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Abstract

Constructing software bears many similarities to constructing buildings. In a building

project, each floor builds on the previous structures (walls of the previous floors) with

some structures being more foundational (i.e. essential) for other structures and some

periods of construction being more foundational (i.e. critical) to the final structure.

In a software project, each change builds on the structures created by prior changes

with some changes creating foundational structure and with some time periods of

changes being more foundational than others.

This thesis is inspired by this similarity between constructing buildings and con-

structing software. The thesis makes use of the similarity to study the evolution of

software projects. In particular, we develop the concept of time dependence between

code changes to study software evolution through empirical studies on two large open

source projects (PostgreSQL and FreeBSD) with more than 25 years of development

history.

We show that time dependence can be used to study how changes build on prior

changes and the impact of this building process on the quality of a project. We show

how a development period impacts the development of future periods in a project.

We also show how a subsystem (module) of a project builds on other subsystems and

we identify the subsystems that have high impact on a project’s development. Using
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this knowledge, managers can better monitor the progress of the projects and better

plan for future changes.
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Chapter 1

Introduction

Measure what is measurable, and make measurable what is not so. -Galileo Galilei.

Many similarities exist between the construction of buildings and the evolution

of software projects. A building is developed by laying a foundation that provides

the major structure for developing the floors. Each floor provides the structure nec-

essary to introduce the next floor. Similarly, a software project can be viewed as a

building with changes building on the previous structure provided by changes. Some

building projects spread horizontally by developing new foundations (such projects

often lead to urban sprawls). Other buildings grow vertically by developing new floors

(skyscrapers are an example of such projects). Similarly, software projects develop

foundations that provide the basic structure for their development. As in buildings,

we expect that some projects develop few foundational code (subsystems) while oth-

ers develop considerable foundational code. Inspired by these similarities, this thesis

proposes to study the evolution of a software project as the evolution of a building.

Software projects must continuously evolve to meet new requirements, to adapt
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Chapter 1: Introduction 2

to a new environment or to fix defects, otherwise, the projects would become less

satisfactory for the users [55]. Rich data in software repositories (like source control

systems) motivated many researchers to mine this data to understand software evo-

lution [7, 11, 31, 56, 65]. Tracking software evolution is usually done by measuring

traditional metrics recovered from the repositories, like Lines Of Code (LOC), number

of modules, number of changes, number of defects, or size of releases. Metrics that

are based on counting LOC or number of changes provide a general understanding

of the evolution of a project, but they do not allow to study how changes build on

previous changes. For example, using counting metrics it is not possible to determine

if the recently-added features are added to a project just-in-time or if they were added

much earlier than needed. Counting metrics do not help to identify the subsystems

of a project that are crucial for development of future subsystems. Therefore, new

metrics are needed to study software evolution effectively. In this thesis, we formulate

new metrics to study software evolution as the construction of a building.

In the past, researchers have often drawn analogies between buildings, and soft-

ware architecture and software processes [69, 79, 94]. The World-Wide Institute of

Software Architects [72] says:

“There is a compelling analogy between building and software construction. It is

not new, but it has never taken root and bloomed”

We relate to the heart of software construction and development itself, for which

concrete data is available in repositories. Therefore, the work in this thesis is able to

empirically validate the use of time dependence, which is influenced by the building

construction analogy, to study software evolution.
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1.1 Research hypothesis

Our intuition leads us to formulate the following hypothesis:

The analogy between software projects and construction projects provides a different

quantification of software evolution. This quantification provides valuable insight about

the evolution of projects.

The goal of this thesis is to empirically explore this hypothesis through case studies

on large and long-lived software projects.

1.2 Thesis overview

In this section, we give an overview of the first two parts of the thesis:

1.2.1 Part 1, Background

In this part, we discuss the related research to this thesis. We discuss the related

research to building analogies in software and to software evolution. This part also

discusses the concept of time dependence. Part 2 uses time dependence to empirically

demonstrate our research hypothesis.

Related research

In Chapter 2, we first discuss the analogy of building construction and the past

research that discussed this analogy. Then, we discuss the related research to software

evolution and to the field of mining software repositories (MSR). Software evolution

studies discuss implementing new features and fixing bugs. Therefore, we discuss
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the related research to general software evolution and also to bug prediction using

evolutionary data.

Time Dependence

We study the analogy of building construction in software by introducing the concept

of time dependence between source code changes. Time dependence expresses tempo-

ral dependencies between “related” source code changes (like functions and variables)

from which time gaps between the entities can be calculated. We use the time de-

pendence to measure the progress and evolution of projects (for example, to know if

the changes are added just-in-time or added much earlier than needed).

Getting accurate and timely feedback about the progress of a software project

is critical to delivering high quality products on time and within budget [13, 22].

To get accurate feedback, project managers often use informal meetings with the

development team and manually compiled progress reports. However, these meetings

and reports do not provide sufficient feedback, causing many projects to fail [80, 82].

Most of these failures are attributed to the discrepancy between the development

process and project management [8, 41]. The act of obtaining accurate and timely

progress about which development activities are on time, which ones are delayed and

which activities could be rescheduled to resolve a conflict, has not been studied widely

before.

We also use time dependence to identify the foundational periods. Foundational

periods are time periods that have high impact on the development of a project. As

software builds on older changes, older periods provide the structure (e.g., functions

and data types) on which changes in future periods will build. Given a particular
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period in the lifetime of a project, one can determine prior periods on which it builds,

and future periods that build on it. Using this knowledge, managers can identify

foundational periods in the lifetime of a project. Such foundational periods provide

the structural foundation for a large number of future periods.

Managers can schedule extra testing and validation effort when source code from a

foundational period is changed. Managers may also decide to re-document the devel-

opment activities of foundational periods to ensure that resources like documentation

and mailing lists are archived and up-to-date. Since the foundational periods have

crucial impact on later developments, staff during those periods can be consulted

and possible retained, if needed, for better understanding and smooth development

of future periods.

We further use time dependence to study the foundational subsystems (mod-

ules). Foundational subsystems are subsystems that have high impact on the de-

velopment of other subsystems. Studying the foundational subsystems is important

because software repositories continuously grow in size and become more complex

over time [30, 49, 77]. The growth in the size of source code is usually accompanied

with a growth of the development community, mailing lists and bug reports [83, 84].

Although more data makes decision-making more reliable, it becomes difficult for

managers to have detailed understanding of all facets of their project. The increase

in the size of a software project also results in the increase in the inter-dependence

of the project’s subsystems [51], which makes understanding the system even harder.

Therefore, there is a need to identify important modules (foundational subsystems)

of projects. Foundational subsystems provide more detailed knowledge than founda-

tional periods. Good knowledge of the foundational subsystems can benefit project
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managers. For example, managers can put extra effort on testing of such subsystems

to ensure they are risk-free, provide training on these subsystems for the newly-hired

people, ensure that the developers of these subsystems are around, and the documen-

tation is well-kept.

1.2.2 Part 2, Empirical study

In this part, we validate our research hypothesis by conducting empirical studies on

two large open source projects (PostgreSQL and FreeBSD) with over 25 years of

development history. We apply the concept of time dependence at three levels. First,

we study how changes build on prior changes. Second, we study how periods impact

the development of future periods. Third, we study how subsystems build on other

subsystems. We elaborate about each level in the following subsections:

How changes build on prior changes?

We measure the progress of a software project as the progress of a building project.

Using time dependence, managers can determine if the changes are built as soon as

the structure needed to introduce them is available or if they are delayed. New code

changes typically build on prior changes. For example, a new function would build

on (i.e., call or use) other code entities that are added in the same change, or have

previously been defined. The previously-defined entities are either system libraries or

entities that were added in prior changes. As with buildings, some changes can build

on prior changes as soon as they were added (fresh structure) while other changes

can build on well-established structure. Furthermore, some changes might build on

no structure at all. As construction evolves, one must ensure that structure is being
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put just-in-time to avoid costly development that might never be used or that might

not be needed for a while.

Our major empirical findings

• Over 50% of all code changes in a quarter build on newly-introduced changes.

The ratio of changes that build on old changes, or that totally do not build on

prior changes varies throughout the lifetime of a project and across projects.

Large fluctuations in the rate are often associated with major structural changes

and feature additions in the studied projects.

• Regular development and bug fixing activities are done on the same types of

changes. Our finding could help project managers in allocating resources across

both types of activities without worrying about the knowledge needed, because

much of the knowledge is often shared across both types of activities (i.e., the

context switch between both activities is relatively limited).

• Building on recent changes (fresh structure) is risky, as it leads to more efforts

being spent on fixing bugs.

How do periods impact the development of other periods

After studying how changes build on prior changes, we study how a period impacts the

development of future periods. We aggregate the changes in periods (e.g. quarters)

and study how future periods build on the changes in a particular period. Under-

standing the time dependence between periods can help in better managing a project.

For example, changes that are introduced in periods on which a large number of future
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periods build (i.e., foundational periods) should be tested to be risk-free, the commu-

nication that took place on those periods (e.g., mailing lists) should be archived and

studied, and the developers who were active in such periods must be retained and

consulted. As a project stabilizes, we would expect that the number of foundational

periods would drop. Indeed, most changes for such projects would be small and would

only be incremental changes that build on previously established structure provided

by past periods.

Our major empirical findings

• On average, up to 28% of the changes in a period build on changes made in the

same development period.

• As a project ages, it tends to build less on changes from the current period, and

more on older periods.

• Foundational periods (i.e. periods that have a large impact on future periods),

are periods with huge restructurings, important new features or large imports

of external source code.

How do subsystems build on other subsystems?

Here, we study the analogy of building construction at a higher level of abstraction.

We study how subsystems build on other subsystems. While identifying the founda-

tional periods helps to study how a period impacts the development on future periods

in general, studying the foundational subsystems would allow to track the individual

subsystems across periods (whether the periods are foundational or not). Managers
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should put attention on testing the subsystems that have large impact on other sub-

systems. Managers also can ensure that the newly-hired people are trained about

such subsystems and the documentation of these subsystems is up-to-date.

Our major empirical findings

• Projects develop few subsystems that provide their core structure. The highly

foundational subsystems are core subsystems. The less foundational subsystems

are either small in size or are introduced during inactive periods. The suddenly

foundational subsystems are usually APIs or system libraries.

• Some subsystems have a large impact during limited periods, while other sub-

systems maintain their impact throughout their lifetime.

• The number of source code changes that are introduced in a subsystem is a good

approximation of its impact on other subsystems. This makes it straightforward

to determine the important parts of a project in practice, although this heuristic

does not detect accurately all foundational subsystems.

Figure 1.1 summarizes the relation between changes, periods and subsystems.

Projects consist of changes, which belong to subsystems. We apply time dependence

on changes between different time periods (e.g. quarters or years).

1.3 Organization of thesis

This thesis is divided into three parts. The first part discusses the background and

the metrics we developed to study our research hypothesis. The second part empiri-

cally explores our research hypothesis. The third part concludes our work.
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Part 1- Background:

This part consists of two chapters. Chapter 2 discusses the related research to this

thesis, and Chapter 3 discusses the the concept of time dependence. We use the

concept of time dependence throughout the second part of this thesis to empirically

study our research hypothesis.

Part 2- Empirical studies:

We start this part by discussing our data extraction and the case study set up in Chap-

ter 4. In Chapter 5, we study how changes build on changes using time dependence

(which can allow managers to study the progress of projects). In Chapter 6, we study

how periods impact the development of other periods and study the foundational

periods in the lifetime of a project. Practitioners can ensure that the communica-

tion (e.g. mailing lists) that took place in those periods is archived and well-kept.

In Chapter 7, we study how subsystems build on other subsystems and study the

foundational subsystems. Practitioners can ensure that the documentation of the

foundational subsystems is up-to-date and the newly-hired people are trained about

such subsystems.

Part 3- Conclusion: Chapter 9 concludes this thesis and outlines future work.
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1.4 Major thesis contributions

In this thesis, we introduce the concept of time dependence between source code

changes. We apply this concept on the changes retrieved from the source code reposi-

tories of projects. We then study how changes build on prior changes and the impact

of this building process on the quality of a project. The summary of contributions of

the thesis is as follows:

• We introduce the concept of time dependence, influenced by the building con-

struction analogy, to study software evolution.

• We empirically demonstrate the benefit of using time dependence in studying

software evolution. We perform case studies on two large and long-lived projects

of more than 25 years of development history. We use the concept of time

dependence:

– to quantify the progress of projects by studying how changes build on prior

changes. Applying the time dependence at the level of changes shows that

building on newly added changes is risky as it leads to more bugs in the

project.

