgreSQL: Diff: Topic 37 (Label: multi xact)
Words page multi xact clog share lock offset ctl xid
Docs slru.c, clog.c, varsup.c

PostgreSQL: Diff: Topic 63 (Label: acl acl)
Words acl role privileg priv mode oid user grant aclcheck
Docs acl.c, aclchk.c, superuser.c

PostgreSQL: Hall: Topic 5 (Label: arg lappend)
Words constraint stmt column list tabl attr index pstate type
Docs analyze.c, tablecmds.c, tupdesc.c

PostgreSQL: Hall: Topic 68 (Label: gettext noop)
Words guc gettext pgc val config conf variabl noop sourc
Docs guc.c, variable.c, guc-file.c

Figure 7.5: Selected topics. The figure contains the topic label, top words, and top matching
documents for selected topics from our case study.

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 193

for preprocessing the source code histories. Our choices are somewhat subjective, as there

is no standard way to determine optimal values. However, we used the same parameter

values in both the Hall and Diff models, providing an opportunity for an equal comparison.

Generality of Results. Although we studied two real-world systems from different do-

mains, of different sizes, and implemented in different programming languages, we cannot

necessarily generalize our results to all other systems. First, the systems we studied were

both open source, and therefore we cannot generalize our results to proprietary systems

developed in the industry. Second, both studied systems follow established variable nam-

ing schemes and often use descriptive comments where possible, which permit meaningful

topics to be discovered. In systems that do not follow standard naming schemes or have

consistent commenting practices, topic models might not be effective tools.

7.5 Conclusion

Topic evolution models have the potential to help software developers understand the his-

tories and trends of their software repositories in a new and deep way. However, traditional

topic evolution models were designed for versioned corpora whose documents are never

duplicated, such as conference proceedings and newspaper articles. We have found that

source code histories deviate from this norm: in some cases, 99% of the source code files

in a new version are unmodified copies from the previous version. This duplication effect

alters the results of topic models.

These characteristics of software repositories motivated us to propose a new topic evo-

lution model, which is a simple but powerful extension to the Hall model. Our model

operates only on the changes between versions of the repository, effectively eliminating the

duplication effect. We evaluated the Diff model through case studies on two real-world

software systems, JHotDraw and PostgreSQL, as well as a simulated software system that is

well-understood. We found that the Diff model produces significantly more distinct topics,

which are preferable to the confounded topics found by the Hall model. We also found that

the more distinct topics allowed more sensitive and accurate evolutions to be discovered,

CHAPTER 7. ADDRESSING DATA DUPLICATION WITH THE DIFF MODEL 194

which better model the changes in a source code history.

These encouraging results motivate us to consider additional case studies (simulated

and real) to confirm the results seen here, as well as evaluate the Diff model against the

Link model.

CHAPTER 8

Understanding the Effects of Data Preprocessing and IR Model

Parameters

Most research to date does not consider the effects of data preprocessing and IR model parameters
when mining unstructured software repositories. In this chapter, we perform a large-scale empirical
study that explicitly and carefully considers such effects. Using bug localization as our context, we
determine whether and how data preprocessing and IR model parameters affect the results of IR
models. Through case studies on Eclipse, IBM Jazz, and Mozilla, we find that the data preprocess-
ing and parameters of a IR model have a significant effect on bug localization performance, and
therefore practitioners and researchers must consider them carefully. In particular, we find that the
VSM model, compared to LSI and LDA, achieves the best top-20 performance; using both the bug
report’s title and description is best; using the source code’s identifiers, comments, and past bug
reports is best; and all three preprocessing steps (stopping, stemming, and splitting) each improve
performance. Finally, tf-idf weighting and cosine similarity are best for VSM.

Publications based on this chapter: Thomas et al. (2012d)

8.1 Motivation

WE RETURN TO the task of bug localization, defined in Section 5. In bug local-

ization, a classifier identifies a list of possibly-relevant source code entities,

given a bug report. A developer uses the list make the necessary modifica-

tions to the source code.

Current bug localization research uses IR classifiers to locate source code entities that

195

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 196

are textually similar to bug reports, based on the unstructured text fields in the bug report.

However, current results are ambiguous and contradictory: some claim that VSM provides

the best performance (Rao and Kak, 2011), while others claim that LDA is best (Lukins

et al., 2010), while still others claim that a new IR model is needed (Nguyen et al., 2011).

These mixed results are due to the use of different datasets, different performance metrics,

and different classifier configurations (see Table 8.1). (A classifier configuration is a specifi-

cation of all the parameters that define the behavior of the classifier, such as the the way in

which the source code is preprocessed, how terms are weighted, and the similarity metric

between bug reports and source code entities.) As a result, researchers and practitioners

have conflicting advice on how to best use IR models to localize bugs.

8.2 Proposal

In this chapter, we aim to resolve the ambiguity in current research results by performing a

large-scale empirical study to compare thousands of IR classifier configurations on a large

quantity of bug reports. By using the same datasets and performance metrics, we can

perform an apples-to-apples comparison of the various configurations, identifying (a) how

big of an impact configuration has on performance and (b) which particular configurations

are best.

In the next section, we propose a framework for defining and analyzing large sets of IR

classifier configurations. We note that this framework can also be used in a similar manner

to study the effects of classifier configurations on other software engineering tasks, such as

traceability linking, test case prioritization, and defect prediction.

8.3 Case Study

The goal of this case study is to evaluate the space of classifier configurations: which data

representations, preprocessing steps, and other IR model parameter values result in the best

bug localization performance?

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 197

Ta
bl

e
8.

1:
Su

m
m

ar
y

of
th

e
cl

as
si

fie
r

co
nfi

gu
ra

ti
on

s
us

ed
by

ex
is

ti
ng

bu
g

lo
ca

liz
at

io
n

w
or

k,
an

d
th

ei
r

pe
rf

or
m

an
ce

re
su

lt
s.

Q
ue

st
io

n
m

ar
ks

in
di

ca
te

th
at

th
e

pa
ra

m
et

er
s

w
er

e
no

t
sp

ec
ifi

ed
.

C
la

ss
ifi

er
co

nfi
gu

ra
ti

on
St

ud
ie

d
sy

st
em

s
Pe

rf
or

m
an

ce
m

et
ri

c
R

es
ul

ts
*

En
ti

ty
re

p.
B

ug
re

p.
Pr

ep
ro

ce
ss

IR
m

od
el

Lu
ki

ns
et

al
.

(2
01

0)

Id
en

ts
+

co
m

m
en

ts
Ti

tl
e

+
de

sc
r.

St
em

LD
A

(K
=

10
0,
α

=
50

/K
,β

=
0.

01
,i

te
rs

=
?,

Si
m

=
C

P)
M

oz
ill

a
M

ea
n

ra
nk

5.
8

R
hi

no
M

ea
n

ra
nk

1–
1,

06
2

Ec
lip

se
M

ea
n

ra
nk

49
2–

11
,2

34

N
gu

ye
n

et
al

.
(2

01
1)

Id
en

ts
+

co
m

m
en

ts
Ti

tl
e

+
de

sc
r.

Sp
lit

+
st

em
LD

A
(K

=
30

0,
α

=
0.

01
,β

=
0.

01
,i

te
rs

=
?,

Si
m

=
co

si
ne

)
Ja

zz
To

p-
20

0.
39

Ec
lip

se
To

p-
20

0.
33

A
sp

ec
tJ

To
p-

20
0.

28
A

rg
oU

M
L

To
p-

20
0.

34

B
ug

Sc
ou

t
(K

=
30

0,
α

=
0.

01
,β

=
0.

01
,i

te
rs

=
?,

Si
m

=
co

si
ne

)
Ja

zz
To

p-
20

0.
48

Ec
lip

se
To

p-
20

0.
39

A
sp

ec
tJ

To
p-

20
0.

51
A

rg
oU

M
L

To
p-

20
0.

45

R
ao

an
d

K
ak

(2
01

1)

Id
en

ts
??

Sp
lit

V
SM

(T
W

=
tf

-id
f,

Si
m

=
co

si
ne

)
A

sp
ec

tJ
M

A
P

0.
07

96

LS
I

(T
W

=
tf

-id
f,
K

=
50

0,
Si

m
=

co
si

ne
)

A
sp

ec
tJ

M
A

P
0.

06
50

LD
A

(K
=

15
0,
α

=
0.

33
,β

=
0.

01
,i

te
rs

=
?,

Si
m

=
K

L)
A

sp
ec

tJ
M

A
P

0.
01

25

*
W

e
pr

es
en

t
re

su
lt

s
to

th
e

be
st

of
ou

r
ab

ili
ty

.
So

m
e

pa
pe

rs
on

ly
pr

ov
id

e
re

su
lt

s
in

gr
ap

h
fo

rm
,f

or
ci

ng
us

to
es

ti
m

at
e

th
e

ex
ac

t
va

lu
e.

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 198

In this section we outline the design of our case study: which classifiers we test and

our evaluation procedure. We use the same datasets, systems under test, and performance

metrics as the case study in Chapter 5.

Classifiers Under Test

We build 1,368 IR-based classifiers based on the three popular IR models described in Sec-

tion 2.2: VSM, LSI, and LDA. For each IR model, we must decide which bug report rep-

resentation to use for the query, which source code entity representation we use to train

the IR model, how we preprocess the bug report and source code representation, and the

remaining parameter values for the particular IR model. Tables 5.1 and 5.2 show all the

parameters and their possible values that we consider, which we now describe in more

detail.

For source code entity represention, we consider six values. The first three are based

on the text of the source code entity itself: the identifier names (i.e., variable and method

names) only; comments only; and both identifiers and comments. As proposed by Nguyen

et al. (2011), we also consider the past bug reports (PBR) related to a source code entity.

To do so, we represent the source code entity as a collection of the text of all of its PBRs.

The idea is that a new bug report might be more textually similar to a past bug report, as

opposed to the identifier names or comments, of an entity, giving the IR model a better

chance for success. We consider two values: using all the PBRs of a entity; and using just

the 10 most recent PBRs of an entity. Finally, we consider all possible data for a entity: its

identifier, comments, and all PBRs.

For bug report (i.e., query) represention, we consider three values: the title of the bug

report only; the description of the bug report only; and both the title and description of the

bug report.

We consider three common preprocessing steps (Section 2.2): splitting compound words

based on common names schemes; removing stop words; and stemming. Since the appli-

cation of each preprocessing step is binary (i.e., is performed or is not performed), and

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 199

all three preprocessing steps can be applied independently, we test a total of 8 possible

preprocessing techniques.

The VSM model has two parameters: term weighting and similarity score. For term

weighting, we consider the tf-idf and sublinear tf-idf weighting schemes (Manning et al.,

2008), as well as the more basic Boolean weighting scheme (Manning et al., 2008). For

similarity score, we consider both the cosine and overlap similarity scores (Manning et al.,

2008).

