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ABSTRACT
In this paper we present a new perspective on the problem of
complexity in software, using sound mathematical concepts
from information theory such as Shannon’s Entropy [31].
We study the complexity of the development process by ex-
amining the logs of the source control repository for large
software projects. We hypothesize that the process of de-
veloping code is a good indicator of the current and future
problems in the code and the project. A complex process
will have negative affects on its outcome, such as producing
a complex system or delaying releases. We validate our work
by studying the evolution of six large open source projects
(three operating systems, a window manager, an office pro-
ductivity suite, and a database).

1 INTRODUCTION

“Complexity is the business we are in and com-
plexity is what limits us.”. Fred Brooks, The Myth-
ical Man-Month, p226 [25].

Large software systems are critical assets which provide
a competitive advantage to their owners. Software sys-
tems need to evolve gracefully to fulfill customers’ changing
needs and requirements, otherwise they will fail [22]. To en-
sure such graceful evolution of software systems, developers
need to reduce and control the complexity associated with
software systems.
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Figure 1: View of Complexity Flow in a Project

Complexity appears in many aspects pertaining to a software
project such as the current code base and its design, the cus-
tomer’s requirements, the team structure and size, the de-

velopment process, market pressure, and problem domain.
Figure 1 shows a simplistic view of how complexity in one
aspect of the project flows from one part to the next. For
example a complex set of requirements, a very large soft-
ware team or a large set of requirements will increase the
complexity and chaos in the development process. This will
eventually have effects on the source code of the project.
Also the code and the design of the project can as well af-
fect the development process, for example a complex design
or spaghetti code will complicate the development process.

Controlling the complexity of a project is a concern of
project managers as they strive to deliver future releases on
time and under budget. Researchers have proposed many
metrics to measure the complexity of a software system and
assist in reducing it. Though there are dozens of complex-
ity metrics [33], they do not provide reliable indicators of
the state of chaos in a project and are often costly to calcu-
late [29, 13].

Previous work has focused on the development of complex-
ity metrics mostly based on the source code of the software
system and the interaction between its various components.
While this approach is promising, we believe it has limita-
tions. It focuses on the source code, which is the final output
of the process.

Ideally we would like to monitor and control complexity as
early as possible instead of detecting it in the code after it
occurred. For example, it would be more beneficial to deter-
mine that the customer’s requirements are excessively com-
plex or that the development process is excessively complex,
as early detection will help in better planning and prepara-
tion.

Code based measures do not quantify the complexity faced
by developers adding features to the code and project man-
agers monitoring the progress of the project. For example an
operating system may have a very complex memory manager
yet the memory manager may be so versatile and bug free
that it requires no changes. Metrics based on source code
analysis would indicate a high complexity. These would sug-
gest that the code is too hard to maintain and evolve, yet in
reality the code may be able to support well the current and
future needs of its users as indicated by its succinct and bug



free evolution. Other metrics based on bug counts in the sys-
tem have been proposed to measure the complexity of the
system, unfortunately they do not indicate if the the bugs are
due to the complexity of the project’s source code, its archi-
tecture, or its requirements.

In this paper, we propose a metric to measure the complexity
of the development process. This approach promises to ad-
dress the concerns we highlighted. By monitoring the com-
plexity of the development process, we provide early warn-
ings about potential difficulties that will eventually cause an
increase in the complexity of the code. We hypothesize that
the complexity of the development process is a good indica-
tor of the overall complexity of the project. A complex de-
velopment process will produce code that is hard to control
for timely and bug free releases.

We study the source code change history to predict patterns
of change, and trends in the development process. These
trends are good indicators of the complexity of the software
system. We produce graphs that show micro and macro evo-
lution trends of the software system, software developers
case use these graphs to monitor the progress of their project
and control its complexity. If the complexity of the soft-
ware is above specific thresholds they need to react to them
to prevent a downward spiral of the software system’s ease
of change and maintainability.

