
Using Indexed Sequence Diagrams to Recover the Behaviour of AJAX Applications

Shane McIntosh, Bram Adams, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University, Canada
{mcintosh, bram, ahmed}@cs.queensu.ca

Ying Zou
Dept. of Electrical and Computer Engineering (ECE)

Queen’s University, Canada
ying.zou@queensu.ca

Abstract—AJAX is an asynchronous client-side technology
that enables feature-rich, interactive Web 2.0 applications.
AJAX applications and technologies are very complex com-
pared to classic web applications, having to cope with asyn-
chronous communication over (unstable) network connections.
Yet, AJAX developers still rely on the ad hoc development
processes and techniques of the early ’00s. To determine
how the inherent complexity of AJAX impacts the design
and maintenance of AJAX applications, this paper studies
the amount of code reuse across the different features of an
AJAX application. Furthermore, we analyze how the design
of existing AJAX systems deal with AJAX-specific crosscutting
concerns, such as handling the loss of network connectivity.
We use dynamic analysis to recover the run-time behaviour of
AJAX applications in the form of sequence diagrams that are
indexed by the different asynchronous communication states
that the application can be in. Exploratory case studies on
three AJAX applications show that (1) a majority (60–90%)
of the run-time behaviour is shared, theoretically simplifying
maintenance, and (2) that the studied projects seem unprepared
for loss of network connectivity, often presenting the user with
an incorrect view of the application state.

I. INTRODUCTION

Web applications are ubiquitous on the world wide web,
driving many popular web sites, such as Amazon, GMail,
and eBay. “Web 2.0” [1] is a blanket term used to describe
the revolutionary change over the last seven years from static
and document-centric web applications to dynamic and user-
centric ones. Web 2.0 enables the design of highly interactive
User Interfaces (UIs) for web applications.

At the heart of “Web 2.0” are Asynchronous Javascript
and XML (AJAX) [2], a web technology used to decouple
the user interface from web server processing. Traditional
server communication forces users to wait until a request
has been delivered and processed, whereas AJAX requests
are passed to the web server asynchronously, without inter-
rupting the user experience.

Despite the explosive growth of AJAX applications, their
development is still plagued by the same fundamental prob-
lems that hamper classic web application development. Web
applications are known for being developed in a rapidly
changing environment that does not lend itself to the use of
established software engineering practices [3]. Development
cycles are usually short with a high employee turnover
rate [4]. AJAX applications are suspected to suffer from

the same shortcomings [5]. Consider the plight of a novice
developer who must maintain an application that is sparsely
documented and lacks senior personnel.

In addition, AJAX introduces some important challenges
of its own. Developers have difficulty understanding the
complex flow of AJAX applications, because of the mixture
of web technologies like JavaScript, CSS and XML [5],
and the crosscutting nature of asynchronous communication.
Recent research recognizes that the current AJAX develop-
ment tools are not sufficient for maintaining AJAX applica-
tions. Kiciman et al. [6] develop AjaxScope, a policy-based
Javascript instrumentation proxy for monitoring the client-
side behaviour of AJAX applications. Schrock discusses the
rather limited debugging options available for AJAX appli-
cations in production environments [7]. Mesbah et al. use
CrawlJAX to infer the flow graph of AJAX applications [8]
and automate the testing of functionality [9]. Matthijssen et
al. use FireDetective to visualize AJAX trace data and aid
developers in understanding AJAX applications [5].

As AJAX applications slowly replace desktop applica-
tions, and more and more users begin to rely on them,
the maintenance of AJAX applications becomes critical.
Hence, we need to study the quality of the design of current
AJAX applications. For example, classic web applications
are known to have ad hoc designs, without much component
reuse (except for the browser and web server). Although in
the AJAX world, there seems to be a movement towards
standardization of libraries, it is not clear how AJAX systems
are internally structured. Similarly, asynchronous commu-
nication plays an important role in the design of AJAX
applications. Asynchronous communication is a crosscutting
concern, since connections can be initiated from several
different locations in an application. Loss of connection is
even more critical, since connection failure might impact the
whole system, not only the initiator sites. The way in which
AJAX applications deal with these crosscutting concerns
may have a large impact on future maintenance.