– to study how periods impact the development of future periods. As a

project ages, it tends to build less on changes from the current period, and

more on older periods.

– to study how subsystems build on other subsystems. We show that the

number of source code changes that are introduced to a subsystem is a

good approximation of its impact.
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Figure 1.1: A figure showing the relations between changes, periods and subsystems.
Projects consist of changes, which belong to different subsystems. The
changes are aggregated in periods.



Part 1: Background

This part consists of two chapters. In Chapter 2, we discuss the related work to this

thesis. There are two groups of related work that we discuss in Chapter 2: related

work to the building analogies and related work to software evolution and mining

software repositories studies. Chapter 3 presents the concept of time dependence. We

explain the time dependence between changes, periods and subsystems. We use time

dependence throughout Part 2 of this thesis to conduct our empirical case studies.

13



Chapter 2

Related research

In this chapter, we discuss the related research to this thesis. First, we discuss

the related work to the building analogy in software projects and software project

scheduling. We also discuss the related work to software evolution and to topics of

mining software repositories (MSR). Software evolution studies the addition of new

features to existing code or fixing defects that appear in the project. Therefore, in

addition to general software evolution studies, we discuss the related work to bug

prediction using evolutionary data.

2.1 Building analogies in software projects

There is a fair amount of published work that discusses the analogy between build-

ing construction and software [69, 79, 94]. These works draw similarities between a

building construction process and software process. Construction engineers gather the

requirements, plan the building, hire the builders, and buy the materials. Similarly,

software project managers gather requirements, plan their projects, hire developers,

14
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and buy licences and IDE’s. The previous published work draws the similarity be-

tween these practices in software development without providing an empirical study

of this analogy. This thesis is the first work to define the concept of time depen-

dence to study software evolution, and to conduct an empirical study to validate this

concept.

Some researchers discussed the importance of having views of the design before ac-

tual construction of software [52, 53, 69, 76]. These views are analogous to blueprints

in building construction. Kruchten [52] proposed a “4 + 1” view model of software

architecture. The “4 + 1” view model consists of the logical view, development view,

process view, physical view, and scenarios. Each view is supported by a particular

UML diagram. Clements et. al. and Hofmeister et. al. propose other view models

of software architecture [18, 40].

Other researchers discussed the usefulness of design patterns [28, 78, 74]. De-

sign patterns serve as templates for how to solve problems that appear in a large

number of situations. Patterns have forms to describe the name, problem, context,

forces, solution and sketch of the pattern [19]. Design patterns are mainly influenced

by the work of a notable construction architect, Christopher Alexander, in pattern

languages [5, 6].

A large part of research in project scheduling estimates the optimal project plan

up-front (e.g., [1, 4, 45, 63]), such that the project’s goals and constraints are satisfied

with a minimal amount of risk. We on the other hand are interested in extracting

sufficient feedback from the source code repositories to track the progress of a project,

i.e., how well the original plan is followed. Still, source code repositories have been

identified as an important data source for effort estimation as well [1, 63].
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Research in software processes introduced process improvement models like the

Personal Software Process (PSP) and Capability Maturity Model (CMM) [38, 42, 43].

The Personal Software Process has been developed to improve the process of small

to medium size organizations and the Capability Maturity Model provides a ma-

turity framework of five maturity levels for process improvement. Software pro-

cess engineering also uses charts to describe dependencies and flow between project

parts [17, 46, 57, 75]. Example charts are PERT charts, GANTT charts, CPM, and

Petri Nets [17]. These charts identify the execution paths of the tasks, the duration

of each task (start and end time), the name of the tasks, and the individual respon-

sible for each task. This thesis extracts the progress feedback from the source code

repository. Comparing the feedback produced from our approach with the planned

charts can give managers understanding if the projects progress according to the plan

or not.

Finally, there are efforts in 3D visualization to visualize software projects as cities

and buildings [15, 48, 66, 67, 87, 88, 89]. Notably, the work of Wettel et al. visualizes

classes as buildings and packages as tiles [88]. The height of the building is relevant

to the number of the methods whereas the width of the building is relevant to the

number of attributes. Visualizing an entire project results in a view of a city with

buildings and parking lots. Our work is aimed to use the building construction analogy

in measuring the progress and evolution of a software project. Our work quantifies

the important parts of a software project by measuring how much a particular part

impacts the future development of the project.
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2.2 Research in software evolution and mining soft-

ware repositories (MSR)

Research in software evolution [27, 30, 55] and software metrics [12, 44] detects or

monitors development periods and areas with slow or rapid growth in a software

project. However, these approaches examine the final outcome (the software system)

instead of exploring the characteristics and temporal dependencies between changes.

Some researchers studied the evolution of similar code fragments of systems over

different periods and releases. The work of Mende et. al. and Merlo et al. studied the

similarity of code fragments over the releases of Linux kernel [58, 60]. They define

similarity metrics to find code fragments that are similar to each other, but not

necessarily identical. These works study clone relationships across releases instead of

function call relationships as in our work.

There is also active research on the mining software repositories field (MSR). The

MSR field analyzes the data in software repositories (e.g. source code repositories)

to uncover actionable information about the software projects [32]. Our approach

leverages information from historical data and builds the time dependence between

changes to study the evolution of software projects. Mockus et al. [62] use historical

data from version systems to identify code experts. Chen et al. [16] developed a

tool called CVSSearch that uses the CVS comments to track source code fragments.

Hassan and Holt [36] introduce the idea of attaching Source Sticky Notes to static

dependency graphs, which assists in a better understanding of software architecture.

Xing et al. [92] and Barry et al. [9] characterize the different periods of a software

project using characteristics like spread of changes, effect of changes on dependency
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structure and number of changes.

Other research studies static dependencies between software entities like classes

and methods to predict change coupling, i.e., what other part of the code needs to

be changed if a given piece of code is changed [61, 95]. However, the dependencies

studied relate entities to other entities in the same version of the code base, whereas

time dependence relates a change of an entity to past changes of itself and its call

graph entities.

Kothari et al. [50] introduce the change cluster technique to track the evolution

of software projects. They categorize the progress of a project into different areas

or efforts, like maintenance and new development. The area of “new development”

encompasses all newly added development, whether or not it builds on earlier fea-

tures or changes. Therefore, their approach cannot study how changes build on the

previously-introduced changes.

The closest related work to this thesis is a proposal by Brudaru and Zeller to

measure the genealogy of changes [14]. They model the impact between source code

changes as a directed acyclic graph. Changes are studied at the level of lines of

code, in order to analyze the future impact of changes on defects, maintainability of

a system and development effort. Change dependencies are obtained by iteratively

building the system without a change and then observing which changes are broken.

Our approach harvests time dependence relations directly from the information stored

in the source code repositories to keep the managers up-to-date.

German et al. propose the concept of a Change Impact Graph (CIG) to detect the

impact of dependent changes when changing a source code entity [29]. They visualize

the call graph of a function and call graphs of its called entities iteratively within
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a time window. German et al. use their approach primarily to locate bugs. Our

approach is not directly aimed at assisting developers during their daily development

tasks. Rather, our approach provides managers in understanding which periods have

provided the structural foundation on which later periods build.

Some researchers studied the evolution of software projects at the level of subsys-

tems and plugins [30, 59, 86]. These studies investigate Lehman’s laws [55] in open

source projects by means of traditional metrics, like lines of code and size of files.

These studies did not focus on the impact of the subsystems on the development of

other subsystems.

Other researchers use complex network theory [64] to analyze software systems.

They study the complex networks between software classes [64, 81], and packages [85,

54], and find that the distance between the nodes is usually small (small-world behav-

ior). The implementation by Wen et. al. [85] can also identify important components

from the component dependency network. However, these studies are performed on

the source code without using historical information from repositories. Therefore,

these approaches are not able to identify important components at different time

periods.

Software evolution discusses fixing bugs in addition to implementing features.

Therefore, in this thesis, we study how building on new changes is associated with

bugs. Although some approaches detect bugs based on metrics like LOC [31, 39, 56]

or on the presence of prior faults [93], the majority of recent techniques are based on

information from the change history of a system, as extracted from the source code

repository [7, 11, 31, 56, 65]. These techniques typically look at code churn [65] or

the number of changes. For example, Bernstein et al. [11] use the number of revisions
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and reported issues in the last quarter to predict the location and number of bugs in

the next month. In future work, we plan to compare the performance of our approach

against approaches that use other types of historical data for predicting bugs.

2.3 Chapter summary

In this chapter, we discussed the related work to this thesis. We first discussed work

related to building analogies. We found that the previously published work that

discusses the building analogy does not provide any empirical evidence to demonstrate

the benefit or support such analogy. We also discussed the related work to project

scheduling. Our approach is unique in a sense that it extracts the feedback about

the progress of projects from the code changes in the software repositories and not

from progress reports. Then, we discussed the work related to software evolution in

general and other related work to defect analysis using evolutionary data.



Chapter 3

Time dependence

Traditional software evolution studies do not study the interaction between different

time periods [27, 30, 55, 96], i.e., they do not study how much a version builds on the

previous versions. Time dependence can be used to calculate the time gap between

“related” source code changes between different time periods with each changed code

entity is located in a subsystem of a project. Therefore, time dependence is aware

of “space” and “time” where source code changes happen. Figure 3.1 illustrates the

awareness of space and time. Change 2, which belongs to subsystem 2 and is changed

at time 2, builds on (time dependent on) the previously introduced change 1, which

belongs to subsystem 1 and was introduced at time 1. Time dependence allows us to

relate changes between version(s) and/or subsystem(s) throughout the lifetime of a

software project.

We use time dependence to study the development of a software project

at three levels:

• Level 1: Time dependence between changes, which allows us to study

21
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Figure 3.1: The relation between space and time between code changes. Time depen-
dence allows to relate Change 2 that belongs to Subsystem 2 at Time 2
to Change 1 of Subsystem 1 at Time 1.

the progress and evolution of projects.

• Level 2: Time dependence between periods, which allows us to study the

foundational periods. Studying foundational periods would help practitioners to

identify the communication (e.g. mailing lists) that took place on such periods.

• Level 3: Time dependence between subsystems, which allows us to study

the foundational subsystems. Studying the foundational subsystems would al-

low managers to ensure that the documentation of such subsystems is up-to-date

and the newly hired people are trained about such subsystems.
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Figure 3.2: Time dependence between changes.

3.1 Time dependence between changes

The problem of measuring the evolution (or progress) of a software project boils down

to measuring the progress of source code changes. In an ideal project, changes should

occur just as they are needed (i.e., just-in-time). Changes (i.e., structures) that are

not needed for a few months do not need to be put in right now. Instead, these changes

can be pushed forward and other changes could be brought in. In a continuously

evolving project, we expect that a large number of changes will build on recently

added code instead of depending on old, unchanged code, unless a major restructuring

happens on well-established structures within the software system. While traditional

views of software evolution track basic metrics like lines of code (LOC) [30, 55], we

propose the concept of time dependence to quantify our intuition about the progress

of a project.

Each change can build on a large number of prior changes, but for this level

we consider the smallest time interval between a change and any of its dependent
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Figure 3.4: Time dependence between periods after resolving transitive dependence.

changes. In Figure 3.2, function f1 is added at time 0. Function f2 is added at time

1. At time 2, f1 is modified to add a call to f2. We would say that the change

to f1 at time 2 depends on the change at time 1. This indicates that the earliest

possible time to perform the change of time 2 is time 1, since at that time all the

needed structure was in place. We note that this formulation does not account for the

complexity of software development in relation to features. For example, consider the

case of f1 being the cut-and-paste logic in an application, with the change at time

2 introducing the ability to cut-and-paste HTML code. Although theoretically the

change could have been done at time 1, it might be the case that at time 1 HTML

was not a popular format worth supporting yet. In short, our formulation does not

factor in the requirements of a project and the external factors that drive changes.

However, our formulation provides information to practitioners about possible delays
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and dependencies. Practitioners need to examine these findings in the context of their

project and their expectations for a particular change.

To provide a high-level view of the progress of a project, we study all changes

in a particular period (e.g., a month, a quarter, or a year). Whatever definition of

period we use, we must “lift” all time dependence relations within a particular period.

