
AUTOMATED CAPACITY PLANNING AND SUPPORT

FOR ENTERPRISE APPLICATIONS

by

Dharmesh Thakkar

A thesis submitted to the School of Computing

In conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

January, 2009

Copyright © Dharmesh Thakkar, 2009

 ii

Abstract

Capacity planning is crucial for successful development of enterprise applications. Capacity

planning activities are most consequential during the verification and maintenance phases of

Software Development Life Cycle. During the verification phase, analysts need to execute a large

number of performance tests to build accurate performance models. Performance models help

customers in capacity planning for their deployments. To build valid performance models, the

performance tests must be redone for every release or build of an application. This is a time-

consuming and error-prone manual process, which needs tools and techniques to speed up the

process. In the maintenance phase, when customers run into performance and capacity related

issues after deployment, they commonly engage the vendor of the application for troubleshooting

and fine tuning of the troubled deployments. At the end of the engagement, analysts create

engagement report, which contain valuable information about the observed symptoms, attempted

workarounds, identified problems, and the final solutions. Engagement reports are stored in a

customer engagement repository. While information stored in the engagement reports is valuable

in helping analysts with future engagements, no systematic techniques exist to retrieve relevant

reports from such a repository.

In this thesis we present a framework for the systematic and automated building of capacity

calculators during software verification phase. Then, we present a technique to retrieve relevant

reports from a customer engagement repository. Our technique helps analyst fix performance and

capacity related issues in the maintenance phase by providing easy access to information from

relevant reports. We demonstrate our contributions with case studies on an open-source

benchmarking application and an enterprise application.

 iii

Acknowledgements

This thesis would not have been possible without the continuous support of my wife and parents

who always supported me and gave me the will to succeed.

I cannot thank enough my supervisor Dr. Ahmed E. Hassan for his continuous support and

advice. Dr Hassan always provided great suggestion and constant motivation throughout my

research career. This has been one of the best memorable experiences of my life.

I sincerely appreciate the valuable feedback from my thesis readers: Dr. Mohammad Zulkernine,

Dr. Tom Dean, and Dr. Jim Cordy.

I am very fortunate to work with the amazing members of Software Analysis and Intelligence Lab

(SAIL). In particular, I would like to thank ZhenMing (Jack) Jiang, Haroon Malik, and Emad

Shihab for all their help and encouragement. A special thanks to Jack for being a close friend ever

since I moved to Canada and started my graduate studies at the University of Victoria. I also

thank Gilbert Hamann and Parminder Flora from the Enterprise Performance Engineering group

at Research In Motion (RIM) for providing me the opportunity to conduct practical research to

help their business.

Finally, I thank my wife again for patiently taking care of our daughter and everything else in life

while I worked away on my research and thesis.

 iv

Statement of Originality

I hereby certify that all of the work described within this thesis is the original work of the author.

Any published (or unpublished) ideas and/or techniques from the work of others are fully

acknowledged in accordance with the standard referencing practices.

(Dharmesh Thakkar)

 v

Table of Contents

Abstract .. ii

Acknowledgements ... iii

Statement of Originality .. iv

Table of Contents ... v

List of Figures ... viii

List of Tables .. ix

Chapter 1 Introduction ... 1

1.1 Capacity Planning .. 2

1.2 Customer Support on Capacity Planning ... 10

1.3 Overview of Thesis .. 13

1.4 Major Thesis Contributions ... 17

1.5 Thesis Organization ... 18

Chapter 2 Literature Review .. 20

2.1 Capacity Planning .. 20

2.2 Fault Resolution ... 23

2.3 Event Correlation ... 21

2.4 Mining Customer Engagement Repository .. 22

2.5 Operational Profile and Signature Profile Retrieval .. 23

2.6 Summary of Literature Review .. 24

Chapter 3 Framework for Building Capacity Calculators.. 26

3.1 The Dell DVD Store Web Application .. 28

3.2 Test Enumeration ... 30

3.3 Test Reduction ... 33

3.3.1 Static Test Reduction .. 34

3.3.2 Dynamic Test Reduction ... 34

3.4 Environment Setup... 35

 vi

3.5 Test Execution ... 37

3.5.1 Test Setup.. 37

3.5.2 Test Run .. 37

3.5.3 Test Shutdown .. 39

3.6 Test Transition ... 39

3.7 Test Analysis .. 40

3.7.1 Validate the Test ... 41

3.7.2 Metric Analysis ... 44

3.8 Model Building .. 45

3.9 Customization Efforts .. 45

3.10 Chapter Summary .. 47

Chapter 4 Technique for Customer Support on Capacity Planning ... 48

4.1 Execution Logs .. 50

4.1.1 Legal Requirements on Application Logging ... 51

4.1.2 Execution Logs vs. Tracing Logs ... 51

4.2 Convert Log Lines to Event Distribution ... 52

4.3 Identify Signature Events ... 53

4.4 Compare Event Distributions ... 56

4.4.1 Kullback-Leibler Divergence Metric .. 57

4.4.2 Cosine Distance Metric ... 57

4.5 Measuring Performance of the Technique ... 59

4.6 Chapter Summary .. 60

Chapter 5 Case Studies for Customer Support Technique ... 61

5.1 Case Study on an Open-Source Application .. 62

5.2 Case Study on an Industrial Application .. 65

5.2.1 Studying Retrieval by Operational Profile .. 65

5.2.2 Studying Retrieval by Signature Profile ... 69

5.3 Chapter Summary .. 70

Chapter 6 Results and Limitations ... 71

6.1 Framework for Building Capacity Calculators .. 71

6.2 Technique for Customer Support on Capacity Planning.. 72

6.3 Chapter Summary .. 76

 vii

Chapter 7 Conclusion ... 77

7.1 Major Topics Addressed .. 77

7.2 Major Thesis Contributions ... 79

7.3 Future Research ... 80

7.4 Commercialization ... 82

Bibliography .. 83

 viii

List of Figures

Figure 1: Classic Waterfall SDLC ... 1

Figure 2: An example of a capacity calculator .. 6

Figure 3: Customer Engagement Reporting ... 11

Figure 4: Overview of the Thesis ... 16

Figure 5: Our Framework for Building Capacity Calculators ... 27

Figure 6: DS2 high-level architecture .. 29

Figure 7: Instability in Resource Utilization .. 42

Figure 8: Processor Utilization vs. Response Time ... 45

Figure 9: Our Technique to Retrieve Relevant Engagement Reports .. 49

Figure 10: An Example of Execution Logs ... 51

Figure 11: Visually Examining Distribution Similarity ... 56

Figure 12: Geometric Representation of Two Dimensional Vectors ... 58

Figure 13: Precision and Recall ... 59

Figure 14: Case Studies Tree ... 61

Figure 15: Example of Imbalance in Event Logging ... 73

 ix

List of Tables
Table 1: Enumeration of performance tests ... 33

Table 2: Reduced list of performance tests for DS2 .. 36

Table 3: Estimated efforts for customizing our framework ... 46

Table 4: An Example of Event Distribution .. 53

Table 5: Contingency Table for Chi-Square Test .. 56

Table 6: List of Log Files Tested for Retrieval .. 64

Table 7: Performance of Retrieval using Operational Profiles .. 66

 1

Chapter 1

Introduction

Modern enterprise applications have components deployed on different servers separated by

physical boundaries and connected by computer networks. Medium and large scale enterprise

applications that are intended to serve from ten to tens of thousands people are commonly

deployed as distributed applications. Quality of Service (QoS) measures, such as availability and

performance are of prime importance for such applications. Quality of Service of enterprise

applications affects the productivity of the people using those applications. Problems after the

deployment of enterprise applications are rarely due to functionality errors. Rather, most

problems are concerned with the application not responding fast enough, crashing or hanging

under heavy load, and other performance or capacity related problems [3, 48]. Still, capacity

planning remains one of the most overlooked aspects in software development [10].

Figure 1: Classic Waterfall SDLC

Figure 1 shows the classic waterfall Software Development Life Cycle (SDLC) phases. Capacity

planning activities span all the SDLC phases. While the SDLC phases may differ across software

development methodologies, such as the iterative or agile methodologies, the capacity planning

steps still remain important steps in the life cycle. We focus on the classic waterfall SDLC phases

 2

in this discussion. Performance objectives need to be clearly identified in the requirement phase.

An objective and measurable requirement is, for example, 90% of requests should be served

within end-to-end response time of 5 seconds. During the design phase, platform and technology

selection, architecture, and development modeling should be done that would support the stated

performance requirements. In the implementation phase, algorithmic, data structure, and

programming decisions need to be made that would optimize the performance. In the verification

phase, performance test need to be conducted to verify that the required performance objectives

are met. In the final phase of maintenance, continuous capacity planning and tuning is done to

ensure that the application continues to meet the performance objectives as the number of users

and their workload changes.

While capacity planning related activities are important to execute in all the SDLC phases to

obtain full advantage of capacity planning [36], post-implementation performance engineering

activities carry profound impact, and hence remain commonly adopted in the industry. The work

presented in this thesis addresses capacity planning related tasks in those important SDLC phases

of verification and maintenance. In the next two sections, we introduce capacity planning related

activities performed in verification phase, and customer support activities performed in the

maintenance phase. We provide a brief overview of our thesis in section 1.3. We discuss major

contributions of our thesis in section 1.4. Then we discuss the organization of the rest of the thesis

chapters in section 1.5.

1.1 Capacity Planning

In the verification phase, functional testing activities need to be performed to ensure that the

application meets its functional requirements. Load testing checks whether the application works

well under heavy workloads. Both functional and load testing result in a pass or failure

 3

classifications for each test. Then a set of performance tests is performed which quantitatively

summarizes application performance parameters, such as response time, throughput and hardware

resource utilizations. Using the results of a large number of performance tests, a performance

model is built. Using the performance models the performance characteristics of an application

under different workloads and deployment (hardware and platform) settings can be predicted.

Based on the prediction, software maintenance practitioners plan for hardware resource

requirements ahead of time, so that crucial Service Level Agreements (SLAs) are always met.

Performance modeling techniques are broadly classified into measurement, analytical and

simulation based techniques:

1) Measurement based techniques rely on conducting extensive performance measurements on

the application being studied. Measurement based techniques can only be conducted once the

application is fully developed and available.

2) Analytical techniques allow the building of models to study and predict ahead of time the

performance characteristics of an application. Analytical techniques use mathematical models

based on queueing theory [22], layered queueing network [24], regression analysis (such as

linear regression or regression splines) [4], and queueing petri net [21]).

3) Simulation techniques emulate the functionally of the application using a computer

simulation whose performance can be probed. Performance engineering and capacity

planning has grown into a profession. Ample research and development have been done on

the practice of all three techniques for performance engineering and capacity planning of

software applications.

 4

Both simulation and analytical based techniques require a good understanding of the application

and require the presence of accurate documentation of its behavior. However, up-to-date and

complete documentation and understanding of an application rarely exists in practice. The source

code in many cases represents the only source of accurate information about the application [40].

Therefore practitioners commonly use measurement based techniques. Instead of building

mathematical models or computer simulations, practitioners use the best model for a software

application, the application itself! Measurement based techniques are often the only type of

performance analysis used in practice, as noted by Sankarasetty et al. [38].

Measurement based modeling of a software application is commonly used in practice to produce

capacity calculators and performance white papers. Such calculators and white papers are

commonly developed for hardware platforms (e.g. [30]) and large enterprise applications (e.g.,

[34, 35]). These calculators help customers in capacity planning activities. Capacity planning

involves selecting the most appropriate configurations for deploying an application while

satisfying performance requirements and financial constraints. When deploying enterprise

applications, customers must determine whether their current deployment infrastructure is over-

engineered (then they can reduce deployment costs) or under-engineered (then they can invest

more to improve the user's experience). For example, a capacity analysis for a web application

may indicate that a 90% of requests will be served within response time of 8 milli-seconds, if the

application is servicing 200 requests per second (i.e., usage workload) while running on a

machine with dual core Intel Pentium 4 1.2Ghz processor, 4 GB of memory, and two 136GB

10,000 RPM SATA disks configured as RAID 0 connected to the Internet over fiber optic

backbone network of an ISP. The response time in that prediction might be excluding the network

latency and rendering time in the browser, as both of that depend on the user environment, on

 5

which deployers have no control. In short, customers and support staff would like to address

issues such as:

• What hardware is sufficient to deploy product X and offer a good user experience?

• If I upgrade to version 3.x, will my current quality of service be affected? Will I need

new hardware?

• How much quality of service improvements should I expect if I upgrade my I/O

subsystem?

• If I enable another 100 users on my current hardware, what will be my CPU and disk

utilizations?

• When should I upgrade my current hardware given my expected workload growth?

Figure 2 shows an example of a capacity calculator for the Dell DVD Store web application. The

DVD Store application is a benchmarking web application developed by Dell to benchmark the

performance of the Dell server systems. We introduce the DVD store application in greater detail

in chapter 3. The predictions produced by the capacity calculator are based on the inputs given in

the UI and a performance model for that application. For example, given a particular hardware

configuration of two 3.2 GHz Intel Pentium-IV processors and a set of workload parameters as

shown in Figure 2, the calculator produces the predications using a performance model. The user

interface of the calculator can be as simple as a spread-sheet, or a sophisticated web application.

The model can be a measurement based regression model, an analytical model or a simulation

model, which is invoked from the user interface. The figure shows model predicting an average

CPU utilization of 40%, a memory usage of 790MB and a response time of 16 milliseconds. A

customer could modify the hardware or workload configurations in the calculator to determine a

suitable configuration that would meet future demands and their budget. Other way round, a

 6

calculator can be built using the same performance model to allow customer specify input

workload and the required performance levels, and the calculator would present hardware

configurations that would meet those requirements.

Figure 2: An example of a capacity calculator

Measurement based techniques require the execution of a large number of performance tests for

every release or build of a software application. A performance test measures the performance

characteristics (e.g., response time) of the application for a specific workload under a particular

hardware and software configuration. Performance tests are typically conducted after functional

and load testing of an application is complete. Functional testing checks whether an application

meets its functional requirements. Load testing checks whether the application works well under

 7

heavy workloads. Both functional and load testing result in a pass or failure classifications for

each test. In contrast the results of a performance test are summarized quantitatively in metrics

such as response time, throughput and hardware resource utilizations. Using the results of a large

number of performance tests, a performance model can be built. Deployers of enterprise

applications use this performance model to determine the most suitable capacity configurations

when deploying a new application [30, 34, 35]. This process is commonly referred to as capacity

planning.

To ensure that a performance model is complete and accurate a large number of performance tests

must be conducted. The large number of tests leads to many challenges when performing

measurement based modeling in practice. Setting up the environment for executing each test is

usually a manual process, which is lengthy and error prone. Setup mis-configurations are

common, costly, and are usually hard to detect. The test setup process is repeated a large number

of times since tests are repeated many times. Tests are repeated to ensure the statistical validity of

results and to study the performance of an application in different hardware and platform settings.

