
Architecture Recovery of Web Applications

by

Ahmed E. Hassan

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2002

c©Ahmed E. Hassan 2002



I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by pho-

tocopying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

ii



The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

iii



Abstract

In the last decade, much of the reverse engineering research has concentrated

on the development of tools that support traditional software development envi-

ronments and languages such as COBOL, PL/I, Pascal, C, Java, and C++. This

thesis extends this body of research into a new domain: web applications. We

develop extractors that analyze the source code and binaries of web applications.

Then, we perform algebraic manipulations on the extracted information to gener-

ate architecture diagrams that highlight the main components of a web application

and the interactions between them. Furthermore we show how to use the extracted

architectures to help gain a better understanding of web applications and to help

maintain them.

iv



Acknowledgements

This thesis would not have been possible without the continuous support of my

family who gave me the strength and will to succeed.

I would like to thank my supervisor Prof. Richard C. Holt for his support and

advice. Thanks Ric, I’ll carry your lessons and guidance with me through out life.

A special thank you to Prof. Joanne Atlee, thanks Jo for being my instructor, for

listening to my ideas, and for offering me the opportunity to teach at Waterloo - a

very enjoyable experience.

I appreciate the valuable feedback provided by my thesis readers, Prof. Kostas

Kontogiannis and Prof. Michael W. Godfrey. I am grateful to Wai Ming Wong for

his assistance while I worked on my case studies with Sun Microsystems of Canada

Inc.

I am fortunate to work, play, and study side by side with the amazing members

of SWAG. In particular, I would like to thank Eric Lee, Ivan Bownan, John Tran,

and Thomas Parry for all their help and encouragement.

Thanks for my friends who patiently put up with me while I worked away on

my thesis, and accompanied me on the occasional escape away from it.

v



Contents

1 Introduction 1

1.1 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Major Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Program Understanding . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Architecture Views . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Summary of Background . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Web Applications 16

3.1 Definition of a Web Application . . . . . . . . . . . . . . . . . . . . 17

3.2 Taxonomy of Web Applications . . . . . . . . . . . . . . . . . . . . 19

3.3 Web Application Architecture Views . . . . . . . . . . . . . . . . . 22

3.3.1 Physical View . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



3.3.2 Development View . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Process View . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 Logical View . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.5 Security View . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Summary of Web Application . . . . . . . . . . . . . . . . . . . . . 37

4 Related Research 39

4.1 Web Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Modeling of Web Applications . . . . . . . . . . . . . . . . . . . . . 42

4.3 Summary of Related Research . . . . . . . . . . . . . . . . . . . . . 44

5 Architecture Recovery for Web Applications 45

5.1 Recovery Process Overview . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Visualization Needs for Web Applications . . . . . . . . . . . . . . . 50

5.3 Domain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Overview of the Schema Layers . . . . . . . . . . . . . . . . 53

5.4 ELS: Entity Level Schema . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 An ELS for VBScript . . . . . . . . . . . . . . . . . . . . . . 56

5.4.2 An ELS for JavaScript . . . . . . . . . . . . . . . . . . . . . 58

5.4.3 A Common ELS for Object Based Languages . . . . . . . . 59

5.5 CLS: Component Level Schema . . . . . . . . . . . . . . . . . . . . 61

5.6 ALS: Architecture Level Schema . . . . . . . . . . . . . . . . . . . . 62

5.7 Fact Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7.1 Overview of the Extractors . . . . . . . . . . . . . . . . . . . 66

5.7.2 HTML Extractor . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



5.7.3 Server Script Extractor . . . . . . . . . . . . . . . . . . . . . 71

5.7.4 Database Access Extractor . . . . . . . . . . . . . . . . . . . 71

5.7.5 Language Extractor . . . . . . . . . . . . . . . . . . . . . . . 74

5.7.6 Binary Extractor . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 Summary of Architecture Recovery . . . . . . . . . . . . . . . . . . 76

6 Case Studies 78

6.1 Studied Web Applications . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Case Study: Hopper News . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Conceptual Architecture for Hopper News . . . . . . . . . . 83

6.2.2 Concrete Architecture for Hopper News . . . . . . . . . . . . 85

6.2.3 Comparing the Conceptual and Concrete Architectures . . . 88

6.2.4 Verifying the Tiered Architecture . . . . . . . . . . . . . . . 90

6.2.5 Impact Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.6 Migration Cost Estimations . . . . . . . . . . . . . . . . . . 93

6.3 Case Study: Wireless . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.1 Bookmarks Sub-Applications . . . . . . . . . . . . . . . . . 98

6.4 Summary of Case Studies . . . . . . . . . . . . . . . . . . . . . . . 101

7 Conclusions 104

7.1 Major Topics Addressed . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Major Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . 107

7.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3.1 Dynamic Model for Web Applications . . . . . . . . . . . . . 108

7.3.2 Better Fact Extractors and Architecture Repair . . . . . . . 110

viii



7.3.3 More Experimentation . . . . . . . . . . . . . . . . . . . . . 111

7.4 Commercialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography 113

ix



List of Tables

3.1 Common Object Model . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 ASP, JSP and CF Object Models Mapped to the Canonical Object

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Mapping from Traditional Applications to Web Applications . . . . 51

5.2 Relation Types Produced by the HTML Extractor . . . . . . . . . . 69

5.3 Relation Types Produced by the Server Script Extractor . . . . . . 72

5.4 Relation Types Produced by the Database Access Extractor . . . . 73

5.5 Relation Types Produced by the Language Extractor . . . . . . . . 74

5.6 Relation Types Produced by the Binary Extractor . . . . . . . . . . 75

6.1 Description of the Studied Web Applications . . . . . . . . . . . . . 79

6.2 Count of Entities Extracted from the Studied Web Applications . . 82

x



List of Figures

3.1 Taxonomy of Web Applications . . . . . . . . . . . . . . . . . . . . 19

3.2 Physical View of the Architecture of a Web Application . . . . . . . 23

3.3 “Hello World” CGI Written in C . . . . . . . . . . . . . . . . . . . 27

3.4 The Final HTML Displayed in the Browser . . . . . . . . . . . . . . 27

3.5 “Hello World” Template Written in Visual Basic . . . . . . . . . . . 28

3.6 “Hello World” Template Written in Cold Fusion . . . . . . . . . . . 31

3.7 High Level Logical View of a Web Application . . . . . . . . . . . . 34

3.8 Security View for a Bank Web Application . . . . . . . . . . . . . . 37

3.9 Security View for the Account Access subsystem . . . . . . . . . . . 38

5.1 Overview of the Portable BookShelf environment . . . . . . . . . . 46

5.2 Un-clustered Architecture View . . . . . . . . . . . . . . . . . . . . 48

5.3 Clustering of Software Components . . . . . . . . . . . . . . . . . . 49

5.4 Clustered Architecture Diagram of a Web Application . . . . . . . . 49

5.5 Layers of Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 An Active Server Page vs an HTML Page . . . . . . . . . . . . . . 54

5.7 Active Server Page Data Flow . . . . . . . . . . . . . . . . . . . . . 55

xi



5.8 Entity Level Schema for the VBScript Language . . . . . . . . . . . 57

5.9 Entity Level Schema for the JavaScript Language . . . . . . . . . . 59

5.10 A Common Entity Level Schema for Object Based Languages . . . 60

5.11 Component Level Schema for Web Applications . . . . . . . . . . . 61

5.12 Architecture Level Schema for Web Applications . . . . . . . . . . . 63

5.13 Conceptual Architecture of the Fact Extractors . . . . . . . . . . . 65

5.14 The Internal Structure of an ASP component . . . . . . . . . . . . 67

6.1 Hopper News Main Page . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Hopper News Classified Advertisement Web Page . . . . . . . . . . 83

6.3 Conceptual Architecture for Hopper News . . . . . . . . . . . . . . 84

6.4 Concrete Architecture for Hopper News . . . . . . . . . . . . . . . . 86

6.5 Legend for Landscape Viewer Diagrams . . . . . . . . . . . . . . . . 87

6.6 Hopper News Customer Subsystem . . . . . . . . . . . . . . . . . . 88

6.7 3-Tiered Concrete Architecture for Hopper News . . . . . . . . . . . 90

6.8 Backward-query for the AD Subsystem in Hopper News . . . . . . . 91

6.9 Backward-query for the CUSTOMER Subsystem in Hopper News . . . 92

6.10 Forward-query for the Presentation tier in Hopper News . . . . . . 93

6.11 Forward-query for the Business Logic and Database tiers in Hopper

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.12 Hopper News ASP Objects Subsystem . . . . . . . . . . . . . . . . 95

6.13 The Concrete Architecture of the Wireless Application - Highest Level 97

6.14 The Concrete Architecture of the Bookmarks Sub-Applications . . . 98

6.15 The Bookmark HTML Subsystem . . . . . . . . . . . . . . . . . . . 100

xii



6.16 The Bookmark LIB Subsystem . . . . . . . . . . . . . . . . . . . . 101

6.17 The Bookmark AUTH Subsystem . . . . . . . . . . . . . . . . . . . 102

7.1 PBS Architecture View of a Bug Tracking Web Application . . . . . 109

xiii



Chapter 1

Introduction

Ten years ago Tim Berners-Lee created the first web browser and web server, and

started the World Wide Web (WWW) revolution. The web revolution has been

shaping and will continue to influence our society for years to come. Many technical

and non-technical aspects in our life are changing everyday as we become more

dependent on the web.

“Every day it becomes clear that the Net (Web) is taking its place along-

side the other great transformational technologies that first challenged,

and then fundamentally changed, the way things are done in the world”,

Lou Gestner, CEO of IBM Corporation. [Boo00]

The web browser’s ubiquitous and simple interface has opened the door for the

development of many new distributed applications. In 1994, web pages were simple

static HTML pages linked together. The web pages provided easy and open access

to information across the world. Subsequently new technologies such as Java were

1



CHAPTER 1. INTRODUCTION 2

introduced and used as “eye candy” to decorate pages. Suddenly dancing puppets

and flashing pictures adorned web pages. Luckily the web, the world realized the

potential of the web and large-scale applications that harness the power of the web

emerged. Companies started developing web applications, which delivered services

to their customers worldwide and provided outstanding value to their shareholders.

The days of the web as a medium for just sharing documents are over and the next

era of the web as a vehicle for commerce has begun. Software is at the heart of this

revolution providing companies with the infrastructure and the tools to develop

large software systems.

Too often, software-engineering principles are not applied to the development

of web application. As Pressman notes, the reluctance of web developers to adopt

well-proven principles is worrisome [Pre00]. The techniques used nowadays by web

application developers are similar to the ad hoc ones used by their predecessors in

the 1960s and 1970s. They defend their reluctance to adopt software-engineering

principles using reasons such as:

1. The speed of development : Whereas traditional application development takes

many months, web applications are developed in weeks or even days. The

speed of web development is commonly referred to as web speed. Devel-

opers believe that product requirements and web development technologies

are changing at a very high pace; thus they should not spend time carefully

specifying and planning the software.

2. The speed of evolution: Web applications become obsolete as soon as they

are released. For traditional software systems, legacy systems may have been



CHAPTER 1. INTRODUCTION 3

running for the past ten years. A web application may be considered legacy

after only six months. The speed of evolution discourages many developers

from following software engineering processes and carefully gathering require-

ments.

3. The different sets of concerns : The mapping of web applications to the tradi-

tional object-oriented or procedural systems is not clear because of the devel-

opment technologies used. Current development tools are geared towards fast

one time releases cycles with no incorporation of abstractions nor support for

reuse. [GG99] The tools provide many methods to automate the generation

of the code for web application but do not provide any facilities for reusing

code or encapsulating into development libraries.

4. The expectations of the user : The users of web applications are more toler-

ant of errors as long as they are using new “cool/bleeding-edge” applications.

Thus, web application development does not follow verification and testing

phases as rigorous as the ones followed in traditional applications develop-

ment.

5. The origins of the web: The web was developed as a document-sharing plat-

form, and is still often considered as such. Consequently, the development of

web applications is considered as an authoring problem and not a software

engineering problem.

Software engineering researchers recognize the need to apply well-studied and

tested principles to the development of web applications. Also they acknowledge the



CHAPTER 1. INTRODUCTION 4

difference between traditional software development and web application develop-

ment. Modification to software specification [CFB00] and design techniques [Con99]

have been proposed to fulfill the need of web applications.

Unfortunately, the web development community has generally not adopted the

proposed techniques. After weighing the short term benefits, they believe that

the overheads associated with the adoption of these well studied techniques do

not justify using them. As the web application domain matures, developers will

need tools and methods to help them analyze, design and build web applications.

Furthermore, they will need to deal with legacy web applications.

1.1 Overview of Thesis

Eventually, the web community will understand the benefits of using engineered

principles in their development process and adopt them. As software evolves and

its complexity increases, ad hoc methods won’t suffice. Developers need a better

understanding of their software system as they join new companies or maintain old

code bases. The speed of the development and the rate of change of web applications

increases the need for adopting an engineered approach. Legacy web applications

are a reality; just a couple of months old they are critical to their organization. Yet

the documentation associated with them generally does not exist and if it does, it is

rarely complete or up-to-date. In addition, the web community has a high turnover

rate: the average employee of many companies developing web applications tend to

leave their company in just over one year [Kon00]. Thus the original developers of

a maintained web application, may no longer be part of the organization. Lack of



CHAPTER 1. INTRODUCTION 5

documentation and system experts increase the cost and time needed to maintain

large web applications.

Reverse engineering and software visualization have been proposed as techniques

to improve the understanding of large traditional applications. Research [Hau00]

has demonstrated the use of semi automated techniques and tools to recover the

design of large applications. The Portable Bookshelf (PBS) environment [PBS]

combines much of the knowledge and techniques developed over the last decade in

program understanding. It has been used to recover the design of large applications

such as Linux (800 KLOC1) [BHB99], Apache (80 KLOC) [HH00], and Mozilla (2.1

MLOC2) [Lee00a]. In this thesis, we reuse and extend the capabilities of PBS

to support the design recovery of large web applications. We develop a set of

tools capable of parsing and extracting relations between the components of web

applications. Also, we visualize the extracted relations using PBS visualization

engine. Finally we evaluate our techniques and tools using case studies of web

applications.

1.2 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 provides a background

on the use of software architecture to improve program understanding. Chapter 3

presents the web application domain and describes the type of information that is

needed by developers to gain a better understanding of web applications. Chap-

1KLOC: Thousand Lines of Code.
2MLOC: Million Lines of Code.



CHAPTER 1. INTRODUCTION 6

ter 4 presents research related to our approach of studying web sites as software

systems. Chapter 5 discusses our architecture recovery process for web applications

— we present the different tools and techniques used to generate the architecture

diagrams. Chapter 6 presents case studies to validate the effectiveness of our ex-

traction and visualization techniques for maintenance and program understanding

of large web applications tasks. Finally, Chapter 7 summarizes our results and

proposes some areas of future research.

1.3 Major Thesis Contributions

In this thesis, we present a domain model for web applications. A set of tools are

developed to extract relations in the domain model based on the source code of the

web application. The low-level (source code) relations are abstracted to higher-level

relations to ease the visualization of the architecture of web applications. The web

applications are visualized using simple box-and-arrows diagrams.

The recovered architecture diagrams where shown to developers working on web

applications. They acknowledged the usefulness of the diagrams. In many cases,

the developers have pointed out that they had drawn by hand the same diagrams

by inspecting the source code.



Chapter 2

Background

In this chapter we present concepts related to our thesis in the domain of software

engineering. We emphasize the need for good program understanding to reduce the

costs and efforts associated with program maintenance and new development. We

introduce the concept of software architecture and its different views. In addition,

we discuss the techniques used to reverse engineer traditional software systems to

recover their software architecture.

2.1 Program Understanding

As the complexity and size of software increase, companies are faced with many

challenges to understand and maintain their software systems. Studies indicate

that at least fifty percent of the life cycle and budget of a software system are spent

on maintaining it [Zve83]. To successfully perform maintenance tasks, developers

need a good understanding of the software. Fifty to ninety percent of the mainte-

7



CHAPTER 2. BACKGROUND 8

nance efforts involve program-understanding tasks [Sta84]. The primary business

of software is no longer new development; instead it is maintenance [Gla92] and a

good understanding is needed to reduce the cost and length of maintenance efforts.

To aid in software understanding tasks, documentation is used to narrate differ-

ent aspects in the life cycle of a software system. Unfortunately software developers

are not interested in documenting their work. Documentation is the poor-stepchild

of most software development efforts [LHGF98]. It rarely exists and if it does it is

usually incomplete, inaccurate, and out of date. Faced with the lack of sufficient

documentation, developers choose an alternative understanding strategy such as

searching or browsing source code, the definitive source of accurate information

about the system [Sim98]. Developers search the code using tools such as grep.

They browse the code using simple text editors or cross-reference code browsers

such as LXR, which permit jumping between variables/functions usage and vari-

ables/functions declarations while browsing the source files. The usefulness of this

unaided browsing of source code is limited by the size of the software system and

the amount of information a person can keep track of while jumping around the

source tree [SCH98].

