AUTOMATED DISCOVERY OF PERFORMANCE REGRESSIONS
IN ENTERPRISE APPLICATIONS

by

King Chun Foo

A thesis submitted to the Department of Electrazad Computer Engineering
In conformity with the requirements for

the degree of Master of Applied Science

Queen’s University
Kingston, Ontario, Canada

January, 2011

Copyright ©King Chun Foo, 2011

Author’s Declaration for Electronic Submission of aThesis

| hereby declare that | am the sole author oftthésis. This is a true copy of the thesis, inclgdin
any required final revisions, as accepted by myremars.

| understand that my thesis may be made electribniaailable to the public.

Abstract

Performance regression refers to the phenomenawherapplication performance degrades
compared to prior releases. Performance regresarensnwanted side-effects caused by changes
to application or its execution environment. Pregioresearch shows that most problems
experienced by customers in the field are relatecpplication performance. To reduce the
likelihood of performance regressions slipping iptoduction, software vendors must verify the
performance of an application before its release durrent practice of performance verification
is carried out only at the implementation levebtigh performance tests. In a performance test,
service requests with intensity similar to the prdibn environment are pushed to the
applications under test; various performance coan{e.g., CPU utilization) are recorded.
Analysis of the results of performance verificatisrboth time-consuming and error-prone due to
the large volume of collected data, the absencéomhal objectives and the subjectivity of
performance analysts. Furthermore, since performamcification is done just before release,
evaluation of high impact design changes is delay#il the end of the development lifecycle. In
this thesis, we seek to improve the effectivenégedormance verification. First, we propose an
approach to construct layered simulation mode&ufiport performance verification at the design
level. Performance analysts can leverage our ldysireulation models to evaluate the impact of
a proposed design change before any development &ffcommitted. Second, we present an
automated approach to detect performance regresdimm results of performance tests
conducted on the implementation of an applicat@ar approach compares the results of new
tests against counter correlations extracted fremiopmance testing repositories. Finally, we
refine our automated analysis approach with ensefelkning algorithms to evaluate

performance tests conducted in heterogeneous gefawal hardware environments.

Acknowledgements

| would like to thank Professors Ying Zou and AhnmtedHassan for their guidance and
support in this research and the opportunity td@ ®esearch In Motion (RIM) during the second
year of my study.

In addition, | would like to thank Zhen Ming Jiaagd Dr. Bram Adams from SAIL, and
Parminder Flora from the Performance Engineeriagitat RIM for their fruitful suggestions and
tireless reviews that greatly improved my work.

Finally, 1 would like to express my gratitude to rnparents, Gloria and John, for their
decision and sacrifice to allow me to study abr@edi my aunt and uncle, Margaret and Don, for

their care and advice after | moved to Canada.

Table of Contents

Author’s Declaration for Electronic Submission OF[8eSiScceoiiiiiiiiiiiiiiiiiiii e ii
Y 013 1 - T P PPPPUURPR iii
Yol [0 1Y [=Te [o =T 0 0= o) iv
(O gF=T o] =1 g R 1)1 0o [o 1o 1P 1
1.1 Challenges in discovering performance regrassiO...........cccoeevveevereiiieeeeeiinieeeeennnnnns 2
1.2 TRESIS STAEIMENT ...t eeeeeee et e e e e e e e ee e e e e e e e e eeeaeenene 3
RS @ U =TT o] (0 -V o 1SS 4
1.3.1 Discovery of performance regression at thsgadevelccviiiiiiiiiiinnnnnens 4
1.3.2 Discovery of performance regression at th@ementation level B...
1.4 TheSiS CONLIDULION ..o ettt e e e e e e e e e e e eeeas 6
1.5 TheSiS OrganiZationcuuuiiiiiiiiiiiee e e e e e e e et s e e e a e e e e e aba e e e e eaeanaas 7
Chapter 2 Performance VerifiCationcooveiiiiiiiii e 8
2.1 Performance verification at the design [eV&l............cooiiii i, 8
2.1.1 Analytical MOGEIS.......couuiiiiiiiii e e e et eeeea e e e e et e e e e eeans 9
2.1.2 SIMUIAtioN MOEISccoiii e eeeeee e e e e e e 9
2.1.3 Maintaining performance models to addrederdint stakeholders’ concerns............ 10
2.2 Performance verification at the implementat@el................cccceevv i vcieeeeen, 11
ARG TS 10 10 0= V28U 14
Chapter 3 LItErature REVIEWcicuuuiieiei i ee e s e e e e e e e enan s e e e e ara e e eeannnns 15
3.1 Performance verification at the design [eVel...........ccooeii i, 15
3.1.1 Analytical modeling approaches ... eeeeeoieeieiiiii e 15
3.1.2 Simulation modeling approaches..........ccueieiiiiii i 18
3.2 Performance verification at the function level.............ccoooiiiie s 19
3.3 Performance verification at the implementat@®rel................cccoeeiv i cvciceeeen, 19
3.3.1 Analyzing performance tests using eXecutdgS.L.............ccoeiiiiiiiiiiiineeeeeven s s 19
3.3.2 Analyzing performance tests using performaeeterscocevvvevveeevvnnennnnnn. 20.
3.3.2.1 Supervised approaches for analyzing pegoom counters............cccoeeeveeeeennnnnn. 21
3.3.2.2 Unsupervised approaches for analyzing pagoce counters............cccceeeeeens 21
I YU 1 0] =V 1Y P 22
Chapter 4 Discovering Performance RegressionsedDdsign Level..........cccooeeiiiiiiiiiiiiii 23

\"

4.1 Layered simulation Modeloooiiiirrii e 24
N VYo 4 (o IR oAV o Y=Y RPN 25
o A o g g o Lo g 1T o B oY= PP 28
I B o 1Y o= | = Y PSR 29
R ot g = U [1 - V= PSSP 29

4.2 MOAEI CONSEIUCTION ...t eeeeee et e e e e e e e e e e e e et aaetat e s e e e e e e e e eennnnnaaaaaeeeeeeeeeenenes 29

G @=L IR 11 o [PPSR 31
4.3.1 Case Study 1: Constructing a layered simoratiodel for an RSS Cloud 31

4.3.1.1 Application deSCriPtiONcooiiiiieceies e e 31
4.3.1.2 World view layer of the RSS Cloud SYSteMu........cccuviiviiiiiiiiiiiiiiiiiie e 32
4.3.1.3 Component layer of the RSS Cloud SyStem............ccoevviiieiiiiiiiiieceiii e 33
4.3.1.4 Physical layer of the RSS Cloud SYStEMu.cccvvniiiiiiiiiiieeeceiiee e 33
4.3.1.5 Model validationoooiiiiiiee e 34
4.3.1.6 Experiments and data ColleCtionccceveiiiiiiii i e 34

4.3.2 Case Study 2: Using simulation models touatal changes to application design..... 37

4.3.2.1 Application deSCriPtiONcoiiiiiieceiie e e 37
4.3.2.2 Experiments and data ColleCtioncccveviiiiiii i e 39
4.3.2.3 Evaluating parameter CONfiQUIratioN . e« veeeevvieieeeeiiiieee et e e e eraeeeee e 40
4.3.2.4 Evaluating the benefit of migrating thefpenance monitor to a distributed
Lo 011 T o (1 = USRS 43
I 1= o] B 1] o] o USSP 44
4.4.1 Updating the simulation model to reflect dpsto the application......................4.. 4
4.4.2 Capturing reSOUrCe reqUIrEMENTS......coummes s teeeeerrnneearesinineerrerenseeseeareseeenennns 45
T 110 1 = Y PP 45
Chapter 5 Discovering Performance Regressionsedtiplementation Level 6.4
5.1 An illustration of our automated analysis aEID...............coovevveiiiiieeieie e 46
5.1.1 REPOI SUMMAIY ...ttt ememees bbbttt ettt a et e e e e e e e e e e e e e e aaaaaaeaeaaaaaaaaannns 47
5.1.2 Details of performance regreSSiONccvivveviiieeieiiiee e e e eee e eeeeenns 49
5.1.3 Performance comparison and in-depth analysis...........c..cccviiviiieeiiin e, 49
LA @ 10| =T o] o o 7= Tod o P 50
5.2.1 Counter NOrMAlIZALIONcceeiiiis e e e s 51
5.2.2 Counter diSCretiZationioeeeeiieiiei e e e e e e e e e 52

5.2.3 Derivation of performance SigNatUres. ccceeee..coovvviiiieiiiiie et eeee 53

I LT o Yo a flo [=T =T = L1 o] o PRSP 55
5.3 CASE STUAIES ..ottt ettt 56
5.3.1 Studied application: Dell DVD StOI€ ...cccccevveiiiiiiiiiii e vee e e e e 57

5.3.1.1 Application deSCriPtiONiiii e e e e 57
SRS I WA D - 1 - W oo]| 1= o o o T 58
5.3.1.3 ANalysis OF tESE D_2.....ciiiiiii i et e e e et e e e e e e 60
5.3.1.4 ANalysiS Of tESE D_3.. . iiiiiiii e e e e et e e e e e 61
5.3.1.5 ANalySiS Of tESE D _4.....ciiiiiii e et e e e e e e e e e e 61
5.3.2 Studied application: JPetStOre.......cccuuuiiiiiiiiee e 63
SIS IV N o] o] TTo=Ni o] g e [= 2 ox o] (o o [F 63
SRS IR DT 1 - W oo]| 1= o 1o o R 63
5.3.2.3 Analysis OF tESEJ 2 . i e 63
5.3.3 Studied application: A large enterprise a@bionccovieiieeiiiiii e e, 64
5.3.3.1 Application deSCriPtiONiiiiieiee e e e 64
5.3.3.2 DAta COIBCLIONeeeiiiiiiie s ettt e et e e e e e 65
5.3.3.3ANalysisS OF tESLE_ L ..oovuuiiiiiiiiiceei e e e 65
5.3.3.4 Analysis OF tESLE_2 ..oovuniiiiiiieeee e 66
5.3.3.5 Analysis Of tESLE_ 3 ...ouiniiiiiieeee e 66
5.4 DISCUSSION ...ttt et e ee et et e e e e e e e et et ettt e e e e e e e eeeentnna e aaeeeeeeeeeeennnnes 67
5.4.1 Quantitative approaches ... 67
5.4.2 Sampling period and counter discretization..............cccoevevviiiiiieiin e 67
5.4.3 Performance tESINGoieiiiet s e e e tes e e e e e e e e e e e e e e ee e e e aanann s 68
L I - a1 o To [= L= NPT 68
5.4.5 Automated diagnOSISoiiiiivtimmmmmmr et eeeeeeeseee et e e e e ettt eeeeanneeeeara e aaaans 69
LTS 100 = V28U 69
Chapter 6 Detecting Performance Regression usiats Tenducted in Heterogeneous
[0\ VT o] o] L= o] £ PSP UPROPPPPPPTRRIN 71
6.1 Our ensemble apProaChcooiii it 73
6.1.1 Counter NOrMALIZALIONcoeeiiii e e 73
6.1.2 Counter diSCretiZatiONcoiieeeeeiieie e e e e e e e e e eeaees 73
6.1.3 Derivation of counter COrrelationscoooo...oooiiiiiiiiiiii e 74

6.1.4 Combining results using an ensemble-learaiggrithm.................cccooeeieeiiinnnne 75

L0 I T 2 7= Vo [11 o RPN 75

L I S - Vo) (1 o PR 76

LI BT R (=T o T e [=T =T = U1 T o PP 78

LA O 1T 1 11 o Y PPN 78
6.2.1 Case study 1: Dell DVD StOrEc.uvucieeiee et een e e e 81
(S22 N R D - = W oo]| =T o o R 81
6.2.1.2 ANalYSiS OF tESE D _4.....ciiiiiii e et e e e e e e e re e e 82
6.2.1.3 ANalYSiS Of tESE D _D....iiiiiiii e e e e e e e 84
6.2.2 Studied application: JPetStOre.......cccuuuii i e 86
6.2.2.1 Analysis Of tEST I 3. i 87
6.2.3 Studied application: a large enterprise @ppbin...............ccceeeeeiiiiiini e, 88
6.2.3.1 Analysis OF tESLE_ L ..oovuuiiiiiiiiiieee e e e 89
6.2.3.2 Analysis OF tESLE_2 ..evvuniiiiiiieeee e 90
6.2.3.3 ANalysisS Of tESE E_3 ..iiuiniiiiiii e 92

8.3 DISCUSSION ...ttt ettt e e e e e ettt ettt bbb e e e e e e e e ee bbb s e e e e e e eeeeeennnnes 93

LR YU 1 0] =V Y 94
Chapter 7 Conclusion and FUtUre WOTK.......ccccceeiiiiiiiiiiiii e e e e 95

% Y =11 R o] o T3 o0 1Y/ =T =T [95

7 O o] o1 11 01U 1o 1 £ 96

T .3 FULUIE WOIK.... ettt e e e e e e e e e e ata e e e e e eaeeas 97
7.3.1 Online analysis of performance teStScuvuiiivei i 97
7.3.2 Compacting the performance regression report.........cccovvvevvviiiiieeeeeiiiineee e, 97

7.3.3 Maintaining the training data for our autoeabainalysis approach........................ 8..9

7.3.4 Using performance signatures to build perforoe models.............ccccoeeeeeeennnnnn. 98..

viii

List of Figures

Figure 1-1 Purchase processing in an e-commerdeaiiiiN...........cccuuvvirerrernneeereess s e 6
Figure 2-1: The "4+1" View MOdElccoimmimie e 10
Figure 2-2: The process of performance verification.............c.ccccciii i, 11
Figure 3-1: Open queueing Network Model........ccc.ooviiiii e 16
Figure 3-2: Closed queueing Network Modelc..oooiiiiiii i 16
Figure 4-1: Example of layered simulation modeldarRSS cloudcccooevvviiiiiievinnee, 27

Figure 4-2: Plot of the throughput of the RSS seatevarious request arrival rates.............36
Figure 4-3: Plot of the response time of the RS8eseat various request arrival rates 36.

Figure 4-4: Plot of the hardware utilization of RES server at various request arrival rate37....

Figure 4-5: World view layer of the performance monfor ULS applications 39
Figure 5-1: An example performance regression tERQL............ceeveereeiiieieeeiviiie e emmeeeaeenns 48
Figure 5-2: Overview of performance regressionysialapproach............cccccceeeiiiiiiiinnnnne. 50
Figure 5-3: Counter normalization and diSCretizatio............cccooeeeiiiiiiciiiiie e, 52
Figure 5-4: Definition of counter discretizationddscccoeei i e, 52
Figure 5-5: Example of an assocCiation MUIE 53
Figure 5-6: Performance Regression Report for @SPD_4 (Increased Load) 2..6
Figure 6-1: Overview of our ensemble-based appraach.........c.cccooevvviiiiiiiiiiii e 72

Table 3-1:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:
Table 4-8:
Table 4-9:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 6-1:
Table 6-2:
Table 6-3:
Table 6-4:
Table 6-5:
Table 6-6:
Table 6-7:

List of Tables

Summary of approaches based on QN madel...........cccooovviiiiiiiiiiiiinccieie, 16
Performance concerns of stakeholders ... 24
Mapping of our simulation models to #hel view model...........cocoevvvveiiiiiiiiieee. 24
Components and connections in Figure.4:L.........ocvviiiiiiieiiin e ceeee 28
Processing requirement for an RSS patin............cccooooevviiii i, 34
Performance data collected Per lay el .. .cocvuruiiiiiiieiie e 40
Categorization of CPU ULIliZAtioN .cuueei.vvii e 40
Categorization of RAM ULIliZAtION. . ceeevvviieeeeeeiie e 40
Simulation result for the performancenitar case study............occevviiiieiiiiieneens 42
Simulation result for the original agsof the performance monitor 43
Average precision and reCallo iiiiiii e 57
Summary of counters collected for DS2...........coovviiiiiiiiiiie e, 59
Summary of injected faults for DS2 arpexted problematic regressions

Summary of analysis for the enterpriggi@ationccoooeeeiiiiiiiiiiiceeeennnnn. 65
Counters flagged in T5 by multiple ré@dsocoiiiiiiiiieiiame e 75
Count of counters flagged as violatiopsndividual rule set..........ccccooeevviviieeen. 75
Test CONfIQUIALIONSciiieee e e r e e e e aa e 77
Summary of performance of our approaches............ccccoveeiiiiii e, 80
Summary of hardware setup for DS2.....c....voiiiiiiiiiie e, 82
Summary of Test Setup for JPetStOrB.ccce.en i 87
Summary of analysis for the enterpniStesnccccceev i e 89

Chapter 1

Introduction

Over the years, software applications are contislyowpdated in response to new
requirements or bug fixes. For example, applicatimay change to support new usage scenarios
or protocols. As the size and complexity continaegtow, software applications may become
vulnerable to performance degradation such as\a-étavn of response time, or higher than
expected resource utilization. Such phenomenon evtiee application performance degrades
compared to prior releases is known as performeggression. Previous research notes that most
problems experienced by the end users are relatatiet application performance [3] [61].
Consequently, the ability to detect performanceeaggjons in software applications is of prime
importance to organizations.

Currently, organizations make use of performansgstas the primary means to carry out
performance verification on applications [11]. lontrast to traditional regression testing, which
focuses on verifying the functional correctnessade changes, performance testing focuses on
measuring the response of an application under datluncovering evidence of performance
regressions [3] [4]. A load typically resembles thgage patterns observed in a production
environment and contains a mix of scenarios [38) &le, the MMB3 [23] benchmark
describes how typical users access the servicesdpbby the Microsoft Exchange Server. The
MMB3 benchmark specifies that a user will send &isrper day on average, 15% of which are
high priority, and another 15% have low priority parformance test usually runs such a load for
hours or even days, during which execution logs lamaddreds of performance counters (e.g.,
response time and CPU utilizations) about the noripplication are recorded. After the test,

performance analysts first compare counter averaggsnst pre-defined thresholds to flag
1

counters that are at alarming levels. The analygts selectively compare other counters in an
attempt to uncover any performance regressionseimpplications [24]. Analysis of performance
tests is a manual process that would typically take¢o a few days. All data collected during a
performance test as well as its analysis are agdhinto the performance testing repositories for

bookkeeping purposes.

1.1 Challenges in discovering performance regression

Performance verification is usually the last stapan already delayed schedule [34]. At
Design changes that may have negative impact omppécation performance are usually not
evaluated until those changes are reflected insthece code. At this late stage, performance
regressions introduced by the design changes e thfe most difficult and expensive to fix [52]
[53]. While design changes can be evaluated wittiopgance modeling, existing analytical
modeling approaches show very limited industriabmibn due to the steep learning curve
involved [61]. In addition, the pressure to releasetime and the high cost associated with
analyzing the result of performance verificatioey@nt organizations from thoroughly evaluating
the performance of the updated applications oroouginvironment configurations. As a result of
insufficient testing, a large number of performamegressions slips into production and are
experienced by the end users [3] [4] [19].

The implementation of the application is testedtigh performance testing. The analysis of
the results of performance tests is both time-comsg and error-prone due to the following
factors [34] [45]:

1. No documented application behavior Correct and up-to-date documentation of
application behavior rarely exists. A performanoalgst must often exert her own

judgment to decide whether an observation conesitatperformance regression. As

a result, performance analysts often overlook giatleperformance regressions that
may exist in a test, leading to the wrong conchsibeing drawn.

