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Abstract

Developing high quality software is of eminent importance to keep the existing cus-

tomers satisfied and to remain competitive. One of the most important software

quality characteristics is performance, which defines how fast and/or efficiently a

software can perform its operation.

While several studies have shown that field problems are often due to performance

issues instead of feature bugs, prior research typically treats all bugs as similar when

studying various aspects of software quality (e.g., predicting the time to fix a bug) or

focused on other types of bug (e.g., security bugs). There is little work that studies

performance bugs.

In this thesis, we perform an empirical study to quantitatively and qualitatively

examine performance bugs in the Mozilla Firefox and Google Chrome web browser

projects in order to find out if performance bugs are really different from other bugs

in practice and to understand the rationale behind those differences.

In our quantitative study, we find that performance bugs of the Firefox project

take longer time to fix, are fixed by more experienced developers, and require changes

to more lines of code. We also study performance bugs relative to security bugs,

since security bugs have been extensively studied separately in the past. We find

that security bugs are re-opened and tossed more often, are fixed and triaged faster,
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are fixed by more experienced developers, and are assigned more number of develop-

ers in the Firefox project. Google Chrome project also shows different quantitative

characteristics between performance and non-performance bugs and from the Firefox

project.

Based on our quantitative results, we look at that data from a qualitative point

of view. As one of our most interesting observation, we find that end-users are often

frustrated with performance problems and often threaten to switch to competing

software products.

To better understand, the rationale for some users being very frustrated (even

threatening to switch product) even though most systems are well tested, we per-

formed an additional study. In this final study, we explore a global perspective vs a

user centric perspective of analyzing performance data. We find that a user-centric

perspective might lead to a small number of users with considerably poor performance

while the global perspective might show good or same performance across releases.

The results of our studies show that performance bugs are different and should be

studied separately in large scale software systems to improve the quality assurance

processes related to software performance.
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Chapter 1

Introduction

Software performance is one of the most influential nonfunctional requirements [8],

with the power to make or break a software system in today’s competitive market.

Software performance basically measures how fast and efficiently a software system

can complete its operations [49]. Resolving performance related problems or perfor-

mance bugs (e.g., high resource utilization or slow response time) is as important as

adding new features to the system to keep the users satisfied and loyal to the soft-

ware system. Studies show that many of the field problems reported are related to

performance issues instead of feature bugs [42, 76].

Despite the importance of software performance, to the best of our knowledge, no

studies have focused on performance bugs. One common theme in software quality

assurance research is that most of them treat all bugs equally, i.e., they do not dis-

tinguish between different kinds of bugs [16, 19, 26, 33, 56, 58, 69, 81]. Security bugs

have been studied extensively, while there are other types like usability, functionality,

serviceability, performance.

Without a good understanding of the differences of performance bugs and their

fixing process relative to other type of bugs, development resources cannot be properly
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allocated and software releases may have critical performance issues. For instance,

the Mozilla Firefox and Google Chrome web browser projects get a large amount of

performance bugs reported due to browser plug-ins or extensions developed outside

the project [78]. The decision of whether or not this type of performance bug will be

tracked by the browser team, and how to do that, is crucial for the overall software

quality assurance activity of the project, and requires in-depth research.

To better understand the differences between performance and non-performance

bugs, and identify concrete ways to improve the performance bug resolution pro-

cess, we need to empirically study software performance problems dealt within large

software projects. Such a study will help stakeholders to better estimate software

maintenance effort. For instance, (1) developers and testers could more accurately

identify and understand performance problems and estimate the effort and actions re-

quired to fix them, and (2) project managers could have an idea of required resources

and can develop performance maintenance policies.

Hence, this thesis qualitatively and quantitatively studies performance and non-

performance bugs in the Mozilla Firefox and Google Chrome web browser projects.

We find that performance bugs are different in terms of the time required to fix them,

the experience of the developers who fix them, and the lines of code needed to fix

them. Moreover, we find that performance bugs are harder to reproduce, require

more collaborative effort to investigate and depend more on other bugs. Although,

these findings are not always consistent between the studied projects, our findings

show major difference in the characteristics of performance and non-performance

bugs across and within projects.

As one of our findings, we find that despite consistent efforts for improving software
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quality, some users complain (even threaten to switch a product) about software

performance problems. This finding motivate us to study the benefit of user-centric

performance analysis in practice, since system performance typically is evaluated

from a global perspective where the efficiency (i.e., timing, resource utilization) is

optimized across all users together, instead of being tailored to each (group of) user.

Our analysis of test data from the performance test runs on two enterprise and one

open source software systems show that customer-centric performance analysis can

improve the performance analysis process by detecting performance deviations and

trends that could not be detected from global perspective.

Based on our findings, we conjecture that performance problems should be ex-

plored in more detail with the software maintenance research in order to improve the

maintenance process related to these important and critical bugs.

1.1 Research Statement

Prior research, experience analyzing large software projects, and interaction with

industrial software performance testers (as part of a four month industrial embedding

with an industrial performance engineering team) lead us to the following research

hypothesis:

�

�

�

�
Performance bugs have different characteristics than other bugs and should

be treated differently in software maintenance research and practice.

Motivation - Performance is considered to be an important software quality feature

[52, 66]. However, performance bugs have not been studied/considered separately in
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prior research on software maintenance. Intuitive reasoning for not considering per-

formance bugs (despite knowing the importance of performance) in software main-

tenance research can be, performance bugs are of no difference than any other bug

and/or performance bugs cannot be leveraged to improve the software performance

and the overall quality of a software. We are interested in empirically studying per-

formance bugs from large scale software systems. We want to study if performance

bugs really have any different characteristics than other bugs, and if our studies on

performance bugs can be used toward improving the processes related to software

quality assurance.

1.2 Thesis Overview

We perform three different studies to explore our research statement:

1. A quantitative study of performance bugs (Chapter 3)

We study the quantitative differences between performance, security and other

bugs for the Mozilla Firefox and Google Chrome web browser projects. We

choose the Firefox and Chrome projects from the same domain to see if our

study findings are consistent between projects. These open-source projects have

thousands of publicly available bug reports that we could easily extract and use

in our study. Moreover, bug reports from the Mozilla project are commonly

used for empirical research of bugs.

We study security bugs along with performance bugs to provide context for

our results since security bugs are commonly studied in literature due to their

perceived importance and critical nature. We compare the studied bugs along

three dimensions, i.e., Time, People and Bug Fix.
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2. A qualitative study of performance bugs (Chapter 4)

We study a random yet representative sample of performance and non-performance

bug reports (and their comments) in the Mozilla Firefox and Google Chrome

web browser projects. We take 100 random representative bug report sam-

ples of each type and for each project (400 bug reports in total), and examine

the qualitative differences between performance and non-performance bugs. By

qualitative differences, we refer to the different characteristics of bug reports

related to human behavior and reasons that govern such behavior, i.e., the

bug’s impact on the user, context of the bug, the fix, and fix verification pro-

cess. From the findings, we also try to find the rationale behind some of the

differences observed in our quantitative study.

3. A user-centric analysis of performance (Chapter 5)

To study that treating performance bugs differently can be beneficial, we dig

more into one of the findings of our study on performance bugs. In Chapter 4, we

find that users often complain (and threaten to switch) because of performance

issues more often than non-performance issues. Inspired from this finding, we

suggest the use of user-centric analysis for software performance.

In user-centric analysis, software performance data is aggregated and analyzed

for each (group of) user. As detailed data from the performance test runs on

the Mozilla Firefox and Google Chrome projects are not available, we could

not do this study on the same projects as our previous studies. We studied

the performance test data of two enterprise system available from an industrial

collaborator (Research In Motion) and one open-source performance bench-

mark system (Dell DVD Store) setup in our lab environment. In this study,
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we compare the results from a user-centric analysis with the results from the

commonly-used scenario-centric analysis, where performance data is aggregated

for each scenario.

1.3 Major Thesis Contributions

In this thesis, we empirically study performance bugs and introduce a new approach

for software performance analysis. In particular, our contributions are as follows:

1. To the best of our knowledge, we report the first ever quantitative study of

performance bugs.

2. We perform the first ever qualitative study on performance bugs. We develop

a taxonomy for the qualitative analysis of bug report data. We identify several

sub-dimensions (tags) and group them into four dimensions namely, impact on

the stakeholder, context of the bug, the bug fix, and the fix verification process.

This taxonomy will help shape future qualitative studies on bug reports.

3. We propose a new approach (user-centric analysis) to analyze the performance

of software systems. User-centric analysis approach can be used along with

other existing approaches to provide a more complete view of the performance

of a system.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 defines software per-

formance, and performance bugs, and provides a brief background on software per-

formance related research within the context of our thesis.
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Chapter 3 represents the quantitative study that we performed on Mozilla Firefox

and Google Chrome bug repository data. In Chapter 4, we describe our fine-grained

qualitative study on performance and non-performance bugs. In Chapter 5, we dig

more into software performance analysis based on one of our findings in qualitative

study. In this chapter, we study the performance load test data of three software

systems to empirically find out if customer-centric performance analysis is any useful

and different than scenario-centric performance analysis.

Finally, Chapter 6 concludes the thesis, and discusses the limitations and potential

future directions in this important area of software quality assurance.
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Chapter 2

Background and Related Work

2.1 What is a performance bug?

For the purpose of this thesis, we define software performance bugs as follows:

�

�

�

�

A performance bug is a bug (i.e., problem, possible improvement, expec-

tation) reported to a bug tracking system (also known as issue tracking

system) that is related to software performance. Software performance

refers to how fast and efficiently (resource utilization-wise) the system can

perform its operation.

Performance bugs can be reported due to different reasons:

1. Performance regression

When the software performance degrades compared to a prior release, a perfor-

mance bug is reported and this phenomenon is called a performance regression.

2. Performance improvement suggestions
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A developer, tester or an end-user may feel that the efficiency and/or the speed

of a software operation could be improved and report that possible improvement

as an issue to the issue tracking system.

3. Other performance problems

A performance bug may be reported by any stakeholder (i.e., developer, man-

ager, tester, end-user) when she perceives a performance problem that may

effect the normal operation of the software, such as slow speed or poor resource

utilization (i.e., high memory/CPU/disk usage).

2.2 Related Work

There has been a large amount of research on the detection of performance bugs.

Jovian et al. worked on finding performance bugs by automatically monitoring the

behavior of applications in order to provide helpful information for performance prob-

lem tracing to the developer [44]. Narpurkar et al. proposed efficient remote profiling

of mobile devices to help users dynamically provide information to developers for iso-

lating performance bugs. Prior work focuses on improving the detection and tracing

processes for performance bugs, while we study the bug life cycle followed in practice.

We divide the rest of the related work into three subsections according to the

three chapters in our study.

2.2.1 Bug classification (Chapter 3)

In Chapter 3, we classify bugs reported in issue tracking systems into three groups;

performance, security and others. Here, we discuss related work in the areas of bug

classification.
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The literature contains several bug classification taxonomies [61]. The draft of the

IEEE Standard Classification for Software Anomalies is a standard classification of

software defects [1]. In this classification, software security and performance represent

two out of six types of problems based on the effect of defects. Ahsan et al. propose

an automatic bug triaging system based on a categorization of bug reports using text

mining [5]. Gegick et al identify security bug reports via text mining [31].

2.2.2 Qualitative Analysis of Bug Repositories (Chapter 4)

In Chapter 4, we qualitatively study performance and non-performance bugs to get

an understanding of human behaviors (reasoning) related to performance bugs. Here,

we discuss related work in the areas of qualitative analysis of bug repositories.

Bertram et al. did a qualitative study to show that issue tracking systems are used

as a communication and collaboration medium among customers, project managers,

quality assurance personnel, and programmers [11]. Using questionnaire and semi-

structured interviews, they found that issue trackers are an ever-growing knowledge

store where each stakeholder contributes knowledge and information via individual

bugs and features. In our study, we try to use this knowledge to learn about software

performance bugs and their fixing process.

Zibran et al. qualitatively studied bug reports from different open-source projects

to identify and rank usability issues related to designing and developing software APIs

[80]. Guo et al. qualitatively studied bug reports from the Microsoft Windows Vista

operating system project to find out the primary reasons for bug reassignment [35].

Guo et al. used this qualitative study on bug reports to provide support for their

survey findings on Microsoft employees. Andrew et al. did a qualitative study on 100
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bug reports from 3 different open-source software projects to find out how teams of

distributed developers discuss and reach consensus in bug reports [47].

Bettenburg et al. performed a survey on developers and reporters related to

software issue repositories in order to find out the qualities of a good bug report [13]

[12]. In their survey, the developers and reporters identified and ranked different types

of information provided in bug reports i.e., steps to reproduce, test cases, and stack

traces. Our study also find active use of these type of information in bug reports (as

found by Bettenburg et al.) to fix performance bugs.

2.2.3 User-centric analysis in software engineering (Chapter 5)

In Chapter 5, we propose the use of user-centric analysis in software performance

analysis. Here, we discuss related work in the areas of software engineering and user-

centric analysis. A user oriented approach has been considered before for different

characteristics of software quality. In the field of software reliability modeling, Che-

ung described the software reliability from the point of view of a user [22] as “the

probability that the program will give the desired output with a typical set of input

data from that user environment”. He showed that the reliability model can be for-

mulated depending on the user profile (frequency distribution of the use of different

features in the system).

User-centric analysis has also been considered in the field of usability analysis.

Terry et al. used end-user oriented analysis on instrumented software systems to

analyze the real-world practices of the users of that software [72]. They collected and

analyzed different types of usage data to measure the usability of a software system.

Calongne worked on web site and other usability goals [18]. One of those goals for
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a designer is “high task performance”, i.e., the quantifiable speed at which the web

page should load and display the requested information given a particular system

hardware and software configuration.

The ISO 9126 standard for software product quality has six characteristics that

describe product quality [39]. “Efficiency” is the closest characteristic to the defini-

tion of performance [10]. This standard describes three set of metrics for software

efficiency evaluation, i.e., time behavior metrics, resource utilization metrics and ef-

ficiency compliance metrics. ISO 9126 also mentions the view of software quality

from three perspectives, user, developer and manager. Our empirical study results

show the importance of considering the user’s perspective for the analysis of these

performance related metrics.

Chulani et al. derived a software quality view from customer satisfaction and

service data to obtain a better understanding of the customer view of software quality

[24]. Mockus et al. worked on finding the predictors of customer-perceived software

quality [55]. From their study, they identified factors like software bug reports by

customers, requests for assistance and field technician dispatches as the predictor of

customer perceived quality for a large telecommunications software system. Mockus

et al. also worked on relating the customer-perceived quality to process quality [54].

They developed and evaluated a practical measure of customer perceived quality

based on the probability that a customer will observe a problem. The measure is

calculated from software problem tracking and customer support systems data. Our

analysis shows the importance of such user-centric analysis for a sub-characteristic of

software quality, i.e., software performance.

Gould et al. theoretically and empirically recommended three principles of system



2.3. CHAPTER SUMMARY 13

design that should be followed to design a useful and easy to use software system [32].

The three recommended principles were, to focus on (1) users and task early in the

development process, (2) empirical measurement, and (3) iterative design. They also

emphasized the importance of designer understanding the users of the system by

studying the users directly (by observing their cognitive, behavioral characteristic) or

in part (by observing the nature of the work expected to be accomplished) from the

early stages of the development life cycle. In our study, we also find that considering

the user’s perspective for software performance analysis is beneficial for detecting

performance issues that might go unnoticed.