The LSI model has three parameters: term weighting, similarity score, and number of

topics. We consider the same three term weighting schemes as we do for the VSM model.

We hold the similarity score constant at cosine, since research has shown this to be the best

similarity score for LSI (Manning et al., 2008). Finally, we consider four numbers of topics:

32, 64, 128, and 256.

The LDA model has five parameters: number of topics, a document-topic smoothing pa-

rameter, a topic-word smoothing parameter, number of sampling iterations, and similarity

score. We consider four numbers of topics: 32, 64, 128, and 256. The LDA implementation

we use, called MALLET (McCallum, 2012), automatically optimizes for the document-topic

and topic-word smoothing parameters, so we do not manually set values for these param-

eters. We also do not manually specify the number of iterations, and instead let the model

run until it has converged. Finally, we consider the conditional probability score, as it is

most relevant for IR applications (Wei and Croft, 2006). Conditional probability does not

require the bug reports to be included in the LDA model at run-time, which makes condi-

tional probability much more flexible. (In practice, re-running the LDA model on the source

code entities and the bug reports, for each and every new bug report, would be impractical.)

Fully Factorial Design To quantify the performance of all possible classifiers (given our

considered parameters and their possible values) we use a fully factorial design of our case

study (Kuehl, 2000). In this design, we explore every possible combination of parameter

values. In our case, a fully factorial design results in a total 3,168 IR-based classifiers (VSM:

864=(3 bug data)*(6 entity data)*(8 preprocessing)*(3 term weights)*(2 similarity); LDA:

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 200

576=(3 bug data)*(6 entity data)*(8 preprocessing)*(4 no. of topics); LSI: 1728=(3 bug

data)*(6 entity data)*(8 preprocessing)*(3 term weights)*(4 no. of topics)).

Analysis Method

We use two methods for analyzing the results of the classifiers. First, we sort the classifiers

by their top-20 metric (Section 5.3) in descending order, which indicates the top over-

all performing classifiers. Second, we use Tukey’s Honestly Significant Difference (HSD)

test (Tukey and Braun, 1994) to compare the performance of each value of each parameter.

The HSD test is a statistical test on the means of each parameter value—holding one param-

eter constant, and letting all other parameters vary. For a given parameter (e.g., “bug report

representation”), the HSD test compares the mean of each possible value with the mean of

every other possible value (e.g., “title only” vs. “description only” vs. “title+description”).

Using the studentized range distribution (Tukey, 1991), the HSD test determines whether

the differences between the means exceeds the expected standard error. The result of HSD

is a set of statistically-equivalent groups of parameter values. If two parameter values be-

long to the same group, then the performances of the parameter values are not statistically

different. Note that a parameter value can belong to multiple groups, and group member-

ships are not transitive: if parameter value A and parameter value B belong to the same

group, and parameter value B and parameter value C belong to the same group, value A

and value C do not necessarily belong to the same group.

8.4 Results and Discussion

From our analysis of 3,168 classifiers, each evaluated on 8,084 bug reports, we make the

following conclusions.

– Configuration matters: the difference between one classifier configuration and another is

often significant.

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 201

– The VSM classifier can achieve the best overall top-20 performance. LSI is second, and

LDA is last.

– Using both the bug report’s title and description results in the best overall performance,

for all IR models.

– Using the source code entities’ identifiers, comments, and past bug reports results in the

best overall performance, for all IR models.

– Stopping, stemming, and splitting all improve performance, for all IR models.

Table 8.2 shows the best and worst four configurations of each of the three IR classifi-

cation techniques (VSM, LSI, and LDA), for each of the three studied systems, ordered by

the top-20 metric. (We provide the full set of results for all configurations and additional

metrics online (Thomas, 2012).) For all three studied systems, the VSM classification tech-

nique achieves the best overall performance, consistent with previous findings (Rao and

Kak, 2011). The best configuration of VSM varies slightly from system to system, and many

configurations have comparable performance.

Table 8.3 shows the dispersion of the performance of the various configurations: the

worst, average, and best configuration performances for each of the three classification

techniques. We find that configuration matters: for all studied systems and all classifica-

tion techniques, the differences between the worst configuration and best configuration is

significant. The differences between the “average” configuration and the best configura-

tion is also significant: for example, in Eclipse, using the VSM classification technique, the

median top-20 performance is 21% (configuration VSM.A2.B2.C4.D1.E2), while the best

performance is 55% (configuration VSM.A3.B6.C7.D1.E1). This suggests that the choice of

bug report representation, entity representation, preprocessing steps, and IR model param-

eters has a large effect on the overall performance of a classifier, no matter the underlying

classification technique.

We now present the results of Tukey’s HSD statistical test on each parameter listed in

Tables 5.1 and 5.2.

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 202

Ta
bl

e
8.

2:
Th

e
be

st
fo

ur
an

d
w

or
st

fo
ur

co
nfi

gu
ra

ti
on

s,
fo

r
ea

ch
cl

as
si

fie
r

fa
m

ily
(V

SM
,L

SI
,L

D
A

,a
nd

EM
)

an
d

ea
ch

st
ud

ie
d

sy
st

em
.

Th
e

co
nfi

gu
ra

ti
on

s
ar

e
or

de
re

d
ac

co
rd

in
g

to
th

ei
r

to
p-

20
pe

rf
or

m
an

ce
.

V
SM

LS
I

LD
A

R
an

k
C

on
fig

.
To

p-
20

R
an

k
C

on
fig

.
To

p-
20

R
an

k
C

on
fig

.
To

p-
20

Ec
lip

se 1
V

SM
.A

3.
B

6.
C

7.
D

1.
E1

0.
54

8
1

L
SI

.A
3.

B
6.

C
4.

F2
.G

25
6

0.
46

2
1

L
D

A
.A

1.
B

4.
C

7.
J1

28
0.

29
0

2
V

SM
.A

3.
B

6.
C

4.
D

1.
E1

0.
53

5
2

L
SI

.A
3.

B
6.

C
7.

F2
.G

25
6

0.
44

4
2

L
D

A
.A

1.
B

4.
C

6.
J1

28
0.

29
0

3
V

SM
.A

3.
B

3.
C

7.
D

1.
E1

0.
52

4
3

L
SI

.A
3.

B
6.

C
1.

F2
.G

25
6

0.
43

8
3

L
D

A
.A

1.
B

5.
C

7.
J1

28
0.

28
2

4
V

SM
.A

3.
B

6.
C

5.
D

1.
E1

0.
51

2
4

L
SI

.A
3.

B
6.

C
2.

F2
.G

25
6

0.
43

4
4

L
D

A
.A

1.
B

5.
C

6.
J1

28
0.

28
2

86
1

V
SM

.A
2.

B
3.

C
0.

D
3.

E1
0.

01
2

17
25

L
SI

.A
2.

B
6.

C
0.

F1
.G

32
0.

06
5

57
3

L
D

A
.A

2.
B

3.
C

3.
J6

4
0.

00
9

86
2

V
SM

.A
2.

B
3.

C
0.

D
3.

E2
0.

01
2

17
26

L
SI

.A
2.

B
3.

C
3.

F1
.G

32
0.

06
1

57
4

L
D

A
.A

3.
B

6.
C

0.
J6

4
0.

00
9

86
3

V
SM

.A
2.

B
3.

C
1.

D
3.

E2
0.

01
1

17
27

L
SI

.A
3.

B
3.

C
0.

F1
.G

32
0.

05
6

57
5

L
D

A
.A

3.
B

3.
C

0.
J6

4
0.

00
8

86
4

V
SM

.A
2.

B
3.

C
1.

D
3.

E1
0.

01
1

17
28

L
SI

.A
2.

B
3.

C
0.

F1
.G

32
0.

04
4

57
6

L
D

A
.A

3.
B

6.
C

0.
J3

2
0.

00
7

Ja
zz

1
V

SM
.A

3.
B

6.
C

6.
D

1.
E1

0.
68

6
1

L
SI

.A
3.

B
6.

C
2.

F2
.G

25
6

0.
58

8
1

L
D

A
.A

3.
B

1.
C

7.
J2

56
0.

33
6

2
V

SM
.A

3.
B

6.
C

7.
D

1.
E1

0.
67

3
2

L
SI

.A
3.

B
6.

C
6.

F2
.G

25
6

0.
58

4
2

L
D

A
.A

3.
B

3.
C

7.
J2

56
0.

33
1

3
V

SM
.A

3.
B

6.
C

2.
D

1.
E1

0.
66

9
3

L
SI

.A
3.

B
6.

C
6.

F2
.G

12
8

0.
57

6
3

L
D

A
.A

3.
B

6.
C

7.
J2

56
0.

33
0

4
V

SM
.A

3.
B

6.
C

4.
D

1.
E1

0.
65

7
4

L
SI

.A
3.

B
6.

C
2.

F2
.G

12
8

0.
57

4
4

L
D

A
.A

1.
B

6.
C

7.
J2

56
0.

31
8

86
1

V
SM

.A
2.

B
6.

C
1.

D
3.

E2
0.

06
9

17
25

L
SI

.A
2.

B
3.

C
0.

F2
.G

32
0.

14
4

57
3

L
D

A
.A

2.
B

3.
C

0.
J6

4
0.

06
6

86
2

V
SM

.A
2.

B
6.

C
1.

D
3.

E1
0.

06
8

17
26

L
SI

.A
2.

B
3.

C
0.

F1
.G

64
0.

13
9

57
4

L
D

A
.A

2.
B

3.
C

0.
J2

56
0.

06
5

86
3

V
SM

.A
2.

B
6.

C
0.

D
3.

E2
0.

06
8

17
27

L
SI

.A
2.

B
3.

C
3.

F1
.G

32
0.

12
1

57
5

L
D

A
.A

2.
B

3.
C

3.
J3

2
0.

05
7

86
4

V
SM

.A
2.

B
6.

C
0.

D
3.

E1
0.

06
8

17
28

L
SI

.A
2.

B
3.

C
0.

F1
.G

32
0.

09
8

57
6

L
D

A
.A

2.
B

3.
C

0.
J3

2
0.

05
1

M
oz

ill
a 1

V
SM

.A
3.

B
6.

C
6.

D
1.

E1
0.

80
2

1
L

SI
.A

3.
B

3.
C

2.
F2

.G
12

8
0.

79
4

1
L

D
A

.A
3.

B
6.

C
7.

J1
28

0.
52

3
2

V
SM

.A
3.

B
6.

C
7.

D
1.

E1
0.

79
6

2
L

SI
.A

3.
B

3.
C

6.
F2

.G
12

8
0.

78
2

2
L

D
A

.A
3.

B
6.

C
7.

J2
56

0.
52

2
3

V
SM

.A
3.

B
6.

C
4.

D
1.

E1
0.

79
4

3
L

SI
.A

3.
B

3.
C

2.
F2

.G
25

6
0.