Large volume of data During a test, a large number of counters isectdid. It is
difficult for performance analysts to manually loddr counter correlations and
instances where the correlations are violated.

Time pressure Performance testing is usually the last stepnrmakeady delayed
schedule. In an effort to ship the product on timanagers may reduce the time
allocated for performance testing and analysis.

Heterogeneous environments Organizations maintain multiple labs to conduct
performance tests in parallel. Each lab may hawging hardware and software
configurations due to inconsistent upgrades andndes to certify the application
under different environments. This further comphksathe analysis of performance

tests as the analysts must consider the environdiféetences between tests.

Although organizations employ automated tools ttecteperformance regressions, these

tools are typically threshold-based tools which edetperformance regressions based on

violations of pre-defined thresholds. Thresholddahstools are incapable of providing

information about the violations that can help gsia to diagnose the cause of the performance

problems. Furthermore, performance testing repdsgowhich contain a rich history about the

past performance behavior of an application, camdeful in diagnosing the behavior of new

releases of the application. These repositoriesramady used by the analysts when reviewing

performance tests.

1.2 Thesis statement

The current practice of performance verificationinsffective in discovering performance

regressions at the design and implementation legélsin application. Existing analytical

3

approaches to evaluate design changes require@lstrning curve that discourages the industry
from applying these approaches. Furthermore, thieecuapproach to analyze the results of
performance tests is error-prone and requires deradle effort. We believe a systematic and
automated approach can improve the effectivenepsrédrmance verification at both levels. For
example, at the design level, simulation modelsciwlavoid the use of complex mathematical
concepts, would present a lower learning curvéadégperformance analysts. Performance analysts
can leverage the simulation model to evaluate #rfopmance impact of a proposed change of
design. While at the implementation level, the stdpwill benefit from an automated approach
to discover performance regressions from new pedoce tests by mining the repositories of

performance testing results.

1.3 Our approach

To uncover performance regressions in a tight seleschedule, we propose to extend
performance verification to not only cover the impkntation but also the design of an
application. For example, when the application gless updated, the new design should be
compared to the old one so we can minimize the afsiktroducing performance issues in the
updated application. Furthermore, before the revigpplication is released, the application
should be efficiently tested and analyzed to ensheie performance has not degraded from the
previous version. Section 1.3.1 and Section 1.8tBne our approaches to discover performance

regressions at the design and implementation legsfgectively.

1.3.1Discovery of performance regression at the desigevel

While performance verification can be conductedt@implemented application by pushing
load onto the application binaries, evaluation pplecation designs can only be done through

performance modeling. Although there is alreadwast array of analytical modeling approaches

available to construct and estimate performance fapplication designs, the construction and
usage of analytical models demand a substantiadl le¥ expertise in the mathematical
foundations on which the analytical models are thasgtakeholders such as end-users or
developers, who may not have the proper trainingeiriormance modeling, may find it difficult
to rationalize the analytical models and, as altewsiill distrust the result derived from these
models [61].

Many shortcomings of analytical models can be owme with simulation models. A
simulation model is a computer program that emsldtee dynamic behavior of a software
application. Simulation models can be implementgdobrformance analysts with the help of
existing modeling frameworks. Visualization of adpption components and their
communications patterns in a simulated model capn a@hprove the understandability of the
model. One shortcoming of simulation models is thay traditionally are constructed in an ad-
hoc manner to test a specific aspect of the apjaitfor a stakeholder [3]. There is no systematic
approach to construct a simulation model with appate level of detail that can address
performance concerns of multiple stakeholders.

To address the above challenge for adopting pedncm verification at the design level, we
propose in this thesis an approach to create ldysiraulation models. These layered models
separate different concerns of stakeholders andbearsed to evaluate the performance impact of

changes to the existing design of applications.

1.3.2Discovery of performance regression at the impleméation level

In this thesis, we propose to mine the performaasgng repositories to support automated
performance regression verification of new applicatreleases. Our approach captures the

correlations among performance counters in theopmdnce testing repositories in the form of

performance signature¥iolations of these signaturin a new performance teare flagged as

potential performancegressior.

PurChaSE Write transaction -
Database

Server

Figure 1-1 Purchase processing in an eemmerce applicatior

In an eeommerce applicatiodeployment denoted in Figure 14ds visitors make purchas
on the site, transaction records are stored inldét@base. As a resultstrongcorrelation between
the visitor arrival ratethe application server's CPU utilization, arthe database disk’'s #
writes/secondan be extracted as a performance signature. éwavarsion of the software wi
the same visitor arrival ra a bug that leads to deadks in the database would resula drop in
the number of database disk wr/secondcounter, causing the cour to deviate from the
previously extracted correlations and violethe performance signatures. As a result
performance regression is found in the number sK dirites/secondounter.

The rest of thischapter consists of the following parts: Sectic.4 briefly discusses the

contributionsof this thesis. Section5 presentshe organization of the thes

1.4 Thesis ontribution

In this thesiswe introduce automated approaches to supporbrpeshce verificatiorat the
design andmplementatio levels. h particular, our contributions are as fols:
1. We propose to analyze design changes through diomlenodeling. An approacto

create layeregimulation modes is introduced. Our layered simulation mor can aid

stakeholders to understand the structure and peafuce of an application by separating
different aspects of an application. Applicatiorsigeers can use the layered simulation
model to estimate the performance impact of a ppegalesign change, thus reducing the
risk of performance regression.

2. We introduce an automated analysis approach f@odesing performance regressions
from performance tests. The expected counter ativek and visualizations produced
by our approach can aid performance analysts tgndie the cause of a performance
regression.

3. We further refine our automated analysis approazhamalyze performance tests
conducted with heterogeneous software and hardwakéronments. Our approach
allows performance analysts to analyze new tedtgyuke results of tests conducted

across labs.

1.5Thesis organization

The rest of the thesis is organized as follow. @rap presents background on performance
verification. Chapter 3 provides a literature rewief existing work and practice on the topics
related to our thesis. Chapter 4 presents our apprfor building a layered simulation model for
discovering performance regressions at the desgel.l Chapter 5 presents our automated
analysis approach to discover performance regmessad the implementation level. Chapter 6
extends our automated analysis approach such tiat tests conducted with heterogeneous
environments can also be used in the analysis. t€hapconcludes this thesis and discusses

future work.

Chapter 2

Performance Verification

In this chapter, we explain approaches on evalgatpplication designs using performance
modeling. In addition, we present existing apprescto organize models for addressing the
concerns of different stakeholders. Finally, weeg& description of the current practice of

performance verification carried out on the implatagion of software applications.

2.1 Performance verification at the design level

Performance verification at the design level canchgied out by performance modeling.
Performance modeling is a structured and repeafableess of modeling the performance of an
application [52] that captures performance-relatespects of the designs of applications.
Performance-related information, such as respammednd resource utilization at various arrival
rates, are obtained by solving the performance teod®r example, the Layered Queueing
Network (LQN) model can be used in early developnemstimate the average response time of
service requests. Performance modeling can prasdtieable information for system architects to
catch bad designs early, and for developers to niak@med decisions about potential
performance hotspots [21] [52].

A good performance model should enable differergkedtolders to understand the
performance of an application without overloadihg stakeholders, who may have different
background, with unnecessary information [59]. Rennore, visualization of the model can also
greatly improve the understandability of the progrdesign. In the following sections, we will

review the two classes of performance models: éinalymodels and simulation models.

2.1.1Analytical models

Analytical modeling approaches model software appibns with mathematical equations
and statistical concepts. Popular analytical modeéipproaches include the LQN models. The
inputs of an analytical model are the average alrrate of requests and a set of average values
that represent the (hardware and software) resousaege of each request [21]. Performance
behavior and resource utilization of software aggilons can be derived from analytical models
by solving a set of mathematical equations. Thesttantion and usage of analytical models,
however, demand a substantial level of expertisperfiormance modeling [61]. Recently, an
approach to automatically generate LQN models fapmlication traces is introduced [32]. Such
an approach, however, requires the message tratke application, which may not always be
available. Moreover, the verification of the geredamodels still demands expertise on the

modeling theory used in the generation process.

2.1.2Simulation models

Simulation models emulate the runtime behavior mfliaations and can be implemented
rapidly with the support of existing simulation rénies, such as OMNet++ [43]. Such libraries
provide the building blocks for discrete-event diation models. Discrete-event simulation refers
to modeling approaches in which the applicationnglea its state at discrete points in time [46].
The operation of the application is representeda ashronological sequence of events. The
libraries provide mechanisms for implementing amiializing simulation models, and support
the parallel executions of simulations.

In contrast to analytical models, actual perforneamtata is obtained by executing the
simulation model against a simulation clock. Theasion of an application in an 8-hour work
day can be simulated in a matter of minutes. Duttiregexecution of a simulation model, various

statistics about the simulated application, sucheaponse time for each request, are collected.

9

Performance raalysts caruse these statistics to pinpoint bottleneickan applicatio. Simulation
models are usually created to test specific aspects alan applicatio, depending on
stakeholders’ needs,g., the performance imp of the Java garbage collect. Because of the
size and complexityof large enterprise applications, is difficult to create and maintain

separate simulatiomodel for each stakeheer.

2.1.3Maintaining performance models to address differenstakeholders’concerns

. . Development
Logical view .
view

Scenarios
view
JV v

[Process view H Physical view J

Figure 2-1: The "4+1" view model

The challenges associated with maintainmultiple models about a softwaapplication to
addresdifferent stakeholdersconcernshave already been faced by the softwengineering
community.For exampl, Kruchten proposed the 4+1 view motteldocument different asper
of a softwareapplicatior's architecture [39]. The 4+1 view mod®intains five concurrent viev
(Figure 2-), each representing the viewpoint of a stakeh:

e Logical view: The logical viewfocuses on the functionaéquiremers of a software

applicationand primarily targets the concernsend users

» Process view:The process view addresses the concernsysfem integrato, who

specialize in brining together differenttcomponents of theapplication. This view

concerns thexecutiol behavior of the applicatigre.g., concurrency, performance, i

10

scalability, and illustrates the execution of adeindependent processes, each made up
of the components in the logical view.

» Development view: The development view considers the organizationsaftware
modules and mainly targets the concerngrofjframmers and software managers

» Physical view: The physical view illustrates the application fransystem engineer's
perspective. This view describes how the softwapdieation is deployed and takes into
account non-functional requirements such as rditigbavailability and scalability.

» The “Plus-one” view (Scenarios):The plus-one view consists of a set of test casds
scenarios to show how the elements identified leyather 4 views work together. The
plus-one view is useful for validating the softwdesign.

Similar to software architecture, different stakeleos have different performance concerns

about the same application. To avoid overloadirey gtakeholders with unnecessary details, a
general purpose simulation model should allow staekders to study the application at the level

appropriate to their knowledge, interest and exnee.

2.2 Performance verification at the implementation levé

Executionof Threshol- Manual

. . Report
performance based analysig=-»| analysis of eneration
regression te of test resu test resu 9

Figure 2-2: The process of performance verification
Currently, performance verification is performedthé implementation level to discover
performance regression, ensuring that applicatjmates would not degrade the performance of
the application [61]. This section explains therent procedure of performance verification.
As shown in Figure 2-2, the typical process for ¢eeéification of performance regressions

has 4 phases [24]:

11

1. Performance analysts start a performance test.nfutie course of the test, various
performance counters are recorded. Performancetarsuinclude hardware counters
(e.g., CPU utilization and # of disk writes/secoad}l software counters (e.g., response
time, which measures how long the application tat@scomplete a request, and
throughput, which measure how many requests aricagiph can process in a given
time).

2. After the completion of the test, performance astalyuse tools to perform simple
comparisons of the averages of counters againstgiieed thresholds.

3. Performance analysts visually compare the counaisges of the new run with those of
the past runs to look for evidence of performamggassions or divergences of expected
counter correlations. If a counter in the new rihilgits deviations from past runs, this
run is probably troublesome and requires furtheestigations. Depending on individual
judgment, a performance analyst would decide whetthee changes are significant and
file defect reports accordingly.

4. Performance analysts would note any observed ataobehaviors in a test report.
Finally, all data and the test report are archiwved central repository for bookkeeping
purposes.

Performance verification at the implementation lelas two analysis phases to uncover
performance regressions. During the threshold-basadlysis, analysis tools automatically flag
counters where the averages of the counters extteedore-defined thresholds. Threshold
violations typically represent application instétiland must be investigated. However, the
threshold-based analysis is not effective for diecimg performance regressions, because
performance regressions may not be significant gimoo violate the thresholds. To complement

the threshold-based analysis, performance anakmitd manually examine the counters to look

12

for divergence of expected counter correlation®sEhcounter correlations are defined by domain
experts.

There are three major challenges associated watintmual analysis of counters.

1. During the course of the test, a large number of emters is collected.t is difficult for
performance analysts to compare multiple countdrstha same time. Although
correlating counters specified by domain expertsiccde plotted on the same graph,
these graphs only give a limited view of the catiehs in order to avoid overloading the
analysts. For example, in a performance test foe-anmmerce website, one heuristic
would be to plot the arrival rate and throughpuirters in one graph and leave out other
correlating counters like request queue length.s&hgraphs may aid analysts to spot
obvious deviations of expected correlations. Howetlee cause of the deviations may lie
in other correlating counters that are not incluitetthe graph.

2. An up-to-date performance baseline rarely existsPerformance analysts usually base
the analysis of a new test on a recently passeftlgds However, it is rarely the case that
a performance test is problem-free. Using just pm@r test as baseline typically ignores
problems that might be common to both the baselimtethe new test.

3. The subjectivity of performance analysts may influace their judgment in
performance verification. Performance analysts usually compare the courdeesages
between two tests, ignoring the fluctuations thaghihexist. Simply comparing averages
may lead to inconsistent conclusions among perfoomaanalysts. For example, one
analyst notes in her analysis a 5% increase ohtimber of database transactions per
second to be worrisome while another analyst wigrdre the increase because he feels

that the 5% increase can be attributed to expetathereasurement error.

13

Due to the above challenges, we believe that tmeeupractice of the analysis phase of
performance verification at the implementation laseneither effective nor sufficient. There is a
high chance that performance analysts would ovkredmnormal performance problems. In this
thesis, we aim to reduce the analysis effort (plBaigeFigure 2-2) by automating the detection of

performance regressions in a performance test.

2.3Summary

Current practice of performance verification focismlely on discovering performance
regressions at the implementation level. Often,abse of the high cost associated with the
analysis of performance tests and tight deadlirdssign changes are not evaluated for
performance regressions until those changes aradgltimplemented. In this chapter, we provide
the background on evaluating application desigrih pérformance models. In addition, we give
a description of the current practice of perforneamerification at the implementation level, and
identified the major challenges that the analyate fwhen analyzing the results of performance
tests. In the next chapter, we will survey the taxiswork related to performance verification at

the design and implementation levels.

14

Chapter 3

Literature Review

In the previous chapter, we discussed performanesgfication at the design and
implementation levels and identified the challengssociated. In this chapter, we present the
prior work related to testing software applicatidos potential performance issues at the design

and implementation levels.

3.1 Performance verification at the design level

Before an application is implemented, performancges can be constructed based on the
design documents. Sections 3.1.1 and 3.1.2 sumendhie existing approaches to create

analytical and simulation models.

3.1.1Analytical modeling approaches

The Queueing Network (QN) model has been studi¢ensively by researchers to analyze
the performance of software applications. A QN nh@dpresents an application by a network of
resources for which a request must be obtaineddeardo be serviced. Due to the finite service
rate of each resource, requests may need to wajudéues for the availability of resources.
Extensions of QN models are proposed to analyZerdiit types of applications. Table 3-1

summarizes different QN models.

15

Table 3-1: Summary of approaches based on QN model

QN models Types of application suitable to be modsd

Applications withjobs arriving externally; these jobs will eventually @et
Open QN [6]
from the applications.

Closed QN[6] |Applications withafixed number of jobs circulatir within the applicatior.

Mixed QN[6] |Applications with jobs that arrive externally amib$ that circulate withithe

SQN-HQN [41] |applications.

SRN[6Q] [63] |Distributed applications with synchronous commuiidgs.

LQON [25] [49] |Distributed applications with synchronous or asynnbbus communicatic.

Arriving customer Departing customer
> CPU /DI_Sk\ >

N '

Figure 3-1: Open queueing network model

e CPU @—

Figure 3-2: Closed queueing network model

Baskett et al. proposed algorithms to solve thenpplsed and mixed QN models [6]. Open
QN models are used to model applications with esfearrivals and departures. An example of
an open QN model is shown in Figure 3-1 where enste purchase items and depart. Closed
QN models (Figure 3-2) are used to model applioatithat have a fixed number of jobs

circulating in the applications. Mixed QN modelg arsed to model applications that have both

16

open and closed workloads. Menascé proposed the-FBQINI model to incorporate software
contention into QN models analysis [41]. In an SB@N model, applications are represented as
two queueing networks: SQN and HQN, modeling théwswe and hardware resources
respectively. In the QN models considered abovecwaency is not taken into account and the
availability of each resource is assumed to bepgeddent. These assumptions do not hold for
distributed applications where dependencies betwesaurces exist; that is, resource entities
(e.g., software resources) can request services @iher resource entities (e.g., software and
hardware resources).

To accurately model concurrent distributed appilicet, Woodside et al. developed the
Stochastic Rendezvous Network (SRN) model thatbeansed to model distributed applications
with synchronous communication [60] [63]. Roliaa&tproposed the Layered Queueing Network
(LQN) model that is capable of modeling distributagplications with synchronous and
asynchronous communication [49]. Franks et al. red¢éd LQN models to handle concurrent
processes [25]. Woodside et al. proposed an auiorapproach to create LQN models from
traces captured from the communication betweeriagiign components [62].

Woodside proposed a Three-View model for perforreammgineering of concurrent
applications [59]. The three views in the model amnstructed using existing analytical
approaches. The views are connected by a “core linibde passes the result of one view to the
input of another view. In contrast to the 4+1 viemodel, which documents the software
architecture, Woodside's three-view model is suéalfor documenting and analyzing
performance information. However, the three-viewdelastill poses a steep learning curve due to
the use of analytical modeling approaches.

Performance can be derived from analytical modglsdiving a set of equations. Because of

the use of complex formulas, knowledge encapsulateth analytical model can be difficult to

17

transfer. Furthermore, in order to update analytivadels, performance analysts must possess a
certain level of expertise in mathematics. Sucheetige is not needed with simulation modeling

approaches, which we discuss next.

3.1.2Simulation modeling approaches

Compared to analytical models, fewer approachest & constructing simulation models of
the performance of software applications.

Xu et al. used colored Petri Nets to model the itgcture of software applications [65].
Approaches based on Petri Nets analyze the behafviem application (e.g., the time needed to
recover from an error). Xu et al. analyzed bothetiamd space performance of an application by
executing the simulation model. Bause et al. exddridetri Nets with queueing networks such
that shared resources can be modeled easily [8NeMer, performance information such as
hardware utilization cannot be derived from Petgt Nnodels, making them unsuitable for
analysis of performance regression.