To analyze code reuse and crosscutting in the design of
AJAX applications, we present an approach that recovers
the run-time behaviour of an AJAX application as a set of
indexed sequence diagrams. An indexed sequence diagram
for a particular feature annotates each function invocation in
the application with the asynchronous communication state

in which the invocation was made. This allows us to analyze
the distribution of functionality across communication states,
and to compare this distribution between different features
or even between different scenarios of the same feature
(e.g., with and without server connectivity). We perform
exploratory case studies on three AJAX applications to
address two research questions:
RQ1) How much behaviour is shared amongst features of

AJAX applications?
Motivation – Recovered architecture diagrams have
been shown to aid developers in understanding their
systems [3]. However, prior work suggests that static
analysis of (AJAX) web applications may not suffice
due to dynamic code generated at run-time [5, 10].
Hence, we are interested in using dynamic analysis to
recover the run-time behaviour of features in AJAX
applications.
Results – 60–90% of the functions in the studied
projects are shared amongst features. In addition to
basic asynchronous communication logic, the studied
projects have dedicated framework components for
batching of server requests and prevention of request
flooding.

RQ2) How do AJAX applications cope with the network
connectivity crosscutting concern?
Motivation – The current focus of AJAX research
assumes that the connectivity between the client and
server is available. As AJAX clients become more
capable, handling a (temporary) lack of server con-
nectivity becomes a crosscutting concern.
Results – Without network connectivity, the client
component of an AJAX application cannot commu-
nicate with the server. In this disconnected state, the
client component of all studied AJAX applications be-
came out-of-sync with the server state, and presented
users with an incorrect view of the state of the system.

This paper provides the following contributions:
• A semi-automatic approach to recover the framework

and feature-specific behaviour of AJAX applications;
• A comparative study of the design of the Oceans, Tudu

Lists, and Reddit AJAX applications;
• An analysis of the connectivity crosscutting concern.
The paper is organized as follows. Section II covers

key AJAX application concepts. Section III presents our
approach for recovering and comparing the behaviour of
features in AJAX applications. Section IV presents the setup
and results of exploratory case studies on three AJAX
systems to address the two research questions. Section V
discusses the threats to the validity of our work. Section VI
covers related work. Finally, Section VII draws conclusions.

II. BACKGROUND

This section provides an overview of AJAX technology
and terminology.

A. Overview of AJAX Concepts
Figure 1 and 2 compare the flow of events in AJAX and

classic web applications. Under the classic web application
model, a user points a web browser at a Uniform Resource
Locator (URL), which sends an HyperText Transfer Protocol
(HTTP) request to a web server. The web server processes
the request by executing server-side scripts and potentially
contacting back-end databases. The server constructs an
HTML response and sends it to the client. The user’s
browser is then reloaded with the new HTML document.
The user may not simultaneously interact with the web page
while the request is being sent or processed, since the web
page in view will be discarded once the response is received,
and subsequent interaction will simply override previous
interactions.

The AJAX design reduces idle user time by allowing
the user to interact with a dynamic web page while new
content is being retrieved and processed. In the AJAX model
(Figure 2), the user triggers a Javascript event by interacting
with web page elements. The Javascript code sends an
asynchronous HTTP request to the web server. The web
server processes the request using a procedure similar to the
classic server model, with the exception that the response
is sent in XML. Once the response is entirely received,
the AJAX engine will trigger a Javascript callback function
that may dynamically update the browser by manipulating
the data structure representing the HTML elements of the
current web page (i.e., the DOM). The user may continue
to interact with the page in view while the DOM is being
updated, since the page will not be discarded.

B. AJAX Application Components
As shown in Figure 2, a typical AJAX application is

composed of two client side components [11], i.e., the user
interface and AJAX engine. These components communicate
asynchronously with the web server component.

The User Interface (UI) is made up of components that
are laid out in HTML and decorated using CSS. The AJAX
engine is a Javascript component that handles the user-
triggered events and sends asynchronous requests to the web
server. The asynchronous request transmission details and
callback function are encoded using the XMLHttpRequest
object (XHR) specified by the W3C [12]. The XHR has five
possible states with the following values:

1) The initial state (UNSENT),
2) The open connection state (OPENED),
3) The state indicating that the server response headers

have been received (HEADERS RECEIVED),
4) The state that indicates that the response body is being

retrieved (LOADING), and
5) The state that indicates that the server response has

been received (DONE).
The web server component consists of server-side request-

processing scripts. The server component may communicate

Time

User Activity

Client

Server

User Activity

Server-Side
Processing

Request

W
eb

pa
ge

Figure 1: Event Flow in Classic Web Applications [2].

with back-end databases to fulfil a request and subsequently
respond to the client, triggering a callback function in the
AJAX engine to update the UI. This paper focuses on the
AJAX engine components.

III. RECOVERING THE BEHAVIOUR OF AJAX
APPLICATIONS

This section presents our approach for recovering the run-
time behaviour of AJAX applications. Our approach recovers
execution traces for a set of features in an AJAX application,
then abstracts these traces into indexed sequence diagrams
that have been annotated with the XHR states active during
each function call. By comparing the diagrams of different
features per XHR state, shared logic (i.e., framework logic)
can be distinguished from feature-specific logic. By compar-
ing the diagrams of one feature under different conditions
(such as with and without network connectivity) per XHR
state, the impact of these conditions on the application’s
design can be identified.

