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Abstract 

Capacity planning is crucial for successful development of enterprise applications. Capacity 

planning activities are most consequential during the verification and maintenance phases of 

Software Development Life Cycle. During the verification phase, analysts need to execute a large 

number of performance tests to build accurate performance models. Performance models help 

customers in capacity planning for their deployments. To build valid performance models, the 

performance tests must be redone for every release or build of an application. This is a time-

consuming and error-prone manual process, which needs tools and techniques to speed up the 

process. In the maintenance phase, when customers run into performance and capacity related 

issues after deployment, they commonly engage the vendor of the application for troubleshooting 

and fine tuning of the troubled deployments. At the end of the engagement, analysts create 

engagement report, which contain valuable information about the observed symptoms, attempted 

workarounds, identified problems, and the final solutions. Engagement reports are stored in a 

customer engagement repository. While information stored in the engagement reports is valuable 

in helping analysts with future engagements, no systematic techniques exist to retrieve relevant 

reports from such a repository. 

In this thesis we present a framework for the systematic and automated building of capacity 

calculators during software verification phase.  Then, we present a technique to retrieve relevant 

reports from a customer engagement repository. Our technique helps analyst fix performance and 

capacity related issues in the maintenance phase by providing easy access to information from 

relevant reports. We demonstrate our contributions with case studies on an open-source 

benchmarking application and an enterprise application. 
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Chapter 1 

Introduction 

Modern enterprise applications have components deployed on different servers separated by 

physical boundaries and connected by computer networks. Medium and large scale enterprise 

applications that are intended to serve from ten to tens of thousands people are commonly 

deployed as distributed applications. Quality of Service (QoS) measures, such as availability and 

performance are of prime importance for such applications. Quality of Service of enterprise 

applications affects the productivity of the people using those applications. Problems after the 

deployment of enterprise applications are rarely due to functionality errors. Rather, most 

problems are concerned with the application not responding fast enough, crashing or hanging 

under heavy load, and other performance or capacity related problems [3, 48]. Still, capacity 

planning remains one of the most overlooked aspects in software development [10]. 

 

Figure 1: Classic Waterfall SDLC 

Figure 1 shows the classic waterfall Software Development Life Cycle (SDLC) phases. Capacity 

planning activities span all the SDLC phases. While the SDLC phases may differ across software 

development methodologies, such as the iterative or agile methodologies, the capacity planning 

steps still remain important steps in the life cycle. We focus on the classic waterfall SDLC phases 
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in this discussion. Performance objectives need to be clearly identified in the requirement phase. 

An objective and measurable requirement is, for example, 90% of requests should be served 

within end-to-end response time of 5 seconds. During the design phase, platform and technology 

selection, architecture, and development modeling should be done that would support the stated 

performance requirements. In the implementation phase, algorithmic, data structure, and 

programming decisions need to be made that would optimize the performance. In the verification 

phase, performance test need to be conducted to verify that the required performance objectives 

are met. In the final phase of maintenance, continuous capacity planning and tuning is done to 

ensure that the application continues to meet the performance objectives as the number of users 

and their workload changes. 

While capacity planning related activities are important to execute in all the SDLC phases to 

obtain full advantage of capacity planning [36], post-implementation performance engineering 

activities carry profound impact, and hence remain commonly adopted in the industry. The work 

presented in this thesis addresses capacity planning related tasks in those important SDLC phases 

of verification and maintenance. In the next two sections, we introduce capacity planning related 

activities performed in verification phase, and customer support activities performed in the 

maintenance phase. We provide a brief overview of our thesis in section 1.3. We discuss major 

contributions of our thesis in section 1.4. Then we discuss the organization of the rest of the thesis 

chapters in section 1.5. 

1.1 Capacity Planning 

In the verification phase, functional testing activities need to be performed to ensure that the 

application meets its functional requirements. Load testing checks whether the application works 

well under heavy workloads. Both functional and load testing result in a pass or failure 
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classifications for each test. Then a set of performance tests is performed which quantitatively 

summarizes application performance parameters, such as response time, throughput and hardware 

resource utilizations. Using the results of a large number of performance tests, a performance 

model is built. Using the performance models the performance characteristics of an application 

under different workloads and deployment (hardware and platform) settings can be predicted. 

Based on the prediction, software maintenance practitioners plan for hardware resource 

requirements ahead of time, so that crucial Service Level Agreements (SLAs) are always met. 

Performance modeling techniques are broadly classified into measurement, analytical and 

simulation based techniques: 

1) Measurement based techniques rely on conducting extensive performance measurements on 

the application being studied. Measurement based techniques can only be conducted once the 

application is fully developed and available.  

2) Analytical techniques allow the building of models to study and predict ahead of time the 

performance characteristics of an application. Analytical techniques use mathematical models 

based on queueing theory [22], layered queueing network [24], regression analysis (such as 

linear regression or regression splines) [4], and queueing petri net [21]). 

3) Simulation techniques emulate the functionally of the application using a computer 

simulation whose performance can be probed. Performance engineering and capacity 

planning has grown into a profession. Ample research and development have been done on 

the practice of all three techniques for performance engineering and capacity planning of 

software applications. 
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Both simulation and analytical based techniques require a good understanding of the application 

and require the presence of accurate documentation of its behavior. However, up-to-date and 

complete documentation and understanding of an application rarely exists in practice. The source 

code in many cases represents the only source of accurate information about the application [40]. 

Therefore practitioners commonly use measurement based techniques. Instead of building 

mathematical models or computer simulations, practitioners use the best model for a software 

application, the application itself! Measurement based techniques are often the only type of 

performance analysis used in practice, as noted by Sankarasetty et al. [38]. 

Measurement based modeling of a software application is commonly used in practice to produce 

capacity calculators and performance white papers. Such calculators and white papers are 

commonly developed for hardware platforms (e.g. [30]) and large enterprise applications (e.g., 

[34, 35]). These calculators help customers in capacity planning activities. Capacity planning 

involves selecting the most appropriate configurations for deploying an application while 

satisfying performance requirements and financial constraints. When deploying enterprise 

applications, customers must determine whether their current deployment infrastructure is over-

engineered (then they can reduce deployment costs) or under-engineered (then they can invest 

more to improve the user's experience). For example, a capacity analysis for a web application 

may indicate that a 90% of requests will be served within response time of 8 milli-seconds, if the 

application is servicing 200 requests per second (i.e., usage workload) while running on a 

machine with dual core Intel Pentium 4 1.2Ghz processor, 4 GB of memory, and two 136GB 

10,000 RPM SATA disks configured as RAID 0 connected to the Internet over fiber optic 

backbone network of an ISP. The response time in that prediction might be excluding the network 

latency and rendering time in the browser, as both of that depend on the user environment, on 
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which deployers have no control. In short, customers and support staff would like to address 

issues such as: 

• What hardware is sufficient to deploy product X and offer a good user experience? 

• If I upgrade to version 3.x, will my current quality of service be affected? Will I need 

new hardware? 

• How much quality of service improvements should I expect if I upgrade my I/O 

subsystem? 

• If I enable another 100 users on my current hardware, what will be my CPU and disk 

utilizations? 

• When should I upgrade my current hardware given my expected workload growth? 

Figure 2 shows an example of a capacity calculator for the Dell DVD Store web application. The 

DVD Store application is a benchmarking web application developed by Dell to benchmark the 

performance of the Dell server systems. We introduce the DVD store application in greater detail 

in chapter 3. The predictions produced by the capacity calculator are based on the inputs given in 

the UI and a performance model for that application. For example, given a particular hardware 

configuration of two 3.2 GHz Intel Pentium-IV processors and a set of workload parameters as 

shown in Figure 2, the calculator produces the predications using a performance model. The user 

interface of the calculator can be as simple as a spread-sheet, or a sophisticated web application. 

The model can be a measurement based regression model, an analytical model or a simulation 

model, which is invoked from the user interface. The figure shows model predicting an average 

CPU utilization of 40%, a memory usage of 790MB and a response time of 16 milliseconds. A 

customer could modify the hardware or workload configurations in the calculator to determine a 

suitable configuration that would meet future demands and their budget. Other way round, a 



 

 6 

calculator can be built using the same performance model to allow customer specify input 

workload  and the required performance levels, and the calculator would present hardware 

configurations that would meet those requirements. 

 

Figure 2: An example of a capacity calculator 

Measurement based techniques require the execution of a large number of performance tests for 

every release or build of a software application. A performance test measures the performance 

characteristics (e.g., response time) of the application for a specific workload under a particular 

hardware and software configuration. Performance tests are typically conducted after functional 

and load testing of an application is complete. Functional testing checks whether an application 

meets its functional requirements. Load testing checks whether the application works well under 
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heavy workloads. Both functional and load testing result in a pass or failure classifications for 

each test. In contrast the results of a performance test are summarized quantitatively in metrics 

such as response time, throughput and hardware resource utilizations. Using the results of a large 

number of performance tests, a performance model can be built. Deployers of enterprise 

applications use this performance model to determine the most suitable capacity configurations 

when deploying a new application [30, 34, 35]. This process is commonly referred to as capacity 

planning. 

To ensure that a performance model is complete and accurate a large number of performance tests 

must be conducted. The large number of tests leads to many challenges when performing 

measurement based modeling in practice.  Setting up the environment for executing each test is 

usually a manual process, which is lengthy and error prone. Setup mis-configurations are 

common, costly, and are usually hard to detect. The test setup process is repeated a large number 

of times since tests are repeated many times. Tests are repeated to ensure the statistical validity of 

results and to study the performance of an application in different hardware and platform settings. 

With each build or version of a software application, the measurement based models must be 

updated by re-running most of the performance tests. Building and maintaining measurement 

based models is a time consuming and resource intensive process. For instance, if a bug is 

discovered in an application during performance modeling then the full performance modeling is 

usually repeated once the bug is fixed.  

Much of practice focuses on automating performance testing instead of modeling. Industry is 

primarily focused on building sophisticated load testing tools, such as WebLOAD [46] and HP 

LoadRunner [25]. Such tools, although valuable for performance testing, do not help address the 

full life cycle of measurement based performance modeling. Since measurement based 
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performance modeling is one of the final steps in an already late release schedule, techniques are 

needed to speed up the modeling process. Practitioners require tools to assist them in building and 

updating measurement based models by automating the various steps in performance modeling. 

Building a measurement based performance model is a challenging task in practice due to many 

of the following reasons: 

1) The large number of tests that must be executed. A large number of tests must be 

executed in order to ensure that the model captures the various possible workload and 

configuration options for an application.  For example, tests should be conducted for 

various configuration settings of an application. Tests may be repeated several times to 

gain statistical confidence in the captured performance metrics. Tests must be conducted 

on multiple platforms to model and benchmark the effects of changing underlying 

hardware platforms. 

2) The limited time that is available for performance modeling. Performance modeling 

is usually done as the last step in an already tight and usually delayed release schedule. 

Hence managers are always hoping to reduce the time allocated for performance 

modeling. 

3) The risk of error due to the manual process that is followed to setup, execute and 

analyze the tests. There exist many tools to help in automating the generation of loads 

for performance testing. However, there exist no tools for configuring the application 

under tests, setting up the tests, and analyzing the results in an automated fashion. In 

practice, all these tasks are done manually and are especially error prone. 
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4) The risk of having to repeat the full modeling process. All too often the modeling 

process reveals problems or mis-configurations are discovered. Once the identified 

problems are addressed, the modeling process must be restarted from scratch while 

having minimal impact on the time allocated for performance modeling.  

Such challenges have been noted by other researchers and practitioners as well. For instance, 

Gunther cites lengthy measurement and modeling phases as the main reasons for management’s 

skepticism towards performance modeling and capacity planning [10]. 

In this work we propose a performance modeling framework which addresses the aforementioned 

capacity planning challenges as follows: 

1) The large number of tests that must be executed. Our proposed framework supports 

the use of advanced test selection and prioritization techniques such as ANOVA selection 

[42] and screening designs [51], to reduce the number of tests. The framework also 

supports the re-use of data from previous releases or builds of an application. 

2) The limited time that is available for performance modeling. The framework 

automates many of the time consuming tasks needed for building performance models. 

The framework also reduces the time needed for tests. 

3) The risk of error due to the manual process that is followed to setup, execute and 

analyze the tests. The framework automates the processes for setting up the 

environment, executing the tests and analyzing the tests. This automation ensures that 

errors are minimal. Moreover the framework contains a validation step which uses prior 

performance tests and heuristics to flag possible bad tests and to rerun them or remove 

them from the model building step.  
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4) The risk of having to repeat the full modeling process. The framework detects and 

flags possibly problematic or mis-configured performance tests. The modeling process 

can be automatically executed incrementally after the problems are addressed. 