2.3 Chapter Summary

In this chapter, we define software performance and performance bugs in the context

of our study. We also survey prior work focused on four topics: performance bugs,

bug classification, qualitative analysis on bug repositories, and user-centric analysis

in software engineering. In the next chapter, we quantitatively study the difference

among performance, security and other bugs in the Mozilla Firefox (primarily) and

Google Chrome project.
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Chapter 3

A Quantitative Study of Performance Bugs

Chapter Overview: A good understanding of the impact of different
types of bugs on various project aspects is essential to improve software
quality research and practice. For instance, we would expect that secu-
rity bugs are fixed faster than other types of bugs due to their critical na-
ture. However, prior research has often treated all bugs as similar when
studying various aspects of software quality (e.g., predicting the time to
fix a bug), or has focused on one particular type of bug (e.g., security
bugs) with little comparison to other types. In this chapter, we study
how different types of bugs (performance and security bugs) differ from
each other and from the rest of the bugs in a software project. Through
a case study on the Firefox project, we find that security bugs are fixed
and triaged much faster, but are reopened and tossed more frequently.
Furthermore, we also find that security bugs involve more developers
and impact more files in a project. This study is the first work to ever
empirically study performance bugs and compare it to frequently-studied
security bugs. Our findings highlight the importance of considering the
different types of bugs in software quality research and practice.

Previous studies show that maintenance and evolution activities represent over

90% of the software development cost [30, 69]. Improving quality assurance effort in

software projects is an important task to keep the existing customers satisfied and

to compete in a competitive market. Research has focused on improving the quality

assurance of software projects. For example, software defect prediction models use
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various code, process, social structure, geographical distribution and organizational

structure metrics to predict the number of defects and their locations [16, 19, 26,

33, 56, 58, 69, 81]. Other work focuses on predicting the time it takes to fix a

bug [46, 62, 75], and which developer should fix a bug [6].

One common theme in the aforementioned quality assurance research is that most

of them treat all bugs equally, i.e., they do not distinguish between different kinds

of bugs. For example, one would expect bugs that are labeled as security risks to

experience a different treatment than typos in code comments or user interface quirks.

Yet, most techniques build generic models for generic bugs.

In order to establish our research hypothesis that performance bugs should be

treated differently in software maintenance research and practice, we need to have

some evidence that performance bugs are really different by nature. Moreover, we

believe that a thorough understanding of the various aspects associated with the dif-

ferent types of bugs is needed. In this chapter, we quantitatively study different char-

acteristics for security, performance and other bugs in the Firefox open source project

to show that these characteristics differ between different bug types in practice. We

study security and performance bugs, since they are important non-functional types

of bugs. Security bugs are of high risk, and performance issues occur commonly in

the field [41]. Yet, both types of bug have never been compared against each other to

see if there are differences in their bug life cycle characteristics and if these differences

are likely to impact or affect current work in the area of software quality assurance.

We address the following three research questions:

Q1). How fast are bugs fixed?

On average, security bugs are fixed 2.8 times faster than performance bugs, but
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they are reopened 2.5 times more than performance bugs and approximately

4.5 times more than other bugs.

On average, security bugs are triaged 3.64 times faster than performance bugs

and 3.38 times faster than the rest of the bugs, but security bugs are tossed 2.67

times more than performance and 4.7 times more than the rest of the bugs.

Q2). Who fixes bugs?

On average, security bugs are assigned 2.39 times more developers than per-

formance bugs are, and 3.51 times more developers than the rest of the bugs.

Performance and security bugs are fixed by more experienced developers.

Q3). What are the characteristics of bug fixes?

On average, security bug fixes are 1.48 times more complex than performance

bug fixes and 1.6 times more complex than the fixes for other bugs.

On average, fixing a performance bug requires change in 2.6 times more files

than security bugs.

Overview of the chapter: Section 3.1 discusses our approach. Section 3.2 is

divided into three sub-sections according to the studied research questions. Each sub-

section of Section 3.2 discusses a motivation, approach and the results of the specific

question. Finally, Section 3.4 discusses threats to validity and Section 3.5 presents

the conclusion of the chapter related to our research hypothesis.

3.0.1 Choice of Subject Systems

In our case study, we primarily studied the Firefox web browser, since Firefox is

one of the most popular web browsers and runs on different platforms and system
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environments. For a complex software like Firefox, performance and security are

two major software quality requirements that matters. Moreover, the issue tracking

system used by Mozilla (Bugzilla), contains and documents all reported bugs that

are available online. For our study, we started from Mozilla’s Bugzilla data from

September, 1994 to August 15, 2010.

First, we had to identify the bugs that are related to the Firefox web browser, since

Mozilla’s bug tracking system manages multiple projects, including Firefox. Bugzilla

contains 567,595 bug reports of different Mozilla components, like Core, Firefox, Sea-

Monkey, and Thunderbird. For Firefox, we took bug reports that are related to

Core (shared components used by Firefox and other Mozilla software, including the

handling of Web content) and to Firefox.

3.1 Study Design

This section presents the design of our case study to compare security, performance

and other bugs in Firefox. Figure 3.1 shows an overview of our approach. First, we

extract the necessary data from the bug repository (Bugzilla) and source code repos-

itory (CVS). Then, we classify the bug reports related to performance and security.

Using CVS data, we also identify the bug fix information. For every type of bug,

we calculate several metrics, then statistically compare the metrics across the types

of bugs (performance, security and other). This section elaborates on each of these

steps.
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Figure 3.1: Overview of our approach to study the differences in characteristics of
security, performance and other bugs.

3.1.1 Bug Type Classification

Bugzilla does not have a built-in categorization or tagging for performance and secu-

rity bugs. The Firefox project team uses the keyword ‘perf’ for performance-related

bugs, but this tagging is not mandatory and we found many bugs that do not have

any such tag.

Hence, to classify performance bugs, we had to use heuristics. We looked for the

keywords ‘perf’, ‘slow’, and ‘hang’ in the bug report title and keyword field. Although

the keyword ‘perf’ gave us bug reports that had ‘performance’ in their title, we found

that there are many unrelated bug reports containing the word ‘perfect’, ‘performing’

or ‘performed’. We had to automatically exclude these keywords from the list using

regular expressions. Using these heuristics, we found 7,603 performance bugs.

Since heuristics are not perfect, we performed a statistical sampling to estimate

the precision and recall of our heuristics. To calculate precision with a 95% confidence

level and a confidence interval of 10, we randomly sampled and checked 95 of the 7,603

bugs classified as performance-related [45]. All 95 randomly selected samples were
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Table 3.1: Confusion matrix for Firefox dataset

Actual → Firefox

Prediction ↓ P NP

P 95 0

NP 19 77

indeed performance bugs, yielding a precision of 100 ± 10%. To calculate recall, we

did statistical sampling on the 287,595 bugs classified as non-performance. For the

same 95% confidence level and confidence interval of 10, we randomly sampled and

checked 96 bugs. 19 out of these 96 sampled bug reports were found to be related to

performance, yielding a recall of 80 ± 10% (see confusion matrix in Table 3.1).

To identify the security bugs, we use the Mozilla Foundation Security Advisory

(MFSA) [2]. MFSA contains links to security bugs for every issued advisory. MFSA

has been issuing security advisories for Mozilla’s products since 2005. Based on the

MFSA, we extracted a dataset of 847 security and 294,351 non-security bugs. As

security bugs were marked by the experts of the security advisory team of Firefox,

we did not need to estimate the precision and recall as we did for performance bugs.

3.1.2 Distribution of Bugs

Figure 3.2 shows the number of reported bugs over time in log scale. The earliest

security bug in our data was reported in May, 2003. 2003 was also the year in which

the Firefox project started. Hence, we did not study bugs reported prior to May,

2003. This left us with 4,293 performance bugs, 847 security bugs and 178,531 other

bugs for our study (May, 2003-August, 2010). Performance and security bugs have

11 bugs in common that had a security threat and caused the browser to hang/crash.
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Figure 3.2: Distribution of the number of bugs reported (quarterly) for security, per-
formance and other bugs.

We put these 11 bugs in both the security and performance groups of our study.

To better understand the composition of each group of bugs, we used a topic

model [17]. Topics are collections of words that co-occur frequently in a corpus

of text. These topics describe the major themes that span a corpus [74], which

provides a means of automatically summarizing and organizing the various data of a

software project. Recently, researchers have applied topic models to various aspects

of a software project, including source code [7, 48, 50, 64] and documentation [27,

37]. Statistical topic models, such as latent Dirichlet allocation (LDA) [17], can

automatically discover a set of topics within a corpus.

We ran LDA on the bug report comments to find out the topics that describe the

major themes that span these performance and security bugs. From the LDA output

(results are in Appendix A) of performance bug comments, we found two major sub-

categories of performance bugs: (1) Plugin-related (like java applet plugin and the

flash plugin) and (2) GUI-related (user interface related libraries, like gfx and gecko)

performance issues. Other smaller types of performance issues (like topics related

to network, history, bookmark, speed, IO, memory, file system, build and document
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Figure 3.3: Comparison of the distribution of the number of bugs reported for all
performance bugs and the two sub-categories of Plugin and GUI-related
performance bugs.

structure) added up to the majority of performance bugs.

Figure 3.3 shows the distribution over time of plugin and user interface related

bugs and their relation to all performance bugs. This figure is in log scale, so the

peaks here denote large changes in the number of bugs reported. Between the release

of version 2.0 and 3.0 of Firefox (shown in Figure 3.3), there was an increase in GUI-

related performance bugs. We found that, version 2.0 included updates that were

related to GUI such as a tabbed browsing environment, and an extensions manager,

causing an increase to the number of GUI-related performance bugs.

For security bugs, as the number of security bugs was very small, the recov-

ered LDA topics (such as “build-tinderbox related”, “window-javascript related”, and

“user-cookie related”) could not be grouped together into sub-categories. However,

LDA results for security bug comments are included in Appendix A as a reference for

any future research on security bug comments using topic models.
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3.2 Results of our Case Study

Each subsection below discusses one of the three research questions that we studied

using the Firefox data. For each question, we present the motivation behind the

research question, the approach and a discussion of our findings. Table 3.2 summarizes

the results of each of the three studied questions.

3.2.1 How Fast are Bugs Fixed?

Motivation: A project manager typically wants some types of bugs, like security

and performance bugs to be assigned faster than others, because of their inherent

importance in software quality assurance. In addition, he wants to pick the best

developer for that bug, such that later on the bug does not need to be tossed to

someone else to fix [40]. Finally, the bug needs to be fixed completely, such that it

does not need to be reopened afterwards, prolonging the total time to fix the bug.

Our study measures these characteristics for Firefox performance and security bugs.

Approach: Once a bug is reported to the bug repository, it browses through a

complex life cycle (Figure 3.4), from the UNCONFIRMED state to the CLOSED

state. Figure 3.4 shows the life cycle of a bug report in Bugzilla. In every state, it

takes some time for the bug report to go to the next state.

We used four metrics for this question. First, we calculated the time to fix, i.e., the

time between bug assignment (ASSIGNED) and the bug fix date (FIXED and then

RESOLVED). This time was calculated for all bugs that went to the ASSIGNED state

first and then from that, the bug went to the RESOLVED state directly (bolded arrow

in Figure 3.4). Since some bugs are closed prematurely and have to be re-opened later

(e.g., because of an incomplete fix), we measured both the total time to fix (total time
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of each assignment to final fix) and the average time of each fix attempt. We used the

t-test to compare the total and average times and the cumulative density function of

the metrics for the three groups (performance, security and other bugs). As shown

in sub-section 3.1.2, there is a large difference in the number of security, performance

and other bugs. Hence, we used the Wilcoxon t-test in our study to ensure that the

characteristics differences between bugs types are statistically significant [77].

The second metric that we used for comparison is the number of times a bug is

reopened. In the ideal case, one would want a bug to be FIXED on the first try. In

practice, a bug may be CLOSED, then REOPENED again. Reopened bugs take a

considerably longer time to resolve, and hence increase the maintenance cost. For

example, in the Eclipse platform 3.0 project reopened bugs take more than twice the

time to resolve as a non-reopened bug [69]. In addition, an increased bug resolution

time consumes valuable time from the already-busy developers, and reopened bugs

may negatively impact the overall end-user’s experience and trust in the quality of a

software product.

The third metric that we used for our comparison is the bug triage time. Triage
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Figure 3.4: Life cycle of a bug [79].
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time is considered separately from the time to fix a bug, as triaging and bug fixing are

usually done by different people and comprise two different processes. Bug Triaging

is the process of reviewing a reported bug in order to assign the right developer to

fix it. Each project has a different strategy for this. Due to the volume of reports,

reports submitted to the Mozilla bug repository are often triaged by quality assurance

volunteers, rather than by the developers [6]. Ideally, one would want a bug to

be triaged as fast as possible. We calculate the difference between bug reporting

(UNCONFIRMED) and first assignment (ASSIGNED) as bug triage time. Although

bug triage time affects the total bug fix time, it is also (and especially) important to

select the appropriate person.

Our fourth metric measures the number of bug tosses, i.e., the number of times a

bug was reassigned before being resolved completely [40]. Tossing may occur due to

triaging inaccuracy, i.e., the developer assigned does not have the expertise to fix the

bug. Another reason for tossing could be bug complexity, i.e., the assigned developer

could only fix part of the bug and needed another developer to fix the rest of that

complex bug.

Findings: Performance bugs take the longest time to fix. Figure 3.5 plots

the “total time between every assignment and fix” (including the time between re-

assignment and fix, when a bug is reopened). For example, a bug was assigned first

to a developer and after t1 minutes, the developer marked the bug to be fixed. If

the bug was reopened and reassigned n times to a developer and the bug was fixed

after t2, t3, ..., tn minutes, then we calculate the “total time between every assignment

and fix” as (t1 + t2 + ... + tn) minutes. We use log-scale here to better show the

differences between the three kinds of bugs. We can see a distinct difference for
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Figure 3.5: CDF (cumulative density function) of time between bug assignment and
fix (total in log scale).

larger values. We ran t-tests to decide if the differences in mean between these three

groups are statistically significant or not. We found a statistically significant (p

< 0.05) difference between security and performance bugs. Security bugs generally

take less time to fix than performance bugs. Other bugs take less time to fix than

Performance bugs. However, the difference between security and other bugs is not

statistically significant (p = 0.0538). According to the CDF plot, mean values and

t-test result, we find that security bugs take the most amount of time to fix, followed

by performance bugs and other bugs.

We also considered the average time to see how fast developers fix bugs. Consid-

ering the average time (each fix attempt’s time), security bugs are fixed fastest, i.e.,

developers seem to respond quickly to them. On the other hand, performance bugs

take the longest time for each developer. One possible explanation for this is that

performance bugs often require changes across different subsystems of the architec-

ture (see Q3). The difficulty of fixing such performance bugs might cause them to be
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Figure 3.6: Histogram of number of times bug is reopened.

postponed to future releases or milestones.