Figure 3 shows an overview of our approach, which is
composed of six subtasks: (1) Instrument the web browser,
(2) Drive the AJAX application through the user actions that
compose a feature, (3) Semi-automatically filter the trace
data, (4) Group function calls per XHR state, (5) Compare
the recovered feature traces to separate framework and
feature-specific functionality, and (6) Visualize the results.

In the following subsections, we elaborate on the above
subtasks in detail.

A. Browser Instrumentation

In order to produce a trace of Javascript function calls,
we equipped the Mozilla Firefox web browser with DTrace
functionality and developed a DTrace instrumentation script.

DTrace [13] is a dynamic tracing framework developed
by Oracle. It promotes “software observability” [14] by
allowing DTrace developers to bind program logic to loca-
tions of interest (“probes”) embedded in a DTrace-compliant
program. The Mozilla suite (Firefox included) is DTrace-
compliant, although the DTrace probes are turned off in
public releases. We built Firefox 3.6 with the appropriate
feature flag to enable DTrace (--enable-dtrace), and wrote a
DTrace instrumentation script to track Javascript function

Time

Client

Server Server-Side
Processing

Request X
M

L

User Activity

UI

Client-side Processing

AJAX Engine

Server-Side
Processing

Request

XM
L

Figure 2: Event Flow in AJAX Web Applications [2].

entry and exit probes inside Firefox. Our DTrace script
prints the file name, function name, and the line number for
each function entry and exit. As Javascript functions may
be unnamed or anonymous, we use the file name and line
number to assign an identifier to each function call. Similar
to Matthijssen et al. [5], we use the variable identifiers that
unnamed functions are assigned to to uniquely identify them
in our trace data.

B. Exercising a Feature

We drive through the set of user actions comprising a
selected feature using our DTrace-enabled browser. Figure 4
shows an example of such a feature. After navigating to the
Google web page, the user will: (1) change focus to the
search text field by clicking on it or tabbing through page
elements; then (2) begin typing “toronto blue jays”. As a
result, the user sees a drop down menu with similar Google
queries (left column) and the approximate number of results
they yield (right column).

We produce a trace log using our DTrace script while
exercising a feature. This log contains all of the Javascript
function calls listed in the order of execution. This process
is repeated for each feature in the AJAX application.

C. Semi-automatic Trace Filtering

The raw trace data gathered in the previous subtask is
too noisy to derive behavioural information and must be
processed to extract meaningful Javascript interactions.

Similar to Di Lucca et al. [15, 16], our data filtering
process is semi-automatic. The process is divided into two
passes. During the first pass, internal browser function calls
are filtered automatically. For example, code responsible for
updating web page history is discarded. After this first pass,
only the application code and third-party library function
calls remain. The second filtering pass is initially manual,
and removes the function calls within third-party library
functions, since an application developer typically is not
concerned with the functions supporting a library function
call. If the library calls are known in advance, the second

Feature N
Exercise
Feature

Data
Post-

Processing

Compare
Recovered
Features

F1 F2
f1()

Feature 1

Feature 2
State

Activity
Table

Generation

Instrument
Web

Browser

Figure 3: An overview of our approach for identifying features in AJAX applications.

filtering pass can be automated as well. After completing
the two filtering phases, what remains is the trace of the
executed application code and third-party API function calls.

D. State Activity Table Generation

Since each AJAX request cycles through five XHR states
and each feature centers around (an) AJAX request(s), we
group the filtered function trace by the state of the relevant
XHR object at the time of invocation. This allows us to
record which functions are executed in the context of each
XHR state. Each feature can be represented by a state
activity table, whose columns contain a list of function
names associated with a particular state.

E. Comparing the Recovered Features

Each of the preceding steps are repeated for each ap-
plication feature, producing a set of feature-specific state
activity tables. We derive the common framework behaviour
of an AJAX system (shared by all its features) by calculating
the intersection of the set of function calls in all feature
behaviour sets. The calls in the intersection are considered
to be framework behaviour, the other function calls are con-
sidered to be feature-specific behaviour. The output of this
phase is a state activity table for the framework behaviour
as well as a set of feature-specific tables.

F. Visualization

We visualize the framework and feature behaviour of each
AJAX feature as a sequence diagram annotated with XHR
state changes. We call these diagrams indexed sequence
diagrams, since the limited set of states provide an index into
the potentially large sequence diagrams. In order to produce
these diagrams, the filtered trace data must be translated
into the right format. In our study, we use the TraceModeler
tool [17] for sequence diagram visualization. TraceModeler
uses its own text-based file format (.tmt) that we convert
our data into. In the generated sequence diagrams, Javascript
files are represented as sequence diagram lifelines and the
function calls are represented as messages passed between
the files. States are delimited by means of horizontal lines
across the diagrams, and labeled with their name.