Organization of Paper
The paper is organized as follows. Section 2 discusses soft-
ware change. We present source control repositories and
give an overview of the type of information stored in them.
We survey previous research use of such stored information.
Section 3 gives an introduction to information theory and
the mathematical concepts we use to model the development
process’ complexity and its evolution. Once we have the
concepts from information theory presented, we are ready
to explain our model in section 4. We start with a simple
model, then we expand it into a more detailed and complete
model in section 5. Section 6 shows the architecture of our
software analysis framework. Section 7 provides some re-
sults from our study of the change history for six large open
source system. Section 8 lists related work in the field of
software evolution, entropy, and open source systems. Sec-
tion 9 summarizes our results and presents plans for future
work.

2 SOFTWARE CHANGE
Over time software systems undergo many modifications to
implement the various functionality required to fulfill cus-
tomers requirements and stay competitive in the market.
As a software system ages, its complexity and size grow
with many developers working simultaneously on the code
base. Source control systems such as CVS [7, 14] or Per-
force [26] help coordinate team development for large com-
plex projects. They permit developers to work simulta-
neously on the same software system while ensuring that

their modifications do not interfere with work done by other
team members. Source control systems provide a history of
changes to the code of the software system.

The source code of the system is stored in a source repository
– for each file in the software, the source repository records
details such as the creation date of the file, modifications to
the file over time along with the size and a description of the
lines affected by the modification. Furthermore, the repos-
itory associates for each modification the exact date of its
occurrence, a comment typed by the developer to indicate
the reason for the change, and in some cases a list of other
files that were part of the change described by the developer’s
comment. Such detailed records permit the roll back of the
code to any point in time to either retrieve an old version of
the code or to abandon new changes that were found to be
irrelevant or buggy.

This detailed description of the history of code development
provides a rich opportunity to perform empirical studies on
the evolution of source code. The level of the detail in the
repository and the consistent use of the source control system
throughout the life of a project provide a detailed data source
for several types of analysis. In addition, this data collection
process is unintrusive and companies do not incur any extra
costs as the source control system is already used as part of
the development process of large software systems.

Researchers have described the many benefits of using the
development history to gain a better understanding of bugs
in source code, to locate hidden dependencies, or to assist
in searching and browsing source code. Eicket al. used this
information to study bugs and decay in a large telephony sys-
tem [11, 12]. Graveset al. showed that the number of mod-
ifications to a file is a good predictor to the fault potential
of the file [17]. Gallet al. examined the source repository
of another telephony system to detect logical coupling be-
tween the different components of the software system [15].
Michail et al. have shown that comments associated with
each change provide a rich and accurate indexing for source
code when developers need to locate source code lines asso-
ciated with a specific feature [6].

In this paper, we hypothesize that a software system becomes
complex to manage and maintain when its change history be-
comes too complex to comprehend. As the ability of team
members to understand the changes to the system deterio-
rates, so does their knowledge of the system. New develop-
ment performed by them will be negatively affected. We de-
velop a model to measure the complexity of the information
contained in the source code change history. If the change
history is too complex, then we expect that software devel-
opers and managers will face difficulties in understanding it,
this will lead to complex code. The complex code will then
degrade the development process. Eventually the software
will become buggier and unmaintainable; and the process
will become too complex. The software must be re-written



or re-engineered. In many respects, our hypothesis reflects
Brooks’ remarks on software development [25]. In particu-
lar, Brooks warned of the decay of grasp for what is going in
a complex system. If the development team is no longer in
touch with the code and the changes to the code, their knowl-
edge of the system over time will deteriorate and the quality
of the system will worsen. He also cautioned the effects of
the team size and requirements on the success of a project.

3 INFORMATION THEORY
In 1948, Shannon laid down the basis ofInformation The-
ory in his seminal paper -A mathematical theory of commu-
nication [31]. Information theory deals with assessing and
defining the amount of information in a message. The theory
focuses on measuring uncertainty which is related to infor-
mation. For example, suppose we monitored the output of a
device which emits 4 symbols, A, B, C, or D. As we wait for
the next symbol, we are uncertain as to which symbol it will
produce (ie. we are uncertain about the distribution of the
output). Once we see a symbol outputted, our uncertainty
decreases. We now have a better idea about the distribution
of the output; this reduction of uncertainty has given us in-
formation.