Smit et al. proposed a simulation framework to suppapacity planning for Service-
oriented architectures (SOA) [54]. Each servicainSOA-based applications is modeled as an
entity that can send and receive messages. Smatrsefvork focuses solely on deriving the
response time of completing a request by modeliegrtteraction between software services. The
purpose of performance verification is to compé&e tisage of software and hardware resources
between the old release and the new release afpihiecation. Since Smit's framework does not
consider hardware resources, this framework wooldbe suitable for our task of supporting

performance verification at the design level.

18

3.2 Performance verification at the function level

As developers implement bug fixes and new featutesse code changes may introduce
performance regressions within functions. Sucheggjons can be detected with a variant of unit
testing that focuses on performance. Traditionalhit testing is a method for testing individual
units of source code, typically a function, to detime if they are functionally correct. Packages
such as JUnitPerf [38] and NPerf [28] are exterssit existing unit testing frameworks that
enable developers to measure the performance iefdodl code units. While unit testing focuses
on the performance of individual functions, our o@em in this thesis lies in the overall
application performance where software componentsk wogether to handle the service

requests.

3.3 Performance verification at the implementation levé

The implementation of an application is testedderformance issues by pushing workload
through the application. There are three activearmh areas for evaluating the performance of
applications at the implementation level: test cgseeration, test reduction (shortens the time
needed to test an application), and analysis tféssits. In this section, we focus our discussion
on the analysis of test results. Existing approadbeanalyze the results of performance tests are
divided into two classes, depending on whetherapproaches analyze the execution logs or

performance counters.

3.3.1Analyzing performance tests using execution logs

Execution logs describe the runtime behavior ofliagions and are readily available in
existing applications without instrumentation [3p]. Reynolds et al. [48] and Aguilera et al. [2]
develop several approaches to reconstruct the #®eciypaths for requests from the

communication traces between the components gpplication. An execution path describes the

19

sequence of application components involved ingssing a request. By analyzing the execution
paths, components that account for most of thedgtean be determined. However, the accuracy
of the extracted execution paths decreases as\wbkdf concurrency in the application increases.

Jiang et al. introduce an approach to identify fiomal problems from execution logs [33]. In
Jiang's approach, each log line is considered asesrcution event. Jiang's approach uncovers
the dominant behavior for an application by analgzihe frequency that two adjacent events
occur together. Execution anomalies can be flaggeddentifying execution sequences that
deviate from the dominate behavior. Jiang et deraded this approach [34] to uncover sequences
that contain more than two events. By comparingdéseonse time distribution of each dominant
behavior across two releases of the same applicatie can identify the execution events that
show performance regression.

Usage of hardware resources is rarely recordechénetxecution logs. Approaches that
analyze execution logs to detect abnormal behadarsg a performance test are not capable to
identify cases where the usage of hardware ressunes increased. An important task of
performance verification is to detect changes eutilization of hardware resources. Approaches
that rely solely on execution logs would not be poshensive enough to detect performance

regressions in hardware resources.

3.3.2Analyzing performance tests using performance couets

Another source of performance information, typigalecorded during tests, are the
performance counters. Approaches for analyzingopedince counters can be further divided
into two categories: Supervised and unsupervisé@ dpplication of each class of approach
depends on whether or not the performance countabeled. A label describes the state of the
application at each point in time, e.g., whethemot an application is in compliance with its

Service Level Objectives (SLO) as defined in tliureements.
20

3.3.2.1Supervised approaches for analyzing performancetemsi

Supervised approaches analyze labeled performanosters to derive classifiers for each
type of SLO. A classifier describes the conditi¢esy., a subset of counters reaching particular
levels) that would most likely lead to the obsen®dO state. Cohen et al. apply supervised
machine learning approaches to train classifierp@mormance counters that are labeled with
SLO violations [17] [18]. Bodik et al. improve tteecuracy of Cohen’s work by using logistic
regression as the classifier algorithm [10].

Zhang et al. extended Cohen’s work by maintainmg@semble of classifiers [67]. When an
SLO violation is detected, a classifier is seledtedn the ensemble based on the Brier score to
report the counters that correlate the most wighghrticular SLO violation. The Brier score is a
statistical measure that assesses how well a niibslehe observed event. Similar to Zhang's
approach, Jin et al. proposed an approach to delassifiers from data coming from multiple
sources [37].

Supervised approaches only work when counters dxiteethresholds defined in SLOs. For
performance verification, it is difficult to use rdathresholds to quantify whether performance

regression has occurred because performance megdadegithout exceeding the thresholds.

3.3.2.2Unsupervised approaches for analyzing performaogaters

Jiang et al. propose an approach to use pair-wiselations to detect performance problems
[36]. Jiang's approach first uncovers pairs of detsthat are highly correlated to each other.
Violations of the correlations are reported as amlts. Bulej et al. propose to compare the
performance between two tests by clustering therded response times with the k-means
clustering algorithm [15]. The accuracy of Bulefigproach depends highly on the quality of the
clusters generated by the k-means algorithm. Malfilal. use Principal Component Analysis

(PCA) to recover clusters of counters that areetared to each other. These clusters are used to

21

identify the subsystems in a new performance tedt¢how anomalous behaviors [40]. Similarly,
Jiang et al. propose an approach to identify catirel counter clusters with Normalized Mutual
Information [35].

The above studies assume that different hardwateaftware environments used to conduct
performance tests will not affect the underlyingummi@r correlations. In practice, application
performance, especially for large scale applicatisfith many components, is highly dependent
on the software and hardware environment. Orgdoizatimaintain multiple labs such that tests
can be executed in parallel. Each lab may haverefft software and hardware environments due
to inconsistent upgrades or purchases. Furthernsoganizations would also purposefully test
the applications on a variety of environments tin gsonfidence that the application would
perform as expected when they are deployed in tistomers’ environment. The existing
unsupervised approaches do not distinguish theomesaince differences resulting from
heterogeneous environments, and risk producingriecobconclusions about the performance of

the application.

3.4 Summary

In this chapter, we surveyed existing researchtaeldo performance verification at the
design, and implementation levels. While there texia vast array of analytical modeling
approaches, these approaches require a steepniparaoive, preventing wide adoption in
industry. Existing approaches for performance satioh, on the other hand, do not model the
usage of hardware resources, making these appséese attractive for performance analysis.
At the implementation level, approaches to anapadormance tests with performance counters
do not take into account the differences of softnand hardware environments, making them
difficult to adopt in practice. In the next chaptere will present our approach to construct

simulation models that are suitable for performarexéication at the design level.
22

Chapter 4

Discovering Performance Regressions at the Desigretel

Application designs evolve over time. To ensuret tdasign changes do not cause
performance regressions later on in the updatedicafipns, a good understanding of the
performance impact brought by these changes isedeé&tihile traditional modeling approaches
enable performance analysts to evaluate applicati@signs without referring to the
implementation, these approaches are often naitdeifor all stakeholders due to their abstract
mathematical and statistical concepts. In this tdragve present our framework for constructing
layered simulation models for the purpose of aniatyzhe performance regressions brought by
software design changes. Simulation models cortstluwith our approach contain multiple
layers of abstraction, each addressing the perimceaconcerns of a different group of
stakeholders. As a proof-of-concept, we conductenl ¢ase studies. One study is on a new
system for Really Simple Syndication (RSS). Thdeysactively delivers naotifications of newly
published content to subscribers. Another studynisa performance monitor for an ultra-large-

scale (ULS) application.

23

Table 4-1: Performance concerns of stakeholders

Stakeholder Performance Concerns
End user Overall system performance for variousoyement scenarios
Programmer Organization and performance of systectules

System Engineer

Hardware resource utilization efrtmning application

System Integrator

Performance of each high-levelpmnent in the application

4.1 Layered simulation model

Table 4-2: Mapping of our simulation models to thet+1 view model

Stakeholder Layer in Our Simulation Model 4+1 ViewModel
Architects, Managers
End users World View Layer Logical view

Sales Representatives

Programmers

System Integrators

Component Layer

Development View

Process View

System Engineers

Physical Layer

Physical View

All Stakeholders

Scenario

Scenario

In Chapter 2, we reviewed the 4+1 model, which ubes views to separate different

stakeholders’ concerns about the architecture adpgtication. Similar to software architecture,

different stakeholders also have different perforoga concerns about the same application

(Table 4-1). A good simulation model should sepmedch stakeholder’'s concerns in order to

avoid overloading the stakeholders with unnecesdatsils. In this thesis, we propose a software

24

simulation model that decomposes a software apjgitanto a three-layer hierarchy with an
extra layer to describe the different usage scesatri

As shown in Table 4-2, the layers in our model hdygorrespond to the five views in the
4+1 model. Each layer addresses the concerns abwp gpof stakeholders. The process and
development views from the 4+1 model concern thegimmtion of individual components in an
application and their performance; these viewslmeombined into a single layer — component
layer — that captures the organization and funetibes of software entities. The runtime
behavior of an application, as documented by tloegss view, is reflected by the execution of
the simulation model. System integrators can exarttie dynamic aspects of the application by
monitoring the communication between the simula@dponents of the application.

The layers in our simulation model can be consedighcrementally from high to low level
of abstraction as details about the software becavadable. A partially complete model, e.g., a
model that only contains high-level components sagtdatabases and servers, can be used to
guide the software design at the early stages wéldpment. The following sections discuss in

detail the purpose of each layer separately.

4.1.1World view layer

The world view layer aims at addressing high-leaéien business-oriented, concerns such as
evaluating whether the current infrastructure @ dpplication can support the projected growth
in the customer base. This layer is the top and mostract layer in our model. The world view
layer represents the high-level application comptsand their relations as a network of nodes
and edges.

Initially, each high-level component in the worl@w layer represents a place-holder for the
logic that will be added by other layers. When otilg world view layer exists, performance

analysts can assign rough resource estimates fglabe-holders in this layer for initial analysis.
25

In a complete model, the world view layer hidesdeéails of the software application and can be
used to measure the performance impact of addingnoeles to a distributed application or to

test different deployment scenarios. Because thiedwiew layer is built on the foundation of the

lower layers in our model, when running the simalatprogram at the world view layer, end-

users transparently take advantage of the dethilgid provided by the layers below the world

view layer, if those exist.

Figure 4-1 shows an example of a layered simulatiadel constructed for an RSS Cloud
system. RSS [50] is a format for delivering frecihenpdated content to subscribers. In an RSS
Cloud system, an RSS server actively sends ndtdits of new content to the users. Table 4-3
summarizes the different components in each lagdrthe connections between them. Figure
4-1a shows the world view layer of the RSS Cloustesy. The simulation model consists of
three high-level components, i.e., the websites pldlish personal journals — blogs, the users
that subscribe to the blogs, and the RSS serveunghrwhich each blog connects to its users. The

bidirectional arrows in Figure 4-1a depict the tway communication between components.

26

E__N

user[3] user(d]

blog[4] blog[2]

uzer[8]

uzer[]
/ (a) World view layer
;5 cou
Hi\—

i Oq:#
/ Hw_allocator ram

q:#

out_| g out_r
._ql:..,‘,} ‘\9
T core disk
(b) Component layer (c) Physical layer

Figure 4-1: Example of layered simulation model foan RSS cloud

27

Table 4-3: Components and connections in Figure 4-1

Layer Component Has connection to
Usersblogs RSSservel
World view layer
RSSservel Usersblogs
In Queuesout queue Application logic
Component layer Application logic Input queuesoutputgqueues hardwart
Hardwart Application logic
Hardwareallocatol CPU, RAM,disk
Physical layer
CPU, RAM, disk Hardwareallocatoi

4.1.2Component layer

The component layer further decomposes each high-omponent defined in the world
view layer into logical entities. Similar to the wa view layer, the components and the
communication between them are represented asvamedf nodes and edges (Figure 4-1b).

For example, the RSS server in Figure 4-la can rdo&eb down into a number of
components: the software component that represhatsapplication logic, and the input and
output queues that act as communication chanrwis tihe server to other high-level components
defined in the world view layer. Performance an@lygan define different processing
requirements, for instance the time required tocgse each type of service request, and the
capacity of various logical resources such ashteatl pool and queues.

Developers can leverage the component layer torgtadel the communication patterns in an
application and the performance ramifications afdiilng different mixes of service request types

or to study the performance of different threadimgdels. During the execution of a simulation

28

model, performance analysts can temporarily stepstmulation program and examine internal

information such as queue size or network bandwidtisumption.

4.1.3Physical layer

The physical layer connects the logical componentee component layer to the underlying
hardware resources. The physical layer mainly tartiee concerns of system engineers. Figure
4-1c shows three hardware resources in the RS&rsé?U, Memory, and Disk. Performance
analysts can specify the hardware resource reqeitenfor each type of service request. For
example, a request to submit a new blog post magwue 50 kilobytes of Memory while the
request is being processed. Using the Physicalrl.aystem engineers can study the behavior of
resource utilization at different request ratestii@rmore, system engineers can use this view to

determine the bottleneck of the application at ligfuest rate.

4.1.4Scenario layer

The scenario layer uses a set of test case scenarghow how the elements defined in the
three other layers work together. Scenarios fragretid-user’s point of view include the different
deployment scenarios and the composition of diffetgpes of service requests passed to the
application. For the example depicted in Figure 4+l scenario could specify that there are four
blogs connected to the RSS server, 50% of whichogaged in North America with an average
bandwidth of 2 Megabits/second, and the rest ax&dal in Europe with an average bandwidth of
1 Megabit/second. The scenarios define how thevaoft components are deployed, and what

workload is used in the simulation to estimateapplication performance.

4.2 Model construction

The construction of a layered simulation modelnsterative process. The three layers in our
proposed model can be constructed in a top-dowridasduring different stages of the software

29

development life cycle. For example, performancalyats would start with the world view layer
to model the general deployment scenario of théicgtipn. The world view layer can initially be
constructed according to the application specificator to similar products in the market.
Estimates of resource requirements are given td dagh-level component. The partial
simulation model is run with the request arrivalegthat are either observed from similar
applications or derived from existing benchmarkatgndards. Our partial simulation model that
contains only the world view layer is similar tetBoftware Execution Model, which is used in
the early stage of software development, when limiyed processing requirements are available
[52] [53]. Similar to the software execution modile accuracy of our partial simulation model
should reflect the resource utilization and respotisne within 10% and 30% accuracy
respectively.

As more details become available, performance atsalyan improve the simulation model
by extending each high-level component with the ponent and physical layers, and giving
better resource estimates for different requesegypSuch an incremental model building
approach requires programming libraries that suppodular development of simulation model.
With such programming libraries, one can initiallye “place-holders” to represent high-level
components. As more details become available, piace-holder can be expanded to model the
logical and hardware resources.

All layers of the model are interconnected. Asguest flows through the model, the request
is passed between the layers transparently. Fon@ran Figure 4-1, a request is first generated
by a blog and passed to the internal componentsrtake up the RSS server. The left- and right-
most arrows in Figure 4-1b represent the incomind autgoing ports of the RSS server for

communication with other high-level components hsas the blogs and users.

30

4.3 Case studies

We conducted two case studies using our layeredlaiion models. In the first case study,
we demonstrate the construction of our layered ksitin model for an RSS Cloud system and
how performance data that can be extracted fronmibael. In the second case study, we show
how our layer-based simulation model can help talwate different design options for a
performance monitor used to detect problems in dhflications.

Our layer-based simulation model is created ushy ®MNet++ libraries. OMNet++'s
compound modules provides the means to implementhifee hierarchical layers in our model.
Each layer of an application is composed of a ctila of entities. Each entity contains a set of
state variables to reflect the properties of théyeat any point in time during the simulation.&'h

collection of state variables from all entitiesnegents the overall state of the application.

4.3.1Case Study 1: Constructing a layered simulation maal for an RSS Cloud

In this case study, we demonstrate the processraftimicting a simulation model for the RSS
cloud system in Figure 4-1. By determining the &aplon bottleneck, we show how
performance information can be obtained from omusation model. An application bottleneck
is a phenomenon where the performance of the emafidication is limited by a single
component. In an example where the server CPUeisafiplication bottleneck, the notification
request rate may overwhelm the server's CPU capaeisulting in a continuous growth of the

request buffer usage. As a result, the averagemssgime and throughput suffer.

4.3.1.1Application description

In order to model an RSS cloud, we need to bettelerstand the RSS communication
protocol. The RSS protocol is heavily used by bloggervice providers such as Wordpress.com

[64] to publish new web content. The traditionalulip mechanism used by RSS readers

31

periodically queries the RSS server for updates gpfecific feed. The pull mechanism introduces
latency between when new content is published anenwhe update is received by the RSS
readers. To eliminate the latency introduced by; plé RSS cloud [51] — an extension to RSS —
actively delivers notifications of newly publishédms to feed subscribers. This mechanism is
also known as “push”.

Because the RSS cloud requires the hosting senaatitvely send notifications for each new
item, the push mechanism puts a heavy resourcéreatgnt on the blogging service provider's
infrastructure. For example, each time new coriteptblished, the hosting server must initiate a
separate connection for each subscriber to sertification. For a service provider that hosts
hundreds of thousands of blogs with possibly miki@mf subscribers, the resource requirements
of sending notifications would potentially excede tavailable capacity. Furthermore, the large
number of notifications may overwhelm online fegmjr@gator services such as Google Reader
[27] that automatically download feed content fontireds of thousands of users. The sections

belowdocument our experience of constructing a layeiradlation model for the RSS cloud.

4.3.1.2World view layer of the RSS Cloud system

Figure 4-1a shows the world view layer for the datian model of the RSS cloud. In this
layer, the service provider, which supports the RB8d extension, connects the various blogs to
the subscribing users. When new content is puldistine service provider will send a fixed-size
(e.g., 5 kilobytes) notification to all subscribef® simplify our simulation, we set the number of
subscribers to vary in a normally distributed fashéround the mean of 20 subscribers per feed.

To ensure reliability, the subscribers will replytiwan acknowledgement to the RSS server
upon receiving the notification. The RSS serversuae internal timer to monitor the delivery of
the natification. If an acknowledgment is not reeei before the timer expires, the RSS server

will assume that the message is lost and will aatarally resend the notification until the
32

maximum number of resends for a subscriber is eshchhe network connections between all
entities are characterized by two parameters: batldwand latency. We vary these two

parameters to model a realistic environment whebsaibers and blogs are scattered globally.

4.3.1.3Component layer of the RSS Cloud system

Figure 4-1b shows the component layer of the R$&s€omponent. The RSS server has
four major logical components: two pairs of IN &aBUT queues that buffer the communications
between the subscribers and the blogs, the “apig”’le@mponent, which abstracts away the
application logic of the RSS server, and the “hwet@omponent, which represents the physical
hardware platform on which the RSS server resides.

Two types of resources are required to processification in the RSS Cloud system:

» Logical resources:In our simulation model, there is one logical rese — the thread
pool in the RSS server. Each notification requefit e processed by a thread in the
pool. If all threads in the pool are busy, the esjuvill wait in the buffer of the input
gueue until a thread becomes available.

« Hardware resources: Each notification request received from the bldlj @onsume a
specific number of units from each hardware resaulfcall resources are used up, the
request will wait in the buffer until the requiregsources become available.

The overall resident time of a notification requiesthe RSS server is the sum of the wait

time in the RSS server's queue for acquiring tleueces and the processing time required by

the RSS server.

