
AUTOMATED DISCOVERY OF PERFORMANCE REGRESSIONS

IN ENTERPRISE APPLICATIONS

by

King Chun Foo

A thesis submitted to the Department of Electrical and Computer Engineering

In conformity with the requirements for

the degree of Master of Applied Science

Queen’s University

Kingston, Ontario, Canada

January, 2011

Copyright ©King Chun Foo, 2011

ii

Author’s Declaration for Electronic Submission of a Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Performance regression refers to the phenomena where the application performance degrades

compared to prior releases. Performance regressions are unwanted side-effects caused by changes

to application or its execution environment. Previous research shows that most problems

experienced by customers in the field are related to application performance. To reduce the

likelihood of performance regressions slipping into production, software vendors must verify the

performance of an application before its release. The current practice of performance verification

is carried out only at the implementation level through performance tests. In a performance test,

service requests with intensity similar to the production environment are pushed to the

applications under test; various performance counters (e.g., CPU utilization) are recorded.

Analysis of the results of performance verification is both time-consuming and error-prone due to

the large volume of collected data, the absence of formal objectives and the subjectivity of

performance analysts. Furthermore, since performance verification is done just before release,

evaluation of high impact design changes is delayed until the end of the development lifecycle. In

this thesis, we seek to improve the effectiveness of performance verification. First, we propose an

approach to construct layered simulation models to support performance verification at the design

level. Performance analysts can leverage our layered simulation models to evaluate the impact of

a proposed design change before any development effort is committed. Second, we present an

automated approach to detect performance regressions from results of performance tests

conducted on the implementation of an application. Our approach compares the results of new

tests against counter correlations extracted from performance testing repositories. Finally, we

refine our automated analysis approach with ensemble-learning algorithms to evaluate

performance tests conducted in heterogeneous software and hardware environments.

iv

Acknowledgements

I would like to thank Professors Ying Zou and Ahmed E. Hassan for their guidance and

support in this research and the opportunity to visit Research In Motion (RIM) during the second

year of my study.

In addition, I would like to thank Zhen Ming Jiang and Dr. Bram Adams from SAIL, and

Parminder Flora from the Performance Engineering team at RIM for their fruitful suggestions and

tireless reviews that greatly improved my work.

Finally, I would like to express my gratitude to my parents, Gloria and John, for their

decision and sacrifice to allow me to study abroad, and my aunt and uncle, Margaret and Don, for

their care and advice after I moved to Canada.

v

Table of Contents

Author’s Declaration for Electronic Submission of a Thesis .. ii

Abstract ... iii

Acknowledgements .. iv

Chapter 1 Introduction .. 1

1.1 Challenges in discovering performance regression ... 2

1.2 Thesis statement .. 3

1.3 Our approach ... 4

1.3.1 Discovery of performance regression at the design level ... 4

1.3.2 Discovery of performance regression at the implementation level 5

1.4 Thesis contribution .. 6

1.5 Thesis organization ... 7

Chapter 2 Performance Verification .. 8

2.1 Performance verification at the design level ... 8

2.1.1 Analytical models ... 9

2.1.2 Simulation models .. 9

2.1.3 Maintaining performance models to address different stakeholders’ concerns 10

2.2 Performance verification at the implementation level ... 11

2.3 Summary ... 14

Chapter 3 Literature Review ... 15

3.1 Performance verification at the design level ... 15

3.1.1 Analytical modeling approaches ... 15

3.1.2 Simulation modeling approaches... 18

3.2 Performance verification at the function level .. 19

3.3 Performance verification at the implementation level ... 19

3.3.1 Analyzing performance tests using execution logs... 19

3.3.2 Analyzing performance tests using performance counters ... 20

3.3.2.1 Supervised approaches for analyzing performance counters 21

3.3.2.2 Unsupervised approaches for analyzing performance counters 21

3.4 Summary ... 22

Chapter 4 Discovering Performance Regressions at the Design Level .. 23

vi

4.1 Layered simulation model ... 24

4.1.1 World view layer .. 25

4.1.2 Component layer .. 28

4.1.3 Physical layer ... 29

4.1.4 Scenario layer ... 29

4.2 Model construction .. 29

4.3 Case studies .. 31

4.3.1 Case Study 1: Constructing a layered simulation model for an RSS Cloud 31

4.3.1.1 Application description .. 31

4.3.1.2 World view layer of the RSS Cloud system .. 32

4.3.1.3 Component layer of the RSS Cloud system .. 33

4.3.1.4 Physical layer of the RSS Cloud system ... 33

4.3.1.5 Model validation .. 34

4.3.1.6 Experiments and data collection ... 34

4.3.2 Case Study 2: Using simulation models to evaluate changes to application design 37

4.3.2.1 Application description .. 37

4.3.2.2 Experiments and data collection ... 39

4.3.2.3 Evaluating parameter configuration .. 40

4.3.2.4 Evaluating the benefit of migrating the performance monitor to a distributed

architecture.. 43

4.4 Discussion ... 44

4.4.1 Updating the simulation model to reflect changes to the application 44

4.4.2 Capturing resource requirements ... 45

4.5 Summary ... 45

Chapter 5 Discovering Performance Regressions at the Implementation Level 46

5.1 An illustration of our automated analysis approach .. 46

5.1.1 Report summary ... 47

5.1.2 Details of performance regression ... 49

5.1.3 Performance comparison and in-depth analysis ... 49

5.2 Our approach ... 50

5.2.1 Counter normalization .. 51

5.2.2 Counter discretization ... 52

vii

5.2.3 Derivation of performance signatures .. 53

5.2.4 Report generation ... 55

5.3 Case studies .. 56

5.3.1 Studied application: Dell DVD Store .. 57

5.3.1.1 Application description .. 57

5.3.1.2 Data collection ... 58

5.3.1.3 Analysis of test D_2 ... 60

5.3.1.4 Analysis of test D_3 ... 61

5.3.1.5 Analysis of test D_4 ... 61

5.3.2 Studied application: JPetStore ... 63

5.3.2.1 Application description .. 63

5.3.2.2 Data collection ... 63

5.3.2.3 Analysis of test J_2 .. 63

5.3.3 Studied application: A large enterprise application .. 64

5.3.3.1 Application description .. 64

5.3.3.2 Data collection ... 65

5.3.3.3 Analysis of test E_1 ... 65

5.3.3.4 Analysis of test E_2 ... 66

5.3.3.5 Analysis of test E_3 ... 66

5.4 Discussion ... 67

5.4.1 Quantitative approaches .. 67

5.4.2 Sampling period and counter discretization ... 67

5.4.3 Performance testing .. 68

5.4.4 Training data .. 68

5.4.5 Automated diagnosis .. 69

5.5 Summary ... 69

Chapter 6 Detecting Performance Regression using Tests conducted in Heterogeneous

Environments .. 71

6.1 Our ensemble approach ... 73

6.1.1 Counter normalization .. 73

6.1.2 Counter discretization ... 73

6.1.3 Derivation of counter correlations ... 74

viii

6.1.4 Combining results using an ensemble-learning algorithm .. 75

6.1.4.1 Bagging ... 75

6.1.4.2 Stacking ... 76

6.1.5 Report generation ... 78

6.2 Case study ... 78

6.2.1 Case study 1: Dell DVD Store .. 81

6.2.1.1 Data collection ... 81

6.2.1.2 Analysis of test D_4 ... 82

6.2.1.3 Analysis of test D_5 ... 84

6.2.2 Studied application: JPetStore ... 86

6.2.2.1 Analysis of test J_3 .. 87

6.2.3 Studied application: a large enterprise application ... 88

6.2.3.1 Analysis of test E_1 ... 89

6.2.3.2 Analysis of test E_2 ... 90

6.2.3.3 Analysis of test E_3 ... 92

6.3 Discussion ... 93

6.4 Summary ... 94

Chapter 7 Conclusion and Future Work ... 95

7.1 Main topics covered .. 95

7.2 Contributions .. 96

7.3 Future work ... 97

7.3.1 Online analysis of performance tests ... 97

7.3.2 Compacting the performance regression report.. 97

7.3.3 Maintaining the training data for our automated analysis approach 98

7.3.4 Using performance signatures to build performance models 98

ix

List of Figures

Figure 1-1 Purchase processing in an e-commerce application ... 6

Figure 2-1: The "4+1" view model .. 10

Figure 2-2: The process of performance verification .. 11

Figure 3-1: Open queueing network model .. 16

Figure 3-2: Closed queueing network model ... 16

Figure 4-1: Example of layered simulation model for an RSS cloud .. 27

Figure 4-2: Plot of the throughput of the RSS server at various request arrival rates 36

Figure 4-3: Plot of the response time of the RSS server at various request arrival rates 36

Figure 4-4: Plot of the hardware utilization of the RSS server at various request arrival rates 37

Figure 4-5: World view layer of the performance monitor for ULS applications 39

Figure 5-1: An example performance regression report ... 48

Figure 5-2: Overview of performance regression analysis approach ... 50

Figure 5-3: Counter normalization and discretization... 52

Figure 5-4: Definition of counter discretization levels ... 52

Figure 5-5: Example of an association rule .. 53

Figure 5-6: Performance Regression Report for DS2 test D_4 (Increased Load) 62

Figure 6-1: Overview of our ensemble-based approach ... 72

x

List of Tables

Table 3-1: Summary of approaches based on QN model .. 16

Table 4-1: Performance concerns of stakeholders .. 24

Table 4-2: Mapping of our simulation models to the 4+1 view model .. 24

Table 4-3: Components and connections in Figure 4-1 .. 28

Table 4-4: Processing requirement for an RSS notification .. 34

Table 4-5: Performance data collected per layer .. 40

Table 4-6: Categorization of CPU utilization ... 40

Table 4-7: Categorization of RAM utilization.. 40

Table 4-8: Simulation result for the performance monitor case study ... 42

Table 4-9 : Simulation result for the original design of the performance monitor 43

Table 5-1: Average precision and recall .. 57

Table 5-2: Summary of counters collected for DS2 ... 59

Table 5-3: Summary of injected faults for DS2 and expected problematic regressions 60

Table 5-4: Summary of analysis for the enterprise application ... 65

Table 6-1: Counters flagged in T5 by multiple rule sets ... 75

Table 6-2: Count of counters flagged as violations by individual rule set 75

Table 6-3: Test Configurations .. 77

Table 6-4: Summary of performance of our approaches ... 80

Table 6-5: Summary of hardware setup for DS2 .. 82

Table 6-6: Summary of Test Setup for JPetStore ... 87

Table 6-7: Summary of analysis for the enterprise system ... 89

1

Chapter 1

Introduction

Over the years, software applications are continuously updated in response to new

requirements or bug fixes. For example, applications may change to support new usage scenarios

or protocols. As the size and complexity continue to grow, software applications may become

vulnerable to performance degradation such as a slow-down of response time, or higher than

expected resource utilization. Such phenomenon where the application performance degrades

compared to prior releases is known as performance regression. Previous research notes that most

problems experienced by the end users are related to the application performance [3] [61].

Consequently, the ability to detect performance regressions in software applications is of prime

importance to organizations.

Currently, organizations make use of performance tests as the primary means to carry out

performance verification on applications [11]. In contrast to traditional regression testing, which

focuses on verifying the functional correctness of code changes, performance testing focuses on

measuring the response of an application under load and uncovering evidence of performance

regressions [3] [4]. A load typically resembles the usage patterns observed in a production

environment and contains a mix of scenarios [33]. For example, the MMB3 [23] benchmark

describes how typical users access the services provided by the Microsoft Exchange Server. The

MMB3 benchmark specifies that a user will send 8 emails per day on average, 15% of which are

high priority, and another 15% have low priority. A performance test usually runs such a load for

hours or even days, during which execution logs and hundreds of performance counters (e.g.,

response time and CPU utilizations) about the running application are recorded. After the test,

performance analysts first compare counter averages against pre-defined thresholds to flag

2

counters that are at alarming levels. The analysts then selectively compare other counters in an

attempt to uncover any performance regressions in the applications [24]. Analysis of performance

tests is a manual process that would typically take up to a few days. All data collected during a

performance test as well as its analysis are archived into the performance testing repositories for

bookkeeping purposes.

1.1 Challenges in discovering performance regression

Performance verification is usually the last step in an already delayed schedule [34]. At

Design changes that may have negative impact on the application performance are usually not

evaluated until those changes are reflected in the source code. At this late stage, performance

regressions introduced by the design changes are often the most difficult and expensive to fix [52]

[53]. While design changes can be evaluated with performance modeling, existing analytical

modeling approaches show very limited industrial adoption due to the steep learning curve

involved [61]. In addition, the pressure to release on time and the high cost associated with

analyzing the result of performance verification prevent organizations from thoroughly evaluating

the performance of the updated applications on custom environment configurations. As a result of

insufficient testing, a large number of performance regressions slips into production and are

experienced by the end users [3] [4] [19].

The implementation of the application is tested through performance testing. The analysis of

the results of performance tests is both time-consuming and error-prone due to the following

factors [34] [45]:

1. No documented application behavior: Correct and up-to-date documentation of

application behavior rarely exists. A performance analyst must often exert her own

judgment to decide whether an observation constitutes a performance regression. As

3

a result, performance analysts often overlook potential performance regressions that

may exist in a test, leading to the wrong conclusions being drawn.

2. Large volume of data: During a test, a large number of counters is collected. It is

difficult for performance analysts to manually look for counter correlations and

instances where the correlations are violated.

3. Time pressure: Performance testing is usually the last step in an already delayed

schedule. In an effort to ship the product on time, managers may reduce the time

allocated for performance testing and analysis.

4. Heterogeneous environments: Organizations maintain multiple labs to conduct

performance tests in parallel. Each lab may have varying hardware and software

configurations due to inconsistent upgrades and the need to certify the application

under different environments. This further complicates the analysis of performance

tests as the analysts must consider the environment differences between tests.

Although organizations employ automated tools to detect performance regressions, these

tools are typically threshold-based tools which detect performance regressions based on

violations of pre-defined thresholds. Threshold-based tools are incapable of providing

information about the violations that can help analysts to diagnose the cause of the performance

problems. Furthermore, performance testing repositories, which contain a rich history about the

past performance behavior of an application, can be useful in diagnosing the behavior of new

releases of the application. These repositories are rarely used by the analysts when reviewing

performance tests.

1.2 Thesis statement

The current practice of performance verification is ineffective in discovering performance

regressions at the design and implementation levels of an application. Existing analytical

4

approaches to evaluate design changes require a steep learning curve that discourages the industry

from applying these approaches. Furthermore, the current approach to analyze the results of

performance tests is error-prone and requires considerable effort. We believe a systematic and

automated approach can improve the effectiveness of performance verification at both levels. For

example, at the design level, simulation models, which avoid the use of complex mathematical

concepts, would present a lower learning curve to the performance analysts. Performance analysts

can leverage the simulation model to evaluate the performance impact of a proposed change of

design. While at the implementation level, the industry will benefit from an automated approach

to discover performance regressions from new performance tests by mining the repositories of

performance testing results.

1.3 Our approach

To uncover performance regressions in a tight release schedule, we propose to extend

performance verification to not only cover the implementation but also the design of an

application. For example, when the application design is updated, the new design should be

compared to the old one so we can minimize the risk of introducing performance issues in the

updated application. Furthermore, before the revised application is released, the application

should be efficiently tested and analyzed to ensure that performance has not degraded from the

previous version. Section 1.3.1 and Section 1.3.2 outline our approaches to discover performance

regressions at the design and implementation levels respectively.

1.3.1 Discovery of performance regression at the design level

While performance verification can be conducted on the implemented application by pushing

load onto the application binaries, evaluation of application designs can only be done through

performance modeling. Although there is already a vast array of analytical modeling approaches

5

available to construct and estimate performance from application designs, the construction and

usage of analytical models demand a substantial level of expertise in the mathematical

foundations on which the analytical models are based. Stakeholders such as end-users or

developers, who may not have the proper training in performance modeling, may find it difficult

to rationalize the analytical models and, as a result, will distrust the result derived from these

models [61].

Many shortcomings of analytical models can be overcome with simulation models. A

simulation model is a computer program that emulates the dynamic behavior of a software

application. Simulation models can be implemented by performance analysts with the help of

existing modeling frameworks. Visualization of application components and their

communications patterns in a simulated model can also improve the understandability of the

model. One shortcoming of simulation models is that they traditionally are constructed in an ad-

hoc manner to test a specific aspect of the application for a stakeholder [3]. There is no systematic

approach to construct a simulation model with appropriate level of detail that can address

performance concerns of multiple stakeholders.

To address the above challenge for adopting performance verification at the design level, we

propose in this thesis an approach to create layered simulation models. These layered models

separate different concerns of stakeholders and can be used to evaluate the performance impact of

changes to the existing design of applications.

1.3.2 Discovery of performance regression at the implementation level

In this thesis, we propose to mine the performance testing repositories to support automated

performance regression verification of new application releases. Our approach captures the

correlations among performance counters in the performance testing repositories in the form of

performance signatures. Violations of these signatures

potential performance regressions

In an e-commerce application

on the site, transaction records are stored in the database. As a result, a

the visitor arrival rate,

writes/second can be extracted as a performance signature. In a new version of the software with

the same visitor arrival rate,

the number of database disk writes

previously extracted correlations and violate

performance regression is found in the number of disk write

The rest of this chapter consists of the following parts: Section 1

contributions of this thesis. Section 1.