78
1

3
L

D
A

.A
3.

B
6.

C
4.

J2
56

0.
51

7
4

V
SM

.A
3.

B
6.

C
5.

D
1.

E1
0.

78
8

4
L

SI
.A

3.
B

6.
C

2.
F2

.G
12

8
0.

77
8

4
L

D
A

.A
3.

B
6.

C
7.

J6
4

0.
50

5
86

1
V

SM
.A

2.
B

2.
C

1.
D

3.
E2

0.
06

7
17

25
L

SI
.A

2.
B

4.
C

1.
F3

.G
32

0.
24

2
57

3
L

D
A

.A
1.

B
5.

C
4.

J2
56

0.
05

8
86

2
V

SM
.A

2.
B

2.
C

1.
D

3.
E1

0.
06

6
17

26
L

SI
.A

2.
B

4.
C

0.
F3

.G
32

0.
24

0
57

4
L

D
A

.A
1.

B
5.

C
2.

J2
56

0.
05

8
86

3
V

SM
.A

2.
B

2.
C

0.
D

3.
E2

0.
06

2
17

27
L

SI
.A

2.
B

4.
C

5.
F3

.G
32

0.
22

8
57

5
L

D
A

.A
1.

B
5.

C
7.

J2
56

0.
00

0
86

4
V

SM
.A

2.
B

2.
C

0.
D

3.
E1

0.
06

1
17

28
L

SI
.A

2.
B

4.
C

3.
F3

.G
32

0.
22

5
57

6
L

D
A

.A
1.

B
5.

C
6.

J2
56

0.
00

0

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 203

Table 8.3: Performance dispersion amongst classifier configurations, using the top-20 per-
formance metric.

Configs. Min. 1st Qu. Med. Mean 3rd Qu. Max.

Eclipse

VSM 864 0.011 0.083 0.209 0.211 0.321 0.548
LSI 1728 0.044 0.175 0.228 0.234 0.287 0.462
LDA 576 0.007 0.053 0.074 0.088 0.101 0.290

Jazz
VSM 864 0.068 0.214 0.322 0.325 0.430 0.686
LSI 1728 0.098 0.306 0.354 0.358 0.403 0.588
LDA 576 0.051 0.149 0.195 0.192 0.238 0.336

Mozilla
VSM 864 0.061 0.271 0.441 0.433 0.604 0.802
LSI 1728 0.225 0.441 0.536 0.537 0.647 0.794
LDA 576 0.000 0.228 0.322 0.318 0.418 0.523

Table 8.4: The results of Tukey’s HSD test for the bug report representation parameter, for
each IR classification technique and each studied system. If two values appear in the same
group, then their top-20 performances were not statistically different.

VSM LSI LDA

Group Mean Parameter value Group Mean Parameter value Group Mean Parameter value

Eclipse

a 0.238 A1 (title) a 0.259 A3 (title+descr.) a 0.131 A1 (title)
a 0.215 A3 (title+descr.) b 0.227 A1 (title) b 0.070 A3 (title+descr.)
b 0.180 A2 (descr.) b 0.217 A2 (descr.) b 0.062 A2 (descr.)

Jazz
a 0.354 A1 (title) a 0.399 A3 (title+descr.) a 0.214 A1 (title)
a 0.351 A3 (title+descr.) b 0.362 A1 (title) a 0.206 A3 (title+descr.)
b 0.270 A2 (descr.) c 0.314 A2 (descr.) b 0.158 A2 (descr.)

Mozilla
a 0.458 A1 (title) a 0.555 A3 (title+descr.) a 0.346 A1 (title)
ab 0.439 A3 (title+descr.) a 0.542 A1 (title) a 0.325 A3 (title+descr.)
b 0.402 A2 (descr.) b 0.515 A2 (descr.) b 0.282 A2 (descr.)

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 204

Bug Report Representation

Table 8.4 shows the HSD results for the bug report representation parameter. (We provide

the HSD results for the remaining parameters online (Thomas, 2012).) A2 (description)

always (i.e., for all three IR models and all three studied systems) belongs to the bottom

group and never belongs to the top group, meaning that A2 is always significantly worse

than at least one other value. A3 (title and description) almost always belongs to the top

group: in one instance (LDA model, Eclipse), A3 is in the second group. A1 (title) is similar

in that it is usually in the top group (2 exceptions: LSI model, Eclipse; and LSI model, Jazz).

Since both A1 and A3 include the title of the bug report, and A2 does not, we theorize that

including the title from the bug report representation is most important; whether you also

include the description is of secondary importance. This result is likely because the bug

descriptions introduce noise into the IR models, often because the descriptions include

stacktraces. Stacktraces have the names of several files and methods, which can lead the

IR model in the wrong direction. In contrast, the title is typically carefully constructed to

exactly summarize the problem.

Entity Representation

The best choice of source code entity representation differs between the studied systems.

In Mozilla and Jazz, B6 (all available data: identifiers, comments, and past bug reports)

belongs to the top group no matter the IR model. Therefore, in these studied systems, more

information is best. In addition, B4 (all past bug reports) and B5 (last 10 bug reports)

do not belong to the top group in any of the IR models, indicating that identifiers and

comments play a more important role in these studied systems.

In Eclipse, on the other hand, B4 and B5 belong to the top group for all three IR models.

B6 appears in the top group for VSM, and the second of two groups in LDA, and the second

of four groups for LSI. Therefore, in Eclipse, including past bug reports is most important;

including identifiers and/or comments is of secondary importance.

One possible explanation for the difference between studied systems is the number of

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 205

snapshots in our analysis. Our Eclipse dataset contains 16 snapshots, compared to the 8

and 10 of Jazz and Mozilla, respectively. Given the nature of our evaluation procedure,

any configuration using PBRs only will achieve low performance during the first snapshot

of the system, since by definition the source code entities haven’t yet been linked to any

past bug reports. The IR models are built on empty representations of the entities, and

bug localization is simply random. While this is true for all three studied systems, Eclipse

has more subsequent snapshots to mitigate the effects of the poor performance of the first

snapshot, since the top-20 metric is averaged across all snapshots.

Overall, we conclude that B6 (all) is the best: For Mozilla and Jazz, B6 is always in the

top group; in Eclipse, B6 is always in one of the top 2 groups. In addition, B6 is robust to

cases when there are no past bug reports to which to link the entities, since identifiers and

comments are also included.

Preprocessing Steps

C7 (stopping, stemming, and splitting) is in the top group for all studied systems and all

IR models; it is the only parameter value that is. C4 (split and stop) is almost always in

the top group (one exception: LDA, Jazz). C6 (stop and stem) is almost always in the top

group (two exceptions). C2 (stop) is in the top group in all but four cases. C1 (split) is

almost never in the top group; it is only twice. C3 (stem) is only in the top group once.

Finally, C0 (none) is always in the bottom group, never in the top group. We conclude that

performing all three preprocessing steps is most beneficial, and removing stop words is the

most important of the three steps.

IR Model Parameters

VSM parameters For VSM, tf-idf (D1) weighting is always (i.e., for each studied system

and each IR model) best, and sublinear tfi-df (D2) is always second best, and boolean (D3)

weighting is always last. Cosine similarity (E1) is always better than overlap similarity (E2).

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 206

LSI parameters For LSI, sublinear tf-idf (F2) is always best, tf-idf (F1) is always best or

second best, and Boolean (F3) is always last.

The best number of topics depends on the studied system. In Mozilla, 64 and 128 topics

are best. In Eclipse, 256 topics is best. In Jazz, 128 and 256 topics are best. These roughly

correlate with the number of LOC in each studied system, suggesting the the number of

topics should be selected based on the size of the studied system.

LDA parameters For LDA, it appears like more topics are better, but there are no signifi-

cant differences in any studied system between 64, 128, and 256 topics. Thirty-two topics,

however, is always significantly worst.

The configuration of a classifier matters. We find that the VSM classifier, compared
to LSI and LDA, achieves the best top-20 performance; using both the bug report’s
title and description is best; using the source code’s identifiers, comments, and
past bug reports is best; and all three preprocessing steps (stopping, stemming,
and splitting) improve performance. Finally, tf-idf weighting and cosine similarity
are best for VSM.

Discussion

No single classifier is best for all three studied systems. However, a configuration of the

VSM classifier has the best performance for all studied systems, suggesting that VSM is the

overall best classification technique for bug localization. For all studied systems, VSM > LSI

> LDA, when considering each technique’s best configuration.

Interestingly, for all studied systems, the LSI classification technique has the best worst

performance, often significantly so. In Mozilla, for example, the worst LSI configuration

has a performance of 23%, compared to VSM’s 6% and LDA’s 0%.

Mozilla is relatively easy compared to the other studied systems: the best top-20 for

Mozilla is 80%, compared to Jazz’s 69% and Eclipse’s 55%. We also note that Mozilla is the

smallest system, Jazz is the second smallest, and Eclipse is the largest.

In general, we find that more is better: take all the bug report data you can (A3); take

all the entity data you can (B6); and do all the preprocessing steps you can (C7). Each of

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 207

these parameter values had the best overall performance across the various IR models and

studied systems.

We stress that the configuration of a classifier has a significant impact on its results. The

difference between the best and worst configuration is huge; even small differences (e.g.,

deciding not to remove stop words) can result in large performance variations. Researchers

and practitioners should be careful when configuring their bug localization classifiers. Over-

all, we recommend the VSM.A3.B6.C7.D1.E1 classifier (VSM using the bug report title and

description, the source code entities’ identifiers, comments, and past bug reports, prepro-

cessed by splitting, stopping, and stemming, using tf-idf weighting, and using the cosine

similarity metric), for two reasons. First, it achieves the best performance in Eclipse and

the second best performance in Jazz and Mozilla. In addition, all the configuration settings

(i.e., A3, B6, C7, D1, and E1) were shown to be optimal by Tukey’s HSD statistical test.

8.4.1 Threats to Validity

This chapter shares potential threats to validity with Chapter 5, as the same datasets were

used and systems were studied.

8.5 Conclusion

Solving the bug localization task is difficult, due to the unstructured nature of bug reports,

but has major implications for developers, since it can dramatically reduce the time and

effort required to maintain software. In this chapter, we empirically investigated how sen-

sitive IR models are to data preprocessing and IR model parameters, i.e., the configuration

of an IR classifier.

We found that the configuration of a classifier has a significant impact on its perfor-

mance. In Eclipse, for example, the difference between a poorly configured IR classifier and

a properly configured IR classifier is the difference between having a 1 in 100 chance of

finding a relevant entity in the top 20 results and having better than a 1 in 2 chance. For-

tunately, we found consistent results of the various configurations across all three studied

CHAPTER 8. UNDERSTANDING THE EFFECTS OF DATA PREPROCESSING AND IR
MODEL PARAMETERS 208

systems, indicating that the proper configuration is not system specific.