Much of the knowledge about the design of the system, major changes over the

years and the troublesome subsystems live in the brains of its developers. Such

live knowledge is sometimes called wet-ware. When new developers join a team,

mentoring by senior members and informal interviews are used to give the new de-

velopers a better understanding of the system. Leveraging this knowledge may not

always be possible as the software may have been bought from another company, its



CHAPTER 2. BACKGROUND 9

maintenance outsourced, or its senior developers are no longer part of the company.

This problem is exacerbated by the fact that in many cases the developers tend to

remain in the same company for no longer than one year [Kon00].

2.2 Software Architecture

The high-level design decisions of a software system become more critical than

the details of the used algorithms and data structure, as its size and complexity

increases. Software architecture has been proposed by many researchers [GS93,

PW92]as a means to document high-level design decisions for complex software.

By using simple box-and-arrow diagrams, software designers can easily and suc-

cinctly document and explain their design decisions. Although, the term “software

architecture” has been recently proposed and lacks a clear definition, many agree

that software architecture of a system is concerned with the different components

of the system (building blocks); the interactions between them, and the rationale

behind the choice of the components and the type of interactions. The software

architecture of a system is used by newcomers to get a better understanding of the

system, by system maintainers to familiarize themselves with parts of the system

on which they never worked and by veterans for impact analysis.

The software engineering community has recognized the re-occurrence of similar

software architectures and has documented these patterns as architecture styles [GS93].

Some of the common architecture styles are Pipe and Filer, Client and Server, and

Layered styles. Architecture styles provide a common vocabulary for developer to

communicate their designs and to rationalize their decisions. Ideally, the software



CHAPTER 2. BACKGROUND 10

architecture of a system is proposed before its implementation and updated during

the software lifetime to reflect the changes that occur during maintenance. Unfor-

tunately, this is rarely the case. The software architecture of large systems often

exists only in the minds of its developers, and is never written down. Due to the rec-

ognized importance of software architecture, many techniques have been proposed

to recover/update the architecture of a software system from its implementation.

These techniques are commonly referred to as Reverse Engineering.

2.3 Architecture Views

A software architecture addresses many concerns and is used by many stakehold-

ers in the organization. To avoid cluttering the architecture diagram with many

details, researchers have proposed different views that address the needs of specific

stakeholders. For example, in lieu of specifying the data flow and the concur-

rency of a large system on the same diagram, two separate diagrams (views) are

used to represent these aspects separately. In this section, we present the work of

Kruchten [Kru95] and Soni et al. [SNH95] on architecture views.

Kruchten proposes modelling architecture using four different views and one

use-cases view to illustrate and validate the other views. Each view addresses a

specific architecture concern for a particular set of stakeholders. In his 4+1 View

Model of Architecture, he defines the following views:

1. The Logical view depicts the functional requirements of the system, using

abstractions drawn from the problem domain. It is used by the end-user



CHAPTER 2. BACKGROUND 11

to ensure that all the required functionalities have been addressed in the

implementation of the system.

2. The Process view details the concurrency and synchronization mechanisms

used in the system. System integrators use it for analysis of the performance

and scalability of the system.

3. The Development view shows the layout of the code in the development en-

vironment. The programmers and their managers use it, as it enables the

planning and monitoring the progression of a project.

4. The Physical view is concerned with the mapping of the software system

on to the hardware. System engineers employ this view to determine the

topology of the system and the communication requirements between the

different components.

5. The Scenarios are the +1 in the 4+1 . They illustrate the different architec-

ture decisions that are scattered across the four previous views. Sare explained

explaining system features

Each view has its own notation and style. For example, OMT [RBP+91] no-

tation is used to present the Logical View and DADS is used to demonstrate the

Process View. Recently, there has been a push to use UML to present all the views,

the different UML diagrams notations are used to present each view.

Soni et al. propose a similar decomposition of the architecture of large systems.

Based on an empirical study of many large applications, Soni et al. define the

following architectures for software systems:



CHAPTER 2. BACKGROUND 12

1. The Conceptual architecture abstracts the design of the system using its major

design elements at a very high level. It also shows the interactions between

these high level elements.

2. The Module architecture represents the ideal implementation with no depen-

dencies on language specific features. It decomposes the system using layers

and functional decompositions

3. The Execution architecture is concerned with the topology of the deployed

system. It shows the location of the different components and the communi-

cation between them.

4. The Code architecture shows the organization of the source code, the binaries,

and the libraries in the development environment.

Soni et al. point out that each architecture encompasses decisions that have

been taken at different times in the development process such as design time, im-

plementation time, build time, and run time. Also the degree of change in each

architecture varies considerably. For example, the conceptual architecture rarely

changes whereas the execution architecture keeps on changing during the lifetime

of the product to accommodate new performance requirements and benefit from

new technological advances in hardware or software technologies.

2.4 Reverse Engineering

Chikofsky and Cross define reverse engineering to be “analyzing a subject system to

identify its current components and their dependencies, and to extract and create



CHAPTER 2. BACKGROUND 13

system abstraction and design information.” [CC90]. Different solutions to the

problem of reverse engineering have been proposed and can be categorized into

three main approaches: top-down, bottom-up, and hybrid approach.

In a top-down approach, the persons involved with the systems are interviewed

and their knowledge is collected, summarized, and displayed using simple box and

arrow diagrams. The boxes represent the different components of the system and

the arrows represent the dependencies between them. The generated document is

referred to as the conceptual architecture. Later, the code of the system is exam-

ined to verify that the conceptual architecture matches the actual implementation.

As pointed out by Bowman [BHB99], the implementation is likely to have more

dependencies than are shown in the conceptual architecture.

In a bottom-up approach the implementation of the system is examined first

using special types of parsers, called fact extractors. The fact extractors scan

the source code of the system searching for specific patterns in the code and out-

put relation triples such as function A calls function B or function A uses

variable C. The extracted facts are fed to a visualizer that generates different

views of the architecture of the system such as call graphs or data access graphs.

Tzerpos and Holt propose a hybrid approach that combines the information

derived from interviewing developers, and the extracted facts from the implemen-

tation to recover the architecture of large software systems [TH96]. Their approach

is composed of the following steps which do not have to be in order and can be in

parallel:

• Extracting facts from the source code: Fact extractors scan the implementa-



CHAPTER 2. BACKGROUND 14

tion and output relations that conform to a source model. The extractors

could be a modified language parsers that performs a full syntax analysis on

the source code; generating an Abstract Syntax Tree that represents the struc-

ture of the code. Alternatively, the extractors could be lightweight parsers

that simply scan the source file for patterns of interest and discard the rest

of the source file. The development of full parsers is time consuming. A full

parser is capable of recognizing a superset of the needed patterns; the extra

patterns are ignored during the analysis. In addition, a full parser requires the

source code for the whole application to perform its operations. The source

code may not be available due to many reasons such as legal and competi-

tive reasons [KLDM98]. The performance of a light weight extractor is not

as good as a parser but this may not be a major concern if the extraction

process runs as a batch and not as a daily process [MNS95].

• Clustering into subsystems : The extracted facts are grouped into meaningful

subsystems using naming convention or directory structure. The clustering

assists in reducing the complexity of large systems and makes the generated

diagram clearer and simpler.

• Refining the clustering using live knowledge: The derived architecture from

the previous steps is reviewed by interviewing the people involved with the

system. If approved by the developers then we reached a sufficient clustering.

Otherwise the system must be re-clustered and the output re-analyzed.

• Refining the layout using live information: The visualized facts are displayed



CHAPTER 2. BACKGROUND 15

on the screen using automatic layout algorithms that attempt to minimize the

line crossings in the graph. Such heuristics do not attempt to convey any of

the semantic or secondary notion that developer use when drawing architec-

ture diagrams of the software system. For example, software developers tend

to draw a pipe and filter architecture by placing the subsystems vertically on

the same line to convey the flow of information from the left most to the right

most subsystem. An automatic layout tool may not lay out a pipe and filter

as expected by the developers. A manual review of the layout is necessary to

emphasize any semantic information.

2.5 Summary of Background

Reverse engineering and software visualization techniques can help developers re-

cover the design and architecture of large software systems and gain a better un-

derstanding of it. Software architecture views have been proposed to separate the

different design concerns in large software. The software architecture can be re-

covered using semi-automated reverse engineering techniques. In the last decade,

much of the reverse engineering research has been concerned with the development

of tools that support traditional software development environments and languages

such as COBOL, PL/I, Pascal, C, Java, and C++. In this thesis, we advance this

research into a new domain: Web Applications. Geared with the knowledge ac-

quired by reverse engineering researchers in the last decade, we apply and extend

many of the traditional concepts developed to the web application domain.



Chapter 3

Web Applications

With the advent of the Internet, a new type of application has emerged: web appli-

cations, that use the Internet’s infrastructure, are being developed and maintained

everyday. Recent reports indicate that web applications represent more than thirty

percent of software applications across all industry sectors and this number is ex-

pected to grow as the web gains popularity and its user base increases [Eco99].

In this chapter, we examine the web application domain. We present a definition

of a web application and a taxonomy of its various types. Later, we present the

architectural views of a web application, following Kruchten’s 4+1 views [Kru95].

In addition, we augment the 4+1 views with a Security view that highlights the

design’s security concerns and their mapping to the Physical view.

16



CHAPTER 3. WEB APPLICATIONS 17

3.1 Definition of a Web Application

A web application [Con99] is a software system most of whose functionality is deliv-

ered through the web. With the advent of the Internet and the web many applica-

tions are no longer developed using traditional client/server technologies. Instead,

new applications are developed using web technologies such as web browsers and

servers. A web browser is used as the user’s interface to the application and In-

ternet protocols such as HTTP are used for communicating between the interface

and the rest of the application. Users follow navigation links between pages to

access objects that reside on the server, instead of calling methods in server objects

as in traditional applications. For example, a user can surf to an online bookstore

company such as Amazon.com where (s)he can browse, search, and purchase books.

All these activities are simply done using her/his browser to follow links and fill

order forms. Whenever the user clicks on a link on an Amazon web page, a re-

quest is generated and sent to Amazon’s web server through the HTTP protocol.

The web server receives the request and in turn invokes the appropriate action to

generate a response. For example, a new order object is created to track the user’s

order. A database may be accessed and queried to retrieve relevant information

to fulfill the request. All results are then transcribed to HTML and sent back to

the browser, which displays them to the user. We contrast this with traditional

client/server systems in which the user has to download specialized client software

that communicates to the server using a proprietary protocol. A web site may

contain multiple web applications. For example, yahoo.com web site is composed

of multiple applications such as an email application, a calendar application and a



CHAPTER 3. WEB APPLICATIONS 18

news service application.

Web applications are preferred over traditional applications for the following

reasons:

1. Web applications are more accessible: The HTTP protocol used in web ap-

plications is a standard protocol that can travel across corporate firewalls.

Thus, applications are accessible to many users ranging from home users to

corporate users. Traditional applications use proprietary protocols that are

usually blocked by firewalls, limiting users access to them. For example, If

Amazon were a traditional client server application, corporate user would

not be able to purchase books. Access to Amazon’s server would be blocked

by the firewall due to the security risks associated with unknown protocols.

In addition, a web application does not require a specialized client. A web

browser, which nowadays comes packaged with almost all operating systems,

is used as the client. Users do not need to install, configure or maintain client

software. Also, the application is accessible on a multitude of platforms as

long as a web browser exists for the platform.

2. Web applications have a lower maintenance and deployment costs : Since the

browser is used as the client software for web applications, there are no costs

associated with development of the client’s software. Maintaining the web

application requires only modifying the code that resides on the server. This

reduces the cost of upgrade and deployment of web applications compared to

traditional client/server applications.



CHAPTER 3. WEB APPLICATIONS 19

3.2 Taxonomy of Web Applications

Web applications are not limited to one type of application. They can range from

simple static web pages (such as a personal web site, a home page) to sophisticated

e-commerce applications (such as Amazon.com, eBay.com). Figure 3.1 shows the

different categories of web applications grouped according to their data and control

complexity [MMAC99]:

D
at

a

Control Logic

Service

Catalogue IS

Brochure
low

low

high

high

Hotmail.COM

Amazon.COM
Google.COM

My webpage

Figure 3.1: Taxonomy of Web Applications

1. Brochure: Brochure web applications are the first generation of web applica-

tions. They tend not to have much programming logic in them, rather they

are composed of simple static web pages. Their developers are referred to as

content developers, as they are more concerned with the layout of graphics



CHAPTER 3. WEB APPLICATIONS 20

and text on a web page and the content is very static and graphics inten-

sive. Examples of Brochure applications include: the personal web page of

a person which simply contains their resume and personal information, and

web sites that contain technical documents (brochures) about a company’s

product. Simple editors or specialized HTML editors are used to develop

Brochure sites. The number of pages is rather small as it is manually edited

and maintained. These sites are more similar to desktop publishing than to

traditional software systems. These sites are the easiest to visualize. They

are not of interest to our visualization effort, because we are more concerned

with the control and data flow across the different components; whereas these

sites are rather static with no control or data flow.

2. Service oriented applications : These sites are dedicated to providing a service

to web users, such as free email service or online word-processing systems.

In these applications, the layout of the data is a secondary concern. Instead,

the developer is concerned with implementing the logic needed to provide the

services online. For example, the developer of an online email service is more

concerned with the different functional steps needed to store and retrieve

email messages. The layout of the mail message displayed is of secondary

interest. During maintenance, the developers need a good understanding of

the control flow between the different components of the applications.

3. Data intensive applications : Theses are sites that provide an interface to

browse and query large quantities of data, such as online library catalogues.

The main emphasis in these applications is on the data, with minimal amount



CHAPTER 3. WEB APPLICATIONS 21

of logic or control involved. Large commercial examples of these applications

are search engine sites such as Google.com, and online news sites such as

CNN.com. A search engine simply provides an interface to query a large

database that indexes web pages, there are no or minimal control concerns

involved in the development of such application. Data Intensive applications

are closely tied to their database. A clear picture of the data flow is vital

during maintenance.

4. Information system applications : These applications are a mix of Service Ori-

ented and Data Intensive applications. An example of these sites is an online

library system where you can; in addition to browsing books, borrow, reserve

and recall books. Most large electronic commerce sites are in this category

such as Amazon.com. The developers of Information System applications are

concerned with the data flow (for browsing and retrieving books) and control

flow (for the different phases involved with ordering and shipping a book).

We observe that developers need a good understanding of the data and control

flow in their application as needed in traditional applications. In addition, web

applications have more dependencies and interesting relations such as the navigation

links between the different pages of the web application. Unfortunately, current

web application development tools are implementation oriented that emphasize

fast, one-time release with no continuity and process enforcement [MMAC99]. This

emphasis on implementation productivity with no concern on the maintenance and

evolution of web applications is attributed to the fast pace of their development

and the immaturity of the web applications domain.



CHAPTER 3. WEB APPLICATIONS 22

3.3 Web Application Architecture Views

Web applications are distributed applications that use web technologies as their

infrastructure. They use web browsers as their clients, the HTTP protocol to

communicate between clients and servers, and the HTML language to express the

content transmitted between servers and clients. They use a myriad of technologies

and a single architecture view is complicated and not sufficient. In this section, we

describe a set of architecture views of a web application. We concentrate on the four

views proposed by Kruchten [Kru95]: Logical, Process, Physical, and Development

views. Each view captures specific design decisions and all views must be examined

together to gain a good understanding of the whole application. We note that web

applications are in need of an additional view to show the security architecture of

the application. As web applications are composed of many different components

and they use the Internet, a public network, they are more vulnerable to attacks.

The security of web applications merits its own view. Therefore we augment the

Kruchten’s 4+1 views with a Security view.

3.3.1 Physical View

The Physical view presents the mappings of the components in the Development

view to the components in the environment. The environment of web application is

composed of many components that are inter-linked together to implement its func-

tionality. Web applications have a rich environment, which contains the following

components:

• Web browsers (used by the clients)



CHAPTER 3. WEB APPLICATIONS 23

• Web servers

• Web pages

• Application servers

• Application pages1

• Databases

• Distributed objects2 such as CORBA, EJB and COM.

• Multimedia web objects such as Images, Videos, and etc.

Web
Page

Web
Browser

Web
Server

Images,
Videos,

etc..

Application
Page

Application
Server

DatabasesObjects

Figure 3.2: Physical View of the Architecture of a Web Application

1Application pages are web pages which contain executable code that is executed inside the
application server before the page is transmitted back to the requesting client.

2These object are not objects in the sense of source code object-oriented programming objects
such as those defined in C++ or Java. Instead, they are pieces of compiled code that provide a
service to the rest of the software system through a defined interface.



CHAPTER 3. WEB APPLICATIONS 24

Figure 3.2 shows the data flow between the different components in the physical

view of a web application. The user of the application employs the web browser as

the interface to gain access to the web applications’ functionality. The user interacts

with the browser by clicking on links and filling in form fields. The browser in turn

transmits the user’s actions to the web server. Requests are sent using the HTTP

protocol. Upon receiving the request, the web server determines if it can fulfill the

request directly or if the application server must be invoked. The application server

and the web server may reside on the same machine or on different machines. In

addition, many web servers and application servers can serve requests for a single

application. This technique enables the distribution of web application processing

and increases the fault tolerance of a web application. The web server can serve

HTML pages and multimedia content such as images, videos, or audio files; or it

can forward the request to the application server. The application server processes

the application page and returns an HTML page to the web server. Finally, the

web server returns the resulting page to the requesting web browser.