1.4 Thesis contribution

In this thesis, we introduce automated approaches to support performance verification

design and implementation

1. We propose to analyze design changes through simulation modeling. An approach

create layered simulation model

Figure 1

6

. Violations of these signatures in a new performance test

regressions.

commerce application deployment denoted in Figure 1-1, as visitors make purchases

on the site, transaction records are stored in the database. As a result, a strong

the visitor arrival rate, the application server’s CPU utilization, and

can be extracted as a performance signature. In a new version of the software with

the same visitor arrival rate, a bug that leads to deadlocks in the database would result in

the number of database disk writes/second counter, causing the counte

previously extracted correlations and violate the performance signatures. As a result, a

performance regression is found in the number of disk writes/second counter.

chapter consists of the following parts: Section 1

of this thesis. Section 1.5 presents the organization of the thesis.

ontribution

, we introduce automated approaches to support performance verification

implementation levels. In particular, our contributions are as follow

We propose to analyze design changes through simulation modeling. An approach

simulation models is introduced. Our layered simulation models

1-1 Purchase processing in an e-commerce application

in a new performance test are flagged as

, as visitors make purchases

strong correlation between

application server’s CPU utilization, and the database disk’s #

can be extracted as a performance signature. In a new version of the software with

ocks in the database would result in a drop in

counter, causing the counter to deviate from the

performance signatures. As a result, a

counter.

chapter consists of the following parts: Section 1.4 briefly discusses the

the organization of the thesis.

, we introduce automated approaches to support performance verification at the

n particular, our contributions are as follows:

We propose to analyze design changes through simulation modeling. An approach to

is introduced. Our layered simulation models can aid

commerce application

7

stakeholders to understand the structure and performance of an application by separating

different aspects of an application. Application designers can use the layered simulation

model to estimate the performance impact of a proposed design change, thus reducing the

risk of performance regression.

2. We introduce an automated analysis approach for discovering performance regressions

from performance tests. The expected counter correlations and visualizations produced

by our approach can aid performance analysts to diagnose the cause of a performance

regression.

3. We further refine our automated analysis approach to analyze performance tests

conducted with heterogeneous software and hardware environments. Our approach

allows performance analysts to analyze new tests using the results of tests conducted

across labs.

1.5 Thesis organization

The rest of the thesis is organized as follow. Chapter 2 presents background on performance

verification. Chapter 3 provides a literature review of existing work and practice on the topics

related to our thesis. Chapter 4 presents our approach for building a layered simulation model for

discovering performance regressions at the design level. Chapter 5 presents our automated

analysis approach to discover performance regressions at the implementation level. Chapter 6

extends our automated analysis approach such that prior tests conducted with heterogeneous

environments can also be used in the analysis. Chapter 7 concludes this thesis and discusses

future work.

8

Chapter 2

Performance Verification

In this chapter, we explain approaches on evaluating application designs using performance

modeling. In addition, we present existing approaches to organize models for addressing the

concerns of different stakeholders. Finally, we give a description of the current practice of

performance verification carried out on the implementation of software applications.

2.1 Performance verification at the design level

Performance verification at the design level can be carried out by performance modeling.

Performance modeling is a structured and repeatable process of modeling the performance of an

application [52] that captures performance-related aspects of the designs of applications.

Performance-related information, such as response time and resource utilization at various arrival

rates, are obtained by solving the performance models. For example, the Layered Queueing

Network (LQN) model can be used in early development to estimate the average response time of

service requests. Performance modeling can provide valuable information for system architects to

catch bad designs early, and for developers to make informed decisions about potential

performance hotspots [21] [52].

A good performance model should enable different stakeholders to understand the

performance of an application without overloading the stakeholders, who may have different

background, with unnecessary information [59]. Furthermore, visualization of the model can also

greatly improve the understandability of the program design. In the following sections, we will

review the two classes of performance models: analytical models and simulation models.

9

2.1.1 Analytical models

Analytical modeling approaches model software applications with mathematical equations

and statistical concepts. Popular analytical modeling approaches include the LQN models. The

inputs of an analytical model are the average arrival rate of requests and a set of average values

that represent the (hardware and software) resource usage of each request [21]. Performance

behavior and resource utilization of software applications can be derived from analytical models

by solving a set of mathematical equations. The construction and usage of analytical models,

however, demand a substantial level of expertise in performance modeling [61]. Recently, an

approach to automatically generate LQN models from application traces is introduced [32]. Such

an approach, however, requires the message traces of the application, which may not always be

available. Moreover, the verification of the generated models still demands expertise on the

modeling theory used in the generation process.

2.1.2 Simulation models

Simulation models emulate the runtime behavior of applications and can be implemented

rapidly with the support of existing simulation libraries, such as OMNet++ [43]. Such libraries

provide the building blocks for discrete-event simulation models. Discrete-event simulation refers

to modeling approaches in which the application changes its state at discrete points in time [46].

The operation of the application is represented as a chronological sequence of events. The

libraries provide mechanisms for implementing and visualizing simulation models, and support

the parallel executions of simulations.

In contrast to analytical models, actual performance data is obtained by executing the

simulation model against a simulation clock. The execution of an application in an 8-hour work

day can be simulated in a matter of minutes. During the execution of a simulation model, various

statistics about the simulated application, such as response time for each request, are collected.

Performance analysts can

models are usually created to test specific aspects about

stakeholders’ needs, e.g., the performance impact

size and complexity of

separate simulation model for each stakehold

2.1.3 Maintaining performance models to address different

The challenges associated with maintaining

address different stakeholders’

community. For example

of a software application

(Figure 2-1), each representing the viewpoint of a stakeholder

• Logical view: The logical view

application and primarily targets the concerns of

• Process view:

specialize in bring

concerns the execution

10

nalysts can use these statistics to pinpoint bottlenecks in an application

are usually created to test specific aspects about an application

e.g., the performance impact of the Java garbage collection

of large enterprise applications, it is difficult to create and maintain a

model for each stakeholder.

performance models to address different stakeholders’

challenges associated with maintaining multiple models about a software

different stakeholders’ concerns have already been faced by the software

For example, Kruchten proposed the 4+1 view model to document different aspects

application’s architecture [39]. The 4+1 view model contains five concurrent views

), each representing the viewpoint of a stakeholder:

The logical view focuses on the functional requirement

and primarily targets the concerns of end users.

 The process view addresses the concerns of system integrators

specialize in bringing together different components of the

execution behavior of the application, e.g., concurrency, performance, and

Figure 2-1: The "4+1" view model

in an application. Simulation

an application, depending on

of the Java garbage collection. Because of the

it is difficult to create and maintain a

stakeholders’ concerns

models about a software application to

have already been faced by the software engineering

to document different aspects

contains five concurrent views

requirements of a software

system integrators, who

components of the application. This view

, e.g., concurrency, performance, and

11

scalability, and illustrates the execution of a set of independent processes, each made up

of the components in the logical view.

• Development view: The development view considers the organization of software

modules and mainly targets the concerns of programmers and software managers.

• Physical view: The physical view illustrates the application from a system engineer's

perspective. This view describes how the software application is deployed and takes into

account non-functional requirements such as reliability, availability and scalability.

• The “Plus-one” view (Scenarios): The plus-one view consists of a set of test cases and

scenarios to show how the elements identified by the other 4 views work together. The

plus-one view is useful for validating the software design.

Similar to software architecture, different stakeholders have different performance concerns

about the same application. To avoid overloading the stakeholders with unnecessary details, a

general purpose simulation model should allow stakeholders to study the application at the level

appropriate to their knowledge, interest and experience.

2.2 Performance verification at the implementation level

Figure 2-2: The process of performance verification

Currently, performance verification is performed at the implementation level to discover

performance regression, ensuring that application updates would not degrade the performance of

the application [61]. This section explains the current procedure of performance verification.

As shown in Figure 2-2, the typical process for the verification of performance regressions

has 4 phases [24]:

Execution of
performance

regression test

Threshold-
based analysis
of test result

Manual
analysis of
test result

Report
generation

12

1. Performance analysts start a performance test. During the course of the test, various

performance counters are recorded. Performance counters include hardware counters

(e.g., CPU utilization and # of disk writes/second) and software counters (e.g., response

time, which measures how long the application takes to complete a request, and

throughput, which measure how many requests an application can process in a given

time).

2. After the completion of the test, performance analysts use tools to perform simple

comparisons of the averages of counters against pre-defined thresholds.

3. Performance analysts visually compare the counters values of the new run with those of

the past runs to look for evidence of performance regressions or divergences of expected

counter correlations. If a counter in the new run exhibits deviations from past runs, this

run is probably troublesome and requires further investigations. Depending on individual

judgment, a performance analyst would decide whether the changes are significant and

file defect reports accordingly.

4. Performance analysts would note any observed abnormal behaviors in a test report.

Finally, all data and the test report are archived in a central repository for bookkeeping

purposes.

Performance verification at the implementation level has two analysis phases to uncover

performance regressions. During the threshold-based analysis, analysis tools automatically flag

counters where the averages of the counters exceed the pre-defined thresholds. Threshold

violations typically represent application instability and must be investigated. However, the

threshold-based analysis is not effective for discovering performance regressions, because

performance regressions may not be significant enough to violate the thresholds. To complement

the threshold-based analysis, performance analysts would manually examine the counters to look

13

for divergence of expected counter correlations. These counter correlations are defined by domain

experts.

There are three major challenges associated with the manual analysis of counters.

1. During the course of the test, a large number of counters is collected. It is difficult for

performance analysts to compare multiple counters at the same time. Although

correlating counters specified by domain experts could be plotted on the same graph,

these graphs only give a limited view of the correlations in order to avoid overloading the

analysts. For example, in a performance test for an e-commerce website, one heuristic

would be to plot the arrival rate and throughput counters in one graph and leave out other

correlating counters like request queue length. These graphs may aid analysts to spot

obvious deviations of expected correlations. However, the cause of the deviations may lie

in other correlating counters that are not included in the graph.

2. An up-to-date performance baseline rarely exists. Performance analysts usually base

the analysis of a new test on a recently passed test [13]. However, it is rarely the case that

a performance test is problem-free. Using just one prior test as baseline typically ignores

problems that might be common to both the baseline and the new test.

3. The subjectivity of performance analysts may influence their judgment in

performance verification. Performance analysts usually compare the counters’ averages

between two tests, ignoring the fluctuations that might exist. Simply comparing averages

may lead to inconsistent conclusions among performance analysts. For example, one

analyst notes in her analysis a 5% increase of the number of database transactions per

second to be worrisome while another analyst would ignore the increase because he feels

that the 5% increase can be attributed to experimental measurement error.

14

Due to the above challenges, we believe that the current practice of the analysis phase of

performance verification at the implementation level is neither effective nor sufficient. There is a

high chance that performance analysts would overlook abnormal performance problems. In this

thesis, we aim to reduce the analysis effort (phase 3 in Figure 2-2) by automating the detection of

performance regressions in a performance test.

2.3 Summary

Current practice of performance verification focuses solely on discovering performance

regressions at the implementation level. Often, because of the high cost associated with the

analysis of performance tests and tight deadlines, design changes are not evaluated for

performance regressions until those changes are already implemented. In this chapter, we provide

the background on evaluating application designs with performance models. In addition, we give

a description of the current practice of performance verification at the implementation level, and

identified the major challenges that the analysts face when analyzing the results of performance

tests. In the next chapter, we will survey the existing work related to performance verification at

the design and implementation levels.

15

Chapter 3

Literature Review

In the previous chapter, we discussed performance verification at the design and

implementation levels and identified the challenges associated. In this chapter, we present the

prior work related to testing software applications for potential performance issues at the design

and implementation levels.

3.1 Performance verification at the design level

Before an application is implemented, performance models can be constructed based on the

design documents. Sections 3.1.1 and 3.1.2 summarize the existing approaches to create

analytical and simulation models.

3.1.1 Analytical modeling approaches

The Queueing Network (QN) model has been studied extensively by researchers to analyze

the performance of software applications. A QN model represents an application by a network of

resources for which a request must be obtained in order to be serviced. Due to the finite service

rate of each resource, requests may need to wait in queues for the availability of resources.

Extensions of QN models are proposed to analyze different types of applications. Table 3-1

summarizes different QN models.

16

Table 3-1: Summary of approaches based on QN model

QN models Types of application suitable to be modeled

Open QN [6]
Applications with jobs arriving externally; these jobs will eventually depart

from the applications.

Closed QN [6] Applications with a fixed number of jobs circulating within the applications.

Mixed QN [6] Applications with jobs that arrive externally and jobs that circulate within the

applications. SQN-HQN [41]

SRN [60] [63] Distributed applications with synchronous communication.

LQN [25] [49] Distributed applications with synchronous or asynchronous communication.

Baskett et al. proposed algorithms to solve the open, closed and mixed QN models [6]. Open

QN models are used to model applications with external arrivals and departures. An example of

an open QN model is shown in Figure 3-1 where customers purchase items and depart. Closed

QN models (Figure 3-2) are used to model applications that have a fixed number of jobs

circulating in the applications. Mixed QN models are used to model applications that have both

Figure 3-2: Closed queueing network model

Figure 3-1: Open queueing network model

17

open and closed workloads. Menascé proposed the SQN-HQN model to incorporate software

contention into QN models analysis [41]. In an SQN-HQN model, applications are represented as

two queueing networks: SQN and HQN, modeling the software and hardware resources

respectively. In the QN models considered above, concurrency is not taken into account and the

availability of each resource is assumed to be independent. These assumptions do not hold for

distributed applications where dependencies between resources exist; that is, resource entities

(e.g., software resources) can request services from other resource entities (e.g., software and

hardware resources).

To accurately model concurrent distributed applications, Woodside et al. developed the

Stochastic Rendezvous Network (SRN) model that can be used to model distributed applications

with synchronous communication [60] [63]. Rolia et al. proposed the Layered Queueing Network

(LQN) model that is capable of modeling distributed applications with synchronous and

asynchronous communication [49]. Franks et al. extended LQN models to handle concurrent

processes [25]. Woodside et al. proposed an automatic approach to create LQN models from

traces captured from the communication between application components [62].

Woodside proposed a Three-View model for performance engineering of concurrent

applications [59]. The three views in the model are constructed using existing analytical

approaches. The views are connected by a “core model” that passes the result of one view to the

input of another view. In contrast to the 4+1 view model, which documents the software

architecture, Woodside’s three-view model is suitable for documenting and analyzing

performance information. However, the three-view model still poses a steep learning curve due to

the use of analytical modeling approaches.

Performance can be derived from analytical models by solving a set of equations. Because of

the use of complex formulas, knowledge encapsulated in an analytical model can be difficult to

18

transfer. Furthermore, in order to update analytical models, performance analysts must possess a

certain level of expertise in mathematics. Such expertise is not needed with simulation modeling

approaches, which we discuss next.

3.1.2 Simulation modeling approaches

Compared to analytical models, fewer approaches exist for constructing simulation models of

the performance of software applications.

Xu et al. used colored Petri Nets to model the architecture of software applications [65].

Approaches based on Petri Nets analyze the behavior of an application (e.g., the time needed to

recover from an error). Xu et al. analyzed both time and space performance of an application by

executing the simulation model. Bause et al. extended Petri Nets with queueing networks such

that shared resources can be modeled easily [8]. However, performance information such as

hardware utilization cannot be derived from Petri Net models, making them unsuitable for

analysis of performance regression.

Smit et al. proposed a simulation framework to support capacity planning for Service-

oriented architectures (SOA) [54]. Each service in an SOA-based applications is modeled as an

entity that can send and receive messages. Smit’s framework focuses solely on deriving the

response time of completing a request by modeling the interaction between software services. The

purpose of performance verification is to compare the usage of software and hardware resources

between the old release and the new release of the application. Since Smit’s framework does not

consider hardware resources, this framework would not be suitable for our task of supporting

performance verification at the design level.

19

3.2 Performance verification at the function level

As developers implement bug fixes and new features, these code changes may introduce

performance regressions within functions. Such regressions can be detected with a variant of unit

testing that focuses on performance. Traditionally, unit testing is a method for testing individual

units of source code, typically a function, to determine if they are functionally correct. Packages

such as JUnitPerf [38] and NPerf [28] are extensions to existing unit testing frameworks that

enable developers to measure the performance of individual code units. While unit testing focuses

on the performance of individual functions, our concern in this thesis lies in the overall

application performance where software components work together to handle the service

requests.

3.3 Performance verification at the implementation level

The implementation of an application is tested for performance issues by pushing workload

through the application. There are three active research areas for evaluating the performance of

applications at the implementation level: test case generation, test reduction (shortens the time

needed to test an application), and analysis of test results. In this section, we focus our discussion

on the analysis of test results. Existing approaches to analyze the results of performance tests are

divided into two classes, depending on whether the approaches analyze the execution logs or

performance counters.

3.3.1 Analyzing performance tests using execution logs

Execution logs describe the runtime behavior of applications and are readily available in

existing applications without instrumentation [5] [16]. Reynolds et al. [48] and Aguilera et al. [2]

develop several approaches to reconstruct the execution paths for requests from the

communication traces between the components of an application. An execution path describes the

20

sequence of application components involved in processing a request. By analyzing the execution

paths, components that account for most of the latency can be determined. However, the accuracy

of the extracted execution paths decreases as the level of concurrency in the application increases.

Jiang et al. introduce an approach to identify functional problems from execution logs [33]. In

Jiang’s approach, each log line is considered as one execution event. Jiang’s approach uncovers

the dominant behavior for an application by analyzing the frequency that two adjacent events

occur together. Execution anomalies can be flagged by identifying execution sequences that

deviate from the dominate behavior. Jiang et al. extended this approach [34] to uncover sequences

that contain more than two events. By comparing the response time distribution of each dominant

behavior across two releases of the same application, we can identify the execution events that

show performance regression.

Usage of hardware resources is rarely recorded in the execution logs. Approaches that

analyze execution logs to detect abnormal behaviors during a performance test are not capable to

identify cases where the usage of hardware resources has increased. An important task of

performance verification is to detect changes in the utilization of hardware resources. Approaches

that rely solely on execution logs would not be comprehensive enough to detect performance

regressions in hardware resources.