We conclude with the following recommendations.

– The best IR-based classifier uses the Vector Space Model, trained with tf-idf term weight-

ing on all available data in the source code entities (i.e., identifiers, comments, and past

bug reports for each entity), which has been stopped, stemmed, and split, and queried

with all available data in the bug report (i.e., title and description) with cosine similarity.

– The best EM-based classifier uses the new bug count metric to rank source code entities.

By identifying which classifier configurations are best, our results have substantially

improved the state-of-the-art in bug localization. We conclude that even in the face of

unstructured text in bug reports and unstructured linguistic data in source code, IR models

can effectively localize bugs and reduce maintenance efforts and costs for developers.

The framework we used to define and analyze large sets of classifier configurations can

be re-used in other software engineering domains, allowing researchers to better under-

stand the effects of IR model configurations in those domains.

In future work, we wish to further validate our findings on additional high quality

datasets. We would like to investigate finer-grained snapshots, better bug-to-entity link-

ing algorithms, and training on methods rather than entire files. In addition, we wish to

build explanation systems into the bug localization process, i.e., tell users why certain enti-

ties are relevant for a given bug report. Finally, we wish to conduct user studies to quantify

how useful displaying related entities to the user will be in practice.

Part V

Epilogue

209

CHAPTER 9

Conclusion

The field of mining software repositories uses readily-available data to increase the pro-

ductivity of developers and reduce project costs. Using all available data, both structured

and unstructured, maximizes benefits. This thesis has shown how to advance the state-of-

the-art of using IR models to mine unstructured software repositories, by moving towards

three new paradigms: addressing new software engineering tasks; using advanced IR tech-

niques; and opening the black box of IR models to better understand their assumptions and

parameters.

Our overarching thesis is that the research and practice of using IR models to mine soft-

ware repositories can be improved by going beyond the current state-of-the-art. Through

empirical evaluations of our proposed techniques on real-world case studies, and through

comparisons with existing techniques whenever possible, this thesis has provided strong

evidence that software development practices can indeed be improved, providing support

for our thesis.

IR models are not the only way to mine software repositories, and this thesis does not

argue that existing methods should be removed or replaced. Rather, by using IR models

in concert with existing methods, a much larger percentage of available data can be har-

nessed. In addition, by moving towards new software engineering applications, advanced

210

CHAPTER 9. CONCLUSION 211

IR models, and a better understanding of IR models, researchers and practitioners can mine

more of their repositories to infer as much actionable knowledge as possible.

9.1 Main Contributions of Thesis

Our overall goal in this thesis was to enhance the state-of-the-art by addressing the short-

comings in current research that uses IR models to mine unstructured software repositories,

and to persuade future researchers and practitioners to follow our lead. We divide our spe-

cific contributions into three categories.

9.1.1 Applying IR Models to New Software Engineering Tasks

Proposing and evaluating a technique to help developers prioritize their test cases.

We used LDA to determine the similarity between test cases, based on their underlying lin-

guistic content. By prioritizing those test cases which were most dissimilar, we ensured that

different parts of the system were being tested and that distinct faults would be detected.

Our novel IR-based technique improved fault detection rates by up to 31% compared to

state-of-the-art coverage-based techniques.

Proposing and evaluating a technique to analyze the interaction of source code and

mailing lists. We used LDA to identify topics that were shared between the source code

and the mailing list, and analyzed the behavior of those topics over time. Specifically, we

defined four possible life cycles states that a topic can be in at any given time (inactive,

discussion, implementation, and active) and identified and quantified patterns over time.

Our results, the first of their kind, may be used as a first step towards software explanation,

guiding documentation and training efforts, and monitoring project status.

9.1.2 Using Advanced IR Techniques on Software Repositories

Proposing and evaluating a framework for combining the results of disparate IR mod-

els. Within the context of bug localization, our framework can combine the results of any

CHAPTER 9. CONCLUSION 212

IR model. We evaluated two different combination strategies: one based on the relevancy

score of a document in the result set, and one based on the rank of a document in the result

set. We found that the rank provides better performance that the relevancy score. Further,

based on two experiments of combining individual models, we found that combining results

almost always achieves better performance than the best individual model. Our framework

can be used to significantly enhance bug localization performance.

Describing and evaluating an advanced IR technique to analyze source code histories.

Using the Hall topic evolution model applied jointly to the linguistic data in several versions

of source code, we approximated the conceptual evolution of the source code. We manually

analyzed the resulting topic evolutions, comparing them with system release notes and

commit messages, and determined that the evolutions correspond well (87–89%) with the

actual changes to source code. Our results demonstrate the benefit of applying advanced

IR models to unstructured software repositories.

9.1.3 Going Beyond the Black Box

Proposing and evaluating a technique that overcomes the data duplication problem

in large source code histories. When versions of a repository are mostly identical, as is

the case with source code versions, the assumptions made by off-the-shelf topic evolution

models no longer hold. We proposed the Diff model to account for data duplication by

removing any redundancy from the versions before applying a topic evolution model. Case

studies found that the Diff model can infer more distinct topics as well as more sensitive and

accurate topic evolutions, which are both useful for analyzing large source code histories.

Analyzing the sensitivity of IR models to data preprocessing and IR model parameters.

We performed a large-scale empirical study to analyze the effects of data preprocessing and

IR model parameters in the context of bug localization. We found that both matter greatly: a

“good” IR model configuration can be 2–50 times more effective than a “bad” configuration.

We also found that the VSM model achieves the best performance; both the bug report’s title

and description are useful; using all source code linguistic data and past bug history is best;

CHAPTER 9. CONCLUSION 213

and that stopping, stemming, and splitting identifiers results in the best performance.

9.2 Future Research Opportunities

The promising results presented in this thesis can be extended in several exciting ways.

Underused Repositories In Chapter 3, we showed that applying an IR model to a previously-

unused repository, in this case a test suite, yielded new capabilities for developers. There

remain several other software repositories that require more attention. For example, email

archives, execution logs, and bug reports have rarely been studied, even though they are

rich with information about a software system.

Underexplored Software Engineering Tasks Bug prediction, searching collections of

software systems, and measuring the evolutionary trends of repositories are all underex-

plored tasks in the literature. In addition, traceability links are typically established between

requirements documents and source code, although it would be also be useful to find links

between other repositories, such as emails and source code, and between source code docu-

ments themselves. We have taken a first step towards establishing links between email and

source code in Chapter 4, but additional work is required to provide clean, high-accuracy

links, and to fully understand their interaction.

Additional IR Models The variants of LDA listed in Section 2.2 have promising features

that may directly improve the results of several software engineering tasks. For exam-

ple, the correlated topic model, which models dependencies between topics, may allow

sets of dependent topics in need of refactoring to be found in the source code. Addition-

ally, the cross-collection topic model might allow similar topics to be discovered from the

source code of related systems, such as Mozilla Firefox and Google Chrome. In addition,

lightweight models such as BM25 or BM25F may be useful for bug localization or test case

prioritization.

CHAPTER 9. CONCLUSION 214

Data Preprocessing and IR Model Parameters Now that we have shown the importance

of data preprocessing and IR models parameters, previous studies from the literature can

be performed again using our findings as a guideline.

Additional Preprocessing Steps In Chapter 8, we investigated three popular preprocess-

ing steps: identifier splitting, stop word removal, and word stemming. A preprocessing step

that is currently less popular, but may also provide benefits, is query expansion (Carpineto

and Romano, 2012), i.e., automatically fixing spelling errors, finding synonyms, or using

or WordNet (Miller, 1995) to find related concepts and themes. Query expansion can be

applied, for example, to our bug localization dataset to reduce noise in the bug reports,

and to help expand short or vague bug reports to provide more context. In addition, most

preprocessing steps treat all words as equals, independent of their context. Considering

context might allow the opportunity to give higher weights to important terms, technical

terms, or system-specific terms. For example, it may be fruitful for the preprocessor to

determine whether a bug report has an embedded code snippet and use this context to

preserve identifier names in their entirety, so as to maximize the chance of linking the bug

report to relevant source code entities that contain the same identifier names.

User Studies We have implemented research prototypes to evaluate our ideas throughout

this thesis. With more sophisticated implementations, user studies can be conducted in the

hands of practitioners to learn even more about how IR models can be useful in practice,

and help guide future research in this area.

Treating Software as Natural Language Recent work by Hindle et al. (2012) has com-

pared source code to natural language: both are created by humans, and while any given

instance of either could theoretically be very complex, most of the time the instances are

quite simple. The authors show that source code is indeed “natural”, in that it is highly

repetitive and predictable. As a consequence, models that deal with source code text, such

as the ones presented in this thesis, can use this fact to construct more intelligent models.

Bibliography

B. Adams, Z. M. Jiang, and A. E. Hassan. Identifying crosscutting concerns using historical
code changes. In Proceedings of the 32nd International Conference on Software Engineering,
pages 305–314, 2010. [93]

S. N. Ahsan, J. Ferzund, and F. Wotawa. Automatic software bug triage system (BTS) based
on Latent Semantic Indexing and Support Vector Machine. In Proceedings of the 4th
International Conference on Software Engineering Advances, pages 216–221, 2009. [40,
43, 50, 52]

S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A systematic review of
the application and empirical investigation of search-based test case generation. IEEE
Transactions on Software Engineering, 36(6):742–762, 2009. [57]

D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu. Statistical debugging using latent topic
models. In Proceedings of the 18th European Conference on Machine Learning, pages 6–17,
2007. [36, 47, 50, 52]

G. Anthes. Topic models vs. unstructured data. Communications of the ACM, 53:16–18, Dec.
2010. [19]

G. Antoniol, J. H. Hayes, Y. G. Gueheneuc, and M. Di Penta. Reuse or rewrite: Combining
textual, static, and dynamic analyses to assess the cost of keeping a system up-to-date. In
Proceedings of the 24th International Conference on Software Maintenance, pages 147–156,
2008. [5, 33, 50, 52]

Apache Foundation. HTTP Server. Accessed Aug. 8, 2012, 2012a. http://httpd.apache.
org. [100]

Apache Foundation. Ant. Accessed Aug. 8, 2012, 2012b. http://ant.apache.org. [70]

Apache Foundation. Apache. Accessed Aug. 8, 2012, 2012c. http://www.apache.org.
[70]

Apache Foundation. Derby. Accessed Aug. 8, 2012, 2012d. http://db.apache.org/derby.
[70]

215

http://httpd.apache.org
http://httpd.apache.org
http://ant.apache.org
http://www.apache.org
http://db.apache.org/derby

BIBLIOGRAPHY 216

A. Arcuri and L. Briand. A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In Proceedings of the 33rd International Conference
on Software Engineering, pages 1–10, 2011. [74]