3.3.2 Development View

The Development view focuses on the mapping of the Logical view conceptual

components to the actual implementation artifacts. It presents that actual software

module organization in the development environment, such as the source code files,

or the directory structure. Web applications are developed using many of languages

and technologies, compared to traditional applications, which are usually developed

in one language. The Development view for web applications must highlight the



CHAPTER 3. WEB APPLICATIONS 25

additional details such as:

• The Link structure of the application pages

• User’s session management techniques

• Application page generation technology

Many web pages are linked together to form the web application. The links

between the different pages are verified regularly using scripts to avoid dead links

and dead paths, which are considered as bugs. Concepts such as exit links3 and

adverting links 4 are used to quantify the different types of links in the web appli-

cation.

Web applications use the HTTP protocol as their communication medium. The

HTTP protocol is a stateless5 protocol. The client connects to the web server and

requests a page using the HTTP protocol. Once the page has been served, the

connection between the client and the server is terminated. If the client needs to

request another page, the connection with the server must be re-established. For

the server, each request is considered as an independent one. The server cannot

determine if the requesting client is the same as a previous client. This technique

permits servers to handle a large number of clients, as the clients consume server

resources only when they are requesting a document. Otherwise the connection is

terminated and the resources are freed. However, the different application pages

3Exit links are links to other web sites than the current web site
4Advertising links are links to web sites that host advertisements
5HTTP is a stateless protocol because each request for a new web page is processed without

any knowledge of previous pages requested



CHAPTER 3. WEB APPLICATIONS 26

need to identify the user requesting a page as being the same user that had re-

quested previous pages or a new user. For example, they need to determine if the

user has provided her/his username and password or if they should ask the user

to login. In addition, application pages must be able to determine if a user has

exited the application. In a traditional application, as soon as the user exits by

terminating the process, the connection with the server is terminated and the ap-

plication is aware that the user has exited. In web applications the users can exit

the application by simply closing their browser window or surfing to a new web

site, no signals are sent to the server to signal the departure of the client. Many

web applications use timeout to determine if the user has exited the application.

To summarize, the stateless nature of the HTTP protocol prevents a web appli-

cation from recognizing if two requests have originated from the same user during

the same session. This described problem is called the user’s session management

problem. Many techniques exist to overcome it such as Cookies6 or hidden fields

in the page are used to store a session identifier to recognize returning clients from

new ones. The application may choose a combination of different techniques for

different subset of application pages. The choice and the rationale are detailed in

the Development view.

Application pages are a mixture of HTML tags and control code. The control

code is used to personalize web pages and the HTML tags are used to format

the output of the page. When an application page is requested, the application

server preprocesses it and integrates data from various resources such as distributed

6A cookie is a message given to the browser by the server. The browser stores the message
and sends it back to the server each time it requests a page from the server.



CHAPTER 3. WEB APPLICATIONS 27

objects or databases, to generate the final HTML web page sent to the browser.

The developer has two options for developing their application pages:

1. Code-based : The first option focuses on the control code. The HTML page

is fully generated by an executable program. Print statements (such as

printf(“..”)) are scattered through out the code and are used to output

HTML code. When the page is requested, a program is executed and the

parameters sent by the browser are communicated to the executable through

command line parameters or environment variables. All the output generated

by the program is sent directly to the browser. Some examples of this tech-

nology are: CGI, ISAPI, NSAPI, and Java Servlet. Figure 3.3 shows a sample

of an Executable-based application page. First, the C code is compiled and

stored in the application server directory. The application server executes the

binary whenever this particular server page is requested. Figure 3.4 shows

the resulting HTML page that is sent to the requesting browser.

main() {  
 printf(“Content -type:test/html \n\n”);   
 printf(“<html>/n”);  
 printf(“Hello World \n”);  
 printf(“</html>”);  
} 

Figure 3.3: “Hello World” CGI Written in C

<html>  
Hello World  
</html>  

Figure 3.4: The Final HTML Displayed in the Browser



CHAPTER 3. WEB APPLICATIONS 28

2. Template-based : In Template-based application page, the focus is on HTML.

The HTML language is extended with tags to embed control code. The

tags indicate scripts that must be executed first to complete the HTML page

before it is returned to the requesting browser. Many companies provide

frameworks for the development of these type of pages such as PHP from

ZendTech, AOLserver Dynamic Pages from AOL, Cold Fusion (CF) from Al-

laire, Active Server Pages (ASP) from Microsoft and Java Server Pages (JSP)

from SUN. The scripts embedded in the HTML page are usually interpreted.

Some implementations may compile the scripts on first execution and reuse

the compiled version later to improve performance. Figure 3.5 gives an ex-

ample of a simple Template-based application page that uses the VBScript

language to specify the control. The control code isn’t sent to the requesting

browser instead the result of the execution of the code is sent (i.e. “Hello

World”), as shown in Figure 3.4.

<html> 
<SCRIPT LANGUAGE=”VBScript” RUNATSERVER> 

response.write(“Hello World”); 
</SCRIPT> 
</html> 

Figure 3.5: “Hello World” Template Written in Visual Basic

Template-based pages are easier to develop because they use high level languages

that abstract many of the implementation detail. However, they are not as powerful

as Code-based pages. Template-based pages are slower to execute because of their

interpretive nature. Code-based pages are much faster to execute but have a longer

development cycle as the code must be compiled and the binaries updated in the



CHAPTER 3. WEB APPLICATIONS 29

application server.

Common Object Model

Many of the Template-based frameworks provide a set of built-in objects to abstract

many of the implementation details. These objects shown up in the Development

view. We present three frameworks: ASP from Microsoft, JSP from SUN, and CF

from Allaire and point out the similarities between the object models they use to

abstract the environment. Table 3.1 details the common object model between all

frameworks and the main purpose of every object is explained.

ASP is a programming framework developed by Microsoft. ASP permits de-

velopers to combine HTML, scripts (written in VBScript, JScript, or Perl), and

objects (COM, DCOM, and CORBA) to create web applications. The scripts are

embedded in HTML file using the “<%” tag to indicate the start of a script and the

“<%” tag to indicate its end.

To counter the popularity of ASP, SUN developed JSP. Using JSP, developers

can glue HTML, scripts (written in Java), and object (Enterprise Java Beans) to

build powerful web applications. Identical tags (“<%” and “%>”) are used by both

JSP and ASP to to delimit the scripts embedded inside of an HTML file.

CF is another web development framework developed by Allaire Corp. Whereas

JSP and ASP permit the embedding of scripts in HTML files to implement the

control flow in a web application, CF uses a markup language called Cold Fusion

Markup Language (CFML). CFML has many tags that represent the control flow

of a traditional language such as <CFIF> or <CFELSE>. Figure 3.6 shows a simple

example of the CFML markup language.



CHAPTER 3. WEB APPLICATIONS 30

Object Name Purpose

Request The Request object represents a server side model of the
web browser request. It is commonly used to retrieve the
information entered by a user in a form or to retrieve the
cookies stored in the web browser.

Response The Response object represents the information sent
from the web server to the browser. It is used to write
output back to the web browser.

Session The Session object represents a particular user session.
A user session starts when the user’s browser requests the
first page from a web site. It ends after a preset period
of time since the last page request. This object stores all
the session variables that retain their values as the user
moves from one page to the next.

Application The Application object represents a global space for the
whole web application. A web application starts after the
first page in an application is requested by the browser.
It ends when the application server is terminated. Ap-
plication variables are shared between all the applica-
tions pages. An Application object may store a variable
to count how many users have accessed the application
since it started. Also it can be used to pool database
connections for reuse by different application pages

Server The Server object represents the internal state of the ap-
plication server. It stores common configuration proper-
ties that are shared among the applications running on
the application server. For example, The email of the
server administrator may be stored in the Server object.

Error Each application page has one Error Object that repre-
sents all the errors that occurred during the interpreta-
tion of the application page by the server.

Table 3.1: Common Object Model



CHAPTER 3. WEB APPLICATIONS 31

Each framework uses a different programming language to express the control

flow in the application page. Nevertheless we can abstract the commonality between

them to derive a canonical (common) object model. Table 3.2 shows the mappings

across the three frameworks. The ASP column shows the VBScript objects that

provide similar functionality to the canonical objects. The JSP column shows the

corresponding Java objects and the CF column shows the tags.

<html>  
<CFOUTPUT>Hello World</CFOUTPUT>  
</html>  

Figure 3.6: “Hello World” Template Written in Cold Fusion

Canonical Objects  ASP Objects  JSP Objects  CF Objects  

Request  Request javax.servlet.ServletRequest <CFHttpParam>  

Response  Response 
javax.servlet.ServletResponse 

javax.servlet.jsp.JspWriter 
<CFOutput>  

Session  Session javax.servlet.http.HttpSession 
<CFAppl ication> 

<CFCookie>  

Application Application javax.servlet.ServletContext <CFApplication> 

Server  Server 
javax.servlet.ServletContext 

javax.servlet.ServletConfig 
<CFRegistry> 

Error ASPError  java.lang.Throwable <CFError>  

 

Table 3.2: ASP, JSP and CF Object Models Mapped to the Canonical Object
Model



CHAPTER 3. WEB APPLICATIONS 32

3.3.3 Process View

The Process view presents the concurrency and distribution of process in the ap-

plication. A user of a web application interacts with the web browser; (s)he never

interacts directly with the server. The browser relays her/his clicks on links and

images to the server as HTTP requests. The user interface of a web application

is the web browser, which can only display HTML pages. Thus, the web server

must always reply to the browser’s request with HTML pages. A web application

developer needs to personalize the returned HTML page to reflect the user’s previ-

ous requests or preferences. For example, the application may change the layout of

its user interface depending on whether the user is using a desktop or a cell phone

browser. The application may also show personalized special offers or reminders the

to user. To enable the personalization of web applications, two dynamic techniques

are used:

1. Offline technique: The Offline technique is used primarily for Data Intensive

web applications. Instead of dynamically generating a page for each user, the

user population is divided into large subgroups and all possible pages for the

sub groups are generated ahead of time. When a user requests a page, the

web application serves the page from the already generated pages in her/his

group. This technique permits the application to support a large set of users,

as the pages are not generated dynamically for every user. It is used in web

sites such as NYTimes.com where the pages are generated once daily and all

users access the static pages when reading the newspaper. CNN.com employs

this technique but the pages are generated more frequently (for example once



CHAPTER 3. WEB APPLICATIONS 33

an hour or whenever breaking news occurs).

For this technique, a large number of processes are executed a head of time to

pre generate all the pages of the application. A smaller number of processes

are used to serve the pre-generated pages.

2. Online technique: The Online technique is used for highly dynamic applica-

tions where the users cannot be broken into large subgroups. For example, an

application that provides email for its user cannot break its user population

into groups larger than one, due to the highly personal nature of email. When

a page request arrives, the page is dynamically generated and sent back. Such

technique permits highly personalized pages but has a high overhead. To over-

come this shortcoming, caching technique are often used to reuse previously

generated pages; whenever possible. For example, an email web application

may cache the application page that lists all the email messages in the user’s

inbox instead of generating the page every time it is requested.

For this technique, a large number of processes are used to generate on demand

all the pages requested by the client.

Many web applications do not use strictly one of these two techniques; instead

they use a combination of both techniques. For example, a page that contains

system news can be generated using the Offline technique, and the rest of the email

application can be generated using the Online technique.



CHAPTER 3. WEB APPLICATIONS 34

3.3.4 Logical View

The Logical view provides a high level abstraction of the system based on the

domain of the problem. Diagrams are used to represent the different component

in the system and the interactions between them. At the architectural level, web

applications can be divided into 3 tiers: Presentation Logic, Business Logic, and

Database tier. Figure 3.7 shows the different type of architecture styles used in web

applications.

Databases

Business
Logic

Presentation
Logic

Infrastructure Layer

b) 3 tiered architecture

Business
Logic &

Databases

Presentation
Logic

Infrastructure Layer

a) 2 tiered architecture

Figure 3.7: High Level Logical View of a Web Application

The Presentation Logic tier shows the interaction between the components re-

sponsible for the generation of the User Interface (for example: the layout of the

buttons and forms for the web pages used to buy books or to view customer com-



CHAPTER 3. WEB APPLICATIONS 35

ments on the books in a bookstore application). Components in this tier commu-

nicate only with the Business Logic tier.

The Business Logic tier contains all the knowledge required to modify the data

components that are contained in the Database tier. In a bookstore application,

for example, this tier would contain components that are responsible for validating

customer credit card numbers, verifying that books are in stock and reordering

books if needed.

The Database tier contains all the components that are used to provide per-

sistent storage for the application data, such as customer addresses or product

inventories.

The 3-tiered architecture provides a good separation of concerns for large web

applications, but some applications do not require a separation between the Busi-

ness Logic and Database tiers. For example, some Service oriented applications

do not have a clear separation between the Database and the Business Logic tier,

both tiers are combined together. In this situation, a 2-tiered architecture is used.

For both architecture styles, an Infrastructure layer exists to provide support for

the basic functionality needed by the different tiers, such as access to the local file

system.

3.3.5 Security View

Whereas traditional applications are composed of a modest number of centralized

components, web applications have a massive amount of distributed communicating

components. All these components live on an unprotected network (the Internet),



CHAPTER 3. WEB APPLICATIONS 36

which is accessible by anyone unless some type of access control and protection

is in place. The Security view reflects the application’s security and access con-

trol aspects. It shows the authentication and security levels needed to access the

different component of the application. Figure 3.8 shows the Security view for a

bank application. The bank application provides multiple functionalities for the

bank’s customers, employee, partners and administrators. Employees can manage

their benefits and can access customers’ information to assist them in choosing the

most appropriate investment solutions. Bank partners such as insurance compa-

nies or credit card companies can gain access to customer’s information and provide

special customized offers to them. Customers can access their account. Also, the

application provides a listing of all the products and services provided by the bank.

The Security view specifies the authentication method used: username and pass-

word authentication or a digital certificate. In addition, the view details when and

how encryption will be used. For example, to access the “Employee Benefits” the

employee only needs to authenticate her/him self using a username/password and

the data will be transmitted in the clear unencrypted, as the employee can only

access these pages through the company’s private network. On the other hand,

customers must authenticate themselves using a certificate and all the data trans-

mitted during their use of the application must be encrypted as they are using the

application over the Internet. In addition, the employees must authenticate them-

selves using digital certificates to access costumer information. No authentication

or encryption is needed to access the “Services Listing”.

Figure 3.8 shows the authentication and encryption facets of the application at



CHAPTER 3. WEB APPLICATIONS 37

Services
Listing

Customer
Information

Employee
Benefits

Account
Access

Admin EmployeePartnerCustomer

Site
Admin

EncryptedAuthentication (digital
certifcate)

Authentication
(username/password)

Figure 3.8: Security View for a Bank Web Application

the highest level. It is the results of the aggregation and abstractions of lower level

subsystems. Figure 3.9 shows an example of the decomposition of the“Account Ac-

cess” subsystem. We note that the level of access shown in Figure 3.8 is the strictest

level of access employed in the subsystem. Many components of the systems may

support less strict access. For example, the “Help” component of the “Account

Access” subsystem is accessible without any authentication or encryption.

3.4 Summary of Web Application

To sum up, web applications are complex systems that use a mixture of technolo-

gies. They are becoming more complex and are often mission critical. Developed



CHAPTER 3. WEB APPLICATIONS 38

Account Access

View

Customer

EncryptedAuthentication (digital
certifcate)

Authentication
(username/password)

Transfer Bill Payment News Help

Figure 3.9: Security View for the Account Access subsystem

using a mixture of languages glued together using scripting languages, the code

base of a web application dwarfs the code base of traditional client/server systems

and they are continuously evolving at a much higher pace than traditional soft-

ware systems [Boo00]. Unfortunately, current web application development tools

are implementation oriented with emphasis on fast one time release with no con-

tinuity and process enforcement. In the next chapter, we propose a model for

understanding large web applications by recovering the design artifacts from the

implementation using source code and binary extractors. We abstract the imple-

mentation details and model the applications structure using simple diagrams that

convey the designer’s intentions.



Chapter 4

Related Research

The study of web applications is a fairly new field but there have been significant

research contributions from different groups worldwide. We focus mainly on two

areas of research that are most related to our research on the architecture recovery

and visualization of web applications: web engineering and the modeling of web

applications.

4.1 Web Engineering

Web Engineering is concerned with the establishment and use of sound scientific,

engineering and management principles to ensure the successful building and de-

ployment of dependable web-based systems and web applications [Web99a]. Much

of the Web Engineering concerns are rooted in the fields of software engineering and

distributed systems engineering [Bol00]. Research in the field focuses on applying

and adapting classical software engineering techniques to the web domain. Cur-

39



CHAPTER 4. RELATED RESEARCH 40

rently, the main publishing outlet for researches in the field is through workshops

such as the International Workshop on Web Site Evolution [Web99b, Web00] and

the International Workshop on Web Engineering [Web99a].