3.3.2 Analyzing performance tests using performance counters

Another source of performance information, typically recorded during tests, are the

performance counters. Approaches for analyzing performance counters can be further divided

into two categories: Supervised and unsupervised. The application of each class of approach

depends on whether or not the performance counter is labeled. A label describes the state of the

application at each point in time, e.g., whether or not an application is in compliance with its

Service Level Objectives (SLO) as defined in the requirements.

21

3.3.2.1 Supervised approaches for analyzing performance counters

Supervised approaches analyze labeled performance counters to derive classifiers for each

type of SLO. A classifier describes the conditions (e.g., a subset of counters reaching particular

levels) that would most likely lead to the observed SLO state. Cohen et al. apply supervised

machine learning approaches to train classifiers on performance counters that are labeled with

SLO violations [17] [18]. Bodik et al. improve the accuracy of Cohen’s work by using logistic

regression as the classifier algorithm [10].

Zhang et al. extended Cohen’s work by maintaining an ensemble of classifiers [67]. When an

SLO violation is detected, a classifier is selected from the ensemble based on the Brier score to

report the counters that correlate the most with the particular SLO violation. The Brier score is a

statistical measure that assesses how well a model fits the observed event. Similar to Zhang’s

approach, Jin et al. proposed an approach to derive classifiers from data coming from multiple

sources [37].

Supervised approaches only work when counters exceed the thresholds defined in SLOs. For

performance verification, it is difficult to use hard thresholds to quantify whether performance

regression has occurred because performance may degrade without exceeding the thresholds.

3.3.2.2 Unsupervised approaches for analyzing performance counters

Jiang et al. propose an approach to use pair-wise correlations to detect performance problems

[36]. Jiang’s approach first uncovers pairs of counters that are highly correlated to each other.

Violations of the correlations are reported as anomalies. Bulej et al. propose to compare the

performance between two tests by clustering the recorded response times with the k-means

clustering algorithm [15]. The accuracy of Bulej’s approach depends highly on the quality of the

clusters generated by the k-means algorithm. Malik et al. use Principal Component Analysis

(PCA) to recover clusters of counters that are correlated to each other. These clusters are used to

22

identify the subsystems in a new performance test that show anomalous behaviors [40]. Similarly,

Jiang et al. propose an approach to identify correlating counter clusters with Normalized Mutual

Information [35].

The above studies assume that different hardware and software environments used to conduct

performance tests will not affect the underlying counter correlations. In practice, application

performance, especially for large scale applications with many components, is highly dependent

on the software and hardware environment. Organizations maintain multiple labs such that tests

can be executed in parallel. Each lab may have different software and hardware environments due

to inconsistent upgrades or purchases. Furthermore, organizations would also purposefully test

the applications on a variety of environments to gain confidence that the application would

perform as expected when they are deployed in the customers’ environment. The existing

unsupervised approaches do not distinguish the performance differences resulting from

heterogeneous environments, and risk producing incorrect conclusions about the performance of

the application.

3.4 Summary

In this chapter, we surveyed existing research related to performance verification at the

design, and implementation levels. While there exists a vast array of analytical modeling

approaches, these approaches require a steep learning curve, preventing wide adoption in

industry. Existing approaches for performance simulation, on the other hand, do not model the

usage of hardware resources, making these approaches less attractive for performance analysis.

At the implementation level, approaches to analyze performance tests with performance counters

do not take into account the differences of software and hardware environments, making them

difficult to adopt in practice. In the next chapter, we will present our approach to construct

simulation models that are suitable for performance verification at the design level.

23

Chapter 4

Discovering Performance Regressions at the Design Level

Application designs evolve over time. To ensure that design changes do not cause

performance regressions later on in the updated applications, a good understanding of the

performance impact brought by these changes is needed. While traditional modeling approaches

enable performance analysts to evaluate application designs without referring to the

implementation, these approaches are often not suitable for all stakeholders due to their abstract

mathematical and statistical concepts. In this chapter, we present our framework for constructing

layered simulation models for the purpose of analyzing the performance regressions brought by

software design changes. Simulation models constructed with our approach contain multiple

layers of abstraction, each addressing the performance concerns of a different group of

stakeholders. As a proof-of-concept, we conducted two case studies. One study is on a new

system for Really Simple Syndication (RSS). The system actively delivers notifications of newly

published content to subscribers. Another study is on a performance monitor for an ultra-large-

scale (ULS) application.

24

4.1 Layered simulation model

In Chapter 2, we reviewed the 4+1 model, which uses five views to separate different

stakeholders’ concerns about the architecture of an application. Similar to software architecture,

different stakeholders also have different performance concerns about the same application

(Table 4-1). A good simulation model should separate each stakeholder’s concerns in order to

avoid overloading the stakeholders with unnecessary details. In this thesis, we propose a software

Table 4-2: Mapping of our simulation models to the 4+1 view model

Stakeholder Layer in Our Simulation Model 4+1 View Model

Architects, Managers

End users

Sales Representatives

World View Layer Logical view

Programmers

System Integrators
Component Layer

Development View

Process View

System Engineers Physical Layer Physical View

All Stakeholders Scenario Scenario

Table 4-1: Performance concerns of stakeholders

Stakeholder Performance Concerns

End user Overall system performance for various deployment scenarios

Programmer Organization and performance of system modules

System Engineer Hardware resource utilization of the running application

System Integrator Performance of each high-level component in the application

25

simulation model that decomposes a software application into a three-layer hierarchy with an

extra layer to describe the different usage scenarios.

As shown in Table 4-2, the layers in our model roughly correspond to the five views in the

4+1 model. Each layer addresses the concerns of a group of stakeholders. The process and

development views from the 4+1 model concern the integration of individual components in an

application and their performance; these views can be combined into a single layer – component

layer – that captures the organization and functionalities of software entities. The runtime

behavior of an application, as documented by the process view, is reflected by the execution of

the simulation model. System integrators can examine the dynamic aspects of the application by

monitoring the communication between the simulated components of the application.

The layers in our simulation model can be constructed incrementally from high to low level

of abstraction as details about the software become available. A partially complete model, e.g., a

model that only contains high-level components such as databases and servers, can be used to

guide the software design at the early stages of development. The following sections discuss in

detail the purpose of each layer separately.

4.1.1 World view layer

The world view layer aims at addressing high-level, often business-oriented, concerns such as

evaluating whether the current infrastructure of the application can support the projected growth

in the customer base. This layer is the top and most abstract layer in our model. The world view

layer represents the high-level application components and their relations as a network of nodes

and edges.

Initially, each high-level component in the world view layer represents a place-holder for the

logic that will be added by other layers. When only the world view layer exists, performance

analysts can assign rough resource estimates to the place-holders in this layer for initial analysis.

26

In a complete model, the world view layer hides the details of the software application and can be

used to measure the performance impact of adding new nodes to a distributed application or to

test different deployment scenarios. Because the world view layer is built on the foundation of the

lower layers in our model, when running the simulation program at the world view layer, end-

users transparently take advantage of the detailed logic provided by the layers below the world

view layer, if those exist.

Figure 4-1 shows an example of a layered simulation model constructed for an RSS Cloud

system. RSS [50] is a format for delivering frequently-updated content to subscribers. In an RSS

Cloud system, an RSS server actively sends notifications of new content to the users. Table 4-3

summarizes the different components in each layer and the connections between them. Figure

4-1a shows the world view layer of the RSS Cloud system. The simulation model consists of

three high-level components, i.e., the websites that publish personal journals – blogs, the users

that subscribe to the blogs, and the RSS server through which each blog connects to its users. The

bidirectional arrows in Figure 4-1a depict the two-way communication between components.

27

(c) Physical layer (b) Component layer

(a) World view layer

Figure 4-1: Example of layered simulation model for an RSS cloud

28

4.1.2 Component layer

The component layer further decomposes each high-level component defined in the world

view layer into logical entities. Similar to the world view layer, the components and the

communication between them are represented as a network of nodes and edges (Figure 4-1b).

For example, the RSS server in Figure 4-1a can be broken down into a number of

components: the software component that represents the application logic, and the input and

output queues that act as communication channels from the server to other high-level components

defined in the world view layer. Performance analysts can define different processing

requirements, for instance the time required to process each type of service request, and the

capacity of various logical resources such as the thread pool and queues.

Developers can leverage the component layer to understand the communication patterns in an

application and the performance ramifications of handling different mixes of service request types

or to study the performance of different threading models. During the execution of a simulation

Table 4-3: Components and connections in Figure 4-1

Layer Component Has connection to

World view layer
Users, blogs RSS server

RSS server Users, blogs

Component layer

In Queues, out queues Application logic

Application logic Input queues, output queues, hardware

Hardware Application logic

Physical layer
Hardware allocator CPU, RAM, disk

CPU, RAM, disk Hardware allocator

29

model, performance analysts can temporarily stop the simulation program and examine internal

information such as queue size or network bandwidth consumption.

4.1.3 Physical layer

The physical layer connects the logical components in the component layer to the underlying

hardware resources. The physical layer mainly targets the concerns of system engineers. Figure

4-1c shows three hardware resources in the RSS server: CPU, Memory, and Disk. Performance

analysts can specify the hardware resource requirements for each type of service request. For

example, a request to submit a new blog post may consume 50 kilobytes of Memory while the

request is being processed. Using the Physical Layer, system engineers can study the behavior of

resource utilization at different request rates. Furthermore, system engineers can use this view to

determine the bottleneck of the application at high request rate.

4.1.4 Scenario layer

The scenario layer uses a set of test case scenarios to show how the elements defined in the

three other layers work together. Scenarios from the end-user’s point of view include the different

deployment scenarios and the composition of different types of service requests passed to the

application. For the example depicted in Figure 4-1, one scenario could specify that there are four

blogs connected to the RSS server, 50% of which are located in North America with an average

bandwidth of 2 Megabits/second, and the rest are located in Europe with an average bandwidth of

1 Megabit/second. The scenarios define how the software components are deployed, and what

workload is used in the simulation to estimate the application performance.

4.2 Model construction

The construction of a layered simulation model is an iterative process. The three layers in our

proposed model can be constructed in a top-down fashion during different stages of the software

30

development life cycle. For example, performance analysts would start with the world view layer

to model the general deployment scenario of the application. The world view layer can initially be

constructed according to the application specification or to similar products in the market.

Estimates of resource requirements are given to each high-level component. The partial

simulation model is run with the request arrival rates that are either observed from similar

applications or derived from existing benchmarking standards. Our partial simulation model that

contains only the world view layer is similar to the Software Execution Model, which is used in

the early stage of software development, when only limited processing requirements are available

[52] [53]. Similar to the software execution model, the accuracy of our partial simulation model

should reflect the resource utilization and response time within 10% and 30% accuracy

respectively.

As more details become available, performance analysts can improve the simulation model

by extending each high-level component with the component and physical layers, and giving

better resource estimates for different request types. Such an incremental model building

approach requires programming libraries that support modular development of simulation model.

With such programming libraries, one can initially use “place-holders” to represent high-level

components. As more details become available, each place-holder can be expanded to model the

logical and hardware resources.

All layers of the model are interconnected. As a request flows through the model, the request

is passed between the layers transparently. For example in Figure 4-1, a request is first generated

by a blog and passed to the internal components that make up the RSS server. The left- and right-

most arrows in Figure 4-1b represent the incoming and outgoing ports of the RSS server for

communication with other high-level components, such as the blogs and users.

31

4.3 Case studies

We conducted two case studies using our layered simulation models. In the first case study,

we demonstrate the construction of our layered simulation model for an RSS Cloud system and

how performance data that can be extracted from the model. In the second case study, we show

how our layer-based simulation model can help to evaluate different design options for a

performance monitor used to detect problems in ULS applications.

Our layer-based simulation model is created using the OMNet++ libraries. OMNet++’s

compound modules provides the means to implement the three hierarchical layers in our model.

Each layer of an application is composed of a collection of entities. Each entity contains a set of

state variables to reflect the properties of the entity at any point in time during the simulation. The

collection of state variables from all entities represents the overall state of the application.

4.3.1 Case Study 1: Constructing a layered simulation model for an RSS Cloud

In this case study, we demonstrate the process of constructing a simulation model for the RSS

cloud system in Figure 4-1. By determining the application bottleneck, we show how

performance information can be obtained from our simulation model. An application bottleneck

is a phenomenon where the performance of the entire application is limited by a single

component. In an example where the server CPU is the application bottleneck, the notification

request rate may overwhelm the server’s CPU capacity, resulting in a continuous growth of the

request buffer usage. As a result, the average response time and throughput suffer.

4.3.1.1 Application description

In order to model an RSS cloud, we need to better understand the RSS communication

protocol. The RSS protocol is heavily used by blogging service providers such as Wordpress.com

[64] to publish new web content. The traditional “pull” mechanism used by RSS readers

32

periodically queries the RSS server for updates of a specific feed. The pull mechanism introduces

latency between when new content is published and when the update is received by the RSS

readers. To eliminate the latency introduced by pull, the RSS cloud [51] – an extension to RSS –

actively delivers notifications of newly published items to feed subscribers. This mechanism is

also known as “push”.

Because the RSS cloud requires the hosting server to actively send notifications for each new

item, the push mechanism puts a heavy resource requirement on the blogging service provider’s

infrastructure. For example, each time new content is published, the hosting server must initiate a

separate connection for each subscriber to send a notification. For a service provider that hosts

hundreds of thousands of blogs with possibly millions of subscribers, the resource requirements

of sending notifications would potentially exceed the available capacity. Furthermore, the large

number of notifications may overwhelm online feed aggregator services such as Google Reader

[27] that automatically download feed content for hundreds of thousands of users. The sections

below document our experience of constructing a layered simulation model for the RSS cloud.

4.3.1.2 World view layer of the RSS Cloud system

Figure 4-1a shows the world view layer for the simulation model of the RSS cloud. In this

layer, the service provider, which supports the RSS cloud extension, connects the various blogs to

the subscribing users. When new content is published, the service provider will send a fixed-size

(e.g., 5 kilobytes) notification to all subscribers. To simplify our simulation, we set the number of

subscribers to vary in a normally distributed fashion around the mean of 20 subscribers per feed.

To ensure reliability, the subscribers will reply with an acknowledgement to the RSS server

upon receiving the notification. The RSS server uses an internal timer to monitor the delivery of

the notification. If an acknowledgment is not received before the timer expires, the RSS server

will assume that the message is lost and will automatically resend the notification until the

33

maximum number of resends for a subscriber is reached. The network connections between all

entities are characterized by two parameters: bandwidth and latency. We vary these two

parameters to model a realistic environment where subscribers and blogs are scattered globally.

4.3.1.3 Component layer of the RSS Cloud system

Figure 4-1b shows the component layer of the RSS server component. The RSS server has

four major logical components: two pairs of IN and OUT queues that buffer the communications

between the subscribers and the blogs, the “app_logic” component, which abstracts away the

application logic of the RSS server, and the “hw_core” component, which represents the physical

hardware platform on which the RSS server resides.

Two types of resources are required to process a notification in the RSS Cloud system:

• Logical resources: In our simulation model, there is one logical resource – the thread

pool in the RSS server. Each notification request will be processed by a thread in the

pool. If all threads in the pool are busy, the request will wait in the buffer of the input

queue until a thread becomes available.

• Hardware resources: Each notification request received from the blog will consume a

specific number of units from each hardware resource. If all resources are used up, the

request will wait in the buffer until the required resources become available.

The overall resident time of a notification request in the RSS server is the sum of the wait

time in the RSS server’s queue for acquiring the resources and the processing time required by

the RSS server.

4.3.1.4 Physical layer of the RSS Cloud system

Figure 4-1c shows the hardware platform of the RSS server. In the simulation of the RSS

Cloud system, we assume that each notification request will compete for three physical resources:

34

CPU, disk and memory. Each of these resources has a finite number of units that can be used for

processing. Each request will require a certain number of units from each resource while the

request is being processed. For example, we can specify in the simulation that our RSS server has

access to 1 gigabyte of memory, and that each notification will hold 50 kilobytes of memory

when it is being processed. The resources are released when the request is serviced.

4.3.1.5 Model validation

To ensure that the simulation model is specified correctly, we tested our model with a

simplified use case where only one blog and one user are connected to the RSS server. In the test,

all requests generated by the blog component are serviced by the RSS server and subsequently

received by the subscriber. Through visualization of the simulation and detailed traces, we are

able to verify the timing of the requests as they propagate through the components in the different

layers of our model.

Table 4-4: Processing requirement for an RSS notification

Resource Requirement

CPU 2 unit

RAM 5 KB

Thread 1

Processing time 2 seconds

4.3.1.6 Experiments and data collection

Performance analysts must determine if changes in the design of an application would result

in performance regressions and whether or not such regressions would lead to application

bottlenecks. We manually specify the resource requirements for processing an RSS notification

request, and examine the RSS server performance by varying the notification request arrival rate.

35

Requests sent from the blogs to the RSS server are initially stored in the request buffer. Table 4-4

summarizes the resource requirements for processing each notification. Depending on whether or

not the RSS server has enough resources (e.g., CPU, RAM, and a free thread) available, a thread

will pick up the request from the buffer and allocate the required resources. Each request is

processed for 2 simulated seconds during which all allocated resources are blocked by the thread.

When the thread has completed processing the request, all previously allocated resources are

released. The thread that has just been freed will pick up the next message in the request buffer.

