
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/296696720

Examining	the	stability	of	logging	statements

CONFERENCE	PAPER	·	MARCH	2016

READS

5

4	AUTHORS,	INCLUDING:

Cor-Paul	Bezemer

Queen's	University

14	PUBLICATIONS			141	CITATIONS			

SEE	PROFILE

Weiyi	Shang

Concordia	University	Montreal

22	PUBLICATIONS			147	CITATIONS			

SEE	PROFILE

Ahmed	E.	Hassan

Queen's	University

223	PUBLICATIONS			3,233	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Cor-Paul	Bezemer

Retrieved	on:	15	March	2016

https://www.researchgate.net/publication/296696720_Examining_the_stability_of_logging_statements?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/296696720_Examining_the_stability_of_logging_statements?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Cor_Paul_Bezemer2?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Cor_Paul_Bezemer2?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Queens_University?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Cor_Paul_Bezemer2?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Weiyi_Shang?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Weiyi_Shang?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Concordia_University_Montreal?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Weiyi_Shang?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Ahmed_E_Hassan?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Ahmed_E_Hassan?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Queens_University?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Ahmed_E_Hassan?enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ%3D%3D&el=1_x_7

Examining the Stability of Logging Statements
Suhas Kabinna, Cor-Paul Bezemer and Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)
Queen’s University
Kingston, Ontario

Email:{kabinna, bezemer, ahmed}@cs.queensu.ca

Weiyi Shang
Department of Computer Science and Software Engineering

Concordia University
Montreal, Quebec

Email: shang@encs.concordia.ca

Abstract—Logging statements produce logs that assist in un-
derstanding system behavior, monitoring choke-points and de-
bugging. Prior research demonstrated the importance of logging
statements in operating, understanding and improving software
systems. The importance of logs has lead to a new market of
log management and processing tools. However, logs are often
unstable, i.e., the logging statements that generate logs are often
changed without the consideration of other stakeholders, causing
misleading results and failures of log processing tools. In order
to proactively mitigate such issues that are caused by unstable
logging statements, in this paper we empirically study the stability
of logging statements in four open source applications namely:
Liferay, ActiveMQ, Camel and CloudStack. We find that 20-
45% of the logging statements in our studied applications change
throughout their lifetime. The median number of days between
the introduction of a logging statement and the first change to
that statement is between 1 and 17 in our studied applications.
These numbers show that in order to reduce maintenance effort,
developers of log processing tools must be careful when selecting
the logging statements on which they will let their tools depend.

In this paper, we make an important first step towards assisting
developers of log processing tools in determining whether a
logging statement is likely to remain unchanged in the future.
Using random forest classifiers, we examine which metrics are
important for understanding whether a logging statement will
change. We show that our classifiers achieve 83%-91% precision
and 65%-85% recall in the four studied applications. We find that
file ownership, developer experience, log density and SLOC are
important metrics for determining whether a logging statement
will change in the future. Developers can use this knowledge to
build more robust log processing tools, by making those tools
depend on logs that are generated by logging statements that are
likely to remain unchanged.

I. INTRODUCTION

Developers use logging statements to yield useful informa-
tion about the state of an application during its execution.
Such information is collected into files (logs) and contains
details which would otherwise be difficult to collect, such
as the values of variables. Logs are used during various
development activities such as fixing bugs [1, 2, 3], analyzing
load tests [4], monitoring performance [5] and transferring
knowledge [6]. Logging statements make use of logging
libraries (e.g., Log4j [7]) or more archaic methods such as
print statements. Every logging statement contains a textual
part, which provides information about the context, a variable
part providing context information about the event and a log

Fig. 1: An example of a logging statement

level, which shows the verbosity of the logging statement. An
example of a logging statement is shown in Figure 1.

The rich knowledge in logs has lead to the development of
many log processing tools such as Splunk [8], Xpolog [9],
Logstash [10] and research tools, such as Salsa [11], Log
Enhancer [5] and Chukwa [12], that are designed to analyze
logs as well as to improve logging statements. However, when
logging statements are changed, the associated log processing
tools may also need to be updated. For example, Figure 2
demonstrates a case in which a developer removes the elapsed
time for an event. Removing information from a logging
statement can affect log processing tools that rely on the
removed information in order to monitor the health of the
application. Prior research shows that 60% of the logging
statements that generate output during system execution are
changed [6]. Such changes may affect the log processing tools
that heavily depend on the logs that are generated by these
logging statements.

Knowing whether a logging statement is likely to change in
the future helps to reduce the effort that is required to maintain
log processing tools. If a developer of a log processing
tool knows that a logging statement is likely to change, the
developer can opt not to depend on the logs that are generated
by this logging statement. Instead, the developer can let the
log processing tool depend on output generated by logging
statements that are likely to remain unchanged. Depending
on logging statements that remain unchanged will reduce
the maintenance effort that is required for keeping the log
processing tool consistent with the ever-changing logs [6, 13].

To determine whether a logging statement will change in
the future, we must understand which factors influence such a
change. The following factors can influence whether a logging
statement will change:

1) the content of the logging statement (i.e., number of
variables, the log level, log text count),

1

https://www.researchgate.net/publication/221344724_Detecting_Large-Scale_System_Problems_by_Mining_Console_Logs?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/228705493_Mining_invariants_from_console_logs_for_system_problem_detection?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220765301_Execution_Anomaly_Detection_in_Distributed_Systems_through_Unstructured_Log_Analysis?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/261314436_Automatic_detection_of_performance_deviations_in_the_load_testing_of_Large_Scale_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220938683_Improving_Software_Diagnosability_via_Log_Enhancement?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220938683_Improving_Software_Diagnosability_via_Log_Enhancement?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221200488_An_Exploratory_Study_of_the_Evolution_of_Communicated_Information_about_the_Execution_of_Large_Software_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221200488_An_Exploratory_Study_of_the_Evolution_of_Communicated_Information_about_the_Execution_of_Large_Software_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221200488_An_Exploratory_Study_of_the_Evolution_of_Communicated_Information_about_the_Execution_of_Large_Software_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220851842_SALSA_Analyzing_Logs_as_StAte_Machines_1?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==

Fig. 2: Modification of a logging statement

2) the context of the logging statement (i.e., where the
statement resides in the source code and captures the
code changes at the time of addition of logging state-
ment.)

3) and the developer who added the logging statement into
the source code

In this paper, we examine which of these factors influence the
likelihood of a logging statement changing. First, we present a
preliminary study which was done to get a better understand-
ing of the changes made to logging statements in the four
studied open source applications namely ActiveMQ, Camel,
Cloudstack and Liferay. Our preliminary study finds that 20%-
45% of the logging statements are changed at least once during
their lifetime in the studied applications. Therefore, developers
of log processing tools have to carefully select the logging
statements on which to depend.