1.2 Customer Support on Capacity Planning 

After deployment, in the maintenance phase of software development life cycle, customers report 

bugs and issues that need to be addressed efficiently in short time, compliant to stringent QoS 

requirements. We focus on the performance and capacity related issue resolution in our work. To 

resolve performance and capacity related issues, support analysts often use their experience to 

troubleshoot the application deployment. Support analysts take their cues from the operation 

profile, problem symptoms, operating system and hardware platform of the deployment at the 

client site. 

As shown in Figure 3, after providing issue resolution, the application support analyst creates a 

customer engagement report, which captures observed symptoms, identified problems, attempted 

workarounds and the final solution. One or more execution log files from the customer site are 

attached to the report. At mature software development organizations, these customer 

engagement reports are archived in a Customer Engagement Repository. The repository contains 

practically acquired invaluable information, which can be useful in many ways [12]. However, 

retrieval of information from this repository is not well-explored. We could not find more 

research works pertaining to that. There exist no systematic techniques to retrieve and use 

information in such a knowledge base for future engagements. In this thesis we present a 

technique to support future engagements by reusing information stored in the customer 

engagement repository. This idea is represented by the dotted line connecting the repository to the 

analyst in Figure 3. Retrieval of information from the repository is also needed when a team of 
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analysts are employed to serve a large customer base and no single analyst has all the knowledge. 

New analysts joining the team carry no domain knowledge, and need to rely on information 

retrieval from the engagement repository as they start working to troubleshoot customer 

deployments. 

 

Figure 3: Customer Engagement Reporting 

When working on a particular engagement, support analysts rely on their experience in 

identifying prior engagements with similar circumstances. Analysts commonly use basic text 

search technology to retrieve relevant reports of prior engagements using specific keywords. 

However, such an approach requires consistent entry of the data in the reports and the use of the 

appropriate keywords in the search. For example, a search for “hung thread” would not return a 

report which talks about a “non-responsive thread”. The use of basic search technology all too 

often prevents the analyst from quickly locating the appropriate reports. 

Our goal is to help the support analyst in the task of troubleshooting the application deployment 

by retrieving relevant information from the customer engagement repository. We present a 

Application
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technique which uses the execution logs attached to the engagement reports to retrieve relevant 

customer engagement reports from the engagement repository. For information retrieval purpose, 

the execution logs provide certain advantages over other pieces of information attached to report. 

Execution logs are consistent since they are automatically generated by the application, while all 

other information in the report is manually entered. The manually entered information might 

suffer from issues such as, (a) varying level of completeness of information (b) inconsistent use 

of terms (b) analysts’ incomplete knowledge of all operations and features of the application (c) 

analysts’ inexperience, leading to bias towards documenting known territories. On the other hand, 

the execution logs are a direct representative of the application’s operations and problems. 

Our technique for customer support on capacity planning takes as input an execution log file for a 

particular deployment and returns relevant engagement reports. The technique returns two types 

of relevant reports:  

1. Reports of engagement with a similar operational profile. The operational profile 

identifies the workload characteristics of a particular application deployment. For 

example, given a deployment of an email server with an operational profile where 80% of 

the traffic is outgoing email and 20% in incoming email, our technique would return 

engagement reports for deployments with similar profiles. These reports are valuable 

when investigating workload problems (e.g. slow response time under a particular 

workload). 

2. Reports of engagement with a similar signature profile. Whereas an operational 

profile summarizes the workload characteristics of an application, a signature profile 

identifies the characteristics which are most peculiar for a particular deployment relative 

to all other deployments. For example, if a deployment has a relatively high number of 
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deadlock events, then our technique would return engagement reports for deployments 

with relatively high number of deadlock events, even though that deployment might be 

similar to some other deployment with respect to its workload characteristics. These 

reports are valuable when investigating configuration and environment problems (e.g., 

environment error messages, hung threads, and restarts). 

Our technique uses readily available yet hardly used information in the customer engagement 

repository. Analysts can pick the type of retrieval method to use depending on the situation at 

hand. For example, if a deployment is facing a problem of higher response time in some 

transactions, it would be appropriate to retrieve reports based on the operational profile. If a 

deployment is facing isolated occurrences of applications restarts or hung threads, it might be 

appropriate to retrieve relevant reports based on the signature profile. We show the validity and 

usability of our technique in practice through case studies performed on two applications – first 

the Dell DVD Store application, and second a large enterprise application. Our results confirm the 

high performance (i.e., precision and recall) of our technique. 

1.3 Overview of Thesis 

As we affirmed earlier, performance engineering related activities in the verification and 

maintenance phases carry profound impact on software quality and customer satisfaction. This 

thesis presents our work targeting performance engineering activities in the verification and 

maintenance phases of the software development life cycle. Specifically, we present:  

a) A framework for building performance model based capacity calculators, that capture 

performance characteristics of the application during the verification phase. 
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Our framework captures and explains important steps in the process of building performance 

model based capacity calculator. The framework is a result of our research and practice in 

performance engineering. It helps the performance analyst to automate and speed the task of 

building measurement based capacity calculator. We demonstrate our framework using an 

open source application as a test-bed. The framework can be reused with customization for 

successive builds, successive versions, versions targeting a different platform, or an altogether 

different application. We also discuss effort estimation for such customizations. We presented 

this work at the Seventh International Workshop on Software and Performance (WoSP) 

organized at Princeton, NJ, USA in June 2008 [56]. 

b) A technique for helping troubleshoot performance issues during the maintenance phase 

by retrieving relevant report from a customer engagement repository. 

Our technique for customer support on capacity planning marks one of the first efforts to mine 

customer engagement reports to solve performance problems of customers. Our technique 

retrieves relevant engagement reports based on similar operational profile and similar problem 

profile, that helps support analyst apply past knowledge to solve future performance and 

capacity related problems. We demonstrate the applicability and generality of our technique 

using an open source application and a commercial application as examples. We show the 

good precision and accuracy of our retrieval technique using classical metrics of precision and 

recall. We presented this work at the IEEE International Conference on Software Maintenance 

(ICSM) organized at Beijing, China in September 2008 [57]. 

We expand the SDLC phases of verification and maintenance in Figure 4 to provide an overview 

of how our work helps performance engineering activities in those two SDLC phases. Please note 

that we show only performance engineering related activities in the Figure. In the Figure, the 
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steps to which we contribute in this work are highlighted with thick broken lines. Now we explain 

each of the steps from the Figure. 

1. In the verification phase, performance engineering activities include load testing, stress 

testing and performance testing. In load testing, the application is run for long periods 

under high workloads that are typically expected at customer deployments. 

2. In stress testing, the workload or the deployment scenario is modified to put excessive 

stress on one or more system resources, such as disk, processor and network. The purpose 

of both load testing and stress testing is to verify that the application continues to meet 

the performance requirements laid for it. 

3. The goal of performance testing is not to find bugs, but to establish benchmarks on how 

software will perform under different workload and resource availability situations. 

Sophisticated performance model is built using the results of the performance tests. Such 

performance model is used to build a capacity calculator that allows predicting 

application performance under different workload and resource availability situations. 

4. The capacity calculator informs customers of required hardware resources to support the 

anticipated workload, such as the number of users and the transaction volume. Customers 

can now take informed decision on the needed resource capacity to deploy the 

application. 

5. Performance issues arise in customers’ production environment, which needs 

troubleshooting. 

6. Customers engage the vendor’s support analyst to resolve the issues with application. 
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Figure 4: Overview of the Thesis 

7. The customer support analyst needs to fix the application deployment, taking clues from 

the customer’s operation profile, problem symptoms, operating system and hardware 

platform of the deployment at the client site. At the end of an engagement, the support 
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analyst archives the engagement report to the customer engagement repository. Our 

technique helps the support analyst by retrieving relevant reports from the customer 

engagement repository, allowing the support analyst to apply the solutions that worked in 

similar problem situation in the past. 

8. Using the information retrieved by our technique, the support analyst troubleshoots the 

customer deployment. 

9. The goal of load testing and stress testing is to verify that the application continues to 

perform under possible customer deployment scenarios. To that end, the strive to bring 

the workloads used in load testing and stress testing closer to real world customer 

workloads has always been challenging. Our technique allows comparing log files 

generated by running load tests and stress tests against the log files of the customers, so 

that the workload in the load tests and stress tests can be modified to make it closer to 

real world customer deployment scenarios. 

1.4 Major Thesis Contributions 

In this thesis we present a framework for building capacity calculators using measurement based 

performance models of software applications. The need for such a framework is felt from the 

current challenges in performance modeling practices in industry. These models are produced 

through a labor intensive and error prone process which always occurs at the end of already late 

release schedules. Our proposed framework automates the building of measurement based 

performance models. The framework is based on our experience in performance modeling of two 

large applications: the DVD store application by Dell Corporation and another larger enterprise 

application. We present the limitations of our framework and highlighted our experience in using 

it. Moreover we discuss the effort involved in customizing our framework for other applications 
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and other platforms. The main contribution of our work is the proposal of a framework that brings 

together various venues of research to support analysts in their day-to-day activities. Using our 

framework researchers can explore contributing and fitting their own research work into the 

proposed framework. Moreover, analysts can compare various tools and techniques using the 

structure of our framework. 

Retrieval of relevant engagement reports helps support analysts resolve client issues quicker and 

better. Retrieval of relevant engagement reports is based on similar operational and signature 

profiles. We present a technique to analyze the execution logs from the customer engagement 

repository and retrieve the relevant execution logs and corresponding customer engagement 

reports. Our technique can equally aid in remote issue resolution by identifying relevant 

engagement reports and recommending resolution steps. Our technique can be applied 

immediately on an application, since the execution logs of most applications are readily available 

and are usually archived in the customer engagement repository. It requires no code changes, nor 

does it require any data collection from customers. Hence it can be easily adopted by companies 

and does not depend on a particular software application, version, build, or platform. 

1.5 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 provides a literature review of existing 

research and practice on the topics related our thesis. Chapter 3 discusses our framework for 

building performance measurement based capacity calculators, with the help of a case study. 

Then we discuss our technique for customer support for capacity issues in chapter 4. Chapter 5 

discusses case studies for our customer support technique. Chapter 6 discusses the results and 

limitations of our framework and technique. Chapter 7 concludes with a summary of topics 
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addressed, thesis contributions, and directions for future research and commercialization of our 

research. 
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Chapter 2 

Literature Review 

In this chapter we present work in the areas related to the topic of our thesis, that is, capacity 

planning and customer support. Our technique for customer support is a data mining technique 

based on event correlation, so related work in the areas of event correlation and mining customer 

engagement repository is presented. Related work in operational profile retrieval and fault 

resolution techniques is also presented, as techniques from these areas are often used for customer 

support. 

2.1 Capacity Planning 

Capacity planning requires accurate performance measurement and modeling. We refer the reader 

to the book by Jain [16] as one of best texts on the subject. Goldsmith et al. present a 

measurement based technique for modeling computational complexity, to avoid relying only on 

theoretical asymptotic analysis [9]. Similar to their work, our framework aids in measurement-

based modeling, rather than analytical or simulation based modeling. Their modeling effort is for 

algorithmic performance of non-Markovian applications. In contrast, our modeling effort, 

presented in chapter 3, is for enterprise applications which are Markovian in nature. In Markovian 

systems, service demands from each new request are independent of previous requests and the 

current state of the application [16]. Moreover, the presented framework would be useful to 

Goldsmith et al. in performing and managing the numerous performance tests required for 

empirically measuring computational complexity. 

A tool called JUnitPerf developed by Clarkware Consulting helps automate performance testing 

during the development cycle [19]. JUnitPerf helps reuse the unit tests written in JUnit [18] for 

performance testing of code units, as the developers finish coding and refactoring. JUnitPerf is 
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valuable for performance testing during the development cycle. However, our framework, 

presented in chapter 3, is used to model the overall performance of the whole application before 

shipping instead of modeling a particular unit of code. 

Mania and Murphy present a framework for automated LQN based performance modeling [27], 

which is derived from the trace-based modeling technique proposed by Woodside et al. [13]. 

Smith et al. propose a process for building software and system performance models from UML 

models [41]. Both Mania and Murphy’s framework, and Smith’s process are limited to analytical 

performance modeling, in particular LQN based modeling. In contrast, our framework is used for 

measurement based performance modeling. 