Security bugs are reopened most frequently. Figure 3.6 shows the number

of times a bug is reopened. As we can see, most of the bugs are never reopened

(count reopened = 0), but more than 10% of the security bugs are reopened at least

once. Pairwise t-test comparison of the distribution of the number of times bugs are

reopened shows that the difference between the three groups is statistically significant

(p < 0.05). On average, security bugs tend to be reopened more than twice as often as

performance bugs and performance bugs tend to be reopened almost twice as often as

other bugs. There are various possible explanations for this. Security bugs might be

more complex to solve and test compared to other bugs. Alternatively, while trying

to fix security bugs as fast as possible (as seen above), there is a possibility that

developers are not able to do sufficient testing for these bugs, which leads to these

bugs being reopened later.
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Security bugs are triaged faster than performance and other bugs. Sta-

tistical comparison of bug triage time reveals that performance bugs are not statis-

tically different from other bugs in terms of bug triage time (p = 0.15 > 0.05), but

security bugs have a smaller (70% smaller on average) triage time than others. A

possible explanation for this might be that, to avoid the possibility of a security loop-

hole being exploited, security bugs are kept secret (hidden) until the bug is fixed.

Different software projects have different disclosure strategies [59].

Fast assignment is not identical to correct assignment. Our comparison of the

number of bug tosses reveals that security bugs are tossed more frequently

than performance and other bugs. As shown in Figure 3.7 and Table I, secu-

rity bugs are tossed more than performance (166.7% more) and other bugs (371.2%

more). These differences among the three groups are statistically significant. One

common reason for tossing is incorrect assignment to a developer who does not own

the defective source or may not have the expertise to fix the bug [40]. In any case,

tossing events slow down the process and increase the total time to fix a bug.

�

�

�

�
While security bugs are re-opened and tossed more frequently, they are fixed and

triaged the fastest.

3.2.2 Who Fixes Bugs?

Motivation: The task of finding the person with the most expertise to fix a bug is

critical. In an empirical study on finding experts in a software development company,

Ackerman and Halverson [4] observed that experience was the primary criterion en-

gineers used to determine expertise [53]. For example, performance bugs are critical
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Table 3.2: Mean and median metric values for the three research questions.

Metric
Mean Median

Security Perf. Other Security Perf. Other

Time

Time between assignment
41,588.81 116,501.93 88,011.43 10,211 13,016 9,078

and fix (total time in minutes)

# of times bug reopened 0.15 0.06 0.033 0 0 0

Bug Triage time (in minutes) 57,347.80 208,983.55 193,700.40 4,098.03 8,904.97 6,714.02

# of bug tossing 0.344 0.129 0.073 0 0 0

Person

# of developers assigned 1.203 0.503 0.343 1 0 0

Experience

# of days 1,238.92 1,011.87 926.639 1,178 946 820

# of prior
808.448 777.424 660.249 505 472 389

bugs fixed

Bug Fix

# of lines changed 222.966 401.459 195.203 75.5 66 26

# of files changed 3.236 8.396 4.527 1 2 2

Complexity (entropy) 0.814 0.55 0.51 0.903 0.628 0.627
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Figure 3.7: Histograms of the number of bug tossing.

in the sense that they require thorough knowledge of the software system, compila-

tion tool chain, execution bottlenecks and memory layout. Similarly, fixing a security

bug requires the understanding of possible security loopholes in the source code. In

our case study, we are particularly interested in finding any relation between the

performance or security bug fixers and the experience of the fixers.
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Approach: To measure the number of developers whose expertise was needed to fix

a bug, we count the number of unique developers assigned to a bug in its life time.

For example, if a developer was assigned twice to the same bug (because of tossing

or re-opening) we count this developer as one developer assignment.

We measure the experience of a developer fixing a particular bug using the fol-

lowing two metrics:

− Number of previously fixed bugs by the developer.

− Experience in days, i.e., the number of days from the first bug fix of the developer

to the current bug’s fix date.

For both metrics, if a bug was fixed by more than one developer (because of tossing

and/or re-opening), we take the average experience of these developers.

A bug tracking system like Bugzilla uses an email address as developer identi-

fication, yet developers often has more than one email address [65]. For example,

a bug could be fixed by John Doe@mozilla.org and another bug could be fixed by

John Doe@gmail.com years ago, although both bug fixers are the same person. For

all bugs, we use only the name part of the email address to deal with email aliasing,

a technique commonly used for bug report and email mining [14, 15].

Findings: Security bugs require more developers to fix them than per-

formance and other bugs. This follows from Figure 3.8 and a t-test on the data

in Table 3.2 (p < 0.05). From the CDF plot in Figure 3.8, we see that 73% of other

bugs and more than 62% of performance bugs are never assigned, compared to 14%

of security bugs. Manual inspection of security bugs without developer assignment

reveals that they are fixed very quickly, even before being assigned to someone. This
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Figure 3.8: CDF of number of developers assigned

is probably due to the security bug disclosure strategy followed by Firefox [59]. Al-

ternatively, some security bugs are fixed before they are entered in the bug repository

by the developer. On the other hand, performance and other bugs are often not

assigned because they are found to be a ‘duplicate’ of other bug reports that were

fixed already, or found to be ‘invalid’ or ‘resolved’. Security or performance bug

fixers are more experienced than fixers of other bugs. From Figure 3.9 and

Table I, we can say that, on average, security bug fixers and performance bug fixers

have fixed a similar number of prior bugs, but fixed significantly more number of bugs

than other bug fixers. In terms of experience days, on average, security bug fixers are

22.45% more experienced than performance bug fixers, and performance bug fixers

are 9.19% more experienced than other bug fixers (for both cases, the t-test holds

with p value < 0.05). In short, it appears that security and performance bugs require

more experience to fix.
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Figure 3.9: CDF of developer experience

�

�

�

�
On average, more developers are assigned to security bugs. Performance and security

bugs require more experienced bug fixers than other bugs.

3.2.3 Characteristics of the Bug Fix

Motivation: So far, we have seen that security bugs require more bug fixers and are

reopened more often than performance and other bugs. One possible reason for these

findings might be the complexity of the bug fix. Consider an example of two bugs.

In the fix of the first bug (the more complex bug), the developer had to change over

a dozen files. When asked about the steps required to fix the bug, she or he may not

recall half of them. For a bug fix for which the developer had to change only one file,

recalling the changes required for that fix is much easier. In general, if we have a bug

that required changes across all or most of the files of a software system, developers

will have a hard time keeping track of all these changes.
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Approach: To quantify complexity, we used three metrics:

− Total number of lines added/deleted.

− Total number of files changed for fixing a bug.

− Bug fix Entropy [36].

Bug tracking systems and bug reports do not contain the source code of a bug

fix. To get the actual data related to a bug fix, one needs to link the bug report to

the code repository (CVS). For this, we used the algorithm described by Sliwerski et

al. [71]. We implemented their algorithm for the Firefox CVS code repository. As

this approach relies on the developer revision comments having a bug id, we did not

get the fix information for all of the bugs: 303 performance, 174 security and 7,800

other bugs could be linked to their source code changes out of 7,603 performance, 847

security and 286,759 other bugs.

Length of fix (number of lines added/deleted/edited) and spread across files (num-

ber of files changed) are straightforward to measure. To measure the bug fix en-

tropy, we used the normalized Shannon Entropy, which is defined as: Hn(P ) =

−
n∑

k=1

(pk ∗ logn pk), where pk ≥ 0,∀k ∈ 1, 2, ..., n and
n∑

k=1

pk = 1. For a distribution P

where all elements have the same probability of occurrence (pk = 1
n
,∀k ∈ 1, 2, ..., n),

we achieve maximum entropy. On the other hand, for a distribution P where only

one element i has a probability of occurrence, we achieve minimal entropy (0).

For example, to fix a bug, three files A(5 lines), B(1 lines) and C(1 lines) are

changed. We calculate the number of lines changed as the sum of the number of

lines added and deleted. We define a file change probability distribution P as the

probability that filei is changed for a bug’s fix. For each file, we count the total
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Figure 3.10: CDF of entropy

number of lines changed in that file and divide by the total number of lines changed for

all files. Hence, in our example, we have p(fileA) = 5
7
, p(fileB) = 1

7
, and p(fileC) = 1

7
.

Finally we can calculate the normalized Shannon Entropy for that bug’s fix Hn (P ) =

0.725. If another bug had the same total number of lines (7) changed in seven files,

then Entropy would be, Hn (P ) = 1. This means that the former bug fix is more

concentrated, and hence less complex.

Findings: Performance bug fixes change more lines than fixes of other

bugs. From Figure 3.11, Table 3.2 and the t-test, we find for fix size that the number

of lines changed was significantly different for performance bugs in comparison to

other bugs.

For the fix spread or number of files changed to fix a bug, we found that fixing a

performance bug requires change in more files than fixing a security bug.

We found a more surprising result when we compared the entropy values. Se-

curity bug fixes have the highest entropy. There is a large difference between

security bugs and the other two groups of bugs. On average, security bug fixes have
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Figure 3.11: CDF of fix size

48% more entropy than performance bugs, and 59.6% more entropy than other bugs.

This means that security bugs are much more complex to fix than performance and

other bugs, since they require substantial fixes across multiple files. For example,

we found that in the extreme case, for bug id 289940, there were changes across 296

files in the code repository. Further investigation showed that this bug revealed a

security flaw that was extremely invasive: “...The big part of this change is to mark

all our internal events as trusted, where applicable. This will be done by changing the

constructors of the various ns*Event classes ..”

�

�

�

�
Security bug fixes are more complex than performance and other bugs, yet they affect

fewer files than performance bugs.
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Table 3.3: Comparison of our qualitative study findings between Chrome and Firefox
project

Firefox Chrome

Security Perf. Security Perf.

Time

Fix time + +

# of reopening + +

# of tossing + +

People
# of developer assigned + = =

Experience + +

Fix
# of files changed + = =

Entropy + +

‘+’ represents higher value for the type and ‘=’ represents no statistically significant
difference between performance and security bugs

3.3 Findings for Google Chrome and comparison with Mozilla Firefox

Similar to Mozilla Firefox project, we also qualitatively studied three types (per-

formance, security and others) of bugs from Google Chrome web browser project.

Details of the bug tracking system data used from Chrome project is provided in

Subsection 4.2.1. A brief comparison of our findings is shown in Table 3.3. Only

two metrics (number of reopening and bug fix entropy) showed consistent finding

across Firefox and Chrome projects. Moreover, we did not find any metric for Firefox

without a statistically significant difference between performance and security bugs.

In Chrome project, we found two metrics (‘number of developer assigned’ and ‘num-

ber of files changed to fix’) that showed no statistically significant difference between

performance and security bugs.
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3.4 Threats To Validity

Our empirical study primarily focused on one system (the Firefox web browser). It

is not clear whether our results generalize to other open source systems (possibly in

different domains), or to commercial systems. We also studied Google Chrome bug

repository data to verify if our study findings was consistent across projects from the

same domain. We found that different bug types of Chrome project also have different

characteristics. However, Firefox and Chrome project showed different findings. A

brief description of the Google Chrome project results are discussed in Subsection

3.3.

We used heuristics on bug report titles and keywords to identify performance

bugs. Since our study critically relies on bug classification, we statistically verified

our heuristics for performance bug identification (section 3.1.1). A statistical sampling

technique (with 95% confidence level and confidence interval of 10) showed that our

heuristics have a high precision and recall.

Our data contains relatively few (847) security bugs in comparison to the large

number of other (178,531) and performance (4,293) bugs. For the identification of

security bugs, we are relying on the Mozilla Foundation Security Advisory and its

links to Bugzilla. MFSA has been used in prior research as a source of security bug

information [23, 70]. If there are any security bugs that were not linked to an MFSA

advisory, they are treated as other bugs in our study.

Security bug reports may contain sensitive information explaining security loop-

hole of the software that can be exploited. Therefore, some critical security bugs

may be fixed in a different process that is not publicly accessible through the bug

tracking system of the studied projects (Mozilla Firefox and Google Chrome). In our
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quantitative study, we may have missed information about such critical bugs that

may affect our study findings.

For collecting bug fix data using code repository revision comments, we used the

information from revision comments using the algorithm described by Sliwerski et

al. [71] (SZZ algorithm). Due to the limited number of revision comments with fix

information and bug id, we could only get the associated fix code for 303 performance

(20.2% of 1,503 performance bug fixes), 174 security (20.7% of 839 security bug fixes)

and 7,800 other bug fixes (16.26% of 47,970 other bug fixes) for our study.

Finally, bugzilla fields for bug report time and bug history-related time do not

necessarily correspond to the actual time. For example, if two or more bugs are

assigned to a developer at the same time, and she fixes these bugs one by one, based

on the bug history our analysis will find an incorrect ‘time to fix’ value for the bug

that was fixed last. The “actual” time for fixing the bug starts once the developer is

finished with the first bug and moves to the next one. Determining the actual time

or effort in fixing a bug is an important step in project planning and management

[51].

3.5 Chapter Summary

In this empirical study, we quantitatively analyzed the differences in time to fix,

developer experience and bug fix characteristics between security, performance and

the rest of the bugs to validate our conjecture that different types of bugs are different

and hence quality assurance should take into account the bug type. We found that

security bugs in Firefox behave differently than other bugs. Security bugs require

more developers with more experience, but need less triage time and are fixed faster
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than others. At the same time, security bug fixes are more complex than the fixes

of performance and other bugs, and are reopened and tossed more than performance

bugs.

To explain the results we have in our quantitative analysis described in this chap-

ter, we perform a qualitative study on performance bugs, in the following chapter.
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Chapter 4

A Qualitative Study on Performance Bugs

Chapter Overview: Software performance is one of the important
qualities that makes software stand out in a competitive market. How-
ever, in previous chapter, we found that performance bugs take more
time to fix, need to be fixed by more experienced developers and require
changes to more code than non-performance bugs. In order to be able
to improve the resolution of performance bugs, a better understanding
is needed of the current practice and shortcomings in bug life cycle.
This chapter qualitatively studies a random yet qualitative sample of
400 performance and non-performance bug reports of Mozilla Firefox
and Google Chrome across four dimensions (Impact, Context, Fix and
Fix verification). We find that developers and users face problems in
reproducing performance bugs and have to spend more time discussing
performance bugs than other kinds of bugs. Sometimes performance
regressions are tolerated as a trade-off to improve something else.

Performance bugs are different from other types of bugs (i.e., security, usability,

functionality) and require special care. As shown in the previous chapter, perfor-

mance bugs take more time (at least 32% more on average) to fix, are fixed by more

experienced developers and require changes to larger parts of the code than non-

performance bugs [78]. Unfortunately, our analysis primarily considered high-level

quantitative data like the overall bug fix time, the number of developers involved,
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Figure 4.1: Overview of our approach to qualitatively study the performance bugs of
a system.

and the size of the bug fix, but ignored qualitative process information like the con-

tent of discussions involved in the bug fix process. Although we were able to pinpoint

differences between performance and other kinds of bugs, we could not fully explain

these findings or make concrete suggestions to improve the fix process for performance

bugs.

In order to understand the differences in the actual process of fixing performance

and non-performance bugs, and potentially identify concrete ways to improve perfor-

mance bug resolution, this chapter qualitatively studies performance bug reports,

comments and attached patches of the Mozilla Firefox and Google Chrome web

browsers. In particular, we studied a random yet representative sample of 100 per-

formance and 100 non-performance bug reports and comments from each project

(Mozilla Firefox and Google Chrome, 400 bugs in total) to discover the knowledge,

communication and collaboration specific to fixing performance problems in a software

system. We qualitatively compared the sampled performance and non-performance

bugs across four dimensions and 19 sub-dimensions. We briefly summarize below our

statistically significant findings for each dimension:

1 . Impact on the stakeholder.
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Performance bugs suffer from tracking problems. For example, Chrome has

seven times more regression bugs that are performance-related than non performance-

related. In Firefox, 19% of the performance bugs were fixed out of the blue

without any concrete link to the patch or change that fixed them. Furthermore,

in 8% of the performance bugs of Firefox, bug commenters became frustrated

enough to threaten to switch to another browser, compared to only 1% for

non-performance bugs.