IV. EXPLORATORY CASE STUDIES

We present the results of our exploratory case studies in
this section.

User begins typing
“Toronto blue jays”

Query suggestions based on
 previous queries appear

Figure 4: An example of AJAX functionality (Google Similar).

Studied Projects

To address our two research questions, we selected three
AJAX applications of different sizes and domain. Oceans
is an example of a use of AJAX-for-website-decoration,
Tudu Lists is a “fat” AJAX application (i.e., an application
with significant client side functionality), and Reddit is a
collaborative crowd-sourcing tool.

Table I shows the characteristics of each studied project.
The LOC counts are raw line counts of the Javascript files
in the projects. An asterisk is placed next to Tudu Lists,
since the Javascript files are generated from Java sources.
In this case, we counted the lines in the Java files using the
SLOCCount utility [18].

Table I also shows the characteristics of the feature traces
explored in each research question. Each feature trace was
repeated three times to ensure the validity of the trace log.
Each line in the trace was categorized as either part of
Firefox (FF), a third-party library (Lib), or application code
(App). We use the Signal to Noise Ratio to measure how
much of the traced code is App code (SNR =

App
Total).

Overall, the measure is quite low, indicating that the raw
data is very noisy.

In our exploratory case studies, we attached meaning to
the functions in the recovered feature behaviour by manually
inspecting the executed application code.

RQ1) How much behaviour is shared amongst features of
AJAX applications?

We recover and discuss the framework- and feature-
specific behaviour in each AJAX application’s design to

UNSENT

OPENED

HEADERS_
RECEIVED

LOADING

DONE

(a) Oceans

OPENED

UNSENT

HEADERS_
RECEIVED

LOADING

DONE

(b) Reddit

LOADING

HEADERS_RECEIVEDUNSENT

OPENED

DONE

(c) Tudu Lists

Figure 5: Recovered framework and feature-specific behaviour.

Table I: Characteristics of the Studied Projects.

Oceans Tudu Lists Reddit
Domain Menu Bar Time Management Social News

LOC 6,744 9,380* 11,368
FF Lib App Total SNR FF Lib App Total SNR FF Lib App Total SNR

RQ1 Trace 7,193 584 11 7,788 0.0014 4,039 0 75 4,114 0.018 5,068 1,569 36 6,673 0.0054
RQ2 Trace 2,035 85 11 2,131 0.0052 2,488 0 42 2,530 0.017 860 534 13 1,407 0.0092

address this question. To save space and improve the clarity
of our explanation, we do not show framework- and feature-
specific sequence diagrams separately, instead we overlay
an application’s framework sequence diagram with the se-
quence diagram of a representative feature. In Figure 5,
feature-specific calls are shown in boxes, and state changes
are denoted with dashed lines and labelled ellipses.

To measure the proportion of framework and feature-
specific behaviour in an AJAX application, we divide the
number of functions in a particular state of the framework
behaviour by the size of the union of all functions executed
by any feature for that state, and report this proportion
as a percentage. A high framework coverage percentage is
desirable, as it indicates that there is high code reuse among
features. A low percentage is undesirable as it indicates little
code reuse amongst features. Table III reports the framework
coverage percentages for each studied project.

Oceans: The Oceans web application only has one AJAX
feature. This feature is responsible for menu bar navigation.
Using the menu bar, a user selects a menu item to explore.
As a sanity test for our approach, we recovered the behaviour
for multiple features by clicking different menu items. Note
that this does not exercise different features, but rather
exercises a different instance of the same feature.

As indicated by row 1 of Table III, there were no
differences between the two recovered sequence diagrams.
This indicates that the behaviour supporting the retrieval
of content for each menu item is implemented using the
same functions, executed in the same order. Code inspection
guided by the recovered indexed sequence diagram reveals
that the content to be retrieved is controlled by a parameter
passed to the getcontent() function.

The framework sequence diagram flows from state to state
as shown in Figure 5a. We briefly discuss key parts of the
flow below. Function calls 2 and 3 process the event and
call functions to prepare an XHR that will be sent to the
server. Function calls 4 and 5 establish a new connection
to the server and send the request. Function call 7 updates
the DOM to reflect that a new menu item has been selected,
while the server processes the request for the new menu
item’s content. Functions 8 and 9 respond to XHR state
changes that are not configured to be handled by the XHR
callback. The final XHR state change at function 10 from
LOADING to DONE indicates that the server response has
been completely retrieved. Finally, function 11 updates the
DOM with the new content.