2.2 Event Correlation 

Techniques that analyze the run-time behaviour of programs are called dynamic analysis 

techniques. In contrast, static analysis techniques analyze the program’s text [45]. Static analysis 

derives properties that hold for all executions, while dynamic analysis derives properties that hold 

for one or more executions. Hence, dynamic analysis lends itself well to reasoning that involves 

compare and contrast. Dynamic analysis includes both offline techniques that operate on a trace 

of the system's behavior, and online techniques that operate while the system is producing its 

behavior. Common examples of dynamic analysis techniques are profilers, memory allocation 

monitors, assertion checkers, and event correlation. Among these, we focus on event correlation, 

as our technique for customer support, presented in chapter 4, is based on event correlation. Event 

correlation strives to produce conceptual interpretation where new meaning is assigned to a set of 

events happening within a pre-defined time interval [17]. For example, consecutive events 

“Message received” and “Message queue full” could be automatically interpreted together as an 
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event “Message not delivered due to event queue full”. Jakobson and Weissman have considered 

the following common event correlation operations in their work: 

• Compression: Reduction of multiple occurrences of identical events into a single event 

• Filtering: Suppression of an event if one of its parameters has a certain value 

• Suppression: Suppression of an event if a certain operational context is present 

• Counting: Counting and thresholding of repeated arrivals of identical events 

• Escalation: In presence of a certain operational context, assigning a higher value to a 

certain event parameter (e.g., severity) 

• Generalization: Replacing an event with an event from its superclass 

• Specialization: Replacing an event with an event from its subclass 

• Temporal relationship: Correlating events depending on the order and time of their arrival 

• Clustering: Classification of events or information associated with events into groups 

(clusters) based on some common traits 

Out of the aforementioned event correlation operations, our customer support technique includes 

generalization, counting, filtering, and clustering operations. We generalize log lines to events by 

removing instance-specific dynamic information. Then we count the occurrences of the events to 

obtain an event distribution. To obtain a signature event distribution, we filter all the other events 

to obtain a signature event distribution. Lastly we classify the engagement report associated with 

the event log file as either “similar to” or “different from” a given event log file. We discuss these 

operations in greater detail in chapter 4. 

2.3 Mining Customer Engagement Repository 

With the increasing application of computing in science, computing, and government, there has 

been an explosive growth in electronic data and databases. This led to a growing demand for tools 
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and techniques to analyze the electronic data to discover knowledge, such as patterns, 

classifications, associations, and anomalies. Consequently, data mining is becoming an 

increasingly important research area. Based on kind of knowledge extracted, data mining 

techniques are commonly classified as classification, clustering, association, summarization, 

prediction and pattern mining. A variety of techniques are used in data mining, including 

database-oriented, machine learning, and statistical techniques. 

Even though mining of other software repositories has been well explored, there has been little 

research work in the area of mining of customer engagement repository since Hui and Jha [12] 

proposed mining the customer support repository for the manufacturing industry to retrieve 

relevant reports. The authors apply mining techniques, such as neural networks, case-based 

reasoning, and rule-based reasoning on the textual service records stored in the repository. 

However, success of their technique would depend on the willingness of the support analysts of 

previous engagements to enter large textual information, and the search skills of the support 

analysts working on later engagements. In contrast, our technique for customer support, discussed 

in chapter 4, is based on applying statistical techniques on the execution logs attached to the 

engagement reports; hence it does not need to rely on manually entered textual information. 

2.4 Fault Resolution 

In chapter 4, we propose a technique for fault resolution in production deployments of enterprise 

applications at customer site. Different classes of techniques have been researched and applied to 

fault resolution in different areas of computing. For instance, spectrum based fault localization 

and model based diagnosis have been successfully applied in fault resolution in hardware and 

embedded systems [55]. Rule bases reasoning is another prominent class of techniques for fault 

resolution in software support, originally proposed by Cronk et al [6]. Rule based reasoning 
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systems build, query, and update a knowledge database of symptom-solution. However, Lewis 

noted [23] that rule based reasoning methods tend to suffer from difficulty in adapting to new 

problem situations, and large knowledge database, leading to unpredictable results. Lewis 

proposed case based reasoning as a means to overcome limitations of the rule based reasoning. 

The case based reasoning enhances the previous approach with user-feedback-capturing in order 

to update the knowledge database. Our technique, presented in chapter 4, however, is 

fundamentally different, in that it draws from event correlation and statistical analysis. One of the 

advantages of our technique is that we do not need to create and maintain any manual metadata, 

apart from the customer engagement report routinely prepared at the end of a customer 

engagement. Hence, we believe our technique is easier to deploy and maintain. 

2.5 Operational Profile and Signature Profile Retrieval 

We use execution logs as representatives of operational profiles which capture the workload 

characteristics of an application. There are many techniques to create operational profiles, such as 

[8, 28, 33]. Our technique for customer support is different from those approaches in that it goes 

on to compare execution logs based on the operational profiles that they represent, without 

actually retrieving operational profiles. 

Unlike operational profiles, signature profiles are not well explored by researchers and 

practitioners. Researchers working in areas related to software quality and reliability often 

analyze signature events in an application [1, 47]. However, retrieval of engagement reports 

based on the signature profile, as done in this work, has not been proposed. 

2.6 Summary of Literature Review 

We presented related research work in the areas that this thesis touches: capacity planning, event 

correlation, mining customer engagement repository, and operational profile and signature profile 
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retrieval. While capacity planning has over the years gained significant research and practical 

body of knowledge, limited research has been done in measurement based modeling and capacity 

planning challenges. No systematic technique exists for retrieving relevant reports from a 

customer engagement repository of software applications. 
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Chapter 3 

Framework for Building Capacity Calculators 

In this chapter we discuss our framework for building capacity calculators. Building measurement 

based performance model requires running and analyzing a large number of tests. We propose a 

framework for building capacity calculators using measurement based performance modeling. 

Figure 5 shows the various steps in our framework. Our framework constitutes of the following 

steps: 

1) Test enumeration determines the set of performance tests that should be executed. The 

aim of the test enumeration step is to define the search space of all the tests which should 

be executed to build an accurate performance model. 

2) Test reduction uses domain knowledge and historical information from prior runs to 

reduce the number of performance tests. Moreover test reduction uses statistical and 

experimental design techniques to reduce the number of tests that should be run. 

3) Environment setup automates setting up the environment for performance testing. This 

includes installing the application and load testing tools. The application and the tools 

may be required to run on different operating system platforms. To support multi 

platform applications, practitioners can customize this step and reuse the other steps 

across platforms. 

4) Test execution automates the task of running the test suite. It has three major activities 

of: Test Setup, Test Run, and Test Shutdown. This step is customizable to allow the use 

of performance/load testing tool that can be invoked automatically (e.g., from the 

command line). 
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Figure 5: Our Framework for Building Capacity Calculators 

5) Test transition prepares the environment to execute the next performance test from the 

tests specified in the first step in our framework. The practitioner can configure the 

framework between one extreme of full restore and restart of the system under test and 

the other extreme of directly starting the load for the following test. The framework 

automatically executes the transition steps after finishing each performance test.  
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6) Test analysis step first compares the test results against other test results and against 

heuristics to detect any issues with the performance test itself. Next, the metrics from the 

performance counters are analyzed to draw the relation between performance counters 

and load injected. 

7) Model building In this final step, a regression model is built using statistical analysis 

tools, which models the application performance as a function of its load parameters. 

8) A performance database stores the performance test and analysis data. The database is 

used in the test reduction, test analysis and model building steps. The database could be 

implemented using sophisticated database systems, or using files. 

The framework permits performance analyst to encode the various heuristics that are used in their 

model building process on a daily basis. By encoding the heuristics they ensure that their model 

building process is repeatable. The documentation of the heuristics permits analysts to closely 

examine these heuristics and update them as their understanding of the application matures. 

Analysts could also replace their heuristics with more sophisticated techniques as they evolve 

their modeling process. In the next section, we describe the Dell DVD Store application, which 

we have used as a running example to demonstrate the various steps of our framework. We 

describe each step of our framework in section 3.2 to section 3.8. Section 3.9 discusses the efforts 

required to customize the framework to use it for a different build, different version, different 

platform or different application. 

3.1 The Dell DVD Store Web Application 

We now briefly introduce the Dell DVD Store application. The DVD Store (DVD Store 2 or 

DS2) application is an open source enterprise software application. The DS2 application is 
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developed by Dell as a benchmarking workload for white papers and demonstrations of Dell’s 

hardware solutions [14]. DS2 seeks to emulate today’s online stores, architecturally and 

functionally. As shown in Figure 6, the DS2 application has two-tier architecture: an application 

server that hosts JSP pages, and a database server that hosts stored procedures, triggers and 

relational data. The load generator can generate load on different application servers, or directly 

generate load on the database server, skipping the application server altogether if the focus of 

performance test is to be on the database server. The source code for the load generator can be 

compiled to run on various platforms.  

Client 
Emulator

Application Server (Apache Tomcat)

Thread 
Manager

Server 
Engine

DB 
Connection 

Pool

Database 
Server

 

Figure 6: DS2 high-level architecture 

The load generator emulates website users by sending HTTP requests to the application front-end. 

The application front-end encodes the various business rules, e.g. ordering new titles, declining 

an order in case of insufficient inventory. All customers, titles and transactional data are stored in 

the database server tier. 

We preferred DS2 over other benchmarks for many reasons. First, it is open-source software, 

which allowed us to debug and fix many issues. Second, it is simple and straight forward to use, 

through a command line interface. Furthermore, it does not require any commercial software to 

get it running; we could use Apache Tomcat for application server and MySQL for database 

server. 
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We modified the Application Server code to capture more metrics, including the average time 

spent in obtaining a connection, average number of threads waiting for connection, average 

number of threads sleeping. For the purpose of conducting experiments, we also modified the 

code to allow us to configure the maximum number of connections in the database connection 

pool. 

We had to fix a critical dead-lock situation to allow us to conduct performance tests at 

concurrencies significantly higher than ever done before on DS2. The application server tier 

would open first connection with the database to allow customer login and querying its purchase 

history. Then after, it would open a second connection to browse the titles related to the titles in 

the customer history. After a few minutes of run, all the Application Server threads would end-up 

waiting for the second connection after capturing the first connection. As it was not possible with 

the current MySQL driver to reuse connection, we modified the code to do not query the purchase 

history and related titles. All these would not have been possible with any commercial closed-

source benchmark. We now explain each step of our framework using the DS2 application as a 

running example. 

3.2 Test Enumeration 

The first step towards performance modeling of a software application is to enumerate the list of 

performance tests which should be performed to build a performance model that would fulfill the 

requirements of customers. This step is the only manual step in our framework. Our framework 

automates the execution of the remaining steps.  The test enumeration step consists of four 

phases. We discuss below each phase using the DS2 application. 
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Phase 1: Enumeration of functional transactions 

The performance analyst begins with enumerating the functional transactions available in the 

application. For our case study, the functional transactions in the DS2 application are: 

i. Creation of a new customer profile 

ii. Customer login 

iii. Searching for titles by category, actors, and genre. 

iv. Purchasing a title 

Phase 2: Mapping functional transactions to workload classes 

The performance analyst needs to map the functional transaction to workload classes. Multiple 

transactions can be grouped and modeled as a single workload, or each transaction can be 

modeled as a separate workload. The analyst should decide based on the granularity and level of 

details required in the model. For example for the DS2 application, if we are not interested in 

modeling the performance demands of each individual transaction, we can consider a sequence of 

login-search-purchase transactions as a single workload, as done by researchers at Dell [30]. 

Rather, we decide to consider each transaction as a workload class. We consider that the sequence 

of login-search-purchase as a single workload may not be a valid assumption since a user might 

do several search operations before making a purchase. 

Phase 3: Prioritizing workload classes for test execution 

The workload classes should be prioritized since the framework will execute tests to ensure that 

each workload is represented in the final performance model. For instance, if the performance 

model is being built for a new release in which the purchase functionality has been modified to 

accept a new method of payment, the analyst may decide to only execute the tests corresponding 

to the purchase workload and to reuse the data for other tests from the older model of the 

application. 
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Phase 4: Picking the ranges for each workload class and the step size within a range 

The range for each workload class and the step size within the range are picked based on the 

experience of the analyst, the requirements imposed on the final performance model, and 

historical knowledge about the application. For instance, if a particular setting would peg a 

hardware resource at full utilization, the workload might be too high for the system to handle so 

the range should be adjusted. In the absence of historical data, some trial and error might be 

required to decide the ranges and stepping size, so that the measurement points are evenly 

distributed. Now we enlist the settings available for the DS2 workload classes, so that we can 

enumerate the tests with different values of those: 

1. Frequency of a transaction: Number of transactions per hour. 

2. Concurrency: Number of processes or threads concurrently generating the load on the 

application. 