A key paper by Hatzimanikatis et al. in 1995 is the earliest publication in the

field [ACD95]. The paper focuses on the development of a simple quality model

to measure the readability and maintainability of hyper documents. The authors

state that their main intent is to provide a methodology and approach based on

classical software metrics. Other researchers have followed Hatzimanikatis et al.

lead and recognized the similarities between the development of software and the

development of a web site. Brereton et al. point out that HTML’s nested tags are

analogous to the block structure of third generation programming languages and

that links between pages are analogous to GOTO statement in code [BBH98]. They

demonstrate a tool that can track the evolution of pages in a web site. The tool is

based on a modified network crawler that visits the web site multiple times over a

span of a year and reports the change in the contents of the web pages. Ricca and

Tonella developed a similar tool [RT00]. Both tools are heavily geared toward static

web sites (Brochure sites). The crawler will fail to recognize that the changes in the

web site may be due to the dynamic nature of the web application and not to actual

modification of the content of the web page. For example, the tool would signal that

the homepage of a site like CNN.COM changes continuously. In fact, the source

of the homepage rarely changes. It is an application page, which retrieves updated

information from a database, every time it is accessed. The approach followed

by Rica, Tonella, and Brereton puts more emphasis on the user’s experience and



CHAPTER 4. RELATED RESEARCH 41

attempts to track the changes that are sensed by the end user of the application.

These changes may not be mirrored in the source code of the web application or

changes in the source code may not show in the crawled pages. For example, in an

email service web applications, the page displaying the user’s inbox may originally

retrieve all the email messages from a flat file. Later, the email messages may be

stored in an SQL database. When accessing the page, the user won’t notice the

change. Clearly, the architecture of the web application has changed. Our approach

analyzes the source of all the components of a web application. Using this approach,

we can study more sophisticated dynamic web applications not just brochure sites.

Stated differently, our approach is a white box reverse engineering approach and

their approach is a black box one.

Whereas the aforementioned approaches including our approach use tools to

study the structure of large web applications, Anotiol et al. suggest a non-automated

technique to recover the architecture [ACCL00]. The technique is founded on the

Relation Management Methodology (RMM), which in turn is based on the Entity

Relationship model. Using RMM, the application domain can be described in terms

of entity types, attributes and relationships. For example in an exam booking web

application, we find entities such as a student, and a course; and relations such as

“takes”, and “provides”. As noted by the authors, their approach is best suited

to Catalogue web applications whereas our approach can be used to recover many

different types of web applications. In addition, the RMM recovered architecture

is a high level view of the main concepts in the system and the relations between

them. Our approach extracts the concrete architecture view of the system, based



CHAPTER 4. RELATED RESEARCH 42

on its actual implementation. The conceptual architecture tends to remain sta-

ble across different releases compared to the concrete architecture which changes

as new technologies are deployed, a common occurrence in the fast moving web

application domain.

Tilley recognizes that as web sites age they suffer similar problems as suffered

by traditional applications [Til]. Their structure degrades and their maintenance

becomes problematic. Also, he concludes that web maintenance is harder as many

of the developers of web sites do not have a computer science background. No

studies have been performed on web application development or maintenance to

quantify the cost of maintaining web applications.

4.2 Modeling of Web Applications

The main objective of our research is recovering and providing an up to date doc-

umentation of the architecture of the software system. We analyze the source code

of the system and report the interesting relations and entities to the user through

a graphical visualizer. The choice and the definition of the term “interesting” is

rather vague and task dependent. For example, a developer modifying an object

used by many application has a different set of interesting relations than a database

administrator trying to track all the components using a specific database table. To

aid developers in performing in their analysis, researchers have proposed different

methods to visualize web applications. Each method emphasizes an aspect or set

of interesting relations that the developers can visualize. Ceri et al. present the

Web Modeling Language (WebML) [CFB00]. WebML provides a high level concep-



CHAPTER 4. RELATED RESEARCH 43

tual description of a web application. The language is geared towards Catalogue

(data-driven) web applications. It is composed of five models:

1. A structural model describes the data flow in the application.

2. A navigational model describes the topology of links between the different

pages.

3. A compositional model describes the files and databases that are grouped

together to represent some conceptual concept.

4. A presentation model describes the layout of each page and its graphical

requirements.

5. A customization model describes the different groups of users of the software

and their needs.

WebML is more suited for the high level specification of web application than for

modeling the actual implementation because it lacks the concepts needed to model

control flow. For example, relations between the different the source code objects

and the call graph cannot be expressed using WebML’s constructs and concepts.

Conallen’s work on extending UML [Gro99] to model web applications is the

most similar to our work [Con99]. Conallen defines a web application as: “a Web

system that allows its users to execute business logic with a Web browser”. He

proceeds to point out the need to model web applications due to their complexity,

and he presents the Web Application Extension (WAE) for UML. Web pages are

modeled as UML components. Every web page is modeled using two different

aspects:



CHAPTER 4. RELATED RESEARCH 44

1. Its server side aspect where he shows the page’s interaction with other pages,

the business logic objects, the databases and the server provided resources.

2. Its client side aspect where he shows the page’s interaction with the browser

built in objects and Java applets.

In our approach we focus mainly on the server side aspect of modeling web

applications, because much of the client side aspect is concerned with the page’s

layout and presentation. Conallen has demonstrated the generation of skeleton code

for a web application based on a UML specification of the application. His work can

be thought of as the forward engineering of web applications where our research

is concerned with assisting developers who did not specify their web application

using UML and still need to understand them. Currently our visualizer does not

generate UML compliant diagrams; however, the architecture of our architecture

recovery system enables us to plug in a UML compliant visualizer.

4.3 Summary of Related Research

In this chapter, we compared research done in the web engineering community and

research done to model web applications to our approach. In the following chapter,

we present our approach to architecture recovery.



Chapter 5

Architecture Recovery for Web

Applications

In this chapter we present an overview of our architecture recovery framework used

to generate architecture diagrams for web applications. We discuss the visualization

needs of web developers and contrast their needs to those of developers of traditional

software systems. Furthermore, we introduce a domain model (schema) for web

applications. Finally, we explain the different extractors we developed to recover

the architecture of web applications and we detail the type of relations that these

extractors emit. Each parser generates facts that conform to parts of the presented

schema for web applications. Once the facts emitted by all our parsers are combined,

the combined facts conform to the whole schema for web applications.

45



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 46

5.1 Recovery Process Overview

We use a semi-automated process to recover the architecture of web applications.

The process uses tools/extractors to analyze the source code of the application. The

tools’ output is combined with input from a system expert to produce architecture

diagrams. We extend the Portable BookShelf (PBS) [Pen92, FHK+97, PBS] envi-

ronment to address the differences between web applications and traditional soft-

ware applications. Previously, the PBS system was used successfully to recover the

architecture of many large traditional procedural systems such as the Apache web

server [HH00], the Linux kernel [BHB99] and the VIM text editor [TGLH00]. The

architecture of large object-oriented systems such as the Jigsaw web server [HH00]

and the Mozilla web browser [Lee00a, GL00] have also been recovered using PBS.

System
Artifacts

Fact
Extractors

Clustering

Layout

Architecture
Document

FACTS DB

Figure 5.1: Overview of the Portable BookShelf environment

Figure 5.1 shows an overview of the PBS environment. First the artifacts of the



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 47

software system (such as source code, documentation, execution traces, etc.) are

processed using specialized extractors. The extractors automatically generate facts

about the software system based on these artifacts. The facts could be detailed

such as: function “f” uses variable “a” or at a higher level such as: file “f1” uses

file “f2”. The level of detail of the extracted facts depends on the extractor and

the level of analysis that is to be performed on the recovered facts. For example,

for architecture level analysis, facts at the function level are not needed and can be

lifted to a higher level.

The generated facts are stored in TA format [Hol97, Hol98] using a specific

schema or domain model. The schema permits many tools to operate independently

on the extracted facts and reduces the coupling between the fact extracting and

the fact consuming tools such as the visualizer. Furthermore, the use of schema

permits the integration of different types of facts to produce a single architecture

document that contains all the extracted facts.

Once the facts have been produced, a “first-cut” attempt to visualize them

would lead to an architecture view which resembles Figure 5.2. The figure shows a

complicated graph of the relations between the different components of a software

system. Each small dot represents an artifact of the software system (such as a

file of source code, a database, etc. ), and each line between two dots indicates the

existence of a relation (such as uses, or calls) between two of the artifacts. The

developer cannot use the diagram to gain a better understanding of the software

system because of the complexity of the diagram. Instead of showing all the ex-

tracted relations and artifacts in the same diagram, we decompose the artifacts



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 48

Figure 5.2: Un-clustered Architecture View

of the software system into smaller meaningful subsystems. Figure 5.3 shows the

reduction in complexity achieved by decomposing a software system into subsys-

tems using clustering techniques. The clustering is performed automatically first

by a tool that proposes decompositions based on several heuristics such file nam-

ing conventions, development team structure, directory structure, or software met-

rics [TH96, TH98, Bow99]. The developer later manually refines the automatically

proposed clustering using their domain knowledge and available system documen-

tation. The decomposition information along with the extracted facts is stored in

TA format.

Later, an automatic layout tool processes the stored facts to generate diagrams

such as the one shown in Figure 5.4. The layout tool attempts to minimize the

line crossing in the generated architecture diagrams. The developer may choose

to modify the generated layout. The aforementioned mentioned process combines



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 49

Un-clustered View Containments Clustered View

Figure 5.3: Clustering of Software Components

tool support and human interpretation to recover the architecture. Tool support

dramatically reduces the recovery time, and human interpretation is paramount in

organizing and clustering the large amount of extracted information.

SYSTEMLIBS

BROWSE_ADS

AD

ASPOBJECTS

PRODUCT

UTIL

PLACE_AD

CUSTOMER

PAYMENT

WEBSITE

Figure 5.4: Clustered Architecture Diagram of a Web Application



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 50

5.2 Visualization Needs for Web Applications

Traditional software architecture diagrams show the various modules and source

files that compose the software system and their interactions. Web applications

are composed of many components and each component may have its own inter-

nal architecture or design. A web application developer is more concerned with

the system-level topology of the components and their interaction rather than the

internal structure of each component in a web application. For example, when

studying the architecture of web applications, the internal architecture of the web

server and the web browser are not shown as they add more complexity to the vi-

sualized system and do not contribute to the overall understanding of the software

system. The web server and the browser represent infrastructure systems similar

to the operating system and the windowing system whose architectures are not

shown when visualizing traditional software systems. The architecture diagrams

for web applications need to show the distributed objects, database tables, multi-

media objects (such as movies, pictures and audio files) that are scripted together

to implement large sophisticated web applications.

Previous studies in program maintenance and understanding conducted on the

development of traditional software systems [LA97, Sim98, SCH98, SCHC99] as-

sisted us in determining the needs of developers. The recovered web application

architecture must satisfy developers needs to be of any use for them, for example:

1. Developers use visualization tools to pinpoint locations of interest in the sys-

tem’s code; they later delve into these locations of interest to improve their

understanding using their code editors. In response, our recovered architec-



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 51

ture diagrams for web applications do not show all the detailed relations and

components, instead they present an overview of the system. For example,

they do not show the internal structure of code inside the same file. They

show the inter-file relations. Also we use containment and information hiding

techniques to reduce the complexity of the visualized systems.

Traditional Software  Web Applications 

Function definition Object definition 

All uses of a function All uses of an object 

Variable definition Database table schema 

All uses of a variable All uses of a database table 

 

Table 5.1: Mapping from Traditional Applications to Web Applications

2. When searching for a better understanding of a system, the four most common

search targets used by developers are function definitions, uses of a function,

variable definition, and all uses of a variable. We adapted these relations

to web applications, as shown in Table 5.1. Web applications are composed

of multiple stateless pages and data must be stored in a database or in a

persistent object so different pages can share them. We show the relations

at a higher level of abstraction. Instead of showing variables, functions and

their interrelations, we show database tables, distributed objects, and their

interrelations.



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 52

5.3 Domain Model

Before we describe the architecture recovery of web applications, we define a do-

main model (schema). The schema describes the permitted entities and permitted

relations between them. Fact extractors are expected to adhere to the schema by

generating facts that conform to it. In addition, tools that manipulate the facts

must generate schema conformant facts, which are stored on disk in TA format.

ALS

ELS

CLS

Low

Abstraction

High

Figure 5.5: Layers of Schema

Our domain model is composed of three layers of schemas (see Figure 5.5). The

level of abstraction ranges from language specific entities which are too detailed and

too close to the source code level and, to more general architectural level entities.

1. Architecture-Level Schema (ALS): The ALS describes the permitted relations

between the architecture elements which are subsystems and components.

The ALS is language (such as C, C++, or Java) independent and technology

(such as COM, DCOM, or CORBA) independent.

2. Component Level Schema (CLS): The CLS describes the permitted relations

between the different components of a web application such as Active Server



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 53

Pages (ASP), database tables, binary libraries and distributed objects.

3. Entity-Level Schema (ELS): The ELS describes the permitted relations be-

tween the top-level program entities such as functions, variables, user objects,

database tables and distributed objects; instead of low-level entities such as

statements and expressions. The ELS is language dependent.

The different levels of schemas enable developers to study the software system

at various levels of abstraction. Developers can perform a detailed analysis on the

source code or a higher-level analysis on the architecture. They can execute drill

down [CD97] operations to investigate anomalies in their architecture at the source

code level such as the existence of unexpected dependencies between subsystems.

Using roll up operations, developers can trace up the effects of source code changes

on the overall architecture of the software system [Lee00b].

In our case studies, we show how developers can use the formalism, developed by

Holt [Hol96, Hol98] and implemented in the PBS tool, to perform impact analysis

studies on web applications for migration and maintenance purposes.

5.3.1 Overview of the Schema Layers

In the following sections, we detail the different layers of schema and show examples

of the schemas for web applications. We present the ELS schema for the VBScript

and JavaScript languages. Then we show how to combine both schemas into a

common schema, called the Common ELS for Object-Based Languages. Once we

combine the different languages into a common schema, we proceed to explain the

CLS schema. The CLS schema reduces many of the details available in the ELS



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 54

schema. This reduction of detail, commonly referred to as lifting, is performed again

when we introduce the ALS schema. Later, we explain how our various extractors

emit relations that conform to these schemas.

5.4 ELS: Entity Level Schema

An Entity-Level Schema specifies the relations that occur between the program

entities according to the syntax and design of the language. The ELS models the

whole software system as a flat space without indicating the distribution of entities

across files or components. At a higher level, the CLS indicates the relations at the

component level instead of just at the entity level. Web applications components are

developed in a variety of languages such as Java [GJS96], C [KR98], C++ [Str97],

Perl [WCO00], Visual Basic [Cor98], VBScript [Hil96] and JavaScript [KM98]. The

ELS for Java, C, and C++ are well known, for more details refer to [Tra99].

ASP file:
(foo.asp)

<html>
Welcome to <%
Write(“CNN.COM”) %>
</html>

Simple html file:
(foo.html)

<html>
Welcome to CNN.COM
</html>

Figure 5.6: An Active Server Page vs an HTML Page

In our work, we address the VBScript and JavaScript languages because they

are the most used languages in the development of web applications. Both lan-



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 55

guages are used extensively in Active Server Pages (ASP). Each ASP page is an

independent component that communicates with the rest of components shaping

a web application. ASP pages are HTML pages that allow developers to embed

segments of control code in HTML pages. The code segments are delimited with

special tags (shown in bold in Figure 5.6). The application server preprocesses the

ASP page and executes the code segments when the browser requests the page.

The results of the execution replaces the actual code in the ASP page and are sent,

along with the HTML, back to the requesting browser. The code can be written

in JavaScript, VBScript or Perl; and the execution may involve the access of many

distributed objects and databases, as shown in Figure 5.7. We now specify the ELS

for the VBScript and JavaScript languages.

Application Server

Object Databases

file.htmlfile.asp

Data Flow

Figure 5.7: Active Server Page Data Flow



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 56

5.4.1 An ELS for VBScript

The VBScript language is a subset of the Visual Basic language developed by

Microsoft Corporation [MS]. It is a scripting language that is interpreted and runs

primarily on the Microsoft Windows platform. Programs written in VBScript can

execute inside of a web browser (as client scripts) or inside the application server

(as server scripts).

Client scripts have more security restrictions on access to local resources than

server scripts. Client scripts are used mainly for aesthetic web page layout and

simple data entry verification.

Server scripts are used extensively to glue distributed objects (COM1 Ob-

jects2 [COM]) together and to provide access to persistent data stored in relational

databases.

The VBScript language is weakly typed with only one data type (Variant). It

supports procedural and object-oriented programming paradigms, but it is not a

true object-oriented language. Instead, it is an object-based language that permits

developers to specify objects (in terms of methods and properties) but does not

support other object-oriented features such as inheritance.