4.3.1.4Physical layer of the RSS Cloud system

Figure 4-1c shows the hardware platform of the R&8&er. In the simulation of the RSS

Cloud system, we assume that each notificationastquill compete for three physical resources:

33

CPU, disk and memory. Each of these resources findeanumber of units that can be used for
processing. Each request will require a certain memof units from each resource while the
request is being processed. For example, we caifispethe simulation that our RSS server has
access to 1 gigabyte of memory, and that eachicaitdn will hold 50 kilobytes of memory

when it is being processed. The resources aresaetleshen the request is serviced.

4.3.1.5Model validation

To ensure that the simulation model is specifiedemily, we tested our model with a
simplified use case where only one blog and oneargeconnected to the RSS server. In the test,
all requests generated by the blog component awiced by the RSS server and subsequently
received by the subscriber. Through visualizatibrthe simulation and detailed traces, we are
able to verify the timing of the requests as theppgate through the components in the different

layers of our model.

Table 4-4: Processing requirement for an RSS notifation

Resource Requirement
CPL 2 unit
RAM 5KB

Threac 1
Processing tirr 2 second

4.3.1.6Experiments and data collection

Performance analysts must determine if changeseidésign of an application would result
in performance regressions and whether or not seghessions would lead to application
bottlenecks. We manually specify the resource requénts for processing an RSS noatification
request, and examine the RSS server performanearkiynng the notification request arrival rate.

34

Requests sent from the blogs to the RSS servénitisdly stored in the request buffer. Table 4-4
summarizes the resource requirements for processiclg notification. Depending on whether or
not the RSS server has enough resources (e.g., R&M, and a free thread) available, a thread
will pick up the request from the buffer and allecdhe required resources. Each request is
processed for 2 simulated seconds during whichllaltated resources are blocked by the thread.
When the thread has completed processing the recalepreviously allocated resources are
released. The thread that has just been freeghieklup the next message in the request buffer.
We ran 10 simulations each simulating one houmpafration with arrival rates ranging from
5 to 25 requests per second. We collected variatistics from different layers of the simulation
model of the RSS server (Figure 4-2 to Figure 4~4). example, throughput and response time
from the world view layer, number of threads usednfthe component layer, and CPU and RAM
utilization from the physical layer. As evident fioFigure 4-2 and Figure 4-3, both the
application throughput and response time degrad@& etquests/second. In order to determine the
bottlenecks of the application, we examine stasistif resource utilizations (thread, CPU, and
RAM) collected at the component and physical layéigure 4-4 shows that the CPU reaches
100% utilization at 17 requests/second while thieatt and RAM utilizations are below 50%. A
request is only processed if all required resouceesbe allocated at once. If the CPU does not
have enough capacity to serve a request, the regileaait in the buffer until the CPU becomes
available, regardless of the availability of othesources. In other words, the CPU prevents other
resources from being fully used and is therefoeshtbttleneck of the application. To ensure that
the application can handle future growth of requasival rate, system engineers should

recommend a faster CPU or increase the number @6CP

35

18
16
14
12
10

Throughput (# of notifications/sec)

o N B~ O ©

5 10 15 20 25

Notification Request Arrival Rate (# of requests/sec)

Figure 4-2: Plot of the throughput of the RSS serweat various request arrival rates

1200

1000

800

600

Response Time (sec)

400

200

5 10 15 20 25

Notification Request Arrival Rate (# of requests/sec)

Figure 4-3: Plot of the response time of the RSSrser at various request arrival rates

36

100

— 80

c ot

0 o’

%60

N .

= eesess CPU
=

§ 40 = == RAM
>

2 Thread
[J]

o

20

5 10 15 20 25

Notification Request Arrival Rate (request/sec)

Figure 4-4: Plot of resource utilization of the RSServer at various request arrival rates

4.3.2Case Study 2: Using simulation models to evaluatéanges to application design

As the demand for service increases, organizataamine different options to increase the
performance of their systems to cope with the kiglumes of workload. In this case study, we
use our simulation model to evaluate the perforraabenefit of migrating a centralized
performance monitor for Ultra-Large-Scale (ULS) limiions to a distributed architecture.
However, the performance of distributed applicai@ highly dependent on the configuration.
To carry out a fair evaluation of the performaneéngrom changing the existing design to a
distributed architecture, the performance analystkl first determine which configuration of the

distributed application would show the best perfance.

4.3.2.1Application description
Performance monitors are used to detect problertteiservices provided by the enterprises.

Enterprises have computational units around thédworkeep servers geographically close to the

37

users. In the original design, one performance tnonivould periodically collect performance

data from each computational unit directly. Whilésieasy to administer, this centralized design

has heavy resource requirements. In the distribdéstgn, each computational unit is connected

to a local monitoring agent as shown in Figure 4Be local monitoring agents periodically

collect, compress and upload the performance datacentral monitor for analysis. The central

monitor may occasionally send back an updated fsetamitoring policies to the local agents.

There are two major challenges of monitoring UL§Bliations:

Communication latency. ULS applications are decentralized around theldvorhe
performance data may not reflect the current sigtihe time the data is received by the
central monitor due to the large physical distanesveen the nodes and the central
monitor.

Financial cost of data transmission Depending on the frequency with which the
performance data is sent, the cost may be profebjtihigh for ULS applications that

have many nodes deployed across the globe.

The simulation model of the performance monitortlis case study has two tunable

parameters:

Data collection frequency The rate at which local monitoring agents collect
performance data from their respective computationis.

Data broadcast period The amount of time an agent would wait betweenhea
successive upload of performance data. Data cetldny the agents is first stored locally.

When the send timer fires, all data stored is u#dao the central monitor.

38

e

l— >/
irope 1ssia

'l & H%Dutational_unit

—— 0l
Local_monitaring=age

G

e
North J&= : | T\T
- ‘ Asia WAL
Mi énonitoringfagmuwio”al—wn—z :

Cenral_Moni . East

Central
America’"

—+ B ﬁlasm
Ej‘” %}mc

Local_monitoring ZRigki-tational_unit 4

Computational_tnit_5

Figure 4-5: World view layer of the performance motitor for ULS applications

4.3.2.2Experiments and data collection

Figure 4-5 shows the world view layer of the sintiola model for the performance monitor.
The local monitoring agents and the central morater modeled using the same architecture as
the RSS server (Figure 4-1).

We conducted a series of simulated runs with 15bioations of collection frequencies (0.1,
0.2, and 0.3 times per second) and broadcast gefiod3, 5, 7, and 9 seconds). Each of the 15
runs simulates an eight-hour workday. Each datea@n consumes on average 30 megabytes
of memory and 10 CPU units, and lasts for 3 sinedlateconds. Table 4-5 shows the various

performance data collected in each layer durinignalation run.

39

Table 4-5: Performance data collected per layer

Layers

Performance Data

World view layer

Response time, Transmission Cost

Componentaye!

Thread Utilizatiol

Physical layer

CPU and RAM utilization

Table 4-6: Categorization of CPU utilization

CPU Util. Low OK High Very High
Range (s) <30 30-60 60-75 > 75
Discretization 0.25 0.5 0.75 1

Table 4-7: Categorization of RAM utilization

RAM Util. Low OK High Very High
Range (%) <25 25-50 50-60 > 60
Discretization 0.25 0.5 0.75 1

4.3.2.3Evaluating parameter configuration

In this section, we show that, by considering teefggmance data from all three layers, we
are able to select a configuration that leads tbaknce of three important aspects: cost,
performance, and resource consumptions. In thesudbdections, we define a score to assist us in

ranking configurations that have multiple performaobjectives.

4.3.2.3.1Configuration score
We evaluate a given configuration of performancenters collected during the simulation
using the concept of configuration score. Some twanare perceived by people in a fuzzy

manner. For example, a CPU utilization of 20% abth2vould have the same monitoring effect.

40

On the other hand, counters such as the respanseatid dollar cost are usually perceived by
customers in a crisp way. To take into accounfulaeiness of the way a counter is perceived, we
discretize the counter values into levels, wherhdavel is ranked by a number between 0 and 1
to indicate the ranking of customer experience. Bdwendaries of each level are selected through

domain knowledge.

Table 4-5: Performance data collected per layer

Layers Performance Data
World view layer Response time, Transmission Cost
Componentayel Thread Utilizatiol
Physical layer CPU and RAM utilization

Table 4-6 and Table 4-7 show the categorizatiorCiet) and RAM utilizations respectively.
For counters that the customers may deem the mpsirfant (e.g., response time and cost), we
use the original counter values to calculate theresthat will be used to rank a set of
configurations.

The configuration score is calculated as the prbdithe discrete or crisp counter values of
a configuration. As a simplified example, if a giveonfiguration exhibits an average response
time of 5.61 seconds, consumes on average 46% afetfitral monitor CPU, and results in a cost

of $10, then the score of this configuration wolbddcalculated as follows:

Response time = 5.61 seconds
Cost = $10

CPU Utilization = 46% — 0.5

Score =5.61 x0.5x10 =281

4.3.2.3.2Choosing the optimal configuration

Since we aim to minimize resource consumption,arese time and cost, the configuration
that has the lowest score gives the best overafoqmeance. Table 4-8 shows the optimal

41

Table 4-8: Simulation result for the performance maitor case study

Colil)sct:?ion Data Response Cost per I\(zggftr(?rl I\(zggittr(?rl I\(z((i:;[tr(?rl
Frequency Layers Ere(r)ﬁ;j;e(l:; time (s) trans(rg;ssmn Thread | CPU RAM
(Hz) Util. (%) | Util. (%) |Util. (%)
World View 1 6.8 5.C 1.€ 15.¢ 6.1
0.1 Componer 1 6.8 5.C 1.€ 15.¢ 6.1
Physical 1 6.8 5.0 1.6 15.6 6.1
World View 1 7.7 5.C 4.C 40.< 15.%
0.2 Componer 1 T 5.C 4.C 40.< 157
Physical 7 5.3 2.3 23.4 9.2
World View 1 € 5.C 6.4 64.£ 25.%
0.3 Componer 1 .S 5.C 6.4 64.£ 25.2
Physical 3 9.2 5.0 5.6 56.0 21.9

configurations determined by incrementally consitemore performance data collected at each
layer. For each data collection frequency, we shbvee optimal configurations that are
determined by considering the performance datdleisip to the designated layer in the second
column. For example, we calculate the score of @figoration at the world view layer by
multiplying the response time and the cost; if we @ calculate the score at the physical layer
level, we would take into account all five variablgesponse time, cost, thread, CPU and RAM
utilizations) by taking the product of all of them.

At low data collection frequency (0.1 Hz), the aopdi configuration determined using the
world view layer is the same as the configurati@tednined with information from all three
layers. This effect is explained by the fact thHa tpplication is only slightly loaded and all
counters collected in the component and physigartaonly exhibit small variations, e.g., RAM
utilization ranges between 3% to 6%. As a resliltjosv level counters are discretized to the

same range, diminishing the effect of these lowelleaounters in the score calculation. Our

42

discretization approach effectively hides the smatiations of the performance counter that are
insignificant in terms of customer experience.

As the data collection frequency increases and fagers are being considered, our ranking
algorithm outputs configurations that balance betwecost, performance and resource
consumption. For example, at the collection freqyenf 0.3 Hz, the configuration selected by
considering data collected up to the physical kyeduces the CPU utilization from 64.4% to

56% in a tradeoff of 0.3s increase of response timée maintaining the same cost.

4.3.2.4Evaluating the benefit of migrating the performanuanitor to a distributed architecture

Table 4-9 : Simulation result for the original desgjn of the performance monitor

Data Cost per Central
Collection | Response transmigsion Central Monitor Monitor CPU Central Monitor
Frequency| time (s) $) Thread Util. (%) Util. (%) RAM Util. (%)
(Hz) '
0.1 0.2 2.2 31.0 42.6 37.2
0.z 0.2 2.7 437 68.2 47.¢
0.2 0.4 3.1 60.2 86.6 59.2

Table 4-9 shows the simulation result for the ordidesign of the performance monitor at
various data collection frequencies. Comparing to distributed design, the original design,
while providing better response time, consumes rhardware (e.g., CPU and RAM) and logical
(e.g., thread) resources. At the collection fregyeaf 0.3, the CPU of the central monitor is close
to running at its full capacity which will likelyesult in system instability. Moreover, while the
original design has lower cost per transmission, garformance data in the original design is
transmitted more frequently due to the lack of @ldatching mechanism provided by the local
monitoring agent. As a result, the overall cost fioonitoring all computational units would

increase in the original design compared to theibiged design.

43

In this case study, we demonstrated the usefulnéssur layered simulation model in
evaluating the different design options for thef@@nance monitor. Furthermore, we show that
configurations selected by analyzing informaticonirjust one layer are sometimes suboptimal.
In an environment where a server may also providdtiple services, a configuration that
consumes fewer resources can avoid jeopardizingstability of other services. As more
information from different layers is supplied, owanking algorithm is able to select the

configurations that balance between cost, perfoocmaand resource consumptions.

4 4 Discussion

In this section, we discuss how our simulation n®dean be updated and what the

limitations of our approach are.

4.4.1Updating the simulation model to reflect changes tthe application

In discrete-event simulations, application compasereact based on received messages.
Therefore, performance analysts can model the Ggijuin’s operation by specifying the state a
component should be in when a specific messagec&wed. For example, to simulate the time
required to process an RSS notification requesfpopeance analysts can specify that the RSS
server would hold each request for 2 simulated redzdoefore forwarding the notification to
subscribers. Performance analysts do not needdw kine low-level programming details when
constructing the model and thus reducing the modedifort.

A model constructed for a previous release of tievare can be adapted to the new version
by updating the resource requirements in the cordigon. New application behavior can be
introduced to the model by adding new message tgpesthe corresponding behavior in the

simulation code.

44

4.4.2Capturing resource requirements

Correct resource requirements are essential inidgruseful performance conclusion from a
simulation model. To ensure that the simulation ehadbuld accurately reflect the performance
of the final application, resource requirementsusthdbe validated as information becomes
available throughout development. Due to the latlaaress to production data, we can only

estimate a list of resources and processing rageinés in our case studies.

4.5 Summary

A performance model should convey information abihwet behavior of an application to
stakeholders who have different performance comscémthis chapter, we proposed an approach
to construct simulation models with four layersatifstractions: world view layer, component
layer, physical layer, and usage scenarios. Thegerd can be built gradually as information
about the software project becomes available. énddse studies, we showed that our layered
model can be used to extract performance informatlmout an application and evaluate design
changes. In the following chapter, we will turn doicus on discovering performance regressions

after design changes have been implemented intapibkcation.

45

Chapter 5

Discovering Performance Regressions at the Implemgtion Level

In the previous chapter, we introduced an appraaatonstruct layered simulation models
for the purpose of discovering the performanceasgjons introduced by changes to application
designs. Design changes and other code changesewgihtually be integrated into the
implementation of the application. In current preet performance analysts must manually
analyze the data collected from performance testsincover performance regressions. This
process is both time-consuming and error-pronetaltiee large volume of collected counters, the
absence of formal performance objectives and thgstivity of individual performance analysts.

In this chapter, we present an automated appraadbtect potential performance regressions
in a performance test. Our approach compares thdtseof new tests against correlations of
performance counters extracted from performandatpsepositories. Case studies show that our
approach scales well to large industrial applicetjicand detects performance problems that are
often overlooked by analysts. An early version bistchapter was published at the 10th

International Conference on Quality Software [24].

5.1 Anillustration of our automated analysis approach

In this section, we present an example of how fopmance analyst, Derek, can leverage our
report to spot performance regressions. Derekviangtihe task to assess the performance of a new
version of an e-commerce application. After conithgca performance test on the new version of
the software, Derek decides to examine the two tepsithat he deems the most important: CPU
utilization and the number of disk writes per setimthe database. He finds that there is a 5%
increase in average CPU utilization between a thcpassed test and the new test, but the CPU

utilization is still below the pre-defined threstiaf 75%. Because of a tight deadline, Derek runs
46

our research prototype to check whether the ineréa<CPU usage represents a performance
regression and whether there are any other perfaren@gressions in the new test. Our prototype

generates a performance regression report sutte @amé shown in Figure 5-1.

5.1.1Report summary

The table shown in Figure 5-1a provides a summéitie counters that are flagged by our
approach as deviating from the expected counteeletions. The counters are sorted by the level
of severity. Severity of a counter is the fractimintime during the performance test where the
counter exhibits regressions. For example, thellzgdpon server CPU utilization” counter has a
severity of 0.66, meaning that 66% of the time “dagplication server CPU utilization” counter
violates one of the expected counter correlati@ysexamining this summary, Derek discovers
that 3 counters (CPU and memory utilizations in #pplication server, and # of disk read
bytes/second in the database) are flagged withriggggeater than 0.5, meaning that these three

counters deviate from the expected behavior for ba# of the test duration.

47

Severityl

Performance Regression

Symptoms |

0.66

IApplication Server CPU Ultilization

Show Rules

0.60 Application Server Memory Utilization/Show Rules
0.58 [Database Disk Read Bytes/sec Show Rules|

(a) Overview of problematic regressio

Counters with performanc

regressions (underlined) dre

annotated with

expects

2d

Severity| Performance Regression Symptoms .
Hide Rules counter correlation
Graph Conf. Change Expected Correlation
Database Logical Disk Reads/sec=Mid
Database Memory Page Writes/sec=Mid
b 0.79 Database CPU Utilization=Mid
) Datahase Memory Page Reads/sec Mld
0.66 |Application Server CPU Utilization
Application Server Memory Utilization=Mid(High)
Database Logical Disk Reads/sec=Mid
Database Memory Page Reads/sec Mld
0.65 l U Uil
Database Disk Read Bytes/sec=Mid(High)
0.60 Appli;a’lﬁm Server Memory Utilization/Show Rules
0.58 [Datdbase Disk Read Bytes/sec Show Rules

(b) Details ofperformancereqgression

Application Server CPU Utilization

70 80 90
1

T
I =)

30 40 50 60

Time series plots sho

New test

T T T T T T
Prior pass tests 0 20 40 60 80

Database Disk Read Bytes/sec

—| the wher

120

periods

performance regressio

Box plots give a quic

—
'

visual comparison betwe

24

180000
Il

prior tests and the new teg

—

1

140000

100000
I

I
[—

are detected.

100000
1

New test

T T T T T T
Prior pass tests 0 20 40 60 80

120 140 >

(c) Periods detected to have performance regression

Figure 5-1: An example performance regression repor

48

5.1.2Details of performance regression

Derek clicks on the “Show Rules” hyperlink to relvadist of counter correlations that are
violated by the top flagged counter (Figure 5-1eTist is ordered by the degree of deviation
between the correlation confidence of the new tesd prior tests. Correlation confidence
measures how well a correlation holds for a dataB&r example, a confidence of 0.9 for a
correlation extracted from prior tests means thatdorrelation holds for 90% of the duration of
the test for all prior tests. If the same correlathas a drop of confidence in the new test, this
correlation will be included in the report.

By looking at Figure 5-1b, Derek realizes that dnigially the application server's CPU
utilization, memory usage, and various databasenteosl are always observed to be at the
medium level together. However, in the new runflatiged counters shift from medium to high
(highlighted in red and blue in Figure 5-1b). Decekcludes that all 3 flagged counters represent
performance regressions. Instead of requiring Ddcelexamine each counter manually, our
report automatically identifies counters in the rtest that show significant deviations from prior

tests. It is up to Derek to uncover the causeb@performance regressions.