With each build or version of a software application, the measurement based models must be

updated by re-running most of the performance tests. Building and maintaining measurement

based models is a time consuming and resource intensive process. For instance, if a bug is

discovered in an application during performance modeling then the full performance modeling is

usually repeated once the bug is fixed.

Much of practice focuses on automating performance testing instead of modeling. Industry is

primarily focused on building sophisticated load testing tools, such as WebLOAD [46] and HP

LoadRunner [25]. Such tools, although valuable for performance testing, do not help address the

full life cycle of measurement based performance modeling. Since measurement based

 8

performance modeling is one of the final steps in an already late release schedule, techniques are

needed to speed up the modeling process. Practitioners require tools to assist them in building and

updating measurement based models by automating the various steps in performance modeling.

Building a measurement based performance model is a challenging task in practice due to many

of the following reasons:

1) The large number of tests that must be executed. A large number of tests must be

executed in order to ensure that the model captures the various possible workload and

configuration options for an application. For example, tests should be conducted for

various configuration settings of an application. Tests may be repeated several times to

gain statistical confidence in the captured performance metrics. Tests must be conducted

on multiple platforms to model and benchmark the effects of changing underlying

hardware platforms.

2) The limited time that is available for performance modeling. Performance modeling

is usually done as the last step in an already tight and usually delayed release schedule.

Hence managers are always hoping to reduce the time allocated for performance

modeling.

3) The risk of error due to the manual process that is followed to setup, execute and

analyze the tests. There exist many tools to help in automating the generation of loads

for performance testing. However, there exist no tools for configuring the application

under tests, setting up the tests, and analyzing the results in an automated fashion. In

practice, all these tasks are done manually and are especially error prone.

 9

4) The risk of having to repeat the full modeling process. All too often the modeling

process reveals problems or mis-configurations are discovered. Once the identified

problems are addressed, the modeling process must be restarted from scratch while

having minimal impact on the time allocated for performance modeling.

Such challenges have been noted by other researchers and practitioners as well. For instance,

Gunther cites lengthy measurement and modeling phases as the main reasons for management’s

skepticism towards performance modeling and capacity planning [10].

In this work we propose a performance modeling framework which addresses the aforementioned

capacity planning challenges as follows:

1) The large number of tests that must be executed. Our proposed framework supports

the use of advanced test selection and prioritization techniques such as ANOVA selection

[42] and screening designs [51], to reduce the number of tests. The framework also

supports the re-use of data from previous releases or builds of an application.

2) The limited time that is available for performance modeling. The framework

automates many of the time consuming tasks needed for building performance models.

The framework also reduces the time needed for tests.

3) The risk of error due to the manual process that is followed to setup, execute and

analyze the tests. The framework automates the processes for setting up the

environment, executing the tests and analyzing the tests. This automation ensures that

errors are minimal. Moreover the framework contains a validation step which uses prior

performance tests and heuristics to flag possible bad tests and to rerun them or remove

them from the model building step.

 10

4) The risk of having to repeat the full modeling process. The framework detects and

flags possibly problematic or mis-configured performance tests. The modeling process

can be automatically executed incrementally after the problems are addressed.

1.2 Customer Support on Capacity Planning

After deployment, in the maintenance phase of software development life cycle, customers report

bugs and issues that need to be addressed efficiently in short time, compliant to stringent QoS

requirements. We focus on the performance and capacity related issue resolution in our work. To

resolve performance and capacity related issues, support analysts often use their experience to

troubleshoot the application deployment. Support analysts take their cues from the operation

profile, problem symptoms, operating system and hardware platform of the deployment at the

client site.

As shown in Figure 3, after providing issue resolution, the application support analyst creates a

customer engagement report, which captures observed symptoms, identified problems, attempted

workarounds and the final solution. One or more execution log files from the customer site are

attached to the report. At mature software development organizations, these customer

engagement reports are archived in a Customer Engagement Repository. The repository contains

practically acquired invaluable information, which can be useful in many ways [12]. However,

retrieval of information from this repository is not well-explored. We could not find more

research works pertaining to that. There exist no systematic techniques to retrieve and use

information in such a knowledge base for future engagements. In this thesis we present a

technique to support future engagements by reusing information stored in the customer

engagement repository. This idea is represented by the dotted line connecting the repository to the

analyst in Figure 3. Retrieval of information from the repository is also needed when a team of

 11

analysts are employed to serve a large customer base and no single analyst has all the knowledge.

New analysts joining the team carry no domain knowledge, and need to rely on information

retrieval from the engagement repository as they start working to troubleshoot customer

deployments.

Figure 3: Customer Engagement Reporting

When working on a particular engagement, support analysts rely on their experience in

identifying prior engagements with similar circumstances. Analysts commonly use basic text

search technology to retrieve relevant reports of prior engagements using specific keywords.

However, such an approach requires consistent entry of the data in the reports and the use of the

appropriate keywords in the search. For example, a search for “hung thread” would not return a

report which talks about a “non-responsive thread”. The use of basic search technology all too

often prevents the analyst from quickly locating the appropriate reports.

Our goal is to help the support analyst in the task of troubleshooting the application deployment

by retrieving relevant information from the customer engagement repository. We present a

Application
Support
Analyst

Symptoms Identified
Problems Solutions

Execution
Logs

Customer
Engagement

Report

Customer
Engagement
Repository

Create Store

Contains

Attempted
Workarounds

 12

technique which uses the execution logs attached to the engagement reports to retrieve relevant

customer engagement reports from the engagement repository. For information retrieval purpose,

the execution logs provide certain advantages over other pieces of information attached to report.

Execution logs are consistent since they are automatically generated by the application, while all

other information in the report is manually entered. The manually entered information might

suffer from issues such as, (a) varying level of completeness of information (b) inconsistent use

of terms (b) analysts’ incomplete knowledge of all operations and features of the application (c)

analysts’ inexperience, leading to bias towards documenting known territories. On the other hand,

the execution logs are a direct representative of the application’s operations and problems.

Our technique for customer support on capacity planning takes as input an execution log file for a

particular deployment and returns relevant engagement reports. The technique returns two types

of relevant reports:

1. Reports of engagement with a similar operational profile. The operational profile

identifies the workload characteristics of a particular application deployment. For

example, given a deployment of an email server with an operational profile where 80% of

the traffic is outgoing email and 20% in incoming email, our technique would return

engagement reports for deployments with similar profiles. These reports are valuable

when investigating workload problems (e.g. slow response time under a particular

workload).

2. Reports of engagement with a similar signature profile. Whereas an operational

profile summarizes the workload characteristics of an application, a signature profile

identifies the characteristics which are most peculiar for a particular deployment relative

to all other deployments. For example, if a deployment has a relatively high number of

 13

deadlock events, then our technique would return engagement reports for deployments

with relatively high number of deadlock events, even though that deployment might be

similar to some other deployment with respect to its workload characteristics. These

reports are valuable when investigating configuration and environment problems (e.g.,

environment error messages, hung threads, and restarts).

Our technique uses readily available yet hardly used information in the customer engagement

repository. Analysts can pick the type of retrieval method to use depending on the situation at

hand. For example, if a deployment is facing a problem of higher response time in some

transactions, it would be appropriate to retrieve reports based on the operational profile. If a

deployment is facing isolated occurrences of applications restarts or hung threads, it might be

appropriate to retrieve relevant reports based on the signature profile. We show the validity and

usability of our technique in practice through case studies performed on two applications – first

the Dell DVD Store application, and second a large enterprise application. Our results confirm the

high performance (i.e., precision and recall) of our technique.

1.3 Overview of Thesis

As we affirmed earlier, performance engineering related activities in the verification and

maintenance phases carry profound impact on software quality and customer satisfaction. This

thesis presents our work targeting performance engineering activities in the verification and

maintenance phases of the software development life cycle. Specifically, we present:

a) A framework for building performance model based capacity calculators, that capture

performance characteristics of the application during the verification phase.

 14

Our framework captures and explains important steps in the process of building performance

model based capacity calculator. The framework is a result of our research and practice in

performance engineering. It helps the performance analyst to automate and speed the task of

building measurement based capacity calculator. We demonstrate our framework using an

open source application as a test-bed. The framework can be reused with customization for

successive builds, successive versions, versions targeting a different platform, or an altogether

different application. We also discuss effort estimation for such customizations. We presented

this work at the Seventh International Workshop on Software and Performance (WoSP)

organized at Princeton, NJ, USA in June 2008 [56].

b) A technique for helping troubleshoot performance issues during the maintenance phase

by retrieving relevant report from a customer engagement repository.

Our technique for customer support on capacity planning marks one of the first efforts to mine

customer engagement reports to solve performance problems of customers. Our technique

retrieves relevant engagement reports based on similar operational profile and similar problem

profile, that helps support analyst apply past knowledge to solve future performance and

capacity related problems. We demonstrate the applicability and generality of our technique

using an open source application and a commercial application as examples. We show the

good precision and accuracy of our retrieval technique using classical metrics of precision and

recall. We presented this work at the IEEE International Conference on Software Maintenance

(ICSM) organized at Beijing, China in September 2008 [57].

We expand the SDLC phases of verification and maintenance in Figure 4 to provide an overview

of how our work helps performance engineering activities in those two SDLC phases. Please note

that we show only performance engineering related activities in the Figure. In the Figure, the

 15

steps to which we contribute in this work are highlighted with thick broken lines. Now we explain

each of the steps from the Figure.

1. In the verification phase, performance engineering activities include load testing, stress

testing and performance testing. In load testing, the application is run for long periods

under high workloads that are typically expected at customer deployments.

2. In stress testing, the workload or the deployment scenario is modified to put excessive

stress on one or more system resources, such as disk, processor and network. The purpose

of both load testing and stress testing is to verify that the application continues to meet

the performance requirements laid for it.

3. The goal of performance testing is not to find bugs, but to establish benchmarks on how

software will perform under different workload and resource availability situations.

Sophisticated performance model is built using the results of the performance tests. Such

performance model is used to build a capacity calculator that allows predicting

application performance under different workload and resource availability situations.

4. The capacity calculator informs customers of required hardware resources to support the

anticipated workload, such as the number of users and the transaction volume. Customers

can now take informed decision on the needed resource capacity to deploy the

application.

5. Performance issues arise in customers’ production environment, which needs

troubleshooting.

6. Customers engage the vendor’s support analyst to resolve the issues with application.

 16

Figure 4: Overview of the Thesis

7. The customer support analyst needs to fix the application deployment, taking clues from

the customer’s operation profile, problem symptoms, operating system and hardware

platform of the deployment at the client site. At the end of an engagement, the support

 17

analyst archives the engagement report to the customer engagement repository. Our

technique helps the support analyst by retrieving relevant reports from the customer

engagement repository, allowing the support analyst to apply the solutions that worked in

similar problem situation in the past.

8. Using the information retrieved by our technique, the support analyst troubleshoots the

customer deployment.

9. The goal of load testing and stress testing is to verify that the application continues to

perform under possible customer deployment scenarios. To that end, the strive to bring

the workloads used in load testing and stress testing closer to real world customer

workloads has always been challenging. Our technique allows comparing log files

generated by running load tests and stress tests against the log files of the customers, so

that the workload in the load tests and stress tests can be modified to make it closer to

real world customer deployment scenarios.

1.4 Major Thesis Contributions

In this thesis we present a framework for building capacity calculators using measurement based

performance models of software applications. The need for such a framework is felt from the

current challenges in performance modeling practices in industry. These models are produced

through a labor intensive and error prone process which always occurs at the end of already late

release schedules. Our proposed framework automates the building of measurement based

performance models. The framework is based on our experience in performance modeling of two

large applications: the DVD store application by Dell Corporation and another larger enterprise

application. We present the limitations of our framework and highlighted our experience in using

it. Moreover we discuss the effort involved in customizing our framework for other applications

 18

and other platforms. The main contribution of our work is the proposal of a framework that brings

together various venues of research to support analysts in their day-to-day activities. Using our

framework researchers can explore contributing and fitting their own research work into the

proposed framework. Moreover, analysts can compare various tools and techniques using the

structure of our framework.

Retrieval of relevant engagement reports helps support analysts resolve client issues quicker and

better. Retrieval of relevant engagement reports is based on similar operational and signature

profiles. We present a technique to analyze the execution logs from the customer engagement

repository and retrieve the relevant execution logs and corresponding customer engagement

reports. Our technique can equally aid in remote issue resolution by identifying relevant

engagement reports and recommending resolution steps. Our technique can be applied

immediately on an application, since the execution logs of most applications are readily available

and are usually archived in the customer engagement repository. It requires no code changes, nor

does it require any data collection from customers. Hence it can be easily adopted by companies

and does not depend on a particular software application, version, build, or platform.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides a literature review of existing

research and practice on the topics related our thesis. Chapter 3 discusses our framework for

building performance measurement based capacity calculators, with the help of a case study.

Then we discuss our technique for customer support for capacity issues in chapter 4. Chapter 5

discusses case studies for our customer support technique. Chapter 6 discusses the results and

limitations of our framework and technique. Chapter 7 concludes with a summary of topics

 19

addressed, thesis contributions, and directions for future research and commercialization of our

research.

 20

Chapter 2

Literature Review

In this chapter we present work in the areas related to the topic of our thesis, that is, capacity

planning and customer support. Our technique for customer support is a data mining technique

based on event correlation, so related work in the areas of event correlation and mining customer

engagement repository is presented. Related work in operational profile retrieval and fault

resolution techniques is also presented, as techniques from these areas are often used for customer

support.

2.1 Capacity Planning

Capacity planning requires accurate performance measurement and modeling. We refer the reader

to the book by Jain [16] as one of best texts on the subject. Goldsmith et al. present a

measurement based technique for modeling computational complexity, to avoid relying only on

theoretical asymptotic analysis [9]. Similar to their work, our framework aids in measurement-

based modeling, rather than analytical or simulation based modeling. Their modeling effort is for

algorithmic performance of non-Markovian applications. In contrast, our modeling effort,

presented in chapter 3, is for enterprise applications which are Markovian in nature. In Markovian

systems, service demands from each new request are independent of previous requests and the

current state of the application [16]. Moreover, the presented framework would be useful to

Goldsmith et al. in performing and managing the numerous performance tests required for

empirically measuring computational complexity.

A tool called JUnitPerf developed by Clarkware Consulting helps automate performance testing

during the development cycle [19]. JUnitPerf helps reuse the unit tests written in JUnit [18] for

performance testing of code units, as the developers finish coding and refactoring. JUnitPerf is

 21

valuable for performance testing during the development cycle. However, our framework,

presented in chapter 3, is used to model the overall performance of the whole application before

shipping instead of modeling a particular unit of code.