Figure 3.3 and Figure 3.4 illustrate the lifting process. Before the lifting process, three

periods are shown on Figure 3.3, each of these grouping the changes that happened

inside them. All edges correspond to the time dependence relation from a change

to its most recently changed dependent change. This relation either links changes

inside the same period (dashed edge) or between different periods (full edge). To lift

the time dependence relations up to the period level in Figure 3.4, we introduce the

concepts of “built-on-new”, “built-on-old” and “independent” changes:

• built-on-new change depends on a change in a recent period.

• built-on-old change depends on a change in an older period.

• independent change does not depend on changes in any prior period.

Figure 3.4 shows the actual time dependence relations of each change after resolv-

ing the transitive changes within each period, i.e., after replacing each dashed edge

with a dependency on a change of an immediately preceding period (built-on-new), a

dependency on an older change (built-on-old) or no dependency at all (independent).

Changes 10 and 11 are clearly independent. If we consider “built-on-new” to mean

“builds on changes in the last period”, then changes 5, 6 and 7 are built-on-new,

whereas changes 8 and 9 are built-on-old. In one of our experiments, we determine

what the right number of periods is to consider a change as built-on-new.
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(a) initial version
of the function be-
fore applying the
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 Call function f2()  

 Call function f4() 

} 

(b) the function
after the changes
are applied

Figure 3.5: Function f1() before Figure 3.5(a) and after (Figure 3.5(b)) making
changes.

3.2 Time dependence between periods

In this level, we use the time dependence relation to link a change of a source code

entity E (e.g., a function or type definition) at time T to the most recent change

before T of E and of each entity that E depends on before or after the change (via its

call graph) to make sure there is a time dependence relation corresponding to added

and removed function calls.

We introduce the following definitions at this level:

• time dependence between periods: In order to study time dependence

across the entire history of a system, we lift up the time dependence of individual

changes between two specific time instants to time dependence of individual

changes between two periods such as quarters or years.

• within-period time dependencies: Within-period dependencies happen when

an edge starts and ends in the same period, i.e., self-loops. These indicate that

a period builds on itself.

• Outer-dependencies: are when an edge starts in a period and ends in a
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different period.

• backward time dependence of a period: The backward time depen-

dence of a period produces the set of outgoing time dependence edges that

point to all prior periods on which the current period builds. The larger the

number of edges produced when calculating the backward time dependency in

a period, the more this period builds on prior periods.

• forward time dependence of a period: The forward time dependence

of a period produces the set of incoming time dependence edges that come

from all future periods that build on this current period. The larger the number

of edges produced when calculating the forward time dependency, the more

foundational a period is.

• foundational periods: Foundational periods are periods on which a large

number of other periods build (i.e., periods that have large numbers of forward

time dependence relations). We expect that in practice systems have foun-

dational periods on which new changes continuously build. These periods

contribute essential code that forms the structural foundation on which future

changes build. An example of such structural foundation are changes that de-

fine APIs or platform libraries on which other code changes build. Also, the

first import of code into the source code repository provides a structural foun-

dation on which many changes build. As a project evolves, we expect that new

foundational periods will emerge whenever there are major restructurings and

rework.

Figure 3.6 describes the time dependence between periods in a small example.
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Figure 3.6: Time dependence relations for the example system before (Figure 3.5(a))
and after (Figure 3.5(b)) making changes. The arrows in Figure 3.6 con-
nect changes 6 and 7 to all changes they build on. The dashed arrow
connects a change to the most recent change of any entity to which it
added or removed a reference (e.g. function call).

Changes happen in four time periods. A developer modifies function f1() (Figure

3.5(a)) in change 7 by removing the call to f3() and adding a call to f4() (Figure

3.5(b)). Change 7 builds on the last change to the function f1() itself, and on the last

change to all previously (f2() and f3()) and newly (f4()) called entities. Rectangu-

lar nodes represent periods in Figure 3.6 and the edges express the time dependence

relations between changes in these periods. We calculate the age of a time depen-

dence relation as the time difference between the source and destination periods of

a time dependence relation. For example, the age of the backward time dependence

relation between change 4 and change 7 in 3.6 is two periods.

Figure 3.6 only shows edges for changes 6 and 7, but similar edges can be drawn

for other changes as well. We calculate the forward and backward time dependence

of changes in each period. For example, in period 2, change 1 and change 3 have one

forward time dependence each, while change 1 has five backward time dependence in
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Figure 3.7: Time dependence relations for the example in Figure 3.6 with each change
related to its corresponding subsystem.

period 4. Similar forward and backward time dependence relations are drawn for the

entire periods as well.

3.3 Time dependence between subsystems

As individual changes might be too fine-grained, we further lift up the time depen-

dence of individual changes between periods to time dependence between sub-

systems. Hence, time dependence has a notion of space (subsystems) and time

(periods). Here are the definitions that we introduce at this level:

• a backward time dependence of a subsystem: is an outgoing time depen-

dence edge from a subsystem at a given period to a subsystem at a previous

period. The larger the number of edges produced when calculating the backward

time dependency of a subsystem, the more this subsystem builds on subsystems

in older periods.



Chapter 3: Time dependence 30

Period 1 Period 2 Period 3

remove

add

Period 4

Sub1Sub1Sub1Sub1Sub3Sub3Sub2

Figure 3.8: Lifting up the changes in Figure 3.7 to subsystems and applying the time
dependence relations between them.

• a forward time dependence of a subsystem: is an incoming time depen-

dence edge to the subsystem from a future subsystem. The larger the number of

edges produced when calculating the forward time dependency of a subsystem,

the more foundational the subsystem is.

• foundationality 1 of a subsystem: in a particular development period cor-

responds to the number of forward time dependence relations a subsystem has

at that given period. The more forward time dependence relations a subsys-

tem has, the higher impact it has on the future development of the project.

Subsystem A is more foundational than subsystem B if subsystem A has more

total forward time dependence relations during its lifetime than subsystem B.

Studying foundational subsystems would allow managers to ensure that the doc-

umentation of such subsystems is up-to-date and newly hired people are trained

1Although the word foundationality does not exist in the English dictionary, it has been used by
philosophers and even by some computer scientists as in [20].
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Figure 3.9: A figure summarizing the different levels of time dependence relations.

about such subsystems.

As an example, the entities that are changed in Figure 3.6 are annotated with

the subsystems they belong to in Figure 3.7. We lift up the changes to subsystems

and establish the time dependence between subsystems in Figure 3.8. In Figure 3.8,

subsystems sub 1 and sub 3 have one forward time dependence each in period 2, while

sub 1 has five backward time dependence in period 4.

We expect that in practice systems have foundational subsystems that provide

the structure for their future development. Foundational subsystems can be APIs or

system libraries that provide the essential structure for development of subsystems in

future periods.
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3.4 Chapter conclusion

In this chapter, we discussed the concept of time dependence between source code

changes. As illustrated in Figure 3.9, we use time dependence to study how changes

build on changes, to study how periods impact the development of other periods, and

to study how subsystems build on subsystems. For studying the progress of projects,

we establish time dependence between a change and the most recent change of all

the changes that it builds on. For studying how periods impact other periods, we

establish the time dependence relation between a change and the last change of each

source code entity in its call graph. For studying how subsystems build on other

subsystems, we relate each change to the subsystem it belongs to.



Part 2: Empirical studies

In this part, we discuss the empirical studies that we conducted to validate our

hypothesis. This part consists of four chapters. Chapter 4 provides a glossary of

the terminology used in this part. In Chapter 5, we discuss the data extraction

and experimental setup. In Chapter 6, we study how changes build on changes.

In Chapter 7, we study how periods impact the development of future periods. In

Chapter 8, we study how subsystems build on subsystems.

33
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Glossary for Part 2

For the convenience of the reader, this chapter summarizes the terminology that we

use in our empirical studies. We provide the summary definitions of the terminology

at each level of time dependence from Chapter 3, and we start with time dependence

between changes.

4.1 Time dependence between changes

This is the first level of the time dependence relation that we study. As discussed in

Section 3.1, we establish a time dependence relation between a change and the most

recent change it builds on. We use the following terminology at this level:

• entity: a source code entity like a function, variable, type definition, etc.

• change: a change to a source code entity (i.e., insertion, modification or dele-

tion of an entity).

34
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• time dependence: Time dependence expresses temporal dependencies be-

tween “related” source code changes (like functions and variables) from which

time gaps between the entities can be calculated.

• time dependence between changes: links a change of a source code entity

E (like a function or type definition) at time T , to the last change of E and of

each entity that E builds on.

• built-on-new change: builds on a change in a recent period.

• built-on-old change: builds on a change in an older period.

• independent change: does not build on changes in any prior period.

• bug fixing change: introduced to fix a bug.

• enhancement change: introduced for regular development (non-bug fixing

change).

4.2 Time dependence between periods

Here we discuss the terminology of the second level of time dependence. We establish

the time dependence relation between periods, as discussed in Section 3.2. We use

the following terminology at this level:

• period: time period like month, quarter and year. We mostly use quarters and

years in this thesis.

• time dependence between periods: time dependence relation that links a

change of a source code entity E (e.g., a function or type definition) at period
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P to the most recent change before P of E and of each entity that E depends

on before or after the change (via its call graph).

• within-period time dependence: time dependence edge that starts and ends

in the same period, i.e., self-loops.

• outer-period time dependence: is a time dependence edge that starts in a

period and ends in a different period.

• backward time dependence of a period: all outgoing time dependence

edges from a period. These edges point to all prior periods on which this

current period builds.

• forward time dependence of a period: all incoming time dependence edges

at a period that come from future periods.

• age of a time dependence relation: is the time difference between the source

and destination periods of a time dependence relation.

• foundational periods: are periods that have a large number of forward time

dependence.

4.3 Time dependence between subsystems

Finally, we discuss the terminology of the third level of time dependence. Here, we

study the time dependence between subsystems. We use the following terminology

at this level, introduced Section 3.3:
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• subsystem: this thesis considers the second level directories as subsystems of

the PostgreSQL project(e.g. odbc in /interfaces/odbc/Attic/) and fourth top

level directory as subsystems of the FreeBSD project (e.g. dev in /freebsd/sr-

c/sys/dev/cxgb/), similar to the approach by Godfrey et. al. [30].

• time dependence of subsystems between subsystems: time dependence

that links a subsystem A at period P to the most recent changed entities in A

and the recent changes of all other subsystems B that entities inside A build

upon.

• backward time dependence of a subsystem: all outgoing time dependence

edges from a subsystem at a given period to those development periods of other

subsystems it builds on.

• forward time dependence of a subsystem: all incoming time dependence

edges at a subsystem that come from subsystems from the future periods.

• foundationality of subsystem: subsystem A is more foundational than sub-

system B if subsystem A has more total forward time dependence relations

during its lifetime than subsystem B.

• foundational subsystems: subsystems that have high forward time depen-

dence relative to all other subsystems in the project. We usually identify the

top 10 or top 20 foundational subsystems relative to all other subsystems in the

project.

This concludes the summary of terminology that we use in this thesis. Chapter 3

provides detailed definitions of this terminology.



Chapter 5

Setup for case studies

In this chapter, we discuss our case study setup and how we extract the data from the

CVS repositories of the projects. We conducted several case studies on two large open

source projects, PostgreSQL and FreeBSD, of more than 25 years of development

history. We give brief details about the studied projects and our data extraction

process. We discuss how old the studied projects are, and what their characteristics

are.

5.1 Studied systems

For our case study, we used data from the open source PostgreSQL (1996–2007) and

FreeBSD (1993–2009) projects. PostgreSQL is a relational database system of which

the original design goes back to the 1980s [73], whereas FreeBSD is an operating

system distribution derived from the Berkeley flavor of UNIX [24]. We studied the

time dependence at the level of quarters, since it is a common time period for project

planning [35] (other time periods could be explored using our approach). We picked

38
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PostgreSQL FreeBSD

type DBMS Operating System
studied period 1996–2007 1993–2009

number of changes 84,311 1,074,858
number of entities 31,863 617,000

number of files 2,053 37,724
number of bugfixes 22,913 144,582

number of subsystems 65 958

Table 5.1: Characteristics of the studied systems.

both systems due to their long and archived history of changes, as Table 5.1 shows.

The two systems being from two different domains (databases and operating systems)

would help us validate the generality of our findings across domains.

5.2 Data extraction

We believe that the required information for evaluating the evolution of a project is

readily available in the source code repository of a project. The repository contains

the building blocks of software features in the form of changes to functions and files.