Shannon proposed to measure the amount of uncertainty/en-
tropy in a distribution. TheShannon Entropy, Hn is defined
as:

Hn(P ) = −
n∑

k=1

(
pk ∗ log2 pk

)
,

wherepk ≥ 0,∀k ∈ {1, 2, ...., n} and
n∑

k=1

pk = 1.

For a distributionP where all elements have the same prob-
ability of occurrence (pk = 1

n ,∀k ∈ {1, 2, ...., n}) , we
achieve maximum entropy. On the other hand for a distri-
butionP where one of the elementsi has probability of oc-
currencepi = 1 and all other elements have probability of
occurrence equal to zero (ie. pk = 0,∀k 6= i), we achieve
minimal entropy.

By defining the amount of uncertainty in a distribution,Hn

describes the minimum number of bits required to uniquely
distinguish the distribution. In other words, it defines the
best possible compression for the distribution (ie. the output
of the system). This fact has been used to measure the quality
of compression techniques against the theoretically possible
minimum compressed size.

4 BASIC MODEL FOR THE EVOLUTION OF EN-
TROPY

If we view the development process of a software system
as a system which emits data, and we define the data as the
modifications to the source files, we can apply the ideas of
information theory and entropy to measure the amount of
uncertainty/chaos/randomness in the development process.
This section presents a basic model for the entropy of soft-
ware development and its evolution. The following section

extends the model to be more elaborate and complete.

Basic Model
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Figure 2: The Entropy of a Period of Development

Suppose we have a software system which consists of 4 files.
If we were to examine the development history of this sys-
tem that is stored in a source repository, we will find for each
file the dates for each modification to the file and the reason
for modifying the file. We only concentrate on modifications
that are not bug fixes, for now. Thus, we first filter out all
modifications that are bug fixes. We perform our filtering
based on the text description associated with the modifica-
tion.

Once these modifications are filtered out, we can plot over
time for each file the moments the file was modified. As we
can see in Figure 2, we put stars to indicate that for a spe-
cific file, it was modified on a particular moment in time. We
repeat this process for each file in the system. We now de-
fine a period of time, for example a week, or a month. For
that period of timej, we can define a file modification prob-
ability distributionPj . Pj shows the probability thatfilei is
modified in periodj. For each file in the system, we count
how many times it was modified during the period and divide
by the total number of modifications in that period for all
files. For example, in Figure 2, in the grey shaded period we
have 10 modifications for all the files in the system.fileA

was modified once so we have ap(fileA) = 1
10 = 0.1.

For fileB we getp(fileB) = 1
10 = 0.1, for fileC we get

p(fileC) = 3
10 = 0.3, and so on. On the right side of Fig-

ure 2, we can see a graph of the file modification probability
distributionP for the shaded period.

If we monitor the modifications to the files of a software sys-
tem and find that the probability of modifyingfileA is 1
and all other files is zero, then we have minimal entropy.
On the other hand, if the probability of modifying any file is
equal (ie. filek = 1

n ,∀k ∈ {1, 2, ...., n}) then the amount of
entropy/chaos in the system is at its maximum. Intuitively,
if we have a software system that is being modified across
all of its files, the developers and the managers will have a
hard time keeping track of all the modifications. The number
of bits needed to remember all these modifications in their
heads will be much larger than the bits needed when a lim-



ited number of file have been modified. The development
team grasp of what is going on in the software system will
decay.