We ran 10 simulations each simulating one hour of operation with arrival rates ranging from

5 to 25 requests per second. We collected various statistics from different layers of the simulation

model of the RSS server (Figure 4-2 to Figure 4-4). For example, throughput and response time

from the world view layer, number of threads used from the component layer, and CPU and RAM

utilization from the physical layer. As evident from Figure 4-2 and Figure 4-3, both the

application throughput and response time degrade at 17 requests/second. In order to determine the

bottlenecks of the application, we examine statistics of resource utilizations (thread, CPU, and

RAM) collected at the component and physical layers. Figure 4-4 shows that the CPU reaches

100% utilization at 17 requests/second while the thread and RAM utilizations are below 50%. A

request is only processed if all required resources can be allocated at once. If the CPU does not

have enough capacity to serve a request, the request will wait in the buffer until the CPU becomes

available, regardless of the availability of other resources. In other words, the CPU prevents other

resources from being fully used and is therefore the bottleneck of the application. To ensure that

the application can handle future growth of request arrival rate, system engineers should

recommend a faster CPU or increase the number of CPUs.

36

Figure 4-2: Plot of the throughput of the RSS server at various request arrival rates

Figure 4-3: Plot of the response time of the RSS server at various request arrival rates

0

2

4

6

8

10

12

14

16

18

5 10 15 20 25

T
h

ro
u

g
h

p
u

t
(

#
 o

f
n

o
ti

fi
ca

ti
o

n
s/

se
c)

Notification Request Arrival Rate (# of requests/sec)

0

200

400

600

800

1000

1200

5 10 15 20 25

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Notification Request Arrival Rate (# of requests/sec)

37

Figure 4-4: Plot of resource utilization of the RSS server at various request arrival rates

4.3.2 Case Study 2: Using simulation models to evaluate changes to application design

As the demand for service increases, organizations examine different options to increase the

performance of their systems to cope with the high volumes of workload. In this case study, we

use our simulation model to evaluate the performance benefit of migrating a centralized

performance monitor for Ultra-Large-Scale (ULS) applications to a distributed architecture.

However, the performance of distributed applications is highly dependent on the configuration.

To carry out a fair evaluation of the performance gain from changing the existing design to a

distributed architecture, the performance analyst should first determine which configuration of the

distributed application would show the best performance.

4.3.2.1 Application description

Performance monitors are used to detect problems in the services provided by the enterprises.

Enterprises have computational units around the world to keep servers geographically close to the

0

20

40

60

80

100

5 10 15 20 25

R
e

so
u

rc
e

 U
ti

li
za

ti
o

n
 (

%
)

Notification Request Arrival Rate (request/sec)

CPU

RAM

Thread

38

users. In the original design, one performance monitor would periodically collect performance

data from each computational unit directly. While it is easy to administer, this centralized design

has heavy resource requirements. In the distributed design, each computational unit is connected

to a local monitoring agent as shown in Figure 4-5. The local monitoring agents periodically

collect, compress and upload the performance data to a central monitor for analysis. The central

monitor may occasionally send back an updated set of monitoring policies to the local agents.

There are two major challenges of monitoring ULS applications:

• Communication latency: ULS applications are decentralized around the world. The

performance data may not reflect the current state by the time the data is received by the

central monitor due to the large physical distances between the nodes and the central

monitor.

• Financial cost of data transmission: Depending on the frequency with which the

performance data is sent, the cost may be prohibitively high for ULS applications that

have many nodes deployed across the globe.

The simulation model of the performance monitor in this case study has two tunable

parameters:

• Data collection frequency: The rate at which local monitoring agents collect

performance data from their respective computational units.

• Data broadcast period: The amount of time an agent would wait between each

successive upload of performance data. Data collected by the agents is first stored locally.

When the send timer fires, all data stored is uploaded to the central monitor.

39

4.3.2.2 Experiments and data collection

Figure 4-5 shows the world view layer of the simulation model for the performance monitor.

The local monitoring agents and the central monitor are modeled using the same architecture as

the RSS server (Figure 4-1).

We conducted a series of simulated runs with 15 combinations of collection frequencies (0.1,

0.2, and 0.3 times per second) and broadcast periods (1, 3, 5, 7, and 9 seconds). Each of the 15

runs simulates an eight-hour workday. Each data collection consumes on average 30 megabytes

of memory and 10 CPU units, and lasts for 3 simulated seconds. Table 4-5 shows the various

performance data collected in each layer during a simulation run.

Figure 4-5: World view layer of the performance monitor for ULS applications

40

4.3.2.3 Evaluating parameter configuration

In this section, we show that, by considering the performance data from all three layers, we

are able to select a configuration that leads to a balance of three important aspects: cost,

performance, and resource consumptions. In the next subsections, we define a score to assist us in

ranking configurations that have multiple performance objectives.

4.3.2.3.1 Configuration score

We evaluate a given configuration of performance counters collected during the simulation

using the concept of configuration score. Some counters are perceived by people in a fuzzy

manner. For example, a CPU utilization of 20% and 25% would have the same monitoring effect.

Table 4-5: Performance data collected per layer

Layers Performance Data

World view layer Response time, Transmission Cost

Component layer Thread Utilization

Physical layer CPU and RAM utilization

Table 4-6: Categorization of CPU utilization

CPU Util. Low OK High Very High

Range (s) < 30 30 – 60 60 – 75 > 75

Discretization 0.25 0.5 0.75 1

Table 4-7: Categorization of RAM utilization

RAM Util. Low OK High Very High

Range (%) < 25 25 – 50 50 – 60 > 60

Discretization 0.25 0.5 0.75 1

41

On the other hand, counters such as the response time and dollar cost are usually perceived by

customers in a crisp way. To take into account the fuzziness of the way a counter is perceived, we

discretize the counter values into levels, where each level is ranked by a number between 0 and 1

to indicate the ranking of customer experience. The boundaries of each level are selected through

domain knowledge.

Table 4-5: Performance data collected per layer

Layers Performance Data

World view layer Response time, Transmission Cost

Component layer Thread Utilization

Physical layer CPU and RAM utilization

Table 4-6 and Table 4-7 show the categorization for CPU and RAM utilizations respectively.

For counters that the customers may deem the most important (e.g., response time and cost), we

use the original counter values to calculate the score that will be used to rank a set of

configurations.

The configuration score is calculated as the product of the discrete or crisp counter values of

a configuration. As a simplified example, if a given configuration exhibits an average response

time of 5.61 seconds, consumes on average 46% of the central monitor CPU, and results in a cost

of $10, then the score of this configuration would be calculated as follows:

�������� �	
� = 5.61 ������� ���� = $10 ��� ��	�	���	�� = 46% → 0.5 ����� = 5.61 × 0.5 × 10 = 28.1

4.3.2.3.2 Choosing the optimal configuration

Since we aim to minimize resource consumption, response time and cost, the configuration

that has the lowest score gives the best overall performance. Table 4-8 shows the optimal

42

configurations determined by incrementally considering more performance data collected at each

layer. For each data collection frequency, we show three optimal configurations that are

determined by considering the performance data visible up to the designated layer in the second

column. For example, we calculate the score of a configuration at the world view layer by

multiplying the response time and the cost; if we are to calculate the score at the physical layer

level, we would take into account all five variables (response time, cost, thread, CPU and RAM

utilizations) by taking the product of all of them.

At low data collection frequency (0.1 Hz), the optimal configuration determined using the

world view layer is the same as the configuration determined with information from all three

layers. This effect is explained by the fact that the application is only slightly loaded and all

counters collected in the component and physical layers only exhibit small variations, e.g., RAM

utilization ranges between 3% to 6%. As a result, all low level counters are discretized to the

same range, diminishing the effect of these low level counters in the score calculation. Our

Table 4-8: Simulation result for the performance monitor case study

Data
Collection
Frequency

(Hz)

Layers
Data

Broadcast
Period (s)

Response
time (s)

Cost per
transmission

($)

Central
Monitor
Thread

Util. (%)

Central
Monitor

CPU
Util. (%)

Central
Monitor

RAM
Util. (%)

0.1

World View 1 6.8 5.0 1.6 15.6 6.1

Component 1 6.8 5.0 1.6 15.6 6.1

Physical 1 6.8 5.0 1.6 15.6 6.1

0.2

World View 1 7.7 5.0 4.0 40.3 15.7

Component 1 7.7 5.0 4.0 40.3 15.7

Physical 7 8.9 5.3 2.3 23.4 9.2

0.3

World View 1 8.9 5.0 6.4 64.4 25.3

Component 1 8.9 5.0 6.4 64.4 25.3

Physical 3 9.2 5.0 5.6 56.0 21.9

43

discretization approach effectively hides the small variations of the performance counter that are

insignificant in terms of customer experience.

As the data collection frequency increases and more layers are being considered, our ranking

algorithm outputs configurations that balance between cost, performance and resource

consumption. For example, at the collection frequency of 0.3 Hz, the configuration selected by

considering data collected up to the physical layers reduces the CPU utilization from 64.4% to

56% in a tradeoff of 0.3s increase of response time while maintaining the same cost.

4.3.2.4 Evaluating the benefit of migrating the performance monitor to a distributed architecture

Table 4-9 shows the simulation result for the original design of the performance monitor at

various data collection frequencies. Comparing to our distributed design, the original design,

while providing better response time, consumes more hardware (e.g., CPU and RAM) and logical

(e.g., thread) resources. At the collection frequency of 0.3, the CPU of the central monitor is close

to running at its full capacity which will likely result in system instability. Moreover, while the

original design has lower cost per transmission, the performance data in the original design is

transmitted more frequently due to the lack of a local batching mechanism provided by the local

monitoring agent. As a result, the overall cost for monitoring all computational units would

increase in the original design compared to the distributed design.

Table 4-9 : Simulation result for the original design of the performance monitor

Data
Collection
Frequency

(Hz)

Response
time (s)

Cost per
transmission

($)

Central Monitor
Thread Util. (%)

Central
Monitor CPU

Util. (%)

Central Monitor
RAM Util. (%)

0.1 0.2 2.2 31.0 42.6 37.2

0.2 0.3 2.7 43.7 68.2 47.6

0.3 0.4 3.1 60.2 86.6 59.2

44

In this case study, we demonstrated the usefulness of our layered simulation model in

evaluating the different design options for the performance monitor. Furthermore, we show that

configurations selected by analyzing information from just one layer are sometimes suboptimal.

In an environment where a server may also provide multiple services, a configuration that

consumes fewer resources can avoid jeopardizing the stability of other services. As more

information from different layers is supplied, our ranking algorithm is able to select the

configurations that balance between cost, performance, and resource consumptions.

4.4 Discussion

In this section, we discuss how our simulation models can be updated and what the

limitations of our approach are.

4.4.1 Updating the simulation model to reflect changes to the application

In discrete-event simulations, application components react based on received messages.

Therefore, performance analysts can model the application’s operation by specifying the state a

component should be in when a specific message is received. For example, to simulate the time

required to process an RSS notification request, performance analysts can specify that the RSS

server would hold each request for 2 simulated seconds before forwarding the notification to

subscribers. Performance analysts do not need to know the low-level programming details when

constructing the model and thus reducing the modeling effort.

A model constructed for a previous release of the software can be adapted to the new version

by updating the resource requirements in the configuration. New application behavior can be

introduced to the model by adding new message types and the corresponding behavior in the

simulation code.

45

4.4.2 Capturing resource requirements

Correct resource requirements are essential in deriving useful performance conclusion from a

simulation model. To ensure that the simulation model would accurately reflect the performance

of the final application, resource requirements should be validated as information becomes

available throughout development. Due to the lack of access to production data, we can only

estimate a list of resources and processing requirements in our case studies.

4.5 Summary

A performance model should convey information about the behavior of an application to

stakeholders who have different performance concerns. In this chapter, we proposed an approach

to construct simulation models with four layers of abstractions: world view layer, component

layer, physical layer, and usage scenarios. These layers can be built gradually as information

about the software project becomes available. In the case studies, we showed that our layered

model can be used to extract performance information about an application and evaluate design

changes. In the following chapter, we will turn our focus on discovering performance regressions

after design changes have been implemented into the application.

46

Chapter 5

Discovering Performance Regressions at the Implementation Level

In the previous chapter, we introduced an approach to construct layered simulation models

for the purpose of discovering the performance regressions introduced by changes to application

designs. Design changes and other code changes will eventually be integrated into the

implementation of the application. In current practice, performance analysts must manually

analyze the data collected from performance tests to uncover performance regressions. This

process is both time-consuming and error-prone due to the large volume of collected counters, the

absence of formal performance objectives and the subjectivity of individual performance analysts.

In this chapter, we present an automated approach to detect potential performance regressions

in a performance test. Our approach compares the results of new tests against correlations of

performance counters extracted from performance testing repositories. Case studies show that our

approach scales well to large industrial applications, and detects performance problems that are

often overlooked by analysts. An early version of this chapter was published at the 10th

International Conference on Quality Software [24].

5.1 An illustration of our automated analysis approach

In this section, we present an example of how a performance analyst, Derek, can leverage our

report to spot performance regressions. Derek is given the task to assess the performance of a new

version of an e-commerce application. After conducting a performance test on the new version of

the software, Derek decides to examine the two counters that he deems the most important: CPU

utilization and the number of disk writes per second in the database. He finds that there is a 5%

increase in average CPU utilization between a recently passed test and the new test, but the CPU

utilization is still below the pre-defined threshold of 75%. Because of a tight deadline, Derek runs

47

our research prototype to check whether the increase in CPU usage represents a performance

regression and whether there are any other performance regressions in the new test. Our prototype

generates a performance regression report such as the one shown in Figure 5-1.

5.1.1 Report summary

The table shown in Figure 5-1a provides a summary of the counters that are flagged by our

approach as deviating from the expected counter correlations. The counters are sorted by the level

of severity. Severity of a counter is the fraction of time during the performance test where the

counter exhibits regressions. For example, the “application server CPU utilization” counter has a

severity of 0.66, meaning that 66% of the time the “application server CPU utilization” counter

violates one of the expected counter correlations. By examining this summary, Derek discovers

that 3 counters (CPU and memory utilizations in the application server, and # of disk read

bytes/second in the database) are flagged with severity greater than 0.5, meaning that these three

counters deviate from the expected behavior for over half of the test duration.

48

(c) Periods detected to have performance regression

(b) Details of performance regressions

Time series plots show

the periods where

performance regressions

are detected.
Box plots give a quick

visual comparison between

prior tests and the new test.

Counters with performance

regressions (underlined) are

annotated with expected

counter correlations.

(a) Overview of problematic regressions

Figure 5-1: An example performance regression report

49

5.1.2 Details of performance regression

Derek clicks on the “Show Rules” hyperlink to reveal a list of counter correlations that are

violated by the top flagged counter (Figure 5-1). The list is ordered by the degree of deviation

between the correlation confidence of the new test and prior tests. Correlation confidence

measures how well a correlation holds for a data set. For example, a confidence of 0.9 for a

correlation extracted from prior tests means that the correlation holds for 90% of the duration of

the test for all prior tests. If the same correlation has a drop of confidence in the new test, this

correlation will be included in the report.

By looking at Figure 5-1b, Derek realizes that historically the application server’s CPU

utilization, memory usage, and various database counters are always observed to be at the

medium level together. However, in the new run, all flagged counters shift from medium to high

(highlighted in red and blue in Figure 5-1b). Derek concludes that all 3 flagged counters represent

performance regressions. Instead of requiring Derek to examine each counter manually, our

report automatically identifies counters in the new test that show significant deviations from prior

tests. It is up to Derek to uncover the causes of the performance regressions.

5.1.3 Performance comparison and in-depth analysis

 Derek can conveniently compare the counter values in prior tests and the new tests by

opening a series of charts such as in Figure 5-1c. The charts on the left are box-plots of the

violated counters (e.g., the Application server’s CPU utilization) for the new test and prior tests.

A box-plot shows a five-number summary about a counter: the observed minimum, first, second,

and third quartile, and maximum value. By placing the box-plots side-by-side, Derek can visually

compare the value ranges in the new test and prior tests. In this example, Derek can easily see that

half of the observed values of the Application server’s CPU utilization in the new test exceed the

historical range of values.

50

To streamline Derek’s analysis, our report places the time-series plots of the flagged counters

next to the box-plots. The two dotted lines define the boundaries of the high, medium, and low

levels extracted from counter ranges in prior tests. The shaded areas show the time instances

where the expected counter correlations do not hold in the new test.

Using our performance regression report, Derek is able to verify his initial analysis and

discover new performance problems that he would have missed with only a manual analysis.

Furthermore, our report allows Derek to reason about the detected regression by complementing

the flagged counters with the violated counter correlations.

5.2 Our approach

Our approach to detect performance regressions in a performance test has 4 phases as

illustrated in Figure 5-2. The input of our approach consists of the result of the new test and the

performance testing repository from which we distill a historical dataset consisting of the

collection of prior passed tests. We apply data-mining approaches to extract performance

signatures by capturing counter correlations that are frequently observed in the historical data. In

the new test, counters that violate the extracted performance signatures are flagged. Based on the

flagged counters, a performance regression report is generated. We now discuss each phase of our

approach in the following subsections.

Figure 5-2: Overview of performance regression analysis approach

51

5.2.1 Counter normalization

Before we can carry out our analysis, we must eliminate irregularities in the collected

performance data. Irregularities can come from the following sources:

• Clock skew: Large enterprise applications are usually distributed across multiple

machines. Since the clocks on different machines might be out-of-sync, counters captured

by different machines will have slightly different timestamps. Moreover, counters can be

captured at different rates.

• Queued requests: Even when the load generator has stopped, there may be unprocessed

requests queued in the application. Performance analysts usually let the application run

until all requests are processed. As a result, counters may be recorded for a prolonged

period of time.

• Delay: There may be a delay in the start of counter collection between the machines that

are used in a test.

To overcome these irregularities, we use only the portion of the counter data that corresponds

to the expected duration of a test. Then, we divide time into equal time intervals (e.g., every five

seconds). Each interval is represented by a vector. Each element in the vector represents the

median of a specific counter in that interval. The size of the interval can be adjusted by the

analysts depending on how often the counters are captured.