The repository also contains information about the temporal dependence between

these changes. However, these repositories contain data at the level of lines of codes

(LOC). To lift the line-level information of changes to the level of source code entities

like function calls and type definitions, we use a technique developed by Hassan and

Holt [36]. By decorating the time dependence relations with the metadata attached

to them (like commit messages and developer names), we are able to figure out the

prior changes on which a particular code change builds. Using the metadata, we

can distinguish between bug fix changes and other, non-bug fixing enhancement
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changes. We also filter out changes that are done to indent the code or to up-

date copyright notices, since these are not interesting for our analysis using a lexical

approach developed by Hassan [34].

The approaches to lift the data from LOC level to the entity level [36], and to

identify the types of changes [34] (e.g., bug fix or enhancement) are used to develop an

evolutionary code extractor for C-based systems called C-REX [33]. We use C-REX

to extract the change history from the Concurrent Versions System (CVS). C-REX

tracks the addition, modification and deletion of source code entities and records them

as groups of related changes (changelists). A changelist consists of a group of changes

that a developer introduced to implement a feature. The C-REX output data is in

XML format and consists of the following parts:

• Historical Symbol Table: records all the entities that ever existed in a project.

• Changelists: each element of a changelist records a group of related changes.

The changes are recorded as child elements of the changelist.

A changelist element has attributes that indicate the number of files changed,

the name of the developer who introduced the changelist, the commit time of the

changelist to the source code repository, a unique hash code to identify the change-

list, and keywords of frequent words appearing in the changelist. The changes within

a changelist are recorded as child elements. The name of the change element reflects

the change type (i.e. removal, addition, or modification of the entity). Each change

element has attributes to describe the name of the entity, keywords that appeared

in the source code comments, normal string keywords, dependency (call graph) key-

words, file name, and the revision number.
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1 . <CHANGELIST DETAILS FILE COUNT= ‘ ‘8 ’ ’ TIME= ‘ ‘870853301 ’ ’ HASH= ‘ ‘2081

e58de1aa f6 f04aa8c f f c6416415d ’ ’ AUTHOR=‘ ‘momjian ’ ’ TYPE= ‘ ‘BUG’ ’>

2 . <ADD ENT NAME=‘ ‘ i n i t t a p e s ’ ’ . . . / >

3 . :

4 . </ADD ENT . . . / >

5 . :

6 . <MODIFY ENT NAME=‘ ‘ mergeruns ’ ’ TYPE= ‘ ‘ f unc t i on ’ ’ DEPENDENCYKEYWORDS= ‘ ‘ a s s e r t

3 , s o r t −2 ’ ’ FILE NAME= ‘ ‘ ./ backend / . . . / psor t . c ’ ’ REV NUMBER= ‘ ‘1 .6 ’ ’>

7 . <ModifyTime Type= ‘ ‘ Entity ’ ’ >836907737</ModifyTime>

8 . <ModifyTime Name= ‘ ‘ a s s e r t ’ ’ EntityTpe= ‘ ‘ f unc t i on ’ ’ FileName = ‘ ‘ ./ backend / . . . /

pso r t . c ’ ’ >846763813</ModifyTime>

9 . <ModifyTime Name= ‘ ‘ s o r t ’ ’ EntityTpe= ‘ ‘ f unc t i on ’ ’ FileName = ‘ ‘ ./ backend / . . . /

pso r t . c ’ ’ >870853301</ModifyTime>

10 . <ModifyTime Name= ‘ ‘ l e v e l ’ ’ EntityTpe= ‘ ‘ v a r i a b l e ’ ’ FileName = ‘ ‘ ./ backend / . . . /

pso r t . c ’ ’ >836907737</ModifyTime>

11 . <ModifyTime Name= ‘ ‘ l e v e l ’ ’ EntityTpe= ‘ ‘ v a r i a b l e ’ ’ FileName = ‘ ‘ ./ backend / . . . /

pso r t . c ’ ’ >870853301</ModifyTime>

12 . <ModifyTime Name= ‘ ‘ taperange ’ ’ EntityTpe= ‘ ‘ v a r i a b l e ’ ’ FileName = ‘ ‘ ./ backend

/ . . . / psor t . c ’ ’ >870853301</ModifyTime>

13 . </MODIFY ENT>

14 . <CHANGELIST DETAILS/>

Listing 5.1: Example of C-REX output

Listing 4.1 shows an example of a changelist in C-REX. The DEPENDENCY KEYWORDS

attribute lists the entities that are added or deleted from the call graph of the function

mergeruns. The number following each entity indicates how many instances of the

entity has been added or deleted. The assert entity in DEPENDENCY KEYWORDS was

added three times and two instances of sort were deleted.

Our approach processes the C-REX data and records each change in a hash table.
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Each entry in the hash table contains the entity name, and the added and deleted

entities from the entity’s call graph. For example, if the assert entity already exists

in the mergeruns hash entry, number 3 will be added to its occurrence count in

mergeruns. Similarly, number 2 will be subtracted from the occurrence number of

the sort entity in the mergeruns hash entry. If the result after subtraction of sort

is 0, the sort entity will be totally deleted.

We note that C-REX does not record the types or the file locations of entities in

DEPENDENCY KEYWORDS. Therefore, we use heuristics to select between multiple entities

with the same name. We first look for the DEPENDENCY KEYWORDS entity in the same

file of its calling entity (mergeruns in our example), if the entity name does not exist

in the same file, we look for the entity in the same subdirectory of the calling entity,

if it does not exist in the subdirectory, we look in the parent subdirectory, and so on.

After we locate an entity from DEPENDENCY KEYWORDS, we attach the located entity’s

past modification times from the hash table as subelements of the change.

Listing 4.1 shows modification times of the mergeruns and its called entities. We

first look in the hash table for the modification times of mergeruns and list them

(mergeruns was changed only once in the past). We then record the modification

times for the entities that are added or deleted from the call graph of mergeruns

(i.e., entities in DEPENDENCY KEYWORDS). After that, we record the modification times

of entities that already exist in the call graph of mergeruns (which are not in the

DEPENDENCY KEYWORDS). The first modification time for mergeruns in Listing 4.1 is

for the entity itself, which was changed at UNIX timestamp 836907737 (a UNIX

timestamp counting seconds since 1970). Note that we record all change times for

an entity. For example, the entity level was changed twice (in line 10 and 11 in
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Listing 4.1) before the change to mergeruns was introduced. We further process the

modification times to study how changes build on changes, how periods build on peri-

ods, and how subsystems build on subsystems. For time dependence between changes

(discussed in Section 3.1), we take the minimum of all modification times of an entity

and its called entities (i.e., 870853301 for mergeruns). For time dependence between

periods (discussed in Section 3.2), we need to take the recent modification times for

the calling entity and for each called entity. We then apply the time dependence

on snapshots of periods. For time dependence between subsystems, we lift the time

dependence to the subsystem level. This thesis considers the second level directo-

ries as subsystems of the PostgreSQL project (e.g., odbc in /interfaces/odbc/Attic/)

and fourth top level directory as subsystems of the FreeBSD project (e.g. dev in

/freebsd/src/sys/dev/cxgb/), similar to the approach by Godfrey et. al. [30].

5.3 Chapter conclusion

In this chapter, we discussed the studied projects in this thesis. We studied two large

open source projects, PostgreSQL and FreeBSD. These two projects come from dif-

ferent domains, which allows us to generalize our findings (PostgreSQL is a database

management system and FreeBSD is an operating system). The development data

for the projects is stored in repositories like Concurrent Versions Systems (CVS).

We used C-REX (an evolutionary code extractor for C-based system) to mine the

data from the CVS repositories of the two projects. We extracted our different time

dependence relations from the output of C-REX.



Chapter 6

How do changes build on changes?

In this chapter, we discuss how we use the concept of time dependence to measure the

progress and evolution of projects. An earlier version of this chapter was published

in [2]. Using the approach discussed in Section 3.1, we answer four research questions,

the first two questions are related to the nature of tracking the progress of projects

and the other two address two common project management beliefs.

6.1 How does the time dependence of changes vary

over time?

This question discusses how code changes build on newly introduced code, old and

stable code, or do not build on any existing code. We study the distribution of these

types of building over the lifetime of a project. We study if projects primarily build

on recently modified source code (built-on-new), or is there a gap between a change

and its most recent dependent change. Using our dependence analysis and their

44
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knowledge of a project, managers can monitor more closely the progress of a project.
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Figure 6.1: Beanplots with the percentage of changes built on last quarter, last two
quarters, last three quarters, and last four quarters. Each beanplot com-
pares the data for PostgreSQL (left) and FreeBSD (right).

To define the concept of built-on-new and built-on-old changes for our studied

systems, we measure the percentage of changes that are built on the last one, two,
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Figure 6.2: The distribution of built-on-new, built-on-old and independent changes
(the PostgreSQL project).

three, and four quarters. These percentages are represented in Figure 6.1 as four

beanplots [47], each beanplot comparing the data for PostgreSQL (left) and FreeBSD

(right). A beanplot contains more information than a boxplot, as its width shows how

the observations for each quarter are distributed over the possible values (in this case

the percentage of changes). Beanplots facilitate the comparison of the PostgreSQL

and FreeBSD distributions. The horizontal black lines show the average of each

distribution.

From the beanplots, we note that the growth of the percentage of built-on-new

changes slows down when looking at time dependence relations of age higher than

two quarters (see Figure 6.1). For PostgreSQL, on average 51.2% of the changes in

a quarter depend on the last quarter, whereas on average 64.8% depend on the last

two quarters. For FreeBSD, the averages are 47.3% and 57.7%, respectively (Q1 and

Q2 in Figure 6.1). When moving to periods longer than two quarters (e.g., from

two to three quarters), we only gain a small increase, less than 10% (Q2 and Q3 in
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Figure 6.3: The distribution of built-on-new, built-on-old and independent changes
(the FreeBSD project).

Figure 6.1). Similarly, the 25th and 75th percentiles of each distribution increase less

than 10% when moving to periods longer than two quarters. For this reason, we

chose two quarters as the boundary between built-on-new and built-on-

old changes. The beanplots show that PostgreSQL depends much more on recent

changes than FreeBSD. In particular, the average percentage of built-on-new changes

for PostgreSQL is more than 15% higher than for FreeBSD and the beanplot density

is shifted up considerably compared to FreeBSD.

Figure 6.2 and Figure 6.3 show cumulative plots of the percentages of built-on-

new, built-on-old and independent changes for PostgreSQL and FreeBSD respectively.

A larger area means that the corresponding type of change occurs more frequently.

Overall, there are many fluctuations in the distribution of the three kinds of changes,

and no clear upward or downward evolution can be observed. Built-on-old changes

(grey area) seem to be equally important for PostgreSQL and FreeBSD. Built-on-new

changes (white area) take up the majority of changes for PostgreSQL and FreeBSD.
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There is a large number of independent changes in FreeBSD over time, possibly due

to architectural characteristics of FreeBSD over PostgreSQL. The large number of

independent changes for FreeBSD might be due to its independent code bases for

hardware drivers and for externally developed system tools like GCC or standard

libraries that were imported into the FreeBSD base system, whereas the “contrib”

code base for PostgreSQL-related tools has a much smaller scale. There are only a

few periods for PostgreSQL (2007) and for FreeBSD (1994) where the percentage of

built-on-new changes drops below 20%. Those periods saw an unusually high number

of independent changes (we explore these unusually higher number of independent

changes in the following section).

We manually examined all changes in 2003 for PostgreSQL and all changes in

1997 for FreeBSD, as both years saw a high percentage of built-on-new changes. For

each type of change (built-on-new, built-on-old and independent), we determined

those entities that were changed most frequently. We then examined these entities

and read through the change messages attached to these changes. We report here

on prominent examples of built-on-new and built-on-old changes that we found. The

next section gives examples of important independent changes.

For the studied period in PostgreSQL, we found that:

• all 138 changes to the “ecpg” compiler for Embedded SQL were done just-

in-time, with each change depending on recently added changes. The changes

comprised the move to a new GNU Bison parser generator, changes to the build

system, the addition of an Informix compatibility mode and various bug fixes.

• We also found examples of built-on-old changes, such as the addition of support

for a new version of the message protocol between the PostgreSQL front and
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back end (out of 43 changes, 27 were built-on-old changes).

For the studied period in FreeBSD, we note one example of built-on-new

changes, and two examples of built-on-old changes.

• A significant set of built-on-new changes merged SMP support (Symmetric Mul-

tiProcessing) for the amd64 and i386 architectures into FreeBSD. Addition of

built-on-new changes was clearly a major effort, as 90 existing files were modi-

fied, many of them at the core of the kernel, and 11 new files were added. These

changes were really just-in-time.