2 . Context of the bug.

Despite the tracking problems and low reproducibility of performance bugs,

34% of performance bugs in Firefox and 36% in Chrome provided concrete

measurements of e.g., CPU usage, disk I/O, memory usage and the time to

perform an operation in their report or comments. In addition, twice (32%) as

many performance bugs as non-performance bugs in Firefox provided at least

one test case in their bug report or comment.

3 . The bug fix.

Fixing performance bugs turns out to be a more collaborative activity than

for non-performance bugs. 47% of the performance bugs in Firefox and 41%

in Chrome required bug comments to co-ordinate the bug analysis, while only

25% of the non-performance bugs required them. Some performance regression

bugs remain unfixed on purpose.

4 . Bug Fix Verification.

We found no significant difference in how performance bug fixes are reviewed

and verified compared to non-performance bugs.
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Table 4.1: Taxonomy used to qualitatively study the bug reports of performance and
non-performance bugs. Bold sub-dimensions show a statistically significant
difference in at least one project.

Impact on the User Context of the bug The Fix Fix Verification

Regression Measurement Used Problem discussion Discussion about the patch
Blocking Has test cases in comments Technical
WorksForMe - by reporter Dependent on Non-Technical

after a long time ·with report other bug Review
People talking - later Other bugs depend Super-review

about switching Contains stacktrace on this bug
- in report Reporter provides some
- in followup hint on the actual fix

Has reproducible info Patch uploaded by
- in report - reporter
- in followup ·with report

Problem in ·later
reproducing

Duplicate Bug - Others

Overview of the chapter: Section 4.2 explains our case study approach. Section

4.3 is divided into four sub-sections according to the dimensions considered in our

study. Each sub-section of Section 4.3 discusses our findings for the different sub-

dimensions found in the specific dimension. Section 4.4 summarizes the findings of

this chapter with respect to the quantitative study on Firefox performance bugs in

the previous chapter. In section 4.5, we discuss the threats to validity of our study.

Finally, Section 4.6 presents the conclusion of the chapter.

4.1 Choice of Subject System

In this case study, we study the Mozilla Firefox and Google chrome web browsers,

since these are the two most popular web browsers with publicly available data about

their bug tracking systems. Similar to our quantitative study, we focus on the domain

of web browsers, since for web browsers that support multiple platforms and system

environments, performance is one of the major software quality requirements. For

that reason, performance bugs are reported in both systems and are tagged explicitly



4.2. STUDY DESIGN 43

in the issue tracking systems of both projects. We considered the same Mozilla

Bugzilla data that we used for our quantitative study (Chapter 3). For the Chrome

web browser, our data was extracted from the Chrome issue tracker dump provided

in the MSR challenge 2011 [68].

4.2 Study Design

This section presents the design of our qualitative study on performance bugs. Figure

4.1 shows an overview of our approach. For a particular project, we first extract the

necessary data from its bug repository. Then, we identify the bug reports related

to performance and random yet representative sample of 100 performance and 100

non-performance bugs. We then studied the sampled bugs to identify the different

dimensions and their sub-dimensions that can be used to compare the bug fixing

process of performance and non-performance bugs. Finally, we perform our analysis

based on these sub-dimensions. This section elaborates on each of these steps.

4.2.1 Bug Type Classification

Using the same approach as we did for the Mozilla Firefox data in the quantitative

study (Subsection 3.1.1), we found 510 performance bugs (1.13% out of 44,997 bugs)

in the Google Chrome web browser project. In order to verify that the same heuristics

that we used for finding performance bugs in Firefox work for this Chrome dataset,

we again performed a statistical sampling with a 95% confidence level and a confi-

dence interval of 10%. We selected and checked 81 random representative sample of

performance (out of 510 bugs classified as being performance-related) and 96 random
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Table 4.2: Confusion matrix for Chrome dataset

Actual → Chrome

Prediction ↓ P NP

P 73 8

NP 2 94

representative sample of non-performance (out of 44,487 bugs classified as being non-

performance) bugs [45]. Out of these 81 bugs classified as being performance-related,

73 were actual performance bugs, yielding a precision of 90.12 ± 10%. Out of the

sampled 96 bugs classified as being non-performance, 94 were indeed non-performance

bugs, yielding a recall of 97.33 ± 10% (see confusion matrix in Table 4.2). In other

words, the heuristics seem to work well for Chrome as well .

4.2.2 Selection of Samples

For our 4 datasets of performance and non-performance bugs of Firefox and Chrome,

the largest one is the set of Firefox non-performance bugs, with 176,057 bugs. With

a 95% confidence level and 10% confidence interval, the sample size should be 96 bug

reports. This means that if we find a sub-dimension to hold for n% of the bugs (out

of these 96 non-performance Firefox bugs), we can say with 95% certainty that n ±

10% of the bugs contains that sub-dimension. The datasets with less bugs required

less than 96 bug reports to be sampled to ensure this 10% confidence interval in the

result. However, to simplify our discussion, we sampled 100 bug reports from each

dataset, resulting in a confidence interval of 10% or less for each dataset.
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4.2.3 Identification of bug report and comment dimensions

Before we can compare performance and non-performance bugs, we first need to es-

tablish the criteria to compare on. The different fields and characteristics recorded

by bug repositories are a good start, but our study requires knowledge of how testers

and developers collaborate on and think about (non-)performance bugs. This knowl-

edge is part of the natural language content of bug comments and discussions, but we

are not aware of any taxonomy or other work for analyzing qualitative report data.

Hence, we first performed a manual study of the sampled data to identify such a

taxonomy.

We studied each sampled bug report and tagged it with any word or phrase de-

scribing the intent or content of the bug comments and discussions. Each time new

tags were added, older reports were revisited until a stable set of 19 tags was iden-

tified with which we could tag all reports. Afterwards, we analyzed the tags and

grouped them into 4 clusters (“dimensions”): the impact of the bugs on stakeholders,

the available context of the bug, the actual bug fix and the verification of the bug

fix. The resulting dimensions and “sub-dimensions” (tags) are shown in Table 4.1

and are used to compare performance and non-performance bugs on. We discuss the

sub-dimensions in more detail in our study results section (Section 4.3).

In order to determine, for a particular system, whether the percentage of perfor-

mance bugs related to a sub-dimension (e.g., Blocking) is statistically significantly

higher than the percentage of non-performance bugs related to that sub-dimension,

we used the “joint confidence interval” or “comparative error”. This measure is often

used to compare two independent samples [29]. If the difference between the percent-

age of performance and non-performance bugs for a sub-dimension is greater than
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their calculated comparative error, then the difference is considered to be statistically

significant.

4.3 Study Results

Each subsection below discusses one of the four dimensions in our study on using

Mozilla Firefox and Google Chrome data. For each dimension, we present the de-

scription of the dimension, the sub-dimensions and a discussion of our findings. All

differences between performance and non-performance bugs mentioned in our findings

are statistically significant unless stated otherwise. Any percentage value mentioned

in our findings has a maximum confidence interval of 10%.

4.3.1 Impact on the stakeholder

Since different stakeholders are involved with a software system, e.g., developers,

users, testers and managers, a bug can impact any of them. This impact can vary

widely, from blocking a software release, to an annoying regression bug that pops

up again, or to small annoyances in user experience. For example, release blocking

bugs typically require immediate attention and priority from the developer assigned,

while a small hiccup during start-up might be forgiven. In the worst case, failure

to adequately fix a major bug can incite users to switch to a competitor’s product

when they are frustrated with a software problem. To understand the impact and

severity of performance bugs and how stakeholders deal with that, we need to study

this dimension.

Sub-dimensions:

Regression: A regression bug is caused by a certain event (like software upgrade,
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another bug fix patch, or daylight saving time switch) that degrades a feature that

used to be acceptable or re-introduces a previously fixed problem to the system [60].

This problem can be a performance problem or any other problem, like functionality

or security-related. It also can be (re-)discovered via a failing test. Both bug tracking

systems support the tagging of regression bugs, but do not enforce it. We identified

the regression bugs from existing tagging and by studying the report details. The

patch, build or version from which the regression started is typically also indicated.

Blocking: By “blocking release”, we refer to bugs that prevent a release to be

shipped, typically because they are showstopper bugs. These bugs are flagged in

the ‘Flags’ field of a bug report in Firefox and labeled as ‘ReleaseBlock’ in Chrome.

That label or flag also mentions the specific release version that is blocked. For

example, in Chrome, the label mentions either ‘Beta’, ‘Dev’ or ‘Stable’ meaning that

the bug blocks that release channel. If while working on a bug report, the project

contributor/user feels that the bug has to be fixed before that release, she tags it as

a release blocker.

WorksForMe after a long time: In our study, we found many bugs that were

reported, confirmed to be valid, then closed after a long time with a WFM (Works

For Me), Fixed or Won’t Fix status. The ‘WFM’ (WorksForMe) status is specific to

the Mozilla project and indicates that the problem mentioned by the reporter was not

reproducible by the project contributor or others. Instead of ‘WFM’, the Chromium

project uses ‘Won’t Fix’ or ‘Invalid’ as a closing status. By “closed after a long time”,

we mean that a bug report is closed after several months and in many cases, more

than a year.

People talking about switching: We counted the number of bugs where in the bug
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comments, at least one user mentioned being unsatisfied with the software perfor-

mance and thinking about switching to another browser because of that bug. Out of

the millions of users of these browser, a comment from one of two people may seem to

be not significant. However, since bug reporters are tech-savvy users, we can expect

that each of them voices the opinion of many more other users in total.

Findings:

22% of the performance and 3% of the non-performance bugs are regres-

sion bugs [Chrome].

A similar phenomenon occurred in Firefox, but the difference was not significant

(19% vs. 13%). Problems related to non-performance regressions include browser

crashes, missing functionality, and unexpected behavior.

Since performance regressions are common problems, both projects have a dedi-

cated framework to detect and report them. In Firefox, regression bugs are reported

like any other performance bug, then identified and/or confirmed (and usually tagged)

as a regression by the reporter and/or contributors. In Chrome, most of the regression

bugs found in our study are manually reported by project members who detected the

regression in the automated compile/test cycle. The report contains a link to auto-

matically generated graphs that show the performance deviation between the build

under test and the previous build. The reporter also provides some notes specifying

the specific metric that showed the deviation as there are many metrics plotted in

those graphs. Most of the Firefox regression bugs were reported after the software

affected the user, while most of the Chrome regression bugs were reported even before

the version was released.

Not all regressions are unexpected.
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We found regression bugs that, although unexpected by the reporter, turned out

to be known and tolerated by developers. Often, the performance bug was tolerated

because of a trade-off with a more essential performance feature. In Chrome, we

found the following comment in a regression bug (bug # 7992, comment # 3) that

was closed with “WontFix” status.

�

�

�

�

“I talked to dglazkov and darin. This regression is expected and OK. dglazkov men-

tioned rebaselining the test, but I’m not sure that matters.

The ... is a heavy user of the WebCore cache, and recent changes tilted the tuning

toward memory usage instead of speed. If you look at the memory usage, you’ll see a

corresponding drop where the perf slows down.”

Performance improvement may cause regression.

We found different bug comments where a performance regression was introduced

to the system while trying to optimize the performance. For example, in Firefox

bug #449826, the bug was reported as a possible performance improvement sugges-

tion, but the resulting performance ended up being much slower and still open since

September, 2008.

14% of the performance bugs and 4% of the non-performance bugs are

release blocking [Firefox].

A similar finding, but not significant, was found in Chrome (8% vs. 4%). Release

blocking bugs have the highest priority to the developers.

19% of the performance and 6% of the non-performance bugs are marked

as WFM/Fixed/Won’tFix after a long time [Firefox]

Although the final outcome of these three groups was different, in all of them bugs
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have a traceability problem as we do not know how the bug was fixed, what caused

the bugs, or why this bug will not be fixed. The reporter and other commenters who

participated in the discussion of the bug report did not receive a response for a long

time.

Possible explanation for this type of bugs can be, these bug reports might have

been insufficient to work on a fix, or the bug might have been too complex. Ideally,

some note on the state of the bug should have been recorded. This type of bug was

also found in Chrome without any significant difference (10% perf. vs. 9% non-perf.)

8% of the performance and 1% of the non-performance bugs drove at least

one user to threaten to switch to another browser [Firefox].

In Chrome, 7% of performance and 2% of non-performance bugs are of this type

and the difference was not statistically significant. These percentages do not include

comments by users who are just frustrated with a bug. 7 users leaving Firefox might

not seem much, but for each user that reports a bug, X other non-contributor users

encounter the same issue and feel the same pain. For example, in a comment on

Firefox bug #355386, (comment #10), the user said:

�

�

�

�
“... This bug is really bothering us and forcing us [his company] to recommend IE

+SVG Adobe plugin to customers... ”

.

Surprisingly, this bug was only closed with WFM status after more than 2 years.

In the Chromium project, a commenter said (bug #441, comment #6):
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�

�

�

�

“I no longer use Chrome/Chromium for anything much and can no longer recommend

to any of my friends or acquaintances or random people in the street that they use it.

I still try it regularly in the hopes that the issue has been sorted out but as soon as

the problem shows up I switch back to one of the others.”

Again, in this case, the problem was found to be not happening (WFM) anymore and

closed with the status ‘WontFix’ after more than 10 months.

Users and developers perform performance comparisons with other browsers.

In both projects, we found that users and developers compare their product per-

formance with competing products. While submitting a bug report in the Chromium

project, the default bug report template suggests the reporter to provide information

if the same problem was observed in other browsers. Mozilla bug reports usually also

contain a comparison with other browsers. This is a common and expected practice

irrespective of the bug type. It came as a surprise to us, however, to find bug reports

in Google Chromium declared by the developers as “WontFix” only because the other

popular browsers have the same performance issue or their browser at least was not

slower than others. Users were not amused by this. For example, in Chrome, we

found a comment (bug # 441, comment # 15) saying:

�

�

�

�

Thats a poor reason for closing a verifiable bug in something other than the rendering

engine.

Just becuase firefox consumes 100% cpu on something as basic as scrolling doesnt

mean chrome should.”

One acceptable case of this pattern, however, happens when comparing Chrome

functionality to that of the Safari browser. Since both share the same layout engine
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“WebKit”, many performance bugs had their root cause in webkit. In that case, the

bug is identified as a “webkit” bug, reported to the webkit project’s issue tracking

system and the corresponding link is added to the Chrome bug report as a comment.

4.3.2 Context of the Bug

This second dimension captures the context available about a bug when reported in

an issue tracking system. Bettenburg et al. did a survey on developers and users

where they identified the factors that are considered to be helpful by the developers

and reporters [13]. Both developers and reporters accepted that ‘steps to reproduce’

in bug reports are the most helpful information. Test cases and stack traces were

next in the list. In the context of performance bugs, we wish to know if these kinds

of information are used more/less/similarly in order to understand the performance

bug reporting process. Access to more relevant context can reduce the performance

bug fix time and thus the overall quality of software.

Sub-dimensions:

Measurement used: We counted the number of bugs that used any kind of mea-

surements added in the report. By “measurement”, we mean the use of any numerical

value (e.g., CPU usage, disk I/O, memory usage) in bug report or comments to de-

scribe the problem.