Second, we examine the factors that influence the likelihood
of a logging statement changing using a random forest classi-
fier. This classifier uses measures that quantify the three above-
mentioned factors to determine the likelihood of a logging
statement changing. The most important observations in this
paper are:

1) We model whether a logging statement will change in
the future using a random forest classifier with 83%-
91% precision and 65%-85% recall.

2) Logging statements that are added by highly experienced
developers and very new developers are less likely
to be changed. We find that in three of the studied
applications the top three developers add more than
60% of the logging statements and 70% of the logging
statements that are added by the top three developers
remain unchanged.

3) Logging statements added by developers who have little
ownership on the file that contains the logging state-
ments have a higher likelihood of being changed. We
find that 27%-67% of all log changes, are done on
logging statements added by developers who own less
than 20% of the file.

4) Large files (i.e., files with SLOC that is 2×-3× the
median SLOC) with a low log density are more likely
to have changes to their logging statements than well
logged files.

The above findings help in determining the likelihood a
logging statement changing. Developer of log processing tools

can use our results to be more selective in picking logging
statements which are less likely to be changed in their log
processing tools.

The remainder of this paper is organized as follows. Sec-
tion II presents the preliminary analysis that motivates our
study. Section III describes the random forest classifier and
the analysis results. Section IV describes prior research that is
related to our work. Section V discusses the threats to validity.
Finally, Section VI concludes the paper.

II. PRELIMINARY ANALYSIS

In this paper we study the changes that are made to logging
statements in open source applications. The goal of our study
is to present a classifier for determining whether a logging
statement is likely to change in the future. This classifier can
assist developers of log processing tools in determining on
which logging statements they want their tool to depend. First,
we perform a preliminary analysis, in which we examine how
often logging statements change, to motivate our work. In this
section, we present our process for selecting the applications
that we studied and present the results of our preliminary
analysis of the four studied applications.

A. Studied Applications

We selected our studied applications based on the following
three criteria:

• Usage of logging statements. The applications must
make extensive use of logging statements in their source
code.

• Application activity. The applications must have a ma-
ture development history (i.e., more than 10,000 com-
mits).

• Technology used. To simplify the implementation of our
study, we opted to only select applications that are written
in Java and are available through a Git repository.

To select applications that match these criteria, we first se-
lected all Java applications from the list of Apache Foundation
Git repositories1 that have more than 10,000 commits. Next,
we counted the number of logging statements in all *.java

files in a repository using the grep command in Listing 1.

1 grep -icR
2 "\(log.*\)\.\(|info\|trace\|debug\|error\|warn\)(" .
3 | grep "\.java"

Listing 1: Counting logging statements

Listing 1 counts the occurrences in Java files of invocations
of a logging library (e.g., log or _logger) followed by the
specification of a log level. We sum the occurrences in all files
of an application to get the total number of logging statements
shown in Table I.

We select the four applications (ActiveMQ, Camel, Cloud-
stack and Liferay) with the highest number of logging state-
ments for further analysis. ActiveMQ2 is an open source

1https://git.apache.org/
2http://activemq.apache.org/

2

Fig. 3: Overview of the data extraction and empirical study approach

TABLE I: An overview of the studied applications (all metrics
calculated using the latest HEAD of the repository)

ActiveMQ Camel CloudStack Liferay

of logging statements 5.1K 6.1K 9.6K 1.8K
of commits 11K 21K 29K 143K
of years in repository 8 8 4 4
of contributors 41 151 204 351

of added lines of code 261K 505K 1.09M 3.9M
of deleted lines of code 114K 174K 750K 2.8M

of added logging statements 4.5K .
5.1K 24K 10.4K

of deleted logging statements 2.3K 2.4K 17K 8.1K
% of logging-related changes 1.8% 1.1% 2.3% 0.3%

message broker and integration patterns server. Camel3 is an
open source integration platform based on enterprise integra-
tion patterns. CloudStack4 is an open source application that
is designed to deploy and manage large networks of virtual
machines. Liferay5 is an open source platform for building
websites and web portals. Table I presents an overview of the
studied applications.

B. Data Extraction Approach

The data extraction approach from the four studied appli-
cations consists of three steps, which are explained further in
this section:

1) We clone the Git repository of each studied application
in order to extract the change history of each file.

2) We identify the logging statements in the repository.
3) We track the changes that are made to each logging

statement across commits.
We use R [14] to perform our preliminary analysis. Figure 3

shows a general overview of our approach and we detail below
each of the aforementioned steps.

B.1. Extracting the Change History of Java Files: To
examine the changes that are made to logging statements, we
must first obtain a complete history of each Java file in the
latest version of the main branch. We collect all the Java files
in the four studied application and we use their Git repositories
to obtain all the changes that are made to the files. We use

3http://camel.apache.org/
4https://cloudstack.apache.org/
5http://www.liferay.com/

Git’s follow option to track a file even when it is renamed or
relocated. We include only the changes to logging statements
that are made in the main branch as other logging statements
are unlikely to affect log processing tools.

B.2. Identifying Logging Statements: From the extracted
change history of each Java file, we identify all the logging
statements. First, we manually examine the documentation of
each studied application to identify the logging library that is
used to generate the logs. We find that the studied applications
use Log4j [15], Slf4j6 and logback7. Using this information,
we manually identify the common method invocations that
invoke the logging library. For example, in ActiveMQ and
Camel, a logging library is invoked by a method named LOG
as shown below.�� ��LOG.debug(“Exception detail”, exception);

As an application can use multiple logging libraries through-
out its lifetime, we use regular expressions to search for all
the common log invocation patterns (i.e., LOG, log, logger,
LOGGER, Log). We identify every successful match of this
regular expression that is followed by a log level (info, trace,
debug, error, warn) as a logging statement.

We find that applications can migrate from one logging
library to another during development. However such changes
do not affect the log processing tools as only the log invoca-
tion patterns are changed. Hence, we exclude those logging
statements changes which only have log invocation changes
from our analysis.

B.3. Tracking Changes to Logging Statements: After iden-
tifying all the logging statements, we track the changes made
to these statements after their introduction. We extract the
change information from the Git commits, which show a diff
of added and removed code. To distinguish between a change
in which a new logging statement is added and a change to an
existing logging statement, we must track the changes made
to a logging statement starting from the first commit. Because
there may be multiple changes to logging statements in a
commit, we must decide to which existing logging statement
a change maps.