The Oceans framework behaviour is summarized in Ta-

ble II. It comprises the following subfeatures: Function calls
1-4 and 5-7 are responsible for preparing and sending a “new
content” request to the server, while function calls 8 and 9
prepare for and receive the server response. Function calls
10 and 11 are responsible for updating the user interface
with the retrieved content.

Tudu Lists: We examined the task completion, list cre-
ation/removal, and task creation/removal features of the
Tudu Lists application. We use the “Task completion”
feature to illustrate the Tudu Lists framework behaviour.
Figure 5c shows the recovered indexed sequence diagram,
split into two parts.

The Tudu Lists indexed sequence diagram in Figure 5c
is composed of three components: (1) prepare and send the
request (Part 1, function calls 1-14); (2) retrieve response
packets (Part 2, function calls 1-3); and (3) handle the
response (Part 2, functions calls 4-12). Interestingly, part 1
of the Tudu Lists application uses a job batching mechanism.
Function call 3 creates a batch job and places a “Loading...”
element on the UI as a placeholder until the server responds
and the task is complete, function call 4 populates the job
with the necessary details (i.e., the task that has to be
completed), and function call 6 completes the batch job by
sending it to the server by issuing function call 7. The XHR
is then constructed with function call 8, the connection is
initiated in function calls 9-11, and the request is sent in
function calls 12-14. In Figure 5c Part 2, function calls 5-11
update the DOM with the retrieved content. Finally, function
call 12 checks that a response has been received for every
item in the batch job and function call 13 cleans up the
user interface, removing a “Loading...” placeholder that was
added during part 1, function call 3.

The majority of the task item completion feature is a part
of the framework behaviour. The batch job framework that is
used to create, populate and send the XHR, hides the details
of the request being sent behind a layer of abstraction.

Conversely, the feature-specific behaviour consists of only
two function calls. Figure 5c Part 1 shows the feature-
specific functions 2 and 4, which occur in XHR state
UNSENT and refer to feature-specific functions such as
addTodo() for the task creation feature or removeTodoList()
for the list removal feature. Part 2 only differs in the number
of loop iterations required to retrieve the server response.

As a result, the Tudu Lists application has framework
behaviour coverage values ≥ 80.5% (Table III). This high
level of behavioural reuse amongst features may make Tudu
Lists easier to maintain than a system with little reuse.

UNSENT

OPENED

LOADING

HDR_RCVD

DONE

Figure 6: Reddit ‘Submit Link’ Feature

Table II: Framework State Activity Table - Oceans.

UNSENT OPENED HDR RECV LOADING DONE
1. onclick 5. send 8. orsc 9. orsc 10. orsc

2. getcontent 6. orsc 11. callback
3. post 7. clicked
4. open

Reddit: Reddit is a social news website where users may
share links to content in designated discussion areas or
“reddits” about politics, world news, science, programming,
and many more topics. Users share their thoughts on the
content in comment areas that are created for each link.
Users also influence the ranking of links on the Reddit
web page and of comments in designated comment areas
by voting them up or down.

We extract the Reddit framework behaviour by comparing
the behaviour of the “upvote”, “downvote”, link submission,
and withdrawal features. Table III shows that the framework
behaviour has lower coverage than that of Oceans or Tudu
Lists. We use Figures 5b and 6 to show the key areas of
differing functionality in the behaviour of Reddit features.

The recovered upvote feature behaviour consists of four
components, as follows. Function calls 1-7 compose the
AJAX request, function calls 8-9 are responsible for updat-
ing the user interface. Functions 10 and 11 are repeated 18
times while the client retrieves the server response. Finally,
function calls 12-15 handle the server response.

The framework behaviour of Reddit consists of three
components: (1) the request submission, (2) retrieval of the
server response, and (3) handling of the server response.
Function call 4 in Figure 5b shows a flood prevention
component of the Reddit application. To protect the Reddit
web server(s) from being flooded by a potential attacker,

Table III: Framework Coverage of Three AJAX Systems.

UNSENT OPENED HDR RECV LOADING DONE
O 100% 100% 100% 100% 100%
T 80.5% 100% 100% 100% 100%
R 50.0% 58.3% 100% 100% 62.5%

the rate limit() function blocks rapid submissions before
they are sent to the server. Rates are limited according to
the action, i.e., one vote every 333 milliseconds and one
comment every 5 seconds.