H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability with topic modeling.
In Proceedings of the 32nd International Conference on Software Engineering, pages 95–
104, 2010. [5, 34, 50, 52]

A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes. Benchmarking lightweight techniques
to link e-mails and source code. In Proceedings of the 16th Working Conference on Reverse
Engineering, pages 205–214, 2009. [93]

A. Bacchelli, M. Lanza, and V. Humpa. RTFM (Read The Factual Mails)-Augmenting pro-
gram comprehension with Remail. In Proceedings of the 15th European Conference on
Software Maintenance and Reengineering, pages 15–24, 2011. [112]

A. Bachmann, C. Bird, F. Rahman, P. T. Devanbu, and A. Bernstein. The missing links:
Bugs and bug-fix commits. In Proceedings of the 18th International Symposium on the
Foundations of Software Engineering, pages 97–106, 2010. [135]

R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval, volume 463. ACM press
New York, 1999. [20]

S. Bajracharya and C. Lopes. Mining search topics from a code search engine usage log. In
Proceedings of the 6th International Working Conference on Mining Software Repositories,
pages 111–120, 2009. [40, 44, 50, 52]

S. K. Bajracharya and C. V. Lopes. Analyzing and mining a code search engine usage log.
Empirical Software Engineering, pages 1–43, Sept. 2010. [5, 40, 44, 50, 52]

P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya. A theory of aspects as latent
topics. ACM SIGPLAN Notices, 43(10):543–562, 2008. [30, 43, 50, 52, 144, 145, 146,
168]

K. Barnard, P. Duygulu, D. Forsyth, N. De Freitas, D. M. Blei, and M. I. Jordan. Matching
words and pictures. The Journal of Machine Learning Research, 3:1107–1135, 2003. [5]

D. J. Bartholomew. Latent variable models and factors analysis. Oxford University Press, Inc.,
New York, NY, USA, 1987. [23]

G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto. A two-step technique for extract class
refactoring. In Proceedings of the 25th International Conference on Automated Software
Engineering, pages 151–154, 2010. [5, 35, 50, 52]

O. Baysal and A. J. Malton. Correlating social interactions to release history during software
evolution. In Proceedings of the 4th International Workshop on Mining Software Reposito-
ries, 2007. [93]

BIBLIOGRAPHY 217

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation of
clone detection tools. IEEE Transactions on Software Engineering, pages 577–591, 2007.
[40]

B. Berliner. CVS II: Parallelizing software development. In Proceedings of the USENIX Winter
1990 Technical Conference, volume 341, page 352, 1990. [12]

N. Bettenburg and B. Adams. Workshop on Mining Unstructured Data (MUD) because
“Mining Unstructured Data is like fishing in muddy waters”! In Proceedings of the 17th
Working Conference on Reverse Engineering, pages 277–278, 2010. [13]

N. Bettenburg, E. Shihab, and A. E. Hassan. An empirical study on the risks of using off-the-
shelf techniques for processing mailing list data. In Proceedings of the 25th International
Conference on Software Maintenance, 2009. [12, 96, 113]

D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella. Tool-supported refactoring
of existing object-oriented code into aspects. IEEE Transactions on Software Engineering,
pages 698–717, 2006. [141]

C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. Devanbu. Fair
and balanced?: Bias in bug-fix datasets. In Proceedings of the 7th European Software
Engineering Conference and the Symposium on the Foundations of Software Engineering,
pages 121–130, 2009a. [135]

C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. Germn, and P. T. Devanbu. The
promises and perils of mining Git. In Proceedings of the 6th Working Conference on Mining
Software Repositories, pages 1–10, 2009b. [12]

C. M. Bishop. Latent variable models. Learning in graphical models, 1998. [23]

D. M. Blei and J. D. Lafferty. Dynamic topic models. In Proceedings of the 23rd international
conference on Machine learning, pages 113–120. ACM, 2006. [24]

D. M. Blei and J. D. Lafferty. Topic models. In Text Mining: Classification, Clustering, and
Applications, pages 71–94. Chapman & Hall, London, UK, 2009. [4, 19, 22, 67, 112]

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003. [4, 5, 19, 22, 23, 72]

D. M. Blei, T. L. Griffiths, and M. I. Jordan. The nested chinese restaurant process and
bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2):1–30,
2010. [180]

R. Blumberg and S. Atre. The problem with unstructured data. DM Review, 13:42–49, 2003.
[4]

BIBLIOGRAPHY 218

J. C. Bose and U. Suresh. Root cause analysis using sequence alignment and Latent Semantic
Indexing. In Proceedings of the 19th Australian Conference on Software Engineering, pages
367–376, 2008. [36, 50, 52]

A. W. J. Bradley and G. C. Murphy. Supporting software history exploration. In Proceedings
of the 8th Working Conference on Mining Software Repositories, pages 193–202, 2011.
[138]

G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella. Traceability recov-
ery using numerical analysis. In Proceedings of the 16th Working Conference on Reverse
Engineering, pages 195–204, 2009. [34, 50, 52]

C. Carpineto and G. Romano. A survey of automatic query expansion in information re-
trieval. ACM Computing Surveys, 44(1):1–50, Jan. 2012. [136, 214]

J. Chang. lda: Collapsed Gibbs sampling methods for topic models. Accessed Aug. 8, 2012,
2012. http://cran.r-project.org/web/packages/lda. [72]

J. Chang and D. M. Blei. Relational topic models for document networks. Proceedings of the
12th International Conference on Artificial Intelligence and Statistics, pages 81–88, 2009.
[136]

S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng. Using semi-supervised clustering to improve
regression test selection techniques. In Proceedings of the 4th International Conference on
Software Testing, Verification and Validation, pages 1–10, 2011. [58]

B. Cleary, C. Exton, J. Buckley, and M. English. An empirical analysis of information re-
trieval based concept location techniques in software comprehension. Empirical Software
Engineering, 14(1):93–130, 2008. [5, 29, 50, 52]

P. Comon. Independent component analysis, a new concept? Signal processing, 36(3):
287–314, 1994. [21]

J. R. Cordy. The TXL source transformation language. Science of Computer Programming,
61(3):190–210, 2006. [69]

G. V. Cormack, C. L. Clarke, and S. Buettcher. Reciprocal Rank Fusion outperforms Con-
dorcet and individual rank learning methods. In Proceedings of the 32nd International
Conference on Research and Development in Information Retrieval, pages 758–759, 2009.
[119, 136]

T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley and sons, 2006.
[152]

V. Dallmeier and T. Zimmermann. Extraction of bug localization benchmarks from history.
In Proceedings of the 22nd International Conference on Automated Software Engineering,
pages 433–436, 2007. [34]

http://cran.r-project.org/web/packages/lda

BIBLIOGRAPHY 219

M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect prediction approaches: A bench-
mark and an extensive comparison. Empirical Software Engineering, 17(4), 2012. [122]

B. de Alwis and G. C. Murphy. Answering conceptual queries with Ferret. In Proceedings of
the 30th International Conference on Software Engineering, pages 21–30, 2008. [138]

R. C. de Boer and H. van Vliet. Architectural knowledge discovery with Latent Semantic
Analysis: constructing a reading guide for software product audits. Journal of Systems
and Software, 81(9):1456–1469, 2008. [5, 32, 44, 50, 52]

A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing an artefact management sys-
tem with traceability recovery features. In Proceedings of the 20th International Conference
on Software Maintenance, pages 306–315, 2004. [5, 31, 50, 52]

A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Can information retrieval techniques
effectively support traceability link recovery? In Proceedings of the 14th International
Conference on Program Comprehension, pages 307–316, 2006. [31, 50, 52]

A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability links in software
artifact management systems using information retrieval methods. ACM Transactions on
Software Engineering and Methodology, 16(4), 2007. [5, 32, 50, 52]

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by
Latent Semantic Analysis. Journal of the American Society for Information Science, 41(6):
391–407, 1990. [5, 20]

B. Dit, D. Poshyvanyk, and A. Marcus. Measuring the semantic similarity of comments in
bug reports. In Proceedings 1st International Workshop on Semantic Technologies in System
Maintenance, 2008. [40, 44, 50, 52]

H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Software Engineering,
10(4):405–435, 2005. [70, 71, 88]

Eclipse Foundation. Eclipse. Accessed Aug. 8, 2012, 2011. http://www.eclipse.org.
[123]

Edgewall Software. The Trac project. Accessed Aug. 8, 2012, 2012. http://trac.

edgewall.org. [12]

S. Elbaum, A. Malishevsky, and G. Rothermel. Test case prioritization: A family of empirical
studies. IEEE Transactions on Software Engineering, 28(2):159–182, 2002. [58, 62, 72,
79]

L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional, 2(3):17–23,
2000. [3]

http://www.eclipse.org
http://trac.edgewall.org
http://trac.edgewall.org

BIBLIOGRAPHY 220

R. Feldt, R. Torkar, T. Gorschek, and W. Afzal. Searching for cognitively diverse tests:
Towards universal test diversity metrics. In Proceedings of the International Conference on
Software Testing Verification and Validation Workshop, pages 178–186, 2008. [62]

M. Fowler and K. Scott. UML distilled: A brief guide to the standard object modeling lan-
guage. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000. ISBN
020165783X. [13]

T. Fritz and G. C. Murphy. Using information fragments to answer the questions developers
ask. In Proceedings of the 32nd International Conference on Software Engineering, pages
175–184, 2010. [138]

C. S. Gall, S. Lukins, L. Etzkorn, S. Gholston, P. Farrington, D. Utley, J. Fortune, and S. Vi-
rani. Semantic software metrics computed from natural language design specifications.
Software, IET, 2(1):17–26, 2008. [5, 35, 50, 52]

E. Gamma. JHotDraw. Accessed Aug. 8, 2012, 2012. http://www.jhotdraw.org. [23,
141, 176, 181]

Geeknet. SourceForge. Accessed Aug. 8, 2012, 2012. http://sourceforge.net. [13]

M. Gethers and D. Poshyvanyk. Using relational topic models to capture coupling among
classes in object-oriented software systems. In Proceedings of the 26th International Con-
ference on Software Maintenance, pages 1–10, 2010. [5, 36, 50, 52]

R. L. Glass. Facts and fallacies of software engineering. Addison-Wesley Professional, 2003.
[3]

GNU. Diffutils. Accessed Aug. 8, 2012, 2010. http://www.gnu.org/software/diffutils.
[178]

M. W. Godfrey, A. E. Hassan, J. Herbsleb, G. C. Murphy, M. Robillard, P. Devanbu,
A. Mockus, D. E. Perry, and D. Notkin. Future of mining software archives: A roundtable.
IEEE Software, 26(1):67–70, 2008. [3, 10, 11]

Google. Google code. Accessed Aug. 8, 2012, 2012. http://code.google.com. [13]