3. Search categories: Search by name, category, actors or genre. 

4. Purchase quantity: Number of DVDs purchased in one transaction. 

The frequency and concurrency settings are applicable to all four workload classes. The search 

category settings are applicable only to search workload. The purchase quantity settings are 

applicable only to purchase workload. Table 1 shows the relation between the various settings 

and the workload classes. All four settings (frequency, concurrency, search, and purchase) have 

four levels. 

Performance tests should be conducted at various combinations of the available settings for each 

workload. For instance, the Login workload class has 4 levels for the frequency and concurrency 

settings resulting in 16 possible combinations, for which a performance test needs to be 

conducted. Based on studying the documentation of the DS2 application, we decided not to 
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consider the interaction between the workload classes, since each workload class has a service 

demand that is independent of the demands of any other workload class. Based on our assumption 

and the number of settings, we have enumerated a total of 144 performance tests, as detailed in 

Table 1. If a performance analyst were to consider the interaction between the workload classes, 

then the number of tests would be quite larger using a factorial experiment design technique [16], 

as the total number of tests would be the multiplication of the number of possible tests for each 

workload class. 

Table 1: Enumeration of performance tests 

Workload 

Class 

Frequency 

Levels 

Concurrency 

Levels 

Other Performance 

Tests 

Create Profile 4 4 - 16 

Login 4 4 - 16 

Search 4 4 4 

(search parameters) 

64 

Purchase 4 4 4  

(purchase quantity) 

64 

Total Number of Performance Tests   144 

 

3.3 Test Reduction 

Test reduction is the second step in our framework. As discussed in section 3.1, the large number 

of performance tests and long test durations are some of the key challenges in measurement based 

performance modeling. Hence, it is necessary to introduce this step in the framework to reduce 

the number performance tests. However, there has been little research interest in performance test 

reduction methods. In this section, we propose a few performance test reduction methods, 

borrowing ideas from other research areas. We classify these methods as one of two types: static 

and dynamic. The static test reduction is a manual process, requiring good knowledge of the 
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requirements of the performance model and the implementation of the application. The dynamic 

test reduction methods are based on mathematical tools and techniques, which are built into the 

framework and are carried out automatically. 

3.3.1 Static Test Reduction 

There usually are several functional transactions in a large software application. However, all of 

the functional transactions may not be important for performance modeling. For instance, 

customers who want to deploy a DVD Store application would not be much interested in the 

performance of the admin functionalities. Rather, they would like to know how the store front 

performs in regards to customer operations. Hence, uninteresting functional transactions can be 

filtered out. Such a reduction method draws from the knowledge of the requirements. 

Another set of reduction methods draws from the knowledge about the implementation. For 

instance, if two features are similar to each other, it might be sufficient to conduct performance 

tests on only one of them. For example, purchasing a DVD and purchasing a DVD Collection 

features might differ by only a few code modules, so the performance analyst can decide to build 

a model that captures only one of the features to reduce the number of needed tests, at least in the 

first iteration of model building.  

3.3.2 Dynamic Test Reduction 

The idea of test reduction has been researched thoroughly in the functional testing area [37, 49]. 

However, this idea has not been explored much for performance testing and modeling. We 

present a few approaches, which although used for other purposes, can be practically used here. 

The Pareto principle [20] suggests that a small number of the application features account for 

majority of the issues. This principle is applicable to functional as well as performance issues. 
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The dynamic test reduction techniques seek to identify those few features which contribute 

significantly to application performance and only execute the tests that correspond to these 

features. 

The framework supports using the aforementioned methods or other research work in a plug-and-

play fashion. In our case study, we used a simplistic method for test reduction. We ran the two 

extreme performance tests for each workload class: one with the lowest value and another with 

the highest value from the entire array of workload sizes, as derived after the test enumeration 

step. For instance, we ran the test for Purchase workload with quantities: one, and one thousand. 

If the framework does not discover significant differences in performance between these two 

tests, the framework skips the tests corresponding to the intermediate values. However, if the 

framework discovers significant differences in performance due to the parameter settings (such as 

concurrency, frequency and search type), it conducts the remaining tests for those settings. Using 

this simplistic method we could reduce the number of tests from 144 tests to 64 tests.  The 

reduced list of performance tests is shown in Table 2. 

3.4 Environment Setup 

The environment setup is the third step in our framework. This step is designed to install the 

application and the performance/load testing tools. Currently environment setup in the industry is 

a manual, ad-hoc and error-prone process. There has not been much research work on automating 

this step. 

In our framework, we automated and implemented this step using a set of scripts in a stand-alone 

module, which is invoked by the framework engine. The scripts set up multiple computer systems 

– the application servers, database servers, load generators and performance tracking machines. 

The scripts then verify the correctness of environment setup by making sure that the relevant 
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processes and services are running. However, each application and load testing tool has its own 

installation steps. Hence, we anticipate a significant amount of rework is required in this step 

when customizing the framework to another application or platform. We discuss the efforts 

needed for customizing our framework in Section 3.9. Despite relatively large customization 

efforts needed for this step, our experience using the framework shows that it is worthwhile to 

automate this step, considering that the customization effort is a one-time effort. 

Table 2: Reduced list of performance tests for DS2 

  Frequency (transactions per hour) 

  20 40 60 80 

Co
nc
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y 

25
0 Creating Customer Profile T111 T112 T113 T114 

Customer Login T121 T122 T123 T124 

Search Title T131 T132 T133 T134 

Purchase Title T141 T142 T143 T144 

      

Co
nc

ur
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nc
y 

50
0 Creating Customer Profile T211 T212 T213 T214 

Customer Login T221 T222 T223 T224 

Search Title T231 T232 T233 T234 

Purchase Title T241 T242 T243 T244 
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y 
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00

 

Creating Customer Profile T311 T312 T313 T314 

Customer Login T321 T322 T323 T324 

Search Title T331 T332 T333 T334 

Purchase Title T341 T342 T343 T344 

      

Co
nc

ur
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nc
y 

15
00

 

Creating Customer Profile T411 T412 T413 T414 

Customer Login T421 T422 T423 T424 

Search Title T431 T432 T433 T434 

Purchase Title T441 T442 T443 T444 
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3.5 Test Execution 

Conducting performance tests is a lengthy and tedious step. This major step is further divided into 

three sub tasks: test setup, test run and test shutdown. 

3.5.1 Test Setup 

Each component of the application may need a set of test data for a particular test. For instance, 

the DVD Store application in our case study needs to be loaded with test data of DVD titles, 

registered customers, and their purchase history. Another important task in test setup is the 

configurations of the application server, the database server and the load generator. Different 

setting of the configuration parameters values can lead to drastically different performance 

results. It is important to associate a performance test result with its configuration for the test 

analysis step. Our framework archives the configuration files of the application with each 

performance test. 

Being confident that the tests are not affected by any one-off anomalies includes making sure that 

the application is in a correct state before triggering the test. Problems with test setup are not 

usually captured until the test analysis step, when the counters contradict themselves or do not 

match expectations. For this reason, it is of prime importance to validate the test setup. 

Our framework allows the writing of custom routines for test data setup, configuration, and setup 

validation. These routines are invoked by the framework before triggering the test, thus allowing 

complete automation of test setup tasks. Our experience at using the framework shows that such 

custom routines provide significant time savings. 

3.5.2 Test Run 

There has been considerable work in recent years in automating the running of load and 

performance tests. Sophisticated performance/load testing programs such as LoadRunner and 
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WebLOAD are available. These programs include 1) tools to record a script which represents the 

workload class that is being tested, and 2) tools to generate workload by playing multiple 

instances of the recorded scripts that emulate real-life concurrent users. To conduct the tests, 

multiple instances of the recorded scripts are played from the load generating machines, 

simultaneously probing the performance of the application. Once the scripts representing the 

workload classes are recorded, running of each test is a three step process: 

1. Start the performance counters. 

2. Turn on the application. 

3. Start the load generating tools. 

Starting of the performance counters can be the last or the first step in the process. However, 

starting the counters first allows capturing the transient response of the application while it is 

being turned on and the load is building up. Each of these three main components of the test setup 

might have multiple subcomponents that need to be turned on in appropriate sequence. 

Appropriate time gaps might be needed between the successive steps. 

Similar to test setup, the framework achieves automation in running tests by allowing scripting 

and error checking of this important step in a modular way. 

Each performance test goes through three phases: 

1. Warm-up: Also known as ramp-up phase, during which the application is being subjected to 

the workload. However the workload is not at its full strength but it is building towards the 

designated workload level. 

2. Steady-state: The warm-up phase gives way to the steady state phase if the environment is 

well configured and the application can sustain the workload. During this phase, the 

performance metrics are normally distributed with respect to the average. 
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3. Cool-down: Also known as ramp-down phase, during which the load generator gradually 

stops injecting the workload and the resource utilizations gradually drop as the workload is 

winding down. 

3.5.3 Test Shutdown 

The load generating tools should be shutdown. Often, the load generating tools are timed and can 

be setup to shutdown once a test is completed. The application under test may need to be 

triggered for shutdown or may continue running for the following tests. The decision to shut 

down or to continue running the application is taken by the Test transition step. To remove the 

need for manual intervention, the framework manages this process with scripting and error 

checking. 

3.6 Test Transition 

Test transition is the process of switching from one performance test to the next. There are 

various approaches for test transition. The fastest way to transition is to conduct the tests back to 

back, meaning to start loading the application with the new workload, as soon as testing with the 

previous one is completed. This approach results in fast test transition. However, it may not be 

recommended in all instances, since the residual load from the previous test may interfere with 

the next test. A slightly better transition approach is to add a delay, ranging from a few seconds to 

few minutes, between performance tests, so that the residual load would flow out of the system. 

The length of the delay can be determined experimentally. In practice, it is preferable to use a 

heuristic based transition approach. The approach uses heuristics which monitor a few metrics to 

determine if the residual load has flowed out and the system has reached idle state. For example, 

a check can be made on application resources to ensure that the next test is not triggered until the 

processor utilization of the application machine is below a particular threshold (e.g., 5%).  
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For some application domains, previous test data if continually accumulated can affect the results 

of the following tests. For example, mail server applications continuously accumulate emails so if 

the mail store is not cleaned up after every test, then the size of mail store will keep on increasing. 

With an ever increasing mail store size, the disk resource might show sluggish performance in the 

following performance tests. A regular archival process should be setup. After archival, fresh test 

data for a particular test should be loaded. The best approach for such application is to clean-up 

and restart the application after every test. The clean-up and restart approach would ensure that 

there is no interference between performance tests. 

Similar to the previous steps, the framework manages to automate these tasks with modularity of 

invoking custom routines that carry out these transition tasks. 

3.7 Test Analysis 

Data derived from each executed test should be analyzed for absence of errors. Manually 

analyzing the performance counters and application logs for these purposes could be time 

consuming, tedious and repetitive task due to the large amount of produced data. Our framework 

goes a step beyond by not only automating the analysis for errors, but also using the analysis for 

test reduction and model building. 

The framework triggers the analysis of the results automatically after a test is completed. The 

major tasks of validating the test and analyzing the metrics are discussed in the subsections 

below. 
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3.7.1 Test Validation 

Several problems can arise during a performance test. For example: 

• A functionality bug, e.g. a memory leak or inefficient implementation which results in a drift 

of the hardware resources towards instability during the test. 

• An interference from other processes or applications such as automatic download and install 

of critical OS patches, or disk backup, These processes would cause abrupt changes in 

resource availability and would lead to invalid values for the performance counters. 

• A physical aspect, such as the rise in the operating temperature of the data center housing the 

application under test. This temperature rise may lead to invalid performance counters. 

Such problems leave the performance test data unusable for analysis and model building. To 

detect such problems, the framework invokes validation routines, which check if the application 

reached and maintained stability during the performance test and all counters are within their 

expected bounds. Moreover the logs produced by the application are mined to detect any 

execution anomalies which may indicate bugs in the application. There exists various log mining 

techniques to detect bugs from logs [50]. A performance analyst can choose a technique based on 

their needs. 

A simple way to detect instability is the method of central moving average, which filters short 

term fluctuations and highlights long-term trends. The instability in Figure 7 could be easily 

detected algorithmically using this method. The method would show that the hardware resource 

usage keeps on growing throughout the test and never stabilizes. 
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Figure 7: Instability in Resource Utilization 

Our implementation of the validation module for the DS2 does four types of validations: 

1. If the application reaches and maintains steady state during the test, but the utilization of a 

resource is above 90% then we flag that test as unusable for modeling purposes. The reason 

being, that measurement data at high utilizations are hardly reliable and repeatable [31]. 