Mania and Murphy present a framework for automated LQN based performance modeling [27],

which is derived from the trace-based modeling technique proposed by Woodside et al. [13].

Smith et al. propose a process for building software and system performance models from UML

models [41]. Both Mania and Murphy’s framework, and Smith’s process are limited to analytical

performance modeling, in particular LQN based modeling. In contrast, our framework is used for

measurement based performance modeling.

2.2 Event Correlation

Techniques that analyze the run-time behaviour of programs are called dynamic analysis

techniques. In contrast, static analysis techniques analyze the program’s text [45]. Static analysis

derives properties that hold for all executions, while dynamic analysis derives properties that hold

for one or more executions. Hence, dynamic analysis lends itself well to reasoning that involves

compare and contrast. Dynamic analysis includes both offline techniques that operate on a trace

of the system's behavior, and online techniques that operate while the system is producing its

behavior. Common examples of dynamic analysis techniques are profilers, memory allocation

monitors, assertion checkers, and event correlation. Among these, we focus on event correlation,

as our technique for customer support, presented in chapter 4, is based on event correlation. Event

correlation strives to produce conceptual interpretation where new meaning is assigned to a set of

events happening within a pre-defined time interval [17]. For example, consecutive events

“Message received” and “Message queue full” could be automatically interpreted together as an

 22

event “Message not delivered due to event queue full”. Jakobson and Weissman have considered

the following common event correlation operations in their work:

• Compression: Reduction of multiple occurrences of identical events into a single event

• Filtering: Suppression of an event if one of its parameters has a certain value

• Suppression: Suppression of an event if a certain operational context is present

• Counting: Counting and thresholding of repeated arrivals of identical events

• Escalation: In presence of a certain operational context, assigning a higher value to a

certain event parameter (e.g., severity)

• Generalization: Replacing an event with an event from its superclass

• Specialization: Replacing an event with an event from its subclass

• Temporal relationship: Correlating events depending on the order and time of their arrival

• Clustering: Classification of events or information associated with events into groups

(clusters) based on some common traits

Out of the aforementioned event correlation operations, our customer support technique includes

generalization, counting, filtering, and clustering operations. We generalize log lines to events by

removing instance-specific dynamic information. Then we count the occurrences of the events to

obtain an event distribution. To obtain a signature event distribution, we filter all the other events

to obtain a signature event distribution. Lastly we classify the engagement report associated with

the event log file as either “similar to” or “different from” a given event log file. We discuss these

operations in greater detail in chapter 4.

2.3 Mining Customer Engagement Repository

With the increasing application of computing in science, computing, and government, there has

been an explosive growth in electronic data and databases. This led to a growing demand for tools

 23

and techniques to analyze the electronic data to discover knowledge, such as patterns,

classifications, associations, and anomalies. Consequently, data mining is becoming an

increasingly important research area. Based on kind of knowledge extracted, data mining

techniques are commonly classified as classification, clustering, association, summarization,

prediction and pattern mining. A variety of techniques are used in data mining, including

database-oriented, machine learning, and statistical techniques.

Even though mining of other software repositories has been well explored, there has been little

research work in the area of mining of customer engagement repository since Hui and Jha [12]

proposed mining the customer support repository for the manufacturing industry to retrieve

relevant reports. The authors apply mining techniques, such as neural networks, case-based

reasoning, and rule-based reasoning on the textual service records stored in the repository.

However, success of their technique would depend on the willingness of the support analysts of

previous engagements to enter large textual information, and the search skills of the support

analysts working on later engagements. In contrast, our technique for customer support, discussed

in chapter 4, is based on applying statistical techniques on the execution logs attached to the

engagement reports; hence it does not need to rely on manually entered textual information.

2.4 Fault Resolution

In chapter 4, we propose a technique for fault resolution in production deployments of enterprise

applications at customer site. Different classes of techniques have been researched and applied to

fault resolution in different areas of computing. For instance, spectrum based fault localization

and model based diagnosis have been successfully applied in fault resolution in hardware and

embedded systems [55]. Rule bases reasoning is another prominent class of techniques for fault

resolution in software support, originally proposed by Cronk et al [6]. Rule based reasoning

 24

systems build, query, and update a knowledge database of symptom-solution. However, Lewis

noted [23] that rule based reasoning methods tend to suffer from difficulty in adapting to new

problem situations, and large knowledge database, leading to unpredictable results. Lewis

proposed case based reasoning as a means to overcome limitations of the rule based reasoning.

The case based reasoning enhances the previous approach with user-feedback-capturing in order

to update the knowledge database. Our technique, presented in chapter 4, however, is

fundamentally different, in that it draws from event correlation and statistical analysis. One of the

advantages of our technique is that we do not need to create and maintain any manual metadata,

apart from the customer engagement report routinely prepared at the end of a customer

engagement. Hence, we believe our technique is easier to deploy and maintain.

2.5 Operational Profile and Signature Profile Retrieval

We use execution logs as representatives of operational profiles which capture the workload

characteristics of an application. There are many techniques to create operational profiles, such as

[8, 28, 33]. Our technique for customer support is different from those approaches in that it goes

on to compare execution logs based on the operational profiles that they represent, without

actually retrieving operational profiles.

Unlike operational profiles, signature profiles are not well explored by researchers and

practitioners. Researchers working in areas related to software quality and reliability often

analyze signature events in an application [1, 47]. However, retrieval of engagement reports

based on the signature profile, as done in this work, has not been proposed.

2.6 Summary of Literature Review

We presented related research work in the areas that this thesis touches: capacity planning, event

correlation, mining customer engagement repository, and operational profile and signature profile

 25

retrieval. While capacity planning has over the years gained significant research and practical

body of knowledge, limited research has been done in measurement based modeling and capacity

planning challenges. No systematic technique exists for retrieving relevant reports from a

customer engagement repository of software applications.

 26

Chapter 3

Framework for Building Capacity Calculators

In this chapter we discuss our framework for building capacity calculators. Building measurement

based performance model requires running and analyzing a large number of tests. We propose a

framework for building capacity calculators using measurement based performance modeling.

Figure 5 shows the various steps in our framework. Our framework constitutes of the following

steps:

1) Test enumeration determines the set of performance tests that should be executed. The

aim of the test enumeration step is to define the search space of all the tests which should

be executed to build an accurate performance model.

2) Test reduction uses domain knowledge and historical information from prior runs to

reduce the number of performance tests. Moreover test reduction uses statistical and

experimental design techniques to reduce the number of tests that should be run.

3) Environment setup automates setting up the environment for performance testing. This

includes installing the application and load testing tools. The application and the tools

may be required to run on different operating system platforms. To support multi

platform applications, practitioners can customize this step and reuse the other steps

across platforms.

4) Test execution automates the task of running the test suite. It has three major activities

of: Test Setup, Test Run, and Test Shutdown. This step is customizable to allow the use

of performance/load testing tool that can be invoked automatically (e.g., from the

command line).

 27

Figure 5: Our Framework for Building Capacity Calculators

5) Test transition prepares the environment to execute the next performance test from the

tests specified in the first step in our framework. The practitioner can configure the

framework between one extreme of full restore and restart of the system under test and

the other extreme of directly starting the load for the following test. The framework

automatically executes the transition steps after finishing each performance test.

 28

6) Test analysis step first compares the test results against other test results and against

heuristics to detect any issues with the performance test itself. Next, the metrics from the

performance counters are analyzed to draw the relation between performance counters

and load injected.

7) Model building In this final step, a regression model is built using statistical analysis

tools, which models the application performance as a function of its load parameters.

8) A performance database stores the performance test and analysis data. The database is

used in the test reduction, test analysis and model building steps. The database could be

implemented using sophisticated database systems, or using files.

The framework permits performance analyst to encode the various heuristics that are used in their

model building process on a daily basis. By encoding the heuristics they ensure that their model

building process is repeatable. The documentation of the heuristics permits analysts to closely

examine these heuristics and update them as their understanding of the application matures.

Analysts could also replace their heuristics with more sophisticated techniques as they evolve

their modeling process. In the next section, we describe the Dell DVD Store application, which

we have used as a running example to demonstrate the various steps of our framework. We

describe each step of our framework in section 3.2 to section 3.8. Section 3.9 discusses the efforts

required to customize the framework to use it for a different build, different version, different

platform or different application.

3.1 The Dell DVD Store Web Application

We now briefly introduce the Dell DVD Store application. The DVD Store (DVD Store 2 or

DS2) application is an open source enterprise software application. The DS2 application is

 29

developed by Dell as a benchmarking workload for white papers and demonstrations of Dell’s

hardware solutions [14]. DS2 seeks to emulate today’s online stores, architecturally and

functionally. As shown in Figure 6, the DS2 application has two-tier architecture: an application

server that hosts JSP pages, and a database server that hosts stored procedures, triggers and

relational data. The load generator can generate load on different application servers, or directly

generate load on the database server, skipping the application server altogether if the focus of

performance test is to be on the database server. The source code for the load generator can be

compiled to run on various platforms.

Client
Emulator

Application Server (Apache Tomcat)

Thread
Manager

Server
Engine

DB
Connection

Pool

Database
Server

Figure 6: DS2 high-level architecture

The load generator emulates website users by sending HTTP requests to the application front-end.

The application front-end encodes the various business rules, e.g. ordering new titles, declining

an order in case of insufficient inventory. All customers, titles and transactional data are stored in

the database server tier.

We preferred DS2 over other benchmarks for many reasons. First, it is open-source software,

which allowed us to debug and fix many issues. Second, it is simple and straight forward to use,

through a command line interface. Furthermore, it does not require any commercial software to

get it running; we could use Apache Tomcat for application server and MySQL for database

server.

 30

We modified the Application Server code to capture more metrics, including the average time

spent in obtaining a connection, average number of threads waiting for connection, average

number of threads sleeping. For the purpose of conducting experiments, we also modified the

code to allow us to configure the maximum number of connections in the database connection

pool.

We had to fix a critical dead-lock situation to allow us to conduct performance tests at

concurrencies significantly higher than ever done before on DS2. The application server tier

would open first connection with the database to allow customer login and querying its purchase

history. Then after, it would open a second connection to browse the titles related to the titles in

the customer history. After a few minutes of run, all the Application Server threads would end-up

waiting for the second connection after capturing the first connection. As it was not possible with

the current MySQL driver to reuse connection, we modified the code to do not query the purchase

history and related titles. All these would not have been possible with any commercial closed-

source benchmark. We now explain each step of our framework using the DS2 application as a

running example.

3.2 Test Enumeration

The first step towards performance modeling of a software application is to enumerate the list of

performance tests which should be performed to build a performance model that would fulfill the

requirements of customers. This step is the only manual step in our framework. Our framework

automates the execution of the remaining steps. The test enumeration step consists of four

phases. We discuss below each phase using the DS2 application.

 31

Phase 1: Enumeration of functional transactions

The performance analyst begins with enumerating the functional transactions available in the

application. For our case study, the functional transactions in the DS2 application are:

i. Creation of a new customer profile

ii. Customer login

iii. Searching for titles by category, actors, and genre.

iv. Purchasing a title

Phase 2: Mapping functional transactions to workload classes

The performance analyst needs to map the functional transaction to workload classes. Multiple

transactions can be grouped and modeled as a single workload, or each transaction can be

modeled as a separate workload. The analyst should decide based on the granularity and level of

details required in the model. For example for the DS2 application, if we are not interested in

modeling the performance demands of each individual transaction, we can consider a sequence of

login-search-purchase transactions as a single workload, as done by researchers at Dell [30].

Rather, we decide to consider each transaction as a workload class. We consider that the sequence

of login-search-purchase as a single workload may not be a valid assumption since a user might

do several search operations before making a purchase.

Phase 3: Prioritizing workload classes for test execution

The workload classes should be prioritized since the framework will execute tests to ensure that

each workload is represented in the final performance model. For instance, if the performance

model is being built for a new release in which the purchase functionality has been modified to

accept a new method of payment, the analyst may decide to only execute the tests corresponding

to the purchase workload and to reuse the data for other tests from the older model of the

application.

 32

Phase 4: Picking the ranges for each workload class and the step size within a range

The range for each workload class and the step size within the range are picked based on the

experience of the analyst, the requirements imposed on the final performance model, and

historical knowledge about the application. For instance, if a particular setting would peg a

hardware resource at full utilization, the workload might be too high for the system to handle so

the range should be adjusted. In the absence of historical data, some trial and error might be

required to decide the ranges and stepping size, so that the measurement points are evenly

distributed. Now we enlist the settings available for the DS2 workload classes, so that we can

enumerate the tests with different values of those:

1. Frequency of a transaction: Number of transactions per hour.

2. Concurrency: Number of processes or threads concurrently generating the load on the

application.

3. Search categories: Search by name, category, actors or genre.

4. Purchase quantity: Number of DVDs purchased in one transaction.

The frequency and concurrency settings are applicable to all four workload classes. The search

category settings are applicable only to search workload. The purchase quantity settings are

applicable only to purchase workload. Table 1 shows the relation between the various settings

and the workload classes. All four settings (frequency, concurrency, search, and purchase) have

four levels.

Performance tests should be conducted at various combinations of the available settings for each

workload. For instance, the Login workload class has 4 levels for the frequency and concurrency

settings resulting in 16 possible combinations, for which a performance test needs to be

conducted. Based on studying the documentation of the DS2 application, we decided not to

 33

consider the interaction between the workload classes, since each workload class has a service

demand that is independent of the demands of any other workload class. Based on our assumption

and the number of settings, we have enumerated a total of 144 performance tests, as detailed in

Table 1. If a performance analyst were to consider the interaction between the workload classes,

then the number of tests would be quite larger using a factorial experiment design technique [16],

as the total number of tests would be the multiplication of the number of possible tests for each

workload class.

Table 1: Enumeration of performance tests

Workload

Class

Frequency

Levels

Concurrency

Levels

Other Performance

Tests

Create Profile 4 4 - 16

Login 4 4 - 16

Search 4 4 4

(search parameters)

64

Purchase 4 4 4

(purchase quantity)

64

Total Number of Performance Tests 144

3.3 Test Reduction

Test reduction is the second step in our framework. As discussed in section 3.1, the large number

of performance tests and long test durations are some of the key challenges in measurement based

performance modeling. Hence, it is necessary to introduce this step in the framework to reduce

the number performance tests. However, there has been little research interest in performance test

reduction methods. In this section, we propose a few performance test reduction methods,

borrowing ideas from other research areas. We classify these methods as one of two types: static

and dynamic. The static test reduction is a manual process, requiring good knowledge of the

 34

requirements of the performance model and the implementation of the application. The dynamic

test reduction methods are based on mathematical tools and techniques, which are built into the

framework and are carried out automatically.