S. Grant and J. R. Cordy. Vector space analysis of software clones. In Proceedings of the 17th
International Conference on Program Comprehension, pages 233–237, 2009. [21, 40, 44,
50, 52]

S. Grant and J. R. Cordy. Estimating the optimal number of latent concepts in source
code analysis. In Proceedings of the 10th International Working Conference on Source Code
Analysis and Manipulation, pages 65–74, 2010. [41, 44, 50, 52, 89]

S. Grant, J. R. Cordy, and D. Skillicorn. Automated concept location using independent
component analysis. In Proceedings of the 15th Working Conference on Reverse Engineering,
pages 138–142, 2008. [5, 29, 50, 52]

http://www.jhotdraw.org
http://sourceforge.net
http://www.gnu.org/software/diffutils
http://code.google.com

BIBLIOGRAPHY 221

T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National Academy
of Sciences, 101:5228–5235, 2004. [23, 89, 101, 142, 182]

T. L. Griffiths, M. Steyvers, and J. B. Tenenbaum. Topics in semantic representation. Psy-
chological Review, 114(2):211–244, 2007. [4, 5, 72]

S. Grimes. Unstructured data and the 80 percent rule. Clarabridge Bridgepoints, 2008. [4]

D. Hall, D. Jurafsky, and C. D. Manning. Studying the history of ideas using topic models. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages
363–371. ACL, 2008. [24]

A. E. Hassan. Mining Software Repositories to Assist Developers and Support Managers. PhD
thesis, University of Waterloo, Waterloo, ON, Canada, 2004. [10]

A. E. Hassan. The road ahead for mining software repositories. In Frontiers of Software
Maintenance, pages 48–57, 2008. [3, 4, 10, 11]

A. E. Hassan. Predicting faults using the complexity of code changes. In Proceedings of the
31st International Conference on Software Engineering, pages 78–88, 2009. [3]

A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault prediction. In Proceedings of
the 21st International Conference on Software Maintenance, pages 263–272, 2005. [10]

A. E. Hassan and T. Xie. Software intelligence: The future of mining software engineering
data. In Proceedings of the FSE/SDP workshop on Future of Software Engineering Research,
pages 161–166, 2010. [11]

J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing candidate link generation for
requirements tracing: The study of methods. IEEE Transactions on Software Engineering,
pages 4–19, 2006. [5, 32, 50, 52]

H. Hemmati, A. Arcuri, and L. Briand. Reducing the cost of model-based testing through
test case diversity. In Proceedings of the 22nd International Conference on Testing Software
and Systems, pages 63–78, 2010a. [60, 62, 63, 64]

H. Hemmati, L. Briand, A. Arcuri, and S. Ali. An enhanced test case selection approach for
model-based testing: An industrial case study. In Proceedings of the 18th International
Symposium on Foundations of Software Engineering, pages 267–276, 2010b. [59, 62, 63,
64]

H. Hemmati, A. Arcuri, and L. Briand. Empirical investigation of the effects of test suite
properties on similarity-based test case selection. In Proceedings of the 4th International
Conference on Software Testing, Verification and Validation, pages 327–336, 2011. [59]

H. Hemmati, L. Briand, and A. Arcuri. Achieving scalable model-based testing through test
case diversity. ACM Transactions on Software Engineering and Methodology, to appear in
22(1), 2012. [58, 62, 63, 83]

BIBLIOGRAPHY 222

A. Hindle, M. W. Godfrey, and R. C. Holt. What’s hot and what’s not: Windowed developer
topic analysis. In Proceedings of the 25th International Conference on Software Mainte-
nance, pages 339–348, 2009. [25, 38, 50, 52]

A. Hindle, M. W. Godfrey, and R. C. Holt. Software process recovery using recovered unified
process views. In Proceedings of the 26th International Conference on Software Mainte-
nance, pages 1–10, 2010. [38, 50, 52]

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu. On the naturalness of software. In
Proceedings of the 34th International Conference on Software Engineering, pages 837–847,
2012. [214]

T. Ho, J. Hull, and S. Srihari. Decision combination in multiple classifier systems. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16(1):66–75, 1994. [119]

T. Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings of the 22nd International
Conference on Research and Development in Information Retrieval, pages 50–57, 1999. [21,
22]

T. Hofmann. Unsupervised learning by probabilistic Latent Semantic Analysis. Machine
Learning, 42(1):177–196, 2001. [21, 22]

IBM. Jazz. Accessed Aug. 8, 2012, 2012. http://www-01.ibm.com/software/rational/

jazz. [124]

R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics, pages 299–314, 1996. [72, 143]

B. Jiang, Z. Zhang, W. Chan, and T. Tse. Adaptive random test case prioritization. In
Proceedings of the 24th International Conference on Automated Software Engineering, pages
233–244, 2009. [62]

H. Jiang, T. N. Nguyen, I. Chen, H. Jaygarl, and C. Chang. Incremental Latent Semantic
Indexing for automatic traceability link evolution management. In Proceedings of the 23rd
International Conference on Automated Software Engineering, pages 59–68, 2008. [5, 32,
50, 52]

J. Jones and M. Harrold. Test-suite reduction and prioritization for modified condi-
tion/decision coverage. IEEE Transactions on Software Engineering, 29(3):195–209, 2003.
[62]

H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Collard. Blending conceptual and evolutionary
couplings to support change impact analysis in source code. In Proceedings of the 17th
Working Conference on Reverse Engineering, pages 119–128, 2010. [5, 35, 50, 52]

Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto, B. Adams, and A. E. Hassan. Revisiting
common bug prediction findings using effort-aware models. In Proceedings of the 26th
International Conference on Software Maintenance, pages 1–10, 2010. [34]

http://www-01.ibm.com/software/rational/jazz
http://www-01.ibm.com/software/rational/jazz

BIBLIOGRAPHY 223

S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. Mudablue: An automatic cate-
gorization system for open source repositories. Journal of Systems and Software, 79(7):
939–953, 2006. [39, 50, 52]

J. Kittler, M. Hatef, R. P. Duin, and J. Matas. On combining classifiers. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(3):226–239, 1998. [119]

B. Korel, G. Koutsogiannakis, and L. Tahat. Model-based test prioritization heuristic meth-
ods and their evaluation. In Proceedings of the 3rd International Workshop on Advances in
Model-based Testing, pages 34–43, 2007. [58, 62, 63]

R. Kuehl. Design of experiments: Statistical principles of research design and analysis.
Brooks/Cole, 2000. [199]

A. Kuhn, S. Ducasse, and T. Girba. Enriching reverse engineering with semantic clustering.
In Proceedings of the 12th Working Conference on Reverse Engineering, pages 133–142,
2005. [5, 38, 50, 52]

A. Kuhn, S. Ducasse, and T. Girba. Semantic clustering: Identifying topics in source code.
Information and Software Technology, 49(3):230–243, 2007. [5, 11, 38, 50, 52, 59, 66,
67]

A. Kuhn, P. Loretan, and O. Nierstrasz. Consistent layout for thematic software maps. In
Proceedings of the 15th Working Conference on Reverse Engineering, pages 209–218, 2008.
[5, 39, 50, 52]

A. Kuhn, D. Erni, P. Loretan, and O. Nierstrasz. Software cartography: Thematic software
visualization with consistent layout. Journal of Software Maintenance and Evolution: Re-
search and Practice, pages 191–210, 2010. [5, 39, 50, 52]

S. Kullback and R. Leibler. On information and sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951. [67]

A. Kumar. Development at the speed and scale of Google. Presented at QCon 2010, San
Francisco, CA, USA, 2010. [58]

Y. Ledru, A. Petrenko, and S. Boroday. Using string distances for test case prioritisation.
In Proceedings of the 24th International Conference on Automated Software Engineering,
pages 510–514, Nov. 2009. [62, 65]

Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran. Prioritizing test cases with string dis-
tances. Automated Software Engineering, 19(1):65–95, 2011. [58, 62, 64, 65, 69, 71,
84]

M. M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the
IEEE, 68(9):1060–1076, 1980. [3, 37]

BIBLIOGRAPHY 224

D. Leon and A. Podgurski. A comparison of coverage-based and distribution-based tech-
niques for filtering and prioritizing test cases. In Proceedings of the International Sympo-
sium on Software Reliability Engineering, pages 442–456, 2003. [62]

T. C. Lethbridge, R. Laganiere, and C. King. Object-oriented software engineering: practical
software development using UML and Java. McGraw-Hill, 2005. ISBN 0077109082. [11,
13]

M. Y. Lin, R. Amor, and E. Tempero. A Java reuse repository for Eclipse using LSI. In
Proceedings of the 2006 Australian Software Engineering Conference, pages 351–362, 2006.
[6, 38, 50, 52]

E. Linstead and P. Baldi. Mining the coherence of GNOME bug reports with statistical topic
models. In Proceedings of the 6th Working Conference on Mining Software Repositories,
pages 99–102, 2009. [5, 36, 50, 52]

E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. Mining Eclipse developer
contributions via author-topic models. In Proceedings of the 4th International Workshop
on Mining Software Repositories, pages 30–33, 2007a. [30, 50, 52]

E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. Mining concepts from code
with probabilistic topic models. In Proceedings of the 22nd International Conference on
Automated Software Engineering, pages 461–464, 2007b. [30, 50, 52]

E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi. Sourcerer: mining and
searching internet-scale software repositories. Data Mining and Knowledge Discovery, 18
(2):300–336, 2008a. [39, 50, 52]

E. Linstead, C. Lopes, and P. Baldi. An application of latent Dirichlet allocation to analyzing
software evolution. In Proceedings of the 7th International Conference on Machine Learning
and Applications, pages 813–818, 2008b. [24, 37, 50, 52, 138, 139]

E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. Mining internet-scale software
repositories. In Advances in Neural Information Processing Systems, volume 2007, pages
929–936, 2008c. [39, 50, 52]

E. Linstead, L. Hughes, C. Lopes, and P. Baldi. Software analysis with unsupervised topic
models. In NIPS Workshop on Application of Topic Models: Text and Beyond, 2009. [50,
52]

Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimothy, and N. Chrisochoides. Modeling class cohe-
sion as mixtures of latent topics. In Proceedings of the 25th International Conference on
Software Maintenance, pages 233–242, 2009. [5, 36, 50, 52]

J. C. Loehlin. Latent variable models. Erlbaum Hillsdale, NJ, 1987. ISBN 0898599636. [23]

BIBLIOGRAPHY 225

F. Longo, R. Tiella, P. Tonella, and A. Villafiorita. Measuring the impact of different cate-
gories of software evolution. Software Process and Product Measurement, pages 344–351,
2008. [161]

M. Lormans. Monitoring requirements evolution using views. In Proceedings of the 11th
European Conference on Software Maintenance and Reengineering, pages 349–352, 2007.
[32, 51, 53]