5.1.3Performance comparison and in-depth analysis

Derek can conveniently compare the counter valoegrior tests and the new tests by
opening a series of charts such as in Figure 5Fhe. charts on the left are box-plots of the
violated counters (e.g., the Application serverRlLCutilization) for the new test and prior tests.
A box-plot shows a five-number summary about a taunhe observed minimum, first, second,
and third quartile, and maximum value. By placihg box-plots side-by-side, Derek can visually
compare the value ranges in the new test and t@sts. In this example, Derek can easily see that
half of the observed values of the Application s€ssCPU utilization in the new test exceed the

historical range of values.

49

To streamline Derek’s analysis, our report plabestime-series plots of the flagged counters
next to the box-plots. The two dotted lines define boundaries of the high, medium, and low
levels extracted from counter ranges in prior testee shaded areas show the time instances
where the expected counter correlations do not inallde new test.

Using our performance regression report, Derekbie & verify his initial analysis and
discover new performance problems that he woulde haissed with only a manual analysis.
Furthermore, our report allows Derek to reason abwa detected regression by complementing

the flagged counters with the violated counterealations.

5.2 Our approach

<
No — add to historical dataset

for analysis of future tests
¥ Deviation flagged?

Repository

Performance
Regression
Report

1. Metric 2. Metric 3. Performance 4. Report

Normalization Discretization Signature Derivation Generation
New Run

Figure 5-2: Overview of performance regression angbis approach

Our approach to detect performance regressions pertormance test has 4 phases as
illustrated in Figure 5-2. The input of our approawnsists of the result of the new test and the
performance testing repository from which we disil historical dataset consisting of the
collection of prior passed tests. We apply dataimginapproaches to extract performance
signatures by capturing counter correlations thatfi@equently observed in the historical data. In
the new test, counters that violate the extractetbpmance signatures are flagged. Based on the
flagged counters, a performance regression repgemerated. We now discuss each phase of our

approach in the following subsections.

50

5.2.1Counter normalization

Before we can carry out our analysis, we must elia irregularities in the collected
performance data. Irregularities can come fronféHewing sources:

» Clock skew: Large enterprise applications are usually distsduacross multiple
machines. Since the clocks on different machineghibe out-of-sync, counters captured
by different machines will have slightly differetitnestamps. Moreover, counters can be
captured at different rates.

* Queued requestsEven when the load generator has stopped, theyeomanprocessed
requests queued in the application. Performanclysiaausually let the application run
until all requests are processed. As a result, teesirmay be recorded for a prolonged
period of time.

» Delay: There may be a delay in the start of counter ctiledoetween the machines that
are used in a test.

To overcome these irregularities, we use only tréign of the counter data that corresponds
to the expected duration of a test. Then, we ditie into equal time intervals (e.g., every five
seconds). Each interval is represented by a veEmch element in the vector represents the
median of a specific counter in that interval. iee of the interval can be adjusted by the

analysts depending on how often the counters guteiesd.

51

100
90
80
70
60
50
40

CPU Utilization

0 50 100 150

(a) Original counter data

100
90
80
70
60

CPU Utilization

50
40

0 50 100 150
(b) Counter discretization

(Shaded area corresponds to the medium Discretizat level)

Figure 5-3: Counter normalization and discretizatio

5.2.2Counter discretization

For each counte
High = All values above the medium level
Medium = Median +/- 1 standard deviation

Low = All values below the medium level

Figure 5-4: Definition of counter discretization levels
Since the machine learning approaches we use akly tategorical data, we discretize
counter values into levels (e.g., high/medium/lowigure 5-4 shows how the Discretization

levels are calculated from the historical dataBet. example, assuming the median and standard
52

deviation in Figure 5-3b are 74 and 14 respectjtbly medium level will span from 60 to 88. As
a result, the CPU utilization around theé"s€econd on Figure 5-3b will be mapped to medium.
We have experimented with using arithmetic mearead of median, but found that the
arithmetic mean suffered from the effect of ouliand failed to cluster similar measurements

into the same level.

5.2.3Derivation of performance signatures

The third phase of our approach extracts performasignatures by capturing frequently-
observed correlations among counters from the ridstiodataset. Many counters will exhibit
strong correlations under normal operation. Fongta, medium request arrival rate would lead
to medium usage of CPU processing power, and mediwoughput. Thus, one signature of
frequently observed correlation could be {Arrivaate = Medium, CPU utilization = Medium,

Throughput = Mediumj}.

CPU
Arrival Rate e Throughput
Medium + ut|I|za.t|on » Medium
Medium
¥ ¥
Premise Consequent

Figure 5-5: Example of an association rule

We use association rule mining to extract counterretations from the discretized
performance counters. An association rule has mipeeand a consequent. The rule predicts the
occurrence of the consequent based on occurrerick® gremise. For example, Figure 5-5
shows one of the three association rules that eadebived from the previous example. In this
paper, we use the Apriori algorithm [1] to discoessociation rules. The Apriori algorithm uses

support and confidence to reduce the number ofidatedrules generated:

53

» Supportis defined as the frequency at which all itemarinassociation rule are observed
together. Low support means that the rule occunplyi due to chance and should not be
included in our analysis.

» Confidencemeasures the probability that the rule’s premésel$ to the consequent. For
example, if the rule in Figure 5-5 has a confidemakie close to 1, it means that when
arrival rate and CPU utilization are both mediuherée is a high tendency that medium
throughput will be observed.

We apply the association rules extracted from fetotical dataset to the new test and flag

counters in the rules that have significant changmnfidence, as defined in Eqg. (5-1).

Confidence change = 1 — cosine_distance(Vxstory .Vnew) Eq. (5-1)
Vhlstory = (Confhistory: 1- Confhistory) Eq. (5-2)
View = (Confpew, 1 — Confrey) Eq. (5-3)

whereVy,s¢ory andly,,, are the vector form of the confidence valu€srtfisiory andConfe,)
in the historical dataset and the new test respagti Since cosine distance measures the angle
between two vectors, it is necessary to first carte scalar confidence values into vector form.

The confidence change for a rule will have a vdde®veen 0 and 1. A value of 0 means the
confidence for a particular rule has not changetthénnew test; value of 1 means the confidence
of a rule is completely different in the new tdbthe confidence change for a rule is higher than
a specified threshold, we can conclude that theayieh described by the rule has changed
significantly in the new test and the countershia tule’s consequent are flagged. For example, if

the confidence of the rule in Figure 5-5 drops fror@ to 0.2 in the new test, it indicates that

54

medium arrival rate and CPU Utilization would nader be associated with medium throughput
utilization for the majority of the time. As a rdsuthroughput exhibits a significant change of

behavior and thus should be investigated. The tbtd<or confidence change is customizable by
the performance analyst to control the number ainters returned by our approach based on

time available.

5.2.4Report generation
In the last phase, we generate a report of thgddgounters that highlights the association
rules that the counters violate. To further helpeaformance analyst to prioritize his time, we

rank the counters by their level of severity Eg4}5

of time instances containing the flag values of the counte
total # of time instancea the new test Eq. (5-4)

Severity =

At each time instance, we compare the level ofcthnter against the expectation from the
association rules. A mismatch of levels means tthetcounter shows abnormal behavior during
that time instance. Severity represents the fraaifdime in the new test that contains the flagged
values of the counter. Severity ranges betweerd(alf there are only a few instances where the
counter is observed to be problematic, the sevaiityhave a value close to 0. On the other hand,
if the counters are violated many times, severitylvave a value close to 1 (Figure 5-1a).

For each counter, the report lists the violatedsrdered by confidence change Eq. (5-1) as
shown in the inner table in Figure 5-1b. Confidenwmasures how well a rule applies to a data
set. A large change in the confidence of a rulevben the prior tests and the new test indicates
that the counter in the rule’s consequence hasmagehof behavior.

Finally, if no counter is flagged in the report, wan conclude that the new test has no

performance regression and can be included inigtterital dataset for analysis of future tests.

55

5.3 Case studies

We conducted three case studies on two open seuccenmerce applications and a large
enterprise application. In each case study, we wawnerify that our approach can reduce the
amount of counters an analyst must analyze andstigectivity involved, by automatically
reporting a list of potential performance regressio

We manually injected faults into the test scenawbghe two open source e-commerce
applications. We follow the popular “Siemens-Praggaapproach of seeding bugs [30], which is
based on common performance problems. Manual iojedtf faults allows us to calculate the

precision (Eq. (5-5)) and recall (Eq. (5-6)) of amproaches.

of false positives
) Eq. (5-5)

recision (total # of counters flagged

of problematic counters detected

Recall =
eca # of actual problematic counters Eqg. (5-6)

High precision and recall mean that our approach aacurately detect most performance
regressions. Performance analysts can reduce fim refquired for an analysis by investigating
the flagged counters. Note that false positivescareters that are incorrectly flagged (e.g., they
do not contain any performance regression).

For the large enterprise application, we use thsting performance tests collected by the
organization’s Performance Engineering team astitgppour approach. We seek to compare the
results generated by our approach against therp@face analysts’ observations. In the cases
where our approach flagged more counters than e¢hf@nmance analysts noted, we verify the
additional problematic counters with the Perforngariéngineering team to determine if the

counters truly represent performance regressioimseSve do not know the actual number of

56

performance problems, we calculate the recall forindustrial case study based on the correct
performance regression, flagged in the organizatioriginal reports.

We use the average precision and recall to showotieeall performance of our approach
across all test scenarios for each applicationrdye precision and recall combine the precision
(Eq. (5-7)) and recall (Eq. (5-8)) for all k diffart test scenarios,ft,... ,t) conducted for an

application. Table 5-1 summarizes the performaf@aioapproach in each case study.

1
Average Precision = % X Z Precision;, Eq. (5-7)

1
Average Recall = % X Z Recally, Eq. (5-8)

Table 5-1: Average precision and recall

of test Duration per Average
) o Average recall
scenarios test (hours) precision
DS2 4 1 100% 52%
JPetStore 2 0.5 75% 67%
_ 100%
Enterprise _ o
o 13 8 93% | (relative to organization’s
Application o)
original analysis)

Research prototype: Our research prototype is implemented in Java a®$ the Weka
package [57] to perform various data-mining opereti The graphs in the performance analysis

reports are generated using the statistical arsadysl modeling tool, R [56].

5.3.1Studied application: Dell DVD Store

5.3.1.1Application description

57

The Dell DVD Store (DS2) application [55] is an ap@ource implementation of a simple e-
commerce website. DS2 is designed for benchmarkially hardware. DS2 includes basic e-
commerce functionalities such as user registratisar login, product search and purchase.

DS2 consists of a back-end database component,baaMdication component, and driver
programs. DS2 has multiple distributions to suppmlifferent languages such as PHP, JSP, or
ASP and databases such as MySQL, Microsoft SQLeseand Oracle. The load driver can be
configured to deliver different mixes of workloaBor example, we can specify the average
number of searches and items per purchase.

In this case study, we have chosen to use the i¥8ibgtion and a MySQL database. The
JSP code runs in a Tomcat container. Our load stsnsif a mix of use cases, including user

registration, product search, and purchases.

5.3.1.2Data collection

We collected 19 counters as summarized in Table B8 data is discretized into 2-minute
intervals. We conducted 4 one-hour performance.td$te same load is used intests D_1, D_2,
and D_3. Our performance signatures are derivedn ftest D_1 during which normal
performance is assumed. For tests D_3 and D_4, amuafly inject faults into either the JSP
code or the load driver settings to simulate im@etation defects and mistakes of performance
analysts. The types of faults we injected are contynased in other studies [33]. Prior to the
case study, we derive a list of counters that ape&ed to show performance regressions, as
summarized in Table 5-3. The Recall of our appraadfalculated based on the counters listed in

Table 5-3.

58

Table 5-2: Summary of counters collected for DS2

Load generator

% Processor Tin

Orders/minute

Network Bytes Sent/second

Network Bytes Received/Second

Tomcat

% Processor Tin
Threads

Virtual Bytes
Private Bytes

MySQL

% Processor Tin

Private Bytes

Bytes written to disk/second
Context Switches/second
Page Reads/second

Page Writes/second

% Committed Bytes In Use
Disk Reads/second

Disk Writes/second

1/0 Reads Bytes/second
1/0 Writes Bytes/second

59

Table 5-3: Summary of injected faults for DS2 andpected problematic regressions

Description of the
injected fault

D_1| No fault N/A (training data)

Test Expected problematic regressions

D_2 | No fault No problem should be observed.

Tomcat counters(where “+” represents increase of counter)
thread +
_ # private byte +
b 3 the code responsible | irtual byte: "
for displaying item CPU utilizatior +
search results Database counters

1/0 reads bytessecon:
disk reas/secon:

Busy loop injected in

+

+

Tomcat counters
thread
private byte
#virtual byte:
CPU utilizatior
Database counters
Heavier load applied | | # disk read /secon:
diskwrites/secon
I/O write bytessecon
I/O read bytesecon:
CPU utilizatior
context switche
Load generator
Orders/minut
Network Bytes Serseconc
Network Bytes ReceiveSecon: +

++|+]+

D_4 | to simulate error in

load test configuration

|+ |+ +

+

+

5.3.1.3Analysis of test D_2

The goal of this experiment is to show that thesuljenerated by our approach are stable
under normal operation. Since test D_2 sharesaime £onfiguration and same load as test D_1,
ideally our approach should not flag any counter.

As expected, our prototype did not report any motatic counter in test D_2.
60

5.3.1.4Analysis of test D_3

In test D_3, we injected a database-related bgintolate the effect of an implementation
error. This bug affects the product browsing logicDS2. Every time a customer performs a
search on the website, the same query will be tegeaumerous times, causing extra workload
for the backend database and Tomcat server. Thessive-database-queries bug simulates the
n+1 pattern [29].

Our approach flagged a database-related count®igi Reads/second) and two Tomcat
server-related counters (# Threads and # privateshyAll three counters have severity of 1,
signaling that the counters are violated duringwhele test. The result agrees with the nature of
the injected fault: each browsing action generatigitional queries to the database. As a result,
an increase in database transaction leads to ease of # Disk Reads/second. When the result
of the query returns, the application server usdditianal memory to extract the results.
Furthermore, since each request would take lorm@omplete due to the extra queries, more
threads are created in the Tomcat server to hahdl®@therwise normal workload. Three other
counters (Database #l/O reads bytes/second, Tdbiidtutilization and # virtual bytes) that are
expected to show regressions are not flagged byapproach. Upon investigation, we discover
that the variations of these counters compareledraining data were too small and did not lead
to a change of level after the discretization s&ipce 3 out of 6 expected problematic counters

are detected, the precision and recall of our amtran test D_3 are 100% and 50% respectively.

5.3.1.5Analysis of test D_4

We injected a configuration bug into the load drit@ simulate that a wrongly configured
workload is delivered to the application. This typé fault can either be caused by a
malfunctioning load generator or by a performantalyst when preparing for a performance test

[34]. In the case where a faulty load is used &t & new version of the application, the

61

assessment derived by the performance analyst miagapict the actual performance of the

application under test.

Severity Performance Regressions Symptoms
1 tomcat5Process(tomcat5)$Thread Count [Show Rules|
1 tomcatSProcess(tomcat5)$Virtual Bytes [Show Rules

0.21 DBS$Process(mysqld)$IO Write Bytes/sec{Show Rulesl
0.21 DBS$LogicalDisk(Total)$Disk Writes/sec [Show Rulesl
0.17 [DB$Process(mysqld)$% Processor Time [Show Rulesl
0.07 [DB$Process(mysqld)$10 Read Bytes/sec [Show Rulesl
0.03 [DB$System$Context Switches/sec Show Rulesl

Figure 5-6: Performance Regression Report for DS2st D_4 (Increased Load)

In test D_4, we double the visitor arrival ratette load driver. Furthermore, each visitor is
set to perform additional browsing for each pureh&igure 5-6 shows the counters flagged by
our prototype. The result is consistent with thiureof the fault. Additional threads and memory
are required in the Tomcat server to handle theeased demand. Furthermore, the additional
browsing and purchases lead to an increase inuhmer of database reads and writes. The extra
demand on the database leads to additional CPizatitin.

Because of the extra connections made to the dmtalae to the increased number of
visitors, we would expect the “# context switch'Uoter in the database to be high throughout the
test. To investigate the reason for the low sey@fithe database’s context switch rate (0.03), we
examined the rules that were violated by the “#texinswitch” counter. We found that the
premises of most rules that flagged the “# corgitch” counter also contain other counters that
were flagged with high severity. Consequently, phemises of the rules that flagged “# context
switch” are seldom satisfied, resulting in the loetection rates of the “# context switch”
counters. Since 7 out of 13 expected counters atectbd, the precision and recall of our

approach in this test are 100% and 54% respectively

62

5.3.2Studied application: JPetStore

5.3.2.1Application description

JPetStore is a larger and more complex e-commemié&ation than DS2 [9]. JPetStore is a
re-implementation of Sun's original J2EE Pet Stamd shares the same functionality as DS2.
Since JPetStore does not ship with a load generatouse a web testing tool, NeoLoad [42], to

record and replay a scenario of a user loggingnéhkmowsing items on the site.

5.3.2.2Data collection

In this case study, we have conducted two one-petfiormance tests (J_1 and J_2). Our
performance signatures are extracted from tesddrrihg which caches are enabled. Test J_2 is
injected with a configuration bug in MySQL. Unlikee DS2 case study where the configuration
bug is injected in the load generator, the bug usddst J_2 simulates a performance analyst's
mistake to accidentally disable all caching featrethe MySQL database [44]. Because of the
nature of the fault, we expect the following coustef the database machine to be affected: CPU

utilization, # threads, # context switches, # pevaytes, and # disk read and write bytes/second.

5.3.2.3Analysis of test J_2

Our approach detected a decrease in the memonyriioiof# private bytes) and “# disk writes
bytes/second” in the database, and an increase if#tdisk reads bytes/second” and “# threads”
in the database. The disk counters include reaaimgwriting data to network, file, and device.
These observations align with the injected fauitic® the caching feature is turned off in the
database, less memory is used during the execoitithe test. In exchange, the database needs to
read from the disk for every query submitted. Thizgaeworkload in the database translates to a
delay between when a query is received and wherethdts are sent back, leading to a decrease

in “# disk writes bytes/second” to the network.

63

Instead of an increase, an unexpected drop of thl@edds was detected in the database.
Upon verifying with the raw data for both tests, feand that the “thread count” in test J_1 (with
cache) and test J 2 (without cache) consistentigaie at 22 and 21 respectively. Upon
inspecting the data manually, we do not find thatdecrease of one in thread count constitutes a
performance regression; therefore we concludeasisa false positive. Finally, throughout the
test, there is no significant degradation in therage response time. Since 4 out of 6 expected
problems are detected, our performance regressjoortrhas a precision of 75% and recall of

67%.