Has test cases and contains stacktrace: Test cases are provided by the bug reporter

or any other commenter to help reproduce the problem. We found different forms

of test cases, i.e., specific web links, and attached or copy-pasted HTML/JavaScript

files. In Chrome, very few bugs had test cases attached to them. Instead, they use

problematic web links as test case. We found the use of attachments more convenient
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as web links may become unavailable or are expected to be changed. Stack traces are

also provided by the reporter and sometimes by other people in the bug comments.

We counted the number of bugs where a stack trace was provided in the report. We

also counted the number of bugs where the developer had to request a stack trace

and the bug reporter or other commenter provided a stacktrace in a comment.

Has reproducible info and problem in reproducing: It is common practice in bug

reporting is to provide a step by step process to reproduce a bug. This process should

include any non-default preference, hardware requirement and software configuration

needed to trigger the bug. However, we found many bugs where despite having the

steps to reproduce the bug, people had substantial problems reproducing the bug and

requested more information or suggestions for reproducing the bug. We counted the

number of bugs where commenters mentioned such problems in reproducing.

Chromium bug reports contain information about whether the bug is reported by

a project member or someone else. In Firefox bug reports, we could not see any such

information. Hence, we counted the number of performance and non-performance

bugs reported by a project member only for Chrome.

Duplicate bug: Bug reports contain information about duplicate bugs, i.e., bugs

that have the same problem as any other reported bug but the reporter did not notice

that or could not recover that in the issue tracking system before reporting. We found

that duplicate bugs are identified and marked by the project contributors and some-

times by the reporter. Firefox has a field “duplicates” where all the duplicate bugs

are listed. In Chrome, we identified duplicate bugs from the bug status “Duplicate”

or from comments like, “Issue ... has been merged into this issue”. We counted the

number of bugs with duplicates for all sampled performance and non-performance



4.3. STUDY RESULTS 54

bugs in our study.

Improvement suggestion: We counted the number of bugs that were about im-

provement (both performance and non-performance) of the software, not about de-

fects. We identified bugs related to improvement by checking if the report is about

speed, resource utilization, usability or code quality improvement instead of a specific

bug.

Findings:

34% of the Firefox and 36% of the Chrome performance bugs contain

performance measurements.

More than one third of the performance bug reports and/or comments provided

measurements of different performance metrics. We observed an interesting difference

in the use of measurements between Chromium and Firefox. In Firefox, the measure-

ments included in bug reports were numerical, i.e., CPU usage, disk I/O, memory

usage, time to perform an operation, or profiler output. In addition to these numerical

values, Chrome performance bug reports also contained the metric values calculated

using Chromium’s performance test scripts that run on “buildbot”, the continuous

integration server used by Chromium. Although Mozilla also had test suites for the

“tinderbox” [65] continuous integration server, we could not find any bug report in

our sample that referred to this test suite.

As expected, we could not find any non-performance bug that had any kind of

measurement mentioned in its bug report, since it is hard to quantify a functional

bug.

32% of the performance and 16% of the non-performance bug reports or

comments contain a test case [Firefox].
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Most of the time (more than 70% of the time for both bug types and projects), test

cases are uploaded by the reporter. In Chrome, the difference was not statistically

significant (21% performance vs. 16% non-performance).

10% of the performance and 1% of the non-performance bugs contain a

stack trace in the report or a comment [Chrome].

In Chrome, we could not find a statistically significant difference between perfor-

mance (13%) and non-performance bugs (8%).

15% of the performance and 6% of the non-performance bugs had com-

ments related to problems with reproducing the bug [Firefox].

Insufficient information provided by the reporter or the unavailability of a test

case is one of the most common reasons behind being unable to reproduce any bug.

Moreover, for many performance bugs, the problem was caused by the use of a specific

(version of an) extension or plugin of which the reporter could not collect sufficient

information. We often found that in the bug comments, commenters guide the re-

porter by giving instructions and web links on how to collect the required context

that will help the commenter and other people to reproduce the bug. We also found

intermittent problems hard to reproduce. In Chrome, 16% of the performance and 8%

of the non-performance bugs had comments related to problems in reproducing, but

this difference between performance and non-performance bugs was not statistically

significant.

58% of the performance and 35% of the non-performance bugs are reported

by a project member [Chrome].

One possible reason of this difference may be that performance regression bugs

found by an automated test script are always reported by a project member. We
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found that out of the 22% performance regression bugs in Chrome more than 86%

were reported by a project member, which shows a larger involvement of project

members in reporting performance bugs.

In both projects, many performance bugs are caused by external programs

We found that 11% of the performance bugs in Firefox and 14% of the performance

bugs in Chrome are caused by a program that was not developed within the project.

Investigations of these bugs showed performance problems caused by an “add-on” or

“plugin” (e.g., flash), a single web application/page (e.g., yahoo mail or gmail) or any

other third party software in the system (e.g., antivirus).

In Firefox, comment # 1 of bug # 463051 in November, 2008 mentioned,

�

�

�

�
“Report problems caused by external programs to their developers. Mozilla can’t fix

their bugs. ...”

The bug was marked as resolved with resolution “invalid”. In the next comment,

which was submitted more than two years later, we found a comment saying,

�

�

�

�

“We’re now tracking such bugs. This doesn’t mean it’s something we can fix, merely

something we hope to be able to point vendors to so they can investigate. This is an

automated message.”

After that comment in March, 2011, the bug was assigned a new QA (Quality

Assurance) contact and since then, the status of that bug is “unconfirmed”.

The Chromium issue repository kept track of these issues from the beginning, to

support the QA team in collaborating with the users facing the reported problem.
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Non-performance bugs have more duplicate bugs reported than perfor-

mance bugs [Firefox].

In Firefox, the difference was significant (26% performance vs. 40% non-performance),

while we could not find a statistically significant difference in Chrome (24% perfor-

mance vs. 32% non-performance).

Although steps to reproduce are used in most of the bug reports, we could not

find any statistically significant difference between its use in performance and non-

performance bugs. We also could not find any significant difference for the sub-

dimension “improvement suggestion”.

4.3.3 The Bug Fix

Process metrics like the response time of the fix process can be used to measure

software quality [46]. However, in order to improve the performance bug fixing process

and overall quality, we need to know how, given the context of the second dimension, a

performance bug is fixed and what (if any) makes the performance bug fixing process

different from other bugs in practice.

Sub-dimensions:

Problem discussion in comments: We studied the bug comments where people

discussed the problems related to the bug report and the uploaded patch for that

bug. To distinguish between problem discussion and patch discussion in Firefox, we

considered all comments before the first patch upload as problem discussion, and all

comments after the first patch upload as patch discussion (see Bug Fix Verification

dimension). As Chrome uses a different tool for patch review than the issue tracking

system, we considered all bug comments as problem discussion.
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Dependent on other bug or other bug depends on the bug: We also studied the

dependency information provided in the issue tracking system. When a bug’s fix

depends on the resolution of another bug, this dependency is provided in both issue

tracking systems in two different fields (“Depends on” and “Blocking”).

Reporter provides some hint on the actual fix: We found many bugs (specially

improvement suggestion bugs) where the reporter had an idea about the fix and

provided the hint and sometimes the patch with the bug report. We counted the

number of performance and non-performance bugs of this type.

Patch uploaded by: We found bug patches that were uploaded by its reporter,

sometimes within a few minutes after reporting. We counted the number of bugs

where the patch was uploaded by the reporter (immediately after reporting/later)

and by others.

Findings:

Performance bugs are discussed more than non-performance bugs in order

to develop a fix.

47% of the performance bugs of Firefox and 41% of the performance bugs in

Chrome required a discussed in the bug comments, while only 25% of the non-

performance bugs in both projects had such a discussion. By discussion, we mean the

process of exchanging ideas in order to understand a problem, identify the possible

fix, and reach a decision. We did not count those bugs that had only comments saying

something like, “it happens to me too” rather than trying to find out the reason for

that problem. As such, this finding suggests that performance bugs are harder to

resolve, or at least require collaboration between multiple people.
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Table 4.3: Number of Blocking and Dependent bugs (bold numbers have a statisti-
cally significant difference).

Project Type Blocking Depends on

Firefox
Perf. 44 42

Non-perf. 27 15

Chrome
Perf. 2 6

Non-perf. 6 4

Performance bugs are more dependent on other bugs and more perfor-

mance bugs are blocking than non-performance bugs [Firefox].

Table 4.3 shows the dependency information found in our studied bugs. When

‘B’ blocks the resolution of bug ‘A’, bug ‘B’ is marked as blocking bug ‘A’ and bug

‘A’ is marked as depending on ’B’. Only Firefox is showing a difference between

performance and non-performance bugs (42% vs. 15% for depends on and 44% vs.

27% for blocking) with statistical significance. Very few dependency information was

found in Chromium project and the difference was not statistically significant.

Patches are not always used for fixing a bug.

We found that many of the performance bugs in Chromium project are reported

by a project member who observed a performance deviation in the automated perfor-

mance test result. The performance test scripts running on “buildbot” compare the

performance metric against a performance expectation baseline. The performance ex-

pectations are written in a file (“/trunk/src/tools/perf expectations/perf expectations.json”)

that has the expected ‘improve’ and ‘regress’ values. By comparing these values to the

actual value, the performance regression testing script identifies both “performance

regression” and “unexpected speedup” (bug # 18597, comment # 11). We found

many patches related to performance bugs where this expectation baseline file was
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patched to readjust after a definitive performance speedup or an accepted regression.

For accepted regressions, the corresponding bug is no longer a bug, but expected be-

havior. Moreover, some patches are only intended for troubleshooting. For example,

in bug # 34926 comment # 9, a patch was uploaded to determine if another revision

caused the performance deviation.

For the sub-dimensions “reporter has some hint about the fix” and “patch up-

loaded by”, we could not find any significant difference between performance and

non-performance bugs.

4.3.4 Bug Fix Verification

After a software fix has been proposed, it needs to be verified by reviewers to ensure

software quality. Basically, reviewers comment on things like the approach, algorithm

used, and code quality in order to ensure that the patch really fixes the bug and the

fix does not introduce any new bug. Sometimes, depending on the importance of

the bug and complexity of the fix, a bug fix may require a more rigorous verification

effort.

Sub-dimensions:

Discussion about the patch: After a patch is uploaded and linked to the issue

tracking system, people can discuss about the patch in order to verify the fix by

the patch. In the Firefox Bugzilla, patch discussion appears in the bug comments

(the same page as the bug report). In Chrome, we found this discussion on the

Chromium code review page for that patch (a separate page whose link is posted as

a bug comment). Some discussions focus solely on the code changes in the patch. We

call these technical discussions. Other discussions are not source code specific, i.e.,
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Table 4.4: Comparison of findings about performance bugs between our previous
qualitative study (Chapter 3) and this study for Mozilla Firefox project.

Quantitative Study Qualitative study

Require more time to Fix 1. WorksForMe (WFM) after
a long time,

2. Problem in reproducing
3. More dependencies between bugs
4. Collaborative root cause

analysis process

Fixed by more 1. More release blocking
experienced developers 2. People switch to other systems

More lines of code changed N/A

they discuss about whether the problem is still observed by others, and what changes

people can see after the patch is used. We call these non-technical discussions.

Review and super-review: In both projects, the code was reviewed by one or more

code reviewers. Moreover, we found the use of the term “super-review” in Mozilla. A

super-review is performed by a super-reviewer (a list of reviewers indexed by area) and

is required for certain types of critical changes mentioned in Mozilla’s super-review

policy [3].

Findings:

For none of the projects and sub-dimensions, performance bug reports behave

statistically significantly different than non-performance bugs.

4.4 Discussion

In the previous chapter, for the Mozilla Firefox project, we found that performance

bugs take more time to fix, are fixed by more experienced developers, and that more

lines of code are changed to fix performance bugs. Based on the qualitative findings in
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this chapter (summarized in Table 4.4, we are now able to, at the minimum, provide

more context about our previous findings and, likely, provide a strong indication

about the actual rationale behind those quantitative findings.

Related to the finding that Firefox performance bugs take more time to fix, we

found that for Firefox, people face problems in reproducing performance bugs and

have to discuss them to find the root cause of these bugs. These collaborative activities

may require more time in a project of global scale like Firefox. Moreover, we also

found that performance bugs have more dependencies on other bugs, which implies

that performance bug fixing may be delayed because of the time to fix the dependent

bug(s) first. On the other hand, we also found indications that our measurements

of the time to fix a bug might have been inflated. Indeed, 19% of the performance

bugs in Firefox are fixed after a long time (in the order of months, sometimes years)

without any trace of related fixing process. They were basically fixed as a side-effect

of some other bug. Since the corresponding bug report has been open (and probably

forgotten) for so long the unnatural fix time of these bugs may cause the average

fixing time to be higher than it should be.

Related to the finding that performance bugs are fixed by more experienced de-

velopers in Firefox, we found in this chapter that a higher percentage of performance

bugs is release blocking than non-performance bugs in Firefox. Release blocking bugs

are known to be of the highest priority and this may prompt projects to assign expe-

rienced developers to fix performance bugs. Furthermore, the difficulty to reproduce

performance bugs and fix them also suggests that experts are better equipped to fix

performance bugs.

Finally, we did not find direct qualitative support for our finding that performance
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bug fixes are larger than non-performance fixes. However, our findings that perfor-

mance bugs have many dependencies and require experienced developers to fix them

could give some indications that performance bugs need more system-wide knowl-

edge instead of knowledge about one component. More analysis is needed to further

explore this possibility.

4.5 Threats To Validity

Since this is a qualitative study, there may be some human factors and subjectivity

in our bug analysis, since it is very difficult to prevent or detect researcher-induced

bias in such a qualitative study. However, we took care to consider all available bug

data sources and to double-check findings when in doubt.

There may be more dimensions and/or more sub-dimensions in the selected di-

mensions other than the ones that we selected, since our selection is based on the

sampled data in Firefox and Chrome. We iteratively identified tags until a stable set

of tags was found that could cover all sub-dimensions of sampled reports. Concep-

tually, the (sub-)domains cover most of the qualitative aspects of bug reports, and

preliminary analysis on Firefox and Chrome projects support the claim.

Our qualitative study focused on two projects. It is not clear whether our findings

generalize to other open source projects or to commercial projects. However, we have

selected the two most popular open source projects (Mozilla Firefox and Chrome)

from the browser domain, since performance bugs matter in this domain and we had

access to all relevant data.

We used heuristics on bug report titles and keywords to identify performance

bugs. Since our study critically relies on bug classification, we statistically verified
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our heuristics for performance bug identification. A statistical sampling technique

(with 95% confidence level and confidence interval of 10) showed that our heuristics

have a high precision and recall.

4.6 Chapter Summary

Mozilla Firefox and Google Chrome are the two most popular open source web browser

projects with millions of users and hundreds of developers and contributors around

the world. We studied sampled performance bugs in these two projects to observe

how project members collaborate to detect and fix performance bugs.

Performance bugs have different characteristics, in particular regarding the impact

on users and developers, the context provided about them and the bug fix process.

Our findings suggest that in order to improve the process of identifying, tracking and

fixing performance bugs in these projects:

• Techniques should be developed to improve the quality of the “steps to repro-

duce” in the performance bug reports.

• More optimized means to identify the root cause of performance bugs should

be developed.

• Collaborative root cause analysis process should be better supported.

• The impact of changes on performance should be analyzed, e.g., by linking

automated performance test results to commits, such that performance bugs no

longer magically (dis)appear.