M. Lormans and A. Van Deursen. Can LSI help reconstructing requirements traceability in
design and test? In Proceedings of 10th European Conference on Software Maintenance and
Reengineering, pages 47–56, 2006. [5, 32, 51, 53]

M. Lormans, H. G. Gross, A. van Deursen, and R. van Solingen. Monitoring requirements
coverage using reconstructed views: An industrial case study. In Proceedings of the 13th
Working Conference on Reverse Engineering, pages 275–284, 2006. [5, 32, 51, 53]

S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Source code retrieval for bug localization
using latent Dirichlet allocation. In Proceedings of the 15th Working Conference on Reverse
Engineering, pages 155–164, 2008. [33, 51, 53]

S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug localization using latent Dirichlet allocation.
Information and Software Technology, 52(9):972–990, 2010. [33, 51, 53, 89, 118, 196,
197]

R. Madsen, S. Sigurdsson, L. Hansen, and J. Larsen. Pruning the vocabulary for better
context recognition. In Proceedings of the 17th International Conference on Pattern Recog-
nition, pages 483–488, 2004. [25]

J. I. Maletic and A. Marcus. Supporting program comprehension using semantic and struc-
tural information. In Proceedings of the 23rd International Conference on Software Engi-
neering, pages 103–112, 2001. [6, 38, 51, 53]

J. I. Maletic and N. Valluri. Automatic software clustering via Latent Semantic Analysis. In
Proceeding of the 14th International Conference on Automated Software Engineering, pages
251–254, 1999. [6, 38, 51, 53]

C. D. Manning, P. Raghavan, and H. Schutze. Introduction to information retrieval, volume 1.
Cambridge University Press Cambridge, UK, 2008. [13, 14, 199]

A. Marcus. Semantic driven program analysis. In Proceedings of the 20th International
Conference on Software Maintenance, pages 469–473, 2004. [51, 53]

A. Marcus and J. I. Maletic. Identification of high-level concept clones in source code. In
Proceedings of the 16th International Conference on Automated Software Engineering, pages
107–114, 2001. [40, 44, 51, 53]

BIBLIOGRAPHY 226

A. Marcus and J. I. Maletic. Recovering documentation-to-source-code traceability links
using Latent Semantic Indexing. In Proceedings of the 25th International Conference on
Software Engineering, pages 125–135, 2003. [5, 31, 51, 53]

A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information retrieval approach to
concept location in source code. In Proceedings of the 11th Working Conference on Reverse
Engineering, pages 214–223, 2004. [5, 28, 51, 53]

A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev. Static techniques for concept
location in object-oriented code. In Proceedings of the 13th International Workshop on
Program Comprehension, pages 33–42, 2005. [5, 28, 51, 53]

A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the conceptual cohesion of classes for fault
prediction in object-oriented systems. IEEE Transactions on Software Engineering, 34(2):
287–300, 2008. [5, 35, 36, 51, 53]

G. Maskeri, S. Sarkar, and K. Heafield. Mining business topics in source code using latent
Dirichlet allocation. In Proceedings of the 1st conference on India software engineering
conference, pages 113–120, 2008. [30, 45, 51, 53, 67]

W. Masri, A. Podgurski, and D. Leon. An empirical study of test case filtering techniques
based on exercising information flows. IEEE Transactions on Software Engineering, 33(7):
454–477, 2007. [62]

A. K. McCallum. MALLET: A machine learning for language toolkit. Accessed Aug. 8, 2012,
2012. http://mallet.cs.umass.edu. [27, 101, 142, 168, 182, 199]

S. McMaster and A. Memon. Call stack coverage for GUI test-suite reduction. IEEE Transac-
tions on Software Engineering, 34(1):99–115, 2006. [62]

C. McMillan, D. Poshyvanyk, and M. Revelle. Combining textual and structural analysis of
software artifacts for traceability link recovery. In Proceedings of the ICSE Workshop on
Traceability in Emerging Forms of Software Engineering, pages 41–48, 2009. [5, 33, 51,
53]

C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu. Portfolio: Finding relevant
functions and their usage. In Proceedings of the 33rd International Conference on Software
Engineering, pages 111–120, 2011. [136]

H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel. A static approach to
prioritizing JUnit test cases. IEEE Transactions on Software Engineering, 2011. [58, 62,
64]

Q. Mei and C. X. Zhai. Discovering evolutionary theme patterns from text: an exploration
of temporal text mining. In Proceedings of the 11th International Conference on Knowledge
Discovery in Data Mining, pages 198–207, 2005. [25]

http://mallet.cs.umass.edu

BIBLIOGRAPHY 227

G. A. Miller. WordNet: A lexical database for english. Communications of the ACM, 38(11):
39–41, 1995. [18, 214]

A. T. Misirli, A. B. Bener, and B. Turhan. An industrial case study of classifier ensembles for
locating software defects. Software Quality Journal, 19(3):515–536, 2011. [47, 119]

J. Moad. Maintaining the competitive edge. Datamation, 36(4):61–66, 1990. [3]

Mozilla Foundation. Bugzilla. Accessed Aug. 8, 2012, 2012a. http://www.bugzilla.org.
[12]

Mozilla Foundation. Mozilla. Accessed Aug. 8, 2012, 2012b. http://www.mozilla.org.
[124]

S. Neuhaus and T. Zimmermann. Security trend analysis with CVE topic models. In Pro-
ceedings of the 21st International Symposium on Software Reliability Engineering, pages
111–120, 2010. [12, 38, 51, 53]

A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen. A topic-based
approach for narrowing the search space of buggy files from a bug report. In Proceedings
of the 26th International Conference on Automated Software Engineering, pages 263–272,
2011. [33, 129, 136, 196, 197, 198]

T. H. Nguyen, B. Adams, and A. E. Hassan. A case study of bias in bug-fix datasets. In
Proceedings of the 17th Working Conference on Reverse Engineering, pages 259–268, 2010.
[35, 135]

R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. On the equivalence of information
retrieval methods for automated traceability link recovery. In Proceedings of the 18th
International Conference on Program Comprehension, pages 68–71, 2010. [34, 51, 53]

J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes. Sourcererdb: An aggregated
repository of statically analyzed and cross-linked open source java projects. In Proceedings
of the 6th Working Conference on Mining Software Repositories, pages 183–186, 2009. [51,
53]

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the web. Stanford InfoLab, 1999. [136]

D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM SIGSOFT
Software Engineering Notes, 17(4):40–52, 1992. [138]

S. Pestov. jEdit. Accessed Aug. 8, 2012, 2012. http://www.jedit.org. [141]

X. H. Phan, L. M. Nguyen, and S. Horiguchi. Learning to classify short and sparse text
& web with hidden topics from large-scale data collections. In Proceeding of the 17th
International Conference on World Wide Web, pages 91–100, 2008. [46]

http://www.bugzilla.org
http://www.mozilla.org
http://www.jedit.org

BIBLIOGRAPHY 228

C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick. Version Control with Subversion.
O’Reilly Media, 2008. ISBN 0596510330. [12]

I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and M. Welling. Fast collapsed
Gibbs sampling for latent Dirichlet allocation. In Proceeding of the 14th International
Conference on Knowledge Discovery and Data Mining, pages 569–577, 2008. [5, 72, 83]

M. Porter. An algorithm for suffix stripping. Program, 14:130, 1980. [25]

D. Poshyvanyk and M. Grechanik. Creating and evolving software by searching, selecting
and synthesizing relevant source code. In Proceedings of the 31st International Conference
on Software Engineering, pages 283–286, 2009. [39, 44, 51, 53]

D. Poshyvanyk and A. Marcus. Combining formal concept analysis with information re-
trieval for concept location in source code. In Proceedings of the 15th International Con-
ference on Program Comprehension, pages 37–48, 2007. [5, 29, 51, 53, 136]

D. Poshyvanyk, A. Marcus, V. Rajlich, et al. Combining probabilistic ranking and Latent
Semantic Indexing for feature identification. In Proceedings of the 14th International Con-
ference on Program Comprehension, pages 137–148, 2006. [5, 29, 51, 53]

D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich. Feature location using
probabilistic ranking of methods based on execution scenarios and information retrieval.
IEEE Transactions on Software Engineering, 33(6):420–432, 2007. [26, 46, 51, 53, 136]

PostgreSQL. Accessed Aug. 8, 2012, 2012. http://www.postgresql.org. [100, 176, 181]

F. Rahman, C. Bird, and P. T. Devanbu. Clones: what is that smell? Empirical Software
Engineering, 17(4-5):503–530, 2012. [40]

V. Rajlich and N. Wilde. The role of concepts in program comprehension. In Proceedings of
the 10th International Workshop on Program Comprehension, pages 271–278, 2002. ISBN
0769514952. [28]

D. Ramage, E. Rosen, J. Chuang, C. D. Manning, and D. A. McFarland. Topic modeling for
the social sciences. In NIPS 2009 Workshop on Applications for Topic Models: Text and
Beyond, 2009. [5]

M. K. Ramanathan, M. Koyuturk, A. Grama, and S. Jagannathan. PHALANX: A graph-
theoretic framework for test case prioritization. In Proceedings of the 23rd ACM Sympo-
sium on Applied Computing, pages 667–673, 2008. [62]

S. Rao and A. Kak. Retrieval from software libraries for bug localization: a comparative
study of generic and composite text models. In Proceeding of the 8th Working Conference
on Mining Software Repositories, pages 43–52, 2011. [34, 196, 197, 201]

http://www.postgresql.org

BIBLIOGRAPHY 229

M. Revelle and D. Poshyvanyk. An exploratory study on assessing feature location tech-
niques. In Proceedings of the 17th International Conference on Program Comprehension,
pages 218–222, 2009. [29, 51, 53]

M. Revelle, B. Dit, and D. Poshyvanyk. Using data fusion and web mining to support fea-
ture location in software. In Proceedings of the 18th International Conference on Program
Comprehension, pages 14–23, 2010. [5, 30, 51, 53, 136]

S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25 extension to multiple weighted
fields. In Proceedings of the 13th International Conference on Information and Knowledge
Management, pages 42–49, 2004. [136]

M. Robillard and G. Murphy. Concern graphs: Finding and describing concerns using struc-
tural program dependencies. In Proceedings of the 24th International Conference on Soft-
ware Engineering, pages 406–416, 2002. [93]

M. P. Robillard and G. C. Murphy. Representing concerns in source code. ACM Transactions
on Software Engineering and Methodology, 16(1), Feb. 2007. [141]

G. Robles, J. Gonzalez-Barahona, D. Izquierdo-Cortazar, and I. Herraiz. Tools for the study
of the usual data sources found in libre software projects. International Journal of Open
Source Software and Processes, 1(1):24–45, 2009. [96]

M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model for authors
and documents. In Proceedings of the 20th conference on Uncertainty in artificial intelli-
gence, pages 487–494, 2004. ISBN 0974903906. [30]