52

5.2.2 Counter discretization

Since the machine learning approaches we use only take categorical data, we discretize

counter values into levels (e.g., high/medium/low). Figure 5-4 shows how the Discretization

levels are calculated from the historical dataset. For example, assuming the median and standard

For each counter,

High = All values above the medium level

Medium = Median +/- 1 standard deviation

Low = All values below the medium level

Figure 5-4: Definition of counter discretization levels

(a) Original counter data

(b) Counter discretization

(Shaded area corresponds to the medium Discretization level)

Figure 5-3: Counter normalization and discretization

53

deviation in Figure 5-3b are 74 and 14 respectively, the medium level will span from 60 to 88. As

a result, the CPU utilization around the 50th second on Figure 5-3b will be mapped to medium.

We have experimented with using arithmetic mean instead of median, but found that the

arithmetic mean suffered from the effect of outliers and failed to cluster similar measurements

into the same level.

5.2.3 Derivation of performance signatures

The third phase of our approach extracts performance signatures by capturing frequently-

observed correlations among counters from the historical dataset. Many counters will exhibit

strong correlations under normal operation. For example, medium request arrival rate would lead

to medium usage of CPU processing power, and medium throughput. Thus, one signature of

frequently observed correlation could be {Arrival Rate = Medium, CPU utilization = Medium,

Throughput = Medium}.

We use association rule mining to extract counter correlations from the discretized

performance counters. An association rule has a premise and a consequent. The rule predicts the

occurrence of the consequent based on occurrences of the premise. For example, Figure 5-5

shows one of the three association rules that can be derived from the previous example. In this

paper, we use the Apriori algorithm [1] to discover association rules. The Apriori algorithm uses

support and confidence to reduce the number of candidate rules generated:

Figure 5-5: Example of an association rule

54

• Support is defined as the frequency at which all items in an association rule are observed

together. Low support means that the rule occurs simply due to chance and should not be

included in our analysis.

• Confidence measures the probability that the rule’s premise leads to the consequent. For

example, if the rule in Figure 5-5 has a confidence value close to 1, it means that when

arrival rate and CPU utilization are both medium, there is a high tendency that medium

throughput will be observed.

We apply the association rules extracted from the historical dataset to the new test and flag

counters in the rules that have significant change in confidence, as defined in Eq. (5-1).

���"	����� �ℎ��$� = 1 − cosine_distance012345678999999999999999: , 1<=>99999999:? Eq. (5-1)

12345678999999999999999: = (���"2A45678 , 1 − ���"2A45678) Eq. (5-2)

1<=>99999999: = (���"<=>, 1 − ���"<=>) Eq. (5-3)

where 12345678999999999999999: and 1<=>99999999: are the vector form of the confidence values (Confhistory and Confnew)

in the historical dataset and the new test respectively. Since cosine distance measures the angle

between two vectors, it is necessary to first convert the scalar confidence values into vector form.

The confidence change for a rule will have a value between 0 and 1. A value of 0 means the

confidence for a particular rule has not changed in the new test; value of 1 means the confidence

of a rule is completely different in the new test. If the confidence change for a rule is higher than

a specified threshold, we can conclude that the behavior described by the rule has changed

significantly in the new test and the counters in the rule’s consequent are flagged. For example, if

the confidence of the rule in Figure 5-5 drops from 0.9 to 0.2 in the new test, it indicates that

55

medium arrival rate and CPU Utilization would no longer be associated with medium throughput

utilization for the majority of the time. As a result, throughput exhibits a significant change of

behavior and thus should be investigated. The threshold for confidence change is customizable by

the performance analyst to control the number of counters returned by our approach based on

time available.

5.2.4 Report generation

In the last phase, we generate a report of the flagged counters that highlights the association

rules that the counters violate. To further help a performance analyst to prioritize his time, we

rank the counters by their level of severity Eq. (5-4).

��C��	�D = # of time instances containing the flagged values of the counter

total # of time instances in the new test Eq. (5-4)

At each time instance, we compare the level of the counter against the expectation from the

association rules. A mismatch of levels means that the counter shows abnormal behavior during

that time instance. Severity represents the fraction of time in the new test that contains the flagged

values of the counter. Severity ranges between 0 and 1. If there are only a few instances where the

counter is observed to be problematic, the severity will have a value close to 0. On the other hand,

if the counters are violated many times, severity will have a value close to 1 (Figure 5-1a).

For each counter, the report lists the violated rules ordered by confidence change Eq. (5-1) as

shown in the inner table in Figure 5-1b. Confidence measures how well a rule applies to a data

set. A large change in the confidence of a rule between the prior tests and the new test indicates

that the counter in the rule’s consequence has a change of behavior.

Finally, if no counter is flagged in the report, we can conclude that the new test has no

performance regression and can be included in the historical dataset for analysis of future tests.

56

5.3 Case studies

We conducted three case studies on two open source e-commerce applications and a large

enterprise application. In each case study, we want to verify that our approach can reduce the

amount of counters an analyst must analyze and the subjectivity involved, by automatically

reporting a list of potential performance regressions.

We manually injected faults into the test scenarios of the two open source e-commerce

applications. We follow the popular “Siemens-Programs” approach of seeding bugs [30], which is

based on common performance problems. Manual injection of faults allows us to calculate the

precision (Eq. (5-5)) and recall (Eq. (5-6)) of our approaches.

����	�	�� = K1 − # �" "���� ���	�	C������� # �" ��M����� "��$$�� N Eq. (5-5)

������ = # �" ���O��
��	� ��M����� �������� # �" ���M�� ���O��
��	� ��M����� Eq. (5-6)

High precision and recall mean that our approach can accurately detect most performance

regressions. Performance analysts can reduce the effort required for an analysis by investigating

the flagged counters. Note that false positives are counters that are incorrectly flagged (e.g., they

do not contain any performance regression).

For the large enterprise application, we use the existing performance tests collected by the

organization’s Performance Engineering team as input to our approach. We seek to compare the

results generated by our approach against the performance analysts’ observations. In the cases

where our approach flagged more counters than the performance analysts noted, we verify the

additional problematic counters with the Performance Engineering team to determine if the

counters truly represent performance regressions. Since we do not know the actual number of

57

performance problems, we calculate the recall for our industrial case study based on the correct

performance regression, flagged in the organization’s original reports.

We use the average precision and recall to show the overall performance of our approach

across all test scenarios for each application. Average precision and recall combine the precision

(Eq. (5-7)) and recall (Eq. (5-8)) for all k different test scenarios (t1,t2 ,… ,tk) conducted for an

application. Table 5-1 summarizes the performance of our approach in each case study.

PC���$� ����	�	�� = 1Q × R ����	�	��5S
T

U
 Eq. (5-7)

PC���$� ������ = 1Q × R ������5S
T

U
 Eq. (5-8)

Research prototype: Our research prototype is implemented in Java and uses the Weka

package [57] to perform various data-mining operations. The graphs in the performance analysis

reports are generated using the statistical analysis and modeling tool, R [56].

5.3.1 Studied application: Dell DVD Store

5.3.1.1 Application description

Table 5-1: Average precision and recall

of test

scenarios

Duration per

test (hours)

Average

precision
Average recall

DS2 4 1 100% 52%

JPetStore 2 0.5 75% 67%

Enterprise

Application
13 8 93%

100%

(relative to organization’s

original analysis)

58

The Dell DVD Store (DS2) application [55] is an open source implementation of a simple e-

commerce website. DS2 is designed for benchmarking Dell hardware. DS2 includes basic e-

commerce functionalities such as user registration, user login, product search and purchase.

DS2 consists of a back-end database component, a Web application component, and driver

programs. DS2 has multiple distributions to support different languages such as PHP, JSP, or

ASP and databases such as MySQL, Microsoft SQL server, and Oracle. The load driver can be

configured to deliver different mixes of workload. For example, we can specify the average

number of searches and items per purchase.

In this case study, we have chosen to use the JSP distribution and a MySQL database. The

JSP code runs in a Tomcat container. Our load consists of a mix of use cases, including user

registration, product search, and purchases.

5.3.1.2 Data collection

We collected 19 counters as summarized in Table 5-2. The data is discretized into 2-minute

intervals. We conducted 4 one-hour performance tests. The same load is used in tests D_1, D_2,

and D_3. Our performance signatures are derived from test D_1 during which normal

performance is assumed. For tests D_3 and D_4, we manually inject faults into either the JSP

code or the load driver settings to simulate implementation defects and mistakes of performance

analysts. The types of faults we injected are commonly used in other studies [33]. Prior to the

case study, we derive a list of counters that are expected to show performance regressions, as

summarized in Table 5-3. The Recall of our approach is calculated based on the counters listed in

Table 5-3.

59

Table 5-2: Summary of counters collected for DS2

Load generator

% Processor Time

Orders/minute

Network Bytes Sent/second

Network Bytes Received/Second

Tomcat

% Processor Time

Threads

Virtual Bytes

Private Bytes

MySQL

% Processor Time

Private Bytes

Bytes written to disk/second

Context Switches/second

Page Reads/second

Page Writes/second

% Committed Bytes In Use

Disk Reads/second

Disk Writes/second

I/O Reads Bytes/second

I/O Writes Bytes/second

60

5.3.1.3 Analysis of test D_2

The goal of this experiment is to show that the rules generated by our approach are stable

under normal operation. Since test D_2 shares the same configuration and same load as test D_1,

ideally our approach should not flag any counter.

As expected, our prototype did not report any problematic counter in test D_2.

Table 5-3: Summary of injected faults for DS2 and expected problematic regressions

Test Description of the
injected fault

Expected problematic regressions

D_1 No fault N/A (training data)

D_2 No fault No problem should be observed.

D_3

Busy loop injected in

the code responsible

for displaying item

search results

Tomcat counters (where “+” represents increase of counter)
threads +
private bytes +
#virtual bytes +
CPU utilization +

Database counters
I/O reads bytes /second +
disk reads/second +

D_4

Heavier load applied

to simulate error in

load test configuration

Tomcat counters
threads +
private bytes +
#virtual bytes +
CPU utilization +

Database counters
disk reads /second +
disk writes/second +
I/O write bytes/second +
I/O read bytes/second +
CPU utilization +
context switches +

Load generator
Orders/minute +
Network Bytes Sent/second +
Network Bytes Received/Second +

61

5.3.1.4 Analysis of test D_3

 In test D_3, we injected a database-related bug to simulate the effect of an implementation

error. This bug affects the product browsing logic in DS2. Every time a customer performs a

search on the website, the same query will be repeated numerous times, causing extra workload

for the backend database and Tomcat server. The excessive-database-queries bug simulates the

n+1 pattern [29].

Our approach flagged a database-related counter (# Disk Reads/second) and two Tomcat

server-related counters (# Threads and # private bytes). All three counters have severity of 1,

signaling that the counters are violated during the whole test. The result agrees with the nature of

the injected fault: each browsing action generates additional queries to the database. As a result,

an increase in database transaction leads to an increase of # Disk Reads/second. When the result

of the query returns, the application server uses additional memory to extract the results.

Furthermore, since each request would take longer to complete due to the extra queries, more

threads are created in the Tomcat server to handle the otherwise normal workload. Three other

counters (Database #I/O reads bytes/second, Tomcat CPU utilization and # virtual bytes) that are

expected to show regressions are not flagged by our approach. Upon investigation, we discover

that the variations of these counters compared to the training data were too small and did not lead

to a change of level after the discretization step. Since 3 out of 6 expected problematic counters

are detected, the precision and recall of our approach in test D_3 are 100% and 50% respectively.

5.3.1.5 Analysis of test D_4

We injected a configuration bug into the load driver to simulate that a wrongly configured

workload is delivered to the application. This type of fault can either be caused by a

malfunctioning load generator or by a performance analyst when preparing for a performance test

[34]. In the case where a faulty load is used to test a new version of the application, the

62

assessment derived by the performance analyst may not depict the actual performance of the

application under test.

In test D_4, we double the visitor arrival rate in the load driver. Furthermore, each visitor is

set to perform additional browsing for each purchase. Figure 5-6 shows the counters flagged by

our prototype. The result is consistent with the nature of the fault. Additional threads and memory

are required in the Tomcat server to handle the increased demand. Furthermore, the additional

browsing and purchases lead to an increase in the number of database reads and writes. The extra

demand on the database leads to additional CPU utilization.

Because of the extra connections made to the database due to the increased number of

visitors, we would expect the “# context switch” counter in the database to be high throughout the

test. To investigate the reason for the low severity of the database’s context switch rate (0.03), we

examined the rules that were violated by the “# context switch” counter. We found that the

premises of most rules that flagged the “# context switch” counter also contain other counters that

were flagged with high severity. Consequently, the premises of the rules that flagged “# context

switch” are seldom satisfied, resulting in the low detection rates of the “# context switch”

counters. Since 7 out of 13 expected counters are detected, the precision and recall of our

approach in this test are 100% and 54% respectively.

Figure 5-6: Performance Regression Report for DS2 test D_4 (Increased Load)

63

5.3.2 Studied application: JPetStore

5.3.2.1 Application description

JPetStore is a larger and more complex e-commerce application than DS2 [9]. JPetStore is a

re-implementation of Sun's original J2EE Pet Store and shares the same functionality as DS2.

Since JPetStore does not ship with a load generator, we use a web testing tool, NeoLoad [42], to

record and replay a scenario of a user logging in and browsing items on the site.

5.3.2.2 Data collection

 In this case study, we have conducted two one-hour performance tests (J_1 and J_2). Our

performance signatures are extracted from test J_1 during which caches are enabled. Test J_2 is

injected with a configuration bug in MySQL. Unlike the DS2 case study where the configuration

bug is injected in the load generator, the bug used in test J_2 simulates a performance analyst’s

mistake to accidentally disable all caching features in the MySQL database [44]. Because of the

nature of the fault, we expect the following counters of the database machine to be affected: CPU

utilization, # threads, # context switches, # private bytes, and # disk read and write bytes/second.

5.3.2.3 Analysis of test J_2

Our approach detected a decrease in the memory footprint (# private bytes) and “# disk writes

bytes/second” in the database, and an increase in the “# disk reads bytes/second” and “# threads”

in the database. The disk counters include reading and writing data to network, file, and device.

These observations align with the injected fault: Since the caching feature is turned off in the

database, less memory is used during the execution of the test. In exchange, the database needs to

read from the disk for every query submitted. The extra workload in the database translates to a

delay between when a query is received and when the results are sent back, leading to a decrease

in “# disk writes bytes/second” to the network.

64

Instead of an increase, an unexpected drop of the # threads was detected in the database.

Upon verifying with the raw data for both tests, we found that the “thread count” in test J_1 (with

cache) and test J_2 (without cache) consistently remain at 22 and 21 respectively. Upon

inspecting the data manually, we do not find that the decrease of one in thread count constitutes a

performance regression; therefore we conclude this as a false positive. Finally, throughout the

test, there is no significant degradation in the average response time. Since 4 out of 6 expected

problems are detected, our performance regression report has a precision of 75% and recall of

67%.

5.3.3 Studied application: A large enterprise application

5.3.3.1 Application description

 Our third case study is conducted on a large enterprise application. This application is

designed to support thousands of concurrent requests. Thus, the performance of this application is

a top priority for the organization. For each build of the application, performance analysts must

conduct a series of performance tests to uncover performance regressions and to file bug reports

accordingly. Each test is run with the same workload, and usually spans from a few hours to a

few days. After the test, a performance analyst will upload the counter data to an internal website

to generate a time series plot for each counter. This internal site also serves the purpose of storing

the test data for future reference. Performance analysts then manually evaluate each plot to

uncover performance issues. Unfortunately, we are bounded by a Non-Disclosure Agreement and

cannot give more details about the commercial application.

65

5.3.3.2 Data collection

In this case study, we selected thirteen 8-hour performance tests from the organization’s

performance testing repository. These tests were conducted during the development of a

particular release. The same workload was applied to all tests. Over 2000 counters are collected

in each test.

Out of the pool of 13 tests, 10 tests have received a pass status from the performance analysts

and are used to derive performance signatures. We evaluated the performance of the 3 remaining

tests (E_1, E_2 and E_3) and compared our findings with the performance analysts’ assessment

(summarized in Table 5-4). In the following sections, we will discuss our analysis on each target

test (E_1, E_2 and E_3) separately.

5.3.3.3 Analysis of test E_1

Using data from these passed 10 tests, our approach flagged all throughput and arrival rate

counters in the application. The rules produced in the report imply that throughput and arrival

Table 5-4: Summary of analysis for the enterprise application

Test
Summary of the report submitted

by the performance analyst
Our findings

E_1 No performance problem found.
Our approach identified abnormal behaviors in

system arrival rate and throughput counters.

E_2

Arrival rates from two load

generators differ significantly.

Abnormally high database

transaction rate.

High spikes in job queue.

Our approach flagged the same counters as the

performance analyst’s analysis with one false

positive.

E_3
Slight elevation of # database

transactions/second.
No counter flagged.

66

rates should fall under the same range. For example, component A and B should have similar

request rate and throughput. However, our report indicates that half of the arrival rates and

throughput counters are high, while the other half is low. Verification of our report by a

performance analyst showed that our indications were correct, i.e., our approach has successfully

uncovered problems associated with the arrival rate and throughput in test E_1 that were not

mentioned in the performance analyst’s report. Our performance regression report has a precision

and recall of 100% relative to the original analyst’s report.

5.3.3.4 Analysis of test E_2

Our approach flagged two arrival rate counters, two job queue counters (each represents one

sub-process), and the “# database scans/second” counter. Upon consulting with the time-series

plots for each flagged counter as well as the historic range, we found that the “# database

scans/second” counter has three spikes during the test. These spikes are likely the cause of the

rule violations. Upon discussing with a performance analyst, we find that the spikes are caused by

the application’s periodic maintenance and do not constitute a performance regression. Therefore,

the “# database scans/second” counter is a false positive. Since four out of five flagged counters

are valid performance regressions, our performance analysis report has a precision of 80% and a

recall of 100%.