5.3.3Studied application: A large enterprise application

5.3.3.1Application description

Our third case study is conducted on a large ensermpplication. This application is
designed to support thousands of concurrent regjuBlstis, the performance of this application is
a top priority for the organization. For each builfdthe application, performance analysts must
conduct a series of performance tests to uncowdomeance regressions and to file bug reports
accordingly. Each test is run with the same workJaand usually spans from a few hours to a
few days. After the test, a performance analystuyload the counter data to an internal website
to generate a time series plot for each countds ifiternal site also serves the purpose of storing
the test data for future reference. Performancdystsathen manually evaluate each plot to
uncover performance issues. Unfortunately, we atsbled by a Non-Disclosure Agreement and

cannot give more details about the commercial agftin.

64

Table 5-4: Summary of analysis for the enterprise @plication

Summary of the report submitted o
Test Our findings
by the performance analyst

Our approach identified abnormal behavior
E_1 | No performance problem found. _
system arrival rate and throughput counters

Arrival rates from two loa

generators differ significantly. Our approach flagged the same counters as the
E_2 | Abnormally high database performance analyst's analysis with one falge
transaction rate. positive.

High spikes in job queue.

Slight elevation o# databas:
E 3) No counter flagged.
transactions/second.

5.3.3.2Data collection

In this case study, we selected thirteen 8-houfopeance tests from the organization’s
performance testing repository. These tests wemduwaied during the development of a
particular release. The same workload was apptielttests. Over 2000 counters are collected
in each test.

Out of the pool of 13 tests, 10 tests have recedvpdss status from the performance analysts
and are used to derive performance signatures.Valaaed the performance of the 3 remaining
tests (E_1, E_2 and E_3) and compared our findwvitis the performance analysts’ assessment
(summarized in Table 5-4). In the following sectipwe will discuss our analysis on each target

test (E_1, E_2 and E_3) separately.

5.3.3.3Analysis of test E_1

Using data from these passed 10 tests, our appftegged all throughput and arrival rate

counters in the application. The rules producetha report imply that throughput and arrival

65

rates should fall under the same range. For examplaponent A and B should have similar
request rate and throughput. However, our repaticaies that half of the arrival rates and
throughput counters are high, while the other hslfiow. Verification of our report by a
performance analyst showed that our indicationewerrect, i.e., our approach has successfully
uncovered problems associated with the arrival aaig throughput in test E_1 that were not
mentioned in the performance analyst’s report. @uformance regression report has a precision

and recall of 100% relative to the original andb/séport.

5.3.3.4Analysis of test E_2

Our approach flagged two arrival rate counters, jmioqueue counters (each represents one
sub-process), and the “# database scans/secondtecolpon consulting with the time-series
plots for each flagged counter as well as the histange, we found that the “# database
scans/second” counter has three spikes duringetite These spikes are likely the cause of the
rule violations. Upon discussing with a performannalyst, we find that the spikes are caused by
the application’s periodic maintenance and do postitute a performance regression. Therefore,
the “# database scans/second” counter is a falsiiyeo Since four out of five flagged counters
are valid performance regressions, our performanedysis report has a precision of 80% and a

recall of 100%.

5.3.3.5Analysis of test E_3

Our approach did not flag any rule violation foisthest. Upon inspection of the historical
value for the counters noted by the performancdysfhiawe notice that the increase of “#
database transactions/second” observed in testaEtually falls within the counter historical
value range. Upon discussing with the Performanagirteering team, we conclude that the

increase does not represent a performance proliethis test, we show that our approach of

66

using a historical dataset of prior tests is masistant to fluctuations of counter values. Our
approach achieves a precision and recall of 100%.

The case studies show that our automated appreaaiie to detect similar problems as the
analysts. Our approach detects problematic coumtiginshigh precision in all three case studies.
In our case studies with the two open source agbics, our approach is able to cover 50% to

67% of the expected problematic counters.

5.4 Discussion

In this section, we discuss our approach to anapedormance tests conducted for the

implementation of an application.

5.4.1Quantitative approaches

Although there are existing approaches [14] [18Ftorelate anomalies with performance
counters by mining the raw performance data wittdigtretization, these approaches usually
assume the presence of Service Level Objective®)$hat can be used to determine precisely
when an anomaly occurs. As a result, classifiasphedict the state of SLO can be induced from
the raw performance counters augmented with the Stafe information (See Chapter 3).
Unfortunately, SLOs rarely exist during developmdrtirthermore, automated assignment of
SLO states by analyzing counter deviations is algdlenging as there could be phase shifts in
the performance tests, e.g., the spikes do nob.alitpese limitations prevent us from using

classifier-based approaches to detect performaagression.

5.4.2Sampling period and counter discretization

We choose the size of time interval for countecrdigzation based on how often the original
data is sampled. For example, an interval of 206brsds is used to discretize data of the
enterprise application, which was originally sandpsoproximately every 3 minutes. The extra

67

20 second gap is used because there was a mismaampling frequencies for some counters.
We also experimented with different interval lerggtiVe found that the recall of our approach
drops as the length of the interval increases,enriecision is not affected.

In our case studies, we found that the false negmffcounters that were expected to show
performance regressions but were not detected bgpmproach) were due to the fact that no rule
containing the problematic counters was extractethb Apriori algorithm. This was caused by
our discretization approach sometimes putting alues of a counter that had large standard
deviation into a single level. Candidate rules aagmhg those counters would exhibit low

confidence and were thus pruned.

5.4.3Performance testing

Our approach is limited to detecting performanggessions. Functional failures that do not
have noticeable effect on the performance of th@iegiion will not be detected. Furthermore,
problems that span across the historical datasttttza new test will not be detected by our
approach. For example, no performance regressithbevidetected if both the historical dataset
and the new test show the same memory leak. Ouoagip will only register when the memory

leak worsens or improves.

5.4.4Training data

The historical dataset from which the associatidas are generated should contain tests that
have the same workload, same hardware and softeaf@guration, and exhibit correct behavior.
Using tests that contain performance problems déiérease the number of association rules
extracted, making our approach less effective teaimg problems in the new test. In our case
study with the enterprise application, we appliée ffollowing measure to avoid adding

problematic tests to our historical dataset:

68

» We selected a list of tests from the repository tieve received a pass status from the
performance analyst.

* We manually examined the performance counters #rat normally used by a
performance analyst in each test from the listast pests to ensure no abnormal behavior
was found.

In the future, we will explore approaches to autticadly filter out problematic tests within

our training set.

5.4.5Automated diagnosis

Our approach automatically flags counters by usisgociation rules that show high
deviations in confidence between the new tests tArdhistorical dataset. These deviations
represent possible performance regressions or iraprents and are valuable to performance
analysts in assessing the application under tesfoffnance analysts can adjust the deviation
threshold to restrict the number of used rules dmgs, limit the number of flagged counters.
Alongside with the flagged counters, our tool atfieplays the list of rules that the counter
violated. Performance analysts can inspect thdse to understand the relations among counters.

The association rules presented in our performaegeession report represents counter
correlations rather than causality. Performancdyatsacan make use of these correlations to

manually derive the cause of a given problem.

5.5 Summary

It is difficult for performance analysts to manyadinalyze performance testing results due to
time pressure, large volumes of data, and undocteddraselines. Furthermore, subjectivity of
individual analysts may lead to performance regoessbeing missed. In this paper, we explored

the use of performance testing repositories to aupperformance regression analysis. Our

69

approach automatically compares new performands tesa set of association rules extracted
from past tests. Potential performance regressafnapplication counters are presented in a
performance regression report ordered by sevedity. case studies show that our approach is
easy to adopt and can scale well to large enterppglications with high precision and recall.

Due to limited resources and lab constraints, argdions would conduct performance tests
on a variety of software and hardware configuratida uncover performance regressions.
Difference in hardware and software may affectgbhgformance behavior of an application. In
the next chapter, we extend our automated anahmisoach such that tests conducted with

different hardware and software configurations loamsed as training data.

70

Chapter 6
Detecting Performance Regression using Tests conded in

Heterogeneous Environments

Organizations maintain multiple lab environmentsei@cute performance tests in parallel.
Over time, each lab may receive inconsistent upgraéds a result, labs may contain varying
hardware configurations, such as different CPU dis#l, and software configurations, such as
different operating system architectures (e.g.,biB2and 64-bit) and database versions.
Performance tests executed with different configoms may exhibit different performance
behavior. Performance analysis approaches thatotatifferentiate between the performance
differences caused by varying configurations amséhcaused by performance regressions, will
lead to incorrect conclusions being drawn abougtiedity of the application.

In this chapter, we extend our previous approaomfChapter 5 with ensemble-learning
algorithms to deal with performance tests that eomducted in different environments.
Ensemble-learning algorithms involve building alection of models from the performance
testing repository with each model specializingdetecting the performance regressions in a
specific environment, and combining the output &f the models to detect performance
regressions in a new test. By considering multipéelels, we reduce the overall risk of following
the result of a single model that might be derifrech data that is significantly different from the

new test.

71

Prior
Test(T,)

lyl.l||\\\l\|.|

Prior

Test(T,)
tfl\\l

New
Test

Phasel Phase 2
o Metric Metric
v g Discretization

Normalization

Discretized
T
l1||\\1\|.|||

F

Discretized

P New Test

Ta
l‘[\\ll

Discretized

Phase 3

Association Rules
Derivation

A

rlr|||\\\\l|l

Check for violation

Phase4

Metric
Viclations

rlr|||\\\|l

Metric
Violations

.lr|||\\\|l

Phase5

Combining Results
with Ensemble
Techniques

Report
Generation

Figure 6-1: Overview of our ensemble-based approach

Performance
Regression
Report

72

6.1 Our ensemble approach

Our ensemble approach has 5 phases, as shownureFgl. The input of our approach
consists of a set of prior tests and a new teste&oh prior test, we apply association rule mining
to extract counter correlations that are frequeoligerved from the test. Each set of correlations
is checked against the new test for counters ibédte the correlations. Violation results are then
combined with ensemble-learning algorithms to poeda performance regression report similar
to Figure 5-1. We now discuss each phase of ouoaphp through a running example with four

prior tests {T, T,, Ts, T4} and one new test,sT’

6.1.1Counter normalization

Counters in a performance test may contain irregiga such as clock skew, unfinished
requests, and delay. We follow the procedure cadliin Section 5.2.1 to normalize these

irregularities.

6.1.2Counter discretization

Our machine learning approach (association ruldngjntakes categorical data. Therefore,
we must discretize the continuous performance @pantlin Chapter 5, we introduced a
discretization algorithm where counters are put e of three levels (high, medium and low).
However, for tests conducted in heterogeneous @mvients, performance counters may reside at
many distinct levels due to hardware and softwéfferdnces. Forcing the performance counters
from performance tests conducted in heterogeneauso@ments into only three levels may
significantly degrade the data and make our arglgpproach less robust. To avoid the above
problem, we choose to use the Equal Width inteloitahing (EW) algorithm, which determines
the number of levels automatically, for our disizaion task. The EW algorithm is relatively
easy to implement and has similar performance lzex ohore advanced discretization algorithms

73

when used in conjunction with machine learning apphes [22]. The EW algorithm first sorts
the observed values of a counter, then dividesdhe range into k equally sized bins. The width

of each bin and the number of bins are determiyelch (6-1) and Eq. (6-2).

. . _ Xmax — Xmin
bin width = B — Eq. (6-1)

k = max {1, 2xlog(u)} Eq. (6-2)

where u is the number of unique values in a counter

The bin boundaries, used to discretize each coimthe tests, are found by applying the EW
algorithm on all values of a particular counter exved in the entire performance testing
repository. For example, the tests in the trairsag{T;, T,, T, T4} are first combined to form an
aggregated dataseta.TEQ. (6-1) and Eq. (6-2) are then applied tpt® obtain a set of bin

boundaries.

6.1.3Derivation of counter correlations

Similarly to Chapter 5, we apply association ruliging to extract a set of association rules
from each test in the training data. Each of thede sets, e.g.,, RRx, Rs and R, is a model
describing the performance behavior of a prior.téssociation rules that do not reach the
minimum support and confidence thresholds will benpd. As mentioned earlier in Chapter 5,
counters that contain performance regression argifted by measuring the changes to the rule’s
confidence in a new test.

Each model contains performance behaviors thatammon across prior tests as well as
behaviors that are specific to the test configorathat is used as the training data. Table 6-1

shows an example of counters flagged 4ra3 performance regressions byt&®R,. Counters that

74

Table 6-1: Counters flagged in T5 by multiple rulesets

Model Counters flagged as Violatior
R1 CPU utilization, throughp
R2 Memory utilization, throughp
R3 Memory utilization, throughp
R4 Database transactiosecon

are flagged by a small number of models may betdwifferences in environments and may not

represent real performance regressions.

6.1.4Combining results using an ensemble-learning algahm

We combine the counters individually flagged byheawodel in phase 3 using one of the
following two ensemble-learning algorithms: Baggid@] and Stacking [13]. In the following
subsections, we review the traditional Bagging 8tatking algorithms and present our adoption

of these ensemble-learning algorithms.

6.1.4.1Bagging

Table 6-2: Count of counters flagged as violationsy individual rule set

Counters flagged as Violatiol # of times flagge!
Throughpu 3
Memory utilizatior 2
CPU utilizatior 1
Database transactions / sec 1

75

Bagging is one of the earliest and simplest ensestelairing algorithms [12]. Bagging has
been shown to often outperform a single monolithadel [7] [47]. In Bagging, the prediction of
each model is combined by a simple majority votdoton the final prediction. In order for a
performance counter to be flagged in our perforreaeport, we require the counter to be flagged
by at least half of the available models. For exampable 6-2 shows the number of times a
counter is flagged by the 4 models; (R, Rs, Rs) in Table 6-1. Both throughput and memory

utilization will be reported as performance regi@ss as they are flagged by at least 2 models.

6.1.4.2Stacking

Stacking, or stacked generalization, is a more igée@msemble-learning algorithm that is not
limited to a specific strategy to combine the resaf individual models [58]. Unlike the Bagging
algorithm, which uses majority voting to aggregasults of individual models, Stacking can use
any selection process to form a final set of preatis.

A simple and effective way to combine the resultsinglividual rule sets is to create a

Breiman'’s stacked regression [13], which seekaeali stacking functios of the form:

s =) wiRi() £q. (6-3)

where thew; represent the weight of the rule $Rt generated from thé" test in the
repository, anc represents the performance data of the new tbss, TR(X) flags counters that
show performance regressions in the new xestcording toR. For example, Table 6-1 shows
the counters flagged as performance regressiaestis by models generated from tests 1 to 4.

We define a function to calculate the weight offeamdel based on the similarity between
the environments used for the tests in the perfoomaesting repository and the new test. A prior

test with environment settings very similar to thew test will receive a heavier weight. To

76

Table 6-3: Test Configurations

Performance Testing Repositor New Tes
T1 T2 T5
CPU 2 GHz, 2 core 2 GHz, 2 core 2 GHz, 2 core
Memory 2GB 1GE 2 GE
Database Version 1 2 1
OS Architecture 32 bi 64 bi 64 bit

compare the environments between two tests, wergena similarity vector of 1s and 0s to
indicate if two tests share common components. &xample, Table 6-3 shows three
environments for T T, and T. The similarity vectors for the pairs4(TTs) would be (1, 1, 1, 0)
because both;Tand F share the same versions of CPU, memory and d&tadnad differ only in
the operating system version. Since it is diffictdt determine the relations between the
application’s performance and individual hardware software components, such a binary
approach provides us with the safest way to comgavegonment configurations.

The length of the similarity vector can be usednieasure the degree of similarity between
the new test and the past test. For example, tigghe of (T, Ts) and (T, Ts) equal 1.7 (square
root of 3) and 1.4 (square root of 2) respectivélye longer the length of a similarity vector, the
higher the similarity between prior and new teB&sed on the distance of each similarity vector,
we can assign a weight to each model. We calctitetaeveight by dividing the distance of the
similarity vector by the sum of the distances dfsahilarity vectors. Each weight has a value

between 0 and 1. For example, the weightfor T is calculated as follows.

|(Ty, Ts)I 17

= = = 0.55
[(Ty, Ts)| + (T2, Ts)| 1.7+ 1.4

Wy

77

The weight is essentially a value that describes rédative importance of a model. In
practice, performance analysts may specify custeights best suited for their repositories.

The weights are used in Eq. (6-3) to produce thal §et of counters that are likely to show
performance regression. Each counter that is regpdsy our Stacking approach will have an
aggregated weight between 0 and 1. Performanceamsunith coefficients greater than 0.5 will
be included in the resulting set of counters thaiws performance regressions. Note that our
Stacking approach is equivalent to Bagging if prasitests in the performance testing repository

have the same environment as the new test.

6.1.5Report generation

We generate a report, similar to Figure 5-1 in Gdap, of the counters flagged in phase 4.
The flagged counters are first ranked by eitherrthimber of models voted for the counter (for
Bagging) or by the aggregated weights (for Stagkifgwo counters are ranked the same, they

will be further sorted by the level of severitydefined in Eq. (5-4).

6.2 Case study

We conducted a series of case studies with two gparce e-commerce applications (Dell
DVD Store and JPetStore) and a large enterpriskcappn to compare the performance of our
ensemble-based approaches and our previous app(aégthboth the 3-level discretization
algorithm as described in Section 5.2.2, and thedi&&fetization algorithm).

In the case study with the Dell DVD Store, we shbat our ensemble-based approaches can
handle different hardware configurations in perfante tests, while delivering an increase of
accuracy over our previous approach. In the casdyswith JPetStore, we show that our
ensemble-based approaches can be used to analjaemamce tests that are conducted with

different software configurations. Finally, in oimdustrial case study, we demonstrate that our

78

ensemble-based approaches can be used to detddenpsoin performance tests that are
conducted with varying hardware and software corepts

We use the same faults as Chapter 5 in our expetsimeith the two open source e-
commerce applications. This allows us to assespréwsion (Eq. (6-4)) and recall (Eq. (6-5)) of

our approach.

Mralse .
. ———,ifm >0
PI’eCISIOFI:{ meorar " Miotal Eq. (6-4)

Lif Mot =0

Mtotal~Mfalse

,ifm >0
Recallz{ Mexpected f expected

Lif Mexpected = 0 Eq. (6-5)

wherem,se is the number of counters that are incorrectlgdkd,my is the total number of
counters flagged, antheeceaiS the number of counters that we expect to sherfopmance
regressions (including counters that are flaggedside-effect of the injected fault). High
precision means that our approach can identifyoperdnce regressions with low false positives.
High recall means that our approach can discovest performance regressions in a test.

We use the existing performance counters collettedthe organization’'s performance
analysts as the input of our approach for the sasdy with the enterprise application. The data
used in this case study contain tests that wereute@ in heterogeneous environments, and are
different from the ones used in Chapter 5. We campglze results of our approaches against the
analysts’ reports. A big motivator of our work fettendency of analysts to miss problems due to
the vast amount of data produced by large indusapplications. Hence, we do not use the
analysts' reports as the "gold standard" for pi@tiand recall. Instead, we carefully re-verified
the test reports with the analysts, who noted aigsen problems. We calculate the recall by

determining the ratio of the number of true posiivof a particular approach to the size of the

79

Table 6-4. Summary of performance of our approaches

Original Original
approach approach
.pp p.p Bagging Stacking
Test (with 3-level (with EW
discretization) | discretization)
PIR[F|PI[R|F|P|IR[F|P[RJ]F
D 4 o| 1| ol ol 1| o 1| 1/ 2 | 1| 1| 1
o
5 | D=
» | (D 1las 1|04 06| 1| 06/07| 1| o06/07| 1| 06|07
S | training)
b [Ds
e (D_1,D_2, 0.7
Q and D_3 as 1 0 0 1 0.1, 0.3 1| 0¢0.7| 1| 0.6
" training)
S
2 1313 103 05 1/ 0807 1| 05/07| 1| 05[07
Q
$ e |EL 1103 05 1| 05 06 o0 108/ 0.8 0808
%% E 2 0.8/ 0.3 04 09 04 05 08 0.9| 09| 0.9] 0:€
=A%) 1
w E 3 1 1| 1 1 1 1 0 1 0 1 1
Average 0.€/0£E/04|0€| 0€|0E|0E|]0E|O07| 1 |0.]O0.E

union of all true positives of our original apprbaeither with the 3-level discretization

P represents precision, R represents recall, aegrieésents F-measure
(Values are rounded up to 1 significant digit)

algorithm, or the EW discretization algorithm), ang Bagging and Stacking approaches.