Evolution of Entropy
We can view the file modification probability distributionPj

for a periodj, as a vector which characterizes the system
and uniquely identifies its state. We can divide the lifetime
of a software system into many successive periods in time,
and view the evolution of a software system as the repeated
transformation of the development process from one state to
the next. Looking at Figure 3, we see thePj ’s calculated
for 4 consecutive periods with their respective entropy. Now
we are able of monitoring the evolution of chaos/entropy in
the development process. If the project and the development
process are not under control nor managed well, then the
state of the system will head towards maximum entropy and
chaos.
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Figure 3: The Evolution of the Entropy of Development

The manager of a large software project should aim to con-
trol and manage the entropy. A graph like the one shown in
Figure 3 would provide an accurate and up-to-date view on
the status and evolution of entropy in the system. Search-
ing for unexpected spikes in entropy and investigating the
reasons behind them would let managers plan ahead and be
ready. For example, a spike in entropy may be due to an
influx of developers working on too many aspects of the sys-
tem concurrently, or to the complexity of the source code or
to a refactoring or redesign of many parts of the system. In
the refactoring case, the manager would expect the entropy
to remain high for a limited time then drop as the refactor-
ing leads to easier future modifications to the source code.
On the other hand, a complex source code would cause a
consistent rise in entropy over an extended period of time,
till problems causing the rise in entropy/complexity are ad-

dressed and resolved.

Files As a Unit Of Measurement
In our model we use the file as our unit of code to build the
modification probability distributionP for each period. Our
choice of files was based on the belief that a file is a con-
ceptual unit of development where developers tend to group
related entities such as functions, data types,etc. Based on
our experience in studying large software system we found
this to be the norm except in some notable situations. For
example in the VIM text editor [30], we found two files
misc1.c andmisc2.c which comprise a substantial amount
of the source code. In that case using a file as a unit for
buildingP would produce a low misleading entropy as most
modifications may be associated with these files. That said
the evolution of entropy graph will still indicate any varia-
tion in entropy in the system over its lifetime. Furthermore,
a random break down of large files in the system to smaller
files and associating modifications to the appropriate smaller
files to buildP may overcome this problem.

It is interesting to note that the notion of entropy can be used
to locate such offending large files which violate traditional
encapsulation principles. We are currently still investigating
this hypothesis. Ignoring the rest of the software system, If
we were to choose a single large file, break it into smaller
chunks, and use these smaller chunks as our unit of entropy
measurement, we would expect:

• If the large file is a coherent conceptual unit then
changes would occur uniformly across the smaller
chunks of the large file. This would produce a high in-
ternal entropy over time.

• But if the content of the large file are not conceptually
related well, then we would see a concentration of mod-
ifications to specific chunks over others. This would
produce a low internal entropy over time.

5 EXTENDED MODEL FOR THE EVOLUTION OF
ENTROPY

In this section, we refine our basic model to address some of
the characteristics and challenges associated with the evolu-
tion of large software systems. In the basic model we used
a fixed period size to measure the evolution of entropy. Also
we assumed that the size of the software system remains
fixed over time. In the following sections we extend our
model to deal with these two limitations.

Evolution Periods
In our basic model, we presented the idea of using the file
modification probability distribution as a vector to character-
ize each period in the evolution of a software system. We
used a month, or a year as the length of the period. We now
present a more general technique for breaking up the evolu-
tion of a software projects into periods:

Time based periods: This is the simplest model and it is



the one presented in the basic model. The history of de-
velopment is broken into equal length periods based on
calendar time from the start of the project. For example,
we break it on a monthly or bi-monthly basis. A project
which has been around for one year, would have 12 or
6 periods respectively. We choose in our experiments a
3 month period.

Modification limit based periods: The history of develop-
ment is broken into periods based on the number of
modifications to files as recorded in the source con-
trol repository. For example, we can use a modification
limit of 500 or 1000 modifications. A project which
has 4000 modifications would have 8 or 4 periods re-
spectively. To prevent the case of breaking an active
development week into two different periods, we attach
all modifications that occurred a week after the end of
a previous period to the previous period. To prevent
a period from spanning a long time when little devel-
opment may have occurred, we impose a limit of 3
months on a period even if the modification limit was
not reached. We choose in our experiments a 600 mod-
ifications limit.