G. Rothermel, R. Untch, C. Chu, and M. Harrold. Prioritizing test cases for regression
testing. IEEE Transactions on Software Engineering, 27(10):929–948, 2001. [57, 58, 59,
62, 69, 74, 83]

G. Rothermel, M. Harrold, J. Von Ronne, and C. Hong. Empirical studies of test-suite reduc-
tion. Software Testing, Verification and Reliability, 12(4):219–249, 2002. [81]

C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach. Science of Computer Programming, 74(7):
470–495, 2009. [40]

G. Salton and M. J. McGill. Introduction to modern information retrieval. New York, 1983.
[20]

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commu-
nications of the ACM, 18(11):620, 1975. [5, 18]

S. Sampath, R. C. Bryce, G. Viswanath, V. Kandimalla, and A. G. Koru. Prioritizing user-
session-based test cases for web applications testing. In Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, pages 141–150, 2008. [62,
63]

BIBLIOGRAPHY 230

T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk. TopicXP: Exploring topics in source code
using latent Dirichlet allocation. In Proceedings of the 26th International Conference on
Software Maintenance, pages 1–6, 2010. [31, 51, 53]

R. L. Scheaffer and J. T. McClave. Probability and statistics for engineers. Duxbury Press
Boston, Massachusetts, USA, 1994. [154]

R. W. Selby. Enabling reuse-based software development of large-scale systems. IEEE Trans-
actions on Software Engineering, 31(6):495–510, 2005. [3]

N. Serrano and I. Ciordia. Bugzilla, ITracker, and other bug trackers. Software, IEEE, 22(2):
11–13, 2005. [11]

C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile Com-
puting and Communications Review, 5(1):3–55, 2001. [146]

E. Shihab, Z. M. Jiang, and A. E. Hassan. Studying the use of developer irc meetings in
open source projects. In Proceedings of the 25th International Conference on Software
Maintenance, 2009a. [12]

E. Shihab, Z. M. Jiang, and A. E. Hassan. On the use of IRC channels by developers of the
GNOME GTK+ open source project. In Proceedings of the 6th IEEE Working Conference on
Mining Software Repositories, 2009b. [12]

E. Shihab, N. Bettenburg, B. Adams, and A. Hassan. On the central role of mailing lists in
open source projects: An exploratory study. New Frontiers in Artificial Intelligence, 6284:
91–103, 2010a. [12]

E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E. Hassan. Understanding the
impact of code and process metrics on post-release defects: a case study on the eclipse
project. In Proceedings of the International Symposium on Empirical Software Engineering
and Measurement, 2010b. [35]

A. Simao, R. F. de Mello, and L. J. Senger. A technique to reduce the test case suites for
regression testing based on a self-organizing neural network architecture. In Proceedings
of the 30th Annual International Computer Software and Applications Conference, pages
93–96, 2006. [58, 62]

J. Sliwerski, T. Zimmerman, and A. Zeller. When do changes induce fixes? In Proceedings
of the 2nd Working Conference on Mining Software Repositories, 2005. [127, 135]

Software Freedom Conservancy. Git. Accessed Aug. 8, 2012, 2012. http://www.git-scm.
com. [12]

M. Steyvers and T. Griffiths. Probabilistic topic models. In Latent Semantic Analysis: A Road
to Meaning. Laurence Erlbaum, 2007. [19, 23, 152]

http://www.git-scm.com
http://www.git-scm.com

BIBLIOGRAPHY 231

S. W. Thomas. Mining software repositories using topic models. In Proceedings of the 33rd
International Conference on Software Engineering, pages 1138–1139, 2011. [3]

S. W. Thomas. Replication package. Accessed Dec. 3, 2012, 2012. http://sailhome.cs.

queensu.ca/replication/sthomas/PHD2012. [9, 26, 80, 131, 201, 204]

S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein. DiffLDA: Topic evolution in software
projects. Technical Report 2010-574, School of Computing, Queen’s University, 2010a.
[191]

S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein. Validating the use of topic models
for software evolution. In Proceedings of the 10th International Working Conference on
Source Code Analysis and Manipulation, pages 55–64, 2010b. [24, 37, 51, 53, 100, 137,
144, 168, 175, 179]

S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein. Modeling the evolution of topics
in source code histories. In Proceedings of the 8th Working Conference on Mining Software
Repositories, pages 173–182, 2011. [97, 170, 175]

S. W. Thomas, B. Adams, D. Blostein, and A. E. Hassan. Studying software evolution using
topic models. Science of Computer Programming, pages 1–23, 2012a. [137]

S. W. Thomas, N. Bettenburg, D. Blostein, and A. E. Hassan. Talk and work: Recovering the
relationship between mailing list discussions and development activity, 2012b. Submitted
to Empirical Software Engineering. [92]

S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein. Static test case prioritization
using topic models. Empirical Software Engineering, pages 1–31, 2012c. [57]

S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan. The impact of classifier config-
uration and classifier combination on bug localization, 2012d. Submitted to IEEE Trans-
actions on Software Engineering. [118, 195]

K. Tian, M. Revelle, and D. Poshyvanyk. Using latent Dirichlet allocation for automatic
categorization of software. In Proceedings of the 6th International Working Conference on
Mining Software Repositories, pages 163–166, 2009. [5, 39, 51, 53]

W. Tichy. An interview with Prof. Andreas Zeller: Mining your way to software reliability.
Ubiquity, 2010, Apr. 2010. URL http://doi.acm.org/10.1145/1880066.1883621. [3,
11]

J. Tukey. The philosophy of multiple comparisons. Statistical Science, 6(1):100–116, 1991.
[200]

J. Tukey and H. Braun. The collected works of John W. Tukey: Multiple comparisons, 1948-
1983, volume 8. Chapman & Hall/CRC, 1994. [200]

http://sailhome.cs.queensu.ca/replication/sthomas/PHD2012
http://sailhome.cs.queensu.ca/replication/sthomas/PHD2012
http://doi.acm.org/10.1145/1880066.1883621

BIBLIOGRAPHY 232

B. Ujhazi, R. Ferenc, D. Poshyvanyk, and T. Gyimothy. New conceptual coupling and cohe-
sion metrics for object-oriented systems. In Proceedings of the 10th International Working
Conference on Source Code Analysis and Manipulation, pages 33–42, 2010. [5, 35, 51, 53]

P. van der Spek, S. Klusener, and P. van de Laar. Towards recovering architectural con-
cepts using Latent Semantic Indexing. In Proceedings of the 12th European Conference on
Software Maintenance and Reengineering, pages 253–257, 2008. [5, 29, 51, 53]

M. Van Erp and L. Schomaker. Variants of the Borda Count method for combining ranked
classifier hypotheses. In Proceedings of the 7th International Workshop on Frontiers in
Handwriting Recognition, pages 443–452, 2000. [119, 121]

A. Vargha and H. D. Delaney. A critique and improvement of the CL common language effect
size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 25
(2):101–132, 2000. [74]

H. M. Wallach, I. Murray, R. Salakhutdinov, and D. Mimno. Evaluation methods for topic
models. In Proceedings of the 26th International Conference on Machine Learning, pages
1105–1112, 2009. [72, 88, 143]

X. Wang and A. McCallum. Topics over time: a non-markov continuous-time model of
topical trends. In Proceedings of the 12th international conference on Knowledge discovery
and data mining, pages 424–433. ACM, 2006. [24]

X. Wei and W. B. Croft. LDA-based document models for ad-hoc retrieval. In Proceedings of
the 29th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 178–185, 2006. [199]

W. Wong, J. Horgan, S. London, and H. Agrawal. A study of effective regression testing
in practice. In Proceedings of the 8th International Symposium On Software Reliability
Engineering, pages 264–274, 1997. [59, 62]

C. Wu, E. Chang, and A. Aitken. An empirical approach for semantic web services discovery.
In Proceedings of the 19th Australian Conference on Software Engineering, pages 412–421,
2008. [41, 44, 51, 53]

S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: A
survey. Software Testing, Verification and Reliability, 22(2):67–120, 2010. [60, 61, 79]

S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective and
scalable prioritisation incorporating expert knowledge. In Proceedings of the 18th Inter-
national Symposium on Software Testing and Analysis, pages 201–212, 2009. [62]

H. Zawawy, K. Kontogiannis, and J. Mylopoulos. Log filtering and interpretation for root
cause analysis. In Proceedings of the 26th International Conference on Software Mainte-
nance, pages 1–5, 2010. [37, 51, 53]

BIBLIOGRAPHY 233

C. X. Zhai. Statistical language models for information retrieval. Synthesis Lectures on
Human Language Technologies, 1(1):1–141, 2008. [15, 19, 20, 22]

L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei. Prioritizing JUnit test cases in absence
of coverage information. In Proceedings of the 25th International Conference on Software
Maintenance, pages 19–28, 2009. [58, 62, 64, 79]

X. Zhou, X. Zhang, and X. Hu. Dragon toolkit: Incorporating auto-learned semantic knowl-
edge into large-scale text retrieval and mining. In Proceedings of the 19th International
Conference on Tools with Artificial Intelligence, volume 2, pages 197–201, 2007. [46]

T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for Eclipse. In Proceedings of
the 3rd International Workshop on Predictor Models in Software Engineering, 2007. [120]

T. Zimmermann et al. Mining version histories to guide software changes. IEEE Transactions
on Software Engineering, pages 429–445, 2005. [11]

	Abstract
	Acknowledgments
	Dedication
	List of Tables
	List of Figures
	Related Publications
	List of Notation and Abbreviations
	I Prologue
	Introduction
	Thesis Statement
	Thesis Overview and Organization
	Contributions of Thesis

	Background and State of the Art
	Mining Software Repositories
	Information Retrieval Models
	State of the Art
	Research Trends

	II New Applications of IR Models in Software Engineering
	Prioritizing Test Cases Using Topic Models
	Motivation
	Background
	Proposal
	Case Studies
	Results and Discussion
	Conclusion

	Measuring the Interaction of Mail and Code
	Motivation
	Proposal
	Case Studies
	Results and Discussion
	Conclusion

	III Advanced IR Techniques
	A Framework to Combine Disparate IR Models
	Motivation
	Proposal
	Case Studies
	Results and Discussion
	Conclusion

	Using Topic Evolution Models to Analyze Source Code Evolution
	Motivation
	Proposal
	Case Studies
	Results and Discussion
	Conclusion

	IV Understanding IR Model Assumptions and Parameters
	Addressing Data Duplication with the Diff Model
	Motivation
	Proposal
	Case Studies
	Results and Discussion
	Conclusion

	Understanding the Effects of Data Preprocessing and IR Model Parameters
	Motivation
	Proposal
	Case Study
	Results and Discussion
	Conclusion

	V Epilogue
	Conclusion
	Main Contributions of Thesis
	Future Research Opportunities

	Bibliography