The F-measure is the harmonic mean of precisionrecall, and outputs a value between 0 and
1. A high F-measure value means that a approachipagrecision and recall.

Table 6-4 summarizes the performance of our appesamn all 3 case studies. In each row,

Finally, we use the F-measure to rank the accuodour approaches across all case studies.

the cells corresponding to the approach that presltlte highest F-measure value is shaded.

80

For each case study, we give a description of fhaliGation, methods used for data

collection, and analysis of each approach.

6.2.1Case study 1: Dell DVD Store

6.2.1.1Data collection

We ran five one-hour performance tests (D_1 to Dwift) the same workload. We varied the
CPU and memory capacity of the machine that hostacht and MySQL to simulate different
hardware environments. Table 6-5 summarizes thewaae setups and the expected problematic
counters for this case study. Test D_1 represéstseist in which the hardware is running at its
full capacity. In test D_2, we throttle the CPUS0% of the full capacity to emulate a slower
machine. In test D_3, we reduce the memory frong®j&byte to about 1.5 gigabyte. Tests D_1,
D_2 and D_3 will be used as test repository for approaches. Test D_4 is a replication of test
D_1 and will be used to show that our approachedymre few false positives. In test D_5, we
inject a fault in the browsing logic of DS2 to caus performance regression. Prior to the case
study, we manually derived a list of counters thatexpected to show performance regressions.

We use these counters to calculate the recall mhpproach.

81

Table 6-5: Summary of hardware setup for DS2

Test | Hardware setup Fault description | Expected problemat counters

CPU =1009
D1 No fault No problem should be observed.
Memory = 3.5 GB
CPU =509
D2 No fault No problem should be observed.
Memory = 3.5 GB
CPU =1009
D 3 No fault No problem should be observed.
Memory = 1.5 GB
D 4| Same as Test D No fauli No problem should be observ

Tomcat counters(+ represents incredse

thread +

private byte +

_ CPU utilizatior +

D 5| SameasTestD I Busyloop in | patabase counters

browsing logic # disk read /seconi +

CPU utilizatior +

Application counters
Response tinr +
Orders / minute +

6.2.1.2Analysis of test D_4

The goal of this experiment is to examine whethar ensemble-based approaches would
produce false positives when analyzing tests treatanducted in heterogeneous environments.
Since test D_4 is run without any injected bugallye no counter should be flagged.

When using our original approach with the 3-levédcretization algorithm, 3 counters
(database CPU utilization, # database /O writes] & orders/minute) were flagged. Upon
investigation, we found that the rules that flaggleel 3 counters reflected the behavior of test
D_2: because less processing power was availadth, mquest would take longer to complete,

82

resulting in an increase of CPU utilization. Aldess requests can be completed, leading to a
decrease in # database I/0O writes/second and #sémieute. Since no actual fault was injected
into test D_4, we concluded that the three courftagged were false positives, leading to a
precision of 0. Because we do not expect any cotmtee flagged, recall is equal to 1 as defined
by Egn. 6-5. The F-measure of our original approaith the 3-level discretization algorithm is
0.

Our original approach with the EW discretizatiomgalthm flagged 4 counters, which
included the 3 counters flagged when the 3-levstrétization algorithm was used and the
response time counter. Upon investigation, we fotlvad the EW discretization algorithm was
able to more precisely capture the counter valugke tests with multiple levels. As a result, the
association rules derived from test D_2 were ableitk up the response time differences
between tests D_2 and D_4. However, since no adtwdl was injected into test D_4, the
precision and recall of our original approach vilte EW discretization algorithm are 0 and 1,
respectively. As a result, the F-measure is 0.

No counter was flagged by either the Bagging ocksita approach. This can be explained
by the fact that separate models are learned fests D 1, D_2, and D_3. In order for a counter
to be considered problematic, the counter mustdggéd by at least two models or achieve an
aggregated weight of 0.5. Even though three cosif(@atabase CPU utilization, database I/O
writes, and # orders/minute) were flagged by thelehgenerated from test D_2, none of these
counters could be confirmed by models generateut tests D_1 or D_3. The precision, recall
and F-measure of our ensemble-based approachds @hgs study shows that both ensemble
approaches produce less false positives than aginar approach. There is no performance

difference between the Bagging and Stacking appesc

83

6.2.1.3Analysis of test D_5

In test D_5, we injected a database-related bug &2 that affects the product browsing
logic of the application. Every time a customerfpens a search on the website, the same query
will be repeated numerous times, causing extra lwadkfor the backend database (MySQL) and
application server (Tomcat).

Test D_1 as training data: In this scenario, we want to evaluate the perfogeanf our
ensemble-based approaches and our original appmazses where the new test and the prior
test share the same environment.

Our original approach with the 3-level discretimatialgorithm flagged one database counter
(# disk reads/second), and two tomcat counterbrgatls and # private bytes). The result agrees
with the nature of the injected fault: each browsaction generates additional queries to the
database, leading to an increase of # disk readsidecounter on the database server. When the
result of the query returns, Tomcat uses additiomamory to extract the results. Furthermore,
since each request would take longer to complete tduthe extra queries, more threads are
created in Tomcat to handle the otherwise normakhad. According to Table 6-5, 3 out of 7
expected problematic counters are detected by rdginal approach, leading to a precision of 1
and recall of 0.4. The F-measure is thus 0.6.

Our original approach with the EW discretizatiogaalthm, and the Bagging and Stacking
approaches flagged two database counters (# disksecond and CPU utilization), one Tomcat
counter (CPU utilization), and one application lessunter (response time). We found that the
EW discretization algorithm, by design, tends tecate more levels than our original
discretization method, which put counter values ihiof 3 levels. Because of that, we were able
to extract more association rules that reach thdidence threshold required by our mining

algorithm. As more association rules are availale,were able to detect more rules that have

84

significant change of confidence, which leads taemaroblematic counters being flagged. Since
4 out of 7 counters are flagged, the precision r@uall of our original approach with the EW
discretization algorithm as well as the Bagging &tacking approaches are 1 and 0.57
respectively. The F-measure is 0.73.

This study shows that both our Bagging and Stackpyroaches perform equally well when
both the training set and the new test share thee szonfiguration, and even experience an
improvement in recall over our original approachthwthe 3-level discretization algorithm.
Furthermore, when only 1 test is used as the trgidata, our ensemble-based approaches reduce
to our original approach with the EW discretizatialgorithm, which detects performance
regressions based on a single model.

Test D_1, D_2 and D_3 as training datan this scenario, we want to evaluate the abilftpuar
approaches to detect performance problems when thieing data is produced from
heterogeneous environments.

Our original approach with the 3-level discretimatialgorithm did not flag any counter.
When we extract association rules from the combitetdset of test D_1, D_2, and D_3, only
performance behaviors that are strong enough &igbén all three tests will be extracted. In this
scenario, none of the premises of the rules gesgtrbm the combined training set were
satisfied in test D_5. One such rule indicated thia¢n the # orders/minute counter is medium,
the database CPU utilization would be high. Howgewer original approach discretized the #
orders/minute counter in test D_5 to the low leagcause of that, the premises of the rules were
never satisfied and no counter was flagged. Theigiom of our original approach is 1 since no
incorrect counter was reported. The recall andrtineeasure are 0.

Our original approach with the EW discretizatiomyalthm flagged the response time

counter, which agrees with the nature of the ig@dault. Since DS2 must process additional

85

queries for each request, the overall responsedirfiered as a result. The precision and recall of
our original approach with the EW discretizatiogalthm are 1 and 0.1, respectively, and the F-
measure is 0.3.

Both the Bagging and Stacking approaches flaggedame counters: two database counters
(# disk reads/second and CPU utilization), one Tainserver-related counter (# private bytes),
and one application-level counter (response Tirdgon inspection, we found that the model
generated from test D_3 also flagged Tomcat's #atthé counter. However, in the model
generated from test D_2, the rules that contaisetthfeads” as the consequent had premises that
were never satisfied in test D_5. As a result, etftmugh the “# threads” counter behaved
differently in test D_2 and D_5, the counter wasftagged in test D_5. Since 4 out of 7 counters
were flagged, our Bagging and Stacking approachb&weed a precision of 1 and a recall of
0.57. The F-measure of both ensemble-based apm®#ch.73.

This study shows that our ensemble approachesrémtpeour original approach when using
a training set that contains tests with differeftware configurations. Our Stacking and Bagging

approaches have the same performance.

6.2.2Studied application: JPetStore

In this case study, we have conducted three oneferfiormance tests (J_1, J 2, and J_3).
All three tests share the same hardware envirorsvemd workload. Tests J_2 and J_3 use an
older version of MySQL (ver. 5.0.1) than test Jvér(5.1.45). Tests J 1 and J 2 are used as
training data. Test J_3 is injected with an envinent bug in which all caching capability in
MySQL is turned off. Table 6-6 summarizes the emwinents used in the three tests and the 6

counters expected to show performance regressionsst J_3.

86

Table 6-6: Summary of Test Setup for JPetStore

Software Fault _
Test o Expected problematic counters
setup description
MySQL
J1 No fault No problem should be observed.
5.1.45
MySQL
J 2 No fault No problem should be observed.
5.0.1
Database counters
private byte +
MySQL # thread +
J_3 Cache disabled | | CPU utilizatior +
5.0.1 .
context switche +
disk read bytes / secc +
disk write bytes / seco +

6.2.2.1Analysis of test J_3

Our original approach with the 3-level discretimatialgorithm detected a performance
regression in memory usage (# private bytes), ded“# threads” in the database. These
observations align with the injected fault: sinbe taching feature is turned off in the database,
less memory is used during the execution of thie Berause of the extra workload of accessing
the disk, the database in turn must create mormadsr to handle the otherwise unchanged
workload. Our original approach has a precisiorl agind recall of 0.3. The F-measure of our
original approach is 0.5.

Our original approach with the EW discretizatiogaalthm detected a decrease in the #
private bytes counter in the database, as welhasa@ease in the CPU utilization and # thread
counters. The precision of our original approacthwiie EW discretization algorithm is 1. The

recall and F-measure are 0.5 and 0.7, respectively.

87

Our Bagging and Stacking approaches flagged thawislg three counters: # private bytes, #
disk read bytes/second, and # threads in thdasgea Our ensemble-based approaches achieved
a precision of 1 and recall of 0.5, respectivelye F-measure is equal to 0.7.

In this case study, our original approach with BW discretization algorithm achieved the

same performance as our ensemble-based approaches.

6.2.3Studied application: a large enterprise application

In this case study, we selected thirteen 8-houfopeance tests from the organization’s
performance testing repository. Most of these tesse run in different labs that differ in
hardware specifications, and were conducted forireommaintenance release of the software
application. In each test, over 2000 counters wetkected. For each test, we removed the first
and last hour, which represent the warm-up and-d¢oai periods.

Out of the pool of 13 tests, 10 tests have recedvpdss status from the performance analysts
and are used to derive association rules. We eealibe performance of the 3 newest tests (E_1,
E_2 and E_3) in the pool and compared our findinigs the performance analysts’ assessment

(Table 6-7). We now discuss our analysis for eash(E_1, E_2 and E_3) separately.

88

Table 6-7: Summary of analysis for the enterpriseystem

Report o
Test | Performance analyst’s report Our findings
status
Our approach identified abnorrnr
No performance problem o)
E 1 Passed| behaviors in system arrival rate and

found.
throughput counters.

Arrival rates from two loax
generators differ significantly.

_ _ Our approach flagged the counters
E_2 | Abnormally high Database Failed

—

_ identified by the performance analys
transaction rate.

High spikes in job queue.

Slight elevation o# databas: _
E 3 _ Failed | No counter flagged.
transactions/second.

6.2.3.1Analysis of test E_1

By analyzing the counters flagged by all our apphes for test E_1, we found that 13
counters showed true performance regressions. THzs®unters will be used to calculate the
recall of our approaches for test E_1.

Using the history of 10 tests as training data, otiginal approach with the 3-level
discretization algorithm flagged 2 throughput andrélval rate counters in test E_1. The rules
that flagged the counters imply that all throughaod arrival rate counters should be the same.
However, upon investigation, we found that haltlef arrival rates and throughput counters are
high while the other half is low, suggesting thare was a mismatch in load created by the load
generators. Our performance regression report pascésion of 1. Since 4 out of 13 counters are

flagged, our recall and F-measure are 0.3 ande@gectively.

89

Our original approach with the EW discretizatiogaaithm flagged 6 counters, including 2
throughput counters, 2 arrival rate counters, tipeivate bytes counter of the server process and
the database transactions/second counter. Oumakigipproach with the EW discretization
algorithm achieves a precision of 1, a recall d6and an F-measure of 0.6.

Our Bagging approach flagged 18 counters, includimg 4 throughput and arrival rates
counters flagged by our original approach. Mosthef flagged counters are side effects of the
mismatch of the arrival rate counters. For examghe, CPU utilization of the application
decreased because fewer requests were made dualedp i one of the arrival rate counters. We
verified our finding with a performance analystddound that 5 out of 18 flagged counters were
false positives, bringing the precision and rea#ll our Bagging approach to 0.7 and 1,
respectively. The F-measure of our Bagging appris0ts.

Our Stacking approach flagged 13 counters, inclydime ones flagged by our original
approach. Out of the 13 counters flagged, we ifledti2 false positives, bringing both the
precision and recall of our Stacking approach & The F-measure of our Stacking approach is
0.8. This study shows that the performance of cagdging and Stacking approaches are better

than our original approach.

6.2.3.2Analysis of test E_2

Our approaches together detected 15 unique couhsdrshowed performance regressions in
test E_2. These 15 counters will be used to evalina recall of each of our approaches in test
E_2.

Our original approach with the 3-level discretinatalgorithm flagged 2 arrival rate counters,
2 job queue counters (each represents one subsgipcEnd the “# database scans/second”
counter. Upon consulting with the time-series plfiis each flagged counter as well as the

historical range, we found that the “# databasessacond” counter had three spikes during the
90

test. These spikes were likely the cause of thevidlations. After verifying with a performance
analyst, we concluded that the spikes were caugeldebapplication’s periodic maintenance and
did not constitute a performance problem. Therefihve “# database scans/second” counter was a
false positive. The precision and recall of ougioral approach are 0.8 and 0.3, respectively. The
F-measure equals to 0.4.

Our original approach with the EW discretizatiogalthm flagged 7 counters in total, 1 of
which was a false positive. The correct performamggessions flagged included 2 arrival rate
and 2 job queue counters, and # private bytes amilt#al bytes counters of the application
process. The precision, recall and F-measure oboginal approach with the EW discretization
algorithm are 0.9, 0.4 and 0.5, respectively.

Our Bagging approach flagged 20 counters, 5 of whiere false positives. The remaining
15 counters included those that were flagged byodgmal approach. The new counters reported
by our Bagging approach were mainly the side effeftthe abnormality detected in the arrival
rate counters. For example, as one of the loadrgeme pushed a higher than normal load to the
application, the extra requests caused the apipliced read from the disk more often, leading to
an increase of “# disk reads/second”. The restilthase extra requests were written to the disk,
causing an increase in the “# disk writes / secaralinter. Although these side effects are the
result of a higher load being pushed to the apiitinathey can provide insight to performance
analysts to investigate the ripple effect of thaltfaAs such, side effects should be considered as
true positives. The precision and recall of our @dag approach are 0.8 and 1 respectively. The
F-measure of our Bagging approach is 0.9.

Our Stacking approach flagged 14 counters, 1 otlwhvas a false positive. All counters

flagged by our original approach were also flaghggaur Stacking approach. The precision and

91

recall of our Stacking approach are 0.9 and 0.@. F4fmeasure of both our Stacking approach is

0.9.

6.2.3.3Analysis of test E_3

There are no true positives that were detected iy af our approaches. Our original
approach (with the original 3-level discretizataigorithm and the EW discretization algorithm)
did not flag any rule violation for this test. Upamspection of the historical values for the
counters reported by the performance analyst, w&et that the increase of “# database
transactions/second” observed in test E_3 actfelllwithin the range of the counter’s historical
values. Upon discussing with the Performance Emging team, we concluded that the increase
did not represent a performance problem. In the§ tur original approach of using a historical
dataset of prior tests is resistant to fluctuatiohsounter values. Since no counter was flagged,
the precision, recall and the F-measure of ouimalg@pproach are 1.

Our Bagging approach flagged 8 counters, all ofclvhwere false positives. Two counters
flagged by our Bagging approach indicated thatafrtbe load generators output service requests
at a rate (11%) higher than the other one. Theaesdrvice requests led to a slight increase in the
“# disk reads/second” counter. Upon investigatio®, do not believe that these two counters
represent significant performance regressions dmedefore should be considered as false
positives. As a result, the precision and recalbof Bagging approach are 0 and 1. The F-
measure of our Bagging approach is 0.

Since our Stacking approach did not flag any caurtee precision and the recall of our
Stacking approach are 1. The F-measure of our B@aalpproach is 1. This study shows that our
original approach shows similar performance asSiacking approach. In the case of test E_3,

our Bagging approach flags the most false positives

92

From our case studies with three applications, ing that the EW discretization algorithm
improves the performance of our original approdhr ensemble approaches outperform our
original approach (with either the 3-level disaation algorithm or the EW discretization

algorithm), with our Stacking approach performitightly better than our Bagging approach.

6.3 Discussion

Much of current industrial practice uses threshmded approaches to locate performance
problems. These approaches involve comparing coaverages against a set of pre-defined
thresholds. When a counter average exceeds thehtide the counter is reported. In our
industrial case study, we compared the performarficeur automated approaches against the
organization’s reports generated using such a Hbtédased approach. We showed that our
ensemble-based approaches could detect problerhavéra missed by such threshold-based
approach. In addition, our ensemble-based apprsazdie provide details such as the correlating
counters and periods where the performance regressccurred. These are useful in
investigating performance regressions and locdtiagoot cause of such regressions.

The performance tests used in our industrial casgies were conducted on a large and
distributed platform with multiple machines, eadasting a different component. Changes to any
component may affect the overall application. Assult, the performance of the tests used in our
industrial case study is very sensitive to diffeen in the environments. Since Bagging
aggregates the results of individual models bynigkh simple majority voting and does not
incorporate the environment information of perfonta tests, Bagging tends to produce higher
recall than Stacking in exchange of precision.