Furthermore, all scheduled tests at higher settings than the current test are skipped (as part of 

the test reduction step). This technique helps avoid wasting time in conducting performance 

test which would produce invalid data due to overloading of the application. 

2. If the application does not reach steady state (exhibit ever increasing or ever decreasing trend 

in resource utilization), then we flag the test as unusable for modeling purposes. However, the 

framework continues executing the tests at higher workload settings, unlike the previous case, 

because instability in the current test may not necessary result into instability in tests at the 

higher workload settings. 
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3. If a performance test with the same workload was executed previously (for a previous or 

same build/version), and the measured metrics (utilization, response time, throughput) differ 

by a configurable boundary value, the framework flags the current test as a possibly bad run. 

The performance analyst can then do further analysis of such bad runs. After solving any 

issues, the framework can run incremental modeling tests, only executing the performance 

tests that were flagged out previously. 

4. If the logs of the application show errors during a performance test show, then we flag the 

test as unusable for modeling purposes. However, the framework continues executing the 

tests at higher workload. The performance analyst can override this decision and incorporate 

the results of this test in the modeling if they deem that the reported errors are not 

performance critical.  

After all the tests are automatically executed by the framework and results are presented to the 

performance analysts. If there are any failures, manual debugging may be required to find the root 

cause of test failure. Once problems are fixed, the flagged test can be re-run. The modularity and 

automation in the framework allows the re-running of all or only a subset of the performance 

tests. 

Using our framework’s validation step, we identified a dead-lock bug in the DS2 application. The 

application server tier would first open a connection to the database in order to allow customer to 

login and query its purchase history. Then the application would open a second connection to 

browse the titles related to the titles in the customer history. Within a few minutes of running a 

test, all the threads in the application server would end-up waiting for the second connection after 

capturing the first connection. As it was not possible with the current MySQL driver to reuse 

connection, we modified the code to do not query the purchase history and related titles. We had 
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to fix the bug to allow us to conduct performance tests at concurrency levels that are significantly 

higher than previously modeled for DS2. Once we fixed the bug, we could perform modeling at 

higher concurrency levels. 

3.7.2 Metric Analysis 

For each performance test, the counters collected during the warm-up and cool-down periods 

should be pruned from the analysis, while the counters from the steady state time period are 

carried forward for analysis. Then, counters are imported in a statistical analysis package, such as 

R [32], and statistical functions are applied to derive the average performance metric values. 

Traditionally metric analysis has been a tedious manual task in performance modeling studies. 

We automated this task by creating a script module that is invoked by the framework. The scripts 

chop off the performance counter data captured during the warm-up and cool-down periods of 

each test. We keep the length of the warm-up and cool-down period configurable in the 

framework, to allow it to be easily customized for different applications. Finally, the framework 

obtains the average metric values and stores the values in the performance database to support the 

modeling effort. 

We observed that for the DS2 application, a warm-up period of ten minutes was enough to reach 

steady state. The cool-down period for DS2 was negligible because of the way the load 

generating tool operates – it does not ramp-down the load during the trailing period of a test, it 

rather drops the load from its determined levels to zero when the test time is up. However, many 

performance analysts choose to keep the warm-up and cool-down period quite longer, to show the 

longevity and sustainability that are desired in commercial application. 
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3.8 Model Building 

In the previous step, the framework produced the performance metrics at different workload 

sizes. In this step, the framework invokes the R statistical tool which builds a linear or nonlinear 

regression model for the performance of the application. Figure 8 shows an example of fourth 

order regression model between response time and processor utilization. Once a regression model 

is built, performance predictions at arbitrary load levels are done using the fitted model. For a 

comprehensive discussion of regression models and prediction techniques, refer to [16], 

particularly chapters 14 and 15. The developed regression model could be used as a backend for a 

capacity calculator. 

 
Figure 8: Fourth order regression model 

3.9 Customization Efforts 

A major benefit of adopting our framework is the ability to reuse modeling efforts when building 

performance models for other applications; or other platforms, versions and builds of the same 

application. In addition to using the framework for building capacity calculator for the DS2 

application, we are using the framework for building capacity calculators for a large multi-

platform enterprise application. 
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Table 3: Estimated efforts for customizing our framework 

Framework 
Step 

Another 
Build 

Another 
Version 

Another 
Platform 

Another 
Application 

Test Enumeration Minimal Reasonable Minimal Extensive 

Test Reduction Minimal Reasonable Minimal Reasonable 

Environment Setup Minimal Minimal Extensive Extensive 

Test Execution Minimal Minimal Reasonable Extensive 

Test Transition Minimal Minimal Reasonable Reasonable 

Test Analysis Minimal Minimal Minimal Reasonable 

Model Creation Minimal Minimal Minimal Minimal 

When reusing the framework, several steps in the framework need to be customized to achieve 

automation. Table 3 lists the estimated efforts needed to customize the steps in our framework. 

We classify the customization efforts as Minimal, Reasonable or Extensive. Minimal efforts are 

characterized by a quick review of the step; most of the implementation would be applicable as it 

is, with little changes needed. Reasonable efforts imply the need for changing or rewriting of 

some parts of the implementation of that step. Extensive efforts are characterized by a major 

rewrite of the implementation for that step. 

We anticipate that the efforts to customize the framework for another build to be minimal, 

because all the steps would be applicable, as they are. For instance, no changes to the framework 

were needed after we produced a new build of the  DS2 application after we fixed the bugs in it. 

For another version of the same application, reasonable efforts may be required in test 

enumeration and reduction, considering that new features introduced in the version would result 

in additional workloads which should to be tested and modeled. The rest of the framework would 

still be applicable as is. Continuing the example of the DS2 application, if, for example, a Buyer 

Feedback feature is added to the application, then only new tests related benchmarking of Buyer 
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Feedback workload need to be added. The new feature would not induce any major changes to 

the implementation. 

To customize the framework for the same application running on a different platform, the setup 

and transition steps would need a rewrite of most of the implementation, resulting in extensive 

effort requirement. However, spending the extensive efforts to customize the framework would 

show returns many times, which would easily justify the cost. For example, once the framework 

is implemented for the DS2 application for Microsoft Windows server using Windows scripting, 

to build the framework for benchmarking the DS2 application on Linux server, the scripts for 

environment setup, test execution and test transition would need to be rewritten using Linux shell 

scripts. If a portable scripting language, such as PERL is used, the logic implementation would be 

reusable but functionality that interact with processes and job scheduling would still need to be 

updated. 

To customize the framework for a different application deployed on the same platform, 

reasonable efforts are required in the setup, execution and analysis steps because changes to the 

automation scripts are needed.  

3.10 Chapter Summary 

Building capacity calculator using measurement based performance model is a challenging 

process, requiring running a large number of performance tests in several steps. We presented our 

framework for building capacity calculators that seeks to automate and speed up the process. We 

provided the details of each step in the framework, demonstrating those steps using an example of 

the open source DS2 application. We also discussed estimated efforts needed to customize the 

framework. The next chapter discusses our technique for customer support on capacity planning.  
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Chapter 4 

Technique for Customer Support on Capacity Planning 

As established in Chapter 1, our work focuses on helping performance engineering and capacity 

planning tasks in the important SLDC phases of verification and maintenance. In previous chapter 

we discussed our framework for building capacity calculators, an important activity in 

verification phase. In this chapter we provide details of our technique to help customer support on 

capacity planning related issues that appear during the maintenance phase. 

Our technique takes the execution log files for a customer as an input and retrieves the relevant 

execution log files and corresponding customer engagement reports from the engagement 

repository. Our technique retrieves two sets of engagement reports: (a) a set based on similar 

operational profile, and (b) a set based on similar signature profile. Figure 9 summarizes the steps 

of our technique. Algorithm of our technique is summarized as follows: 

 Obtain events distribution P for the input execution log 

 Obtain signature events distribution S for the input execution log 

For each execution log Ri in the engagement repository 

     Obtain events distribution Pi 

     Obtain signature events distribution Si 

     Calculate distance Dp between P and Pi 

     Calculate distance Ds between S and Si 

End For 

Present engagement reports from the repository sorted by ascending order of Dp 

Present engagement reports from the repository sorted by ascending order of Ds 
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Figure 9: Our Technique to Retrieve Relevant Engagement Reports 

Our technique obtains event distribution from the customer execution logs by removing dynamic 

information from the logs lines. Then it obtains a signature event distribution by identifying and 

keeping the signature events and removing all other events from the event distribution. Similarly, 
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our technique obtains event distribution and signature event distribution for each of the 

customer’s execution logs in the engagement repository. Then our technique compares the event 

distribution of the incumbent customer to the event distribution of each of customer’s execution 

logs stored in the engagement repository. Comparing the event distributions allows ranking of the 

execution logs in the repository by their distance from the incumbent customer’s execution logs. 

Using that ranking, closest customer engagement reports are presented to the support analyst, so 

that the support analyst can apply the solution steps that worked in those engagements to the 

incumbent customer engagement. The same process of comparing, ranking and presenting the 

engagement reports is done for the signature event distributions. Next section examines execution 

logs of enterprise applications. Section 4.2 to section 4.5 discusses the steps in our technique for 

customer support. Section 4.5 discusses how we measure the performance of our technique. 

4.1 Execution Logs 

An operational feature of an application is made up of one or more code modules. A code module 

can generate one or more events in the execution log once it is executed.  Thus, one of the most 

readily available information related to application usage at any customer deployment site is the 

execution logs (or activity logs). The execution logs typically contain time-stamped sequence of 

events at run-time. Figure 10 shows a sample execution log for an enterprise collaboration suite, 

such as Zimbra [54] or Microsoft Exchange Server [29]. We note that execution logs tend to be 

quite large in size, as they record code module level activities at runtime. 

Execution logs help remote debugging by providing a detailed context for field issues. While 

many applications are designed with their own logging mechanisms, logging frameworks such as 

the Apache Logging Services [2] can be used to enable event-logging in applications. 
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<time> Queuing new mail msgid=ABC threadid=XYZ 

<time> New meeting request msgid=ABC threadid=XYZ 

<time> Instant msg. Sending packet to client msgid=ABC threadid=XYZ 

<time> Client established IMAP session emailid=ABC threadid=XYZ 

<time> Client disconnected. Cannot deliver msgid=ABC threadid=XYZ 

<time> New contact in address book emailid=ABC threadid=XYZ 

<time> User initiated appointment deletion emailid=ABC threadid=XYZ 

<time> Instant msg. Sending packet to client msgid=ABC threadid=XYZ 

Figure 10: An Example of Execution Logs 

4.1.1 Legal Requirements on Application Logging 

In response to increased accounting and security regulations, governments in various nations 

created laws requiring the logging of the execution of enterprise and financial applications. For 

instance, the Sarbanes-Oxley Act of 2002 [43] in the US, and the EU directive of 2006 on data 

retention [7] are major steps in that direction. These legal requirements helped increase the 

availability of the execution logs required as an input for our technique. There has also been an 

increased concern over privacy and security information present in the execution logs. It is 

common to remove such sensitive information from the logs before passing it for application 

analysis. Our log mining technique works equally well on such anonymized execution logs. 

4.1.2 Execution Logs vs. Tracing Logs 

Execution logs are routinely generated at customer installation sites according to selected logging 

levels. Execution logs contain activity events (such as “Account verified” or “Message 

delivered”) as well as error events (such as “Message queue full” or “Too many requests, server 

busy”). In contrast, tracing logs (or implementation logs) are generated by code instrumentation 

or statistical sampling using profiling tools. Tracing logs provide lower level details, such as 

logging of each function call during runtime (such as “Function CheckPassword() called”). 
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While tracing logs provide more accurate details, they are mainly used during development [11] 

and result in a high overhead on the application. Hence tracing logs are not normally available at 

customer sites, though they might provide a better representation of the operational and signature 

profiles. For this work, we use the readily available execution logs. 

4.2 Obtain an Event Distribution from Log Lines 

Execution logs are composed of dynamic and static information. Each log line has static 

information about the execution event and dynamic information that is specific to the particular 

occurrence of that event. We must obtain log events from the execution log lines by removing the 

dynamic information. We use an approach which employs clone detection techniques to identify 

the variation points for each log line and abstracts the variation points by replacing those with 

generic tokens [53]. For example, given the two log lines “Open inbox user=A” and “Open inbox 

user=B”, our technique would abstract both the log lines to the event “Open inbox user=?”. 

Once the log lines are abstracted to events, we obtain a distribution of log events by event 

counting. The event distribution is then normalized as the percentage of each event in the event 

log, so that we can compare event logs for different running times without bias. For retrieval 

based on signature profile, we want to give higher weight to the events occurring at lower than 

normal rate (rare events) over events occurring at higher than normal rate. To give events with 

lower than average occurrence a boost in the distribution, the frequency for each event is inverted 

in the signature distribution. 