3.3.1 Static Test Reduction

There usually are several functional transactions in a large software application. However, all of

the functional transactions may not be important for performance modeling. For instance,

customers who want to deploy a DVD Store application would not be much interested in the

performance of the admin functionalities. Rather, they would like to know how the store front

performs in regards to customer operations. Hence, uninteresting functional transactions can be

filtered out. Such a reduction method draws from the knowledge of the requirements.

Another set of reduction methods draws from the knowledge about the implementation. For

instance, if two features are similar to each other, it might be sufficient to conduct performance

tests on only one of them. For example, purchasing a DVD and purchasing a DVD Collection

features might differ by only a few code modules, so the performance analyst can decide to build

a model that captures only one of the features to reduce the number of needed tests, at least in the

first iteration of model building.

3.3.2 Dynamic Test Reduction

The idea of test reduction has been researched thoroughly in the functional testing area [37, 49].

However, this idea has not been explored much for performance testing and modeling. We

present a few approaches, which although used for other purposes, can be practically used here.

The Pareto principle [20] suggests that a small number of the application features account for

majority of the issues. This principle is applicable to functional as well as performance issues.

 35

The dynamic test reduction techniques seek to identify those few features which contribute

significantly to application performance and only execute the tests that correspond to these

features.

The framework supports using the aforementioned methods or other research work in a plug-and-

play fashion. In our case study, we used a simplistic method for test reduction. We ran the two

extreme performance tests for each workload class: one with the lowest value and another with

the highest value from the entire array of workload sizes, as derived after the test enumeration

step. For instance, we ran the test for Purchase workload with quantities: one, and one thousand.

If the framework does not discover significant differences in performance between these two

tests, the framework skips the tests corresponding to the intermediate values. However, if the

framework discovers significant differences in performance due to the parameter settings (such as

concurrency, frequency and search type), it conducts the remaining tests for those settings. Using

this simplistic method we could reduce the number of tests from 144 tests to 64 tests. The

reduced list of performance tests is shown in Table 2.

3.4 Environment Setup

The environment setup is the third step in our framework. This step is designed to install the

application and the performance/load testing tools. Currently environment setup in the industry is

a manual, ad-hoc and error-prone process. There has not been much research work on automating

this step.

In our framework, we automated and implemented this step using a set of scripts in a stand-alone

module, which is invoked by the framework engine. The scripts set up multiple computer systems

– the application servers, database servers, load generators and performance tracking machines.

The scripts then verify the correctness of environment setup by making sure that the relevant

 36

processes and services are running. However, each application and load testing tool has its own

installation steps. Hence, we anticipate a significant amount of rework is required in this step

when customizing the framework to another application or platform. We discuss the efforts

needed for customizing our framework in Section 3.9. Despite relatively large customization

efforts needed for this step, our experience using the framework shows that it is worthwhile to

automate this step, considering that the customization effort is a one-time effort.

Table 2: Reduced list of performance tests for DS2

 Frequency (transactions per hour)

 20 40 60 80

Co
nc

ur
re

nc
y

25
0 Creating Customer Profile T111 T112 T113 T114

Customer Login T121 T122 T123 T124

Search Title T131 T132 T133 T134

Purchase Title T141 T142 T143 T144

Co
nc

ur
re

nc
y

50
0 Creating Customer Profile T211 T212 T213 T214

Customer Login T221 T222 T223 T224

Search Title T231 T232 T233 T234

Purchase Title T241 T242 T243 T244

Co
nc

ur
re

nc
y

10
00

Creating Customer Profile T311 T312 T313 T314

Customer Login T321 T322 T323 T324

Search Title T331 T332 T333 T334

Purchase Title T341 T342 T343 T344

Co
nc

ur
re

nc
y

15
00

Creating Customer Profile T411 T412 T413 T414

Customer Login T421 T422 T423 T424

Search Title T431 T432 T433 T434

Purchase Title T441 T442 T443 T444

 37

3.5 Test Execution

Conducting performance tests is a lengthy and tedious step. This major step is further divided into

three sub tasks: test setup, test run and test shutdown.

3.5.1 Test Setup

Each component of the application may need a set of test data for a particular test. For instance,

the DVD Store application in our case study needs to be loaded with test data of DVD titles,

registered customers, and their purchase history. Another important task in test setup is the

configurations of the application server, the database server and the load generator. Different

setting of the configuration parameters values can lead to drastically different performance

results. It is important to associate a performance test result with its configuration for the test

analysis step. Our framework archives the configuration files of the application with each

performance test.

Being confident that the tests are not affected by any one-off anomalies includes making sure that

the application is in a correct state before triggering the test. Problems with test setup are not

usually captured until the test analysis step, when the counters contradict themselves or do not

match expectations. For this reason, it is of prime importance to validate the test setup.

Our framework allows the writing of custom routines for test data setup, configuration, and setup

validation. These routines are invoked by the framework before triggering the test, thus allowing

complete automation of test setup tasks. Our experience at using the framework shows that such

custom routines provide significant time savings.

3.5.2 Test Run

There has been considerable work in recent years in automating the running of load and

performance tests. Sophisticated performance/load testing programs such as LoadRunner and

 38

WebLOAD are available. These programs include 1) tools to record a script which represents the

workload class that is being tested, and 2) tools to generate workload by playing multiple

instances of the recorded scripts that emulate real-life concurrent users. To conduct the tests,

multiple instances of the recorded scripts are played from the load generating machines,

simultaneously probing the performance of the application. Once the scripts representing the

workload classes are recorded, running of each test is a three step process:

1. Start the performance counters.

2. Turn on the application.

3. Start the load generating tools.

Starting of the performance counters can be the last or the first step in the process. However,

starting the counters first allows capturing the transient response of the application while it is

being turned on and the load is building up. Each of these three main components of the test setup

might have multiple subcomponents that need to be turned on in appropriate sequence.

Appropriate time gaps might be needed between the successive steps.

Similar to test setup, the framework achieves automation in running tests by allowing scripting

and error checking of this important step in a modular way.

Each performance test goes through three phases:

1. Warm-up: Also known as ramp-up phase, during which the application is being subjected to

the workload. However the workload is not at its full strength but it is building towards the

designated workload level.

2. Steady-state: The warm-up phase gives way to the steady state phase if the environment is

well configured and the application can sustain the workload. During this phase, the

performance metrics are normally distributed with respect to the average.

 39

3. Cool-down: Also known as ramp-down phase, during which the load generator gradually

stops injecting the workload and the resource utilizations gradually drop as the workload is

winding down.

3.5.3 Test Shutdown

The load generating tools should be shutdown. Often, the load generating tools are timed and can

be setup to shutdown once a test is completed. The application under test may need to be

triggered for shutdown or may continue running for the following tests. The decision to shut

down or to continue running the application is taken by the Test transition step. To remove the

need for manual intervention, the framework manages this process with scripting and error

checking.

3.6 Test Transition

Test transition is the process of switching from one performance test to the next. There are

various approaches for test transition. The fastest way to transition is to conduct the tests back to

back, meaning to start loading the application with the new workload, as soon as testing with the

previous one is completed. This approach results in fast test transition. However, it may not be

recommended in all instances, since the residual load from the previous test may interfere with

the next test. A slightly better transition approach is to add a delay, ranging from a few seconds to

few minutes, between performance tests, so that the residual load would flow out of the system.

The length of the delay can be determined experimentally. In practice, it is preferable to use a

heuristic based transition approach. The approach uses heuristics which monitor a few metrics to

determine if the residual load has flowed out and the system has reached idle state. For example,

a check can be made on application resources to ensure that the next test is not triggered until the

processor utilization of the application machine is below a particular threshold (e.g., 5%).

 40

For some application domains, previous test data if continually accumulated can affect the results

of the following tests. For example, mail server applications continuously accumulate emails so if

the mail store is not cleaned up after every test, then the size of mail store will keep on increasing.

With an ever increasing mail store size, the disk resource might show sluggish performance in the

following performance tests. A regular archival process should be setup. After archival, fresh test

data for a particular test should be loaded. The best approach for such application is to clean-up

and restart the application after every test. The clean-up and restart approach would ensure that

there is no interference between performance tests.

Similar to the previous steps, the framework manages to automate these tasks with modularity of

invoking custom routines that carry out these transition tasks.

3.7 Test Analysis

Data derived from each executed test should be analyzed for absence of errors. Manually

analyzing the performance counters and application logs for these purposes could be time

consuming, tedious and repetitive task due to the large amount of produced data. Our framework

goes a step beyond by not only automating the analysis for errors, but also using the analysis for

test reduction and model building.

The framework triggers the analysis of the results automatically after a test is completed. The

major tasks of validating the test and analyzing the metrics are discussed in the subsections

below.

 41

3.7.1 Test Validation

Several problems can arise during a performance test. For example:

• A functionality bug, e.g. a memory leak or inefficient implementation which results in a drift

of the hardware resources towards instability during the test.

• An interference from other processes or applications such as automatic download and install

of critical OS patches, or disk backup, These processes would cause abrupt changes in

resource availability and would lead to invalid values for the performance counters.

• A physical aspect, such as the rise in the operating temperature of the data center housing the

application under test. This temperature rise may lead to invalid performance counters.

Such problems leave the performance test data unusable for analysis and model building. To

detect such problems, the framework invokes validation routines, which check if the application

reached and maintained stability during the performance test and all counters are within their

expected bounds. Moreover the logs produced by the application are mined to detect any

execution anomalies which may indicate bugs in the application. There exists various log mining

techniques to detect bugs from logs [50]. A performance analyst can choose a technique based on

their needs.

A simple way to detect instability is the method of central moving average, which filters short

term fluctuations and highlights long-term trends. The instability in Figure 7 could be easily

detected algorithmically using this method. The method would show that the hardware resource

usage keeps on growing throughout the test and never stabilizes.

 42

Figure 7: Instability in Resource Utilization

Our implementation of the validation module for the DS2 does four types of validations:

1. If the application reaches and maintains steady state during the test, but the utilization of a

resource is above 90% then we flag that test as unusable for modeling purposes. The reason

being, that measurement data at high utilizations are hardly reliable and repeatable [31].

Furthermore, all scheduled tests at higher settings than the current test are skipped (as part of

the test reduction step). This technique helps avoid wasting time in conducting performance

test which would produce invalid data due to overloading of the application.

2. If the application does not reach steady state (exhibit ever increasing or ever decreasing trend

in resource utilization), then we flag the test as unusable for modeling purposes. However, the

framework continues executing the tests at higher workload settings, unlike the previous case,

because instability in the current test may not necessary result into instability in tests at the

higher workload settings.

 43

3. If a performance test with the same workload was executed previously (for a previous or

same build/version), and the measured metrics (utilization, response time, throughput) differ

by a configurable boundary value, the framework flags the current test as a possibly bad run.

The performance analyst can then do further analysis of such bad runs. After solving any

issues, the framework can run incremental modeling tests, only executing the performance

tests that were flagged out previously.

4. If the logs of the application show errors during a performance test show, then we flag the

test as unusable for modeling purposes. However, the framework continues executing the

tests at higher workload. The performance analyst can override this decision and incorporate

the results of this test in the modeling if they deem that the reported errors are not

performance critical.

After all the tests are automatically executed by the framework and results are presented to the

performance analysts. If there are any failures, manual debugging may be required to find the root

cause of test failure. Once problems are fixed, the flagged test can be re-run. The modularity and

automation in the framework allows the re-running of all or only a subset of the performance

tests.

Using our framework’s validation step, we identified a dead-lock bug in the DS2 application. The

application server tier would first open a connection to the database in order to allow customer to

login and query its purchase history. Then the application would open a second connection to

browse the titles related to the titles in the customer history. Within a few minutes of running a

test, all the threads in the application server would end-up waiting for the second connection after

capturing the first connection. As it was not possible with the current MySQL driver to reuse

connection, we modified the code to do not query the purchase history and related titles. We had

 44

to fix the bug to allow us to conduct performance tests at concurrency levels that are significantly

higher than previously modeled for DS2. Once we fixed the bug, we could perform modeling at

higher concurrency levels.

3.7.2 Metric Analysis

For each performance test, the counters collected during the warm-up and cool-down periods

should be pruned from the analysis, while the counters from the steady state time period are

carried forward for analysis. Then, counters are imported in a statistical analysis package, such as

R [32], and statistical functions are applied to derive the average performance metric values.

Traditionally metric analysis has been a tedious manual task in performance modeling studies.

We automated this task by creating a script module that is invoked by the framework. The scripts

chop off the performance counter data captured during the warm-up and cool-down periods of

each test. We keep the length of the warm-up and cool-down period configurable in the

framework, to allow it to be easily customized for different applications. Finally, the framework

obtains the average metric values and stores the values in the performance database to support the

modeling effort.

We observed that for the DS2 application, a warm-up period of ten minutes was enough to reach

steady state. The cool-down period for DS2 was negligible because of the way the load

generating tool operates – it does not ramp-down the load during the trailing period of a test, it

rather drops the load from its determined levels to zero when the test time is up. However, many

performance analysts choose to keep the warm-up and cool-down period quite longer, to show the

longevity and sustainability that are desired in commercial application.

 45

3.8 Model Building

In the previous step, the framework produced the performance metrics at different workload

sizes. In this step, the framework invokes the R statistical tool which builds a linear or nonlinear

regression model for the performance of the application. Figure 8 shows an example of fourth

order regression model between response time and processor utilization. Once a regression model

is built, performance predictions at arbitrary load levels are done using the fitted model. For a

comprehensive discussion of regression models and prediction techniques, refer to [16],

particularly chapters 14 and 15. The developed regression model could be used as a backend for a

capacity calculator.

Figure 8: Fourth order regression model

3.9 Customization Efforts

A major benefit of adopting our framework is the ability to reuse modeling efforts when building

performance models for other applications; or other platforms, versions and builds of the same

application. In addition to using the framework for building capacity calculator for the DS2

application, we are using the framework for building capacity calculators for a large multi-

platform enterprise application.

 46

Table 3: Estimated efforts for customizing our framework

Framework
Step

Another
Build

Another
Version

Another
Platform

Another
Application

Test Enumeration Minimal Reasonable Minimal Extensive

Test Reduction Minimal Reasonable Minimal Reasonable

Environment Setup Minimal Minimal Extensive Extensive

Test Execution Minimal Minimal Reasonable Extensive

Test Transition Minimal Minimal Reasonable Reasonable

Test Analysis Minimal Minimal Minimal Reasonable

Model Creation Minimal Minimal Minimal Minimal

When reusing the framework, several steps in the framework need to be customized to achieve

automation. Table 3 lists the estimated efforts needed to customize the steps in our framework.