• A first example of built-on-old changes, was the addition of timeout support to

the sysinstall installation utility, with some changes building on changes that

were done almost three years earlier.

• The second example involved changes to the internationalization code to add

support for the Japanese language. These changes built on changes that were

done more than one year earlier.

Time dependence varies across projects and throughout time. The FreeBSD project

has more independent changes than the PostgreSQL project. Both projects build more

frequently on newer changes.

6.2 What is the impact of independent changes?

Independent changes are “floating” changes that do not depend on changes from prior

quarters. These changes could have been made much earlier, if the requirements for
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these changes were known in advance and resources were available. Hence, it is

interesting to compare the distribution of independent changes for PostgreSQL and

FreeBSD. To make this comparison a bit easier, Figure 6.4 plots the black areas of

Figure 6.2 and Figure 6.3 on one graph.

Figure 6.4 shows that FreeBSD has a much higher percentage of independent

changes than PostgreSQL. Since we studied the FreeBSD base system, it contains a

kernel, device drivers and system tools like compilers and libraries. Device drivers

are self-contained modules with dedicated logic for supporting devices like hard disks

and network cards. As a clean plug-in mechanism exists for drivers, new drivers show

up as independent changes. Similarly, system tools introduce independent changes.

Peaks in the percentage of independent changes coincide with the import of large

chunks of source code of externally developed tools like CVS, GCC, sh, Bison and

Perl for customization. The high percentage of independent changes shows that the

architecture of FreeBSD overall has better support for extensibility and independent

development over PostgreSQL. We note that in the second half of 2007, PostgreSQL
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Figure 6.4: Percentage of independent changes in PostgreSQL and FreeBSD.
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experienced a large spike in the percentage of independent changes. We validated

this finding by contacting the PostgreSQL developers. These explained that two

large independent features had been added to the backend in August and September

2007, in preparation of the 8.3 release [21]:

• Tom Lane, a major PostgreSQL developer, migrated the Tsearch2 functionality

(“Text Searching”) from the separate “contrib” directory into the core directo-

ries. The Tsearch2 feature enables the searching of terms in natural-language

documents.

• One month later, the same developer committed large additions to the HOT

subsystem (“Heap Organized Tuples”), which is an optimization feature for

throughput and more consistent response time.

The large percentage of independent changes shows that FreeBSD continuously im-

ports and integrates large chunks of external source code, whereas spikes of independent

changes in PostgreSQL signal sudden additions of large independent features.

6.3 Is the distribution of time dependence similar

for regular development and bug fix processes?

Software development activities consist of two processes: the regular development

process and the bug fix process. Developers devote their time across both processes,

with bug fixing interleaved with regular development. We would like to study the

relation between these two related, yet different, processes. Do both types of processes
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PostgreSQL FreeBSD
year 1996-2007 1993-2009

built-on-new 0.75 0.80
built-on-old 0.89 0.72
independent 0.62 0.78

Table 6.1: Pearson correlations between the relative percentage of built-on-new, built-
on-old or independent bug fix and enhancement changes in a year for
PostgreSQL and FreeBSD (p-value < 0.05 ).

build on similar change periods or do they differ? For example, are there periods

where bug fixing depends on old changes while regular development depends on newer

changes? If both processes depend on similar change periods, then one can reduce the

negative impact on the developer productivity due to the interleaving of bug fixing

with regular development [82]. In other words, a developer can fix bugs using the

same mindset for regular development (i.e., no context switch is required).

Using our methodology of time dependence in Section 3.1, we can boil down this

problem to analyzing possible correlation between the three types of enhancement

(built-on-new, built-on-old and independent) with the same types of bug fixes (see

Section 3.4). We measure the correlation between built-on-new enhancement changes

and built-on-new bug fixing changes in year basis, and similarly, we calculate the

correlation between enhancement and bug fixing changes for built-on-old and inde-

pendent changes. Figure 6.5 shows the types of changes we are correlating. We mea-

sure the correlation between EN
E

and BN
B

, EI
E

and BI
B

, and EO
E

and BO
B

in Figure 6.5.

These correlations will show us if periods with a large percentage of built-on-new

enhancements have a large percentage of built-on-new bug fixes, leading to a posi-

tive correlation between both processes, or if such periods have a small percentage of

built-on-new bug fixes, leading to a negative correlation.
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Figure 6.5: Categories of changes.

We measured the Pearson correlation values between the relative percentage of

built-on-new, built-on-old and independent bug fix and enhancement changes for

PostgreSQL and FreeBSD, at the year level (see Table 6.1). We calculated the cor-

relations at the year level, since the number of bug fix changes per quarter is too

small to make reasonable statistical claims. Using the same approach as discussed for

Section 5.1, we use one year as the boundary between built-on-new and built-on-old

changes.

PostgreSQL and FreeBSD in Table 6.1 obtain strong correlations for the distribu-

tion of time dependence for enhancement and bug fix changes. The high correlation

between built-on-new, built-on-old and independent bug fix and enhancement changes
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shows that developers need knowledge about similar periods of the development his-

tory when doing regular development and bug fixing.

Regular development and bug fixing require knowledge about source code changes from

the same development periods, i.e., the context switch between both processes is rela-

tively limited.

6.4 Is building on recent changes risky?

Construction workers avoid building on newly laid structure. Instead, they prefer

to build on established dry structure. Workers fear that the new structure will be

much riskier and will lead to problems. We wish to validate this common wisdom

in the construction industry with software development. Using our time dependence

formulation, we measure if between two years an increase in the number of built-

on-new enhancement changes relative to all enhancement changes would lead to an

increase in the number of bug fix changes relative to all changes, i.e., we measure the

correlation between EN
E

and B
E+B

in Figure 6.5. In other words, if you spend more of

your regular development time budget E to build on fresh changes, you are likely to

spend proportionally more of your total time budget E + B to fix bugs, and hence

less of your total time budget E + B to do regular development.

The Pearson correlation between both metrics turns out to be high: 0.65 for

PostgreSQL (Figure 6.6) and 0.92 for FreeBSD (Figure 6.7) (with p-value < 0.05 ).

The lower correlation for PostgreSQL can be explained by looking at Figure 6.6. This

graph shows for each year the increase of the considered percentages compared to the

previous year (negative increase means decrease). From 2000 to 2001, and from



Chapter 6: How do changes build on changes? 55

-50

-40

-30

-20

-10

0

10

20

30

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

%

year

Enhancement Bug

Figure 6.6: Graph showing the correlation between the yearly increase of the relative
percentage of built-on-new enhancement changes and the yearly increase
of the total percentage of bug fix changes (the PostgreSQL project).

2003 and 2004 an increase of the relative percentage of built-on-new enhancement

changes was accompanied by a decrease of the total percentage of bug fix changes.

Investigating what happened in these periods is future work.

Overall, the high linear correlation for PostgreSQL and FreeBSD suggests that

managers should be careful when they plan to build relatively more enhancements on

fresh structure (i.e., new changes). They might consider assigning extra resources to

testing.

Building on recent changes is risky, as more of the development time is spent fixing

bugs. Our experiment provides an empirical proof of what seems to be common wisdom

in project management.
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Figure 6.7: Graph showing the correlation between the yearly increase of the relative
percentage of built-on-new enhancement changes and the yearly increase
of the total percentage of bug fix changes (the FreeBSD project).

6.5 Chapter conclusion

Tracking the evolution and progress of software projects is usually done by measuring

traditional metrics or by informal meetings of the development team. We propose to

study the process of developing software as one would study the process of construct-

ing a building, with new changes building on earlier changes. For this, we considered

the temporal dependence between code changes. Such temporal dependence gives

a different and interesting view of the progress of a software project, with changes

building on fresh structure (i.e., built-on-new), changes building on old established

structure (i.e., built-on-old), and changes not building on any previous structure (i.e.,

independent). Using these concepts, we studied two open source projects: Post-

greSQL and FreeBSD. We studied four research questions, two questions are related

to project scheduling and the other two questions address principles in project man-

agement. In the following, we state the research questions we asked and summary of
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the answers:

• How does the time dependence of changes vary over time?

Time dependence varies across projects and throughout time. The FreeBSD

project has more independent changes than the PostgreSQL project. Both

projects build more frequently on newer changes.

• What is the impact of independent changes?

The large percentage of independent changes shows that FreeBSD imports large

chunks of external source code and that the architecture of FreeBSD is built for

extension, whereas spikes of independent changes in PostgreSQL signal sudden

additions of large independent features.

• Is the distribution of time dependence similar for regular development

and bug fix processes?

Regular development and bug fixing require knowledge about source code changes

from the same development periods, i.e., the context switch between both pro-

cesses is relatively limited.

• Is Building on recent changes risky?

Building on recent changes is risky, as more of the development time is spent

on fixing bugs. Our experiment provides an empirical proof of what seems to

be common wisdom in project management.

Through our approach, practitioners can track more closely the progress of their

projects instead of depending on informal meetings and coarse-grained metrics. In
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the next chapter, we discuss how a development period impacts the development of

future periods.



Chapter 7

How do periods impact the

development in future periods?

In Chapter 6, we studied the time dependence between changes to identify the changes

that are build-on-new, built-on-old or independent. In this chapter, we study how

much a period (e.g. a month or a quarter) as a whole is foundational for the devel-

opment of future periods. An earlier version of this chapter was published in [3]. In

the next chapter, we study the time dependence between subsystems to detect the

foundational subsystems.

To study foundational periods, we use the time dependence between periods as

described Section 3.2. Identifying the foundational periods would allow managers

to turn their attention to the crucial development periods. Managers can put extra

effort on testing the code from those periods to ensure that they are risk-free and

ensure that the documentation of such periods up-to-date.

In the next sections, we answer three research questions using the concept of time

dependence between changes. The first question studies how periods build on older
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periods in general. The next question explores if projects build on older periods as

they progress. The last question studies the evolution of foundational periods over

time.

7.1 How does the time dependence on older peri-

ods vary over time?

Do projects in general build on old periods, more recent periods or within-period de-

pendencies? In the latter two cases, a project builds on recent features and changes,

whereas if it builds on much older periods, the project is likely in maintenance mode.

Based on the results of this question, we can get a better understanding of the evo-

lution of software projects.

In general, projects building on old periods face problems when recruiting new

developers, as new people need to learn about these older, most likely undocumented

periods [10]. On the other hand, building on changes made in the current period might

be risky as the code is still fresh and relatively untested compared to the older code,

leading to the appearance of more bugs, as we saw in the previous chapter. Hence,

it is important to understand how the time dependence on older periods varies over

time.

To study the variance in the time dependence of periods, we calculate the backward

time dependencies of each period in the lifetime of a project. Then, we measure the

age of each of these backward time dependencies for each quarter. To facilitate our

analysis, we graphically rendered this information as a heatmap.

Figure 7.1 is a simple illustration of a heatmap to explain the concept, whereas
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Figure 7.1: Illustration of a heatmap showing the distribution of backward time de-
pendencies over time. Darker cells mean that a period has more backward
time dependencies of that age. Age is calculated in quarters.

Figure 7.2 and Figure 7.3 show the actual heatmaps for PostgreSQL and FreeBSD,

respectively.

A colored-cell with coordinate (3,2) in Figure 7.1 means that quarter 3 builds on

changes from two quarters ago, i.e. these changes are two quarters old. An age of

zero corresponds to building on changes from the current quarter, and dominates the

heatmaps in Figure 7.2 and Figure 7.3. Therefore, we exclude age zero in Figure 7.4

and Figure 7.5 to make the heatmaps more visible and easy to study (more on this

later). The darker the color of cell (3,2), the more changes from two quarters ago

quarter 3 builds on. The color is relative to the whole heatmap, i.e. black corresponds

to the highest number of backward dependencies across all quarters and ages, whereas

white means that there are no backward time dependencies to that period. As the

coloring is relative to the whole heatmap, black cells in Figure 7.4 and Figure 7.5

represent different numbers of backward time dependencies. Hence, we cannot com-

pare the absolute colors between the PostgreSQL and FreeBSD heatmaps, but we

can compare the relative coloring patterns within a particular heatmap to study the
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Figure 7.2: Heatmap showing the distribution of backward time dependencies
through the lifetime of the PostgreSQL project. For each period (i.e.,
column), the cells vary in darkness based on the number of backward
time dependencies of that age relative to all dependencies for all quarters.
Darker cells indicate more dependencies at that age. Age is calculated in
quarters. The heatmap contains the within-period time dependence.

distribution of backward time dependencies over time.