6http://www.slf4j.org/
7http://logback.qos.ch/

3

1 - LOG.debug("Call: " +method.getName()+ " " + callTime);
2 + LOG.debug("Call: " +method.getName()+ " took "+ callTime + "ms"); // (Statement a1)
3 + LOG.debug("Call: " +method.setName()+ " took "+ callTime + "ms"); // (Statement a2)

Listing 2: Selecting the best matching logging statement

ActiveMQ Camel Cloudstack Liferay

0
5

10
15

20
25

of

 c
om

m
its

Fig. 4: Number of commits before an added logging statement
is changed in the studied applications (Cloudstack has outliers
which are not shown due to their large numbers)

We first collect all the logging statements in the initial com-
mit as the initial set of logging statements. Then, we analyze
the next commit to find changes to logging statements until
we reach the latest commit in the repository. To distinguish
between added, deleted and changed logging statements and
to map the change to an existing logging statement, we use
the Levenshtein ratio [16].

We use the Levenshtein ratio instead of string comparison,
because the Levenshtein ratio quantifies the difference between
the strings on a continuous scale between 0 and 1 (the
more similar the strings are, the closer the ratio approaches
1). This continuous scale is necessary to decide between
multiple logging statements which can have a similar match
to a change. Selecting the best matching logging statement
is demonstrated by the example in Listing 2. In this example,
there are two changes made to logging statements: one change
and one addition.

To identify the change to logging statements, we calculate
the Levenshtein ratio between each deleted and all the added
logging statements and select the pair which has the highest
Levenshtein ratio. This calculation is done iteratively to find all
the changes within a commit. In our example, we find that the
Levenshtein ratio between the deleted statement and statement
a1 is 0.86 and between the deleted statement and statement a2
0.76. Hence, we consider a1 as a change. If there are no more
deleted logging statements, a2 is considered a newly added
instead of a changed logging statement.

We extend the initial set of logging statements with every
newly added logging statement. As we do not have change
information for logging statements which are added near the
end of the lifetime of the repository, we exclude these logging
statements from our analysis. We find that in the studied
applications, the maximum number of commits between the
addition of a logging statement and its first change is 390, as

ActiveMQ Camel Cloudstack Liferay

0
20

0
40

0
60

0
80

0
T

im
e

(in
 d

ay
s)

Fig. 5: Number of days before an added logging statement is
changed in the studied applications

shown in Figure 4 (we exclude 110 outliers from Cloudstack
to make the graph more readable). We exclude all logs added
to the application 390 commits before the last commit.

C. Results�

�

�

�
20%-45% of the logging statements in the studied
applications are changed. The median number of days
between the addition of a logging statement and its first
change is between 1 and 17.

We observe that 28%, 35.2%, 44,6% and 21.2% of the logging
statements are changed in ActiveMQ, Camel, Cloudstack and
Liferay respectively, during their lifetime. The observed values
show that logging statements change extensively throughout
the lifetime of an application, which can affect the log pro-
cessing tools.

From Figure 5, we observe that 75% of the changes to
logging statements are done within 145 days after the log is
added. In fact, the largest median number of days between the
addition of a logging statement and its first change is 17 in
our studied applications. This number shows that, all too often,
the changes to logging statements happen in a short time after
the logging statement being added. Hence, it is important for
developers of log processing tools to not depend on logging
statements that are likely to change, as this dependency will
require additional maintenance within a short time.

III. DETERMINING THE LIKELIHOOD THAT A LOGGING
STATEMENT WILL CHANGE IN THE FUTURE

In our preliminary analysis, we find that 25-45% of the log-
ging statements are changed in our studied applications. These
logging statement changes affect the log processing tools that
depend on the logs that are generated by these statements,
forcing developers to spend more time on maintenance of
their tools. By analyzing the metrics which can influence the

4

Lo
g

ad
di

tio
n

F
ile

 o
w

ne
rs

hi
p

Lo
g

va
ria

bl
e

co
un

t

Lo
g

te
xt

 le
ng

th S
LO

C

Lo
g

de
ns

ity

D
ev

el
op

er
 e

xp
er

ie
nc

e

Lo
gg

in
g

E
xp

er
ie

nc
e

V
ar

ia
bl

e
de

cl
ar

ed

T
ot

al
 r

ev
is

io
n

co
un

t

C
od

e
ch

ur
n

in
 c

om
m

it

Lo
g

ch
ur

n
in

 c
om

m
it

Lo
g

le
ve

l

Lo
g

co
nt

ex
t

1.
0

0.
6

0.
2

S
pe

ar
m

an
 r

Fig. 6: Hierarchical clustering of variables according to Spear-
mans ρ in ActiveMQ

likelihood that a logging statement will change, developers of
log processing tools can reduce the effort spent on maintaining
their tools, by letting their tool depend on logging statements
that are likely to remain unchanged. In this section, we train
a random forest classifier for determining the likelihood that a
logging statement will change in the future. We then evaluate
the performance of our random forest classifier and use the
classifier to understand which metrics increase the likelihood
of a change to a logging statement.

A. Approach

We use metrics that measure the context, the content and the
developers of the logging statements to train the random forest
classifier. Context metrics measure the file context and the
code changes at the time of adding a logging statement. Con-
tent metrics collect information about the logging statement.
Developer metrics collect information about the developer who
added the logging statement. Table II defines each collected
metric and the rationale behind our choice of each metric.
We use the Git repository to extract the context, content and
developer metrics for the studied applications.

We build a random forest classifier [17] to determine the
likelihood whether a logging statement will change in our
studied applications. We use random forest classifier as it
is one of the best learning algorithms when compared to
SVM’s, boosted trees, bayes or logistic regressions [18]. A
random forest is a collection of decision trees in which the
produced classification of all trees are combined to form a
global classification. In our classifier, the context, content
and developer metrics are the explanatory variables and the
dependent class variable is a boolean variable that represents
whether the logging statement ever changed or not (i.e., ’0’
for not changed and ’1’ for changed).

Figure 7 provides an overview of the construction steps (C1
and C2) for building a random forest classifier and steps (A1
to A3) for analyzing the results. We use the statistical tool R to
model and analyze our data using the RandomForest package
.

Step C1 - Removing Correlated and Redundant Metrics

Correlation analysis is necessary to remove the highly cor-
related metrics from our dataset [21]. Correlated metrics can
lead to incorrect determination of importance in the random
forest classifier, as small changes to one correlated metric can
affect the values of the other correlated metrics, causing large
changes on the importance variable.

We use the Spearman rank correlation [22] to find correlated
metrics in our data. Spearman rank correlation assesses how
well two metrics can be described by a monotonic function.
We use Spearman rank correlation instead of Pearson [23]
because Spearman is resilient to data that is not normally
distributed. We use the function varclus in R to perform the
correlation analysis.