We classify the customization efforts as Minimal, Reasonable or Extensive. Minimal efforts are

characterized by a quick review of the step; most of the implementation would be applicable as it

is, with little changes needed. Reasonable efforts imply the need for changing or rewriting of

some parts of the implementation of that step. Extensive efforts are characterized by a major

rewrite of the implementation for that step.

We anticipate that the efforts to customize the framework for another build to be minimal,

because all the steps would be applicable, as they are. For instance, no changes to the framework

were needed after we produced a new build of the DS2 application after we fixed the bugs in it.

For another version of the same application, reasonable efforts may be required in test

enumeration and reduction, considering that new features introduced in the version would result

in additional workloads which should to be tested and modeled. The rest of the framework would

still be applicable as is. Continuing the example of the DS2 application, if, for example, a Buyer

Feedback feature is added to the application, then only new tests related benchmarking of Buyer

 47

Feedback workload need to be added. The new feature would not induce any major changes to

the implementation.

To customize the framework for the same application running on a different platform, the setup

and transition steps would need a rewrite of most of the implementation, resulting in extensive

effort requirement. However, spending the extensive efforts to customize the framework would

show returns many times, which would easily justify the cost. For example, once the framework

is implemented for the DS2 application for Microsoft Windows server using Windows scripting,

to build the framework for benchmarking the DS2 application on Linux server, the scripts for

environment setup, test execution and test transition would need to be rewritten using Linux shell

scripts. If a portable scripting language, such as PERL is used, the logic implementation would be

reusable but functionality that interact with processes and job scheduling would still need to be

updated.

To customize the framework for a different application deployed on the same platform,

reasonable efforts are required in the setup, execution and analysis steps because changes to the

automation scripts are needed.

3.10 Chapter Summary

Building capacity calculator using measurement based performance model is a challenging

process, requiring running a large number of performance tests in several steps. We presented our

framework for building capacity calculators that seeks to automate and speed up the process. We

provided the details of each step in the framework, demonstrating those steps using an example of

the open source DS2 application. We also discussed estimated efforts needed to customize the

framework. The next chapter discusses our technique for customer support on capacity planning.

 48

Chapter 4

Technique for Customer Support on Capacity Planning

As established in Chapter 1, our work focuses on helping performance engineering and capacity

planning tasks in the important SLDC phases of verification and maintenance. In previous chapter

we discussed our framework for building capacity calculators, an important activity in

verification phase. In this chapter we provide details of our technique to help customer support on

capacity planning related issues that appear during the maintenance phase.

Our technique takes the execution log files for a customer as an input and retrieves the relevant

execution log files and corresponding customer engagement reports from the engagement

repository. Our technique retrieves two sets of engagement reports: (a) a set based on similar

operational profile, and (b) a set based on similar signature profile. Figure 9 summarizes the steps

of our technique. Algorithm of our technique is summarized as follows:

 Obtain events distribution P for the input execution log

 Obtain signature events distribution S for the input execution log

For each execution log Ri in the engagement repository

 Obtain events distribution Pi

 Obtain signature events distribution Si

 Calculate distance Dp between P and Pi

 Calculate distance Ds between S and Si

End For

Present engagement reports from the repository sorted by ascending order of Dp

Present engagement reports from the repository sorted by ascending order of Ds

 49

Customer
Execution Logs

Convert Log Lines
to Event

Distribution

Compare Event
Distributions

Customer
Engagement
Repository

Compare Event
Distributions

Identify
Signature Events

Signature Event
Distribution

OUTPUT RESULT SET

Closest Customer
Engagement Reports

wrt
Signature Profile

Closest Customer
Engagement Reports

wrt
Operational Profile

Event
Distribution

Figure 9: Our Technique to Retrieve Relevant Engagement Reports

Our technique obtains event distribution from the customer execution logs by removing dynamic

information from the logs lines. Then it obtains a signature event distribution by identifying and

keeping the signature events and removing all other events from the event distribution. Similarly,

 50

our technique obtains event distribution and signature event distribution for each of the

customer’s execution logs in the engagement repository. Then our technique compares the event

distribution of the incumbent customer to the event distribution of each of customer’s execution

logs stored in the engagement repository. Comparing the event distributions allows ranking of the

execution logs in the repository by their distance from the incumbent customer’s execution logs.

Using that ranking, closest customer engagement reports are presented to the support analyst, so

that the support analyst can apply the solution steps that worked in those engagements to the

incumbent customer engagement. The same process of comparing, ranking and presenting the

engagement reports is done for the signature event distributions. Next section examines execution

logs of enterprise applications. Section 4.2 to section 4.5 discusses the steps in our technique for

customer support. Section 4.5 discusses how we measure the performance of our technique.

4.1 Execution Logs

An operational feature of an application is made up of one or more code modules. A code module

can generate one or more events in the execution log once it is executed. Thus, one of the most

readily available information related to application usage at any customer deployment site is the

execution logs (or activity logs). The execution logs typically contain time-stamped sequence of

events at run-time. Figure 10 shows a sample execution log for an enterprise collaboration suite,

such as Zimbra [54] or Microsoft Exchange Server [29]. We note that execution logs tend to be

quite large in size, as they record code module level activities at runtime.

Execution logs help remote debugging by providing a detailed context for field issues. While

many applications are designed with their own logging mechanisms, logging frameworks such as

the Apache Logging Services [2] can be used to enable event-logging in applications.

 51

<time> Queuing new mail msgid=ABC threadid=XYZ

<time> New meeting request msgid=ABC threadid=XYZ

<time> Instant msg. Sending packet to client msgid=ABC threadid=XYZ

<time> Client established IMAP session emailid=ABC threadid=XYZ

<time> Client disconnected. Cannot deliver msgid=ABC threadid=XYZ

<time> New contact in address book emailid=ABC threadid=XYZ

<time> User initiated appointment deletion emailid=ABC threadid=XYZ

<time> Instant msg. Sending packet to client msgid=ABC threadid=XYZ

Figure 10: An Example of Execution Logs

4.1.1 Legal Requirements on Application Logging

In response to increased accounting and security regulations, governments in various nations

created laws requiring the logging of the execution of enterprise and financial applications. For

instance, the Sarbanes-Oxley Act of 2002 [43] in the US, and the EU directive of 2006 on data

retention [7] are major steps in that direction. These legal requirements helped increase the

availability of the execution logs required as an input for our technique. There has also been an

increased concern over privacy and security information present in the execution logs. It is

common to remove such sensitive information from the logs before passing it for application

analysis. Our log mining technique works equally well on such anonymized execution logs.

4.1.2 Execution Logs vs. Tracing Logs

Execution logs are routinely generated at customer installation sites according to selected logging

levels. Execution logs contain activity events (such as “Account verified” or “Message

delivered”) as well as error events (such as “Message queue full” or “Too many requests, server

busy”). In contrast, tracing logs (or implementation logs) are generated by code instrumentation

or statistical sampling using profiling tools. Tracing logs provide lower level details, such as

logging of each function call during runtime (such as “Function CheckPassword() called”).

 52

While tracing logs provide more accurate details, they are mainly used during development [11]

and result in a high overhead on the application. Hence tracing logs are not normally available at

customer sites, though they might provide a better representation of the operational and signature

profiles. For this work, we use the readily available execution logs.

4.2 Obtain an Event Distribution from Log Lines

Execution logs are composed of dynamic and static information. Each log line has static

information about the execution event and dynamic information that is specific to the particular

occurrence of that event. We must obtain log events from the execution log lines by removing the

dynamic information. We use an approach which employs clone detection techniques to identify

the variation points for each log line and abstracts the variation points by replacing those with

generic tokens [53]. For example, given the two log lines “Open inbox user=A” and “Open inbox

user=B”, our technique would abstract both the log lines to the event “Open inbox user=?”.

Once the log lines are abstracted to events, we obtain a distribution of log events by event

counting. The event distribution is then normalized as the percentage of each event in the event

log, so that we can compare event logs for different running times without bias. For retrieval

based on signature profile, we want to give higher weight to the events occurring at lower than

normal rate (rare events) over events occurring at higher than normal rate. To give events with

lower than average occurrence a boost in the distribution, the frequency for each event is inverted

in the signature distribution.

An example of three logs files is shown in Table 4. R1, R2 and R3 represent the original event

distributions of three log files F1, F2 and F3 respectively. Their corresponding operational event

distributions P1, P2, and P3 are used for operational profile based retrieval. The last three

columns S1, S2 and S3 show the inverted event distributions used for signature profile based

 53

retrieval. This example is used as a running example in this section. Looking at the frequencies of

the events in R1, R2 and R3, we expect our technique to show that F1 is closer to F2 in terms of

operational profile, while F1 is closer to F3 in terms of signature profile. Note that this is a very

small example intended to show our technique at work. For real applications, the number of

events is expected to run into hundreds or thousands, instead of just five events as considered in

this example.

Table 4: An Example of Event Distribution

ID Event

Original

Event Counts

Event

Distributions

Signature Event

Distributions

R1 R2 R3 P1 P2 P3 S1 S2 S3

E1 New Message 4000 3500 1000 44.39 46.66 22.16 0.02 0.02 0.05

E2 New Contact 3500 3000 1500 38.84 39.99 33.24 0.03 0.03 0.03

E3 New Meeting Request 1500 1000 2000 16.64 13.33 44.33 0.06 0.08 0.03

E4 Message Queue Full 5 1 6 0.06 0.01 0.13 18.02 75.01 7.52

E5 Connection Lost 7 0 6 0.08 0.00 0.13 12.87 0.02 7.52

Total 9012 7501 4512 100 100 100 31.01 75.13 15.14

4.3 Identify Signature Events

A signature event is a rare, i.e., infrequent event in a log file relative to the occurrences of all

events in other log files from other deployments stored in the repository. Events such as dropped

connections, thread dumps, and full queues are examples of signature events. Instead of searching

for such events in log files in a hard-coded way, we examine the distribution of the events in all

 54

log files and we pick the events that are occurring at rates that vary considerably from the norm.

These signature events indicate potential problems or outlier execution paths that are experienced

by the application. By counting those signature events, signature event distribution is created.

Signature event distribution is a subset of the operational event distribution, as it contains only the

signature events.

The problem of deciding whether an event is a signature event for a given log file is essentially a

problem of statistical hypothesis testing. Statistical hypothesis testing determines whether

observed frequency of an event contains enough information to justify that the frequency is

different from the norm. Pearson’s chi-square test, commonly referred to as the chi-square test is

one of the best known hypothesis testing procedure. We use chi-square test to filter out the non-

signature events from the logs. Other possible statistical tools that can be used include the popular

hypothesis testing procedures, such as the z-test, and student’s t-test.

We use the chi-square test to determine whether or not a particular event (E) in a log file is

occurring at a frequency that is consistent with the occurrence of that event (E) in the rest of the

log files in the repository. To use the chi-square test, a null hypothesis is to be established, such

as, the likelihood of occurrence of an event in one distribution is same as likelihood of its

occurrence in another distribution. We establish the null hypothesis: the likelihood of occurrence

of the event E in the given log file is same as likelihood of its occurrence in any other log file.

The chi-square statistic is calculated for event E using the formula:

where

 55

 Oi = an observed frequency

 Ei = the expected frequency, asserted by the null hypothesis

 n = the number of possible outcomes

Continuing the example considered in Table 4, the contingency table for the event E4 in the log

file F1 is shown in Table 5. The contingency table is used to obtain values needed to compute the

chi-square statistic. The number of possible outcomes is two: the event in the input file is the

event E4, or the event is any other event. The contingency table lists the observed frequency of

the event. The expected frequency is calculated for each cell of the contingency table using the

equation:

The chi-square statistic is then used to obtain a chi-square probability (also called p-value) by

comparing the value of the statistic to a chi-square distribution table, commonly found in any

statistics textbook. A chi-square probability of 0.05 or less is commonly interpreted as

justification for rejecting the null hypothesis. However, we consider a probability of 0.10 or less

as a justification to reject null hypothesis, as we intend to be liberal to be able to capture lighter

peculiarities while comparing log files. All the events from a log file for which the null

hypothesis gets rejected are peculiar events to that log file, and will be part of the signature

profile of the particular log file.

Using the equation for chi-square statistic, the value for chi-square statistic is 2.749, which

corresponds to a p-value smaller than 0.10. Thus, the null hypothesis is rejected. Thus the chi-

square test flags that event E4 is occurring at a different rate in the input file F1 than usual. Using

the chi-square test on the rest of the events in Table 4, events E4 and E5 are flagged as signature

 56

events for S1; E4 for S2; and E4 and E5 for S3. Only these events are considered part of the

signature event distribution for the corresponding log file. The events filtered out by chi-square

test are highlighted in gray background in the columns S1, S2, and S3 in Table 4.

Table 5: Contingency Table for Chi-Square Test

 Frequency of the Event Frequency of Other Events Column Total

In input log file 18.02 12.99 31.01

In all other log files 41.26 3.87 45.13

Row Total 59.28 16.86 76.14

4.4 Compare Event Distributions

After the previous two steps, we have an operational event distribution and a signature event

distribution for the input log file and all the log files in the repository. The characteristics of the

event distributions vary depending on the operational profile and problem symptoms of a

customer. If two customers have similar operational profiles, they would have similar event

distributions. Figure 11 shows three different distributions of events for visual examination. The

horizontal axis represents different events in the event distributions and the vertical axis

represents the frequencies of those events. Visual inspection reveals that distributions D1 and D2

are similar to each other, compared to D1 and D3, or D2 and D3. We measure the distance

between event distributions using two commonly used distance metrics: the Kullback-Leibler

divergence and the cosine distance.

Figure 11: Visually Examining Distribution Similarity

D1 D2 D3

 57

In the next two subsections, we discuss the distance metrics that we used to measure the

similarity between two event distributions. We also apply these metrics on the example presented

in Table 4.

4.4.1 Kullback-Leibler Divergence Metric

Given two distributions P and Q, the Kullback-Leibler divergence [5] (here after called K-L

divergence) between P and Q is defined as:

K-L divergence is sometimes referred to as relative entropy or information gain. K-L divergence

is not a distance metric in the strictest sense, because it is not symmetric, and the triangle

inequality does not hold. That is, KL(P,R) is not equal to KL(R,P), and KL(P,R) can be greater

than KL(P,Q)+KL(Q,R). To surmount the asymmetry limitation, we define distance DKL(P,Q) as

the sum of KL(P,Q) and KL(Q,P). The smaller the DKL value, the closer the distributions are.

We now show the use of K-L divergence using the example of Table 4. For this example, the

operational profile distance DKL(P1,P2) is 0.41, DKL(P1,P3) is 18.9, which confirms that the

operational profiles for F1 and F2 are closer compared to F1 and F3. The signature profile

distance DKL(S1,S2) is 35.29, and DKL(S1,S3) is 5.24, which confirms that signature profiles

for F1 and F3 are closer compared to F1 and F2.