The ELS for VBScript is shown in Figure 5.8. To improve the readability of the

1Component Object Model is a component software architecture that allows applications and
systems to be built from components supplied by different software vendors. CORBA Object and
Enterprise Java Beans (EJB) are other types of component softwares.

2A COM Object or COM component is not an object in the sense of source code object-oriented
programming objects such as those defined in C++ or Java. Instead, it is some piece of compiled
code that provides a service to the rest of the software system. This piece of compiled code would
define an interface to access its functionality. This interface defines the component’s class. Each
instantiations of the component class is a component object.



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 57

Call

Function/
Procedure

Object

Method Property

Call

Variable

PropDclByUseVar

UseVar

MthdDclBy

UseProp

UseProp

Call

Instantiate/
Reference

Instantiate/
Reference

DBTable

COMObject

Instantiate/
Reference

Instantiate/
ReferenceUseDBTable

UseDBTable

Figure 5.8: Entity Level Schema for the VBScript Language

figure, the ASPFile entity has been removed and all the relations associated with

it. The omitted relations are: Object ObjDefBy ASPFILE, Function FuncDefBy

ASPFile, and Variable VarDefBy ASPFile.

From the figure, we see that an Object can have Properties and Methods.

The language supports Functions, Procedures and Variables. All of which can

interact together and with Objects. Scripts can instantiate and reference many of

the built in Objects in the language. They can also reference and instantiate their

own VBScript objects or other objects (COMObjects) that have been written in

other languages. The latter feature enables VBScript to act as glue to link objects

and components developed in different languages. The language provides APIs to

update and retrieve data stored in relational databases (DBTables).

The VBScript language is not as well documented as the JavaScript Language.

No extensive reference manual exists that describes the language in detail. To



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 58

develop an extractor for VBScript, we examined many systems and code samples

written in VBScript to gather the language’s structure and syntax.

5.4.2 An ELS for JavaScript

JavaScript, also called ECMAScript is an object-based scripting language; it is not

a subset of any other language. It shares many similarities with object-oriented

languages such as the Java and C++ languages. The language is developed un-

der the control of the ECMA [ECMa] standardization organization and is called

ECMAScript [ECMb]. JavaScript is the name of Netscape Corp.’s [NS] implemen-

tation of the ECMAScript language whereas JScript is Microsoft Corp.’s name.

Both implementations are supersets of the ECMAScript language; they provide ex-

tensions specific to the implementing company. The extensions add many built-in

objects and provide mechanisms for the language to interact more easily with other

web components such as COMObjects and DBTables.

The language can be interpreted or compiled. The language has many built-in

data types such as String, Number, Boolean, Object, Array, Null, and Undefined.

New types cannot be defined. The language is loosely typed. The data type of vari-

ables do not need to be defined ahead of time and conversion between the different

data types is done automatically without the need of a cast operator. The data

type of a variable is based on the value of the variable at run-time. JavaScript

supports the dynamic evaluation of code segments stored in a variable. The latter

two features hinder the accuracy of statically generated facts, as some relations

cannot be determined till run-time.



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 59

Function Object

Call

Variable

UseVar

Instantiate/
Reference

Reference

Data Type

DBTable

COMObject

UseDBTable

UseDataType

Instantiate/
Reference

Figure 5.9: Entity Level Schema for the JavaScript Language

Figure 5.9 shows the ELS for the JavaScript language. Again to reduce the

clutter in the schema diagram, the ASPFile entity has been removed and all the re-

lations associated with it. The omitted relations are: Object ObjDefBy ASPFILE,

Function FuncDefBy ASPFile, and Variable VarDefBy ASPFile.

5.4.3 A Common ELS for Object Based Languages

All the web applications we studied are developed to run on the Microsoft Win-

dows platform and use a mixture of VBScript and JavaScript to glue the different

components. To enable the reverse engineering of these systems, we use a common

Entity Layer Schema.

The Common ELS combines the JavaScript and the VBScript schemas into a

single schema, as shown in Figure 5.10. This schema raises the abstraction to a

higher level independent of a particular programming language. All the common

entities of the JavaScript and the VBScript languages are present in the common



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 60

schema. They are prefixed with VBS for VBScript entities and JS for JavaScript

entities. As can be seen in the figure, the ELS uses inheritance relations to indicate

the mapping between the common schema and the language specific schema. For

example, a UserObject entity is a super class of VBScript Object and JavaScript

Object.

UseVar

JSObjectVBSObject

UserObjectFunction

JSFunction
VBSFunction

VBSProcedure

JSVariableVBSVariable

Variable

JSDataTypeVariant

DataType

Instantiate

Call

UseDataType

Call

ASPFile

UseVar

IncludeFuncDefBy ObjDefBy

VarDefBy

COMObject

DBTable

UseDBTable

Reference/
Instantiate

UseDBTable

Reference/
Instantiate

Figure 5.10: A Common Entity Level Schema for Object Based Languages



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 61

5.5 CLS: Component Level Schema

Various components shape a web application. The components are glued together

using scripting languages such as VBScript and JavaScript. When developers ex-

amine the architecture of web applications, they are more concerned with the in-

teractions between the different components rather than the internal design or

architecture of the components themselves. The Component Level Schema raises

the level of abstraction of the extracted facts from the internal structure of the

components to a higher level.

COMObject

DBTable

Call

ASPFile

Include

UseDBTable

UseVar

Reference

DLL

Instantiate

Contain

HTMLRef

WebObject

HTMLRef

Reference Reference

UseDBTable

Figure 5.11: Component Level Schema for Web Applications

Figure 5.11 shows the CLS, which contains the various components of a web

application and their interrelations. As can be seen in the figure, an ASPFile



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 62

component can include other ASPFiles. The ASPFile can contain HTML code

that references another ASPFile or a WebObject such as a picture, a movie, or an

audio file. It can also contain code segments written in JavaScript or VBScript that

use a variable, instantiate an object or call a function defined in another ASPFile.

The code segments can read, update, and insert data in database tables. The code

segments can instantiate or reference a COMObject that may reside inside a DLL3.

A COMObject can in turn reference other COMObjects or it can access a database

table (DBTable).

5.6 ALS: Architecture Level Schema

We use boxes and arrows to depict the architecture of large system. The boxes can

be components such as those specified in the CLS schema or could be subsystems

that contain in turn other components or other subsystems. The ALS for web appli-

cations is described in figure 5.12. For a web application the components are entities

such as DLLs, ASPs, DBTables, WebObjects, and COMObjects. Many dependencies

between the components exist: data dependencies that are caused by components

accessing data stores, control dependencies that show the control flow and activa-

tions of many components, and web dependencies that show the hyperlink structure

between the different structures. We found that viewing the architecture of appli-

cations at the component level is hard to understand (see Figure 5.2), because of

the large number of components and the large amount interactions between them.

3DLL: a Dynamic Link Library (DLL) is a shared library on the Microsoft windows operating
system.



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 63

Contain

Subsystem Component

Contain

Contain

DependOnDependOn

DependOn

Figure 5.12: Architecture Level Schema for Web Applications

We used the concept of a subsystem to reduce the complexity of the architec-

ture of large web applications into a more comprehensible structure. A system

decomposition tree is created with the whole system being at the root of the tree

and components at the leaf level. Each component is clustered inside a meaningful

subsystem in the tree and subsequently each subsystem is clustered into another

subsystem until we reach the root of the tree. For web applications, we have clus-

tered most of the recovered architectures using the directory structure of the source

of the web application and file naming conventions. For example, all components

whose name starts with the word “customer” would be placed in a customer sub-

system. When both mechanisms failed (e.g. the application used a flat directory

structure), we examined the documentation of the components to get a better un-

derstanding of its functionality and determine its appropriate subsystem.

Once the clustering phase is done, the extracted facts and the clustering in-

formation are combined and processed by the Grok tool. The Grok tool is a

relational calculator. It raises the extracted facts to the appropriate level of ab-



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 64

stractions, inter-subsystem instead of of inter-component. It determines the type

of relations that exist between subsystems based on the type of relations between

the components that exist in a subsystem.

The output of Grok is in TA format and is a textual description of the inter-

relations between the subsystems and the components. The textual description is

not easy to display and comprehend because of the large number of relations and

entities involved. Although Grok provides many powerful functions to perform

analysis of the recovered architectures, a good understanding of the mathematical

background [Hol96, Hol98] used by the tool is needed. To ease the architecture

analysis and understanding process, the textual output of Grok is processed by

an automatic layout tool that organizes the facts for a graphical output. A visu-

alization tool [Pen92] is used to view and analyze the recovered architecture. The

visualization tool has a much lower learning curve compared to Grok’s mathemat-

ical textual language.

5.7 Fact Extraction

In traditional architecture recovery, an extractor parses the source files of the soft-

ware system and emits facts about the system. Many of the traditional software

systems are developed in a single programming language and all the source code

of the system is available. For a large number of traditional software systems, only

one language specific extractor is needed.

Extractors range from lightweight extractors that search for specific patterns

of interest in the source code and emit the relevant facts to more detailed parsers.



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 65

Such parsers may be modified compilers that emit facts about the source code

instead of producing assembly code or binaries. Researchers have been successful

in building binary extractors that analyze the program executables and libraries

of a software system to understand the dependencies in the system, when a source

code extractor for the language is not available [ITBH99].

HTML
Extractor

Language
Extractor

DB Access
Extractor

Server Script
Extractor

Binary
Extractor

HTML
Facts

Script
Facts

Data
 Facts

Source
Code Facts

Binary
Facts

ASP Page

Server Scripts

COM
Source Code

COM
Binary

Figure 5.13: Conceptual Architecture of the Fact Extractors

On the other hand, web applications are developed using a variety of languages

and are formed of components for which the source code may not be available or

an appropriate extractor may not exist. The properties of web applications present

many challenges for traditional software architecture recovery frameworks that de-

pend on a single extractor. Our approach uses a set of extractors that cooperate

to emit all the facts from the examined web application. Figure 5.13 shows an



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 66

overview of the various extractors and their input and the type of facts generated

by them. We used five types of extractors: an HTML extractor, a Server Script

extractor, a DB Access extractor, a Language extractor, and a Binary extractor.

Each extractor is responsible for examining a component or a section of a com-

ponent. Each extractor generates facts that conform to the CLS schema for web

applications. Once all the facts are emitted, the clustering information is combined

and all the data (facts and clustering) are processed by Grok, then a layout tool.

The output of the layout tool can be viewed and analyzed using a visualizer.

The directory structure of the web applications and the source code directory

are crawled by a shell script. The script determines the type of the component and

invokes the corresponding extractor. For example, if the script determines that a

file is a binary file, then the Binary Extractor is invoked. Each extractor generates

a set of facts and stores its results in a file with the same name as the input file

and the name of the extractor as the suffix. Later, another script crawls all the

previously processed directories and consolidates all the generated files into a single

file (THEFACTS file). The THEFACTS file is combined with the clustering information

that is generated using the directory structure and user input. We detail the types

of relations generated by each type of extractor in the following sections.

5.7.1 Overview of the Extractors

For each described extractor, we provide a table which provides a detailed descrip-

tion of all the types of relations generated by the extractor. For example, the CLS

schema in figure 5.11 contains a relation called HTMLRef. The HTML extractor gen-



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 67

erates fifteen relations that are of type HTMLRef. Similarly the DB Access Extractor

generates four relations that are of type UseDBTable. We decided to show in the

schema diagrams just one relation that represents the type of all these relations to

ensure the readability of the schema diagrams. To get a detailed description of the

generated relations, the reader needs to refer to the relations tables.

5.7.2 HTML Extractor

ASP Page

Server Scripts Client ScriptsHTML

VBScriptJavaScriptPerl JScriptVBScript

Figure 5.14: The Internal Structure of an ASP component

The HTML Extractor is responsible for processing HTML and ASP files. An

HTML page is an ASP page that contains no code segments and is processed only

by the HTML Extractor. An ASP page contains various sections. Each section

is parsed and analyzed by the appropriate extractor. An ASP page contains (see

Figure 5.14):

1. HTML sections that are text with links to other online content. The HTML

sections are sent to the requesting browser, without modification by the server.



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 68

2. Server scripts that are executed on the server and the result of the execution

is sent back to the requesting browser.

3. Client scripts that are interpreted inside of the user’s browser. The Client

scripts are sent to the requesting browser without modifications by the server.

Each section is written using a different language:

1. HTML Sections are written in HTML.

2. Server scripts are written in either VBScript, Perl or JScript.

3. Client scripts are written in JavaScript or VBScript.

Figure 5.13 shows that the HTML extractor performs two roles. It first emits

relations that exist in an ASP/HTML page. Table 5.2 shows the generated rela-

tions, where Entity A is the ASP page being processed. The generated information

permits the visualization of the hyper/web references between the various pages.

Once all the HTML facts are emitted, the HTML extractor recognizes the other

type of sections that are in an ASP page and outputs them to different files, which

have the same name as the currently processed ASP page but have different suf-

fixes based on the type of the section and the language used. For example, if the

HTML Extractor were to process a file called foo.asp, it would emit the HTML

facts and output the following files: foo.asp.vb server, foo.asp.js server,

foo.asp.vb client and foo.asp.vb client. The newly created files that contain

the client script (foo.asp.vb client and foo.asp.vb client are not processed.

But the newly created files that contain the server scripts (foo.asp.vb server,

foo.asp.js server) are processed by the server script extractor.



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 69

Relation From 
(A) To (B) Description 

background_url WebObject Entity B specifies the background of entity 
A. 

file_include ASPPage Entity A includes all the contents of entity 
B. 

fontdef_url WebObject Entity B contains the font description for the 
font used in entity A. 

formget_url ASPPage, 
DLL 

Entity B is responsible for processing the 
form fields that are in entity A. 

formimage_url WebObject Entity B is the image that the user has to 
click after they fill the form in entity A. 

formpost_url ASPPage, 
DLL 

Entity B is responsible for processing the 
form fields that are in entity A. 

frame_src ASPPage Entity B specifies the contents of one of the 
frames in entity A. 

image_lowsrc WebObject Entity B specifies the low resolution image 
that is displayed in entity A. 

image_src WebObject Entity B specifies the image that is 
displayed in entity A. 

imagemap_src WebObject Entity B specifies the image that is 
displayed in entity A for an image map. 

layer_src ASPPage Entity B specifies the contents of a layer of 
entity A. 

link_url ASPPage Entity B specifies the background of entity 
A. 

refresh_url ASPPage Entity B replaces entity A. 

stylesheet_url WebObject Entity B specifies the layout of the contents 
of entity A. 

virtual_include 

A
S

P
P

a
g

e
 

ASPPage Entity B includes all the contents of entity 
A. 

 

Table 5.2: Relation Types Produced by the HTML Extractor



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 70

No Analysis for Client Scripts

In our architecture recovery we ignore client scripts in ASP pages. The scripts are

never processed by our tools. We chose not to analyze client scripts as they are used

mostly for aesthetic page layout and simple input checking. Client scripts do not

interact with any of the component that reside on the server, instead they interact

with components provided by the web browser.

Other architecture diagrams may be generated to show the client script inter-

actions with the browser object but we believe that such architecture diagrams are

not as useful for understanding the big picture of large web applications because of

the limited interactions of client scripts and their simplicity.

Network Crawling vs. Directory Crawling to Extract Hyper Facts

All the relations shown in Table 5.2 except (the file include and virtual include

relations4) can be recovered either by crawling the web site directory structure as

we do, or by crawling the web site using a network crawler such as the ones used

by search engines to index web sites. The network crawler won’t find any files

that are not accessible from the crawler’s starting page. This is not a concern for

the directory based crawler as all the present files are examined regardless whether

they are referenced by other files or not. Our approach permits the developer to

determine dead files that are no longer referenced by other files and which can be

removed from the code base. Such a file would show up in the generated archi-

tecture diagram with no relations from other files to it (no in-arrows). If links to

4The file include and virtual include relations are preprocessed by the web server to
include the appropriate file before sending the page back to the requesting browser/crawler.



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 71

other pages are generated dynamically then directory crawling won’t extract the

links but network crawling may or may not extract the links based on its starting

page.

Some of the facts generated by a network crawler will not match the relations

generated by a directory based extractor as the preprocessing performed by the web

server may cause the generation of relations that do not match the actual HTML

code. For example if a file includes another file, a network extractor will mistakenly

assign all the relations from the included file to the including file.

5.7.3 Server Script Extractor

Server Script Extractors are responsible for processing the server script code seg-

ments that are located in an ASP page. As per the example in the previous

section, this extractor would process the following files: foo.asp.vb server and

foo.asp.js server.

Three different extractors are needed, one for each implementation languages

(VBScript, JavaScript, and Perl). For our work we did not develop a Perl extractor

as all the systems we analyzed did not use Perl. We developed a light weight

extractor for JavaScript and a full extractor for VBScript. Both extractors examine

the source code of the scripts and emit the relations shown in Table 5.3.