Moving Window Period Sampling
To improve the continuity of our sampling to graph the evo-
lution of a large project, we employ a moving window tech-
nique for our period creation. For example, using a time
based period sizing of 3 months, we would break a project
that is one year old into 4 periods. The first period would
start at month 1 and go to month 3, the second period would
go from month 3 till month 6, and so on. When we use a
moving window for our periods, we start with a first period
that has modification data from months 1,2,3. Then the sec-
ond period would have data from months 2,3,4. The third
period would have data from months 3,4,5. This overlap of
period data permits the generated data to be smoother and
accurate as it is more continuous. Instead of a discrete break-
down that just takes 4 snapshots in a year, we take 12 snap-
shots. We use a similar moving window technique for the
modification limit based period sizing, namely, we have a
window of 600 modifications and we move it 300 modifica-
tions for each period in our experiments.

Adaptive System Sizing
As a software system evolves, the number of files in it
changes; increasing as new files are added or split, and de-
creasing as files are removed. We need to adjust our entropy
calculations to deal with the varying size of a software sys-
tem.

To compare the entropy between the various periods in the
life of the software system, we defineH, Standardized

Shannon Entropyas:

H(P ) =
1

Max Entropy for Distribution
∗Hn(P )

=
1

log2 n
∗Hn(P )

= − 1
log2 n

∗
n∑

i=1

(
pk ∗ log2 pk

)
,

wherepk ≥ 0,∀k ∈ {1, 2, ...., n} and
n∑

k=1

pk = 1. The

standardized entropyH normalizes Shannon’s entropyHn,
0 ≤ H ≤ 1. We now can compare the entropy of distri-
butions of different size, such is the case when we examine
the various periods of a software system as files are added
or removed. It is interesting to note that using standardized
Shannon entropyH we can now compare the entropy be-
tween different software projects, thus we can compare the
evolution of two operating systems side by side or even an
operating system and a window manager.

The Standardized Shannon Entropy,H, is dependent on the
number of files in the software system, as it depends onn.
Unfortunately, for many software system there exist files that
are rarely modified, for example, platform and utility files.
To prevent these files from reducing the standardized entropy
measure, we defined a working set standardized entropyH ′.
In H ′ instead of dividing by the actual current number of files
in the software system, we divide by the number of recently
modified files. We define the set of recently modified files
using 2 different criteria:

Using Time: The set of recently modified files is all the
modified files in the precedingx months, including the
current month. In our experiments we used 6 months.

Using Previous Periods:The set of recently modified files
is all modified files in the precedingx periods including
the current period. We don’t show results from using
this model in this paper but in our experiments we used
6 periods in the past to build the working set of files.

As we have 2 different techniques to create a period,
then we have 2 different results based on the use of a
time based or a modification limit period creation mod-
els.

An adaptive sizing entropyH ′ usually produces a higher en-
tropy than a traditional standardized entropyH, as for most
software systems there exists a large number of files that are
rarely modified and would not exist in the recently modified
set. Thus the entropy would be dividing by a much smaller
number. In some rare cases, where the software system has
undergone a lot of changes/refactoring it may happen that the
size of the working set is larger that the actual number of the
files that currently exist in the software system, as many files



may have been removed recently as part of a cleanup. In that
rare case, an adaptive sizing entropyH ′ will be larger than a
traditional standardized entropyH.

6 ANALYSIS FRAMEWORK
Figure 4 shows the pipeline architecture of our entropy evo-
lution and analysis framework. It is broken into 3 main
phases:

Source
Control

Repository
Extractor History

Repository
Entropy

Calculator
Gaussian

Filter

Entropy
Evolution

Graph

Extraction VisualizationAnalysis

Figure 4: System Architecture

Extraction Phase: First we extract the details needed for
our analysis from the source control repository. The
extracted data is much smaller than the whole repos-
itory which contains the text of each source file over
time. For example, the source code repository may be
stored in multiple files and contain details such as the
specific lines involved in each change and the content
of these lines. All these details are not needed for our
analysis, they are removed to reduce the size of ourHis-
tory Repositoryand speed up our analysis. Using this
extraction method we are able to develop extractors for
other source control repositories easily and use them in
our analysis framework. We currently support the CVS
source control system but other extractors can be easily
developed. We chose to develop the CVS extractor first,
as all the open source systems we studied used the CVS
system to manage their source code repositories.