Figure 6 shows the hierarchically clustered Spearman ρ
values in the ActiveMQ. The solid horizontal lines indicate the
correlation value of the two metrics that are connected by the
vertical branches that descend from it. We include one metric
from the sub-hierarchies which have correlation |ρ| > 0.75.
The dotted blue line indicates our cutoff value (|ρ| = 0.75).
We use cutoff value of (|ρ| = 0.75) as it represents highly
correlated metrics as shown by prior research [24].

We find that total revision count is highly correlated with
code churn in commit, log churn in commit, because a file with
more commits has higher chance of having a large commit
with log changes, than a file with less commits. We exclude
total revision count and log churn in commit and retain code
churn in commit as it is a simpler metric to compute. Similarly,
we also find that Developer Experience is highly correlated
with Logging Experience. We retain Developer Experice as it
provides more information about the developers introducing
logs and is the simpler metric to compute.

Correlation analysis does not indicate redundant metrics,
i.e, metrics that can be explained by a combination of other
explanatory metrics. The redundant metrics can interfere with
the one another and the relation between the explanatory
and dependent metrics is distorted. We perform redundancy
analysis to remove such metrics. We use the redun function
that is provided in the rms package to perform the redundancy
analysis. We find after removing the correlated metrics, that
there are no redundant metrics.

Step C2 - Random Forest Generation

After we eliminate the correlated metrics from our datasets,
we construct the random forest classifier. Random forest is a
black-box ensemble classifier, which operates by constructing
a multitude of decision trees on the training set and uses this
to classify the testing set. From a training set of m logging
statements a random sample of n components is selected with
replacement [25] and using the randomForest package in R, a
random forest classifier is generated.

Step A1 - Model Validation

After we build the random forest classifier, we evaluate
the performance of our classifier using precision, recall, F-

5

TABLE II: The investigated metrics in our classifier

Dimension Metrics Values Definition (d) – Rationale (r)

Context Metrics

Total revision count Numerical d: Total number of commits made to the file before the logging statement is
added. This value is 0 for logging statements added in the initial commit of
the project but not for logging statements added over time.
r: Logging statements present in a file which is often changed, have a higher
likelihood of being changed [19]. Hence, the more prior commits to a file,
the higher the likelihood of a change to a logging statement.

Code churn in commit Numerical d: The code churn of the commit in which a logging statement is added.
r: The likelihood of change of logging statements that are added during
large code changes, such as feature addition, can be different from that of
logging statements added during bug fixes which have less code changes.

Variables declared Numerical d: The number of variables which are declared before the logging statement
in that function.
r: When a large number of variables are declared, there is a higher chance
that any of the variables will be added to or removed from a logging
statement afterwards.

SLOC Numerical d: The source lines of code in the file.
r: Large files have more functionality and are more prone to changes [20]
and changes to logging statements [15, 19].

Log context Categorical d: The block in which a logging statement is added i.e., if, if-else, try-catch,
exception, throw, new function.
r: The stability of logging statements used in logical branching and assertion
checks, i.e., if-else blocks, may be different from the logging statements in
try-catch, exception blocks.

Developer Metrics File ownership Numerical d: Percentage of the file written by the developer who added the logging
statement.
r: The owner of the file is more likely to add stable logging statements than
developers who have not edited the file before.

Developer experience Numerical d: The number of commits the developer has made prior to this commit.
r: More experienced developers may add more stable logging statements
than a new developer who has less knowledge of the code.

Logging Experience Numerical d: The number of logging statements modified by the developer prior to the
addition of this log.
r: Developers who have modified more logging statements may add more
stable logging statements than developers who have less knowledge about
logging statements.

Content Metrics

Log addition Boolean d: Check if the logging statement is added to the file after creation or it was
added when file was created.
r: Newly added logging statements may be more likely to be changed than
logging statements that exist since the creation of the file.

Log variable count Numerical d: Number of logged variables.
r: Over 62% of logging statement changes add new variables [19]. Hence,
fewer variables in the initial logging statement might result in addition of
new variables later.

Log density Numerical d: Ratio of the number of logging statements to the source code lines in the
file.
r: Files that are well logged (i.e., with higher log density) may not need
additional logging statements and are less likely to be changed.

Log level Categorical d: The level (verbosity) of the added logging statement, i.e., info,error,
warn, debug, trace and trace.
r: Research has shown that developers spend significant amount of time in
adjusting the verbosity of logging statements [19]. Hence, the verbosity
level of a logging statement may affect its stability.

Log text count Numerical d: Number of text phrases logged. We count all text present between a pair
of quotes as one phrase.
r: Over 45% of logging statements have modifications to static context [19].
Logging statements with fewer phrases might be subject to changes later to
provide a better explanation.

Log churn in commit Numerical d: The number of logging statements changed in the commit.
r: Logging statements can be added as part of a specific change or part of a
larger change.

6

Fig. 7: Overview of random forest classifier construction (C), analysis (A) and flow of data in random forest generation

measure, AUC and Brier Score. These measures are functions
of the confusion matrix and are explained below.

Precision (P) measures the correctness of our classifier in
predicting which logging statement will change in the future.
Precision is defined as the number of logging statements which
were correctly classified as changed over all logging state-
ments classified to have changed as explained in Equation 1.

P =
TP

TP + FP
(1)

Recall (R) measures the completeness of our classifier. A
classifier is said to be complete if the classifier can correctly
determine all the logging statements which will get changed
in our dataset. Recall is defined as the number of logging
statements which were correctly classified as changed over
the number of logging statements which actually change as
explained in Equation 2.

R =
TP

TP + FN
(2)

F1-Score also known as F-measure [26], is the harmonic
mean of precision and recall, combining the inversely related
measure into a single descriptive statistic as shown in Equa-
tion 3 [27].

F =
2× P ×R
P +R

(3)

Area Under Curve (AUC) is used to measure the overall
ability of the classifier to determine changed and unchanged
logging statements. AUC is the area below the curve plotting
the true positive rate against the false positive rate. The value
of AUC ranges between 0.5 (worst) for random guessing
and 1 (best) where 1 means that our classifier can correctly
determine every logging statement as changed or unchanged.
We calculate AUC using the roc.curve function from the pROC
package in R.

Brier score (BS) is a measure of the accuracy of the
classifications of our classifier [28]. The Brier score explains
how well the classifier performs compared to random guessing
as explained in Equation 4, where Pn is the probability of
whether a logging statement will change and On is the boolean
that shows whether the statement actually changed. A perfect
classifier will have a Brier score of 0, a perfect misfit classifier
will have a Brier score of 1 (predicts probability of log change
when log is not changed). When there is an equal distribution
of logging statements being changed and un-changed, the Brier

score reaches the value of 0.25 for random guessing (i.e., 50%
chances that log is un-changed).