5.3.3.5 Analysis of test E_3

Our approach did not flag any rule violation for this test. Upon inspection of the historical

value for the counters noted by the performance analyst, we notice that the increase of “#

database transactions/second” observed in test E_3 actually falls within the counter historical

value range. Upon discussing with the Performance Engineering team, we conclude that the

increase does not represent a performance problem. In this test, we show that our approach of

67

using a historical dataset of prior tests is more resistant to fluctuations of counter values. Our

approach achieves a precision and recall of 100%.

The case studies show that our automated approach is able to detect similar problems as the

analysts. Our approach detects problematic counters with high precision in all three case studies.

In our case studies with the two open source applications, our approach is able to cover 50% to

67% of the expected problematic counters.

5.4 Discussion

In this section, we discuss our approach to analyze performance tests conducted for the

implementation of an application.

5.4.1 Quantitative approaches

Although there are existing approaches [14] [18] to correlate anomalies with performance

counters by mining the raw performance data without discretization, these approaches usually

assume the presence of Service Level Objectives (SLO) that can be used to determine precisely

when an anomaly occurs. As a result, classifiers that predict the state of SLO can be induced from

the raw performance counters augmented with the SLO state information (See Chapter 3).

Unfortunately, SLOs rarely exist during development. Furthermore, automated assignment of

SLO states by analyzing counter deviations is also challenging as there could be phase shifts in

the performance tests, e.g., the spikes do not align. These limitations prevent us from using

classifier-based approaches to detect performance regression.

5.4.2 Sampling period and counter discretization

We choose the size of time interval for counter discretization based on how often the original

data is sampled. For example, an interval of 200 seconds is used to discretize data of the

enterprise application, which was originally sampled approximately every 3 minutes. The extra

68

20 second gap is used because there was a mismatch in sampling frequencies for some counters.

We also experimented with different interval lengths. We found that the recall of our approach

drops as the length of the interval increases, while precision is not affected.

In our case studies, we found that the false negatives (counters that were expected to show

performance regressions but were not detected by our approach) were due to the fact that no rule

containing the problematic counters was extracted by the Apriori algorithm. This was caused by

our discretization approach sometimes putting all values of a counter that had large standard

deviation into a single level. Candidate rules containing those counters would exhibit low

confidence and were thus pruned.

5.4.3 Performance testing

Our approach is limited to detecting performance regressions. Functional failures that do not

have noticeable effect on the performance of the application will not be detected. Furthermore,

problems that span across the historical dataset and the new test will not be detected by our

approach. For example, no performance regression will be detected if both the historical dataset

and the new test show the same memory leak. Our approach will only register when the memory

leak worsens or improves.

5.4.4 Training data

The historical dataset from which the association rules are generated should contain tests that

have the same workload, same hardware and software configuration, and exhibit correct behavior.

Using tests that contain performance problems will decrease the number of association rules

extracted, making our approach less effective in detecting problems in the new test. In our case

study with the enterprise application, we applied the following measure to avoid adding

problematic tests to our historical dataset:

69

• We selected a list of tests from the repository that have received a pass status from the

performance analyst.

• We manually examined the performance counters that are normally used by a

performance analyst in each test from the list of past tests to ensure no abnormal behavior

was found.

In the future, we will explore approaches to automatically filter out problematic tests within

our training set.

5.4.5 Automated diagnosis

Our approach automatically flags counters by using association rules that show high

deviations in confidence between the new tests and the historical dataset. These deviations

represent possible performance regressions or improvements and are valuable to performance

analysts in assessing the application under test. Performance analysts can adjust the deviation

threshold to restrict the number of used rules and, thus, limit the number of flagged counters.

Alongside with the flagged counters, our tool also displays the list of rules that the counter

violated. Performance analysts can inspect these rules to understand the relations among counters.

The association rules presented in our performance regression report represents counter

correlations rather than causality. Performance analysts can make use of these correlations to

manually derive the cause of a given problem.

5.5 Summary

It is difficult for performance analysts to manually analyze performance testing results due to

time pressure, large volumes of data, and undocumented baselines. Furthermore, subjectivity of

individual analysts may lead to performance regressions being missed. In this paper, we explored

the use of performance testing repositories to support performance regression analysis. Our

70

approach automatically compares new performance tests to a set of association rules extracted

from past tests. Potential performance regressions of application counters are presented in a

performance regression report ordered by severity. Our case studies show that our approach is

easy to adopt and can scale well to large enterprise applications with high precision and recall.

Due to limited resources and lab constraints, organizations would conduct performance tests

on a variety of software and hardware configurations to uncover performance regressions.

Difference in hardware and software may affect the performance behavior of an application. In

the next chapter, we extend our automated analysis approach such that tests conducted with

different hardware and software configurations can be used as training data.

71

Chapter 6

Detecting Performance Regression using Tests conducted in

Heterogeneous Environments

Organizations maintain multiple lab environments to execute performance tests in parallel.

Over time, each lab may receive inconsistent upgrades. As a result, labs may contain varying

hardware configurations, such as different CPU and disk, and software configurations, such as

different operating system architectures (e.g., 32-bit and 64-bit) and database versions.

Performance tests executed with different configurations may exhibit different performance

behavior. Performance analysis approaches that cannot differentiate between the performance

differences caused by varying configurations and those caused by performance regressions, will

lead to incorrect conclusions being drawn about the quality of the application.

In this chapter, we extend our previous approach from Chapter 5 with ensemble-learning

algorithms to deal with performance tests that are conducted in different environments.

Ensemble-learning algorithms involve building a collection of models from the performance

testing repository with each model specializing in detecting the performance regressions in a

specific environment, and combining the output of all the models to detect performance

regressions in a new test. By considering multiple models, we reduce the overall risk of following

the result of a single model that might be derived from data that is significantly different from the

new test.

72

F
ig

ure 6
-1

: O
verview

 o
f o

ur en
se

m
b

le-base
d

 ap
p

roa
ch

73

6.1 Our ensemble approach

Our ensemble approach has 5 phases, as shown in Figure 6-1. The input of our approach

consists of a set of prior tests and a new test. For each prior test, we apply association rule mining

to extract counter correlations that are frequently observed from the test. Each set of correlations

is checked against the new test for counters that violate the correlations. Violation results are then

combined with ensemble-learning algorithms to produce a performance regression report similar

to Figure 5-1. We now discuss each phase of our approach through a running example with four

prior tests {T1, T2, T3, T4} and one new test, T5.

6.1.1 Counter normalization

Counters in a performance test may contain irregularities such as clock skew, unfinished

requests, and delay. We follow the procedure outlined in Section 5.2.1 to normalize these

irregularities.

6.1.2 Counter discretization

Our machine learning approach (association rule mining) takes categorical data. Therefore,

we must discretize the continuous performance counters. In Chapter 5, we introduced a

discretization algorithm where counters are put into one of three levels (high, medium and low).

However, for tests conducted in heterogeneous environments, performance counters may reside at

many distinct levels due to hardware and software differences. Forcing the performance counters

from performance tests conducted in heterogeneous environments into only three levels may

significantly degrade the data and make our analysis approach less robust. To avoid the above

problem, we choose to use the Equal Width interval binning (EW) algorithm, which determines

the number of levels automatically, for our discretization task. The EW algorithm is relatively

easy to implement and has similar performance as other more advanced discretization algorithms

74

when used in conjunction with machine learning approaches [22]. The EW algorithm first sorts

the observed values of a counter, then divides the value range into k equally sized bins. The width

of each bin and the number of bins are determined by Eq. (6-1) and Eq. (6-2).

O	� V	��ℎ = WXYZ − WXA<Q Eq. (6-1)

k = max {1, 2×log(u)} Eq. (6-2)

where u is the number of unique values in a counter.

The bin boundaries, used to discretize each counter in the tests, are found by applying the EW

algorithm on all values of a particular counter observed in the entire performance testing

repository. For example, the tests in the training set {T1, T2, T3, T4} are first combined to form an

aggregated dataset TA. Eq. (6-1) and Eq. (6-2) are then applied to TA to obtain a set of bin

boundaries.

6.1.3 Derivation of counter correlations

Similarly to Chapter 5, we apply association rule mining to extract a set of association rules

from each test in the training data. Each of these rule sets, e.g., R1, R2, R3 and R4, is a model

describing the performance behavior of a prior test. Association rules that do not reach the

minimum support and confidence thresholds will be pruned. As mentioned earlier in Chapter 5,

counters that contain performance regression are identified by measuring the changes to the rule’s

confidence in a new test.

Each model contains performance behaviors that are common across prior tests as well as

behaviors that are specific to the test configuration that is used as the training data. Table 6-1

shows an example of counters flagged in T5 as performance regressions by R1 to R4. Counters that

75

are flagged by a small number of models may be due to differences in environments and may not

represent real performance regressions.

6.1.4 Combining results using an ensemble-learning algorithm

We combine the counters individually flagged by each model in phase 3 using one of the

following two ensemble-learning algorithms: Bagging [12] and Stacking [13]. In the following

subsections, we review the traditional Bagging and Stacking algorithms and present our adoption

of these ensemble-learning algorithms.

6.1.4.1 Bagging

Table 6-2: Count of counters flagged as violations by individual rule set

Counters flagged as Violation # of times flagged

Throughput 3

Memory utilization 2

CPU utilization 1

Database transactions / second 1

Table 6-1: Counters flagged in T5 by multiple rule sets

Model Counters flagged as Violation

R1 CPU utilization, throughput

R2 Memory utilization, throughput

R3 Memory utilization, throughput

R4 Database transactions/second

76

Bagging is one of the earliest and simplest ensemble-learning algorithms [12]. Bagging has

been shown to often outperform a single monolithic model [7] [47]. In Bagging, the prediction of

each model is combined by a simple majority vote to form the final prediction. In order for a

performance counter to be flagged in our performance report, we require the counter to be flagged

by at least half of the available models. For example, Table 6-2 shows the number of times a

counter is flagged by the 4 models (R1, R2, R3, R4) in Table 6-1. Both throughput and memory

utilization will be reported as performance regressions as they are flagged by at least 2 models.

6.1.4.2 Stacking

Stacking, or stacked generalization, is a more general ensemble-learning algorithm that is not

limited to a specific strategy to combine the results of individual models [58]. Unlike the Bagging

algorithm, which uses majority voting to aggregate results of individual models, Stacking can use

any selection process to form a final set of predictions.

A simple and effective way to combine the results of individual rule sets is to create a

Breiman’s stacked regression [13], which seeks a linear stacking function s of the form:

�(W) = R VA�A(W)
A

Eq. (6-3)

where the wi represent the weight of the rule set Ri generated from the i th test in the

repository, and x represents the performance data of the new test. Thus, Ri (x) flags counters that

show performance regressions in the new test x according to Ri. For example, Table 6-1 shows

the counters flagged as performance regressions in test 5 by models generated from tests 1 to 4.

We define a function to calculate the weight of each model based on the similarity between

the environments used for the tests in the performance testing repository and the new test. A prior

test with environment settings very similar to the new test will receive a heavier weight. To

77

compare the environments between two tests, we generate a similarity vector of 1s and 0s to

indicate if two tests share common components. For example, Table 6-3 shows three

environments for T1, T2, and T5. The similarity vectors for the pairs (T1, T5) would be (1, 1, 1, 0)

because both T1, and T5 share the same versions of CPU, memory and database, and differ only in

the operating system version. Since it is difficult to determine the relations between the

application’s performance and individual hardware or software components, such a binary

approach provides us with the safest way to compare environment configurations.

The length of the similarity vector can be used to measure the degree of similarity between

the new test and the past test. For example, the lengths of (T1, T5) and (T2, T5) equal 1.7 (square

root of 3) and 1.4 (square root of 2) respectively. The longer the length of a similarity vector, the

higher the similarity between prior and new tests. Based on the distance of each similarity vector,

we can assign a weight to each model. We calculate the weight by dividing the distance of the

similarity vector by the sum of the distances of all similarity vectors. Each weight has a value

between 0 and 1. For example, the weight, w1, for T1 is calculated as follows.

VU = |(\U, \])||(\U, \])| + |(_, \])| = 1.71.7 + 1.4 = 0.55

Table 6-3: Test Configurations

Performance Testing Repository New Test

T1 T2 T5

CPU 2 GHz, 2 cores 2 GHz, 2 cores 2 GHz, 2 cores

Memory 2 GB 1 GB 2 GB

Database Version 1 2 1

OS Architecture 32 bit 64 bit 64 bit

78

The weight is essentially a value that describes the relative importance of a model. In

practice, performance analysts may specify custom weights best suited for their repositories.

The weights are used in Eq. (6-3) to produce the final set of counters that are likely to show

performance regression. Each counter that is reported by our Stacking approach will have an

aggregated weight between 0 and 1. Performance counters with coefficients greater than 0.5 will

be included in the resulting set of counters that show performance regressions. Note that our

Stacking approach is equivalent to Bagging if previous tests in the performance testing repository

have the same environment as the new test.

6.1.5 Report generation

We generate a report, similar to Figure 5-1 in Chapter 5, of the counters flagged in phase 4.

The flagged counters are first ranked by either the number of models voted for the counter (for

Bagging) or by the aggregated weights (for Stacking). If two counters are ranked the same, they

will be further sorted by the level of severity as defined in Eq. (5-4).

6.2 Case study

We conducted a series of case studies with two open source e-commerce applications (Dell

DVD Store and JPetStore) and a large enterprise application to compare the performance of our

ensemble-based approaches and our previous approach (with both the 3-level discretization

algorithm as described in Section 5.2.2, and the EW discretization algorithm).

In the case study with the Dell DVD Store, we show that our ensemble-based approaches can

handle different hardware configurations in performance tests, while delivering an increase of

accuracy over our previous approach. In the case study with JPetStore, we show that our

ensemble-based approaches can be used to analyze performance tests that are conducted with

different software configurations. Finally, in our industrial case study, we demonstrate that our

79

ensemble-based approaches can be used to detect problems in performance tests that are

conducted with varying hardware and software components.

We use the same faults as Chapter 5 in our experiments with the two open source e-

commerce applications. This allows us to assess the precision (Eq. (6-4)) and recall (Eq. (6-5)) of

our approach.

Precision = a1 − XbcdefXghgcd , 	"
565Yi > 0
1, 	"
565Yi = 0 k Eq. (6-4)

Recall = l
XghgcdmXbcdefXfnofpgfq , 	"
=Zr=s5=t > 0

1, 	"
=Zr=s5=t = 0 k

Eq. (6-5)

where mfalse is the number of counters that are incorrectly flagged, mtotal is the total number of

counters flagged, and mexpected is the number of counters that we expect to show performance

regressions (including counters that are flagged as side-effect of the injected fault). High

precision means that our approach can identify performance regressions with low false positives.

High recall means that our approach can discover most performance regressions in a test.

We use the existing performance counters collected by the organization’s performance

analysts as the input of our approach for the case study with the enterprise application. The data

used in this case study contain tests that were executed in heterogeneous environments, and are

different from the ones used in Chapter 5. We compare the results of our approaches against the

analysts’ reports. A big motivator of our work is the tendency of analysts to miss problems due to

the vast amount of data produced by large industrial applications. Hence, we do not use the

analysts' reports as the "gold standard" for precision and recall. Instead, we carefully re-verified

the test reports with the analysts, who noted any missed problems. We calculate the recall by

determining the ratio of the number of true positives of a particular approach to the size of the

80

union of all true positives of our original approach (either with the 3-level discretization

algorithm, or the EW discretization algorithm), and our Bagging and Stacking approaches.

Finally, we use the F-measure to rank the accuracy of our approaches across all case studies.

The F-measure is the harmonic mean of precision and recall, and outputs a value between 0 and

1. A high F-measure value means that a approach has high precision and recall.

Table 6-4 summarizes the performance of our approaches in all 3 case studies. In each row,

the cells corresponding to the approach that produces the highest F-measure value is shaded.

Table 6-4: Summary of performance of our approaches

Test

Original

approach

(with 3-level

discretization)

Original

approach

(with EW

discretization)

Bagging Stacking

P R F P R F P R F P R F

D
el

l D
V

D
 S

to
re

 D_4 0 1 0 0 1 0 1 1 1 1 1 1

D_5
(D_1 as
training)

1 0.4 0.6 1 0.6 0.7 1 0.6 0.7 1 0.6 0.7

D_5
(D_1, D_2,
and D_3 as
training)

1 0 0 1 0.1 0.3 1 0.6 0.7 1 0.6 0.7

JP
e

tS
to

re

J_3 1 0.3 0.5 1 0.5 0.7 1 0.5 0.7 1 0.5 0.7

E
nt

e
rp

ris
e

S

ys
te

m
 E_1 1 0.3 0.5 1 0.5 0.6 0.7 1 0.8 0.8 0.8 0.8

E_2 0.8 0.3 0.4 0.9 0.4 0.5 0.8 1 0.9 0.9 0.9 0.9

E_3 1 1 1 1 1 1 0 1 0 1 1 1

Average 0.8 0.5 0.4 0.8 0.6 0.5 0.8 0.8 0.7 1 0.8 0.8
P represents precision, R represents recall, and F represents F-measure

(Values are rounded up to 1 significant digit)

81

For each case study, we give a description of the application, methods used for data

collection, and analysis of each approach.