An example of three logs files is shown in Table 4. R1, R2 and R3 represent the original event 

distributions of three log files F1, F2 and F3 respectively. Their corresponding operational event 

distributions P1, P2, and P3 are used for operational profile based retrieval. The last three 

columns S1, S2 and S3 show the inverted event distributions used for signature profile based 
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retrieval. This example is used as a running example in this section. Looking at the frequencies of 

the events in R1, R2 and R3, we expect our technique to show that F1 is closer to F2 in terms of 

operational profile, while F1 is closer to F3 in terms of signature profile. Note that this is a very 

small example intended to show our technique at work. For real applications, the number of 

events is expected to run into hundreds or thousands, instead of just five events as considered in 

this example. 

Table 4: An Example of Event Distribution 

ID Event 

Original  

Event Counts 

Event  

Distributions 

Signature Event 

Distributions 

R1 R2 R3 P1 P2 P3 S1 S2 S3 

E1 New Message 4000 3500 1000 44.39 46.66 22.16 0.02 0.02 0.05 

E2 New Contact 3500 3000 1500 38.84 39.99 33.24 0.03 0.03 0.03 

E3 New Meeting Request 1500 1000 2000 16.64 13.33 44.33 0.06 0.08 0.03 

E4 Message Queue Full 5 1 6 0.06 0.01 0.13 18.02 75.01 7.52 

E5 Connection Lost 7 0 6 0.08 0.00 0.13 12.87 0.02 7.52 

Total 9012 7501 4512 100 100 100 31.01 75.13 15.14 

 

4.3 Identify Signature Events 

A signature event is a rare, i.e., infrequent event in a log file relative to the occurrences of all 

events in other log files from other deployments stored in the repository. Events such as dropped 

connections, thread dumps, and full queues are examples of signature events. Instead of searching 

for such events in log files in a hard-coded way, we examine the distribution of the events in all 
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log files and we pick the events that are occurring at rates that vary considerably from the norm. 

These signature events indicate potential problems or outlier execution paths that are experienced 

by the application. By counting those signature events, signature event distribution is created. 

Signature event distribution is a subset of the operational event distribution, as it contains only the 

signature events. 

The problem of deciding whether an event is a signature event for a given log file is essentially a 

problem of statistical hypothesis testing. Statistical hypothesis testing determines whether 

observed frequency of an event contains enough information to justify that the frequency is 

different from the norm. Pearson’s chi-square test, commonly referred to as the chi-square test is 

one of the best known hypothesis testing procedure. We use chi-square test to filter out the non-

signature events from the logs. Other possible statistical tools that can be used include the popular 

hypothesis testing procedures, such as the z-test, and student’s t-test. 

We use the chi-square test to determine whether or not a particular event (E) in a log file is 

occurring at a frequency that is consistent with the occurrence of that event (E) in the rest of the 

log files in the repository. To use the chi-square test, a null hypothesis is to be established, such 

as, the likelihood of occurrence of an event in one distribution is same as likelihood of its 

occurrence in another distribution. We establish the null hypothesis: the likelihood of occurrence 

of the event E in the given log file is same as likelihood of its occurrence in any other log file. 

The chi-square statistic is calculated for event E using the formula: 

 

where 
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    Oi = an observed frequency 

    Ei = the expected frequency, asserted by the null hypothesis 

    n  = the number of possible outcomes 

Continuing the example considered in Table 4, the contingency table for the event E4 in the log 

file F1 is shown in Table 5. The contingency table is used to obtain values needed to compute the 

chi-square statistic. The number of possible outcomes is two: the event in the input file is the 

event E4, or the event is any other event. The contingency table lists the observed frequency of 

the event. The expected frequency is calculated for each cell of the contingency table using the 

equation: 

 

The chi-square statistic is then used to obtain a chi-square probability (also called p-value) by 

comparing the value of the statistic to a chi-square distribution table, commonly found in any 

statistics textbook. A chi-square probability of 0.05 or less is commonly interpreted as 

justification for rejecting the null hypothesis. However, we consider a probability of 0.10 or less 

as a justification to reject null hypothesis, as we intend to be liberal to be able to capture lighter 

peculiarities while comparing log files. All the events from a log file for which the null 

hypothesis gets rejected are peculiar events to that log file, and will be part of the signature 

profile of the particular log file. 

Using the equation for chi-square statistic, the value for chi-square statistic is 2.749, which 

corresponds to a p-value smaller than 0.10. Thus, the null hypothesis is rejected. Thus the chi-

square test flags that event E4 is occurring at a different rate in the input file F1 than usual. Using 

the chi-square test on the rest of the events in Table 4, events E4 and E5 are flagged as signature 
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events for S1; E4 for S2; and E4 and E5 for S3. Only these events are considered part of the 

signature event distribution for the corresponding log file. The events filtered out by chi-square 

test are highlighted in gray background in the columns S1, S2, and S3 in Table 4. 

Table 5: Contingency Table for Chi-Square Test 

 Frequency of the Event Frequency of Other Events Column Total 

In input log file 18.02 12.99 31.01 

In all other log files 41.26 3.87 45.13 

Row Total 59.28 16.86 76.14 

4.4 Compare Event Distributions 

After the previous two steps, we have an operational event distribution and a signature event 

distribution for the input log file and all the log files in the repository. The characteristics of the 

event distributions vary depending on the operational profile and problem symptoms of a 

customer. If two customers have similar operational profiles, they would have similar event 

distributions. Figure 11 shows three different distributions of events for visual examination. The 

horizontal axis represents different events in the event distributions and the vertical axis 

represents the frequencies of those events. Visual inspection reveals that distributions D1 and D2 

are similar to each other, compared to D1 and D3, or D2 and D3. We measure the distance 

between event distributions using two commonly used distance metrics: the Kullback-Leibler 

divergence and the cosine distance. 

 

Figure 11: Visually Examining Distribution Similarity 

D1 D2 D3
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In the next two subsections, we discuss the distance metrics that we used to measure the 

similarity between two event distributions. We also apply these metrics on the example presented 

in Table 4. 

4.4.1 Kullback-Leibler Divergence Metric 

Given two distributions P and Q, the Kullback-Leibler divergence [5] (here after called K-L 

divergence) between P and Q is defined as: 

 

K-L divergence is sometimes referred to as relative entropy or information gain. K-L divergence 

is not a distance metric in the strictest sense, because it is not symmetric, and the triangle 

inequality does not hold. That is, KL(P,R) is not equal to KL(R,P), and KL(P,R) can be greater 

than KL(P,Q)+KL(Q,R). To surmount the asymmetry limitation, we define distance DKL(P,Q) as  

the sum of KL(P,Q) and KL(Q,P). The smaller the DKL value, the closer the distributions are. 

We now show the use of K-L divergence using the example of Table 4. For this example, the 

operational profile distance DKL(P1,P2) is 0.41, DKL(P1,P3) is 18.9, which confirms that the 

operational profiles for F1 and F2 are closer compared to F1 and F3. The signature profile 

distance DKL(S1,S2) is 35.29, and DKL(S1,S3) is 5.24, which confirms that signature profiles 

for F1 and F3 are closer compared to F1 and F2. 

4.4.2 Cosine Distance Metric 

To compare two event distributions, they can be represented as vectors and similarity can be 

drawn in terms of the geometric distance. Each event type can be considered as a dimension and 

the frequency of occurrence of an event type can be considered as the weight in that dimension. 
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Thus, for a given event log, the relevant event log is the one with the minimum distance in the 

vector space. One widely used distance metric in this context is the cosine distance, which is 

defined as: 

 

Figure 12 shows a two dimensional example for geometric interpretation of cosine distance. In 

the Figure, the cosine distance measures the cosine of the angle between the vectors A and B, 

with values between 0 and 1. In information retrieval systems, the cosine distance has been used 

as a similarity measure between two vectors representing two entities, such as queries, documents 

or web pages. If the two vectors are similar (congruent in geometric representation), the cosine 

distance reaches its maximum value, 1. If the vectors have least in common (perpendicular to 

each other in the geometric representation), the cosine distance reaches its minimum value, 0. 

For the example in Table 4, the cosine distance for operational profiles DC(P1,P2) is 0.998 and 

DC(P1,P3) is 0.824, which quantify that F1 is closer to F2, compared to F3. The cosine distance 

for signature profiles DC(S1,S2) is 0.814 and DC(S1,S3) is 0.986, which confirms that signature 

profile for F1 is closer to F3, compared to F2. In this example, the results for both K-L and cosine 

distance metrics are consistent, but in practice the results may vary. We explore both distance 

metrics in our case studies in chapter 5. 

 

Figure 12: Geometric Representation of Two Dimensional Vectors 
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4.5 Measuring Performance of the Technique 

To measure the performance of our technique, we employ traditional metrics for information 

retrieval: precision and recall [44]. Our technique retrieves the most relevant log files for a given 

execution log file. For example, if the set of relevant log files for a given a log file F is C = {F1, 

F2, F3} and our technique returned the set R = {F1, F3, F4, F5}, as shown in Figure 13, then we 

measure precision and recall as follows: 

CR = {F1, F3} is the intersection of the sets C and R. For our example, the precision would be 

2/4 = 50% and the recall would be 2/3 = 66%. An optimal retrieval technique is the one which 

produces the best values for both precision and recall. 

 
Figure 13: Precision and Recall 

 

The precision and recall measures above are applicable to a single log file. To measure the 

accuracy of our technique over several log files, we use the average precision and recall as 

follows: 
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Here N is the total number of log files on which we applied our technique. 

4.6 Chapter Summary 

In this chapter we discussed our technique to help support analysts in issue resolution of capacity 

planning problems. We explained each step of technique. The technique is based on comparing 

execution logs of incumbent support request with those of previously solved support requests. 

The execution log lines are first raised to execution events by removing dynamic information. We 

obtain operation profile event distribution by counting those events. Then signature events are 

filtered using statistical hypothesis testing. We obtain a signature profile event distribution by 

counting those filtered signature events. Then, a distance metric, such as Kullback–Leibler 

divergence or cosine distance metric is used to measure closeness of the event distributions from 

the incumbent support request to the event distributions from previously solved support requests. 

Comparing those events logs provides two sets of previously solved engagement reports: 

1) One set which is closest to the incumbent support request w.r.t. its operational profile, and  

2) Another set which is closest to the incumbent support request w.r.t. its signature profile.  

Using the engagement reports retrieved by our technique, support analysts can now apply the 

solutions that worked in previous engagements to the incumbent support engagement. 

In the next chapter we demonstrate the effectiveness of our technique through cases studies based 

on applying our technique on one open-source test application, and one widely deployed 

commercial application. The results of the case studies prove the effectiveness of our technique 

with high precision and high recall. 
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Chapter 5 

Case Studies for Customer Support Technique 

Previous chapter introduced our technique for retrieving relevant reports from a customer 

engagement repository. We reason that retrieving relevant reports enormously helps support 

analyst because the support analyst can then apply the solution that worked in the previous 

engagement to the incumbent support request. To study the effectiveness of our technique for 

customer support for capacity planning, we conducted case studies using synthetic and field 

deployment logs from a test application and an enterprise application.  Using the synthetic logs 

we could measure the performance of our technique under specific simulated settings. Using the 

field deployment logs, we could measure the performance of our technique in a real life setting. 

We present the two case studies in the following sections. Figure 14 summarizes the case studies 

we performed and the results we obtained. 

Case 
Studies

Test 
Application

Industrial 
Application

Operational 
Profile based 

Retrieval

Signature 
Profile based 

Retrieval

Signature 
Profile based 

Retrieval

Operational 
Profile based 

Retrieval

Section 5.1 Section 5.1 Section 5.2.1 Section 5.2.2

 

Figure 14: Case Studies Tree 
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5.1 Case Study on an Open-Source Application 

The application 

Our first test application is the Dell DVD Store application. The DVD Store (DVD Store 2 or 

DS2) application is an open source enterprise software application. The DS2 application is 

developed by Dell as a benchmarking workload for white papers and demonstrations of Dell’s 

hardware solutions [15]. DS2 seeks to emulate today’s online stores, architecturally and 

functionally. DS2 has a three-tier architecture. DS2 includes application server components, 

database server components and a load generator engine (client emulator). 

The DS2 load generator emulates website users by sending HTTP requests to the application 

front-end. The DS2 application front-end encodes the various business rules, such as ordering 

new titles, declining an order in case of insufficient inventory. All customers, titles and 

transactional data are stored in the database server tier. We chose DS2 over other applications 

since it is an open source application which others can download to easily compare our results 

with their work. 