Analysis: This phase analyzes the content of our extracted
History Repository. First, we define the periods in the
project’s lifetime (using either a time or a modification
limit based periods). Then we calculate the modifica-
tion probability distribution for each period. Then, we
calculate the entropy for each distribution and may use
a traditional or an adaptive system sizing to adjust the
entropy and get a standardized entropy.

Visualization: Finally, we generate graph such as the ones
in shown in Figures 3 and 5. To reduce the jaggedness
of the graph we perform a Gaussian Smoothing on the
generated graph. A Gaussian Smoothing is tradition-
ally used to remove details and noise in images [16].
The Gaussian Smoothing removes localized changes
and lets the graph show the more prominent trends.

7 CASE STUDIES
To validate our approach we analyzed the evolution of sev-
eral large open source systems. Table 1 summarizes the de-
tails for these software systems. The oldest system is over
ten years old and the youngest system is five years old. Due
to size limitation we only give graphs for the Postgres [27]
database system and a graph for the KDE [19] system.

Application Application Start Subsystem Prog.
Name Type Date Count Lang.
NetBSD OS 21 March 1993 25 C

FreeBSD OS 12 June 1993 33 C

OpenBSD OS 18 Oct 1995 28 C

Postgres DBMS 9 July 1996 116 C

KDE Windowing 13 April 1997 32 C++
System

Koffice Productivity 18 April 1998 85 C++
Suite

Table 1: Summary of the Studied Systems

Postgres is a sophisticated open-source Object-Relational
DBMS supporting almost all SQL constructs. Its develop-
ment started in 1986 at the University of California at Berke-
ley as a research prototype. Since then it has become an
open source software with a globally distributed develop-
ment team. It is being developed by a community of com-
panies and people co-operating to drive the development of
one the world’s most advanced Open Source database soft-
ware (DBMS). In our case study we use data beginning with
1996 when it became an open source project.
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Figure 5: Period Based Entropy Evolution Graph for Post-
gres

We present two graphs from our study of Postgres. The first
graph, shown in Figure 5, shows the period based entropy
evolution of Postgres. We show the release dates for each
major release of Postgres on the time line so we can cor-
relate them with the variation in the entropy. We notice a
continuous increase in entropy from release1.09 to release
6.4. Reading through the documentation of the Postgres sys-
tem, we correlate this to the period in which the develop-
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Figure 6: Time Based Entropy Evolution Graph for Postgres

ment team acknowledged that the code base they inherited
from the University of California was not robust enough as a
production level system. Instead it was a research prototype
which they kept on enhancing and patching from release to
release. From release 6.4 to release 6.5, we see a very sharp
increase in entropy. We associate this sharp increase in en-
tropy to major refactoring done to get a much better under-
standing and clean up of the code base. We believe this is an
example of a controlled entropy increase – a spike in entropy
then a drop to an entropy level that is much lower than pre-
spike entropy levels. We have seen this occurring in our ex-
periments usually due to major refactoring or redesign. The
release notes for 6.5 supports our position:

“This release marks a major step in the develop-
ment team’s mastery of the source code we inher-
ited from Berkeley. You will see we are now eas-
ily adding major features, thanks to the increas-
ing size and experience of our world-wide devel-
opment team.”

The effort exerted in release6.5 apparently made the devel-
opment of releases7.0 and7.1 an easier task with a corre-
spondingly lower entropy measures. In release7.2, the focus
was on adapting the database to support high load. For that
release we see an increase in entropy as modifications occur
in many places in the code.

We noticed that the dynamic sizing and traditional entropies

are highly correlated but with lower values for traditional siz-
ing entropy. The same holds for Figure 6, which uses time
based periods.