One of the findings in this chapter is that, despite efforts for improving software

performance by the developers and testers, customers get frustrated and threaten to
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switch to competing software. Motivated by this finding, we wanted to study this in

more detail, i.e., is it possible that some users are put at a disadvantage which goes

unnoticed by the testers and developers?
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Chapter 5

A Large Scale Empirical Study on User-Centric

Performance Analysis

Chapter Overview: Measuring the software performance under load
is an important task in both test and production of a software devel-
opment. In large scale systems, a large amount of metrics and usage
logs are analyzed to measure the performance of the software. Most of
these metrics are analyzed by aggregating across all users to get general
results for the scenario, i.e., how individual users have perceived the per-
formance is typically not considered in software performance research
and practice. To analyze a software’s performance, user’s perception
of software performance metrics should be considered along with the
scenario-centric perspective of system tester or operator.

In Chapter 4, we found that some users in both the Firefox and Chrome projects

who were unsatisfied with the software performance despite continuous effort by the

project members to detect and fix performance issues, and improve the software

performance. Performance problems faced by some users may have passed unnoticed

by the project members in their performance tests and analysis. Motivated by this,

we wanted to find out, if a user-centric performance analysis could identify these

unsatisfied users to the project members that would not be noticed when using an

overall performance analysis.
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Measuring the software performance perceived by the user during test or produc-

tion of a software allows an organization to adjust the deployment of a software system

in order to meet the performance expectations of its users [38, 55]. Since performance

measurements gather gigabytes of log and performance counter data, performance an-

alysts typically aggregate this data across all users, or clusters of users with the same

quality of service (QoS), to get more manageable information. For example, a system

can be analyzed to see if 99% of the response time for a test scenario was under 2

milliseconds.

Aggregation of performance data loses knowledge about how individual users are

affected by the performance. A large software system may have a low average system

response time, which suggests that all users are satisfied with the performance, while

from the user perspective, it may be possible that some thousands (out of millions) of

users are always unsatisfied because of persistent high response time (i.e., because of

software compatibility issues at the user’s end). In a competitive market with other

options for the user, user perceived quality is important for user satisfaction and user

loyalty to the service provider [20]. Moreover, if these unsatisfied users are the major

users, it can be disastrous for a business.

User perceived quality has been studied in the field of software system design, us-

ability analysis, product and process quality [18, 24, 32, 54, 72]. The user’s perspective

of quality can be different from the developer or manager’s aggregated perspective.

Performance can be viewed as one of the characteristics of software quality [10].

In this study, by the term “user-centric view”, we refer to the view of software

performance data aggregated for individual users. We compared individual user per-

formance data (user-centric) with the aggregated performance data (scenario-centric)



68

to see whether or not the user-centric performance analysis data provides the same

information as the scenario-centric data. We could not use the same Mozilla Firefox

and Google Chrome projects in this study as data from the performance test that

runs on these projects was not available. In this controlled case study of two large

enterprise systems, and one small open-source e-commerce system’s performance test

data (with simulated load), we calculate scenario-centric and user-centric metrics to

address the following three research questions:

Q1 . How does the user-centric performance experience differ from the

scenario-centric one?

One of the enterprise systems showed major performance improvements for 2

(out of 4 analyzed) use case scenarios while the scenario-centric comparison

could not identify these improvements. In the open source e-commerce system,

user-centric analysis in 3 (out of 3) scenarios showed that 40% of the users

in each scenario had a bad performance in at least 30% of their requested

operations, while the scenario-centric analysis showed that on average, 13.11%

to 20.80% of these operations behaved badly in these three scenarios.

Q2 . How does the user and scenario-centric performance evolve over

time?

When a system is running for a long time, it may encounter performance prob-

lems that could not be visible if it was running for a short amount of time.

2 (out of 4) and 5 (out of 6) scenarios in the two enterprise software systems

and 1 (out of 3) scenarios in the open source system showed a different time

trend between the scenario and user perspective. These differences suggest that
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Figure 5.1: Enterprise System 1 - Histogram of number of scenario instances per user
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scenario-centric performance trends do not necessarily reflect the performance

trends perceived by user.

Q3 . How consistent are the user and scenario-centric performance char-

acteristics?

A system may sometimes perform outstandingly good and sometimes very

poorly while the users in the system may expect a moderate and consistent

performance from the system all of the time. In user-centric analysis, we found

scenarios where a large percentage of users who had an inconsistent performance

while the system’s performance looked consistent in scenario-centric analysis (on

average).

Overview of the chapter: The chapter is organized as follows. Section 5.1,

discusses the study design and data source for our study. Section 5.2 explains the

motivation, approach and results for our three research questions. Section 5.3 dis-

cusses the threats to validity, and Section 5.4 presents the conclusion of the chapter.

5.1 Study Design

In this section, we discuss our three case studies in which we performed both user-

centric and scenario-centric performance analysis. User-centric analysis measures the

metrics from the individual user’s perspective and scenario-centric analysis measures

the metrics for a scenario across all users. Table 5.1 shows an overview of the three

projects in our study, i.e., two commercial enterprise systems (ES) and one open

source e-commerce system, the Dell DVD store (DS2). We studied the performance

load test data for these three systems. In performance load test, load generator
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software(s) simulate the user behavior by sending simulated requests to the software

system under test for different use-case scenarios. For each use-case scenarios of the

software system, repeated requests are sent and monitored to ensure that the software

do not have any performance issue, i.e., insufficient cache size and memory leak. For

each system, we considered the most popular use cases. For each instance of such a

use case, we collected the user id and the response time (i.e., the time between start

and end). All the metrics used in our analysis are derived from this response time

and user id data.

Table 5.1: Properties of the three case studies.

Enterprise Enterprise Dell

Factor System System DVD
1 2 store

Functionality Telecommunications E-commerce

Vendor’s Business Model Commercial Open-source

Size Ultra Large Large Small

Complexity Complex Complex Simple

Enterprise System 1 (ES 1): The first system for our case study is an ultra large

scale distributed system for which we had access to the performance regression test

log data. A test was run on two versions of the system with the same test operational

profile (i.e., a realistic distribution of user input requests). Any performance deviation

found in the new version’s performance is reported by the tester to the developer.

One hour of test log data was collected. Log lines contain log messages that can be

grouped into sequences per user session and mapped to a use case using log sequence

patterns known to the system experts [9, 21, 43].
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We compare the old and the new version of the ES 1 to verify if the scenario-

centric performance analysis differs from the user-centric performance analysis. Out

of around 100 scenarios, we considered the four most occurring ones as the four major

use-cases of this system. Other scenarios had a too low frequency of occurrence to

comment on their performance. Every scenario’s first and last log line’s time-stamp

was used to calculate the response time for that scenario. Ideally, every user in these

tests is expected to perceive a similar response time.

Enterprise System 2 (ES 2): The second system in our case study is a large

scale enterprise system of which we could use the test log data. The test was run on

one version under development and 10 hours of log data was collected and analyzed.

We used a similar log sequence analysis approach as we did for ES 1. Out of 1,092

scenarios, we considered the top 6 most popular log sequences.

Dell DVD store (DS2): The third case study was performed on the Dell DVD

store (DS2). DS2 is an open-source three tier simulation of an e-commerce website

[28]. We set up the DS2 test server in a lab environment using two Pentium 3 servers

running Windows 2008 and Windows XP with 512MB of RAM. The first machine

is the Apache Tomcat web application server [73] and the second machine is the

MYSQL 5.5 database server [57]. The load for this test was generated using the

DS2 web load driver running on a Pentium 4 machine with 2GB of RAM. The load

generator simulates multiple users by sending HTTP requests to the web server for

each user, the web server processes the request by communicating to the database

server, then replies to the user (load generator) again.

We ran the test for more than 11 hours and monitored the server resource utiliza-

tion logs to identify the initialization period of the system. We removed the initial
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1 hour log data to remove the system initialization performance from our study and

concentrated on the normal operation of the system. Details of the Dell DVD store

(DS2) load generator configuration and other graphs are provided in Appendix B to

help any future replication study. We instrumented the DS2 driver program that gen-

erates the load to the web application to create log files containing one line for each

user’s HTTP request+reply (i.e., for each instance of every use case scenario). As a

simple e-commerce system, DS2 has four scenarios: Create new user, Login to the

system, Browse products and Purchase. As the scenario ‘Create new user’ occurred

only once for each user, we dropped it from our study.

In total, our study contains 4 use-case scenarios from ES 1 (2 versions), 6 use-case

scenarios from ES 2 and 3 use-case scenarios from the Dell DVD store e-commerce

system.

5.2 Results of our Case Study

For each question, we present the motivation behind the research question, the ap-

proach and a discussion comparing the results of the user-centric approach with those

of the scenario-centric approach for analysis.

5.2.1 How does the user-centric performance experience differ from the

scenario-centric one?

Motivation: A user’s initial experience to the system (i.e., the experience of the first

few operations performed by a user) is very important to the user’s confidence in the

system’s performance and to keep him using the system. In a competitive market,

bad experience of usage may cause the user to ask for a refund, look for another new
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Table 5.2: Enterprise system 1 - scenario-centric Comparison of performance

Scenario # Old New

1

Mean 227.34 226.1

Median 204 203

% of bad instances 12.65 11.32

2

Mean 410.62 425.89

Median 406 406

% of bad instances 16.48 0.21

3

Mean 44.82 42.25

Median 46 32

% of bad instances 7.19 0.37

4

Mean 8.24 7.14

Median 0 0

% of bad instances 5.03 4.64

service provider, repeatedly call to system support lines or ask for technical support.

A user’s overall experience (i.e., the experience across all operations by a user

during our test analysis time frame) explains whether the initial experience was rep-

resentative for the full experience. For example, if there are some users who have

a persistent problem in their network or system configuration, they will always per-

ceive a bad experience. In case of a relatively small number of such unlucky users,

the scenario-centric analysis of the system’s performance may miss such information,

although the performance problem of those users can be important. A good run

from the scenario-centric perspective may actually be a bad run from the user-centric

perspective.

Approach: Initial Experience: For the initial experience, we considered the
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Figure 5.2: Enterprise System 1 - Cumulative Density Plot of user Overall Experience
in % of bad instance

arrows in Scenario # 2 are indicating the % of users who had 0% bad instances
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Figure 5.3: Enterprise System 1 - User-centric initial (first) experience
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Table 5.3: DS2 - scenario-centric Comparison of performance

Scenario # Mean Median % of bad instances

Login 545.31 531.25 13.11

Browse 517.05 515.63 12.87

Purchase 6062.84 5984.38 20.8

response time for the first “n” instances of a scenario for each user. The idea behind

a metric for initial experience is to see how many users had a bad experience initially.

In this paper, we measure bad experience or bad instance of a scenario as an instance

with the following delay or response time criteria:

delay > median(scenario) + standard deviation(scenario)

This threshold uses the median and standard deviation of response time for each

scenario.

Out of the “n” initial instances, we measured the percentage of bad instances.

We choose the value of “n” to be the maximum of the 10th percentile and 5. For

example, in Figure 5.1, we can see the histogram of the total number of instances

of a user for each scenario in ES 1. For scenario 1 and 4, the 10th percentile was 1

and using only the first instance to measure the initial experience would give us only

two levels of initial experience, either 0% or 100%. Hence, for these two scenarios,

we considered the first 5 instances to measure the initial experience and for scenarios

2 and 3, we considered the first 7 instances (as the 10th percentile value was 7). In

ES 2, we considered n=11,11,9,5,5,5 for six scenarios and in DS2, n=5,7,5 for the 3

scenarios.

For the scenario-centric performance analysis, we do not need to define “n”, since

performance trend curves (discussed in subsection 5.2.2) over time can show the
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scenario-centric initial performance.

Overall Experience: For the user-centric performance measure of overall experi-

ence, “n”’ represents all instances for a user during the whole period of analysis.

For example, if a user had 35 instances during one hour of analysis, we identi-

fied the number of bad instances in these 35 instances using the same threshold

delay > median(scenario) + standard deviation(scenario), then calculated the per-

centage of bad instances of that user.

For the scenario-centric performance measure of overall experience, we considered

the mean, median and density of the response time, as well as the percentage of bad

instances across all users. For example, if a scenario had 50 users and they had 500

instances of a scenario during one hour of analysis, we calculated the mean, median

and standard deviation of response time for these 500 instances across all users.

The mean value gives us the average across all observation data including outliers,

while the median quantifies the central point of the dataset, neutralizing the outliers.

We graphically compare the distribution of response time with kernel density plots

(regular and cumulative).

With median and standard deviation values, we used the same threshold delay >

median(scenario) + standard deviation(scenario) to define a bad instance. Finally,

we measured the scenario-centric % of bad instances in each scenario (shown in Table

5.2 for ES 1 and in Table 5.3 for DS2). For scenario-centric comparison of mean

response time values between old and new ES1 version, we also used Welch’s statistical

t-test to check whether the mean difference is statistically significant.

Findings - Enterprise System 1: The user-centric performance analysis showed

major performance improvements for 2 (out of 4) use case scenarios (scenario #2
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and #3 in Figure 5.2) while the scenario-centric analysis showed major performance

improvements for 1 use case scenario (scenario #3 in Table 5.2).

Figure 5.2 shows the differences (between old and new version) in user-specific

response time for enterprise system 1 as a cumulative density plot. This figure looks

similar to the Initial experience curves for the users in Figure 5.3.

In scenario #2, using median values (scenario-centric, across all users) we find

that most of the instances in both versions had the same response time of 406 units

indicating no performance deviation between these two versions. Using mean values,

we find approximately 3.72% performance degradation (statistically significant) on

average in the newer version, while from user-centric analysis, (Figure 5.2) we found

that the newer version of the system performs better than the older version. We

found that more than 90% of the users using the older system had at least 1 bad

instance (% of bad instances > 0 in Figure 5.2, scenario #2, marked with red arrow),

while less than 5% of the users had such a bad experience in the new system (marked

with green arrow).

In scenario #3, we can see from Table 5.2 that on average and for most of the

instances (median), the newer version had a better overall performance (5.73% bet-

ter on average, statistically significant and 30.43% using median). The user-specific

overall experience curve for this scenario also confirms that performance improvement

(Figure 5.2).

Scenario-centric analysis (shown in Table 5.2) shows that, depending on the sce-

nario, the mean difference between the old and new version was within the range of

0.39% to 16.27%.

Findings - Enterprise System 2: In ES 2, user-centric analysis in 5 (out of 6)
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Figure 5.4: DS2-Cumulative Density Plot of user Overall Experience in % of bad
instances

scenarios showed that 50% of the users in each scenario had a bad performance in

at least 20% of their instances, while the scenario-centric analysis showed 2.09% to

18.35% bad instances across all users. Different perspectives of the system perfor-

mance are shown by these two approaches. We do not show the data and curves for

ES 2 as these looked similar to the ones shown for ES 1.

Findings - DS2: In DS2, a user-centric analysis for the 3 (out of 3) scenarios showed

that 40% (100% - 60%) of the users in each scenario had a bad performance at least in

15% of their instances (red dashed lines in Figure 5.4), while scenario-centric analysis

shows 13.11% to 20.8% bad instances across all users (Table 5.3). Having more than

15% bad instances for 40% of the customers may be too high from a user-centric

perspective of the system performance.

Figure 5.4 shows the cumulative density function (CDF) plot of the user’s overall

experience (user-centric analysis result) and Table 5.3 shows the mean, median and

% of bad instances across all users (scenario-centric analysis result) .