Our ensemble-based approaches permit us to degefdrmpance regressions with high
accuracy in new tests that share some similarith rior tests. However, if the new test

behavior is radically different than those obseriregrior tests, our ensemble-based approaches
93

will not be accurate in detecting performance peots. In the future, we will investigate ways to
automatically select tests with similar environmewoinfigurations as the new test from the

repository.

6.4 Summary

The traditional approach of analyzing performarestst to detect performance regressions is
an error-prone and time consuming process. Inctipter, we extended our automated approach
introduced in Chapter 5 with Bagging and Stackingeenble-learning algorithms. Our improved
analysis approaches address the practical needarfomutomated approach for analyzing
performance tests that are conducted with hetesmenenvironments. In our three case studies,
we showed that our ensemble approach with Staakigerforms our original approach. In the

next chapter, we will summarize the thesis andgmres list of possible future work.

94

Chapter 7

Conclusion and Future Work

We presented approaches to address the challehgkntifying performance regressions in
the software applications at the design and impleat®n levels. This chapter summarizes the
main ideas presented in this thesis. In additianpvopose avenues for future work.

Performance verification is an essential step foganizations to prevent performance
regressions from slipping into production. Curngntirganizations limit performance verification
at the functional level with the support of spazid testing frameworks [38] [28] and the
implementation level through performance testingal&ation of high impact design changes is
delayed until those changes are implemented, athwthine performance regressions are the most
costly to fix. Furthermore, the analysis of theutts of performance verification is both time-
consuming and error-prone due to the large volufmeotlected data, the absence of formal
objectives, the subjectivity of performance anayahd heterogeneous environments. In this
thesis, we proposed several approaches to addhressatiove challenges of performance
verification. First, we proposed a layered simolatimodeling approach that can be use to
uncover performance regression at the design 18eglond, we introduced an automated analysis
approach for uncovering performance regressiomeiformance tests. Finally, we extended our
automated analysis approach with ensemble-learaiggrithms to handle performance tests
conducted in heterogeneous environments. Throughcase studies, we demonstrated our

success in applying our approaches to various Ggifuns.

7.1 Main topics covered

We introduced our approach of constructing layesgdulation models for analyzing the

application performance at the design level in Gérag. Our layered simulation model separates
95

the performance concerns of different stakeholded can be constructed incrementally. We
show that our approach is easy to adopt throughcage studies with the RSS cloud system and
the performance monitor for ULS applications. Byuating the workload fed into the layered
simulation model, performance analysts can evaltiage performance impact of a proposed
design changes.

Chapter 5 presented our automated approach tozanadsults of performance tests. Our
approach uses association rule mining to extrataf expected counter correlations from the
performance testing repository and check the newfte violations of the expected correlations.
Our case studies with two open source e-commengléEcapions and a large enterprise application
showed that our approach can effectively discowfopmance regressions and scale to large
applications.

Chapter 6 extends the approach in Chapter 5 usiagBagging and Stacking ensemble-
learning algorithms. Our ensemble-based approactbeaised to analyze performance tests that
are executed on a variety of software and hardwaxéronments. Our case studies with three
applications showed that our ensemble approachestdd more performance regressions than
our original approach in Chapter 5 in the presesfcperformance tests that are conducted in

heterogeneous environments.

7.2 Contributions

The contributions of this thesis are as followed:

1. We presented an approach to build layered simulatimdels for the purpose of
evaluating changes to application designs. Ourréaysimulation model separates the
different performance concerns of the applications.

2. We proposed an automated approach to automatidatlyct performance regressions.

The approach uses prior tests to derive performaigretures, and then compares the
96

new test to these signatures. Our approach flagstithe when counters violate the
performance signature, easing root cause analysis.

3. We propose an approach to deal with performands tenducted in heterogeneous
environments, which is common in practice.

4. We are providing a replication package of our catedies with the open source projects

to foster research on the automated discoveryrddimeance regressions [31].

7.3 Future work

7.3.10nline analysis of performance tests

Previous approaches as well as the automated &nalysroaches introduced in this thesis
focus on offline analysis, that is, after the perfance tests are completed. A performance test
can take up to a few days to execute; anomalouavimhthat exhibits early on in the test will
only be discovered after the test is finished. Vdiele early knowledge of the anomalous
behavior would allow performance analysts to mdilee decision of stopping the test early and
freeing up the lab resources. In the future, wendtto build a behavioral database by extracting
the expected performance behavior from prior tedfs our analysis approach. As a new test is
executing, the test's performance counter will beaked against the behavioral database in real

time. Performance analysts will be notified for algyiations of the expected behavior.

7.3.2Compacting the performance regression report

Our automated analysis approaches produce perfaamaagression reports that show the
counters that contain performance regressions aedlist of rules the counter violated.
Performance analysts can inspect these rules terstathd the relations among counters. From
our case studies, we notice that some of the prieduced are highly similar. For example, the

premise of one rule is the superset of another witle having the same consequence. Another

97

issue is that some performance counters providendaht information. For example, operating
systems are capable of recording the utilizatidniedividual CPU cores as well as the total CPU
utilization. Since the total CPU utilization is bzly the sum of all the CPU cores, we can solely
analyze the counters corresponding to the individoaes without losing information. In the

future, we will research ways to automatically efiate redundant counters and merge similar

rules to condense information presented to perfocmanalysts.

7.3.3Maintaining the training data for our automated analysis approach

Our ensemble-based approach permits us to detefdrmpance regressions with high
accuracy in new tests that share some similariti wiior tests. However, the accuracy of our
ensemble approach will decrease if the new testieh is radically different from those
observed in prior tests. In the future, we willéstigate ways to automatically update the training
data over time and prevent polluting the trainirgfadwith tests that contain performance

regressions.

7.3.4Using performance signatures to build performance radels

Many modeling approaches are proposed to predidteaaluate application performance
[20] [26]. These approaches can greatly help pevdoice analysis and capacity planning efforts.
However, creation of such performance models requietailed documentation about the
application that may not be available. In the fefwre plan to explore the possibility of using the
performance signatures generated by our approaclspexify the resource consumption

relationship between different components in thégpsmance models.

98

References

[1] R Agrawal and Ramakrishnan Srikant, "Fast AlgorgHior Mining Association Rul¢in
Large Databases," iroceedings of the 20th International Conferencé/ery Large Data
Bases (VLDB)San Francisco, CA, USA, 1994, pp. 487-499.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Rela® and A. Muthitacharoe
"Performance debugging for distributed systemdadkoboxes," irProceedings of the 19th
ACM Symposium on Operating Systems Principles (§@®Ron Landing, NY, USA,
2003, pp. 74-89.

[3] A. Alberto and E. J. Weyuker, "The Role of Modelinghe Performance Testing o-
Commerce ApplicationsJEEE Transactions on Software Engineeringl. 30, no. 12, pp.
1072-1083, Dec. 2004.

[4] A. Avritzer and B. Larson, "Load Testing Softwareng Deterministic State Testing,"
Proceedings of the International Symposium on So&westing and Analysis (ISSTA)
Cambridge, Massachusetts, USA, 1993, pp. 82-88.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortigsing magpie for request extraction ¢
workload modelling," irProceedings of the 6th Conference on Symposiunmpenating
Systems Design & Implementation (OSBigrkeley, CA, USA, 2004, pp. 259-272.

[6] F. Baskett, K. M. Chandy, R. R. Muntz, and F. QaPias, "Open, Closed, and Mix
Networks of Queues with Different Classes of CugtsyiJournal of the ACM (JACM)
vol. 22, no. 2, pp. 248-260, Apr. 1975.

[7] E. Bauer and R. Kohavi, "An Empirical Comparisonvofiing Classification Algorithms
Bagging, Boosting, and Variantdflachine Learningvol. 36, no. 1-2, pp. 105-139, July
1999.

[8] F. Bause and P. Kemper, "N-Tool for qualitative and quantitative analysis okgeing
Petri nets," ifProceedings of the 7th International Conference&Computer Performance
Evaluation: Modelling Techniques and Tqolsenna, Austria, 1994, pp. 321-334.

[9] C. Begin. (2011, Jan.) iBATIS JPetStore. [Onlit
http://sourceforge.net/projects/ibatisjpetstore/

[10] P. Bodik, M. Goldszmidt, and A. Fox, "HiLighter: famatically Building Robus

99

Signatues of Performance Behavior for Sn- and Larg-Scale Systems," iProceedings ¢
the 3rd Conference on Tackling Computer Systemisl®res with Machine Learning
Techniques (SysML¥$an Diego, California, 2008, pp. 33-40.

[11] A. B. Bondi, "Automating the Analysis of Load Té¥tsults to Assess the Scalability ¢
Stability of a Component,” iRroceedings of the 33rd International Computer Meament
Group Conference (CMG¥an Diego, CA, USA, 2007, pp. 133-146.

[12] L. Breimen, "Bagging predictorsMachine Learnin, vol. 24, no. 2, pp. 1-140, Aug.
1996.

[13] L. Breiman, "Stacked regressionMachine Learnin, vol. 24, no. 1, pp. <64, July 199¢

[14] L. Bulej, T. Kalibera, and P. Tuma, "Regressiondbenarking with simle middleware
benchmarks," ifProceedings of the International Conference on &erfince, Computing,
and Communications (IPCCCPhoenix, AZ, USA, 2004, pp. 771-776.

[15] L. Bulej, T. Kalibera, and P. Tuma, "Repeated rssahalysis for middleware regsion
benchmarking,Performance Evaluatigrvol. 60, no. 1-4, pp. 345-358, May 2005.

[16] M. Y. Chen et al., "Pa-based faliure and evolution managementProceedings of the 1
Symposium on Networked Systems Design and Impktioar(NSDI) Berkeley, CA, USA,
2004, pp. 63-72.

[17] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, an&.JChase, "Correlating instrumentat
data to system states: a building block for autechaliagnosis and control," Proceedings
of the 6th Symposium on Opearting Systems Desigmpementation (OSDJ)San
Francisco, CA, USA, 2004, pp. 231-244.

[18] I. Cohen et al., "Capturing, indexing, clusteriagd retrieving system history,"
Proceedings of the 20th ACM Symposium on Oper&yrsiems Principles (SOSP)
Brighton, UK, 2005, pp. 105-118.

[19] Compuware. (2006, Oct.) Applied performance managesurvey. [Online]
http://www.cnetdirectintl.com/direct/compuware/Ovu&PM/ APM Survey Report.pdf

[20] V. Cortellessa, P. Pierini, and D. Rossi, "Inteiqgsoftware models and platform mod
for performance analysislEEE Transactions on Software Engineerirngl. 33, no. 6, pp.
385-401, June 2007.

[21] M. A. Daniel, V. Almeida, and L. W. DowdPerformance by desi. Upper Saddle Rive

100

New Jersey, USA: Prentice Hall, 20

[31] (2011, Jan.) Data used in the case studies with sperce applications. [Online
https://gshare.queensu.ca/Users01/3kcdf/www/icsb2(l

[55] (2011, Jan.) Dell DVD Store Database Test Suitalif@]. http:/linux.dell.com/dvdstor

[22] J. Dougherty, R. Kohavi, and M. Sahami, "Superviged unsupervised discretization
continuous features," iAroceedings of the 20th International Conferencéathine
Learning (ICML) 1995, pp. 194-202.

[23] (2011, Jan.) Exchange Server 2003 MAPI saging Benchmark 3. [Online
http://technet.microsoft.com/en-us/library/cc164B2BEXCHG.65%29.aspx

[24] K. C. Foo et al., "Mining performance regressiostitey reposories for automate
performance analysis," Ifroceedings of the 10th International Conferenc&uality
Software (QSIG)Zhangjiajie, China, 2010, pp. 32-41.

[25] G. Franks and C.M. Woodside, "Performance of r-level clien-server systems wit
parallel service operations,” Rroceedings of the 1st international workshop ofive
and performance (WOSPJanta Fe, New Mexico, USA, 1998, pp. 120-130.

[26] V. Garousi, L. C. Briand, and Y Labiche, "Tra-aware stress testing of distributed -
time systems based on UML models, Proceedings of the 1st international conference on

software testing, verification, and validatiddllehammer, 2006, pp. 92-101.

[27] (2011, Jan.) Google Reader. [Onlirhttp//www.google.com/read

[28] J. Halleux. (2011, Jan.) NPerf, A Performance Berartk Framework for.NET. [Online
http://www.codeproject.com/KB/architecture/npenhas

[29] J. Herrington. (2011, Jan.) Five common PHP datpesblems. [Online’
http://www.ibm.com/developerworks/library/os-phprdistake/index.html

[30] M. Hutchins, H. Foste T. Goradia, and T. J. Ostrand, "Experiments ofetfiectiveness a
dataflow- and controlflow-based test adequacy aifein Proceedings of the 16th
International Conference on Software Engineerif@S[E) Sorrento, Italy, 1994, pp. 191-
200.

[32] Tauseef A. Israr, Danny H. Lau, Greg Franks, and Multyodside, "Automatic generatir
of layered queuing software performance models frommonly available traces," in
Proceedings of the 5th International Workshop oftvgoe and Performance (WOSPRew

101

York, NY, USA, 2005, pp. 14158

[33] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flératomated performance analysis
load tests," ilProceedings of the 25th IEEE International Conferpn Software
Maintenance (ICSM)Edmonton, AB, Canada, 2009, pp. 125-134.

[34] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flératomatic identification of loax
testing problems," iProceedings of the 24th IEEE International Confeenon Software
Maintenance (ICSM)Beijing, China, 2008, pp. 307-316.

[35] M. Jiang, M. A. Munawar, and T. Reidemeister, "Autornd#iult detection and diagnosis
complex software systems by information-theoretomitoring," inProceedings of the 2009
International Conference on Dependable Systemd\atadorks (DSN)Estoril, Lisbon,
Portugal, 2009, pp. 285-294.

[36] M. Jiang, M. A. Munawar, T. Reidemeister, and PrdlyaSystem monitoring with met-
correlation models: problems and solutions,Pinceedings of the 6th International

Conference on Autonomic Computing (ICABarcelona, Spain, 2009, pp. 13-22.

[37] R. Jin and H. Liu, "SWITCH: A novel approach to emble learning for heterogeneou
Machine Learning: ECML 20Q4s0l. 3201, pp. 560-562, 2004.

[38] (2011, Jan.) JUnitPerf. [Onlinehttp://www.clarkware.com/software/JUnitPerf.h

[39] P. Kruchten, "The 4+1 view model of architectulEEE Softwar, vol. 12, no. 6, pp. <50,
Nov. 1995.

[40] H. Malik, B. Adams, A. E. Hassan, P. Flora, andH@mann "Using load tests t
automatically compare the subsystems of a largerige system," iRroceedings of the
34th Computer Software and Applications Conferd@@MPSAC) Seoul, Korea, 2010,
117-126.

[41] D. A. Menasce, "Tw-level iterative queuing modeling of software coritem" in
Proceedings of the 10th IEEE International Symposin Modeling, Analysis, and
Simulation of Computer and Telecommunications 8ys®IASCOTSFairfax, VA, USA,
2002, pp. 267-276.

[42] (2011, Jan.) NeoLoad. [Onlinehttp://www.neotys.con

[43] (2011, Jan.) OMNeT++ Network Simulation Framewd€nline]. http://www.omnetpp.ort

[44] D. Oppenheimer and D. A. Patterson, "Architectur@ dependability of lar¢-scale interne
102

services,'|EEE Internet Computir, vol. 6, no. 5, pp. 449, Sep. 200

[45] D. L. Parnas, "Software aging," Proceedings of the 16th International Conferenn
Software Engineering (ICSH)0os Alamitos, CA, USA, 1994, pp. 279-287.

[46] L. F. Pollacia, "A survey of discrete event simidatand stat-of-the-art discrete ever
languages,ACM SIGSIM Simulation Digestol. 20, no. 3, pp. 8-25, Sep. 1989.

[47] J. R. Quinlan, "Bagging, boosting, and C4.5.,Proceedings of the 13th Natior
Conference on Artificial Intelligence (AAAPortland, Oregon, 1996, pp. 725-730.

[48] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Agud, and A. Vahdat, "WAP5: bla-box
performance debugging for wide-area systemsPrateedings of the 15th International
Conference on World Wide Web (WW¥®&inburgh, Scotland, 2006, pp. 347-356.

[49] J. A. Rolia and K. C. Sevcik, "The method of layelEEE Transactions on Softwa
Engineering vol. 21, no. 8, pp. 689-700 , Aug. 1995.

[50] (2011, Jan.) RSS 0.90 Specification. [Onlithttp://www.rssboard.org/r-0-9-0

[51] (2011, Jan.) RSSCloud. [Onlindttp://rsscloud.or¢

[52] C. U. SmithPerformance engineering of software sys. Boston, MA, USA: Addisc-
Wesley Longman Publishing Co., Inc., 1990.

[53] C. U. Smith and L. G. WilliamsPerformance solutions: a pracal guide to creating
responsive, scalable softwafiRedwood City, CA, USA: Addison Wesley Longman
Publishing Co., Inc., 2002.

[54] Michael Smit et al., "Capacity planning for sen-oriented architectures," Proceedings ¢
the conference of the center for advanced studiesobaborative research (CASCON)
Toronto, Canada, 2008, pp. 144-156.

[56] (2011, Jan.) The R Project for Statistical Comput[@nline]. http://www.I-project.ort

[57] I. H. Witten and E. FraniData mining: practical machine learning tools arathnique.
San Francisco, CA, USA: Morgan Kaufmann, 2005.

[58] D. H. Wolpert, "Stacked GeneralizatioiNeural Network, vol. 5, no. 2, pp. 24259, 1992

[59] C. M. Woodside"A three-view model for performance engineering of concursaftware,"
IEEE Transactions on Software Engineeringl. 21, no. 9, pp. 754-767 , Sep. 1995.

[60] C.M. Woodside, "Throughput calculation for basiocétastic rendezvous network

103

Performanc Evaluatior, vol. 9, no. 2, pp. 1160, Apr. 198¢
[61] M. Woodside, G. Franks, and D. C. Petriu, "The ffeitof software performanc

engineering," ifProceedings of the 2007 International Conferenc&oftware Engineering
(FOSE) Washington, DC, USA, 2007, pp. 171-187.

[62] M. Woodside, C. Hrishchuk, B. Selic, and S. Bayatéwitomated Performance Modelil
of Software Generated by a Design Environmenétformance Evaluatigrnvol. 45, no. 23,
pp. 107-123, July 2001.

[63] C.M., Neilson, J.E. Woodse, D.C. Petriu, and S. Majumdar, "The stochastidezvous
network model for performance of synchronous cteatver-like distributed software,"

IEEE Transactions on Computessl. 44, no. 1, pp. 20-34, Jan. 1995.
[64] (2011, Jan.) WordPress. [Onlinhttp://wordpress.or:

[65] J. Xu and J. Kuusela, "Modeling execution architexbf software system using colol
Petri nets," irProceedings of the 1st International Workshop oftw&oe and Performance
(WOSP) Santa Fe, New Mexico, USA, 1998, pp. 70-75.

[67] S. Zhang, |. Cohen, M. Goldszmidt, J. Symons, anBdX, "Ensembles of models 1
automated diagnosis of system performance problemBroceedings of the International
Conference on Dependable Systems and Networks (8k)hama, Japan, 2005, pp. 644-
653.

104