BS =

M∑
n=1

(Pn −On)
2 (4)

Optimism: The previously-described performance measures
may overestimate the performance of the classifier due to
overfitting. To account for the overfitting in our classifier, we
use the optimism measure, as used by prior research [25].
The optimism of the performance measures is calculated as
follows:

1) From the original dataset with m records, we select a
bootstrap sample with n records with replacement.

2) Build random forest as described in (C2) using the
bootstrap sample.

3) Apply the classifier built from the bootstrap sample on
both the bootstrap and original data sample, calculating
precision, recall, F-measure and Brier score for both the
data samples.

4) Calculate optimism by subtracting the performance mea-
sures of the bootstrap sample from the original sample.

The above process is repeated 1,000 times and the av-
erage (mean) optimism is calculated. Finally, we calculate
optimism-reduced performance measures for precision, recall,
F-measure, AUC and Brier score by subtracting the averaged
optimism of each measure, from their corresponding original
measure. The smaller the optimism values, the less the chances
that the original classifier overfits the data.

Step A2 - Identifying Important Metrics

To find the importance of each metric in a random forest
classifier, we use a permutation test [29]. In this test, the
classifier built using the bootstrap data (i.e., two thirds of
the original data) is applied to the test data (i.e., remaining
one third of the original data). Then, the values of the Xi

th

metric of which we want to find importance for, are randomly
permuted in the test dataset and the precision of the classifier
is recomputed. The decrease in precision as a result of this
permutation is averaged over all trees, and is used as a measure
of the importance of the Xi

th metric in the random forest.
We use the importance function defined in RandomForest

package of R, to calculate the importance of each metric. We
call the importance function every time during the bootstrap-

7

Precision Recall F−measure AUC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ActiveMQ

Precision Recall F−measure AUC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Camel

Precision Recall F−measure AUC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cloudstack

Precision Recall F−measure AUC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Liferay

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

ActiveMQ

Brier Score

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

Camel

Brier Score

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

Cloudstack

Brier Score

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

Liferay

Brier Score

Fig. 8: The optimism reduced performance measures of the four applications

ping process to obtain 1,000 importance scores for each metric
in our dataset.

As we obtain 1,000 data sets for each metric from the
bootstrapping process, we use the Scott-Knott Effect size
clustering (SK-ESD) to group the metric based on their
effect size [30]. Such an approach groups metrics based
on their importance in predicting the likelihood of logging
statement changes. The SK-ESD algorithm uses effect sizes
that are calculated using Cohen’s delta [31], to merge any
two statistically indistinguishable groups. We use the SK.ESD
function in the ScottKnottESD package of R and set the effect
size threshold parameter to negligible, (i.e., < 0.2) to cluster
the two metrics into the same groups.

Step A3 - Plotting the Important Metrics

To understand the effect of each metric in our random forest
classifier, it is necessary to plot the predicted probabilities of a
change to a logging statement against the metrics. By plotting
the predicted probabilities of a change to a logging statement,
we obtain a clearer picture of how the random forest classifier
uses the important metrics to determine the likelihood that a
logging statement changes.

Using the randomForest package in R, we build a classifier
as explained in C2, and we use the predict function in R, to
calculate the probabilities of a change to a logging statement.
We plot each predicted probability against the value of the
metric, to understand how changes in the metric values affect
the probability of a change to a logging statement.

B. Results�
�

�
�

The random forest classifier achieves 0.83-0.91 preci-
sion, 0.65-0.85 recall and outperforms random guess-
ing for our studied applications.

Figure 8 shows the optimism-reduced values of precision,
recall, F-measure AUC and Brier score for each studied
application. The classifier achieves an AUC of 0.94-0.95.

The Brier scores for ActiveMQ, Camel, Cloudstack and
Liferay are 0.061, 0.060, 0.051 and 0.042, respectively. Using
Equation 4, we find that for intuitive prediction based on the

TABLE III: The most important metrics, divided into homo-
geneous groups by Scott-Knott Effect Size clustering

ActiveMQ Camel
Rank Factors Importance Rank Factors Importance
1 Developer experience 0.246 1 Developer experience 0.272
2 Ownership of file 0.175 2 Ownership of file 0.151
3 Log density 0.163 3 Log level 0.138
4 Log variable count 0.101 4 SLOC 0.112
5 Log level 0.063 5 Log addition 0.090
6 Variable declared 0.048 Log density 0.088
7 Log context 0.069 6 Log variable count 0.063
8 Log text length 0.022 7 Log context 0.052

8 Variable declared 0.051
CloudStack Liferay

Rank Factors Importance Rank Factors Importance
1 Log density 0.224 1 Log density 0.192
2 Ownership of file 0.215 Developer experience 0.195
3 SLOC 0.192 2 Ownership of file 0.190
4 Developer experience 0.182 SLOC 0.188
5 Log text length 0.120 3 Log variable count 0.162
6 Log variable count 0.115 4 Log level 0.148
7 Log level 0.102 5 Log context 0.091
8 Variable declared 0.092 6 Variable declared 0.080
9 Log context 0.061 7 Log text length 0.071

portion of changed and unchanged logging statements, the
Brier score values are 0.20, 0.12, 0.24, 0.17 in ActiveMQ,
Camel, Cloudstack and Liferay respectively. Our approach
outperforms such an intuitive prediction with a much lower
Brier score.

B2. Important Metrics for Determining the Likelihood of a
Logging Statement Changing�

�

�

�
In three out of four studied applications, the top three
developers were responsible for adding over 50% of
the logging statements. Up to 70% of these logging
statements never change.