Each column of cells in Figure 7.1 shows how the age of the backward time depen-

dencies of a quarter is distributed over time. As shown on Figure 7.4 and Figure 7.5,

this distribution is not uniform, and it varies widely across quarters. We briefly

summarize our most pertinent findings.
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Figure 7.3: Heatmap showing the distribution of backward time dependencies
through the lifetime of the FreeBSD project. For each period (i.e., col-
umn), the cells vary in darkness based on the number of backward time
dependencies of that age relative to all dependencies for all quarters.
Darker cells indicate more dependencies at that age. Age is calculated in
quarters. The heatmap contains the within-period time dependence.

7.1.1 On average, up to 28% of the backward time depen-

dencies in a quarter are within-period dependencies.

We mentioned that the heatmaps in Figure 7.2 and Figure 7.3 are lightly colored

due to the dominance of age zero. We want to study age zero (dependence on the

same quarter) further here. Figure 7.6 and Figure 7.7 show that the percentage of

within-period backward time dependencies of a period varies between 7% and 100%

for PostgreSQL and between 12.8% and 100% for FreeBSD. The averages are 21.2%

and 28% respectively. The average age of time dependence gradually decreases for
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Figure 7.4: Heatmap showing the distribution of backward time dependencies
through the lifetime of the PostgreSQL project. For each period (i.e.,
column), the cells vary in darkness based on the number of backward
time dependencies of that age relative to all dependencies for all quarters.
Darker cells indicate more dependencies at that age. Age is calculated
in quarters. The within-period time dependence is excluded from this
heatmap.

quarters after the same quarter as shown in Table 7.1. The second largest average

after the same quarter is the immediate last quarter (13.1% for PostgreSQL and

13.28% for FreeBSD). Therefore, the most foundational period for each quarter is the

quarter itself.
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Figure 7.5: Heatmap showing the distribution of backward time dependencies
through the lifetime of the FreeBSD project. For each period (i.e., col-
umn), the cells vary in darkness based on the number of backward time
dependencies of that age relative to all dependencies for all quarters.
Darker cells indicate more dependencies at that age. Age is calculated
in quarters. The within-period time dependence is excluded from this
heatmap.

7.1.2 Quarters with many changes usually build on more

changes

Some columns in the heatmaps are very lightly colored compared to the other columns,

for example quarter 4 in Figure 7.1, whereas others are very dark. The variance in

color is because the corresponding quarters respectively vary in their dependence on

previous periods. A peak or a low in the total amount of changes on which each

quarter depends corresponds to a relatively darker/lighter column in the heatmaps.

It seems intuitive that a quarter would build more on prior quarters (dark column)
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quarter PostgreSQL FreeBSD
0 (same) 21.2% 27.9%

1 13.1% 13.3%
2 8.5% 8.6%
3 6.6% 6%
4 5.7% 4.9%
5 5% 4%
6 4.5% 3.4%
7 3.7% 2.8%
8 3.2% 2.4%
9 2.9% 2.2%
10 2.7% 1.9%

Table 7.1: Table showing the average time dependence on the same quarter and 10
past quarters for the PostgreSQL and FreeBSD projects.

if more source code changes have been performed in that quarter. The Pearson

correlation between the total amount of backward time dependencies of a quarter and

the total number of changes made in that quarter is 0.60 for PostgreSQL and 0.84 for

FreeBSD. Hence, in FreeBSD higher developer activity in a period indeed means that

the changes in that period depend more on older periods as they have more backward

time dependencies. PostgreSQL also generally follows the same trend as FreeBSD.

However, there are multiple periods in PostgreSQL for which this conjecture does not

hold. A large number of changes were introduced in such periods of PostgreSQL, but

those changes did not build on older periods.

On average, up to 28% of the changes in a period build on changes that were introduced

in the same period. Quarters with many changes generally indicate a higher dependence

on older periods.
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Figure 7.6: The percentage of within-period backward time dependencies of a quarter
for the PostgreSQL project.

7.2 As projects age, do they build more on older

periods?

Do projects continuously build on older periods when they age or does their depen-

dence on old and new periods vary? The former hints at a mature project, whereas

the latter gives indications about a cyclic development process.

Intuitively, we expect that projects become more stable over time. Applied to

the topic of this section, this would mean that projects would build more on older

changes as the projects age. Periods in which the age of backward time dependencies

suddenly decreases give strong indications of huge restructurings or the addition of

new features on which later periods will build. To study the evolution of backward



Chapter 7: How do periods impact the development in future periods? 68

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

PostgreSQL: %

quarter

%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

FreeBSD: %dependencies oF each quarter

quarter

%

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66

Figure 7.7: The percentage of within-period backward time dependencies of a quarter
for the FreeBSD project.

time dependencies over time, we use the boxplots in Figure 7.8 and Figure 7.9, in

addition to the heatmaps in Figure 7.4 and Figure 7.5.

The boxplots show for each quarter how the age of backward time dependencies

is distributed over time. The extreme whiskers on the boxplots correspond to the

minimum and maximum age. The minimum age is always zero (which represents

within-period dependencies), whereas every period still builds on the first period of

development (maximum age). The boxes in the boxplots show the lower quantile

(bottom of a box), median (line in the middle of a box) and upper quantile (top of a

box). These respectively mean that 25/50/75% of the backward time dependencies of

a quarter is younger than the value of the lower quantile/median/upper quantile. The

distance between the lower and upper quantile is called the “Inter-Quartile Range”
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(IQR). We briefly explain our findings in the following subsections.

7.2.1 PostgreSQL progressively builds on older periods
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Figure 7.8: Boxplot for the PostgreSQL project showing the minimum, lower quar-
tile, median, upper quartile and maximum of the age of backward time
dependencies of a quarter. Age is calculated in quarters.

Backward time dependencies in PostgreSQL are slightly more widespread over

time (larger IQR) than those in FreeBSD. In other words, PostgreSQL builds more

on old changes. This becomes more obvious when looking at the median age of the

backward time dependencies for PostgreSQL. The black curve formed by the medians

of adjacent boxplots forms an almost continuous curve that remains more or less

constant, before it starts to fluctuate near quarter 8 and finally starting from quarter

34 it increases steadily (see Figure 7.8). In addition, the bottoms of the boxplots shift
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up to age three or even four, and the IQR grows slightly. Hence, PostgreSQL builds

more on older changes as it ages.

The increase in the median since quarter 34 means that PostgreSQL has reached

such a degree of stability that most changes can just build on a proven foundation

instead of requiring invasive changes that would lead to new foundational periods.

7.2.2 FreeBSD periodically cycles between old and recent

periods
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Figure 7.9: Boxplot for the FreeBSD project showing the minimum, lower quartile,
median, upper quartile and maximum of the age of backward time de-
pendencies of a quarter. Age is calculated in quarters.

For FreeBSD, the median curve has a very strong periodical character starting

from quarter 6 as shown in Figure 7.9. We see periods building on earlier recent
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periods (low median) followed by an aging median, which suddenly becomes lower

(sometimes resets to zero) again. Between quarters 30 and 45, the median strongly

increases (similar to PostgreSQL), but at quarters 37 and 46 the median age of back-

ward time dependencies decreases again.

Comparing Figure 7.9 with Figure 7.7, we find that the median age of backward

time dependencies jumps back to zero (or close to zero) when there are peaks in the

relative percentage of within-period backward dependencies. These peaks actually

coincide with peaks in the total amount of changes on which a quarter is built. We

manually investigated these observations using the FreeBSD commit logs. The peaks

corresponding to quarters like 14, 27, 37 and 46 are due to the importing of new

versions of large, externally developed source code systems like GCC, binutils, openssh

and sendmail to the FreeBSD repository. These systems are imported because the

FreeBSD base system combines the FreeBSD kernel with crucial externally developed

system tools like compilers and libraries. These external tools are imported and

significantly customized to better integrate them with the FreeBSD core. The effect

of these modifications gradually fades out, after which the median age of backward

time dependencies increases again. Hence, the periodical evolution of the age of

backward time dependencies as time goes by is inherent to the nature of FreeBSD.

7.2.3 FreeBSD builds more on recent periods than Post-

greSQL

The heatmap of FreeBSD in Figure 7.5 shows that backward time dependencies are

concentrated on recent periods, as the color of old changes in the columns quickly

fades out. PostgreSQL has a more even distribution of backward time dependencies
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over time, i.e. overall the cells are darker.

7.2.4 It took 1.5 years before FreeBSD started building on

older periods

The periodical aging and renewing of backward time dependencies in FreeBSD only

starts from quarter 5. Before quarter 5, FreeBSD almost completely built on within-

period changes, as the boxes of boxplots disappear before quarter 5 in Figure 7.9

unlike PostgreSQL. Similarly, darker colors for the FreeBSD heatmap (Figure 7.5)

appear later (at quarter 5) than for PostgreSQL (Figure 7.4).

The disappearance of boxes in the FreeBSD boxplot before quarter 5 means that

FreeBSD underwent significant overhauls during its first one and a half year before it

got more stable and later quarters could start to build on the established foundation.

This seems strange, as everyone knows FreeBSD was a fork of the very stable Berke-

ley BSD operating system line. An investigation of the history of FreeBSD reveals

that the initial FreeBSD releases (December 1993) were based on the 4.3BSD-Lite

(“Net/2”) operating system from Berkeley [24]. Then there was a lawsuit between

Novell and Berkeley after which the 4.3BSD-Lite operating system was deemed con-

taminated [23]. FreeBSD had to be rewritten completely based on incomplete frag-

ments of another operating system (4.4BSD-Lite). It took until the end of 1994, i.e.

quarter 5, before FreeBSD became stable again.

PostgreSQL progressively builds on older changes, whereas FreeBSD shows a periodical

trend in the age of backward time dependencies. It took 1.5 years for FreeBSD to become

stable and build on older periods due to a lawsuit between Berkeley and Novell.
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Figure 7.10: The total number of forward time dependencies in quarters for Pos-
greSQL.

7.3 What are the foundational periods in the life-

time of a project?

Are there periods on which changes happening months or even years later still build?

Identifying such periods permits us to focus on improving our knowledge of such

periods. Managers should ensure that developers with crucial experience about these

periods are retained. Moreover, managers should archive and enhance any missing

documentation from these periods. Examples of such documentation can be change

requests, requirements and important email or mailing list discussions.

We developed the concepts of forward time dependence in order to identify foun-

dational periods of development. Later periods all build on these major changes.

Identification of foundational periods is crucial for understanding which phases of the

software development process have to be understood very well.
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Figure 7.11: The total number of forward time dependencies in quarters for FreeBSD.

To identify the past quarter that a backward time dependence points at (e.g.,

which quarter the backward time dependencies of age 2 in cell (3,2) point) in Fig-

ure 7.1), we need to follow the diagonal line of cells crossing (3,2) in the lower-left

direction, because backward dependencies of age 2 in quarter 3 (3,2), stem from

the same quarter as the backward dependencies of age 1 in quarter 2 (2,1), i.e. the

within-period dependencies of quarter 1 (1,0). If we turn this reasoning the other way

around, we can find all quarters that build on the changes made in a given quarter by

following the diagonal line of cells crossing that quarter in the upper-right direction.

In other words, the dark diagonal lines in the heatmap stem from the foundational

periods.

The longer and the darker a diagonal starting in a period is, the more founda-

tional that period is, i.e., later periods keep on building on changes made during that

period. Figure 7.4 and Figure 7.5 show some explicit diagonal lines, but also white

regions (similar to Figure 7.1). These regions correspond to quarters that are not
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foundational for later quarters. In PostgreSQL, for example, diagonal lines originat-

ing from quarters 10 to 13 suddenly stop at quarters 23 and 24 (Summer of 2002).

In quarter 24 of PostgreSQL, important parts (e.g., plug-ins and tools) of the source

code were extracted from the PostgreSQL code base and were moved to the GBorg

(now: PgFoundry) community repository. Globally, FreeBSD has more light periods

than PostgreSQL. We discuss our findings below.

7.3.1 The first foundational period in PostgreSQL and FreeBSD

is the most foundational

The heatmaps in Figure 7.4 and Figure 7.5 of both PostgreSQL and FreeBSD have

one or two very long diagonals early on in their life. To better analyze the diagonal

lines in the heatmaps, we measured for each quarter its impact on later quarters, i.e.

the total number of forward time dependencies in a quarter. This corresponds to the

sum of the number of backward time dependencies along the cells in each diagonal

of the heatmaps. This data is plotted in Figure 7.10 and Figure 7.11. Foundational

quarters show up as peaks in these graphs.