Experimental Setup 

To demonstrate the feasibility of our technique, we need to create a repository of log files. We 

generate a large number of log files based on various simulated runs of the application. For each 

log file we ensure that we produce other relevant log files. Once we have these log files, we can 

pick each log file and use our technique to retrieve other relevant log files.  We can then measure 

the precision and recall of our technique. 

Since the DS2 application is a benchmarking application that is not intended for production 

deployment, it is not designed to generate execution logs. So for the purpose of our case study, 
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we instrumented the application code to generate logs for execution events. The main operational 

features in the DS2 application are: Create Account, Login, Search the Store, Add to Cart and 

Checkout. We instrumented the code so that each of these operational features would generate a 

balanced number of execution events (four events each). So we have 20 different execution 

events in total. 

We applied different synthetic workloads and collected the resulting execution log files. Table 6 

lists the log files we collected. Each column in the table is a workload parameter, whose unique 

value makes operational features exercised in corresponding proportion, leading to unique 

execution logs. New Customer Percentage parameter identifies percent of the order cycles that 

would exercise the Create Account feature. Its value can be between 0 and 100, its typical value 

is 20. Average Number of Searches per Order identifies the number of times the Search operation 

should be performed in an order cycle, its typical value is 5 in the application. The remaining two 

parameters Average Number of Items Returned in each Search and Average Number of Items per 

Order are fairly self-explanatory. To create our repository of logs, we conduct load sessions with 

three different settings for each of the parameters – the typical value for the parameter and a value 

on either side of the typical value – for each of these parameters, while keeping the other 

parameters at their typical value. The resulting list of operational profiles is presented in Table 6, 

in which each row is a unique log file. 

Since we aim to retrieve relevant log files with similar operational profile, we reran all the load 

sessions of Table 6 three times each. Thus, for each log file our technique for similar operational 

profile should return the three log files corresponding for the three reruns. 
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Table 6: List of Log Files Tested for Retrieval 

 New Customer 
Percentage 

Average Number 
of Searches per 

Order 

Average Number 
of Items Returned 

in each Search 

Average Number 
of Items per 

Order 

F1 100 5 5 5 

F2 50 5 5 5 

F3 20 5 5 5 

F4 0 5 5 5 

F5 20 1 5 5 

F6 20 10 5 5 

F7 20 5 1 5 

F8 20 5 10 5 

F9 20 5 5 1 

F10 20 5 5 10 

To test the performance of our technique for signature profile based retrieval, we need log files 

with similar signature events, as well as log files with different signature events. We obtained log 

files with signature events by introducing known problems in the DS2 application code, and 

sporadically invoking those problem paths in a controlled fashion using the load generator. For 

instance, we changed the application code to submit an ill-formatted SQL command to the 

database if a purchase order has more than 25 items, resulting in an exception event in the 

execution log. To sporadically invoke this problem path, we configure the load generator to create 

less than 0.5% of all the purchase orders with more than 25 items. 

We introduce same sporadic problem events in operationally different log files listed in the Table 

6. That is, similar problem events are added to groups of log files as {F1, F2, F3, F4}, {F2, F3, 

F4, F5}, {F3, F4, F5, F6}, and likewise. Hence the expected retrieval results from the technique 

are the log files having similar signature events, irrespective of the similarity in the operational 
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events. That is, the expected result set for F3 are F1, F2, F4, F5; expected result set for F4 are F2, 

F3, F5, F6; and likewise. 

Experiment Results 

Using our technique, we could correctly retrieve the relevant operational profile and relevant 

signature profile with 100% precision and 100% recall using both the K-L divergence and cosine 

distance metrics. 

5.2 Case Study on an Industrial Application 

Our second application is a multithreaded enterprise application deployed at many organizations 

worldwide. The application provides rich enterprise communication features, such as email and 

calendar synchronization. With more than 700 unique execution events (compare to 20 unique 

execution events in DS2 application), it provides a base for a fairly complex experiment setup. 

5.2.1 Studying Retrieval by Operational Profile 

The Application 

We studied the effectiveness of our technique on many different experiments. In the subsections 

5.2.1.1 to 5.2.1.5, we present these experiments. Although these experiments do not cover all 

possible real world operational profile comparison situations, we believe they represent the 

breadth of it. Table 7 summarizes results of all the experiments. We discuss each of the 

experiments in the following subsections. 

Experimental Setup and Results 

5.2.1.1 Single Feature Group 

In this experiment, we use log files of workloads with a single feature group of the application. A 

feature group is a set of related operational features of the application. For example, an enterprise 
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collaboration suite such as Zimbra or Microsoft Exchange Server has feature groups such as 

emails, instant messages, calendar, and address book. A feature group has features, for instance, 

email feature group has operational features send email, receive email and delete email. In this 

experiment, each execution log file is obtained by exercising a different feature group of the 

application using a workload generator. We exercised seven individual feature groups of the 

application, providing log files that represent seven different operational profiles. Then we rerun 

each of the seven workloads three times each, to obtain log files which represent similar 

operational profiles. Thus for each log file, our technique is expected to return the three log files 

for the three reruns. We have a total of 28 log files, for each which, our technique tries to retrieve 

the related log files. 

Table 7: Performance of Retrieval using Operational Profiles 

Experiment Count of 
Log Files 

K-L Distance Cosine Distance 

Precision Recall Precision Recall 

Single Feature Group 28 67.71% 90.28% 67.71% 90.28% 

Multiple Feature Groups 28 60.71% 80.95% 75.00% 100% 

All Feature Groups 12 72.92% 97.22% 62.50% 83.33% 

Real World Log Files 12 54.17% 72.22% 68.75% 91.67% 

All the Log Files 80 59.93% 79.90% 56.72% 75.62% 

5.2.1.2 Multiple Feature Groups 

In the previous experiment, the log files were obtained by exercising different feature groups of 

the application. Hence, log files corresponding to different feature groups are likely to have few 

common events. Only a few events logged by entry point and exit point modules common to 

different feature groups will be seen in multiple log files. All other events among those logs 

would be different. Naturally, event logs having only a few common events represent vastly 
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different distributions. It is possible to believe that this bias can result in seeing higher 

effectiveness of our technique, which is unlikely to exist in real world. Hence, we conduct this 

experiment, having incremental addition of feature groups to the log files. 

We start this experiment with exercising a single feature group of the application using the 

workload generator, and collect the log files. For subsequent log files, we keep adding the feature 

groups one by one to the list of exercised feature groups. Thus, we build a repository of seven log 

files which represent operational profiles with incremental feature groups exercised in those 

profiles. Now we rerun those workloads three times each. Thus we have a pool of 28 log files for 

each which, our technique tries to retrieve the related log files. Now we apply our technique to 

retrieve the relevant log files. For each log file, the expected relevant log files are its three 

siblings from the three reruns, followed by the neighboring log files in which one less and one 

more feature group was exercised. 

5.2.1.3 All Feature Groups 

In the previous experiment, each log file had a mix of feature groups exercised in it. However, 

because the feature groups were exercised incrementally, it is obvious that each log file would 

exhibit successively more events. Thus the log files are likely to have different set of events. The 

set of distributions which have different set of events are likely to show greater distance, 

compared to the set of distributions with common events. It is arguable that this can result in 

seeing higher effectiveness of our technique in such situations, which are unlikely to exist in real 

world. Hence, we conduct this experiment with real world operational profiles. 

The log files in this experiment have all the events in common, but differ only in the frequencies 

of those events. We conduct multiple load sessions on the application, and exercise all the feature 

groups. We make the load sessions to differ only in the intensities of exercising the feature 
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groups. We conduct three load sessions with varying intensities of the seven operational features. 

Then we rerun each of the seven load sessions three times each, to obtain log files which 

represent similar operational profiles. For each of the 12 log files, the expected relevant log files 

are its three siblings from the three reruns. 

5.2.1.4 Real World Log Files 

In the previous experiment, each log file had a mix of operational features exercised in it. 

However, because the operational features were exercised incrementally, it is obvious that each 

log file would exhibit successively more events. Thus the log files are likely to have different set 

of events. The set of distributions which have different set of events are likely to show greater 

distance, compared to the set of distributions with common events. It is arguable that this can 

result in seeing higher effectiveness of our technique in such situations, which are unlikely to 

exist in real world. Hence, we conduct this experiment with real world operational profiles. 

We apply our technique on execution logs from three deployments of the application. However, 

we do not know the expected result set, unlike the previous two experiments. So we divide each 

log file in four segments, for which relevant log files are being retrieved. Assuming that usage 

pattern for any field deployment will not change to a great extent in short duration, we expect that 

our technique should retrieve the three segments of the same log file for each of the 12 log file 

segments. 

5.2.1.5 Combining all the Log Files 

In this final experiment for operational profiles, we compare together all the log files generated in 

all the previous experiments. As a result, we have some log files that exhibit different operational 

feature, some exhibiting incremental addition of operational features, and some have same 

operational features, but different intensities. This experiment includes all possible scenarios and 
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a large pool of log files to be compared. It represents the most intense test of accuracy of our 

technique. In total, we have 80 different log files profiles – collection of all the log files listed in 

experiments discussed in sections 5.2.1.1 to 5.2.1.4. For each log file, the expected relevant log 

files are same as described in those sections. 

5.2.2 Studying Retrieval by Signature Profile 

Experiment Setup 

The experiment setup for studying signature profile retrieval needs log files with similar signature 

events, as well as log files with different signature events. The startup events are a set of known 

signature events in the log files of the application under study. The startup events are logged by 

the application at the application startup. The startup events log the state of the environment, such 

as list of processes running in the system, system uptime, and configuration parameter values. To 

use the startup events as signature events of the log files, we split each of the log files in four 

segments. Hence the first segment of each log file contains the startup events, while the 

subsequent three segments do not have those. For each first segment of each log file, the expected 

relevant log files are the first segments of other log files. For each the first segments, the 

remaining segments of the same log file are likely to be operationally similar, but we do not 

expect those in the result set as we are trying to retrieve log files based on similar signature 

profile.  

Experiment Results 

We took all the log files from the previous study on the operational profile, except the reruns. 

Thus we have 20 log files, which are divided in four segments each. We applied signature profile 

based retrieval technique on the first segment of each of the log files. Our technique correctly 
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retrieved the first segment of other logs with 100% precision and 100% recall, even though the 

first segment is likely to be operationally closer to the other three segments of the same log. 

5.3 Chapter Summary 

In this chapter we discussed a list of key case studies that we performed. These studies exercise 

our technique in different possible real world and in-the-lab scenarios. We chose an open-source 

application and instrumented it to provide us execution logs, so that we can control and enact 

different possible real-life logging scenarios. Then we also conduct similar tests on a globally 

deployed industrial application. Our tests show promising results – retrieval of related 

engagement reports at high precision and high recall, i.e. minimal number of false-positives and 

maximum number of related reports successfully retrieved from the repository. In the next 

chapter we critically discuss the results. 
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Chapter 6 

Results and Limitations 

Chapter 3 discussed our framework for building capacity calculators. Chapter 3 also presented 

case study of applying our framework for the DS2 test application. Chapter 4 provided the details 

of our technique on customer support for capacity planning related issues. Chapter 5 provided 

case studies for our technique using the DS2 test application and a widely deployed commercial 

application. In this chapter we critically discuss the results and limitations of our framework and 

technique. 

6.1 Framework for Building Capacity Calculators 

The proposed framework is based on our research and experience in measurement based 

modeling of two applications: the Dell DS2 application and another large enterprise application. 

These applications are complex enterprise applications but they may not represent the entire class 

of enterprise applications. Additional steps and limitations may be discovered while applying the 

framework to other applications. 

We integrated research from other researchers to automate various steps in our framework. 

However, limited research was available in a few of the steps, so we employed heuristics in those 

steps. One of the key benefits of our framework is that it directs researchers to focus on these 

areas. Moreover the encoding of those heuristics in the framework ensures that the repetitive 

tasks corresponding to those heuristics are well-documented and could be later revisited by 

practitioners. 

Some of the dynamic analysis activities are currently not automated in the framework and a 

performance analyst must conduct these activities manually. This is our first attempt at building 
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this framework, which can be extended further with research work focusing on each of the 

following points. 

• Adjusting the performance tests to precisely determine various key operational points or 

objects, e.g. knee capacity and bottleneck resources. Unless the tests are carefully designed, 

the built model can be inaccurate near such operational points. 

• Adjusting the performance testing period and lengths of ramp-up and cool-down periods. 

This mainly involves determining how long the application takes to reach steady state 

condition and how many data points we need in each test, to be confident enough about the 

input data and analysis results. 