Table III shows the important metrics for determining whether
a logging statement will change in the future. From Table III,
we see that developer experience is in the top four metrics
for all studied applications to help explain the likelihood of
a logging statement being changed. Figure 9 shows the prob-
abilities of a logging statement being changed as developer
experience increases. The grey region around the line indicates

8

0.00

0.25

0.50

0.75

1.00

0 500 1000
of commits made by the developer

P
ro

ba
bi

lit
y

of
 lo

g
ch

an
ge

ActiveMQ

0.00

0.25

0.50

0.75

1.00

0 2000 4000 6000 8000
of commits made by the developer

P
ro

ba
bi

lit
y

of
 lo

g
ch

an
ge

Camel

0.00

0.25

0.50

0.75

1.00

0 300 600 900
of commits made by the developer

P
ro

ba
bi

lit
y

of
 lo

g
ch

an
ge

Cloudstack

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000
of commits made by the developer

P
ro

ba
bi

lit
y

of
 lo

g
ch

an
ge

Liferay

Fig. 9: Comparing the probability of a change to a logging
statement against the experience of the developer who adds
that logging statement

TABLE IV: Contribution of top 3 developers

Total logs Changed logging Total # of
statements contributors

ActiveMQ 956 (50.4%) 301 (31.4%) 41
Camel 3,060 (63.1%) 1,460 (47.7%) 151
Cloudstack 5,982 (35.7%) 2,276 (38.0%) 204
Liferay 3,382 (86.7%) 609 (18.0%) 351
Average 3,345 (59%) 1,161 (33.75%) 747

the confidence interval of 0.95. In all the studied applications,
logging statements that are added by new developers have
a lower probability of being changed, when compared to
those added by more experienced developers. We account this
phenomenon to the fact that inexperienced developers add a
very small fraction of the logs (12% in Cloudstack and 1-3%
in the other applications).

We also observe that as developers become more expe-
rienced the probability of a change to a logging statement
decreases in ActiveMQ, Camel and Liferay. This downward
trend may be explained by the fact that in ActiveMQ, Camel
and Liferay, the top three developers are responsible for adding
more than 50% of the logging statements as seen in Table IV.
In addition, we find that up to 70% of the logging statements
added by these top developers never change.�
�

�
�

Logging statements that are added into a file by devel-
opers who own more than 75% of that file are unlikely
to be changed in the future.

From Table III, we see that ownership of the file is in the
top two metrics to help explain the likelihood of a change

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Ownership of the file

P
ro

ba
bi

lit
y

of
 lo

g
ch

an
ge

ActiveMQ

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Ownership of the file

P
ro

ba
bi

lit
y

of
 lo

g
ch

an
ge

Camel

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Ownership of the file

P
ro

ba
bi

lit
y

of
 lo

g
ch

an
ge

Cloudstack

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Ownership of the file

P
ro

ba
bi

lit
y

of
 lo

g
ch

an
ge

Liferay

Fig. 10: Comparing the probability of a change to a logging
statement against ownership of the file in which the logging
statement is added

to a logging statement in all the studied applications. From
Figure 10, we observe in all the applications that logging
statements introduced by developers who own more than 75%
of the file are less likely to be changed. We also observe that
developers who own less than 20% of the file are responsible
for 27%-67% of the changes to logging statements in the
studied applications, which is seen as upward trend from 0
to 0.20 in Figure 10. These results suggest that developers of
log processing tools should be more cautious when using a
logging statement written by a developer who has contributed
less than 20% of the file.�
�

�
�

Logging statements in files with a low log density are
more likely to change than logging statements in files
with a high log density.

From Table III, we observe that log density has the highest
importance in Liferay and Cloudstack. We find that in these
two applications, changed logging statements are in files that
have a lower log density than the files containing unchanged
logging statements. When we measure the median file sizes,
we find that logging statements which change more are present
in files with significantly higher SLOC (2×-3× higher). This
difference in SLOC, suggests that large files that are not well
logged are more likely to have unstable logging statements,
than well logged files.�
�

�
�

Developer experience, file ownership, SLOC, and log
density are important metrics for determining whether
a logging statement will change in the future.

9

IV. RELATED WORK

We present prior research that is related to this paper.

A. Log Maintenance Tools

Prior research has explored various approaches in order
to assist developers in maintaining logs. Research by Fu et
al. [32] explores where developers put logging statements
in their code and provides guidelines for more effective
logging. A recent work by Zhu et al. [33] helps developer log
effectively during development and provides a suggestive tool
named Log Advisor, to assist in logging. Yuan et al. [34] show
that logs can be effectively used to diagnose system failures
and provide a tool named Errlog, to proactively add logging
statements. A follow-up work done by Yuan et al. [5] show that
logs need to be improved by providing additional information.
Their tool named Log Enhancer can automatically provide
additional control and data flow parameters into the logs
thereby improving the logs. Log Enhancer can improve the
quality of added logging statements and mitigate the need for
changes later. Though prior research tries to place the most
stable logging statements in software, they do not provide
any insight into why some logging statements are more likely
to be changed. Our paper tries to determine which logging
statements have higher likelihood of being changed and avoid
using such logging statements in the log processing tools.

B. Empirical Studies on Logging Statements

Prior research performs empirical studies to understand the
characteristics of logging statements. Yuan et al. [19] study
the logging characteristics in four open source systems and
finds that logging statements are changed 1.8 times more than
regular code. Shang et al. performed an empirical study on
the evolution of both static logs and logs outputted during
run time [15, 35]. They find that logging statements are co-
evolving with software systems. However, logging statements
are often modified by developers without considering the needs
of operators which even affects the log processing tools which
run on top of the logs produced by these statements. Shang
highlight the fact that there is a gap between operators and
developers of software systems, especially in the leverage of
logs [36]. Furthermore, Shang et al. [37] find that understand-
ing logs is challenging. They examine user mailing lists from
three large open-source projects and find that users of these
systems have various issues in understanding logs outputted
by the system.

The existing empirical studies on logging statements show
that 1) logs are leveraged by developers for different pur-
poses and 2) logging statements are changed extensively by
developers without consideration of other stakeholders, which
affect practitioners and end users. These findings highlight the
need for better understanding of the factors determining the
likelihood of a logging statement changing.

V. THREATS TO VALIDITY

In this section, we present the threats to the validity to our
findings.

External Validity. Our empirical study is performed on Lif-
eray, ActiveMQ, Camel and CloudStack. Though these studied
applications have years of history and large user bases, these
applications are all Java-based. Other languages may not use
logging statements as extensively. Our applications are all open
source and we do not verify the results on any commercial
platform applications. More studies on other domains and
commercial platforms, with other programming languages are
needed to see whether our findings can be generalized.
Construct Validity. Our heuristics to extract logging source
code may not be able to extract every logging statement in
the source code. Even though the studied applications leverage
logging libraries to generate logs at run-time, they may still
use user-defined logs. By manually examining the source code,
we believe that we extract most of the logging statements.
Evaluation on the coverage of our extracted logging statements
can address this threat.

In our study, we only explore the first change after the
introduction of a logging statement. While the first change
is sufficient for deciding whether a logging statement will
change, we need more information to determine how likely it
is going to be changed again. In future work, we will extend
our study to give more specific details about stability of logs
(i.e., how likely will a changed log be changed again).