For PostgreSQL, the most foundational periods are quarters 1 and 2, for FreeBSD

the first most foundational period is quarter 5. PostgreSQL started in 1996 from

the Postgres95 1.01 source code, which had been made available as open source.

The first half year of PostgreSQL’s life was spent on significantly cleaning up and

restructuring the source code (e.g. the header file directories), culminating in the

release of PostgreSQL 6.0 in January 1997. The influence of FreeBSD’s quarter 5

stems from the 4.3BSD-Lite lawsuit we discussed in Section 6.2. Ten year later, there

are still many changes depending on changes from these quarters. Every developer
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needs a good understanding of these quarters and the code changes in them to reliably

and confidently make changes up until today.

Both the PostgreSQL and FreeBSD heatmaps show a sequence of short diago-

nals following the diagonal of their first foundational quarter. These short diagonals

correspond to periods of polishing of less crucial parts of the source code.

7.3.2 Quarters are foundational because of large code im-

ports or invasive changes

Figure 7.10 and Figure 7.11 show that PostgreSQL and FreeBSD both have peaks,

but that FreeBSD has much more pronounced foundational quarters, i.e. the dark

regions in the heatmap of Figure 7.5 contrast more with the white regions. This again

confirms the periodic nature of time dependencies in FreeBSD.

For PostgreSQL, quarters 1 and 2 were highly foundational (as mentioned earlier).

In quarter 23, a large piece of code was duplicated in preparation of the migration

to the GBorg repository, whereas peaks near quarter 25 were responsible for the

actual migration and important changes of key libraries and client program interfaces.

Quarters 29 and 33 saw important changes to the database indexing system and the

introduction of tablespaces. It is also noticeable from Figure 7.10 that PostgreSQL

develops less foundational periods starting from quarter 34, when it starts to build

on older periods as discussed in section 5.2 and shown in Figure 7.8.

FreeBSD’s first foundational quarter (quarter 5) has been discussed earlier. Simi-

lar to section 7.2, the most foundational quarters coincide with the imports of large,

external chunks of source code into the base system. Quarters 14 and 22 saw the
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import of CVS, GCC, sh, bison, tcl and Perl. Quarter 43 contained “device mega-

patches” (changes to drivers), important changes to the locking of per-process resource

limits and the massive modification of many source code files. Finally, quarter 46 saw

huge changes to the binutils, gdb, GCC, libstdc++ and sendmail versions in the base

system.

Large code imports or invasive changes occur in foundational quarters. PostgreSQL’s

very first quarters are very foundational, whereas it took FreeBSD a few quarters to

create its foundational structure.

7.4 Chapter conclusion

New changes often build on older changes, which makes software projects similar to

construction projects. Throughout the lifetime of a project, there exist foundational

periods during which critical code changes are introduced. Such code changes create

the foundational structure on which future code changes and periods build. A good

understanding of this hierarchy of temporal dependence can be useful for managers

to better plan their projects and to study the evolution of long-lived projects. By

knowing such foundational periods, managers can ensure that the archived communi-

cation (e.g. mailing lists) is well-kept and that sufficient human expertise is available

about these periods.

In this chapter, we studied the foundational periods of two large open source

systems and answered the following questions:

• How does the time dependence on older periods vary over time?
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On average, up to 28% of the changes in a period build on changes that were

introduced in the same period. Quarters with many changes generally indicate

a higher dependence on older periods.

• As projects age, do they build more on older periods?

PostgreSQL progressively builds on older changes, whereas FreeBSD shows a

periodical trend in the age of backward time dependencies. It took 1.5 years

for FreeBSD to become stable and build on older periods due to the lawsuit

between Berkeley and Novell.

• What are the foundational periods in a lifetime of a project?

Large code imports or invasive changes occur in foundational quarters. Post-

greSQL’s very first quarters are very foundational, whereas it took FreeBSD a

few quarters to create its foundational structure.

In the next chapter, we proceed with studying how subsystems build on other

subsystems.



Chapter 8

How do subsystems build on other

subsystems?

So far in this thesis, we studied how changes build on each other and used that to

measure the progress of projects. We then proceeded to study time dependence at

higher level of abstraction. We studied how a time period in a project’s lifetime

builds on another period. Time dependence between periods allowed us to study the

foundational periods that are crucial in a project’s lifetime. This chapter expands

the study of time dependence to a fine-grained level. We study the foundational

subsystems that appear during different periods.

Knowledge about foundational subsystems would allow managers to delve deeper

into the subsystems that are critical for the future development. Managers can con-

centrate their testing effort on such subsystems. They can make sure that the devel-

opers of such subsystems are retained and the documentation of such subsystems is

up-to-date. In the next sections, we are going to investigate three research questions

about the foundationality of a subsystem.

79



Chapter 8: How do subsystems build on other subsystems? 80

8.1 How does the influence of foundational sub-

systems vary over time?

The increase of the size of software repositories makes it harder to identify important

parts of a project. Automatically identifying the foundational subsystems would help

managers to assign tasks on such subsystems to their experts. Managers will also be

able to test these subsystems to make sure they are risk-free, and make sure that the

documentation of such subsystems is up-to-date. This section addresses these issues

by providing a general overview of the evolution of foundational subsystems. How

many foundational subsystems are there? In which time periods do they appear?

What are the less foundational subsystems?

To study the evolution of foundational subsystems, we plot spectrographs for

PostgreSQL (Figure 8.1) and FreeBSD (Figure 8.2). A spectrograph is a visualiza-

tion method used in software evolution studies [37, 90, 91]. The horizontal axis of

the spectrograph is equally divided into quarters and the vertical axis contains the

subsystems sorted by the time of their appearance in the project. The most re-

cently added subsystem appears on top of the spectrograph. Since foundationality

is relative, the color compared to other cells is scaled according to the amount of

foundationality of a subsystem. The more a quarter becomes dark, the more changes

it contains on which other changes build in the future (the more forward time depen-

dence it contains). Figure 8.1 and Figure 8.2 show the spectrographs of PostgreSQL

and FreeBSD, respectively. The spectrographs are colored in grayscale to make it

easy to print. However, they can be shown in color, which makes it easier to spot the

trends. In the following subsections, we study subsystems that are:
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Figure 8.1: Spectrograph of foundational subsystems of PostgreSQL. The horizontal
axis is divided into quarters. The vertical axis is divided into subsystems
sorted according to the time of their appearance in the system.

• highly foundational: subsystems that are very darkly colored in the spectro-

graph and remain foundational throughout the lifetime.

• less foundational: subsystems that are lightly colored and thus contribute

less to future development of other subsystems.

• suddenly foundational: subsystems that become foundational suddenly at

some quarters(s).
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8.1.1 Highly foundational subsystems of PostgreSQL

Figure 8.1 shows a spectrograph for the foundationality of changes of PostgreSQL.

PostgreSQL consists of 65 subsystems. 36 of the 65 subsystems were introduced in the

very first quarter. Many subsystems such as utils, nodes, access, and storage, are

foundational (dark-colored during the project’s lifetime). These subsystems provide

core functionalities to PostgreSQL:

• nodes provides the structure that allows PostgreSQL to store SQL queries,

• storage manages the storage system.

Two subsystems, utils and access, remain dark-colored most of the time (we

study this in detail in the next question). Utils provides supporting routines like

built-in data types and memory management routines, and contains various utilities

to support database transactions and text encoding. The access subsystem provides

support for queries. These subsystems endured a large number of changes throughout

the history of the project and the changes were important for future changes. For

example, in quarter 28, 748 commits were done to the utils subsystems and 16207

changes throughout PostgreSQL later built on changes from these commits. The

memory management utility of the utils subsystem is among the subsystems that

changed by those commits.

8.1.2 Less foundational subsystems of PostgreSQL

We notice that the color of subsystems becomes lighter as we move to the top of the

spectrograph in Figure 8.1 (more recently introduced subsystems). These subsystems

are not among the main backend subsystems of PostgreSQL. These subsystems are
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small in size like test (contains set of test facilities for SQL implementations [71])

and bin (where the executable files are stored).

8.1.3 Suddenly foundational subsystems of PostgreSQL

Few subsystems that are located on the top of the spectrograph are darkly colored in

a minor number of periods:

• Thread (introduced in quarter 30). Thread provides a threading API for

programmers.

• Odbc is an API that enables using PostgreSQL with programming languages on

the Windows platform [70]. The odbc subsystem became suddenly foundational

after the release 3.0 and 3.5 of odbc (quarter 8). Those are the major releases

for odbc that provided various API support and introduced the UNICODE

format [26].

These subsystems have important roles in the PostgreSQL project. They provide

APIs for various PostgreSQL tasks. However, these subsystems exhibit limited peri-

ods of foundationality.

8.1.4 Highly foundational subsystems of FreeBSD

Figure 8.2 shows the spectrograph of 958 subsystems of FreeBSD. The bottom of the

spectrograph has a concentration of dark colored subsystems. Two subsystems, dev

and kern, remain darkly colored most of the time. Kern is the kernel of FreeBSD

operating system. The dev subsystem contains the device drivers. The dev subsys-

tem changed a lot due to the modifications and additions of drivers. In quarter 28,
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Figure 8.2: Spectrograph of foundational subsystems of FreeBSD. The horizontal axis
is divided into quarters. The vertical axis is divided into subsystems
sorted according to the time of their appearance in the project.

426 commits have been done for the dev subsystem on which 19906 future changes

were built. Most of the building changes also belong to the dev subsystem itself.

The commits to the dev subsystem contain changes to drivers like CDR/CDRW,

network access and various fixes. There are 12557 future changes that build on the

231 commits to the kern in quarter 28. These changes come from subsystems like vm

(virtual memory), the fs (filesystem) and dev (drivers). The changes to the kernel

include adding new kernel options, enhancing CPU utilization by introducing SMP

friendly changes and various fixes. One of the kernel functions that was changed is
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BUS ALLOC RESOURCE(), which is a resource-management function for the de-

vice drivers. The dev subsystems used this function to change functions in different

device drivers. Other subsystems that are concentrated in the bottom dark part are

amd64, lib, scsi and i386. A large number of FreeBSD subsystems build on the code

in those subsystems. In summary, the highly foundational subsystems (e.g., kern

and dev) are core subsystems in FreeBSD.

8.1.5 Less foundational subsystems of FreeBSD

Figure 8.2 shows a white region comprising a small number of subsystems that are

being added in quarters 7 (like sgsc and fib subsystems). These subsystems after

their introduction did not change drastically anymore and the periods in which they

were introduced are not darkly colored. In other words, these subsystems are not

foundational. We assume that this is because of the transition (inactive) period

of FreeBSD around quarter 7, as suggested by the release notes from version 2.0.5

(June 1995). This transition period for FreeBSD was caused by the lawsuit filed by

Berkeley. FreeBSD became stable after quarter 7 when its base system was re-written

entirely based on the core 4.4 Lite code from UC Berkeley. Subsystems from 4.4 Lite

encountered large numbers of changes and many of these subsystems are foundational

and darkly colored as described earlier.

8.1.6 Suddenly foundational subsystems of FreeBSD

From quarter 7, FreeBSD develops subsystems that have a small number of founda-

tional periods. The dark colored periods of these subsystems appear scattered across
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the lifetime. These subsystems include some separately installable software like tex-

tinfo (a documentation system) and ntp (Network Time Protocol), and libraries like

libkse and subsystems that contain various kernel source code like arm. Although

these subsystems are introduced late, they developed few darkly-colored periods. For

example, bsnmp [25] (is a mini-SNMP daemon) has only two highly dark colored pe-

riods (46 and 48). These periods were foundational because many changes from the

kernel and contributed software build on them. In short, the suddenly foundational

subsystems of FreeBSD are mostly system libraries or installable software.

Highly foundational subsystems are core subsystems. The less foundational subsystems

are either small in size or are introduced during inactive periods. The suddenly founda-

tional subsystems are usually APIs or systems libraries.

8.2 Are the foundational subsystems stable?

Does a subsystem exhibit limited periods of foundationality, or is it foundational

throughout the lifetime of a project? A subsystem that exhibits only limited periods

of foundationality is considered very stable, since the subsystems building on it can

build on a stable API.

The stability of a subsystem is determined by the number of periods that are

foundational in that subsystem. We study if a subsystem has few foundational pe-

riods or many foundational periods. The fewer periods a subsystem has where its

foundationality is concentrated, the more stable it becomes.