4.4.2 Cosine Distance Metric

To compare two event distributions, they can be represented as vectors and similarity can be

drawn in terms of the geometric distance. Each event type can be considered as a dimension and

the frequency of occurrence of an event type can be considered as the weight in that dimension.

 58

Thus, for a given event log, the relevant event log is the one with the minimum distance in the

vector space. One widely used distance metric in this context is the cosine distance, which is

defined as:

Figure 12 shows a two dimensional example for geometric interpretation of cosine distance. In

the Figure, the cosine distance measures the cosine of the angle between the vectors A and B,

with values between 0 and 1. In information retrieval systems, the cosine distance has been used

as a similarity measure between two vectors representing two entities, such as queries, documents

or web pages. If the two vectors are similar (congruent in geometric representation), the cosine

distance reaches its maximum value, 1. If the vectors have least in common (perpendicular to

each other in the geometric representation), the cosine distance reaches its minimum value, 0.

For the example in Table 4, the cosine distance for operational profiles DC(P1,P2) is 0.998 and

DC(P1,P3) is 0.824, which quantify that F1 is closer to F2, compared to F3. The cosine distance

for signature profiles DC(S1,S2) is 0.814 and DC(S1,S3) is 0.986, which confirms that signature

profile for F1 is closer to F3, compared to F2. In this example, the results for both K-L and cosine

distance metrics are consistent, but in practice the results may vary. We explore both distance

metrics in our case studies in chapter 5.

Figure 12: Geometric Representation of Two Dimensional Vectors

 59

4.5 Measuring Performance of the Technique

To measure the performance of our technique, we employ traditional metrics for information

retrieval: precision and recall [44]. Our technique retrieves the most relevant log files for a given

execution log file. For example, if the set of relevant log files for a given a log file F is C = {F1,

F2, F3} and our technique returned the set R = {F1, F3, F4, F5}, as shown in Figure 13, then we

measure precision and recall as follows:

CR = {F1, F3} is the intersection of the sets C and R. For our example, the precision would be

2/4 = 50% and the recall would be 2/3 = 66%. An optimal retrieval technique is the one which

produces the best values for both precision and recall.

Figure 13: Precision and Recall

The precision and recall measures above are applicable to a single log file. To measure the

accuracy of our technique over several log files, we use the average precision and recall as

follows:

C
Closest

Log Files

R
Retrieved
Log Files

F2

F1

F3

F4
F5

CR

 60

Here N is the total number of log files on which we applied our technique.

4.6 Chapter Summary

In this chapter we discussed our technique to help support analysts in issue resolution of capacity

planning problems. We explained each step of technique. The technique is based on comparing

execution logs of incumbent support request with those of previously solved support requests.

The execution log lines are first raised to execution events by removing dynamic information. We

obtain operation profile event distribution by counting those events. Then signature events are

filtered using statistical hypothesis testing. We obtain a signature profile event distribution by

counting those filtered signature events. Then, a distance metric, such as Kullback–Leibler

divergence or cosine distance metric is used to measure closeness of the event distributions from

the incumbent support request to the event distributions from previously solved support requests.

Comparing those events logs provides two sets of previously solved engagement reports:

1) One set which is closest to the incumbent support request w.r.t. its operational profile, and

2) Another set which is closest to the incumbent support request w.r.t. its signature profile.

Using the engagement reports retrieved by our technique, support analysts can now apply the

solutions that worked in previous engagements to the incumbent support engagement.

In the next chapter we demonstrate the effectiveness of our technique through cases studies based

on applying our technique on one open-source test application, and one widely deployed

commercial application. The results of the case studies prove the effectiveness of our technique

with high precision and high recall.

 61

Chapter 5

Case Studies for Customer Support Technique

Previous chapter introduced our technique for retrieving relevant reports from a customer

engagement repository. We reason that retrieving relevant reports enormously helps support

analyst because the support analyst can then apply the solution that worked in the previous

engagement to the incumbent support request. To study the effectiveness of our technique for

customer support for capacity planning, we conducted case studies using synthetic and field

deployment logs from a test application and an enterprise application. Using the synthetic logs

we could measure the performance of our technique under specific simulated settings. Using the

field deployment logs, we could measure the performance of our technique in a real life setting.

We present the two case studies in the following sections. Figure 14 summarizes the case studies

we performed and the results we obtained.

Case
Studies

Test
Application

Industrial
Application

Operational
Profile based

Retrieval

Signature
Profile based

Retrieval

Signature
Profile based

Retrieval

Operational
Profile based

Retrieval

Section 5.1 Section 5.1 Section 5.2.1 Section 5.2.2

Figure 14: Case Studies Tree

 62

5.1 Case Study on an Open-Source Application

The application

Our first test application is the Dell DVD Store application. The DVD Store (DVD Store 2 or

DS2) application is an open source enterprise software application. The DS2 application is

developed by Dell as a benchmarking workload for white papers and demonstrations of Dell’s

hardware solutions [15]. DS2 seeks to emulate today’s online stores, architecturally and

functionally. DS2 has a three-tier architecture. DS2 includes application server components,

database server components and a load generator engine (client emulator).

The DS2 load generator emulates website users by sending HTTP requests to the application

front-end. The DS2 application front-end encodes the various business rules, such as ordering

new titles, declining an order in case of insufficient inventory. All customers, titles and

transactional data are stored in the database server tier. We chose DS2 over other applications

since it is an open source application which others can download to easily compare our results

with their work.

Experimental Setup

To demonstrate the feasibility of our technique, we need to create a repository of log files. We

generate a large number of log files based on various simulated runs of the application. For each

log file we ensure that we produce other relevant log files. Once we have these log files, we can

pick each log file and use our technique to retrieve other relevant log files. We can then measure

the precision and recall of our technique.

Since the DS2 application is a benchmarking application that is not intended for production

deployment, it is not designed to generate execution logs. So for the purpose of our case study,

 63

we instrumented the application code to generate logs for execution events. The main operational

features in the DS2 application are: Create Account, Login, Search the Store, Add to Cart and

Checkout. We instrumented the code so that each of these operational features would generate a

balanced number of execution events (four events each). So we have 20 different execution

events in total.

We applied different synthetic workloads and collected the resulting execution log files. Table 6

lists the log files we collected. Each column in the table is a workload parameter, whose unique

value makes operational features exercised in corresponding proportion, leading to unique

execution logs. New Customer Percentage parameter identifies percent of the order cycles that

would exercise the Create Account feature. Its value can be between 0 and 100, its typical value

is 20. Average Number of Searches per Order identifies the number of times the Search operation

should be performed in an order cycle, its typical value is 5 in the application. The remaining two

parameters Average Number of Items Returned in each Search and Average Number of Items per

Order are fairly self-explanatory. To create our repository of logs, we conduct load sessions with

three different settings for each of the parameters – the typical value for the parameter and a value

on either side of the typical value – for each of these parameters, while keeping the other

parameters at their typical value. The resulting list of operational profiles is presented in Table 6,

in which each row is a unique log file.

Since we aim to retrieve relevant log files with similar operational profile, we reran all the load

sessions of Table 6 three times each. Thus, for each log file our technique for similar operational

profile should return the three log files corresponding for the three reruns.

 64

Table 6: List of Log Files Tested for Retrieval

 New Customer
Percentage

Average Number
of Searches per

Order

Average Number
of Items Returned

in each Search

Average Number
of Items per

Order

F1 100 5 5 5

F2 50 5 5 5

F3 20 5 5 5

F4 0 5 5 5

F5 20 1 5 5

F6 20 10 5 5

F7 20 5 1 5

F8 20 5 10 5

F9 20 5 5 1

F10 20 5 5 10

To test the performance of our technique for signature profile based retrieval, we need log files

with similar signature events, as well as log files with different signature events. We obtained log

files with signature events by introducing known problems in the DS2 application code, and

sporadically invoking those problem paths in a controlled fashion using the load generator. For

instance, we changed the application code to submit an ill-formatted SQL command to the

database if a purchase order has more than 25 items, resulting in an exception event in the

execution log. To sporadically invoke this problem path, we configure the load generator to create

less than 0.5% of all the purchase orders with more than 25 items.

We introduce same sporadic problem events in operationally different log files listed in the Table

6. That is, similar problem events are added to groups of log files as {F1, F2, F3, F4}, {F2, F3,

F4, F5}, {F3, F4, F5, F6}, and likewise. Hence the expected retrieval results from the technique

are the log files having similar signature events, irrespective of the similarity in the operational

 65

events. That is, the expected result set for F3 are F1, F2, F4, F5; expected result set for F4 are F2,

F3, F5, F6; and likewise.

Experiment Results

Using our technique, we could correctly retrieve the relevant operational profile and relevant

signature profile with 100% precision and 100% recall using both the K-L divergence and cosine

distance metrics.

5.2 Case Study on an Industrial Application

Our second application is a multithreaded enterprise application deployed at many organizations

worldwide. The application provides rich enterprise communication features, such as email and

calendar synchronization. With more than 700 unique execution events (compare to 20 unique

execution events in DS2 application), it provides a base for a fairly complex experiment setup.

5.2.1 Studying Retrieval by Operational Profile

The Application

We studied the effectiveness of our technique on many different experiments. In the subsections

5.2.1.1 to 5.2.1.5, we present these experiments. Although these experiments do not cover all

possible real world operational profile comparison situations, we believe they represent the

breadth of it. Table 7 summarizes results of all the experiments. We discuss each of the

experiments in the following subsections.

Experimental Setup and Results

5.2.1.1 Single Feature Group

In this experiment, we use log files of workloads with a single feature group of the application. A

feature group is a set of related operational features of the application. For example, an enterprise

 66

collaboration suite such as Zimbra or Microsoft Exchange Server has feature groups such as

emails, instant messages, calendar, and address book. A feature group has features, for instance,

email feature group has operational features send email, receive email and delete email. In this

experiment, each execution log file is obtained by exercising a different feature group of the

application using a workload generator. We exercised seven individual feature groups of the

application, providing log files that represent seven different operational profiles. Then we rerun

each of the seven workloads three times each, to obtain log files which represent similar

operational profiles. Thus for each log file, our technique is expected to return the three log files

for the three reruns. We have a total of 28 log files, for each which, our technique tries to retrieve

the related log files.

Table 7: Performance of Retrieval using Operational Profiles

Experiment Count of
Log Files

K-L Distance Cosine Distance

Precision Recall Precision Recall

Single Feature Group 28 67.71% 90.28% 67.71% 90.28%

Multiple Feature Groups 28 60.71% 80.95% 75.00% 100%

All Feature Groups 12 72.92% 97.22% 62.50% 83.33%

Real World Log Files 12 54.17% 72.22% 68.75% 91.67%

All the Log Files 80 59.93% 79.90% 56.72% 75.62%

5.2.1.2 Multiple Feature Groups

In the previous experiment, the log files were obtained by exercising different feature groups of

the application. Hence, log files corresponding to different feature groups are likely to have few

common events. Only a few events logged by entry point and exit point modules common to

different feature groups will be seen in multiple log files. All other events among those logs

would be different. Naturally, event logs having only a few common events represent vastly

 67

different distributions. It is possible to believe that this bias can result in seeing higher

effectiveness of our technique, which is unlikely to exist in real world. Hence, we conduct this

experiment, having incremental addition of feature groups to the log files.

We start this experiment with exercising a single feature group of the application using the

workload generator, and collect the log files. For subsequent log files, we keep adding the feature

groups one by one to the list of exercised feature groups. Thus, we build a repository of seven log

files which represent operational profiles with incremental feature groups exercised in those

profiles. Now we rerun those workloads three times each. Thus we have a pool of 28 log files for

each which, our technique tries to retrieve the related log files. Now we apply our technique to

retrieve the relevant log files. For each log file, the expected relevant log files are its three

siblings from the three reruns, followed by the neighboring log files in which one less and one

more feature group was exercised.

5.2.1.3 All Feature Groups

In the previous experiment, each log file had a mix of feature groups exercised in it. However,

because the feature groups were exercised incrementally, it is obvious that each log file would

exhibit successively more events. Thus the log files are likely to have different set of events. The

set of distributions which have different set of events are likely to show greater distance,

compared to the set of distributions with common events. It is arguable that this can result in

seeing higher effectiveness of our technique in such situations, which are unlikely to exist in real

world. Hence, we conduct this experiment with real world operational profiles.

The log files in this experiment have all the events in common, but differ only in the frequencies

of those events. We conduct multiple load sessions on the application, and exercise all the feature

groups. We make the load sessions to differ only in the intensities of exercising the feature

 68

groups. We conduct three load sessions with varying intensities of the seven operational features.

Then we rerun each of the seven load sessions three times each, to obtain log files which

represent similar operational profiles. For each of the 12 log files, the expected relevant log files

are its three siblings from the three reruns.

5.2.1.4 Real World Log Files

In the previous experiment, each log file had a mix of operational features exercised in it.

However, because the operational features were exercised incrementally, it is obvious that each

log file would exhibit successively more events. Thus the log files are likely to have different set

of events. The set of distributions which have different set of events are likely to show greater

distance, compared to the set of distributions with common events. It is arguable that this can

result in seeing higher effectiveness of our technique in such situations, which are unlikely to

exist in real world. Hence, we conduct this experiment with real world operational profiles.

We apply our technique on execution logs from three deployments of the application. However,

we do not know the expected result set, unlike the previous two experiments. So we divide each

log file in four segments, for which relevant log files are being retrieved. Assuming that usage

pattern for any field deployment will not change to a great extent in short duration, we expect that

our technique should retrieve the three segments of the same log file for each of the 12 log file

segments.

5.2.1.5 Combining all the Log Files

In this final experiment for operational profiles, we compare together all the log files generated in

all the previous experiments. As a result, we have some log files that exhibit different operational

feature, some exhibiting incremental addition of operational features, and some have same

operational features, but different intensities. This experiment includes all possible scenarios and

 69

a large pool of log files to be compared. It represents the most intense test of accuracy of our

technique. In total, we have 80 different log files profiles – collection of all the log files listed in

experiments discussed in sections 5.2.1.1 to 5.2.1.4. For each log file, the expected relevant log

files are same as described in those sections.

5.2.2 Studying Retrieval by Signature Profile

Experiment Setup

The experiment setup for studying signature profile retrieval needs log files with similar signature

events, as well as log files with different signature events. The startup events are a set of known

signature events in the log files of the application under study. The startup events are logged by

the application at the application startup. The startup events log the state of the environment, such

as list of processes running in the system, system uptime, and configuration parameter values. To

use the startup events as signature events of the log files, we split each of the log files in four

segments. Hence the first segment of each log file contains the startup events, while the

subsequent three segments do not have those. For each first segment of each log file, the expected

relevant log files are the first segments of other log files. For each the first segments, the

remaining segments of the same log file are likely to be operationally similar, but we do not

expect those in the result set as we are trying to retrieve log files based on similar signature

profile.