In our study, we consider renaming of variables, (i.e., ‘Host’
to ‘HostID’) as logging statement change. During renaming of
variables the output logs remain the same and do not affect
log processing tools. In future work, we will extend our study
to remove renaming operations from our analysis.
Internal Validity. Our study is based on the data from Git
repositories of all the studied applications. The quality of
the data contained in the repositories can impact the internal
validity of our study. For example, merging commits or
rewriting the history of the repository (i.e., by rebasing the
history) may affect our results.

Our analysis of the relationship between metrics that are im-
portant factors in predicting the stability of logging statements
cannot claim causal effects, as we are investigating correlation
but not causation. The important factors from our random
forest models only indicate that there exists a relationship
which should be studied in depth in future studies.

VI. CONCLUSION

Logging statements are snippets of code, added by devel-
opers to yield valuable information about the execution of an
application. Logging statements generate their output in logs,
which are used by a plethora of log processing tools to assist
in software testing, performance monitoring and system state
comprehension. These log processing tools are completely
dependent on the logs and hence are affected when logging
statements are changed.

In order to reduce the effort that is required for the main-
tenance of such log processing tools, we examine changes
to logging statements in four open source applications. The
goal of our work is to help developers of log processing tools
determine whether a logging statement is likely to change

10

https://www.researchgate.net/publication/220938683_Improving_Software_Diagnosability_via_Log_Enhancement?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==

in the future. We consider our work an important first step
towards helping developers to build more robust log processing
tools, as knowing whether a log will change in the future
allows developers to let their log processing tools rely on
logs generated by logging statements that are likely to remain
unchanged. The highlights of our work are:

• We find that 20%-45% of logs are changed at least once.
• Our random forest classifier for predicting whether a log

will change achieves a precision of 83%-91% and recall
of 65%-85%.

• Logging statements added by very experienced developer
are less likely to be changed.

• Logging statements added by a developer who owns more
than 75% of a file are less likely to be changed.

• We find that developer experience, file ownership, log
density and SLOC play an important role in determining
the likelihood of log statement changing.

Our findings help in determining the likelihood of a logging
statement changing. Developers can use this knowledge to be
more selective when designing log processing tools around
logging statements.

REFERENCES

[1] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan,
“Detecting large-scale system problems by mining con-
sole logs,” in Proceedings of the ACM SOPS 2009, 22nd
symposium on Operating systems principle, pp. 117–132.

[2] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining
invariants from console logs for system problem detec-
tion,” in Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference, ser. USENIX-
ATC’10. Berkeley, CA, USA: USENIX Association,
2010, pp. 24–24.

[3] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly
detection in distributed systems through unstructured log
analysis,” in Proceedings of the ICDM 2009, Ninth IEEE
International Conference on Data Mining. IEEE, 2009,
pp. 149–158.

[4] H. Malik, H. Hemmati, and A. Hassan, “Automatic
detection of performance deviations in the load testing
of large scale systems,” in Proceedings of(ICSE) 2013,
35th International Conference on Software Engineering,
May 2013, pp. 1012–1021.

[5] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Im-
proving software diagnosability via log enhancement,”
Proceedings of ASPLOS 2011, The 16th Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 3–14, 2011.

[6] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W.
Godfrey, M. Nasser, and P. Flora, “An exploratory study
of the evolution of communicated information about
the execution of large software systems,” Journal of
Software: Evolution and Process, vol. 26, no. 1, pp. 3–26,
2014.

[7] Log4j. [Online]. Available: http://logging.apache.org/
log4j/2.x/

[8] D. Carasso, “Exploring splunk,” published by CITO
Research, New York, USA, ISBN, pp. 978–0, 2012.

[9] Xpolog. [Online]. Available: http://www.xpolog.com/.
[10] X. Xu, I. Weber, L. Bass, L. Zhu, H. Wada, and F. Teng,

“Detecting cloud provisioning errors using an annotated
process model,” in Proceedings of MW4NG 2013, The
8th Workshop on Middleware for Next Generation Inter-
net Computing. ACM, 2013, p. 5.

[11] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and
P. Narasimhan, “Salsa: Analyzing logs as state ma-
chines,” in WASL’08: Proceedings of the 1st USENIX
Conference on Analysis of System Logs. USENIX
Association, 2008, pp. 6–6.

[12] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and
M. Yang, “Chukwa, a large-scale monitoring system,” in
Proceedings of CCA, vol. 8, 2008, pp. 1–5.

[13] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W.
Godfrey, M. Nasser, and P. Flora, “An exploratory study
of the evolution of communicated information about
the execution of large software systems,” Journal of
Software: Evolution and Process, vol. 26, no. 1, pp. 3–26,
2014.

[14] R. Ihaka and R. Gentleman, “R: a language for data
analysis and graphics,” Journal of computational and
graphical statistics, vol. 5, no. 3, pp. 299–314, 1996.

[15] W. Shang, M. Nagappan, and A. E. Hassan, “Studying
the relationship between logging characteristics and the
code quality of platform software,” Empirical Software
Engineering, vol. 20, no. 1, pp. 1–27, 2015.

[16] M. Mednis and M. K. Aurich, “Application of string
similarity ratio and edit distance in automatic metabolite
reconciliation comparing reconstructions and models,”
Biosystems and Information technology, vol. 1, no. 1,
pp. 14–18, 2012.

[17] J. Albert and E. Aliu, “Implementation of the random
forest method for the imaging atmospheric cherenkov
telescope {MAGIC},” Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment, vol. 588,
no. 3, pp. 424 – 432, 2008.

[18] R. Caruana and A. Niculescu-Mizil, “An empirical com-
parison of supervised learning algorithms,” in Proceed-
ings of ICML The 23rd international conference on
Machine learning. ACM, 2006, pp. 161–168.

[19] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging
practices in open-source software,” in Proceedings of
ICSE 2012, The 34th International Conference on Soft-
ware Engineering. IEEE Press, 2012, pp. 102–112.

[20] D. Zhang, K. El Emam, H. Liu et al., “An investigation
into the functional form of the size-defect relationship
for software modules,” IEEE Transactions on Software
Engineering,, vol. 35, no. 2, pp. 293–304, 2009.

[21] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken,
Applied multiple regression/correlation analysis for the
behavioral sciences. Routledge, 2013.