6.2.1 Case study 1: Dell DVD Store

6.2.1.1 Data collection

We ran five one-hour performance tests (D_1 to D_5) with the same workload. We varied the

CPU and memory capacity of the machine that hosts Tomcat and MySQL to simulate different

hardware environments. Table 6-5 summarizes the hardware setups and the expected problematic

counters for this case study. Test D_1 represents the test in which the hardware is running at its

full capacity. In test D_2, we throttle the CPU to 50% of the full capacity to emulate a slower

machine. In test D_3, we reduce the memory from 3.5 gigabyte to about 1.5 gigabyte. Tests D_1,

D_2 and D_3 will be used as test repository for our approaches. Test D_4 is a replication of test

D_1 and will be used to show that our approaches produce few false positives. In test D_5, we

inject a fault in the browsing logic of DS2 to cause a performance regression. Prior to the case

study, we manually derived a list of counters that we expected to show performance regressions.

We use these counters to calculate the recall of our approach.

82

6.2.1.2 Analysis of test D_4

The goal of this experiment is to examine whether our ensemble-based approaches would

produce false positives when analyzing tests that are conducted in heterogeneous environments.

Since test D_4 is run without any injected bug, ideally, no counter should be flagged.

When using our original approach with the 3-level discretization algorithm, 3 counters

(database CPU utilization, # database I/O writes, and # orders/minute) were flagged. Upon

investigation, we found that the rules that flagged the 3 counters reflected the behavior of test

D_2: because less processing power was available, each request would take longer to complete,

Table 6-5: Summary of hardware setup for DS2

Test Hardware setup Fault description Expected problematic counters

D_1
CPU = 100%

Memory = 3.5 GB
No fault No problem should be observed.

D_2
CPU = 50%

Memory = 3.5 GB
No fault No problem should be observed.

D_3
CPU = 100%

Memory = 1.5 GB
No fault No problem should be observed.

D_4 Same as Test D_1 No fault No problem should be observed.

D_5 Same as Test D_1
Busy loop in

browsing logic

Tomcat counters (+ represents increase)
threads +
private bytes +
CPU utilization +

Database counters
disk reads /second +
CPU utilization +

Application counters
Response time +
Orders / minutes +

83

resulting in an increase of CPU utilization. Also, less requests can be completed, leading to a

decrease in # database I/O writes/second and # orders/minute. Since no actual fault was injected

into test D_4, we concluded that the three counters flagged were false positives, leading to a

precision of 0. Because we do not expect any counter to be flagged, recall is equal to 1 as defined

by Eqn. 6-5. The F-measure of our original approach with the 3-level discretization algorithm is

0.

Our original approach with the EW discretization algorithm flagged 4 counters, which

included the 3 counters flagged when the 3-level discretization algorithm was used and the

response time counter. Upon investigation, we found that the EW discretization algorithm was

able to more precisely capture the counter values in the tests with multiple levels. As a result, the

association rules derived from test D_2 were able to pick up the response time differences

between tests D_2 and D_4. However, since no actual fault was injected into test D_4, the

precision and recall of our original approach with the EW discretization algorithm are 0 and 1,

respectively. As a result, the F-measure is 0.

No counter was flagged by either the Bagging or Stacking approach. This can be explained

by the fact that separate models are learned from tests D_1, D_2, and D_3. In order for a counter

to be considered problematic, the counter must be flagged by at least two models or achieve an

aggregated weight of 0.5. Even though three counters (database CPU utilization, database I/O

writes, and # orders/minute) were flagged by the model generated from test D_2, none of these

counters could be confirmed by models generated from tests D_1 or D_3. The precision, recall

and F-measure of our ensemble-based approaches are 1. This study shows that both ensemble

approaches produce less false positives than our original approach. There is no performance

difference between the Bagging and Stacking approaches.

84

6.2.1.3 Analysis of test D_5

 In test D_5, we injected a database-related bug into DS2 that affects the product browsing

logic of the application. Every time a customer performs a search on the website, the same query

will be repeated numerous times, causing extra workload for the backend database (MySQL) and

application server (Tomcat).

Test D_1 as training data: In this scenario, we want to evaluate the performance of our

ensemble-based approaches and our original approach in cases where the new test and the prior

test share the same environment.

Our original approach with the 3-level discretization algorithm flagged one database counter

(# disk reads/second), and two tomcat counters (# threads and # private bytes). The result agrees

with the nature of the injected fault: each browsing action generates additional queries to the

database, leading to an increase of # disk reads/second counter on the database server. When the

result of the query returns, Tomcat uses additional memory to extract the results. Furthermore,

since each request would take longer to complete due to the extra queries, more threads are

created in Tomcat to handle the otherwise normal workload. According to Table 6-5, 3 out of 7

expected problematic counters are detected by our original approach, leading to a precision of 1

and recall of 0.4. The F-measure is thus 0.6.

Our original approach with the EW discretization algorithm, and the Bagging and Stacking

approaches flagged two database counters (# disk read/second and CPU utilization), one Tomcat

counter (CPU utilization), and one application level counter (response time). We found that the

EW discretization algorithm, by design, tends to create more levels than our original

discretization method, which put counter values into 1 of 3 levels. Because of that, we were able

to extract more association rules that reach the confidence threshold required by our mining

algorithm. As more association rules are available, we were able to detect more rules that have

85

significant change of confidence, which leads to more problematic counters being flagged. Since

4 out of 7 counters are flagged, the precision and recall of our original approach with the EW

discretization algorithm as well as the Bagging and Stacking approaches are 1 and 0.57

respectively. The F-measure is 0.73.

This study shows that both our Bagging and Stacking approaches perform equally well when

both the training set and the new test share the same configuration, and even experience an

improvement in recall over our original approach with the 3-level discretization algorithm.

Furthermore, when only 1 test is used as the training data, our ensemble-based approaches reduce

to our original approach with the EW discretization algorithm, which detects performance

regressions based on a single model.

Test D_1, D_2 and D_3 as training data: In this scenario, we want to evaluate the ability of our

approaches to detect performance problems when the training data is produced from

heterogeneous environments.

Our original approach with the 3-level discretization algorithm did not flag any counter.

When we extract association rules from the combined dataset of test D_1, D_2, and D_3, only

performance behaviors that are strong enough to persist in all three tests will be extracted. In this

scenario, none of the premises of the rules generated from the combined training set were

satisfied in test D_5. One such rule indicated that when the # orders/minute counter is medium,

the database CPU utilization would be high. However, our original approach discretized the #

orders/minute counter in test D_5 to the low level. Because of that, the premises of the rules were

never satisfied and no counter was flagged. The precision of our original approach is 1 since no

incorrect counter was reported. The recall and the F-measure are 0.

Our original approach with the EW discretization algorithm flagged the response time

counter, which agrees with the nature of the injected fault. Since DS2 must process additional

86

queries for each request, the overall response time suffered as a result. The precision and recall of

our original approach with the EW discretization algorithm are 1 and 0.1, respectively, and the F-

measure is 0.3.

Both the Bagging and Stacking approaches flagged the same counters: two database counters

(# disk reads/second and CPU utilization), one Tomcat server-related counter (# private bytes),

and one application-level counter (response Time). Upon inspection, we found that the model

generated from test D_3 also flagged Tomcat’s # threads counter. However, in the model

generated from test D_2, the rules that contained “# threads” as the consequent had premises that

were never satisfied in test D_5. As a result, even though the “# threads” counter behaved

differently in test D_2 and D_5, the counter was not flagged in test D_5. Since 4 out of 7 counters

were flagged, our Bagging and Stacking approaches achieved a precision of 1 and a recall of

0.57. The F-measure of both ensemble-based approaches is 0.73.

This study shows that our ensemble approaches outperform our original approach when using

a training set that contains tests with different software configurations. Our Stacking and Bagging

approaches have the same performance.

6.2.2 Studied application: JPetStore

In this case study, we have conducted three one-hour performance tests (J_1, J_2, and J_3).

All three tests share the same hardware environments and workload. Tests J_2 and J_3 use an

older version of MySQL (ver. 5.0.1) than test J_1 (ver. 5.1.45). Tests J_1 and J_2 are used as

training data. Test J_3 is injected with an environment bug in which all caching capability in

MySQL is turned off. Table 6-6 summarizes the environments used in the three tests and the 6

counters expected to show performance regressions in Test J_3.

87

6.2.2.1 Analysis of test J_3

Our original approach with the 3-level discretization algorithm detected a performance

regression in memory usage (# private bytes), and the “# threads” in the database. These

observations align with the injected fault: since the caching feature is turned off in the database,

less memory is used during the execution of the test. Because of the extra workload of accessing

the disk, the database in turn must create more threads to handle the otherwise unchanged

workload. Our original approach has a precision of 1 and recall of 0.3. The F-measure of our

original approach is 0.5.

Our original approach with the EW discretization algorithm detected a decrease in the #

private bytes counter in the database, as well as an increase in the CPU utilization and # thread

counters. The precision of our original approach with the EW discretization algorithm is 1. The

recall and F-measure are 0.5 and 0.7, respectively.

Table 6-6: Summary of Test Setup for JPetStore

Test
Software

setup

Fault

description
Expected problematic counters

J_1
MySQL

5.1.45
No fault No problem should be observed.

J_2
MySQL

5.0.1
No fault No problem should be observed.

J_3
MySQL

5.0.1
Cache disabled

Database counters
private bytes +
threads +
CPU utilization +
context switches +
disk read bytes / second +
disk write bytes / second +

88

Our Bagging and Stacking approaches flagged the following three counters: # private bytes, #

disk read bytes/second, and # threads in the database. Our ensemble-based approaches achieved

a precision of 1 and recall of 0.5, respectively. The F-measure is equal to 0.7.

In this case study, our original approach with the EW discretization algorithm achieved the

same performance as our ensemble-based approaches.

6.2.3 Studied application: a large enterprise application

In this case study, we selected thirteen 8-hour performance tests from the organization’s

performance testing repository. Most of these tests were run in different labs that differ in

hardware specifications, and were conducted for a minor maintenance release of the software

application. In each test, over 2000 counters were collected. For each test, we removed the first

and last hour, which represent the warm-up and cool-down periods.

Out of the pool of 13 tests, 10 tests have received a pass status from the performance analysts

and are used to derive association rules. We evaluated the performance of the 3 newest tests (E_1,

E_2 and E_3) in the pool and compared our findings with the performance analysts’ assessment

(Table 6-7). We now discuss our analysis for each test (E_1, E_2 and E_3) separately.

89

6.2.3.1 Analysis of test E_1

By analyzing the counters flagged by all our approaches for test E_1, we found that 13

counters showed true performance regressions. These 13 counters will be used to calculate the

recall of our approaches for test E_1.

Using the history of 10 tests as training data, our original approach with the 3-level

discretization algorithm flagged 2 throughput and 2 arrival rate counters in test E_1. The rules

that flagged the counters imply that all throughput and arrival rate counters should be the same.

However, upon investigation, we found that half of the arrival rates and throughput counters are

high while the other half is low, suggesting that there was a mismatch in load created by the load

generators. Our performance regression report has a precision of 1. Since 4 out of 13 counters are

flagged, our recall and F-measure are 0.3 and 0.5 respectively.

Table 6-7: Summary of analysis for the enterprise system

Test Performance analyst’s report
Report

status
Our findings

E_1
No performance problem

found.
Passed

Our approach identified abnormal

behaviors in system arrival rate and

throughput counters.

E_2

Arrival rates from two load

generators differ significantly.

Abnormally high Database

transaction rate.

High spikes in job queue.

Failed
Our approach flagged the counters

identified by the performance analyst.

E_3
Slight elevation of # database

transactions/second.
Failed No counter flagged.

90

Our original approach with the EW discretization algorithm flagged 6 counters, including 2

throughput counters, 2 arrival rate counters, the # private bytes counter of the server process and

the database transactions/second counter. Our original approach with the EW discretization

algorithm achieves a precision of 1, a recall of 0.46 and an F-measure of 0.6.

Our Bagging approach flagged 18 counters, including the 4 throughput and arrival rates

counters flagged by our original approach. Most of the flagged counters are side effects of the

mismatch of the arrival rate counters. For example, the CPU utilization of the application

decreased because fewer requests were made due to a drop in one of the arrival rate counters. We

verified our finding with a performance analyst, and found that 5 out of 18 flagged counters were

false positives, bringing the precision and recall of our Bagging approach to 0.7 and 1,

respectively. The F-measure of our Bagging approach is 0.8.

Our Stacking approach flagged 13 counters, including the ones flagged by our original

approach. Out of the 13 counters flagged, we identified 2 false positives, bringing both the

precision and recall of our Stacking approach to 0.8. The F-measure of our Stacking approach is

0.8. This study shows that the performance of our Bagging and Stacking approaches are better

than our original approach.

6.2.3.2 Analysis of test E_2

Our approaches together detected 15 unique counters that showed performance regressions in

test E_2. These 15 counters will be used to evaluate the recall of each of our approaches in test

E_2.

Our original approach with the 3-level discretization algorithm flagged 2 arrival rate counters,

2 job queue counters (each represents one sub-process), and the “# database scans/second”

counter. Upon consulting with the time-series plots for each flagged counter as well as the

historical range, we found that the “# database scans/second” counter had three spikes during the

91

test. These spikes were likely the cause of the rule violations. After verifying with a performance

analyst, we concluded that the spikes were caused by the application’s periodic maintenance and

did not constitute a performance problem. Therefore, the “# database scans/second” counter was a

false positive. The precision and recall of our original approach are 0.8 and 0.3, respectively. The

F-measure equals to 0.4.

Our original approach with the EW discretization algorithm flagged 7 counters in total, 1 of

which was a false positive. The correct performance regressions flagged included 2 arrival rate

and 2 job queue counters, and # private bytes and # virtual bytes counters of the application

process. The precision, recall and F-measure of our original approach with the EW discretization

algorithm are 0.9, 0.4 and 0.5, respectively.

Our Bagging approach flagged 20 counters, 5 of which were false positives. The remaining

15 counters included those that were flagged by our original approach. The new counters reported

by our Bagging approach were mainly the side effects of the abnormality detected in the arrival

rate counters. For example, as one of the load generators pushed a higher than normal load to the

application, the extra requests caused the application to read from the disk more often, leading to

an increase of “# disk reads/second”. The results of these extra requests were written to the disk,

causing an increase in the “# disk writes / second” counter. Although these side effects are the

result of a higher load being pushed to the application, they can provide insight to performance

analysts to investigate the ripple effect of the fault. As such, side effects should be considered as

true positives. The precision and recall of our Bagging approach are 0.8 and 1 respectively. The

F-measure of our Bagging approach is 0.9.

Our Stacking approach flagged 14 counters, 1 of which was a false positive. All counters

flagged by our original approach were also flagged by our Stacking approach. The precision and

92

recall of our Stacking approach are 0.9 and 0.9. The F-measure of both our Stacking approach is

0.9.

6.2.3.3 Analysis of test E_3

There are no true positives that were detected by any of our approaches. Our original

approach (with the original 3-level discretization algorithm and the EW discretization algorithm)

did not flag any rule violation for this test. Upon inspection of the historical values for the

counters reported by the performance analyst, we noticed that the increase of “# database

transactions/second” observed in test E_3 actually fell within the range of the counter’s historical

values. Upon discussing with the Performance Engineering team, we concluded that the increase

did not represent a performance problem. In this test, our original approach of using a historical

dataset of prior tests is resistant to fluctuations of counter values. Since no counter was flagged,

the precision, recall and the F-measure of our original approach are 1.

Our Bagging approach flagged 8 counters, all of which were false positives. Two counters

flagged by our Bagging approach indicated that one of the load generators output service requests

at a rate (11%) higher than the other one. The extra service requests led to a slight increase in the

“# disk reads/second” counter. Upon investigation, we do not believe that these two counters

represent significant performance regressions and therefore should be considered as false

positives. As a result, the precision and recall of our Bagging approach are 0 and 1. The F-

measure of our Bagging approach is 0.

Since our Stacking approach did not flag any counter, the precision and the recall of our

Stacking approach are 1. The F-measure of our Stacking approach is 1. This study shows that our

original approach shows similar performance as our Stacking approach. In the case of test E_3,

our Bagging approach flags the most false positives.

93

From our case studies with three applications, we find that the EW discretization algorithm

improves the performance of our original approach. Our ensemble approaches outperform our

original approach (with either the 3-level discretization algorithm or the EW discretization

algorithm), with our Stacking approach performing slightly better than our Bagging approach.

6.3 Discussion

Much of current industrial practice uses threshold-based approaches to locate performance

problems. These approaches involve comparing counter averages against a set of pre-defined

thresholds. When a counter average exceeds the threshold, the counter is reported. In our

industrial case study, we compared the performance of our automated approaches against the

organization’s reports generated using such a threshold-based approach. We showed that our

ensemble-based approaches could detect problems that were missed by such threshold-based

approach. In addition, our ensemble-based approaches can provide details such as the correlating

counters and periods where the performance regression occurred. These are useful in

investigating performance regressions and locating the root cause of such regressions.

The performance tests used in our industrial case studies were conducted on a large and

distributed platform with multiple machines, each hosting a different component. Changes to any

component may affect the overall application. As a result, the performance of the tests used in our

industrial case study is very sensitive to differences in the environments. Since Bagging

aggregates the results of individual models by taking a simple majority voting and does not

incorporate the environment information of performance tests, Bagging tends to produce higher

recall than Stacking in exchange of precision.

Our ensemble-based approaches permit us to detect performance regressions with high

accuracy in new tests that share some similarity with prior tests. However, if the new test

behavior is radically different than those observed in prior tests, our ensemble-based approaches

94

will not be accurate in detecting performance problems. In the future, we will investigate ways to

automatically select tests with similar environment configurations as the new test from the

repository.

6.4 Summary

The traditional approach of analyzing performance tests to detect performance regressions is

an error-prone and time consuming process. In this chapter, we extended our automated approach

introduced in Chapter 5 with Bagging and Stacking ensemble-learning algorithms. Our improved

analysis approaches address the practical need for an automated approach for analyzing

performance tests that are conducted with heterogeneous environments. In our three case studies,

we showed that our ensemble approach with Stacking outperforms our original approach. In the

next chapter, we will summarize the thesis and present a list of possible future work.