5.7.4 Database Access Extractor

The Database Access Extractor uses regular expressions to locate data table ac-

cesses inside source code statements. As show in figure 5.13, this extractor takes



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 72

Relation 
From 
(A) 

To (B) Description 

asp_dynamic_ref 
COMObject 
DLL 

Entity B is instantiated 
by a script inside of 
Entity A.   (For 
example, Var v = 
CreateObject(“B”);) 

asp_static_ref 

A
SP

Pa
ge

 

COMObject 

A script in Entity A 
references entity B.  
This relation is often 
generated when a script 
references built-in 
objects. 

(For example, 
B.doSomething(); ) 

contain DLL COMObject 
Entity B is part of entity 
A. 

 

Table 5.3: Relation Types Produced by the Server Script Extractor

as input the server scripts and the source code of the components.

The extractor searches for matches that resemble common database access func-

tions and SQL keywords such as SELECT or INSERT. The extractor then employs

some heuristics to validate the matches. For example, once the extractor locates

the keyword SELECT it searches for the keyword FROM and determines, based on

the distance and the strings between both keywords, if a database table is being

accessed or if the matches are coincidental and no database table access has oc-

curred. Table 5.4 shows the different types of relations extracted by the Database



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 73

Relation  
From 

(A) 
To 
(B)  

Description  

db_select  
Entity A performs a database select 
operation on entity B.   

db_update  
Entity A updates elements stored in 
entity B.   

db_insert  
Entity A inserts new elements into 
entity B.   

db_proccall  

A
SP

Pa
ge

, C
O

M
O

bj
ec

t
 

D
B

T
ab

le
 

Entity A calls a stored -procedure 
whose implementation is defined 
and stored in entity B.  

 

Table 5.4: Relation Types Produced by the Database Access Extractor

Access Extractor. Because of the use of heuristics, the output of this extractor is

reviewed manually to validate it. All the server scripts in the ASP pages and the

source code files for all the COMObject are examined by this extractor to recover

databases accessed in the web application.

The Database Access Extractor uses many heuristics and has been tuned to work

well for the systems we studied. For other systems, we expect that the performance

of the extractor won’t be as good as our results. Due to the pipeline architecture

of our extraction process, user intervention is possible to correct the extractor if it

fails to recognize database accesses or if it mis-recognizes database accesses.



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 74

Relation 
From 
(A) 

To (B) Description 

dll_dynamic_ref 
COMObject
DLL 

Entity B is instantiated 
by entity A.   (For 
example, Var v = 
createInstance B();) 

dll_static_ref C
O

M
O

bj
ec

t 

COMObject 

Entity A references 
entity B.  This relation 
is often generated when 
code uses built-in 
libraries or objects. 

(For example, 
FileSystem.readFile()) 

contain DLL COMObject 
Entity A becomes part 
of entity B once 
compiled. 

 

Table 5.5: Relation Types Produced by the Language Extractor

5.7.5 Language Extractor

The Language Extractor could be a full extractor or a light weight extractor that

searches the source code of the COMObject for interesting statements. We de-

veloped a simple lightweight extractors for Microsoft Windows C, Visual Basic

and Microsoft Windows C++. All these extractors use Perl regular expressions

to generate the relations shown in Table 5.5. For the examined web applications,

this extractor was very successful in extracting the facts without any manual in-

tervention. We expect it to work for web applications different than the studied



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 75

ones.

5.7.6 Binary Extractor

Relation 
From 
(A) 

To (B) Description 

dll_static_ref DLL 
Entity A references entity 
B.   

contain D
L

L
 

COMObject Entity A contains entity B. 

 

Table 5.6: Relation Types Produced by the Binary Extractor

Finally the Binary Extractor examines the binaries for compiled components.

The Binary Extractor uses the link table stored inside the binary file to determine

the relations shown in Table 5.6. The Binary Extractor supports the Microsoft

Portable Executable Format (PE) [Cor97] and can only be used to extract relations

from Microsoft Windows binaries. Other tools such as nm [tPOSIP93] can be used

to extract relations from non-Microsoft Windows binaries. The Binary Extractor

is used to analyze:

1. components for which we don’t have access to the source code. The compo-

nent may have been purchased or the source code of the components may not

be given for analysis to us because of its sensitive nature.

2. components for which we do not have a Language Extractor. Many languages

are used to develop web applications and we lack the resources to develop a



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 76

language extractor for each one.

5.8 Summary of Architecture Recovery

We have shown that software developers have different needs and concerns when

they study and analyze web applications. Traditional architecture recovery frame-

work such as PBS can be modified to meet the demands of the developers. A new

domain model and a new fact extraction process has been presented.

We present a modified domain model for web applications. The domain model

is a three layer model: the entity-level schema (ELS), the component-level schema

(CLS) and the architecture-level schema (ALS). Such layering enables the analysis

of web applications at different levels of abstractions. At the lowest layer is the ELS

which describes all the permitted relations between the top-level program entities

such as function, variables, user objects, database tables and distributed objects.

We show the ELS for two of the most widely used languages in the development of

web applications: JavaScript and VBScript. The CLS raises the level of abstraction

to the component level. It describes all the permitted relations between the different

components of a web application such as Active Server Pages (ASP), database

tables, libraries and distributed objects. At the highest level of abstraction lies the

ALS which describes all the permitted relations between the architecture elements

such as subsystems and components.

Once we described all the levels of facts and the relations between them, we

explained the framework used to extract facts that comply to the schemas we de-

scribed in this chapter. We detailed the extraction process used to extract facts



CHAPTER 5. ARCHITECTURE RECOVERY FOR WEB APPLICATIONS 77

from the different components that form a web application. The extraction process

employs different types of extractor. Each extractor is invoked on the appropriate

component and the results of the execution of all the extractors on all the compo-

nents of the web application are combined into a single fact base using the presented

domain model for web application.



Chapter 6

Case Studies

To evaluate the recovery framework we presented in Chapter 5, we recovered the

architecture of several web applications. In this chapter, we give an overview of

the web applications we studied. We also examine the architecture of two of the

studied web applications and show the benefits of using the recovered architecture

diagrams to maintain the application and understand its structure.

6.1 Studied Web Applications

In Chapter 5, we explained the framework used to to recover the architecture of

web applications. To evaluate this framework, we recovered the architecture of

two commercial and two non-commercial web applications. Table 6.1 provides an

overview of the functionality of the studied web applications.

To recover the architecture, we employed the process described by Bowman

in [Bow99]. The process was modified to address the points of differences between

78



CHAPTER 6. CASE STUDIES 79

Application Description

Hopper News
(noncommercial)

Hopper News is an application that enables users to post
and browse classified advertisements online. Users must
pay a service charge to post classifieds but any one can
browse the classifieds

Exploration Airline
(noncommercial)

Exploration Airline is a set of applications used by an
airline company. The company has an extranet applica-
tion to enable its partners to connect. It has an intranet
application for its employees to check their benefits. It
also has an internet application to provide service for its
customers.

Wireless
(commercial)

Wireless is a set of applications used by a wireless ser-
vice provider to maintain its subscriber base. In addition,
the application enables subscribers to maintain their sub-
scription information and permits users to send messages
to subscribers (SMS - Short Message Service). The ap-
plication is accessible through a wireless phone browser
using WML or a traditional browser using HTML. We
studied only the HTML portions of the application.

Bug Tracking
(commercial)

The Bug Tracking application enables a development
team members to record reported and discovered bugs.
They can also track the progression of the bug until it is
resolved.

Table 6.1: Description of the Studied Web Applications



CHAPTER 6. CASE STUDIES 80

web applications and traditional applications. For each studied application, we

performed the following steps:

1. We acquired the available documentation and source for the web application.

The non-commercial applications had more documentation than the commer-

cial applications as they were developed as samples to showcase the various

capabilities of web applications to software developers.

2. The documentation of the system was examined to derive the main concepts

and functionality of the system. For example, reading the documentation for

the Hopper News application, we discovered that users must post advertise-

ment for products and they must pay fees to do their posting. We recognized

the following concepts: Browse advertisements, Place advertisements, User,

Advertisement, Product, and Payment.

3. For traditional applications, Bowman suggests compiling the application and

executing a couple of simple test cases. For a web application, we install it on

a web server. We examine the pages of the application using a web browser.

The browsing is used to verify that the application works. It also gives us a

better understanding of the functionality provided by the application.

4. Once the last two steps were completed, we developed the conceptual archi-

tecture of the web application. The previously developed concepts and the

relations between them were depicted through a simple diagram using boxes

to represent the concepts and arrows to represent the interactions between

the various concepts.



CHAPTER 6. CASE STUDIES 81

5. Our extractor crawled the source of the web application stored on the local

file system of the web server. The extractor generated facts based on the type

of the examined files. Table 6.2 gives a count of the various kind of entities,

extracted from the studied applications.

6. Using the developed conceptual architecture and the directory structure, we

clustered the entities extracted in the last steps into smaller meaningful sub-

systems. Regular expressions, the directory structure and file naming conven-

tions assisted us in the clustering process. For example, in one application,

when the name of a file started with the string “customer”, we placed the

file in the customer subsystem. At this step, we might examine closely the

source of a component if we could not accurately determine the functionality

of a specific component to correctly cluster it.

7. The Grok tool was used to deduce relations between the subsystems based

on relations that existed between the different entities located inside of each

subsystem.

8. Finally, the architecture of the systems were visualized using the landscape

tool [Pen92]. Developers can use the recovered architectures for impact anal-

ysis and for studying the software system.

6.2 Case Study: Hopper News

Hopper News is a sample web application shipped on the MicroSoft Developer Net-

work (MSDN) library CD provided by Microsoft Corp. The application illustrates



CHAPTER 6. CASE STUDIES 82

Web ASP DB DLL COM WEB
Application FILE TABLE OBJECT OBJECT

Hopper News 19 8 22 38 12

Exploration Air 167 16 20 58 57

Wireless 89 16 0 216 25

Bug Tracking 71 9 10 76 3

Table 6.2: Count of Entities Extracted from the Studied Web Applications

technologies provided by the Microsoft web development platform to develop web

applications.

Figure 6.1: Hopper News Main Page

Hopper News is the web site of a fictitious newspaper. It features sections for

local, national, international news, sports, weather, and classified advertisements.



CHAPTER 6. CASE STUDIES 83

In this sample application, only the classified advertisement section is implemented.

The rest of the links on the main web page, shown in Figure 6.1, are not functional.

The only functional link is the lowest link in the page which links to the classified

advertisement page, shown in Figure 6.2.

Figure 6.2: Hopper News Classified Advertisement Web Page

6.2.1 Conceptual Architecture for Hopper News

Browsing the application and reading its documentation, we determine that the

application provides two main functionalities: it permits any person to browse

advertisements, and it permits registered users to place advertisements. To place

an advertisement, the user must pay a fee.

Figure 6.3 shows the conceptual architecture of the Hopper News classified

advertisement web application. The conceptual architecture is derived from the



CHAPTER 6. CASE STUDIES 84

concepts, and relations we deduced by reading the documentation and using the

application. The conceptual architecture is drawn using a drawing tool, whereas

all the concrete architecture are screenshots of the PBS landscape viewer.

Browse Ads
Tier 1:

Presentation
Logic

Infrastructure

Place Ad

ASP
Objects

System
Libs

Util

Product

Ad Customer

Payment

Tier 2 &3:
Business
Logic &

Database

Figure 6.3: Conceptual Architecture for Hopper News

The Hopper News web application has a 3-tiered architecture:

1. The highest tier - Presentation Logic - provides the user interface to the two

functionalities of the application: browsing and placing advertisements.

2. The Business Logic tier encapsulates the business rules based on the concepts

in the application domain (such as Customer, Ad, and Product). For exam-



CHAPTER 6. CASE STUDIES 85

ple, in figure 6.3 we see that the PLACE AD subsystem does not interact with

the PAYMENT subsystem. The information about the cost of placing an adver-

tisement is encapsulated in the AD subsystem. Such information is considered

to be a business rule. All business rules are stored in the Business Logic tier

and not in the Presentation tier.

3. The Database tier provides persistent storage for the business data. In fig-

ure 6.3, the Business Logic and the Database tiers are clustered together based

on the concepts that they support.

An Infrastructure layer supports by these three tiers. It provides support for the

basic functionality needed by the various tiers, such as access to the local file system,

or string manipulation functions. As this web application is developed on the

Microsoft Windows platform, the Infrastructure layer contains Microsoft Windows

specific components such as Active Server Pages Objects, Windows libraries and

general utilities.

6.2.2 Concrete Architecture for Hopper News

The conceptual architecture shown in figure 6.3 was derived through reading the

available documentation and using the application. On the other hand, the concrete

architecture is based on the source code of the application. Using our extractors

and the techniques described in chapter 5, we recovered the concrete architecture,

as shown in figure 6.4. This figure is a screenshot from the landscape viewer. We

note that the UTIL, SYSTEMLIBS, and ASPOBJECTS subsystems are used extensively



CHAPTER 6. CASE STUDIES 86

SYSTEMLIBS

BROWSE_ADS

AD

ASPOBJECTS

PRODUCT

UTIL

PLACE_AD

CUSTOMER

PAYMENT

WEBSITE

Figure 6.4: Concrete Architecture for Hopper News

by all other subsystems in the application. Arrows to these subsystem have been

truncated to ensure the clarity of the diagram.

Figure 6.5 shows the legend used by the landscape viewer. The landscape viewer

presents the recovered concrete architecture and enables developers to analyze the

architecture by using interactive queries such as “What are all subsystems that use

the Customer subsystem?”. The tool shows different relations between the different

entities. We use three different colors to group the relations into dependency types.

Black arrows indicate a hyperlink dependency between two entities, red arrows

indicate a control dependency and green arrows indicate a data dependency. When

the cursor is positioned on a specific arrow, the tool displays the actual type of

relation. However, for the shown diagrams in this chapter we can only determine



CHAPTER 6. CASE STUDIES 87

Figure 6.5: Legend for Landscape Viewer Diagrams

the type of the relation based on its color.

The viewer permits us to delve deeper into every subsystem. We simply double-

click on the subsystem we need to investigate and the tool opens a new diagram

showing the internals of the subsystem. As we go deeper into the recovered archi-

tecture diagrams, we get a closer look at the components that form the subsystem.

Also we see the internal interaction between the components and the interactions

between the components in the current subsystem and the other components that

reside in other subsystems in the web application. Figure 6.6 shows the internals

of the CUSTOMER subsystem. It shows the various databases that are part of the

CUSTOMER subsystem and visualizes their interaction with the DLLs that encode the

business rules of the web application.



CHAPTER 6. CASE STUDIES 88

AD .
DB_ADC.DLL

PLACE_AD .
adconfirm.asp

PLACE_AD .
custmaint.asp

PLACE_AD .
adentry.asp

PAYMENT .
BUS_PAYMENTC.DLL

UTIL_TAKEANUMBER.DLL .
UTIL_TAKEANUMBER.TAKEANUMBER

SYSTEMLIBS .
MSVBVM60.DLL

CUSTOMERS

DB_CUSTOMERPASSWORDC.DLLDB_CUSTOMERC.DLL

CUSTOMERPASSWORDS

BUS_CUSTOMERC.DLL CUSTOMERPASSWORDC.DLL

CUSTOMER

Figure 6.6: Hopper News Customer Subsystem

6.2.3 Comparing the Conceptual and Concrete Architec-

tures

The recovered concrete architecture permits us to verify that the conceptual archi-

tecture matches the concrete architecture of the application. In many software sys-

tems, the conceptual architecture does not match the concrete architecture for many

reasons such as implementation language constraints, or the lack of understanding

of the conceptual architecture by new developers. For example, a developer work-

ing on a component in the Presentation tier may access directly a database in the

Database tier instead of going through the appropriate components in the Business



CHAPTER 6. CASE STUDIES 89

Logic tier. Unfortunately, there exists no development tools to detect this violation

in the architecture of a 3-tiered system. There are no tools to prevent a developer

from inserting the offending code into the application’s code base.

Comparing figures 6.3 and 6.4, we notice the following:

1. The conceptual architecture contains an extra dependency that does not ex-

ist in concrete architecture. In the concrete architecture, we do not have a

dependency from the CUSTOMER subsystem to the AD subsystem. When we

developed the conceptual architecture, we had envisioned the need for such a

dependency to permit a customer to retrieve a listing of all her/his advertise-

ments. This functionality was implemented differently than our expectations:

instead the AD subsystem is responsible for implementing this functionality.

2. The concrete architecture contains an extra dependency that was not ac-

counted for in the conceptual architecture. In the conceptual architecture,

we do not have a dependency from the PAYMENT subsystem to the CUSTOMER

subsystem. Examining the source code, this extra dependency exists to per-

mit a customer to carry a balance. The PAYMENT subsystem updates the

customer’s balance every time a payment is made.

Using the landscape viewer, we can find and investigate mismatches between

the conceptual and concrete architecture. Later, we can ask developer or examine

the source code to explain these mismatches.



CHAPTER 6. CASE STUDIES 90

SYSTE...

a... ... ...
BROW...

...

D...

A...

AD

S...R... S...R...

ASPOBJ...

DB_PRO...
PRODUC...

PRODU...

UT...

UTIL

......
PLAC...

CUST... CUST...

CUSTO...

......
... ...

...

...
PAYME...