[22] J. H. Zar, Spearman Rank Correlation. John Wiley &

11

https://www.researchgate.net/publication/221344724_Detecting_Large-Scale_System_Problems_by_Mining_Console_Logs?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221344724_Detecting_Large-Scale_System_Problems_by_Mining_Console_Logs?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221344724_Detecting_Large-Scale_System_Problems_by_Mining_Console_Logs?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221344724_Detecting_Large-Scale_System_Problems_by_Mining_Console_Logs?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/228705493_Mining_invariants_from_console_logs_for_system_problem_detection?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/228705493_Mining_invariants_from_console_logs_for_system_problem_detection?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/228705493_Mining_invariants_from_console_logs_for_system_problem_detection?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/228705493_Mining_invariants_from_console_logs_for_system_problem_detection?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/228705493_Mining_invariants_from_console_logs_for_system_problem_detection?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/228705493_Mining_invariants_from_console_logs_for_system_problem_detection?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220765301_Execution_Anomaly_Detection_in_Distributed_Systems_through_Unstructured_Log_Analysis?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220765301_Execution_Anomaly_Detection_in_Distributed_Systems_through_Unstructured_Log_Analysis?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220765301_Execution_Anomaly_Detection_in_Distributed_Systems_through_Unstructured_Log_Analysis?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220765301_Execution_Anomaly_Detection_in_Distributed_Systems_through_Unstructured_Log_Analysis?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220765301_Execution_Anomaly_Detection_in_Distributed_Systems_through_Unstructured_Log_Analysis?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/261314436_Automatic_detection_of_performance_deviations_in_the_load_testing_of_Large_Scale_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/261314436_Automatic_detection_of_performance_deviations_in_the_load_testing_of_Large_Scale_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/261314436_Automatic_detection_of_performance_deviations_in_the_load_testing_of_Large_Scale_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/261314436_Automatic_detection_of_performance_deviations_in_the_load_testing_of_Large_Scale_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/261314436_Automatic_detection_of_performance_deviations_in_the_load_testing_of_Large_Scale_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220938683_Improving_Software_Diagnosability_via_Log_Enhancement?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220938683_Improving_Software_Diagnosability_via_Log_Enhancement?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220938683_Improving_Software_Diagnosability_via_Log_Enhancement?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220938683_Improving_Software_Diagnosability_via_Log_Enhancement?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220938683_Improving_Software_Diagnosability_via_Log_Enhancement?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221200488_An_Exploratory_Study_of_the_Evolution_of_Communicated_Information_about_the_Execution_of_Large_Software_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221200488_An_Exploratory_Study_of_the_Evolution_of_Communicated_Information_about_the_Execution_of_Large_Software_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221200488_An_Exploratory_Study_of_the_Evolution_of_Communicated_Information_about_the_Execution_of_Large_Software_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221200488_An_Exploratory_Study_of_the_Evolution_of_Communicated_Information_about_the_Execution_of_Large_Software_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221200488_An_Exploratory_Study_of_the_Evolution_of_Communicated_Information_about_the_Execution_of_Large_Software_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/221200488_An_Exploratory_Study_of_the_Evolution_of_Communicated_Information_about_the_Execution_of_Large_Software_Systems?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220851842_SALSA_Analyzing_Logs_as_StAte_Machines_1?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220851842_SALSA_Analyzing_Logs_as_StAte_Machines_1?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220851842_SALSA_Analyzing_Logs_as_StAte_Machines_1?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220851842_SALSA_Analyzing_Logs_as_StAte_Machines_1?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220851842_SALSA_Analyzing_Logs_as_StAte_Machines_1?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==
https://www.researchgate.net/publication/220851842_SALSA_Analyzing_Logs_as_StAte_Machines_1?el=1_x_8&enrichId=rgreq-ff96aa87-877e-4080-8ec7-04803e7d87eb&enrichSource=Y292ZXJQYWdlOzI5NjY5NjcyMDtBUzozMzk5MDIyOTEwMzgyMTJAMTQ1ODA1MDQyOTUyMQ==

Sons, Ltd, 2005.
[23] R. J. Serfling, Approximation theorems of mathematical

statistics. John Wiley & Sons, 2009, vol. 162.
[24] L. Bigliardi, M. Lanza, A. Bacchelli, M. D’Ambros, and

A. Mocci, “Quantitatively exploring non-code software
artifacts,” in Quality Software (QSIC), 2014 14th Inter-
national Conference on. IEEE, 2014, pp. 286–295.

[25] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan,
“An empirical study of the impact of modern code
review practices on software quality,” Empirical Software
Engineering, p. To appear, 2015.

[26] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. New-
ton, MA, USA: Butterworth-Heinemann, 1979.

[27] G. Hripcsak and A. S. Rothschild, “Agreement, the f-
measure, and reliability in information retrieval,” Jour-
nal of the American Medical Informatics Association,
vol. 12, no. 3, pp. 296–298, 2005.

[28] D. S. Wilks, Statistical methods in the atmospheric
sciences. Academic press, 2011, vol. 100.

[29] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and
A. Zeileis, “Conditional variable importance for random
forests,” BMC bioinformatics, vol. 9, no. 1, p. 307, 2008.

[30] C. Tantithamthavorn, S. McIntosh, A. E. Hassan,
and K. Matsumoto, “An Empirical Comparison of
Model Validation Techniques for Defect Prediction
Model,” http://sailhome.cs.queensu.ca/replication/
kla/model-validation.pdf, 2015, under Review at
Transactions on Software Engineering (TSE).

[31] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I.
Sjøberg, “A systematic review of effect size in soft-
ware engineering experiments,” Information and Soft-
ware Technology, vol. 49, no. 11, pp. 1073–1086, 2007.

[32] Q. Fu, J. Zhu, W. Hu, J.-G. L. R. Ding, Q. Lin, D. Zhang,
and T. Xie, “Where do developers log? an empirical study
on logging practices in industry,” in Proceedings of ICSE
Companion 2014: The 36th International Conference on
Software Engineering,, pp. Pages 24–33.

[33] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang,
“Learning to log: Helping developers make informed
logging decisions,” in Proceedings of ICSE 2015, The
37th International Conference on Software Engineering
- Volume 1. Piscataway, NJ, USA: IEEE Press, 2015,
pp. 415–425.

[34] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang,
Y. Zhou, and S. Savage, “Be conservative: enhancing
failure diagnosis with proactive logging,” in in OSDI,
2012, pp. 293–306.

[35] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W.
Godfrey, M. Nasser, and P. Flora, “An exploratory study
of the evolution of communicated information about
the execution of large software systems,” Journal of
Software: Evolution and Process, vol. 26, no. 1, pp. 3–26,
2014.

[36] W. Shang, “Bridging the divide between software devel-
opers and operators using logs,” in Proceedings of ICSE
2012, The 34th International Conference on Software

Engineering.
[37] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang,

“Understanding log lines using development knowledge,”
in Proceedings of ICSME 2014: The International Con-
ference on Software Maintenance and Evolution,. IEEE,
2014, pp. 21–30.

12