There is no difference between the behaviour of the
upvoting and downvoting features. However, the differences
emerge when comparing the voting features to the other
features. Figure 6 emphasizes the differences in the link
submission feature compared to the voting feature in Fig-
ure 5b. Structurally, the close menus and XHR preparation
behaviour components are in reversed order due to the
different implementation details of each feature (function
call 9 in Fig. 5b and 2 in Fig. 6). In the link submission
feature, the user is redirected to the comments area for
the newly submitted link after the server response has been
received. The show button() function (function call 6 in part
2) is called four times to display the user interface buttons
on the new page. An additional onload() event (function call
7 in part 2) fires after the browser finishes loading the new
page to switch the display context to the appropriate window.

As shown in row 3 of Table III, Reddit often has coverage
values less than 65% with the exception of the HEAD-
ERS RECEIVED and LOADING states, which contain no
application code and offer little opportunity for deviation.
Due to the low level of behaviour reuse among features,
Reddit may require more effort to maintain than a system
with high behaviour reuse.

We found that AJAX projects may have high frame-
work behaviour coverage, an appealing quality for
maintainers. Yet, some AJAX projects may have a
low framework behaviour coverage, which may be
less appealing for maintainers.

RQ2) How do AJAX applications cope with the network
connectivity crosscutting concern?

To analyze the AJAX client’s reaction to loss of network
connectivity, we simulated disruptions to network connectiv-
ity. Using our comparison approach, the behaviour of each
application under normal conditions is compared against the
behaviour without connectivity to identify the areas of the
design that were specific to handling connectivity issues.

Oceans: Without a connection to the server, the AJAX
client cannot retrieve new content when the user requests it.
As such, the best response for the Oceans application would
be to inform the user of the connection issue.

Without network connectivity, the Oceans web applica-
tion simply cleared the content area, without producing a
warning, or notifying the user. We investigated further by
using our comparison approach to compare the sequence
diagrams both with connectivity and without, and were
surprised to find that the diagrams were not different at all.
Using the indexed sequence diagrams to drive a manual code
inspection, we found that the response handling function
(function call 10 in Figure 5a) did not check whether or
not the server had correctly responded to an asynchronous
call. Instead, the response handler populated the content
area with the empty contents of the failed response object.
While connectivity is not a direct concern of the Oceans
application, its unpreparedness for this case is unsettling.

Tudu Lists: We expect Tudu Lists to have a more rigorous
response to loss of server connectivity, as a user may make
many edits to task lists before noticing an issue. Loss of
those edits would be frustrating for a user.

After logging into the Tudu Lists system, we disabled the
network connection. Without connectivity, we selected a task
item and clicked the “completed” check box. Immediately,
the application behaviour was noticeably different. The
“Loading...” element that appeared for the duration of the
AJAX request in RQ1 merely flashed on the screen for
a moment before disappearing. The “completed” checkbox
remained marked, which may lead users to believe that
the request had been completed. The system offered no
indication of failure to the user. After reconnecting the
machine to the internet, we logged out and back into the
Tudu Lists account to find that the checkbox we marked was
now unmarked. When testing the task addition and removal
features, the same “Loading...” issue occurred, however the
user interface was left in the correct, unmodified state.

Comparing the recovered indexed sequence diagram to
the one produced in RQ1 revealed that a new execution path
was undertaken. Figure 5c part 1 was exactly the same in

both cases. This was expected, since the two XHR states
traversed (UNSENT and OPENED) were simply responsible
for sending the request. In Part 2, the LOADING state is
skipped meaning function calls 2 and 3 no longer exist.
The new execution path begins in the stateChange() handler,
which immediately calls the handleWarning() function. This
handleWarning() function calls a defaultWarningHandler() to
handle the warning, but this function simply logs a debug-
ging message to the browser console. Eventually, clean-up
functions are called.

The debug response indicates that while the Tudu Lists
system is prepared for the occurrence of extreme conditions,
it is not prepared to handle the failed connection case
for the task completion feature. While it may be argued
that presenting a user with an error message seems abrupt,
presenting the user with an out-of-sync user interface, i.e.,
leaving the “completed” box checked, is much worse.

Reddit: When we examined the voting features in an
offline state, we could not detect a difference in the Reddit
user interface. The arrow that was clicked while offline
changed colour and the vote count was changed just as it
did when a connection was successfully made.

Comparing the offline indexed sequence diagram to the
online one from RQ1, we see that Reddit is structured to
handle errors much like Tudu Lists is. As expected, the two
functions that are invoked before the request is sent to the
server are identical to the online diagram, but the response
retrieval and handling functions differ. The response retrieval
only iterates once through the loop shown in function 10 of
Figure 5b, since there is no server response. The final state
change at function 11 calls a handleError() function that
triggers an ‘ajaxError’ signal. Once again, an error handling
skeleton seems to be in place but a real error recovery
implementation seems to be lacking. The ajaxError signal
is caught by a default error handling function that does not
produce a user notification.