In Figure 6, we see a different view of the evolution of Post-
gres. Whereas Figure 5 showed a macro view of the evolu-
tion of entropy , Figure 6 shows a micro view of the evo-
lution of entropy. Figure 6 shows the variation in entropy
as the software project goes through the different phases in
individual releases. For example, in Figure 6 looking at the
period from release 6.5 to release 7.0, we see a rise in entropy
then a drop in entropy. The increase in entropy is due to the
usual task of development where many files are modified to
implement the features for the release. Once the features are
implemented small localized modifications are done. Con-
cerned that entropy is only measuring the number of modifi-
cations and not a true measure of chaos in the development
process, we performed a correlation test to verify if entropy
and number of modifications are highly correlated and found
the correlation to be statistically insignificant.

To get a better understanding of the patterns of entropy
change and how they relate to software release dates, we took
the continuous entropy values for the period based entropy
evolution of Postgres (shown in Figure 5) and we clipped
these values to a discrete band. If the entropy is below0.6,
we clip it to 0.4, otherwise we clip it to0.8. We plotted
the newly calculated discrete entropy as shown in Figure 7.
We found that the pattern of a rise in entropy then a drop is
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Figure 7: Discrete Period Based Entropy Evolution Graph for Postgres

a consistent pattern for each release, as one would expect.
These findings hold for the other systems we examined as
well. Also we found that a release never follows on a rise
of entropy instead it always follows a drop in entropy. It is
interesting that for some releases we can see only one peak
in entropy whereas for other releases we can see two to three
peaks before the system is released. We attribute this to im-
plementing two or three rather large features in a single re-
lease - currently we do not have a way to validate this hy-
pothesis yet.
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Figure 8: Period Based Entropy Evolution Graph for KDE

Another system we examined in our case study is the KDE
(K Desktop Environment) system. The KDE project is an
Open Source graphical desktop environment for Unix work-
stations. It seeks to fill the need for an easy to use desktop
for Unix workstations, similar to the desktop environments
found under MacOS or Microsoft Windows. With several
hundred developers working on it, it is currently over 2.6
million lines of code.

Whereas in Postgres we saw a controlled rise in entropy due
to refactoring and re-engineering, in Figure 8 we find an
alarming rise in the evolution of traditional entropy for the
KDE project. When we view the dynamic sized entropy we
notice that the entropy has always been at a very high level.

We conjecture that this has caused the KDE project to suffer
major delays as it aims to stabilize the system for release.
Miguel de Icaza, the founder of GNOME and Ximian, de-
scribes the reasons for delays in KDE project to [8]:

“KDE 2.0 was another project that was delayed
for a long time because of the nature of the
changes they made. The KDE project aimed too
high for their KDE 2.0 release: they did incorpo-
rate and later they had to drop “OpenParts” sup-
port which was a major change to their system.
KDE 2.0 was also a very ambitious project, and
the nature of the changes delayed the project for a
whole year.”

Using our entropy graphs, the high entropy levels would have
warned of the significant risks associated with the project.
The project leaders could have reacted to the dangers and
attempted to control the chaos by reducing the scope of the
project or re-thinking their designs/architecture.

8 RELATED WORK
In section 2, we presented an overview of previous work
which analyzed source control repositories to gain a better
understanding of the software system. Recent work by Barry
et al. used a volatility rankings system and a time series anal-
ysis to identify evolution patterns in a retail software systems
based on the source modification records [2]. Also Mockus
et al. used the source modification records to assist in pre-
dicting the efforts in large software systems for AT&T [24].
Other than the work done by Michailet al. [6], previous re-
search has focused on studying the source code repositories
of closed systems. This focus on closed systems may limit
the applicability of the results as they may be dependant on
the studied system or organization as the results are usually
validated usually using just one system. By focusing on open
source systems we are able to get a much larger set of sys-
tems to validate our findings. We hope in future work to
validate our findings against a large closed source systems to
determine if our approach holds for closed source as well.