We can see that on average, a login or browse scenario in DS2 takes around 500
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milliseconds or 0.5 seconds and around 12-13% of instances had a response time

higher than median + standard deviation. From a scenario-centric perspective, the

performance may look good, but when we look at the user-centric view in Figure 5.4

(blue dotted lines), we find that more than 80% of the users using DS2 had at least

one performance deviation. Moreover, we found around 5-10% of the users with more

than 30% of the requests having a performance deviation.

Response time (Table 5.3) of the purchase scenario show that on average across

users, the response time was more than 6 seconds (which is surprisingly high) and sim-

ilar to the login and browse scenarios, 50% of the users perceived a bad performance

in more than 15% of their instances (green dotted line in Figure 5.4).

�

�

�




User-centric performance analysis shows users with serious performance problems in

10 scenarios (out of 13). These problems would have gone unnoticed if we had only

performed a scenario-centric performance analysis.

5.2.2 How does the user and scenario-centric performance evolve over

time?

Motivation: Progressive degradation of software performance is a common phe-

nomenon that is called “software aging” [63]. To counteract software aging, oper-

ators measure, analyze and predict system response time (delay) and resource us-

ages over time [34]. Software system performance trends can show how the system’s

performance changes over time while the system is running. Typically, aggregated

summaries of the data (e.g., per minute or week) are plotted over time for system

performance analysis. Again, the user aspect is missing in such time trends. A soft-

ware tester may be interested in knowing how system performance changes for an
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individual user over time. For example, it may be possible that in the beginning,

the average response time for a user may be higher than later on (because of the

initial registration process for each new user or due to a cache not being filled up

yet), and the tester wants to investigate these. Moreover, it may be possible that

based on scenario-centric performance trends (mean and median), a software sys-

tem’s performance is steady over time, while from the user-centric view, as he/she

uses the system more and more, the performance actually degrades. The scenario

and user-centric perspective of experience over time may have different performance

trends.

Approach: From the scenario-centric perspective, the time trend of a system’s per-

formance is measured by collecting the instance response time and plotting this re-

sponse time over the instance start/end time. For example, for the duration of our

test analysis period, we collected the response time and instance start time for each

scenario instance in the system. In a period of 1 hour for ES 1 and 10 hours for ES

2 and DS2, we used “loess” (locally weighted scatter plot smoothing) [25] to get the

time trend curve for the system’s performance.

For the user-centric time trend, for each scenario, we consider the first instance

of each user as the user’s time 1, the second instance as time 2, and so on. At each

time X, we calculate the mean and median of the response time of all Xth instances.

Since in most of the scenarios, only a few users (usually less than 20) have the highest

number of scenario instances (for example in Figure 5.1 for ES 1), we drop data points

with less than 100 users in our plots.

Findings - Enterprise System 1: In ES 1, 2 scenarios (out of 4) showed a different

time trend when we considered the time from the scenario-centric and user-centric
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Figure 5.5: Scenario # 1 of Enterprise System 1 - performance trend over time from
scenario-centric (left) and user-centric (right) view.

Figure 5.6: Scenario # 2 of Enterprise System 1 - performance trend over time from
scenario-centric (left) and user-centric (right) view.
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Figure 5.7: Scenario # 3 of Enterprise System 1 - performance trend over time from
scenario-centric (left) and user-centric (right) view.

Figure 5.8: Scenario # 4 of Enterprise System 1 - performance trend over time from
scenario-centric (left) and user-centric (right) view.
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Table 5.4: Number of users and scenario instances in each Scenario.

Scenario #
in ES 1

(old
version)

# of scenario instances # of users

1 142,528 29,769
2 498,838 30,000
3 2,025,645 128,104
4 391,959 123,462

Scenario #
in ES 2

# of scenario instances # of users

1 8,387 500
2 8,287 500
3 7,051 500
4 4,616 500
5 4,310 487
6 3,908 500

Scenario in
DS2

# of scenario instances # of users

Login 138,318 19,984
Browse 418,395 21,385
Purchase 139,733 21,384

perspectives. Both time trends showed useful information and one cannot be replaced

by another.

Figure 5.5, 5.6, 5.7 and 5.8 show the performance trend over time comparison

between scenario-centric and user-centric view for scenario #1, #2, #3 and #4 re-

spectively.

The scenario-centric trend for all scenarios show that most of the time, the older

version had a higher response time, although in the middle of the test run for scenario

#1, the newer version had a very large response peak. From the scenario-centric trend

lines, we can identify the time periods during the test data analysis hour when the
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Figure 5.9: DS2 - Scenario-centric (left) and user-centric (right) time trend of system
performance for “browse” response time

system performed poorly for each scenario and version.

From the user-centric performance trend lines, we can see that the older version

had a higher response time (similar to the scenario-centric trend line), although we

could not see any peak as we found in the scenario-centric trend lines of scenario #1.

Moreover, in scenario #3, in the user-centric view (Figure 5.7, right side) , the

users who are involved in more than 30 instances (3,409 or 2.66% users), perceived a

very bad performance (in comparison to the older version) for those instances after

the 30th one. This information could not be observed in scenario-centric analysis

(Figure 5.7, left side) .

In scenario #2 (Figure 5.6, right side), for the older version, the performance

got worse too for users over time, but in the newer version (in green) this problem

seems to be fixed. Such a conclusion cannot be made from the scenario # 1 and # 4

curves (right side figures of Figure 5.5 and 5.8) as the Y axis scale suggests that the
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fluctuation was very small in comparison to the median value.

Findings - Enterprise System 2: In ES 2, 5 scenarios (out of 6) showed a com-

pletely different time trend when we considered the time from the scenario and user

perspective. However, user-centric and scenario-centric trends were complementary

both showing useful trends for performance analysis. From the user-centric trend

lines, we could understand how the system performance changed over time for an in-

dividual user. However, from scenario-centric trend lines, we could only understand

how the overall system performance evolved over time.

Findings - DS2: In DS2, 1 scenario (out of 3) showed a different time trend when

we considered the time from scenario-centric and user-centric perspective. Figure 5.9

shows how the DS2 performance for the browse scenario changes over time. From the

scenario-centric trend curve, we can see that the response time increased first, then

decreased in this six hour period, while from the user’s perspective, we found that as

a user browses the DVD store more, his performance to the system improves. The

other two scenarios, login and purchase showed similar performance trends in both

scenario-centric and user-centric analysis. Please refer to Appendix B for the omitted

graphs of Dell DVD Store test data analysis.

�




�

	
The time trends drawn from the scenario and user-centric perspective show different

aspects in 8 scenarios (out of 13) in our case study.

5.2.3 How consistent are the user-centric and scenario-centric perfor-

mance characteristics?

Motivation: Performance consistency is an important factor for a user. A user using

a system regularly with a slow response time may get used to that slow performance,
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but if the system performs sometimes very fast and sometimes very slowly, this would

show to the user that a better experience is possible and he/she is likely to start

demanding such level of services. Consistent poor performance may be more expected

than inconsistent poor performance in the case of a network service provider that has

some users with specific Quality of Service (QoS) requirements that specify that the

user needs a consistent but poor performance (relative to the system’s performance

capability). Preference of consistency is dependent on the system operator’s and the

user’s performance expectation.

Figure 5.10 shows the simplest possible combination of performance and consis-

tency. For overall experience, a user may have either Good (G) or Bad (B) experience

while for performance consistency, a user may have either Consistent (C) or Inconsis-

tent (I) performance. The first square, which represents the users with consistently

good experience perceived from the system, is desired by everyone (user and system

operator). If it is not possible to have most of the users in square #1, the system

operator, depending on his or her preference, may prefer to have most of the users in

one of the other three squares. Intuitively, it seems that any user in the third block

(marked as 3), is the most unlucky one. Depending on the QoS offered to the user

(if the QoS offered is a slow but steady performance), this can also be the desired

performance by the system operator. Research in the field of marketing shows that

there may be some rational users who may want to rationally choose a lower qual-

ity [67]. For example, some users may be interested in a cheaper service that may

not give them the best overall performance (i.e., response time), but still they would

want this cheaper performance to be consistent. Such performance and consistency

analysis (shown in Figure 5.10) can identify the users in each of these performance
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regions.

Approach: To measure the performance consistency over time (scenario-centric),

we calculated the median and standard deviation of scenario instances in every one

minute interval and plotted the median ± standard deviation values in every such

interval using “loess”. For the performance consistency trend over user-perspective

of time, we plotted the median ± standard deviation values for the 1st, 2nd, 3rd,

... nth scenario instances across all users (similar to research question 2). Median

± standard deviation plots create two lines forming the standard deviation band in

which most of the scenario instance delay varies.

To measure the performance consistency, we used variance (which is the square

of standard deviation). For scenario-centric variance, we calculated the variance of

all instances across all users. For user-centric variance, we calculated the variance

of scenario instance response time for each user. To observe the relation between

user-centric performance consistency and the user’s overall performance experience as

described in Figure 5.10, we plotted the scatter-plot of variance vs overall performance

for each user (Figure 5.13). In the same plot, we added the scenario-centric variance

values by using horizontal lines.

Findings - Enterprise System 1: The performance consistency trends from user

perspective and the overall performance vs consistency scatter plot cannot replace the

scenario-centric analysis approach, but can be helpful to better assess the performance

of a software system.

Figure 5.11 and 5.12 show the performance consistency trend comparison between

scenario-centric (left side) and user-centric (right side) view for scenario #2 and #3

respectively. We used green for the new version and red for the older version to
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show the area of standard deviation band. For scenario-centric view of scenario

#2 (Figure 5.11, left side), we see that in the beginning (from X=0 to X=1000) the

newer version performed less consistently than the older version (green region of newer

version showing beyond the overlapped region). For scenario-centric view of scenario

#3 (Figure 5.12, left side), we see that the older version performed less consistently

than the newer version (wider error band for older version).

From the user-centric performance consistency trend (in Figure 5.11 and 5.12,

right side), we see very inconsistent performance during initial scenario instances

of the newer version. We are not showing the other two scenarios (#1 and #4) as

they did not show any visibly significant difference between scenario-centric and user-

centric performance consistency error bands. Both user-centric and scenario-centric

consistency trends show useful information and the purpose of one cannot be achieved

by the other one. Knowledge about performance consistency trends are useful for the

user and/or the service provider to ensure that the system meets the QoS requirement

consistently as per the agreement between them.

Figure 5.13 shows the variance and overall performance experience of each user as

a single semi-transparent dot. In this Figure, darker (green or red) dots and dotted

regions corresponding to over-plotting of several semi-transparent dots represent the

existence of many users in that region. Clearly visible scattered green dots with higher

values of variance in scenario #2 and #3 show many users in the newer version with

performance inconsistencies. Moreover, most of the green dots (new version) to the

left of the plot indicate the lower % of bad instances experienced by the users in the

new version.
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Figure 5.10: Four options to choose between consistency and overall performance.

Depending on the threshold set by the system operator to define good/bad per-

formance and consistent/inconsistent performance, each plot in Figure 5.13 can be

divided and mapped into the four regions as shown in Figure 5.10. For example, in

scenario #2, most of the green dots along the Y axis indicate that most of the users in

the newer version are either in square #1 or #4 (most of them had a good experience

depending on the threshold). In scenario #3, most of the users using both versions

were in either region #1 or #2 (most of them had a consistent experience depending

on the threshold).

Findings - Enterprise System 2: The scenario-centric and user-centric time trend

of performance inconsistency did not show any difference for ES2. 6 scenarios (out

of 6) had a similar error band curve from the scenario and user-centric perspective.

More investigation by variance vs % of bad instances showed that most of the users

had a consistent performance, although they were scattered into different levels of

performance experience (scattered along X axis).
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Figure 5.11: Scenario # 2 of Enterprise System 1 - scenario-centric (left) and user-
centric(right) performance consistency - showing the error band after
using LOWESS smoother.

Figure 5.12: Scenario # 3 of Enterprise System 1 - scenario-centric (left) and user-
centric(right) performance consistency - showing the error band after
using LOWESS smoother.
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Figure 5.13: Enterprise System 1 - User’s Experience Variance vs Overall Performance
Experience scatter plot.

Findings - DS2: The scenario-centric consistency plot for DS2 (Figure B.8, B.9

and B.10 in Appendix B), showed us that the DS2 overall performance variance was

consistent over time (two almost straight and parallel lines formed by median ±

standard deviation lines). The user-centric performance consistency plot also showed

a similar curve.

However, user-centric analysis of performance variance vs experience (% of bad

scenario instance) in Figure 5.14 shows that for the login and browsing scenarios, the

users faced less performance variance than for purchasing (relatively higher Y axis

value of variance in the purchase scenario than login and browse scenario ). In the

purchase scenario, a straight dark line along the Y axis represents a large number

of users with good but inconsistent performance experience (region #2 in Figure

5.10). Moreover, the many vertical long lines for the purchase scenario in Figure 5.14

show very inconsistent performance perceived by the users irrespective of their overall
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Figure 5.14: DS2 - User’s Performance Experience Variance vs Overall Performance
Experience scatter plot

performance.

�

�

�

�
User-centric analysis showed us a different trend from scenario-centric performance

consistency trends.

5.3 Threats to Validity

Our study was done on three software systems of different scale (ultra large, large

and small) and different type (open-source and commercial). To generalize our user-

centric performance analysis results, more projects from different software domains

should be studied.

This study was based on virtual users that are simulated by software load gener-

ators. Although no real users were involved in this study, the load generators used in

test environments follow realistic loads, typically derived from data about real users.

We used a median ± standard deviation (1 standard deviation) threshold to define

a scenario instance response time to be affected by bad performance. Depending on
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the performance criteria of the system used, this threshold should be adjusted. How-

ever, we also checked the median ± 3 * standard deviation threshold and found similar

findings (overall observation, although the percentages and values were different).

5.4 Chapter Summary

Our goal in this study was to verify the importance of user-centric software perfor-

mance analysis. Researchers in many fields such as marketing, software usability,

software reliability have a broad knowledge on how to do user-centric analysis in

their field. By the use of these analysis techniques in software performance analysis,

we were able to detect performance problems in a software system that could not be

detected from existing scenario-centric performance analysis techniques. User-centric

analysis could track the percentage of users with very bad experience and identify

users with good but very inconsistent performance. However, we also found scenarios

where performance peaks were detected by existing scenario-centric analysis, but not

by user-centric analysis. Hence, we believe the user-centric analysis should be used

as a complementary to the scenario-centric performance analysis approaches.
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Chapter 6

Conclusion and Future Work

The studies presented throughout this thesis are summarized and our main findings

are highlighted in this chapter. The limitations and possible directions for future

work are also presented.

6.1 Summary

Maintaining software performance with changing system environments and user de-

mand is essential for a software project to keep their users satisfied in today’s com-

petitive market.

Despite being an important software quality characteristics, we observe that per-

formance related bugs are rarely studied independently in software maintenance re-

search and practice. Possible reasons for such an observation may be the preconcep-

tion that performance bugs are not much different than other types of bugs.

To identify if there is any difference between performance bug and non-performance

bugs, and thus if a different treatment is warranted, we performed an empirical study

on both performance and non-performance bugs of the Mozilla Firefox and Google

Chrome web browsers to validate our research hypothesis:
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Performance bugs have different characteristics than other bugs and should

be treated differently in software maintenance research and practice.

In Chapter 3, we quantitatively studied the difference among three type of bugs,

i.e., performance, security and others in Mozilla Firefox and Google Chrome project.