Similar to the result from Tudu Lists, the user interface
is left out-of-sync with the server state. The arrow that was
clicked was left coloured and the vote count was modified.
The user was not notified of the communication error, which
may lead them to believe that their vote has been counted.

In the disconnected state, the user interface of the
studied AJAX applications were typically left out of
sync with the server state.

Discussion: The studied applications seem unprepared
to operate correctly in offline mode. Goncalves finds that
identifying the correct behaviour for offline web applications
is a non-trivial problem [19, 20]. Offline web application
behaviour requires explicit API calls to offline frameworks
(e.g., Google Gears [21]). Google recommends that users are
made aware when an online-to-offline switch happens, so
that they can adjust their usage accordingly. This behaviour
was not observed with any of the studied applications.

V. THREATS TO VALIDITY

Our feature recovery is based on being able to reconstruct
a single thread of sequential execution. Both threading and
multicore features of the Firefox browser were turned off at
compile time. As a result, our analysis may be skewed by
function calls that were flattened into one thread, but usually
occur simultaneously in a multi-threaded environment.

We chose AJAX applications from three different domains
to help balance our exploratory case study. These applica-
tions do however share a common thread of openness and
availability of source code. It is possible that the results may
not be reflective of all AJAX applications.

In our study, we ignore the server side of AJAX ap-
plications in lieu of a more thorough investigation of the
client side behaviour. Current web application recovery
approaches [3] or more dedicated AJAX approaches [5] can
be used to analyze the server side interaction.

In practice, Javascript code is often obfuscated to protect
the authors’ intellectual property, by replacing meaningful
function and variable identifiers with random strings. Since
multiple functions may reside on one line, our approach
cannot be used to extract the behaviour of obfuscated AJAX
systems accurately.

Our dynamic analysis is limited to the code executed for
each analyzed feature, and as such may not cover the entirety
of an AJAX application. Furthermore, our selection (and
exclusion) of features for analysis may also bias our results.
However, we collected traces for a variety of features from
each application to combat biases such as these.

VI. RELATED WORK

Our work was initially inspired by Hassan et al. [3],
who present an approach to recover the architecture of web
applications. However, static design recovery approaches
may not scale to AJAX applications, since AJAX interac-
tion may be dynamically generated. We propose a feature
identification approach for AJAX applications to bridge the
gap between high-level web application data recovery and
high-level AJAX application data recovery.

Second, our approach was influenced by Antoniol et
al. [10], who discuss an approach to feature identification
in large, multi-threaded applications. Their approach uses
processor emulation, knowledge filtering, and probabilistic
ranking to collect and analyze the dynamic data generated
by highly complex applications. In our study, we do not
address the concurrency problem directly, but rather force
our web browser to operate using one thread of execution.
Furthermore, Antoniol et al. show that recovered feature
architectures (i.e., micro-architectures) that conform to a
common meta-model can be programmatically compared.
We used UML sequence diagrams as a meta-model that our
dynamic data conforms to.

As mentioned above, we use annotated UML sequence
diagrams to assist in explaining recovered framework and

feature-specific logic. The concept of sequence diagram
recovery was inspired by Briand et al. [22, 23]. They
present an approach to reverse-engineer sequence diagrams
from object-oriented systems using code instrumentation.
We use a similar approach to recover sequence diagrams
from Javascript components of AJAX applications, but rather
than using code instrumentation, we use the DTrace dynamic
tracing framework to provide tracing information. This frees
our approach from having to make source code modifications
or special compilations.

Mesbah et al. present CrawlJAX [24], a tool for crawling
and automatically testing AJAX applications. CrawlJAX
infers a state flow graph of an AJAX application by auto-
matically interacting with web page elements and detecting
DOM modifications [8, 9]. Unfortunately, due to platform
incompatibilities of CrawlJAX (Windows/IE) and DTrace
(Solaris or Mac OS X/Firefox), we could not leverage the
CrawlJAX tool.

Amalfitano et al. present DynaRIA [25], a dynamic analy-
sis tool designed for AJAX application analysis. They illus-
trate the utility of DynaRIA through analysis of the run-time
behaviour of real AJAX applications. We also analyze the
run-time behaviour of AJAX applications through dynamic
analysis, however we focus on extracting the framework
behaviour shared amongst features, as well as analyzing the
offline behaviour of AJAX applications.

Matthijssen et al. discuss FireDetective, a tool for visual-
izing an AJAX application workflow to assist programmers
in understanding AJAX applications [5]. They focus on
improving program comprehension by visualizing a single
feature at a time, while we recover a framework core
and feature-specific extensions to conceptualize the whole
program design.