Experiment Results

We took all the log files from the previous study on the operational profile, except the reruns.

Thus we have 20 log files, which are divided in four segments each. We applied signature profile

based retrieval technique on the first segment of each of the log files. Our technique correctly

 70

retrieved the first segment of other logs with 100% precision and 100% recall, even though the

first segment is likely to be operationally closer to the other three segments of the same log.

5.3 Chapter Summary

In this chapter we discussed a list of key case studies that we performed. These studies exercise

our technique in different possible real world and in-the-lab scenarios. We chose an open-source

application and instrumented it to provide us execution logs, so that we can control and enact

different possible real-life logging scenarios. Then we also conduct similar tests on a globally

deployed industrial application. Our tests show promising results – retrieval of related

engagement reports at high precision and high recall, i.e. minimal number of false-positives and

maximum number of related reports successfully retrieved from the repository. In the next

chapter we critically discuss the results.

 71

Chapter 6

Results and Limitations

Chapter 3 discussed our framework for building capacity calculators. Chapter 3 also presented

case study of applying our framework for the DS2 test application. Chapter 4 provided the details

of our technique on customer support for capacity planning related issues. Chapter 5 provided

case studies for our technique using the DS2 test application and a widely deployed commercial

application. In this chapter we critically discuss the results and limitations of our framework and

technique.

6.1 Framework for Building Capacity Calculators

The proposed framework is based on our research and experience in measurement based

modeling of two applications: the Dell DS2 application and another large enterprise application.

These applications are complex enterprise applications but they may not represent the entire class

of enterprise applications. Additional steps and limitations may be discovered while applying the

framework to other applications.

We integrated research from other researchers to automate various steps in our framework.

However, limited research was available in a few of the steps, so we employed heuristics in those

steps. One of the key benefits of our framework is that it directs researchers to focus on these

areas. Moreover the encoding of those heuristics in the framework ensures that the repetitive

tasks corresponding to those heuristics are well-documented and could be later revisited by

practitioners.

Some of the dynamic analysis activities are currently not automated in the framework and a

performance analyst must conduct these activities manually. This is our first attempt at building

 72

this framework, which can be extended further with research work focusing on each of the

following points.

• Adjusting the performance tests to precisely determine various key operational points or

objects, e.g. knee capacity and bottleneck resources. Unless the tests are carefully designed,

the built model can be inaccurate near such operational points.

• Adjusting the performance testing period and lengths of ramp-up and cool-down periods.

This mainly involves determining how long the application takes to reach steady state

condition and how many data points we need in each test, to be confident enough about the

input data and analysis results.

6.2 Technique for Customer Support on Capacity Planning

The case studies discussed in chapter 7 demonstrate the performance of our technique. We

achieved perfect results for the DS2 application due to the simplicity of the application and

balanced instrumentation of all the operational features of the application. For the industrial

application, our technique for operational profile performed well with the K-L divergence metric,

and marginally better with the cosine distance metric. We believe the inaccuracies in the results

for the industrial application stem from these complexities of real world applications:

1. Real world applications often log a large number of events which do not correspond

directly to a particular operational feature, such as idle time events, server health check

events, and startup and shutdown events. Moreover, there can be an imbalance of such

events, which can lead to inaccuracies in the result of our technique. For instance, if the

application generates the health check events more frequently while in idle time, this is

an example of imbalance.

 73

F1
E2

E1

F2
E4

E3

E6

E5

F3
E8

E7

E10

E9

400

F1
E2

E1

F2
E4

E3

E6

E5

F3
E8

E7

E10

E9

F1
E2

E1

F2
E4

E3

E6

E5

F3
E8

E7

E10

E9

E12

E11

E12

E11

E12

E11

OP1 OP2 OP3

400

200

400

450

200

400

400

220

Figure 15: Example of Imbalance in Event Logging

2. Another root cause of inaccuracies in the industrial application can stem from the

imbalance in the number of events per feature. As the exact event-to-feature mapping is

not known, our technique cannot detect such issues. Figure 15 shows a small example of

highly imbalanced event logging, wherein feature F1 and F2 generates two events each,

whereas feature F3 generates eight events. With the frequencies of executions as shown

in circles below each feature in the figure, it is visible that OP1 is closer to OP2

compared to OP3, because F3 was executed twenty more times in OP2 than OP1,

whereas F2 was executed fifty more times in OP3 than OP2. However, because of the

imbalance in event logging, our technique will show the divergences as

DKL(OP1,OP2)=3.31 and DKL(OP1,OP3)=2.56, which does not reflect the fact. Our

technique cannot detect such issues because the exact event-to-feature mapping is not

 74

known to our technique. One simple way to handle such wide imbalances is to create

meta-events which group co-occurring events together. These meta-events can be used

for measuring the distance between event distributions. For the example in Figure 15,

events E1 and E2 would be considered one event M1, E3 and E4 would be considered

one event M2, and E5 to E12 would be considered one event M3 since each group of

event is occurring an equal number of times. The M1-M3 events would be used for

measuring the distance between event distributions instead of the E-type events.

Empirical research studies should be evaluated to determine whether they are measuring what

they were designed to assess. In particular, we should examine if our finding that a given log file

is more relevant to a particular log file compared to others is valid and applicable in general; or if

it is due to any flaws in our experimental design. Four types of tests are used [52]: construct

validity, internal validity, external validity, and reliability.

Construct Validity: Construct validity is concerned with the meaningfulness of the

measurements – Do the measurements quantify what we really intend to measure? We claim that

locating related execution logs attached to customer engagement report will help support analysts

in resolving problems sooner. We have not validated this claim, but based on our experience,

locating a relevant case is usually of great value and provides many starting points if not the

needed final solution.

Precision and recall metrics do not capture the internal rank among the retrieved operational

profiles. For example, consider that our technique retrieved OP2, OP3 and OP4 (in that order) but

the actual rank of closeness among these three is OP3, OP2 and OP4 (in that order). The precision

and recall metrics do not seem to reflect such unfairness in retrieving OP3 first instead of OP2.

In our experiments, we did not observe such unfairness. Furthermore, we assume that all the

 75

related engagement reports retrieved by our technique are useful to the analyst working on a new

customer engagement.

Internal Validity: Internal validity deals with the concern that there may be other plausible

reasons to explain our results – Can we show that there is a cause and effect relation between

differences in operational profiles and ranking of those by our technique? We assume here that

execution logs capture the operational profile and signature profile of an application. We believe

this is a valid assumption; however, the presence of wide imbalances in event logging, as

discussed above, can invalidate our assumption. Moreover, our case study uses logs from the

same version of an application. We did not test our technique on the execution logs of different

versions. We believe limitations might be observed if there are large changes in the type of

logged events.

External Validity: External validity tackles the issue of the generalization of the results of our

study – Can we generalize our results to other software applications? Although we applied our

technique on a small test application and a complex enterprise application developed by a large

number of practitioners, we only looked at two applications. Therefore our results may not

generalize to other types of applications.

Reliability: Reliability refers to the degree to which someone analyzing the data would reach the

similar results as us. We believe that the reliability of our technique is high. Practitioners and

researchers can easily run the similar tests on their applications (or the DS2 application) to

produce findings specific to these applications, and compare those to our findings.

 76

6.3 Chapter Summary

We presented a critical view of the results and limitations our work in this chapter. Our work

seeks to support performance engineering and capacity planning related activities during the

verification and maintenance SDLC phases.

Our framework seeks to bring together difference research and automate the capacity calculator

building process. While the work is implemented in practice, it is still a work in progress. The

performance tests need to be carefully designed, and may be required to be adjusted during the

process to exercise certain important operational points, such as knee capacity and bottleneck

resources. Also, not all steps are automated yet. We have not yet determined precise way to

automatically prune the warm-up and cool-down periods.

Limitations with our customer support technique include noise resulting from events that do not

map to any operational features. Though, we did not find significant effect of such noise events in

our tests with the two applications that we chose to experiment with. Imbalance caused by some

operations logging too many events, while other operations remaining silent may also lead to

impact the accuracy of the technique. Such imbalance can be eliminated by detecting and

replacing co-occurring events with a single meta-event.

 77

Chapter 7

Conclusion

7.1 Major Topics Addressed

In chapter 1 we introduce capacity planning and support efforts in practice. Customers of large

scale enterprise applications need to determine the hardware capacity to procure in order to obtain

the desired performance in terms of response time and throughput. To enable capacity planning at

customer site, performance analysts of the vendors need to continuously build and update

capacity calculators for applications. Such capacity calculators are based on measurement based

performance modeling of the application. After deployment, customers often engage the software

vendor when they run into performance and capacity related issues. Continuous customer

engagements allow the software vendors to build a rich knowledgebase – a customer engagement

repository, which has valuable information related to problems and solutions, which can be

immensely helpful in future engagements.

Chapter 1 also discusses the challenges being faced in capacity planning and support, which

provides the motivation for our work. Building of a capacity calculator requires running a large

number of performance tests on the application. Performance testing is often the last step on

already delayed product cycle; hence time is of essence while running the performance tests.

Risks of errors are pretty high because of the manual process of running performance tests. To

alleviate the situation, revelation of performance bugs or mis-configurations of the application

settings result in rerunning of the whole test suite. Challenges in customer support for capacity

issues are also abound. Analysts have to depend on their experience and understanding of the

system to link symptoms to possible solutions. Knowledge from an engagement is often archived

 78

in a customer engagement report, but no systematic techniques exist to retrieve that knowledge,

except for applying basic keyword search.

We discuss major related work in chapter 2. We discuss eminent research work related to

capacity planning and performance modeling. We also discuss research works that target specific

steps in our framework for building capacity calculators. Then we present research works from

event correlation domain, as those are related to our log-based technique to retrieve relevant

customer engagement reports. Then research works related to mining of customer engagement

reports are presented. Lastly, we present related research in retrieval of operational profile and

signature profile.

Chapter 3 provides details of our framework for building capacity calculators. We discuss major

steps of test enumeration, test reduction, environment setup, test execution, test transition, test

analysis and model building. We also present estimated efforts required to customize the

framework from one application to another, one version to another, and one build to another.

In chapter 4, we discuss our technique for customer support for capacity planning. In that, we

discuss how we convert log lines to event distributions, how we identify signature events, and

how we compare event distributions to rank the distributions and associated customer

engagement reports according to its similarity to a give event distribution. We also discuss how

we measure the performance of our technique using precision and recall metrics.

In chapter 5, we discuss the case studies of our customer support technique. We discuss one case

study on an open source large test application: Dell DVD Store, and another case study on a

globally deployed large industrial application. We present our results in operational profile based

retrieval, as well as signature profile based retrieval.

 79

We discuss the strengths and limitations of our work in chapter 6. We also discuss the manual

steps involved in our framework, and the sources of errors that affect the results of our technique.

7.2 Major Thesis Contributions

We presented a framework for building capacity calculators for enterprise applications using

measurement based performance modeling. The need for such a framework is felt from the

current challenges in performance modeling practices in industry. These models are produced

through a labor intensive and error prone process which always occurs at the end of already late

release schedules. The contributions of our framework are as follows:

1. It automates the building of measurement based performance models.

2. It works on measurement based performance modeling of large enterprise applications, as

demonstrated by the case studies on the Dell DVD store application and another larger

enterprise application.

3. It brings together various venues of research to support analysts in their day-to-day

activities. Using our framework researchers can explore contributing and fitting their own

research work into the proposed framework. Moreover, analysts can compare various

tools and techniques using the structure of our framework.

4. It is highly customizable to work for a different build, a different version, a different

platform or a different application. Limited efforts are involved in customizing our

framework for other applications and other platforms.

The customer engagement repository contains rich information about symptom, issues, root

causes, workarounds, and resolutions from previous engagements. Retrieval of relevant reports

helps support analysts resolve client issues quicker and better. We presented a technique to

 80

analyze the execution logs from the customer engagement repository and retrieve the relevant

execution logs and corresponding customer engagement reports. The contributions of our

technique are as follows:

1. It retrieves relevant reports from customer engagement repository based on similar

operational profile and signature profile. As demonstrated by case studies, it retrieves

such relevant reports with high precision and high recall.

2. It can be applied immediately on an application, since the execution logs of most

applications are readily available and are usually archived in the customer engagement

repository. Our technique can equally aid in remote issue resolution by identifying

relevant engagement reports and recommending resolution steps.

3. It requires no code changes, nor does it require any data collection from customers.

Hence it can be easily adopted by companies and does not depend on a particular

software application, version, build, or platform.

4. It also allows comparing load testing and stress testing execution logs with the customer

execution logs to verify and ensure that the workload being used in load testing and stress

testing is close to real-world customer workloads.

7.3 Future Research

Our work in this thesis seeks to automate, optimize and enhance the performance engineering

activities during verification and maintenance phases of the software development life cycle.

Specifically, we proposed a framework to automate and speed up the performance measurement

and model building process, and a technique to retrieve relevant reports from customer

engagement repository to help support analysts troubleshoot customer deployments. Our

 81

technique to retrieve relevant reports from the customer engagement repository is also useful to

ensure that the workload used in load testing and stress testing is close to customer workloads.

However, challenges in performance engineering and capacity planning are many and far from

over. Significant challenges remain in load testing and stress testing, which we plan to address. In

particular, load tests execution needs online analysis of multiple performance counters to

determine:

a) The time point when the system reaches steady state

b) The time points when the test has run long enough for one to be statistically confident

about the average performance

c) whether the performance during a load test is similar to previous load tests

d) instabilities, such as memory leaks, and processor and disk contention

More work is required to unify and automate the processes for performance modeling across the

industry. More attention is required from academia on the use of measurement based techniques,

which have wider acceptance in the industry, compared to other analytical and simulation based

techniques. We intend to continue research work seeking automation of more steps in our

framework for building capacity calculators.

We wish to apply our technique for customer support on other software applications to generalize

our findings across different types of software applications. We also intend to apply and improve

data mining and log correlation techniques in order to improve the retrieval of relevant reports

from a customer engagement repository. We plan to develop techniques to correlate multiple

performance counters from system resources, such as disk, processor, memory, thread pool, and

connection pool, in order to identify bottlenecks in a customer’s environment.

 82

7.4 Commercialization

Our framework for building capacity calculators has been developed and is in use at our industrial

research partner, Research In Motion. Practitioners can borrow ideas from our research work to

develop and customize similar framework for their capacity planning of their applications.