Whereas we base our entropy calculation on change statistics
associated with the source code, previous studies [1, 3, 4, 5,
18, 32] base their entropy calculation on the source code text.
For example, the distribution of special tokens in the source
code or the control flow structure of the source are used to
calculate the entropy. Our work aims to compute a mea-
sure of chaos in the development process as a whole instead
of just focusing on computing the complexity of the source
code. We conjecture that detecting chaos in the development
process will serve as an early warning measure to prevent the
code from becoming too complex over time.

Previous work on software evolution, in particular work by
Lehmanet al. [20, 21, 22] on closed source systems and
Godfrey et al. [23] on open source systems focus on size
(number of modules) and LOC as the principal measure of
evolution between the releases of a software system. Instead
we focus on measuring the entropy/chaos in the development
process. Lehman’s second law deals with complexity in the
evolution of large software systems – “As an E-type system
evolves its complexity increases unless work is done to main-
tain or reduce it”. The law suggests the need for occasional
maintenance activities (such as refactoring) to reduce com-
plexity, which arises as new features are added to the sys-
tem. The addition of features and their associated assump-
tions about the real world lead to the increase of complexi-
ty/entropy in the system. In our presented case studies, we
quantified the idea of complexity/entropy in the development
process using our new model. Then we measured that chaos
and saw examples of the occasional maintenance activities
done to reduce complexity. Whereas our presented model
studies the evolution of complexity over time, Lehman ad-
vocates studying the evolution of software over releases/ver-
sions. Our model can be extended to use releases as a unit
of observation instead of time. This would permit us to com-
pare our findings to Lehman’s laws of evolution.

Outside of the software engineering domain, the measure of
entropy has been used to improve the performance of Just In
Time compilers and profilers [28]. It has been used for edge
detection and image searching in large image database [10].
Also, it has been used for text classification and many text
based indexing techniques [9].

9 CONCLUSIONS AND FUTURE WORK
In this paper, we presented a new perspective on the com-
plexity of software. We examined the complexity and chaos
associated with the development process. We view the de-
velopment process as a system with an unknown output, in
other words we are uncertain about the files that will be mod-
ified by the process over time. Using the ideas of uncertainty
and entropy from information theory, we measure how much
information exists in the development process. We hypoth-
esize that too much information will require more effort for
project members to keep track of the development process
over time. Thus the higher the entropy of the system, the
more complex the system’s code becomes over time as de-

velopers grasp of all that is going in the system decays and
the team looses its shared image of the software system.

We verified our models and hypotheses using data derived
from six large open source projects. Source code reposito-
ries provide a rich source of high quality empirical data to
validate software engineering results. The repositories are
always available for any large project and there are no extra
costs associated with collecting the data, as it is always avail-
able. We designed our framework so closed source reposito-
ries can be analyzed using the same framework.

Using our entropy graphs, managers can monitor with great
detail the evolution of complexity in their software system
and work hard on controlling it. In the case studies presented
in the paper, we saw for the Postgres system a controlled
entropy increase due to refactoring. We also saw in the KDE
project a continuous rise in entropy. The controlled entropy
rise had the beneficial effect of reducing the entropy of the
development process for the following releases. Whereas the
uncontrolled entropy rise has caused major delays (in years)
to the KDE project.

In future work, we plan to correlate our development entropy
measures to the bug counts in the system. We would like to
know if a complex development process will cause a chaotic
appearance of bugs in the software system or if they are two
independent entities. We also plan to compare the results of
our model to other well known complexity measures such as
McCabe cyclomatic complexity. In addition, we would like
to validate that our entropy measure satisfies the criteria for
a code complexity measure as detailed in [32].

Furthermore, we are examining the use of our entropy model
to locate refactoring opportunities in large software systems
and to find similarity in development trends over time. We
believe that finding similar development periods to the cur-
rent development period will assist in project and resource
planning. Also locating code refactoring will be a valuable
tool for developers in large software system to reduce the
complexity of their source code and eventually the complex-
ity of developing the code.
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