Being considered to be very special and of interest, security bugs were studied to

provide context for our findings. Our findings suggest that different types of bugs

have different characteristics and hence quality assurance should take into account

the specific bug type. For performance bugs, we found that they require more time

to fix after being assigned, require more experienced developers and require more

source code changes (in terms of LOC). These findings provide some evidence of the

underlying differences in performance bugs or their fixing process.

To better understand this difference, we qualitatively studied performance bugs in

the Mozilla Firefox and Google Chrome projects. We also studied non-performance

bugs in this study to ensure that the findings we have for performance bugs are

specific to performance bugs only. We found that performance bugs are often hard to

reproduce. In Firefox, 19% of the performance bugs were fixed out of the blue without

any concrete link to the patch or change that fixed them. Furthermore, in 8% of the

performance bugs of Firefox, bug commenters became frustrated enough to switch to

another browser, compared to only 1% for non-performance bugs. 34% of performance

bugs in Firefox and 36% in Chrome provided concrete measurements of, e.g., CPU

usage, disk I/O, memory usage and the time to perform an operation in their report or

comments. In addition, twice (32%) as many performance bugs as non-performance

bugs in Firefox provided at least one test case in their bug report or comment. 47%

of the performance bugs in Firefox and 41% in Chrome required bug comments to
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co-ordinate the bug analysis, while only 25% of the non-performance bugs required

them. These findings show that performance bugs have different characteristics, in

particular regarding the impact on users and developers, the context provided about

them and the bug fix process.

In our further investigation in Chapter 5 based on one of our findings that perfor-

mance bugs make users very frustrated, we dug more into user-centric performance

analysis and found that introducing user-centric analysis for software performance

would provide us with a complementary view over the commonly used scenario-centric

analysis.

The above evidence provide support for our hypothesis, that, performance bugs

have different characteristics and hence, software maintenance research and prac-

tice should consider them differently. Project managers, developers, testers, and

researchers should consider adopting performance bug specific fixing process, tools

and techniques. For example, based on our quantitative study findings, further work

may be done to find out the reason behind the longest time to fix for performance

bugs, and improve that time to fix performance bugs. Similarly, based on the quali-

tative analysis, further research is needed to improve the representation of the “steps

to reproduce” for performance bug reports, and for developing more optimized means

than collaborative discussions to identify the root cause of performance bugs.

6.2 Limitations and Future Work

The work presented in this thesis has several limitations. Limitations specific to our

studies are described in the corresponding sections (Section 3.4, 4.5 and 5.3) of their

respective chapters. In this section, we outline the overall limitations of this thesis
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and how future work may be designed to address them.

• Our results may be biased by the studied projects. Initially, we studied Mozilla

Firefox project data in our qualitative study described in Chapter 4. Replication

of our analysis using different projects was necessary to verify our findings for

other large scale software projects.

Hence, we studied Google Chrome bug repository data. We found that per-

formance bugs are tossed more frequently and have the lowest entropy (com-

plexity) than security and other bugs in Chrome project. Three type of bugs

(performance, security and others) showed a statistically significant difference

for most of the characteristics. However, we could not find the rationale of

any of these quantitative study findings of Google Chrome project using our

qualitative study findings. Hence, we could not constitute a quantitative and

qualitative study findings comparison table for Google Chrome project (as we

did for Mozilla Firefox project in Table 4.4).

• Although security and performance bugs showed differences for different char-

acteristics in both projects, the findings were opposite for most of the character-

istics. For example, performance bugs are tossed more in the Chrome project,

but security bugs are tossed more in the Firefox project. More studies should

be done on different projects to investigate the reasoning for different behavior

of same bug type in different projects.

• We found some bugs in both projects Firefox and Chrome projects (11 in Firefix

and 1 in Chrome) that were both tagged as a security and performance problem.
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In our quantitative study, we put these bugs in both the security and perfor-

mance groups. More studies are needed to understand the interplay between

these two important types of bugs.

• We studied only the bug data of two open-source web browser projects in our

initial study on performance bugs. However, to validate the point that our

study of performance bugs can be beneficial, we picked one of our findings to

investigate more and use it toward suggesting an improvement of the software

performance analysis process. In this study, we had the chance to use data

from enterprise systems along with an open-source e-commerce system. Again,

we used performance test data from three projects for this user-centric perfor-

mance analysis study that may need more study on other projects from different

domains (i.e., size, business model, complexity).

• We only investigated one of our findings in detail to improve the software per-

formance maintenance effort. However, studies based on other findings may

discover ways to improve other quality assurance processes related to perfor-

mance bugs.

• Our thesis tries to establish the importance of considering performance bugs

separately from other non-performance bugs. However, studies on other types

of bugs, i.e., usability, functionality, and serviceability bugs may be beneficial for

improving those software quality characteristics in software and thus improve

the overall performance. Further bug-type specific research can be done on

these types of bugs.
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[48] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı́rba. Semantic clustering: Iden-

tifying topics in source code. Inf. Softw. Technol., 49:230–243, March 2007.

[49] Henry H. Liu. Software Performance and Scalability: a Quantitative Approach.

Wiley & Sons, Inc., 2009.

[50] Jonathan I. Maletic and Andrian Marcus. Supporting program comprehension

using semantic and structural information. In Proceedings of the 23rd Interna-

tional Conference on Software Engineering, ICSE ’01, pages 103–112, Washing-

ton, DC, USA, 2001. IEEE Computer Society.

[51] Lionel Marks, Ying Zou, and Ahmed E. Hassan. Studying the fix-time for bugs

in large open source projects. In Proceedings of the 7th International Conference

on Predictive Models in Software Engineering, Promise ’11, pages 11:1–11:8, New

York, NY, USA, 2011. ACM.

[52] Alan Merten and Daniel Teichroew. The impact of problem statement languages

on evaluating and improving software performance. In Proceedings of the De-

cember 5-7, 1972, fall joint computer conference, part II, AFIPS ’72 (Fall, part

II), pages 849–857, New York, NY, USA, 1972. ACM.

[53] A. Mockus and J.D. Herbsleb. Expertise browser: a quantitative approach to

identifying expertise. In Proceedings of the 24rd international conference on

Software engineering, ICSE ’02, pages 503 – 512, 2002.



BIBLIOGRAPHY 109

[54] Audris Mockus and David Weiss. Interval quality: relating customer-perceived

quality to process quality. In Proceedings of the 30th International Conference

on Software engineering, ICSE ’08, pages 723–732, 2008.

[55] Audris Mockus, Ping Zhang, and Paul Luo Li. Predictors of customer perceived

software quality. In Proceedings of the 27th International Conference on Software

engineering, ICSE, pages 225–233, 2005.

[56] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of

the efficiency of change metrics and static code attributes for defect prediction. In

Proceedings of the 30th international conference on Software engineering, ICSE

’08, pages 181–190, New York, NY, USA, 2008. ACM.

[57] MySQL AB. Mysql community server, 2011, Version 5.5.

[58] Nachiappan Nagappan, Brendan Murphy, and Victor Basili. The influence of

organizational structure on software quality: an empirical case study. In Pro-

ceedings of the 30th international conference on Software engineering, ICSE ’08,

pages 521–530, New York, NY, USA, 2008. ACM.

[59] Stephan Neuhaus and Thomas Zimmermann. Security trend analysis with cve

topic models. In Proceedings of the 21st International Symposium on Software

Reliability Engineering, ISSRE ’10, pages 111–120, Washington, DC, USA, 2010.

IEEE Computer Society.

[60] Dor Nir, Shmuel Tyszberowicz, and Amiram Yehudai. Locating regression bugs.

In Hardware and Software: Verification and Testing, volume 4899 of Lecture

Notes in Computer Science, pages 218–234. 2008.



BIBLIOGRAPHY 110

[61] Kai Pan, Sunghun Kim, and E. James Whitehead, Jr. Toward an understanding

of bug fix patterns. Empirical Softw. Engg., 14:286–315, June 2009.

[62] Lucas D. Panjer. Predicting eclipse bug lifetimes. In Proceedings of the 4th

International Workshop on Mining Software Repositories, MSR ’07, pages 29–,

Washington, DC, USA, 2007. IEEE Computer Society.

[63] David Lorge Parnas. Software aging. In Proceedings of the 16th International

Conference on Software engineering, ICSE, pages 279–287, 1994.

[64] Denys Poshyvanyk and Andrian Marcus. Combining formal concept analysis

with information retrieval for concept location in source code. In Proceedings

of the 15th IEEE International Conference on Program Comprehension, pages

37–48, Washington, DC, USA, 2007. IEEE Computer Society.

[65] C. R. Reis and R. P. de Mattos Fortes. An overview of the software engineering

process and tools in the mozilla project. In Proceedings of the Open Source

Software Development Workshop, pages 155–175, 2002.

[66] Christian Del Rosso. Performance analysis framework for large software-intensive

systems with a message passing paradigm. In Proceedings of the 2005 ACM

symposium on Applied computing, SAC ’05, pages 885–889, New York, NY, USA,

2005. ACM.

[67] R. T. Rust, J. J. Inman, J. Jia, and A. Zahorik. What you don’t know about

customer-perceived quality: The role of customer expectation distributions. Mar-

keting Science, 18:77–92, 1999.



BIBLIOGRAPHY 111
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Appendix A

LDA Outputs for Security and Performance Bugs

Table A.1: LDA topics for performance bugs (30 topics)

Topic

#

Words in the Topic

1 object properti obj call function script var jsval global src trace scope

slot arrai record jscontext stack abort jsobject

2 buffer stream data pars convert charset parser copi read token input

write url length file utf cpp version call

3 cach page disk save data sourc entri view memori size store back

disk cach reload set histori user view sourc session

4 font text select gfx editor type charact glyph size run metric gtk

text frame rang text run line font font textarea xft

5 style tabl css rule color border data cell row width context style context

sheet stop selector height style data map hint

6 line byte line byte event context layout metric shell metric line

line layout layout metric handl ref ptr entri img cach ref ptr cach entri
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7 view paint rect frame widget window draw layer region clip updat in-

valid area manag render svg view manag chang caret

8 window reproduc hang gecko build window window problem result

crash bug step user window gecko report browser work step reproduc

click linux

9 java applet plugin sun jre sourc unknown unknown sourc load version

plug run sourc sun consol java applet thread netscap applet applet oji

10 bug mark duplic bug mark mark duplic duplic bug fix bug bug build

problem mac verifi netscap win work linux move keyword bugzilla

11 bookmark histori place menu browser select item queri search date filter

visit result click bug remov moz compon match

12 scroll slow page window bug build problem cpu fix background mous

testcas linux anim imag perform test move fast

13 dll plugin flash thread video xul xul dll messag window call wait xpcom

run process player base crash core plai

14 frame reflow line block state context layout block frame htmlre-

flow frame reflow ifram tabl pre box list reflow state ipr context

htmlreflow state metric

15 symbol window file load mode profil safe defer dll support system mod

program mod load time net clr version clr updat

16 imag print gif img png decod gtk draw cairo gfx frame preview printer

color src print preview alpha size set
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17 alloc arrai size memori arena malloc byte free pool sort stack number

call string heap code patch bit lock

18 cpu tab window memori usag open problem bug close cpu usag time

comment run system ram page leak minut process

19 file pref startup servic profil load directori compon xul cooki read local

jar instal manag zip browser user open

20 cpp src build line cpp line base content base src trunk seamonkei tinder-

box html build seamonkei file event build tinderbox shell crash window

21 bug comment don work make problem time issu thing code fix repli

repli comment doesn set chang good point start

22 patch attach comment creat creat attach fix test check comment attach

attach patch code bug remov chang review call branch make updat

23 mail messag folder imap thunderbird attach file server msg log download

problem account send inbox email compos open displai

24 event timer window call process queue event event thread listen fire

notif user messag docum handler pend flush load set

25 node elem content attribut docum tabl entri result context hash kei

add call list set child index function parent

26 build compil gcc enabl code check optim version option linux defin

disabl function add nspr gener bit platform instruct

27 page load html script testcas attach docum test creat file url content

page load creat attach link browser render bug text
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28 server connect request proxi network send socket ssl smtp data log

thread tcp respons problem host state secur psm

29 time test perform profil run build number call faster sec improv result

slower creat regress spent spe slow machin

30 lib thread usr usr lib compon event lib compon symbol app debug wait

cpp system home version bin run modul servic

Table A.2: LDA topics for Security bugs (10 topics)

Topic
#

Words in the Topic

1 event cpp line window dll src crash xul shell base view xul dll handl
bytes line bytes widget pre cpp xul app

2 regress obj patch var src root revision function test object branch
regress regress xml script cvsroot index call jsval assert

3 header cooki test content user uri server channel respons cach request
site jar page css redirect url proxi host

4 crash build src tinderbox line build tinderbox depend winnt cpp
winnt depend cpp line framework xul version trunk window debug base
depend layout

5 frame line layout crash cpp block reflow assert state testcas pre
frame cpp gener list cpp line block frame style layout gener content

6 patch branch test check testcas code trunk window repli don file make
work set gecko verifi land releas doesn

7 imag size length frame decod data buffer charact alloc width crash lib
overflow read usr lib usr png memori state

8 window load url uri page file open content docum secur script html
browser javascript href user locat link dialog

9 content docum elem node index xul child remov bind xbl row src crash
tree cpp parent print arrai content base

10 object window function script properti princip call scope global obj set
wrapper xpconnect check proto access eval outer prototyp



118

Table A.3: LDA topics for security bugs (5 topics)

Topic
#

Words in the Topic

1 patch object branch regress obj function test check src call code properti
set revision repli var script root arrai

2 window patch test branch check content docum testcas load script secur
work trunk code url gecko uri file make

3 patch test file user check repli code imag html header problem set
branch data error type request issu don

4 frame crash patch testcas cpp branch line block layout pre content
reflow assert state list check trunk rev build

5 line cpp crash event window src dll build xul base view shell tinderbox
depend trunk build tinderbox handl cpp line frame
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Appendix B

Dell DVD Store

In this Appendix, we provide the Dell DVD Store performance test configuration we

used, and our finding graphs for any replication study.

Table B.1: Dell DVD store configuration

Database size Minimum (10MB)

Number of threads 50

Ramp rate 10

Warm up time 1

Run Duration 11 hours

Customer think time 5

Percentage of new cus-
tomers

1

Average number of
searches per order

3

Average number of items
returned in rach search

5

Averga number of items
purchased per order

5

Web Application Type JSP
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Figure B.1: Histogram of number of messages in DS2

Figure B.2: DS2 user-centric overall performance (Cumulative Density plot for % of
bad messages)

Figure B.3: DS2 - user-centric initial experience of customers (Cumulative Density
for % of bad initial messages)
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Figure B.4: Density of Response time for each scenario (DS2) Logged Scale

Figure B.5: DS2 - login scenario - comparison between scenario-centric (left) and
user-centric (right) performance trend over time
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Figure B.6: DS2 - browse scenario - comparison between scenario-centric (left) and
user-centric (right) performance trend over time

Figure B.7: DS2 - purchase scenario - comparison between scenario-centric (left) and
user-centric (right) performance trend over time
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Figure B.8: DS2 - login scenario - comparison between scenario-centric (left) and
user-centric (right) performance consistency over time

Figure B.9: DS2 - browse scenario - comparison between scenario-centric (left) and
user-centric (right) performance consistency over time
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Figure B.10: DS2 - purchase scenario - comparison between scenario-centric (left) and
user-centric (right) performance consistency over time

Figure B.11: User-centric Consistency vs overall performance for DS2
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