95

Chapter 7

Conclusion and Future Work

We presented approaches to address the challenges of identifying performance regressions in

the software applications at the design and implementation levels. This chapter summarizes the

main ideas presented in this thesis. In addition, we propose avenues for future work.

Performance verification is an essential step for organizations to prevent performance

regressions from slipping into production. Currently, organizations limit performance verification

at the functional level with the support of specialized testing frameworks [38] [28] and the

implementation level through performance testing. Evaluation of high impact design changes is

delayed until those changes are implemented, at which time performance regressions are the most

costly to fix. Furthermore, the analysis of the results of performance verification is both time-

consuming and error-prone due to the large volume of collected data, the absence of formal

objectives, the subjectivity of performance analysts and heterogeneous environments. In this

thesis, we proposed several approaches to address the above challenges of performance

verification. First, we proposed a layered simulation modeling approach that can be use to

uncover performance regression at the design level. Second, we introduced an automated analysis

approach for uncovering performance regressions in performance tests. Finally, we extended our

automated analysis approach with ensemble-learning algorithms to handle performance tests

conducted in heterogeneous environments. Through our case studies, we demonstrated our

success in applying our approaches to various applications.

7.1 Main topics covered

We introduced our approach of constructing layered simulation models for analyzing the

application performance at the design level in Chapter 4. Our layered simulation model separates

96

the performance concerns of different stakeholders and can be constructed incrementally. We

show that our approach is easy to adopt through two case studies with the RSS cloud system and

the performance monitor for ULS applications. By adjusting the workload fed into the layered

simulation model, performance analysts can evaluate the performance impact of a proposed

design changes.

Chapter 5 presented our automated approach to analyze results of performance tests. Our

approach uses association rule mining to extract a set of expected counter correlations from the

performance testing repository and check the new test for violations of the expected correlations.

Our case studies with two open source e-commerce applications and a large enterprise application

showed that our approach can effectively discover performance regressions and scale to large

applications.

Chapter 6 extends the approach in Chapter 5 using the Bagging and Stacking ensemble-

learning algorithms. Our ensemble-based approach can be used to analyze performance tests that

are executed on a variety of software and hardware environments. Our case studies with three

applications showed that our ensemble approaches detected more performance regressions than

our original approach in Chapter 5 in the presence of performance tests that are conducted in

heterogeneous environments.

7.2 Contributions

The contributions of this thesis are as followed:

1. We presented an approach to build layered simulation models for the purpose of

evaluating changes to application designs. Our layered simulation model separates the

different performance concerns of the applications.

2. We proposed an automated approach to automatically detect performance regressions.

The approach uses prior tests to derive performance signatures, and then compares the

97

new test to these signatures. Our approach flags the time when counters violate the

performance signature, easing root cause analysis.

3. We propose an approach to deal with performance tests conducted in heterogeneous

environments, which is common in practice.

4. We are providing a replication package of our case studies with the open source projects

to foster research on the automated discovery of performance regressions [31].

7.3 Future work

7.3.1 Online analysis of performance tests

Previous approaches as well as the automated analysis approaches introduced in this thesis

focus on offline analysis, that is, after the performance tests are completed. A performance test

can take up to a few days to execute; anomalous behavior that exhibits early on in the test will

only be discovered after the test is finished. We believe early knowledge of the anomalous

behavior would allow performance analysts to make the decision of stopping the test early and

freeing up the lab resources. In the future, we intend to build a behavioral database by extracting

the expected performance behavior from prior tests with our analysis approach. As a new test is

executing, the test’s performance counter will be checked against the behavioral database in real

time. Performance analysts will be notified for any deviations of the expected behavior.

7.3.2 Compacting the performance regression report

Our automated analysis approaches produce performance regression reports that show the

counters that contain performance regressions and the list of rules the counter violated.

Performance analysts can inspect these rules to understand the relations among counters. From

our case studies, we notice that some of the rules produced are highly similar. For example, the

premise of one rule is the superset of another rule, while having the same consequence. Another

98

issue is that some performance counters provide redundant information. For example, operating

systems are capable of recording the utilizations of individual CPU cores as well as the total CPU

utilization. Since the total CPU utilization is basically the sum of all the CPU cores, we can solely

analyze the counters corresponding to the individual cores without losing information. In the

future, we will research ways to automatically eliminate redundant counters and merge similar

rules to condense information presented to performance analysts.

7.3.3 Maintaining the training data for our automated analysis approach

Our ensemble-based approach permits us to detect performance regressions with high

accuracy in new tests that share some similarity with prior tests. However, the accuracy of our

ensemble approach will decrease if the new test behavior is radically different from those

observed in prior tests. In the future, we will investigate ways to automatically update the training

data over time and prevent polluting the training data with tests that contain performance

regressions.

7.3.4 Using performance signatures to build performance models

Many modeling approaches are proposed to predict and evaluate application performance

[20] [26]. These approaches can greatly help performance analysis and capacity planning efforts.

However, creation of such performance models requires detailed documentation about the

application that may not be available. In the future, we plan to explore the possibility of using the

performance signatures generated by our approach to specify the resource consumption

relationship between different components in the performance models.

99

References

[1] R Agrawal and Ramakrishnan Srikant, "Fast Algorithms for Mining Association Rules in

Large Databases," in Proceedings of the 20th International Conference on Very Large Data

Bases (VLDB), San Francisco, CA, USA, 1994, pp. 487-499.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen,

"Performance debugging for distributed systems of black boxes," in Proceedings of the 19th

ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing, NY, USA,

2003, pp. 74-89.

[3] A. Alberto and E. J. Weyuker, "The Role of Modeling in the Performance Testing of E-

Commerce Applications," IEEE Transactions on Software Engineering, vol. 30, no. 12, pp.

1072-1083, Dec. 2004.

[4] A. Avritzer and B. Larson, "Load Testing Software using Deterministic State Testing," in

Proceedings of the International Symposium on Software Testing and Analysis (ISSTA),

Cambridge, Massachusetts, USA, 1993, pp. 82-88.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, "Using magpie for request extraction and

workload modelling," in Proceedings of the 6th Conference on Symposium on Operating

Systems Design & Implementation (OSDI), Berkeley, CA, USA, 2004, pp. 259-272.

[6] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, "Open, Closed, and Mixed

Networks of Queues with Different Classes of Customers," Journal of the ACM (JACM),

vol. 22, no. 2, pp. 248-260, Apr. 1975.

[7] E. Bauer and R. Kohavi, "An Empirical Comparison of Voting Classification Algorithms:

Bagging, Boosting, and Variants," Machine Learning, vol. 36, no. 1-2, pp. 105-139, July

1999.

[8] F. Bause and P. Kemper, "QPN-Tool for qualitative and quantitative analysis of queueing

Petri nets," in Proceedings of the 7th International Conference on Computer Performance

Evaluation: Modelling Techniques and Tools, Vienna, Austria, 1994, pp. 321-334.

[9] C. Begin. (2011, Jan.) iBATIS JPetStore. [Online].

http://sourceforge.net/projects/ibatisjpetstore/

[10] P. Bodik, M. Goldszmidt, and A. Fox, "HiLighter: Automatically Building Robust

100

Signatures of Performance Behavior for Small- and Large-Scale Systems," in Proceedings of

the 3rd Conference on Tackling Computer Systems Problems with Machine Learning

Techniques (SysML), San Diego, California, 2008, pp. 33-40.

[11] A. B. Bondi, "Automating the Analysis of Load Test Results to Assess the Scalability and

Stability of a Component," in Proceedings of the 33rd International Computer Measurement

Group Conference (CMG), San Diego, CA, USA, 2007, pp. 133-146.

[12] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, no. 2, pp. 123-140, Aug.

1996.

[13] L. Breiman, "Stacked regressions," Machine Learning, vol. 24, no. 1, pp. 49-64, July 1996.

[14] L. Bulej, T. Kalibera, and P. Tuma, "Regression benchmarking with simple middleware

benchmarks," in Proceedings of the International Conference on Performance, Computing,

and Communications (IPCCC), Phoenix, AZ, USA, 2004, pp. 771-776.

[15] L. Bulej, T. Kalibera, and P. Tuma, "Repeated results analysis for middleware regression

benchmarking," Performance Evaluation, vol. 60, no. 1-4, pp. 345-358, May 2005.

[16] M. Y. Chen et al., "Path-based faliure and evolution management," in Proceedings of the 1st

Symposium on Networked Systems Design and Implementation (NSDI), Berkeley, CA, USA,

2004, pp. 63-72.

[17] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase, "Correlating instrumentation

data to system states: a building block for automated diagnosis and control," in Proceedings

of the 6th Symposium on Opearting Systems Design & Implementation (OSDI), San

Francisco, CA, USA, 2004, pp. 231-244.

[18] I. Cohen et al., "Capturing, indexing, clustering, and retrieving system history," in

Proceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP),

Brighton, UK, 2005, pp. 105-118.

[19] Compuware. (2006, Oct.) Applied performance management survey. [Online].

http://www.cnetdirectintl.com/direct/compuware/Ovum_APM/ APM_Survey_Report.pdf

[20] V. Cortellessa, P. Pierini, and D. Rossi, "Integrating software models and platform models

for performance analysis," IEEE Transactions on Software Engineering, vol. 33, no. 6, pp.

385-401, June 2007.

[21] M. A. Daniel, V. Almeida, and L. W. Dowdy, Performance by design. Upper Saddle River,

101

New Jersey, USA: Prentice Hall, 2004.

[31] (2011, Jan.) Data used in the case studies with open source applications. [Online].

https://qshare.queensu.ca/Users01/3kcdf/www/icse2011.zip

[55] (2011, Jan.) Dell DVD Store Database Test Suite. [Online]. http://linux.dell.com/dvdstore/

[22] J. Dougherty, R. Kohavi, and M. Sahami, "Supervised and unsupervised discretization of

continuous features," in Proceedings of the 20th International Conference on Machine

Learning (ICML), 1995, pp. 194-202.

[23] (2011, Jan.) Exchange Server 2003 MAPI Messaging Benchmark 3. [Online].

http://technet.microsoft.com/en-us/library/cc164328%28EXCHG.65%29.aspx

[24] K. C. Foo et al., "Mining performance regression testing repositories for automated

performance analysis," in Proceedings of the 10th International Conference on Quality

Software (QSIC), Zhangjiajie, China, 2010, pp. 32-41.

[25] G. Franks and C.M. Woodside, "Performance of multi-level client-server systems with

parallel service operations," in Proceedings of the 1st international workshop on Software

and performance (WOSP), Santa Fe, New Mexico, USA, 1998, pp. 120-130.

[26] V. Garousi, L. C. Briand, and Y Labiche, "Traffic-aware stress testing of distributed real-

time systems based on UML models," in Proceedings of the 1st international conference on

software testing, verification, and validation, Lillehammer, 2006, pp. 92-101.

[27] (2011, Jan.) Google Reader. [Online]. http://www.google.com/reader

[28] J. Halleux. (2011, Jan.) NPerf, A Performance Benchmark Framework for.NET. [Online].

http://www.codeproject.com/KB/architecture/nperf.aspx

[29] J. Herrington. (2011, Jan.) Five common PHP database problems. [Online].

http://www.ibm.com/developerworks/library/os-php-dbmistake/index.html

[30] M. Hutchins, H. Foster, T. Goradia, and T. J. Ostrand, "Experiments of the effectiveness of

dataflow- and controlflow-based test adequacy criteria," in Proceedings of the 16th

International Conference on Software Engineering (ICSE), Sorrento, Italy, 1994, pp. 191-

200.

[32] Tauseef A. Israr, Danny H. Lau, Greg Franks, and Murray Woodside, "Automatic generation

of layered queuing software performance models from commonly available traces," in

Proceedings of the 5th International Workshop on Software and Performance (WOSP), New

102

York, NY, USA, 2005, pp. 147-158.

[33] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, "Automated performance analysis of

load tests," in Proceedings of the 25th IEEE International Conference on Software

Maintenance (ICSM), Edmonton, AB, Canada, 2009, pp. 125-134.

[34] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, "Automatic identification of load

testing problems," in Proceedings of the 24th IEEE International Conference on Software

Maintenance (ICSM), Beijing, China, 2008, pp. 307-316.

[35] M. Jiang, M. A. Munawar, and T. Reidemeister, "Automatic fault detection and diagnosis in

complex software systems by information-theoretic monitoring," in Proceedings of the 2009

International Conference on Dependable Systems and Networks (DSN), Estoril, Lisbon,

Portugal, 2009, pp. 285-294.

[36] M. Jiang, M. A. Munawar, T. Reidemeister, and P. Ward, "System monitoring with metric-

correlation models: problems and solutions," in Proceedings of the 6th International

Conference on Autonomic Computing (ICAC), Barcelona, Spain, 2009, pp. 13-22.

[37] R. Jin and H. Liu, "SWITCH: A novel approach to ensemble learning for heterogeneous,"

Machine Learning: ECML 2004, vol. 3201, pp. 560-562, 2004.

[38] (2011, Jan.) JUnitPerf. [Online]. http://www.clarkware.com/software/JUnitPerf.html

[39] P. Kruchten, "The 4+1 view model of architecture," IEEE Software, vol. 12, no. 6, pp. 42-50,

Nov. 1995.

[40] H. Malik, B. Adams, A. E. Hassan, P. Flora, and G. Hamann, "Using load tests to

automatically compare the subsystems of a large enterprise system," in Proceedings of the

34th Computer Software and Applications Conference (COMPSAC), Seoul, Korea, 2010, pp.

117-126.

[41] D. A. Menasce, "Two-level iterative queuing modeling of software contention," in

Proceedings of the 10th IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems (MASCOTS), Fairfax, VA, USA,

2002, pp. 267-276.

[42] (2011, Jan.) NeoLoad. [Online]. http://www.neotys.com/

[43] (2011, Jan.) OMNeT++ Network Simulation Framework. [Online]. http://www.omnetpp.org/

[44] D. Oppenheimer and D. A. Patterson, "Architecture and dependability of large-scale internet

103

services," IEEE Internet Computing, vol. 6, no. 5, pp. 41-49, Sep. 2002.

[45] D. L. Parnas, "Software aging," in Proceedings of the 16th International Conference on

Software Engineering (ICSE), Los Alamitos, CA, USA, 1994, pp. 279-287.

[46] L. F. Pollacia, "A survey of discrete event simulation and state-of-the-art discrete event

languages," ACM SIGSIM Simulation Digest, vol. 20, no. 3, pp. 8-25, Sep. 1989.

[47] J. R. Quinlan, "Bagging, boosting, and C4.5.," in Proceedings of the 13th National

Conference on Artificial Intelligence (AAAI), Portland, Oregon, 1996, pp. 725-730.

[48] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat, "WAP5: black-box

performance debugging for wide-area systems," in Proceedings of the 15th International

Conference on World Wide Web (WWW), Edinburgh, Scotland, 2006, pp. 347-356.

[49] J. A. Rolia and K. C. Sevcik, "The method of layers," IEEE Transactions on Software

Engineering, vol. 21, no. 8, pp. 689-700 , Aug. 1995.

[50] (2011, Jan.) RSS 0.90 Specification. [Online]. http://www.rssboard.org/rss-0-9-0

[51] (2011, Jan.) RSSCloud. [Online]. http://rsscloud.org/

[52] C. U. Smith, Performance engineering of software systems. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 1990.

[53] C. U. Smith and L. G. Williams, Performance solutions: a practical guide to creating

responsive, scalable software. Redwood City, CA, USA: Addison Wesley Longman

Publishing Co., Inc., 2002.

[54] Michael Smit et al., "Capacity planning for service-oriented architectures," in Proceedings of

the conference of the center for advanced studies on collaborative research (CASCON),

Toronto, Canada, 2008, pp. 144-156.

[56] (2011, Jan.) The R Project for Statistical Computing. [Online]. http://www.r-project.org

[57] I. H. Witten and E. Frank, Data mining: practical machine learning tools and techniques.

San Francisco, CA, USA: Morgan Kaufmann, 2005.

[58] D. H. Wolpert, "Stacked Generalization," Neural Networks, vol. 5, no. 2, pp. 241-259, 1992.

[59] C. M. Woodside, "A three-view model for performance engineering of concurrent software,"

IEEE Transactions on Software Engineering, vol. 21, no. 9, pp. 754-767 , Sep. 1995.

[60] C.M. Woodside, "Throughput calculation for basic stochastic rendezvous networks,"

104

Performance Evaluation, vol. 9, no. 2, pp. 143-160, Apr. 1989.

[61] M. Woodside, G. Franks, and D. C. Petriu, "The future of software performance

engineering," in Proceedings of the 2007 International Conference on Software Engineering

(FOSE), Washington, DC, USA, 2007, pp. 171-187.

[62] M. Woodside, C. Hrishchuk, B. Selic, and S. Bayarov, "Automated Performance Modeling

of Software Generated by a Design Environment," Performance Evaluation, vol. 45, no. 2-3,

pp. 107-123, July 2001.

[63] C.M., Neilson, J.E. Woodside, D.C. Petriu, and S. Majumdar, "The stochastic rendezvous

network model for performance of synchronous client-server-like distributed software,"

IEEE Transactions on Computers, vol. 44, no. 1, pp. 20-34, Jan. 1995.

[64] (2011, Jan.) WordPress. [Online]. http://wordpress.org/

[65] J. Xu and J. Kuusela, "Modeling execution architecture of software system using colored

Petri nets," in Proceedings of the 1st International Workshop on Software and Performance

(WOSP), Santa Fe, New Mexico, USA, 1998, pp. 70-75.

[67] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox, "Ensembles of models for

automated diagnosis of system performance problems," in Proceedings of the International

Conference on Dependable Systems and Networks (DSN), Yokohama, Japan, 2005, pp. 644-

653.