We statistically quantify the stability of a subsystem using the basic measures
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PostgreSQL FreeBSD
Subsystem Rank Subsystem Rank

utils 36 dev 958
nodes 2 kern 957
access 6 i386 16
odbc 1 sys 10

storage 5 gcc 1
libpq 31 user.bin 4

commands 65 libc 13
port 3 netinet 113

optimizer 20 boot 25
parser 10 net 46
catalog 18 gdb 3

executor 19 contrib 19
postmaster 32 binutils 5

tcop 13 pc98 11
pg dump 16 vm 59

ecpg 11 amd64 99
thread 4 perl5 2
psql 15 libstdc++ 7

libpgeasy 7 openssh 22
initdb 14 openssl 12

Table 8.1: Table showing the ranks of stability for the top 20 foundational subsystems.
The ranks are out of 65 for PostgreSQL and out of 958 for FreeBSD.

of mean and standard deviation of the foundationality of a subsystem across devel-

opment periods. By observing the spectrographs in Figure 8.1 and Figure 8.2, we

find that stable subsystems have a high variance in foundationality between different

development periods. Unstable subsystems on the other hand, have a much smaller

variance. Hence, we quantify the stability of a subsystem by subtracting the mean

foundationality of a subsystem from the standard deviation.

The larger the standard deviation of a subsystem is compared to its mean (i.e.,

the larger the value of STD-MEAN), the fewer periods the subsystem has with
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Figure 8.3: The Forward Time Dependence of the odbc subsystem in PostgreSQL is
more stable as its standard deviation is greater than its mean.
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Figure 8.4: The Forward Time Dependence of the kernel subsystem in FreeBSD.
The kernel of FreeBSD is unstable (its standard deviation is less than
its mean)

extreme foundationality. Hence, the subsystem becomes more stable, such as the

odbc subsystem of PostgreSQL (see Figure 8.3). Less stable subsystems have their

standard deviation less than, or close to their mean, like the kernel of FreeBSD (see

Figure 8.4).

Table 8.1 shows the top 20 foundational subsystems and their ranks according

to their stability in the project (i.e., based on STD-MEAN). Rank 1 is the most

stable. For PostgreSQL, rank 65 is the least stable and rank 958 is the least stable

for FreeBSD. The top 20 list of foundational subsystems for both PostgreSQL and

FreeBSD contains both the most stable and the least stable subsystems. However,
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most of the subsystems in Table 8.1 are either very stable or moderately stable. The

least stable subsystem in PostgreSQL is the commands subsystem and the most

stable one is the odbc subsystem. FreeBSD has two subsystems that are ranked very

low, the dev and the kern subsystems.

Table 8.1 shows that the commands subsystem of PostgreSQL, and dev, and

kern of FreeBSD are unstable. These are the highly foundational subsystems as dis-

cussed in Section 8.1. The rest of the subsystems of FreeBSD (the less foundational

and the suddenly foundational ones) have a generally high rank of stability. Post-

greSQL has some highly foundational subsystems that are also stable (e.g., nodes)

and the rank of stability varies from very stable to moderately stable.

We further studied if the relationship between the stability and the foundationality

of subsystems holds for all subsystems (not only the top 20). Excluding the three least

stable ones (commands, dev, and kern), we find high linear correlation between

the foundationality and the stability of subsystems. The Pearson correlation is 0.73

for both PostgreSQL and FreeBSD. Therefore, in general, the more foundational

a subsystem, the more stable it is. This means that future subsystems build on

changes from fewer periods of the stable subsystem. For example, the odbc subsystem

of PostgreSQL (which has Rank 1 of stability in Table 8.1) has only two peaks of

foundationality in Figure 8.3.

The more foundational a subsystem, the fewer periods it has on which future subsystems

mostly build.
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8.3 Can we approximate the foundationality of a

subsystem using the number of changes to the

subsystem?

In Chapter 6, we studied the relation between foundational periods and the number

of changes in those periods. Similarly, we expect that if a foundational subsystem

undergoes a huge overhaul, other subsystems need to be modified to build on the

changed subsystem. However, this does not necessarily hold for non-foundational

subsystems. For example, introducing changes to a user interface has no effect on

other subsystems. In this question, we study these different possibilities by study-

ing the relation between foundationality of subsystems and the number of changes

introduced to these subsystems. To answer this question, we calculate two types of

Pearson correlations:

1. We calculate the Pearson correlation between the total number of changes and

foundationality for all subsystems across the project lifetime. This tells us if the

approximation of foundationality by the total number of changes to a subsystem

is a good approximation globally (acorss all subsystems).

2. We calculate for each subsystem the Pearson correlation between the list of the

number of changes to a subsystem in each quarter and the list of the founda-

tionality of that subsystem in each quarter. This tells us if the approximation

is good for each quarter of individual subsystems.

The global correlation is high: 0.89 for PostgreSQL and 0.88 for FreeBSD. Ta-

ble 8.2 shows the second correlation for the top 20 foundational subsystems. Overall,
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PostgreSQL FreeBSD
Subsystem Correlation Subsystem Correlation

utils 0.78 dev 0.71
nodes 1.00 kern 0.62
access 0.78 i386 0.86
odbc 1.00 sys 0.60

storage 0.96 gcc 0.80
libpq 0.96 user.bin 0.99

commands 0.21 libc 0.84
port 0.81 netinet 0.66

optimizer 0.89 boot 0.33
parser 0.92 net 0.40
catalog 0.84 gdb 0.97

executor 0.71 contrib 0.91
postmaster 0.93 binutils 0.97

tcop 0.89 pc98 0.98
pg dump 0.47 vm 0.80

ecpg 0.72 amd64 0.77
thread 0.90 perl5 0.99
psql 0.80 libstdc++ 0.98

libpgeasy 0.88 openssh 0.73
initdb 0.76 openssl 0.84

Table 8.2: Table showing the correlation between the total number of changes and
the forward time dependence of top 20 foundational subsystems in each
quarter.

the correlation is very high for most of the subsystems, except the following subsys-

tems:

• Subsystems commands and pg dump of PostgreSQL. The commands sub-

system contains the database commands of PostgreSQL and pg dump is a

utility to dump the PostgreSQL database into a text file.

• Boot and net of FreeBSD have low correlations. The net subsystem deals with

the network interface and boot deals with the booting process.
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Although the above subsystems changed a lot, some quarters with fewer changes

were more foundational resulting in a low correlation between the total changes and

the foundationality. Some of these subsystems are even among the top foundational

subsystems in Table 8.1 (e.g., commands and boot). Although the low correlation

is only the case for a minority of the subsystems, using the number of changes instead

of foundationality would miss some very important subsystems.

The number of changes introduced to a subsystem is a good approximation for its

foundationality. However, some highly foundational subsystems are not detected by

measuring the number of changes.

8.4 Chapter conclusion

The growth of software projects in size and complexity makes it hard to analyze

these projects entirely. It also prevents the managers to get a clear understanding of

the foundational parts of the projects. This chapter proposes a conceptual approach

to study the foundationality of subsystems for a given project based on the time

dependence between subsystems. Using this approach, we identify the foundational

subsystems that create the structure on which future changes build.

Identifying the foundational subsystems could allow managers to ensure that they

understand the development activities in those subsystems very well, documentation

of such subsystems is up-to-date, and the human expertise of those subsystems is

available. By studying the foundational subsystems of the PostgreSQL and FreeBSD

projects, we answered the following questions:
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• How does the influence of foundational subsystems vary over time?

Highly foundational subsystems are core subsystems. The less foundational

subsystems are either small in size or are introduced during inactive periods.

The suddenly foundational subsystems are usually APIs or systems libraries.

• Are the foundational subsystems stable?

The more foundational a subsystem, the fewer periods it has on which future

subsystems mostly build.

• Can we approximate the foundationality of a subsystem by the num-

ber of changes to the subsystem?

The number of changes introduced to a subsystem is a good approximation

for its foundationality. However, some highly foundational subsystems are not

detected by measuring the number of changes.
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Chapter 9

Summary and Conclusions

In this thesis, we studied the concept of time dependence which is influenced by the

building construction analogy. As in buildings, code changes build on previously-

introduced changes. The previously-introduced changes provide the structure on

which future changes build. We study the building construction analogy by intro-

ducing the concept of time dependence between source code changes. By using time

dependence, we studied the progress of projects, how periods impact other periods,

and how subsystems build on other subsystems. Using time dependence, practitioners

can monitor the evolution of projects, ensure that the communication (e.g., mailing

lists) of foundational periods is well-kept and newly-hired people are trained about

the foundational subsystems. We applied our approach on over 25 years of software

development history. Our findings reiterate that the concept of time dependence is

useful in tracking the evolution of software projects. Our work is the first to define

time dependence, which is influenced by the building construction analogy.

In this chapter, we conclude our work by specifying its limitations, possible future

work and a brief summary of the thesis.

95
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9.1 Limitations and future work

Although we perform our approach on two large systems and validate our findings

from the logs and by contacting developers, our approach has some limitations. Here,

we specify these limitations, and mention possible ways to address them in the future.

• Our technique to recover the time dependence relations takes into account static

dependencies only. Implicit dependencies due to dynamic dependencies are not

considered. This may lead to an overestimation of independent changes. In

addition to exploring the dynamic dependencies, we would like to explore other

types of temporal dependencies, such as those based on cloning and inheritance.

• Our analysis requires interpretation by project experts to really determine

whether a particular change could have been done earlier or whether the re-

quirements did not exist at that earlier point in time. For our case study, we

validated our approach by reading the documentation, manuals, repository logs

and mailing lists, and by contacting developers in the studied projects.

• We calculate the time dependencies for each quarter. Other periods (e.g.,

monthly, yearly, or per release) could be used instead and are likely to lead

to other interesting results.

• We only look into one level of call graph dependencies, i.e. the direct dependen-

cies of an entity. Dependencies below the first level are not considered in our

study. We expect that the impact of changes to these dependencies is smaller

due to information hiding [68]. We would like to explore this assumption in

future work.
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• Our case study was done on two open source projects, so our findings may

not generalize to commercial projects or other open source projects, as open

source projects have different characteristics related to facets like testing and

communication. In future work, we would like to perform a user study to

determine the benefit of this approach in a real project setting instead of just

mining the historical repository of a project.

• Finally, we define a subsystem as a fixed, top level directory in the projects,

similar to approach used by Godfrey et. al. [30] (second level for PostgreSQL

and fourth level for FreeBSD as explained in Section 4.2). Although this ap-

proach gives us subsystems that are mentioned in the documentation of the

projects, we would like to investigate the assumption that subsystems might be

scattered across directories at different levels.

9.2 Summary

In this thesis, we propose to study the evolution of a software project as the evo-

lution of a construction project. We validate the hypothesis that we can quantify

software evolution using the time dependence between code changes. As in construc-

tion projects, software projects consist of changes that build on previously introduced

changes. The previously introduced changes provide the structure that the future

changes build on. We apply time dependence to study the evolution of software

projects along three levels:

• Change time dependence: we study if changes are introduced just-in-time
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(built on fresh structure), delayed (built on well-established structure), or in-

dependent (built on no existing structure). Using our approach, managers can

track the progress of their projects similar to how construction managers do. We

also study the relation between bug fixing and regular development activities

and study the relation between building on new changes and bug appearance.

• Period time dependence: Studying how changes build on previous changes

allows us to detect foundational periods. Foundational periods are the most

contributing periods to the development of future periods. Identifying the foun-

dational periods would allow managers to ensure that the code from those pe-

riods is tested to be bug-free, developers of such periods are consulted, and the

documentation and the archived communication of these periods are well-kept.

• Subsystem time dependence: here we extend our study of foundational pe-

riods to a finer level. We study the foundational subsystems that appear at

different periods. Managers need to understand the foundational subsystems so

they can ensure that those subsystems are tested and the newly-hired people

are trained about such subsystems. We study the evolution of foundational

subsystems and investigate how stable they are. We also find that the number

of changes introduced to a subsystem is a good approximation to its founda-

tionality.

We perform case studies on two large open source projects. We validate our findings

from studying the logs from the source code repository and by contacting developers

from these projects.
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bayesian network based approach for change coupling prediction. In WCRE ’08:

Proceedings of the 2008 15th Working Conference on Reverse Engineering, pages

27–36, Washington, DC, USA, 2008. IEEE Computer Society.



112

[96] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller.

Mining version histories to guide software changes. In ICSE ’04: Proceedings

of the 26th International Conference on Software Engineering, pages 563–572,

Washington, DC, USA, 2004. IEEE Computer Society.