6.2 Technique for Customer Support on Capacity Planning 

The case studies discussed in chapter 7 demonstrate the performance of our technique. We 

achieved perfect results for the DS2 application due to the simplicity of the application and 

balanced instrumentation of all the operational features of the application. For the industrial 

application, our technique for operational profile performed well with the K-L divergence metric, 

and marginally better with the cosine distance metric. We believe the inaccuracies in the results 

for the industrial application stem from these complexities of real world applications: 

1. Real world applications often log a large number of events which do not correspond 

directly to a particular operational feature, such as idle time events, server health check 

events, and startup and shutdown events. Moreover, there can be an imbalance of such 

events, which can lead to inaccuracies in the result of our technique. For instance, if the 

application generates the health check events more frequently while in idle time, this is 

an example of imbalance. 
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Figure 15: Example of Imbalance in Event Logging 

2. Another root cause of inaccuracies in the industrial application can stem from the 

imbalance in the number of events per feature. As the exact event-to-feature mapping is 

not known, our technique cannot detect such issues. Figure 15 shows a small example of 

highly imbalanced event logging, wherein feature F1 and F2 generates two events each, 

whereas feature F3 generates eight events. With the frequencies of executions as shown 

in circles below each feature in the figure, it is visible that OP1 is closer to OP2 

compared to OP3, because F3 was executed twenty more times in OP2 than OP1, 

whereas F2 was executed fifty more times in OP3 than OP2. However, because of the 

imbalance in event logging, our technique will show the divergences as 

DKL(OP1,OP2)=3.31 and DKL(OP1,OP3)=2.56, which does not reflect the fact. Our 

technique cannot detect such issues because the exact event-to-feature mapping is not 
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known to our technique. One simple way to handle such wide imbalances is to create 

meta-events which group co-occurring events together. These meta-events can be used 

for measuring the distance between event distributions. For the example in Figure 15, 

events E1 and E2 would be considered one event M1, E3 and E4 would be considered 

one event M2, and E5 to E12 would be considered one event M3 since each group of 

event is occurring an equal number of times. The M1-M3 events would be used for 

measuring the distance between event distributions instead of the E-type events. 

Empirical research studies should be evaluated to determine whether they are measuring what 

they were designed to assess. In particular, we should examine if our finding that a given log file 

is more relevant to a particular log file compared to others is valid and applicable in general; or if 

it is due to any flaws in our experimental design. Four types of tests are used [52]: construct 

validity, internal validity, external validity, and reliability. 

Construct Validity: Construct validity is concerned with the meaningfulness of the 

measurements – Do the measurements quantify what we really intend to measure? We claim that 

locating related execution logs attached to customer engagement report will help support analysts 

in resolving problems sooner. We have not validated this claim, but based on our experience, 

locating a relevant case is usually of great value and provides many starting points if not the 

needed final solution. 

Precision and recall metrics do not capture the internal rank among the retrieved operational 

profiles. For example, consider that our technique retrieved OP2, OP3 and OP4 (in that order) but 

the actual rank of closeness among these three is OP3, OP2 and OP4 (in that order). The precision 

and recall metrics do not seem to reflect such unfairness in retrieving OP3 first instead of OP2.  

In our experiments, we did not observe such unfairness. Furthermore, we assume that all the 
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related engagement reports retrieved by our technique are useful to the analyst working on a new 

customer engagement. 

Internal Validity: Internal validity deals with the concern that there may be other plausible 

reasons to explain our results – Can we show that there is a cause and effect relation between 

differences in operational profiles and ranking of those by our technique? We assume here that 

execution logs capture the operational profile and signature profile of an application. We believe 

this is a valid assumption; however, the presence of wide imbalances in event logging, as 

discussed above, can invalidate our assumption. Moreover, our case study uses logs from the 

same version of an application. We did not test our technique on the execution logs of different 

versions. We believe limitations might be observed if there are large changes in the type of 

logged events. 

External Validity: External validity tackles the issue of the generalization of the results of our 

study – Can we generalize our results to other software applications? Although we applied our 

technique on a small test application and a complex enterprise application developed by a large 

number of practitioners, we only looked at two applications. Therefore our results may not 

generalize to other types of applications. 

Reliability: Reliability refers to the degree to which someone analyzing the data would reach the 

similar results as us. We believe that the reliability of our technique is high. Practitioners and 

researchers can easily run the similar tests on their applications (or the DS2 application) to 

produce findings specific to these applications, and compare those to our findings. 
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6.3 Chapter Summary 

We presented a critical view of the results and limitations our work in this chapter. Our work 

seeks to support performance engineering and capacity planning related activities during the 

verification and maintenance SDLC phases. 

Our framework seeks to bring together difference research and automate the capacity calculator 

building process. While the work is implemented in practice, it is still a work in progress. The 

performance tests need to be carefully designed, and may be required to be adjusted during the 

process to exercise certain important operational points, such as knee capacity and bottleneck 

resources. Also, not all steps are automated yet. We have not yet determined precise way to 

automatically prune the warm-up and cool-down periods. 

Limitations with our customer support technique include noise resulting from events that do not 

map to any operational features. Though, we did not find significant effect of such noise events in 

our tests with the two applications that we chose to experiment with. Imbalance caused by some 

operations logging too many events, while other operations remaining silent may also lead to 

impact the accuracy of the technique. Such imbalance can be eliminated by detecting and 

replacing co-occurring events with a single meta-event. 
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Chapter 7 

Conclusion 

7.1 Major Topics Addressed 

In chapter 1 we introduce capacity planning and support efforts in practice. Customers of large 

scale enterprise applications need to determine the hardware capacity to procure in order to obtain 

the desired performance in terms of response time and throughput. To enable capacity planning at 

customer site, performance analysts of the vendors need to continuously build and update 

capacity calculators for applications. Such capacity calculators are based on measurement based 

performance modeling of the application. After deployment, customers often engage the software 

vendor when they run into performance and capacity related issues. Continuous customer 

engagements allow the software vendors to build a rich knowledgebase – a customer engagement 

repository, which has valuable information related to problems and solutions, which can be 

immensely helpful in future engagements. 

Chapter 1 also discusses the challenges being faced in capacity planning and support, which 

provides the motivation for our work. Building of a capacity calculator requires running a large 

number of performance tests on the application. Performance testing is often the last step on 

already delayed product cycle; hence time is of essence while running the performance tests. 

Risks of errors are pretty high because of the manual process of running performance tests. To 

alleviate the situation, revelation of performance bugs or mis-configurations of the application 

settings result in rerunning of the whole test suite. Challenges in customer support for capacity 

issues are also abound. Analysts have to depend on their experience and understanding of the 

system to link symptoms to possible solutions. Knowledge from an engagement is often archived 
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in a customer engagement report, but no systematic techniques exist to retrieve that knowledge, 

except for applying basic keyword search. 

We discuss major related work in chapter 2. We discuss eminent research work related to 

capacity planning and performance modeling. We also discuss research works that target specific 

steps in our framework for building capacity calculators. Then we present research works from 

event correlation domain, as those are related to our log-based technique to retrieve relevant 

customer engagement reports. Then research works related to mining of customer engagement 

reports are presented. Lastly, we present related research in retrieval of operational profile and 

signature profile. 

Chapter 3 provides details of our framework for building capacity calculators. We discuss major 

steps of test enumeration, test reduction, environment setup, test execution, test transition, test 

analysis and model building. We also present estimated efforts required to customize the 

framework from one application to another, one version to another, and one build to another. 

In chapter 4, we discuss our technique for customer support for capacity planning. In that, we 

discuss how we convert log lines to event distributions, how we identify signature events, and 

how we compare event distributions to rank the distributions and associated customer 

engagement reports according to its similarity to a give event distribution. We also discuss how 

we measure the performance of our technique using precision and recall metrics. 

In chapter 5, we discuss the case studies of our customer support technique. We discuss one case 

study on an open source large test application: Dell DVD Store, and another case study on a 

globally deployed large industrial application. We present our results in operational profile based 

retrieval, as well as signature profile based retrieval. 
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We discuss the strengths and limitations of our work in chapter 6. We also discuss the manual 

steps involved in our framework, and the sources of errors that affect the results of our technique. 

7.2 Major Thesis Contributions 

We presented a framework for building capacity calculators for enterprise applications using 

measurement based performance modeling. The need for such a framework is felt from the 

current challenges in performance modeling practices in industry. These models are produced 

through a labor intensive and error prone process which always occurs at the end of already late 

release schedules. The contributions of our framework are as follows: 

1. It automates the building of measurement based performance models. 

2. It works on measurement based performance modeling of large enterprise applications, as 

demonstrated by the case studies on the Dell DVD store application and another larger 

enterprise application. 

3. It brings together various venues of research to support analysts in their day-to-day 

activities. Using our framework researchers can explore contributing and fitting their own 

research work into the proposed framework. Moreover, analysts can compare various 

tools and techniques using the structure of our framework. 

4. It is highly customizable to work for a different build, a different version, a different 

platform or a different application. Limited efforts are involved in customizing our 

framework for other applications and other platforms. 

The customer engagement repository contains rich information about symptom, issues, root 

causes, workarounds, and resolutions from previous engagements. Retrieval of relevant reports 

helps support analysts resolve client issues quicker and better. We presented a technique to 
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analyze the execution logs from the customer engagement repository and retrieve the relevant 

execution logs and corresponding customer engagement reports. The contributions of our 

technique are as follows: 

1. It retrieves relevant reports from customer engagement repository based on similar 

operational profile and signature profile. As demonstrated by case studies, it retrieves 

such relevant reports with high precision and high recall. 

2. It can be applied immediately on an application, since the execution logs of most 

applications are readily available and are usually archived in the customer engagement 

repository. Our technique can equally aid in remote issue resolution by identifying 

relevant engagement reports and recommending resolution steps. 

3. It requires no code changes, nor does it require any data collection from customers. 

Hence it can be easily adopted by companies and does not depend on a particular 

software application, version, build, or platform. 

4. It also allows comparing load testing and stress testing execution logs with the customer 

execution logs to verify and ensure that the workload being used in load testing and stress 

testing is close to real-world customer workloads. 

7.3 Future Research 

Our work in this thesis seeks to automate, optimize and enhance the performance engineering 

activities during verification and maintenance phases of the software development life cycle. 

Specifically, we proposed a framework to automate and speed up the performance measurement 

and model building process, and a technique to retrieve relevant reports from customer 

engagement repository to help support analysts troubleshoot customer deployments. Our 
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technique to retrieve relevant reports from the customer engagement repository is also useful to 

ensure that the workload used in load testing and stress testing is close to customer workloads. 

However, challenges in performance engineering and capacity planning are many and far from 

over. Significant challenges remain in load testing and stress testing, which we plan to address. In 

particular, load tests execution needs online analysis of multiple performance counters to 

determine: 

a) The time point when the system reaches steady state 

b) The time points when the test has run long enough for one to be statistically confident 

about the average performance 

c) whether the performance during a load test is similar to previous load tests 

d) instabilities, such as memory leaks, and processor and disk contention 

More work is required to unify and automate the processes for performance modeling across the 

industry. More attention is required from academia on the use of measurement based techniques, 

which have wider acceptance in the industry, compared to other analytical and simulation based 

techniques. We intend to continue research work seeking automation of more steps in our 

framework for building capacity calculators. 

We wish to apply our technique for customer support on other software applications to generalize 

our findings across different types of software applications. We also intend to apply and improve 

data mining and log correlation techniques in order to improve the retrieval of relevant reports 

from a customer engagement repository. We plan to develop techniques to correlate multiple 

performance counters from system resources, such as disk, processor, memory, thread pool, and 

connection pool, in order to identify bottlenecks in a customer’s environment. 
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7.4 Commercialization 

Our framework for building capacity calculators has been developed and is in use at our industrial 

research partner, Research In Motion. Practitioners can borrow ideas from our research work to 

develop and customize similar framework for their capacity planning of their applications. 

We have shown that our technique for customer support for capacity planning successfully 

retrieves relevant customer engagement reports with high precision and recall. Measuring the 

financial value of our work is difficult, because the financial returns to the software vendor 

depend on several factors, such as the number of customers, the face value of the software, and 

the use of appropriate software development methodologies. However, we argue that the 

customer satisfaction resulting from applying our work in performance engineering of software 

applications is invaluable. To commercialize our work, more work is required to combine it with 

more features to be able to sell it as a product. Our technique can definitely be added as a feature 

in some of the existing commercial log management tools, such as LogLogic [26] and Sensage 

[39]. Some of the features available in such commercial log management tools include log 

archival, SQL-like querying on the logs, automated analysis to ensure the absence of security 

breach, and a number of methods for business intelligence using log analysis. 
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