WEBSITE

Figure 6.7: 3-Tiered Concrete Architecture for Hopper News

6.2.4 Verifying the Tiered Architecture

Viewing figure 6.7 and concentrating only on the colors in the figure, we can clearly

recognize the three different tiers. Using the color scheme described in figure 6.5,

we expect to see grey entities at the top for the Presentation tier, blue entities for

the binaries that encode the business rules in the Business Logic tier, and green

entities at the bottom for the Database tier.



CHAPTER 6. CASE STUDIES 91

SYSTEMLIBS

BROWSE_ADS

AD

ASPOBJECTS

PRODUCT

UTIL

PLACE_AD

CUSTOMER

PAYMENT

WEBSITE

Figure 6.8: Backward-query for the AD Subsystem in Hopper News

6.2.5 Impact Analysis

The landscape viewer provides a simple query engine that permits software devel-

opers to perform impact analysis studies on the architecture of their system. For

example, given a component, such as a database table, a developer can locate all

the components that depend directly on this table. The impact analysis feature in

the landscape viewer permits the developer to ask two types of questions:

1. backward-query : Given a component, what are the other components and

subsystems that depend on it?

2. forward-query : Given a component, what are the other components and sub-



CHAPTER 6. CASE STUDIES 92

systems that it depends on?

Figure 6.8 and figure 6.9 show examples of the backward-query applied to the

AD and CUSTOMER subsystem respectively1. Such results enable a team lead to de-

termine less critical subsystems and assign them to junior developers. For example,

the CUSTOMER subsystem is needed for only posting advertisements, but the AD sub-

system is needed for posting and browsing advertisements. Thus, it may be prudent

to assign the CUSTOMER subsystem to a junior developer.

SYSTEMLIBS

BROWSE_ADS

AD

ASPOBJECTS

PRODUCT

UTIL

PLACE_AD

CUSTOMER

PAYMENT

WEBSITE

Figure 6.9: Backward-query for the CUSTOMER Subsystem in Hopper News

1notice in the figures the CUSTOMER and AD subsystems are highlighted to indicate the
subsystem the query is on



CHAPTER 6. CASE STUDIES 93

6.2.6 Migration Cost Estimations

As a web application evolves, sometimes the need arises to migrate it to a different

hardware or software platform. In other words, the Infrastructure layer of a web

application may need to change during its lifetime. For example, a web application

developed on the Microsoft Windows platform may be moved later to a Unix plat-

form for many reasons, such as performance or scalability. Likewise the application

may be moved to a different web server on the same platform.

SYSTEMLIBS

BROWSE_ADS

AD

ASPOBJECTS

PRODUCT

UTIL

PLACE_AD

CUSTOMER

PAYMENT

WEBSITE

Figure 6.10: Forward-query for the Presentation tier in Hopper News

As migration engineers approach such a project, they need a tool to give them

an idea of the amount of effort involved in the migration process. The migration



CHAPTER 6. CASE STUDIES 94

engineers could use the displays of the architectures to get a better understanding

of the structure of the system before they start working on it. Moreover, they can

use the impact analysis feature in the landscape viewer to get an idea of the amount

and type of dependencies between the web application and the Infrastructure layer.

SYSTEMLIBS

BROWSE_ADS

AD

ASPOBJECTS

PRODUCT

UTIL

PLACE_AD

CUSTOMER

PAYMENT

WEBSITE

Figure 6.11: Forward-query for the Business Logic and Database tiers in Hopper
News

To estimate the cost of migrating the web application, a migration engineer

would examine the dependency of each subsystem or tier on the Infrastructure

layer. The more depend the application is on the Infrastructure layer, the higher

the migration cost. Figure 6.10 shows the dependency between the subsystems

in the Presentation tier (PLACE AD and BROWSE AD subsystems) and the rest of



CHAPTER 6. CASE STUDIES 95

the application including the Infrastructure layer. Figure 6.11 shows the results

of a forward-query on the Business Logic and Database tiers in the Hopper News

application. Studying both diagrams, we conclude that the application has a high

dependency on the Microsoft platform — all subsystems depend heavily on the

Infrastructure layer. This is expected because Hopper News is a sample application

used to demonstrate the different technologies provided by Microsoft to develop web

applications.

WEBSITE .
PLACE_AD

BROWSE_ADS .
adslist.asp

CODEVIEWER .
code.asp

BROWSE_ADS .
addisplay.asp

CODEVIEWER .
codebrws.asp

SERVERREQUEST SCRIPTING.FILESYSTEMOBJECTRESPONSE

ASPOBJECTS

Figure 6.12: Hopper News ASP Objects Subsystem

Migration engineers can have a closer look inside subsystems in Infrastructure

layer. Thus, they can determine the specific components that are causing the in-

frastructure dependencies. Examining figure 6.12 we can determine which specific



CHAPTER 6. CASE STUDIES 96

platform features are used by the application based on the infrastructure depen-

dencies.

6.3 Case Study: Wireless

The Wireless web application is one of the commercial applications we studied.

The application is used by wireless service providers. It supports several features

(sub-applications):

1. Users can send Short Messages (SMS) to a subscriber’s wireless device through

a web interface. (SMS PUSH subsystem)

2. Administrators can manage their subscribers’ base. They can search for sub-

scribers, delete subcribers, or add new ones. Furthermore, they can modify

the type of services available to every subscriber. (ADMIN subsystem)

3. Subscribers can manage some of their account information (such as their

mailing address). (SUB UI subsystem)

4. Subscribers can store their bookmarks online. Also, the bookmarks can be

updated and accessed using a web browser or a WAP enabled wireless device.

(BOOKMARKS subsystem)

5. Users can search for other users’ directory entries. (DIR LOOKUP subsystem)

Figure 6.13 shows the concrete architecture of the Wireless web application.

The application is developed using Active Server Pages. Scripts inside of the ap-

plication pages are written in both VBScript and JavaScript. To access and query



CHAPTER 6. CASE STUDIES 97

SYSTEMLIBS

DIR_LOOKUP

DB_PROC

SMS_PUSH

ASPOBJECTS

ADMIN SUB_UI BOOKMARKS

WEBSITE

Figure 6.13: The Concrete Architecture of the Wireless Application - Highest
Level

persistent storage, the application uses direct access through SQL command and

stored procedures.

The main functionalities are clustered into five separate subsystems: ADMIN,

SUB UI, DIR LOOKUP, BOOKMARKS, and SMS PUSH. Data tables and stored proce-

dures used between different sub-applications are placed in a separate subsystem

(DB PROC). For example, the subscriber related data tables are accessible from both

the SUB UI and ADMIN subsystems as both administrators and users need access for

the tables. As usual, we have an Infrastructure layer that contains the ASPOBJECTS

and SYSTEMLIBS subsystems.



CHAPTER 6. CASE STUDIES 98

6.3.1 Bookmarks Sub-Applications

BOOKMARKS.WML

AUTH
BOOKMARKS.LIB

BOOKMARKS.HTML

BOOKMARKS

Figure 6.14: The Concrete Architecture of the Bookmarks Sub-Applications

The bookmarks application enables subscribers to store their bookmarks online.

Furthermore, bookmarks can be updated and accessed using a web browser or a

WAP enabled wireless device. Figure 6.14 shows the concrete architecture of the

applications. It is composed of four main subsystems:

1. An HTML subsystem that provides the functionality to access the application

through a traditional desktop browser. (BOOKMARK.HTML subsystem)

2. A WML2 subsystem that provides the functionality to access the application

2WML is the Wireless Markup Language



CHAPTER 6. CASE STUDIES 99

through a WAP devices such as a wireless phone equipped with a browser.

Because of the small screen size and the limited bandwidth of wireless devices,

the HTML subsystem cannot be used. (BOOKMARK.WML subsystem)

3. A library subsystem that encapsulates all the code shared between the WML

and the HTML subsystems. (BOOKMARK.LIB subsystem)

4. Finally, an authentication subsystem contains the logic needed to authenticate

the online user. Once authenticated, the user can access her/his bookmarks

and modify them. (AUTH subsystem)

The Bookmark HTML Subsystem

Figure 6.15 shows the Bookmark HTML subsystem. From the figure, we see

that a BOOKMARK.LOGON subsystem authenticates the user using the AUTH subsys-

tem. Once logged in, the user can add, delete; edit and create bookmarks. An

BOOKMARK.IMAGES subsystem stores all the shared images between the different

subsystems. We notice that the BOOKMARK.ADD and the BOOKMARK.DEL subsystems

do not have any arrows to other subsystems. This is attributed to the fact that

files in both subsystems generate links to files in other subsystems dynamically at

runtime.

The Bookmark LIB Subsystem

Figure 6.16 shows the bookmark library which contains only one file that provides

APIs to access the different data tables and stored procedures. Application pages



CHAPTER 6. CASE STUDIES 100

BOOKMARKS.NEWBOOKMARKS.ADD

BOOKMARKS.EDIT BOOKMARKS.IMAG...

BOOKMARKS.LOGONBOOKMARKS.DEL

BOOKMARKS.HTML

Figure 6.15: The Bookmark HTML Subsystem

have to include the bm service.asp file to gain access to different functions used

to access database tables.

The Bookmark AUTH Subsystem

Figure 6.17 shows the bookmark AUTH subsystem which is responsible for authen-

ticating users so they can access their accounts. Although the subsystem provides

an interface file (utility.inc), the file is not used. Instead, the authentication DLL

is accessed directly. This could be considered as a violation of the system’s design

and could be repaired. If the system is being migrated, the migration engineers do

not need to migrate the utility.inc as it is not used by other components.



CHAPTER 6. CASE STUDIES 101

BOOKMARKS .
BOOKMARKS.WML

BOOKMARKS .
BOOKMARKS.HTML

TWAP_SUBS_BOOKMARK_SEL_PKG.TWAP_SUBS_...TWAP_SUBS_HIST_URL_SEL_PKG.TWAP_SUBS_HI... TWAP_SUBS_BOOKMARK_CATG_SELPKG.TWAP_S...

bm_service.asp

BOOKMARKS.LIB

Figure 6.16: The Bookmark LIB Subsystem

6.4 Summary of Case Studies

Our architecture recovery process has been successful in recovering the architecture

of four web applications. Our developed extractors were able to gather facts about

the studied web applications. Furthermore, the PBS landscape viewer was used to

visualize the resulting diagrams.

The recovered architecture for some of the applications was shown to migration

engineers who commented that the produced diagrams are very useful in assisting

them in understanding the systems. Also, they explained that in many cases they

produced similar diagrams by manually examining the code of various components.



CHAPTER 6. CASE STUDIES 102

BOOKMARKS.LOGON .
bm_authenticate.asp

BOOKMARKS.WML .
bm_authenticate.asp

WAP_USER_AUTHENTICATOR.WAP_USER_AUTHENTICATOR

utility.inc

AUTH

Figure 6.17: The Bookmark AUTH Subsystem

To sum up, they considered the recovered architecture diagrams useful for their

work and they would have used the tool, if it had been available to them.

Web applications are developed using a variety of languages and technologies.

As researchers we have limited resources, so we choose to develop specialized ex-

tractors for commonly used languages such as VBScript and JavaScript. To study

components developed in other languages, we choose to analyze the binaries. This

is not the ideal solution, but we choose to extract as much information as possible

given the tools we have and constraints we face.

Nowadays, many large open source systems are available for software engineering

researchers to study. To our knowledge, no significant open source web applications



CHAPTER 6. CASE STUDIES 103

exist. The web applications used for our case studies are commercial and non-

commercial applications. The non-commercial applications are sample applications

provided by Microsoft to showcase the different Windows technologies available

to develop web applications. Fortunately, Sun Microsystems of Canada Inc. has

provided us with commercial web applications to evaluate our work.

Most of the effort required for the architecture recovery of web application

consisted of time spent on clustering the recovered components. For each web

applications, the full recovery process took from four to fourteen hours. We believe

that any developer with some knowledge of our tools should be able to recover the

architecture of their web applications in a reasonable amount of time. Undoubtedly,

we are more acquainted with our tools, yet developers working on the system will

have an easier time clustering the components as they are more knowledgable of

the studied system.



Chapter 7

Conclusions

This chapter summarizes the main ideas presented in this thesis. In addition, future

research directions in the architecture analysis and recovery of web applications are

addressed and explained.

7.1 Major Topics Addressed

Chapter 1 gives an overview of the history of the web from a document sharing

medium to a platform for the development of large scale distributed applications.

We explain the reluctance of web developers to follow software engineering practices,

as a result of the fast pace and the uncertainty surrounding the development of web

application. Web applications are the legacy application of the future. They are

critical to the success and future of their organization. Current development tools

for web applications are geared towards fast one time releases with no support

for multiple releases. The need for tools that aid web developers in maintaining

104



CHAPTER 7. CONCLUSIONS 105

and developing large scale web application is imperative. Our research goal is to

provide a tool that permits developers to visualize and analyze the architecture of

web applications.

Chapter 2 surveys traditional software engineering research on program un-

derstanding, software architecture, architecture views and reverse engineering. We

observe that much of the knowledge about a software system rests in the heads of its

developers. Software Architecture is used as means for explaining and documenting

the designs of large software systems. Because of the complexity of large software

system, the use of a single software architecture diagram is discouraged. Instead,

we use architecture views to simplify the complexity and improve the understand-

ing of large software architecture documents. Each view addresses a specific area

of concern in the design of the system. Unfortunately architecture diagrams are

rarely up to date. Reverse engineering semi-automated techniques are used to re-

cover the architecture of large system from the implementation and the developer’s

knowledge.

Chapter 3 explains the concepts introduced in Chapter 2 for web applications.

We provide a concise definition of a web application and a classification of the dif-

ferent types of web applications based on their data and control complexity. We

proceed to detail the different architecture views for web application (Logical, Pro-

cess, Physical, and Development views). As a result of the distributed nature of web

applications, we introduce a Security view to document the security mechanisms

employed in large web applications. We also analyze the different available frame-

works for developing web applications (such as Active Server Pages, Java Server



CHAPTER 7. CONCLUSIONS 106

Pages, and Cold Fusion). Then, we present a common object model that combines

all the common entities across the different frameworks.

Chapter 4 presents related research that attempts to apply traditional software

engineering principles and techniques to the development of web applications. The

web application domain is young compared to other development domain such as

distributed systems. Two areas of active research in the web domain are web

engineering and the specification of web applications. We present research in both

areas and contrast the presented work to our research in architecture recovery.

Chapter 5 discusses our architecture recovery process for web applications —

we present the different tools and techniques used to generate the architecture

diagrams. The architecture recovery process of traditional web applications is ex-

plained. We highlight the differences between understanding web applications and

traditional applications. We present our modifications to the extraction process.

We also explain the operations of the tools we developed to recover the architecture

of web applications.

Finally, Chapter 6 presents case studies to validate the effectiveness of our ex-

traction and visualization techniques. We demonstrate how to use the architecture

diagrams to gain a better understanding of large web applications for maintenance

and new development purposes. The architecture of multiple commercial and ex-

perimental web applications are used to validate our work.



CHAPTER 7. CONCLUSIONS 107

7.2 Major Thesis Contributions

Web Application developers face different challenges than traditional software de-

velopers. With a shorter release cycle, a “no-documentation” culture and high

employment attrition rates, web development companies face many challenges to

stay competitive in a highly volatile market. The need for tools to assist developers

of web application is clear and justifiable.

In this thesis, we have shown that current research in software reverse engineer-

ing can be adapted and modified painlessly to reverse engineer web applications.

We presented a taxonomy of web applications. We introduced the concept of a Se-

curity view for web applications and explained the different architecture views for

web applications. We derived a Domain Model for web applications. We developed

tools to recover the architecture of web applications based on our presented Domain

Model. Furthermore, we have shown how to visualize the recovered architecture

using simple box and arrow diagrams.

The recovered architecture is an essential tool to assist maintainers and devel-

opers of web applications in their work. The recovered architecture diagrams where

shown to developers working on web application. They acknowledged the usefulness

of the generated architecture diagrams. They commented that in many cases they

derived the same diagrams by inspecting the source code manually. They would

have used the tool, if it had been available.



CHAPTER 7. CONCLUSIONS 108

7.3 Future Research

The future of software development is tied very closely to the Web. Web appli-

cations are becoming more and more common nowadays. Software engineering

research must address the concerns of web developers. As a result of the nature

of web development projects, many of the well-studied principles in software engi-

neering are not applicable. Our research has shown that simple modification are

needed to adapt many of the tools and techniques developed to study web applica-

tion. This research is the first step in an emerging research field that addresses the

needs of web application software developers. In the following sections, we point

out some areas for future research that could extend the work presented in this

thesis.

7.3.1 Dynamic Model for Web Applications

In our architecture recovery process, all the visualized information is based on

static analysis of all code files for the web application. We do not attempt to

profile the application to discover information that are only available at run-time.

For example, Figure 7.1 shows the architecture of a bug tracking web application.