We have shown that our technique for customer support for capacity planning successfully

retrieves relevant customer engagement reports with high precision and recall. Measuring the

financial value of our work is difficult, because the financial returns to the software vendor

depend on several factors, such as the number of customers, the face value of the software, and

the use of appropriate software development methodologies. However, we argue that the

customer satisfaction resulting from applying our work in performance engineering of software

applications is invaluable. To commercialize our work, more work is required to combine it with

more features to be able to sell it as a product. Our technique can definitely be added as a feature

in some of the existing commercial log management tools, such as LogLogic [26] and Sensage

[39]. Some of the features available in such commercial log management tools include log

archival, SQL-like querying on the logs, automated analysis to ensure the absence of security

breach, and a number of methods for business intelligence using log analysis.

 83

Bibliography

[1] Andrews, J. H. Testing using log file analysis: tools, methods, and issues., 1998.
Proceedings of the 13th IEEE International Conference on Automated Software
Engineering, (1998), 157-166.

[2] Apache Logging Services Project: log4j, log4cxx and log4net.
http://logging.apache.org

[3] Avritzer, A. and Weyuker, E. J. The Role of Modeling in the Performance Testing
of E-Commerce Applications. IEEE Transactions on Software Engineering, 30, 12
(2004), 1072-1083.

[4] Courtois, M. and Woodside, M. Using regression splines for software performance
analysis. WOSP '00: Proceedings of the 2nd international workshop on Software
and performance. (Ottawa, Ontario, Canada). ACM, New York, NY, USA, 2000,
105-114.

[5] Cover, T. M. and Thomas, J. A. Elements of information theory. Wiley-
Interscience, New York, NY, USA, 1991.

[6] Cronk, R. N., Callahan, P. H. and Bernstein, L. Rule-based expert systems for
network management and operations: an introduction. Network, IEEE, 2, 5;
presented (1988), 7-21.

[7] Directive 2006/24/EC of the European Parliament and of the Council. http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006L0024:EN:HTML

[8] Elbaum, S. and Narla, S. A methodology for operational profile refinement.
Proceedings of the Annual Reliability and Maintainability Symposium. 2001. 142-
149.

[9] Goldsmith, S. F., Aiken, A. S. and Wilkerson, D. S. Measuring empirical
computational complexity. ESEC-FSE '07: Proceedings of the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering. (Dubrovnik, Croatia). ACM, New
York, NY, USA, 2007, 395-404.

[10] Gunther, N. J. Guerrilla Capacity Planning: a Tactical Approach to Planning for
Highly Scalable Applications and Services. Springer-Verlag New York, Inc., 2006.

[11] HamouLhadj, A. and Lethbridge, T. C. A survey of trace exploration tools and
techniques. CASCON '04: Proceedings of the 2004 conference of the Centre for

http://logging.apache.org/�
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006L0024:EN:HTML�
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006L0024:EN:HTML�

 84

Advanced Studies on Collaborative research. (Markham, Ontario, Canada). IBM
Press, 2004, 42-55.

[12] Hui, S. C. and Jha, G. Data mining for customer service support. Inf. Manage., 38, 1
(2000), 1-13.

[13] Israr, T. A., Lau, D. H., Franks, G. and Woodside, M. Automatic generation of
layered queuing software performance models from commonly available traces.
WOSP '05: Proceedings of the 5th international workshop on Software and
performance. (Palma, Illes Balears, Spain). ACM, New York, NY, USA, 2005,
147-158.

[14] Jaffe, D., Muirhead T. The Open Source DVD Store Application.

[15] Jaffe, D. and Muirhead, T. The Open Source DVD Store Application.

[16] Jain, R. The art of computer systems performance analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. John Wiley &
Sons, 1991.

[17] Jakobson, G. and Weissman, M. Real-time telecommunication network
management: extending event correlation with temporal constraints. Proceedings of
the fourth international symposium on Integrated network management IV.
Chapman & Hall, Ltd, London, UK, UK, 1995, 290-301.

[18] JUnit testing framework. http://www.junit.org

[19] JUnitPerf: JUnit test decorators to measure the performance and scalability of
functionality contained within existing JUnit tests.
http://www.clarkware.com/software/JUnitPerf.html

[20] Juran, J. M., Godfrey A. B. Juran’s Quality Handbook. McGraw-Hill Professional,
1988.

[21] Kounev, S. and Buchmann, A. SimQPN: a tool and methodology for analyzing
queueing Petri net models by means of simulation. Perform.Eval., 63, 4 (2006),
364-394.

[22] Kounev, S. and Buchmann, A. Performance Modeling and Evaluation of Large-
Scale J2EE Applications. 29th Int. Conf. on Resource Management and
Performance Evaluation of Enterprise Computing Systems. (Dallas, Texas,
December 7-12, 2003).

http://www.junit.org/�
http://www.clarkware.com/software/JUnitPerf.html�

 85

[23] Lewis, L. A case-based reasoning approach to the management of faults in
communications networks. Proceedings of the Ninth Conference on Artificial
Intelligence for Applications, 1993. (1993), 114-120.

[24] Liu, T., Kumaran, S. and Luo, Z. Layered Queueing Models for Enterprise
JavaBean Applications. EDOC '01: Proceedings of the 5th IEEE International
Conference on Enterprise Distributed Object Computing. IEEE Computer Society,
Washington, DC, USA, 2001, 174.

[25] HP LoadRunner Softwar: integrated software performance testing tools.
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp
=1-11-126-17%5E8_4000_100__

[26] LogLogic Enterprise Log Management and Intelligence Platform.
http://www.loglogic.com/

[27] Mania D., Murphy J. Framework for predicting the performance of component-
based systems. IEEE 10th International Conference on Software,
Telecommunications and Computer Networks. (Italy, October 2002).

[28] Menascé, D. A., Almeida, V. A. F., Fonseca, R. and Mendes, M. A. A methodology
for workload characterization of E-commerce sites. EC '99: Proceedings of the 1st
ACM conference on Electronic commerce. (Denver, Colorado, United States. ACM,
New York, NY, USA, 1999, 119-128.

[29] Microsoft Exchange Server messaging and collaborative software.
http://www.microsoft.com/exchange/default.mspx

[30] Muirhead T., Jaffe, D. Migrating enterprise databases from Sun servers to the Dell
PowerEdge 2850 running Microsoft Windows Server 2003.

[31] Pentakalos, O. and Friedman, M. Windows 2000 performance guide: help for
Windows 2000 administrators. O'Reilly & Associates, Inc, Sebastopol, CA, USA,
2002.

[32] The R project for statistical computing. http://www.r-project.org/

[33] Ramanujam, S., Yamany, H. E. and Capretz, M. A. M. An Agent Oriented
Approach to Operational Profile Management. International Journal of Intelligent
Technology, 1, 4 (2006).

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-126-17%5E8_4000_100__�
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-126-17%5E8_4000_100__�
http://www.loglogic.com/�
http://www.microsoft.com/exchange/default.mspx�
http://www.r-project.org/�

 86

[34] Research In Motion. BlackBerry Enterprise Server for Microsoft Exchange version
4.1 performance benchmarking.
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/64
5045/7963/7965/1180408/Performance_Benchmarking_Guide.pdf?nodeid=136740
4&vernum=0

[35] Research In Motion. Capacity calculator for BlackBerry Enterprise Server 4.1 for
Microsoft Exchange.
http://www.blackberry.com/select/toolkit/dls/BlackBerry_Enterprise_Server_Versio
n_4.1.0_for_Microsoft_Exchange_Capacity_Calculator.xls

[36] Roberts, D. C. and Grossman, D. A. Modifying the software development life cycle
to include software performance assurance. WESCANEX 97: Communications,
Power and Computing. Conference Proceedings. , IEEE, (1997), 100-104.

[37] Rothermel, G. and Harrold, M. J. A safe, efficient regression test selection
technique. ACM Trans.Softw.Eng.Methodol., 6, 2 (1997), 173-210.

[38] Sankarasetty, J., Mobley, K., Foster, L., Hammer, T. and Calderone, T. Software
performance in the real world: personal lessons from the performance trauma team.
WOSP '07: Proceedings of the 6th international workshop on Software and
performance. (Buenes Aires, Argentina). ACM, New York, NY, USA, 2007, 201-
208.

[39] Sensage Log Data Warehouse for security, compliance and systems management.
http://www.sensage.com

[40] Sim, S. E. Supporting multiple program comprehension strategies during software
maintenance. Masters Thesis, University of Toronto, 1998.

[41] Smith, C. U., Llad\'o, C. M., Cortellessa, V., Marco, A. D. and Williams, L. G.
From UML models to software performance results: an SPE process based on XML
interchange formats. WOSP '05: Proceedings of the 5th international workshop on
Software and performance. (Palma, Illes Balears, Spain,). ACM, New York, NY,
USA, 2005, 87-98.

[42] Sopitkamol, M. and Menascé, D. A. A method for evaluating the impact of software
configuration parameters on e-commerce sites. WOSP '05: Proceedings of the 5th
international workshop on Software and performance. (Palma, Illes Balears, Spain).
ACM, New York, NY, USA, 2005, 53-64.

[43] SOX. Summary of Sarbanes-Oxley Act of 2002.
http://frwebgate.access.gpo.gov/cgi-
bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf

http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045/7963/7965/1180408/Performance_Benchmarking_Guide.pdf?nodeid=1367404&vernum=0�
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045/7963/7965/1180408/Performance_Benchmarking_Guide.pdf?nodeid=1367404&vernum=0�
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045/7963/7965/1180408/Performance_Benchmarking_Guide.pdf?nodeid=1367404&vernum=0�
http://www.blackberry.com/select/toolkit/dls/BlackBerry_Enterprise_Server_Version_4.1.0_for_Microsoft_Exchange_Capacity_Calculator.xls�
http://www.blackberry.com/select/toolkit/dls/BlackBerry_Enterprise_Server_Version_4.1.0_for_Microsoft_Exchange_Capacity_Calculator.xls�
http://www.sensage.com/�
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf�
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf�

 87

[44] Tan, P., Steinbach, M. and Kumar, V. Introduction to Data Mining, Addison-
Wesley Longman Publishing Co., Inc, Boston, MA, USA, 2005.

[45] Thomas, B. The concept of dynamic analysis. ESEC/FSE-7: Proceedings of the 7th
European software engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of software engineering. (Toulouse,
France,). Springer-Verlag, London, UK, 1999, 216-234.

[46] WebLOAD load testing stress testing tool. http://www.webload.org/

[47] Weimer, W. and Necula, G. C. Mining Temporal Specifications for Error Detection.
TACAS 2005: Eleventh International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. (April 4-8, 2005).

[48] Woodside, M., Franks, G. and Petriu, D. C. The Future of Software Performance
Engineering. FOSE '07: 2007 Future of Software Engineering. IEEE Computer
Society, Washington, DC, USA, 2007, 171-187.

[49] Xie, T., Marinov, D. and Notkin, D. Rostra: A Framework for Detecting Redundant
Object-Oriented Unit Tests. ASE '04: Proceedings of the 19th IEEE international
conference on Automated software engineering. IEEE Computer Society,
Washington, DC, USA, 2004, 196-205.

[50] Yang, J., Evans, D., Bhardwaj, D., Bhat, T. and Das, M. Perracotta: mining
temporal API rules from imperfect traces. ICSE '06: Proceedings of the 28th
international conference on Software engineering. (Shanghai, China,). ACM, New
York, NY, USA, 2006, 282-291.

[51] Yilmaz, C., Krishna, A. S., Memon, A., Porter, A., Schmidt, D. C., Gokhale, A. and
Natarajan, B. Main effects screening: a distributed continuous quality assurance
process for monitoring performance degradation in evolving software systems.
ICSE '05: Proceedings of the 27th international conference on Software
engineering. (St. Louis, MO, USA,). ACM, New York, NY, USA, 2005, 293-302.

[52] Yin, R. K. Case Study Research: Design and Methods. Sage Publications,
Thousand Oaks, CA, 1994.

[53] Jiang, Z. M., Hassan, A. E., Hamann, G., Flora, P. An automated approach for
abstracting execution logs to execution events. Journal of Software Maintenance
and Evolution: Research and Practice, 20, 4 (2008), 249-267.

[54] Zimbra Collaboration Suite. http://www.zimbra.com/products

[55] Zoeteweij, P., Abreu, R. and J.C. van Gemund, A. Software Fault Diagnosis.
Springer, 19th IFIP International Conference on Testing of Communicating

http://www.webload.org/�
http://www.zimbra.com/products�

 88

Systems and 7th International Workshop on Formal Approaches to Testing of
Software, 2007. (Tallinn, Estonia, June 26-29).

[56] Thakkar, D., Hassan, A. E., Hamann, G., Flora, P. A framework for measurement
based performance modeling. Proceedings of the 7th International Workshop on
Software and Performance. WOSP 2008, Princeton, NJ, USA, June 23-26, 2008,
55-66.

[57] Thakkar, D., Jiang, Z. M., Hassan, A. E., Hamann, G., Flora, P. Retrieving relevant
reports from a customer engagement repository. Proceedings of the 24th IEEE
International Conference on Software Maintenance. ICSM 2008, September 28 -
October 4, 2008, Beijing, China, 117-126.

	Automated capacity Planning and Support
	Abstract
	Acknowledgements
	Statement of Originality
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Capacity Planning
	Customer Support on Capacity Planning
	Overview of Thesis
	Major Thesis Contributions
	Thesis Organization

	Literature Review
	Capacity Planning
	Event Correlation
	Mining Customer Engagement Repository
	Fault Resolution
	Operational Profile and Signature Profile Retrieval
	Summary of Literature Review

	Framework for Building Capacity Calculators
	The Dell DVD Store Web Application
	Test Enumeration
	Test Reduction
	Static Test Reduction
	Dynamic Test Reduction

	Environment Setup
	Test Execution
	Test Setup
	Test Run
	Test Shutdown

	Test Transition
	Test Analysis
	Test Validation
	Metric Analysis

	Model Building
	Customization Efforts
	Chapter Summary

	Technique for Customer Support on Capacity Planning
	Execution Logs
	Legal Requirements on Application Logging
	Execution Logs vs. Tracing Logs

	Obtain an Event Distribution from Log Lines
	Identify Signature Events
	Compare Event Distributions
	Kullback-Leibler Divergence Metric
	Cosine Distance Metric

	Measuring Performance of the Technique
	Chapter Summary

	Case Studies for Customer Support Technique
	Case Study on an Open-Source Application
	Case Study on an Industrial Application
	Studying Retrieval by Operational Profile
	Single Feature Group
	Multiple Feature Groups
	All Feature Groups
	Real World Log Files
	Combining all the Log Files

	Studying Retrieval by Signature Profile

	Chapter Summary

	Results and Limitations
	Framework for Building Capacity Calculators
	Technique for Customer Support on Capacity Planning
	Chapter Summary

	Conclusion
	Major Topics Addressed
	Major Thesis Contributions
	Future Research
	Commercialization

	Bibliography