We notice that the LOGIN subsystem does not have any links with the rest of the

subsystems in the application. A closer look at the source code and manually

tracing through it, we observe that many application pages in the LOGIN subsystem

generate links to pages in other subsystems based on the associated privileges with

the logged-in user. For example, if the user has administrator privileges, a link to

the ADMIN subsystem would be generated at run-time. Such links are only available



CHAPTER 7. CONCLUSIONS 109

HELP

logout.asp

LIBSASPOBJECTS

DB_TABLES

ADMIN

LOGIN

SAVE

BROWSE EDIT

default.asp

WEBSITE

Figure 7.1: PBS Architecture View of a Bug Tracking Web Application

at run-time.

Many techniques are available to automate the recovery of these dynamic rela-

tions, examining the source code should be the last resort, for example:

1. The log file of the running web server and the application server hosting the

web application can be examined and the run-time relations can be retrieved.

2. A network crawler could exhaustively examine all possible paths in the web

applications. The crawler would start at a web page then visit all the other

pages it links to, then does the same for the newly visited pages. Such

technique would retrieve the largest amount of dynamic information, as the



CHAPTER 7. CONCLUSIONS 110

crawler would parse the final output of the execution of the application pages

on the server. Such crawler must contain a large amount of application spe-

cific logic to be able to navigate through the different application pages and

fill in all the needed fields in each page to advance through the application

pages. Although this technique provides the largest amount of dynamic infor-

mation, overheads for specializing the crawler might be too high. A scripting

language may be used to enable the reuse of the crawler logic for as many

web applications as possible.

7.3.2 Better Fact Extractors and Architecture Repair

Currently, our extractors analyze the binaries and code files for all components of

the web application and emit facts that are later used to generate the architecture

diagrams. Unfortunately, we do not store any information in the generated facts to

be able to go backwards. (i.e. we do not have enough information in the extracted

facts to be able to determine given a fact which specific line in a specific file caused

the fact to exist)

The fact extractors need to emit a full model of the source code. The full model

of the source code will enable architects to perform architecture repair operation

at the architecture level with tool support. Architects can simply remove an edge

in thel recovered architecture. Then, the tools given the line number information

can propagate the changes all the way down to the source code [Tra99].



CHAPTER 7. CONCLUSIONS 111

7.3.3 More Experimentation

We have examined and recovered the architecture of multiple large commercial

and experimental web applications. We concentrated on the extraction of web

applications developed on the Microsoft Windows platform. Nevertheless, other

web applications must be analyzed to gain better insight and validate our results.

Furthermore, detailed empirical studies are needed to verify the benefits of our tools

for web developers.

7.4 Commercialization

Using the PBS framework developers can recover the architecture of large tradi-

tional or web application, with a reasonable time commitment. The benefits of using

these generated diagrams are tremendous, ranging from simple re-documentation to

impact analysis tasks for future development. Researchers such as [Tra99, Bow99,

HH00] have shown many uses of these recovered diagrams. They are mostly used

for long term planning. The benefits of such planning are usually unknown in the

rapid and volatile software development market.

Companies are reluctant to implement procedure and purchase products that

will assist their development teams in the future. They are more concerned with

the short run impact on their development cycle. Such mentality explains the quick

adoption of RAD (Rapid Application Development) tools and hinders the adoption

of architecture analysis tools similar to ours. Until companies begin planning be-

yond the next release and adopt more mature development cycles which need better



CHAPTER 7. CONCLUSIONS 112

planning and forecasting tools, the adoption of our tools in a commercial setting

will be minimal. Although it is not clear when our tools will be fully adopted in a

commercial setting, we believe that as the complexity of software systems increases,

the need for our tools will become eminent. Researchers need to investigate the

integration of our recovery tools into traditional application development tools.



Bibliography

[ACCL00] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Web Site

Reenginnering using RMM. In Proceedings of euroREF: 7th Reengi-

neering Forum, Zurich, Switzerland, March 2000.

[ACD95] A.E.Hatzimanikatis, C.T.Tsalidis, and D.Christodoulakis. Measur-

ing the readability and maintainability of Hyperdocuments. Software

Maintenance: Research and Practice, 7, 1995.

[BBH98] Pearl Brereton, David Budgen, and Geoff Hamilton. Hypertext: The

Next Maintenance Mountain. Computer, 31(12), December 1998.

[BHB99] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as

a Case Study: Its Extracted Software Architecture. In IEEE 21st

International Conference on Software Engineering, Los Angeles, USA,

May 1999.

[Bol00] Cornelia Boldyreff. Web Evolution: The-

ory and Practice, 2000. Available online at

<http://www.dur.ac.uk/cornelia.boldyreff/lect-1.ppt>

113



BIBLIOGRAPHY 114

[Boo00] Grady Booch. The architecture of Web

Applications, 2000. Available online at

<http://www.developer.ibm.com/library/articles/ booch_web.html>

[Bow99] Ivan T. Bowman. Architecture Recovery for Object Oriented Systems.

Master’s thesis, University of Waterloo, 1999.

[CC90] E. J. Chikofsky and J. H. II. Cross. Reverse engineering and design

recovery: A taxonomy. IEEE Software, 7, 1990.

[CD97] Surajit Chaudhuri and Umesh Dayal. An Overview of Data Ware-

housing and OLAP Technology. ACM SIGMOD Record, 26(1), March

1997.

[CFB00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Model-

ing Language (WebML): a modeling language for designing Web

sites . In The Ninth International World Wide Web Conference

(WWW9), Amsterdam, Netherlands, May 2000. Available online at

<http://www9.org/w9cdrom/177/177.html>

[COM] The Component Object Model. Available online at

<http://www.microsoft.com/com/tech/com.asp>

[Con99] Jim Conallen. Building Web Applications with UML. object tech-

nology. Addison-Wesley Longman, Reading, Massachusetts, USA, first

edition, December 1999.



BIBLIOGRAPHY 115

[Cor97] Microsoft Corporation. Microsoft Portable Executable and Common

Object File Format Specification. Microsoft Press, Seattle, USA, fifth

edition, October 1997.

[Cor98] Microsoft Corporation. Microsoft Visual Basic 6.0 Reference Library.

Microsoft Press, Seattle, USA, first edition, August 1998.

[ECMa] ECMA - Standardizing Information and Communication Systems.

Available online at <http://www.ecma.ch>

[ECMb] Standard ECMA-262: ECMAScript Language Specification . Available

online at <ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf>

[Eco99] Computer Economics. e-business implementa-

tion by industy sector, 1999. Available online at

<http://ebusiness.mit.edu/cgi-bin/stats/catagorybrowser.cgi>

[FHK+97] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kon-

togiannis, H. A. Müller, J. Mylopoulos, S. G. Perelgut,

M. Stanley, and K. Wong. The software bookshelf.

IBM Systems Journal, 36(4), 1997. Available online at

<http://www.almaden.ibm.com/journal/sj/364/finnigan.html>

[GG99] Hans-W. Gellersen and Martin Gaedke. Object-Oriented Web Appli-

cation Development. IEEE Internet Computing, January 1999.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.

Sun Microsystems, 1996.



BIBLIOGRAPHY 116

[GL00] Michael W. Godfrey and Eric H. S. Lee. Secrets from the Monster:

Extracting Mozilla’s Software Architecture. In Proceedings of the Sec-

ond International Symposium on Constructing Software Engineering

Tools, Limerick, Ireland, June 2000.

[Gla92] R. L. Glass. We have lost our way. Systems and Software, 18(3), March

1992.

[Gro99] The Object Management Group. Unified Modeling Language Specifi-

cation. The Object Management Group, June 1999. Available online

at <http://www.rational.com/media/uml/post.pdf>

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architec-

ture. In V. Ambriola and G. Tortora, editors, Advances in Software

Engineering and Knowledge Engineering, Singapore, 1993. World Sci-

entific Publishing Company.

[Hau00] Hausi A. Müller and Jen H. Jahnke, Dennis B. Smith and Margaret-

Ann Storey and Scott R. Tilley and Kenny Wong. Reverse Engineer-

ing: A Roadmap. In Proceedings of Future of Software Engineering,

Limerick, Ireland, June 2000.

[HH00] Ahmed E. Hassan and Richard C. Holt. A Reference Architecture

for Web Servers. In 7th Working Conference on Reverse Engineering,

Brisbane, Queensland, Australia, November 2000.



BIBLIOGRAPHY 117

[Hil96] Scot Hillier. Inside Microsoft Visual Basic Scripting Edition. Microsoft

Press, Seattle, USA, October 1996.

[Hol96] Richard C. Holt. Binary Relational Algebra Applied to Software Ar-

chitecture. CSRI Tech Report 345, University of Toronto, March 1996.

[Hol97] Richard C. Holt. An Introduction to TA: the Tuple-

Attribute Language, March 1997. Available online at

<http://plg.uwaterloo.ca/~holt/papers/ta.html>

[Hol98] Richard C. Holt. Structural manipulations of software architecture

using Tarski relational algebra. In Proceedings of WCRE’98, October

1998.

[ITBH99] Michael W. Godfrey Ivan T. Bowman and Richard C.

Holt. Extracting Source Models from Java Programs:

Parse, Disassemble, or Profile?, 1999. Available online at

<http://plg.uwaterloo.ca/~itbowman/papers/javasrcmodel.html>

[KLDM98] Gregory Knapen, Bruno Laguë, Michel Dagenais, and Ettore Merlo.

Parsing C++ Despite Missing Declarations. In Proceedings of the Sev-

enth International Workshop on Program Comprehension. IEEE, Oc-

tober 1998.

[KM98] Peter Kent and Kent Multer. Official Netscape Javascript 1.2 Pro-

grammer’s Reference : Windows, MacIntosh and Unix. Ventana, first

edition, January 1998.



BIBLIOGRAPHY 118

[Kon00] Rachel Konrad. Tech employees jump-

ing jobs faster, 2000. Available online at

<http://news.cnet.com/news/0-1007-202-2077961.html>

[KR98] Brian W. Kernighan and Dennis M. Ritchie. The C Programming

Language. Prentice-Hall, Inc., Englewood Cliffs, NJ., USA, second

edition, June 1998.

[Kru95] Philippe B. Kruchten. The 4+1 View Model of Architecture. IEEE

Software, 12(6), November 1995.

[LA97] Timothy C. Lethbridge and Nicolas Anquetil. Architecture of a Source

Code Exploration Tool: A Software Engineering Case Study. Tr-97-

07, School of Information Technology and Engineering, University of

Ottawa, 1997.

[Lee00a] Eric H. S. Lee. Analyzing Mozilla, 2000. Available online at

<http://plg.uwaterloo.ca/~ehslee/pub/mozilla.ppt>

[Lee00b] Eric H. S. Lee. Software Comprehension Across Levels of Abstraction.

Master’s thesis, University of Waterloo, 2000.

[LHGF98] L. D. Landis, P. M. Hyland, A. L. Gilbert, and A. J. Fine. Documen-

tation in a software maintenance environment. In Proceedings of the

Conference on Software Maintenance, October 1998.

[MMAC99] G. Mecca, P. Merialdo, P. Atzeni, and V. Crescenzi. The Araneus

Guide to Web-Site Development - Araneus Project Working Report.



BIBLIOGRAPHY 119

AWR-1-99, University of Roma Tre, March 1999. Available online at

<http://www.dia.uniroma3.it/Araneus/publications/ AWR-1-99.ps>

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software Reflexion

Models: Bridging the Gap Between Source and High-Level Models. In

Proceedings of the Third ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering, New York, NY, October 1995. ACM.

[MS] Microsoft Corporation. Available online at

<http://www.microsoft.com>

[NS] Netscape Corporation. Available online at

<http://www.netscape.com>

[PBS] The Portable Bookshelf (PBS). Available online at

<http://www.turing.toronto.edu/pbs>

[Pen92] David A. Penny. The Software Landscape: A Visual Formalism for

Programming-in-the-Large. PhD thesis, University of Toronto, 1992.

[Pre00] Roger S. Pressman. What a Tangled Web We Weave. IEEE Software,

17(1), January 2000.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study

of Software Architecture. ACM SIGSOFT Software Engineering Notes,

17(4), October 1992.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick



BIBLIOGRAPHY 120

Eddy, and William Lorensen. Object-Oriented Modeling and Design.

Prentice-Hall, Inc., Englewood Cliffs, NJ., USA, 1991.

[RT00] Filippo Ricca and Paolo Tonella. Visualization of Web Site History.

In Proceedings of euroREF: 7th Reengineering Forum, Zurich, Switzer-

land, March 2000.

[SCH98] Susan E. Sim, Charles L. A. Clarke, and Richard C. Holt. Archetypal

Source Code Searching: A Survey of Software Developers and Main-

tainers. In Proceedings of International Workshop on Program Com-

prehension, Ischia, Italy, June 1998.

[SCHC99] Susan E. Sim, Charles L. A. Clarke, Richard C. Holt, and Anthony M.

Cox. Browsing and Searching Software Architectures. In Proceedings of

International Conference on Software Maintenance, Oxford, England,

1999.

[Sim98] Susan E. Sim. Supporting Multiple Program Comprehen-

sion Strategies During Software Maintenance. Master’s

thesis, University of Toronto, 1998. Available online at

<http://www.cs.utoronto.ca/~simsuz/msc.html>

[SNH95] Dilip Soni, Robert L. Nord, and Christine Hofmeister. Software Archi-

tecture in Industrial Applications. In IEEE 17th International Con-

ference on Software Engineering, 1995.



BIBLIOGRAPHY 121

[Sta84] Thomas A. Standish. An essay on Software Reuse. IEEE Transactions

on Software Engeineering, 10(5), 1984.

[Str97] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley

Longman, Reading, Massachusetts, USA, third edition, July 1997.

[TGLH00] John B. Tran, Michael W. Godfrey, Eric H. S. Lee, and Richard C.

Holt. Architectural Repair of Open Source Software. In Proceedings

of International Workshop on Program Comprehension, Limerick, Ire-

land, June 2000.

[TH96] Vassilios Tzerpos and Richard C. Holt. A Hybrid Process for Recov-

ering Software Architecture. In Proceedings of CASCON ’96, Toronto,

Canada, November 1996.

[TH98] Vassilios Tzerpos and Richard C. Holt. Software botryology: Auto-

matic clustering of software systems. In Proceedings of the Interna-

tional Workshop on Large-Scale Software Composition, 1998.

[Til] Scott R. Tilley. Web Site Evolution. Available online at

<http://mulford.cs.ucr.edu/stilley/research/wse/index.htm>

[tPOSIP93] Information technology Portable Operating System Interface (POSIX).

Portable Operating System Interface (POSIX) Part 2: Shell and Util-

ities (Volume 1). IEEE Computer Society, 345 E. 47th St, New York,

NY 10017, USA, 1993.



BIBLIOGRAPHY 122

[Tra99] John B. Tran. Software Architecture Repair as a

Form of Preventive Maintenance. Master’s thesis,

University of Waterloo, 1999. Available online at

<http://plg.uwaterloo.ca/~j3tran/papers/thesis.html>

[WCO00] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl.

O’Reilly and Associates, Inc., third edition, July 2000.

[Web99a] International Workshop for Web Engineering - The Eighth Inter-

national World Wide Web Conference, 1999. Available online at

<http://budhi.uow.edu.au/web-engineering99/web_engineering.html>

[Web99b] 1st International Workshop on Web Site Evolution, 1999. Available

online at <http://www.cs.ucr.edu/~stilley/wse99>

[Web00] 2nd International Workshop on Web Site Evolution, 2000. Available

online at <http://www.cs.ucr.edu/~stilley/wse2000>

[Zve83] Nicholas Zvegintzov. Nanotrends. Datamation, August 1983.


	Introduction
	Overview of Thesis
	Thesis Organization
	Major Thesis Contributions

	Background
	Program Understanding
	Software Architecture
	Architecture Views
	Reverse Engineering
	Summary of Background

	Web Applications
	Definition of a Web Application
	Taxonomy of Web Applications
	Web Application Architecture Views
	Physical View
	Development View
	Process View
	Logical View
	Security View

	Summary of Web Application

	Related Research
	Web Engineering
	Modeling of Web Applications
	Summary of Related Research

	Architecture Recovery for Web Applications
	Recovery Process Overview
	Visualization Needs for Web Applications
	Domain Model
	Overview of the Schema Layers

	ELS: Entity Level Schema
	An ELS for VBScript
	An ELS for JavaScript
	A Common ELS for Object Based Languages

	CLS: Component Level Schema
	ALS: Architecture Level Schema
	Fact Extraction
	Overview of the Extractors
	HTML Extractor
	Server Script Extractor
	Database Access Extractor
	Language Extractor
	Binary Extractor

	Summary of Architecture Recovery

	Case Studies
	Studied Web Applications
	Case Study: Hopper News
	Conceptual Architecture for Hopper News
	Concrete Architecture for Hopper News
	Comparing the Conceptual and Concrete Architectures
	Verifying the Tiered Architecture
	Impact Analysis
	Migration Cost Estimations

	Case Study: Wireless
	Bookmarks Sub-Applications

	Summary of Case Studies

	Conclusions
	Major Topics Addressed
	Major Thesis Contributions
	Future Research
	Dynamic Model for Web Applications
	Better Fact Extractors and Architecture Repair
	More Experimentation

	Commercialization

	Bibliography