VII. CONCLUSIONS

AJAX web applications inherit development challenges
of classic web applications, and present new ones. We
investigated the impact of these challenges on the design
and maintenance of AJAX systems. Our analysis is based
on the recovery of the run-time behaviour of AJAX systems,
and visualization of this behaviour as state-indexed sequence
diagrams. By comparing the diagrams across features and
across working conditions, we are able to derive the frame-
work behaviour shared by all features and the feature-
specific behaviour of an AJAX system. Also, we use our
approach to study the impact of the network connectivity
crosscutting concern on the design of an AJAX system.

Through an exploratory case study on three AJAX appli-
cations, we made the following observations:

• Large amounts of behavioural reuse observed in the
Tudu Lists and Oceans applications may make them
easier to maintain.

• Client connectivity issues are generally not handled in
an appropriate manner. In the studied projects, the client

component was either completely unprepared for such a
response (i.e., Oceans) or more often, the user interface
was out-of-sync with the server state (i.e., Tudu Lists
and Reddit).

We are actively investigating other techniques for iden-
tifying feature-specific behaviour using Formal Concept
Analysis (FCA), as inspired by Eisenbarth et al. [26].

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
fruitful suggestions on earlier revisions of this paper.

REFERENCES

[1] D. DiNucci, “Fragmented Future,” Decision Processes,
vol. 50, no. 2, pp. 179–211, 1999.

[2] J. Garrett, “Ajax: A New Ap-
proach to Web Applications,”
http://adaptivepath.com/ideas/essays/archives/000385.php,
viewed on: 30-Jul-2011.

[3] A. E. Hassan and R. C. Holt, “Architecture Recovery
of Web Applications,” in Proc. of the 24th Int’l Conf.
on Software Engineering (ICSE). ACM, 2002, pp.
349–362.

[4] R. Konrad, “Tech employees jumping jobs faster,”
http://news.cnet.com/2100-1017-241914.html, viewed
on: 30-Jul-2011.

[5] N. Matthijssen, A. Zaidman, M.-A. Storey, I. Bull, and
A. van Deursen, “Connecting Traces: Understanding
Client-Server Interactions in Ajax Applications,” in
Proc. of the 18th Int’l Conf. on Program Comprehen-
sion (ICPC). IEEE, 2010, pp. 216–225.

[6] E. Kiciman and B. Livshits, “AjaxScope: A Platform
for Remotely Monitoring the Client-Side Behavior of
Web 2.0 Applications,” in Proc. of the 21st Symposium
on Operating Systems Principles (SOSP). ACM, 2007,
pp. 17–30.

[7] E. Schrock, “Debugging AJAX in production,” Com-
munications of the ACM, vol. 52, no. 5, pp. 57–60,
2009.

[8] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling
Ajax by inferring user interface state changes,” in Proc.
of the 8th Int’l Conf. on Web Engineering (ICWE).
IEEE, 2008.

[9] A. Mesbah and A. van Deursen, “Invariant-based au-
tomatic testing of Ajax user interfaces,” in Proc. of the
2009 31st Int’l Conf. on Software Engineering (ICSE).
IEEE, 2009, pp. 210–220.

[10] G. Antoniol and Y. Guéhéneuc, “Feature identification:
a novel approach and a case study,” in Proc. of the 21st
Int’l Conf. on Software Maintenance (ICSM). IEEE,
2005, pp. 357–366.

[11] A. Mesbah and A. van Deursen, “A Component- and
Push-based Architectural Style for AJAX Applica-

tions,” Journal of Systems and Software, vol. 81, no. 12,
pp. 2194–2209, 2008.

[12] W3C, “Xmlhttprequest,”
http://www.w3.org/TR/XMLHttpRequest/, viewed
on: 30-Jul-2011.

[13] Oracle Corp., “The DTrace Framework,”
http://www.oracle.com/technetwork/systems/dtrace/dtrace/index-
jsp-137532.html, viewed on: 30-Jul-2011.

[14] B. Cantrill, “Hidden in Plain Sight,” ACM Queue,
vol. 4, no. 1, pp. 26–36, 2006.

[15] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana,
“Reverse engineering web applications: the ware ap-
proach,” Journal of Software Maintenance and Evolu-
tion, vol. 16, pp. 71–101, January 2004.

[16] G. A. Di Lucca and M. Di Penta, “Integrating Static
and Dynamic Analysis to Improve the Comprehension
of Existing Web Applications,” in Proc. of the 7th Int’l
Symposium on Web Site Evolution (WSE). IEEE, 2005,
pp. 87–94.

[17] Y. Inghelbrecht, “Tracemodeler,”
http://www.tracemodeler.com/, viewed on: 30-Jul-
2011.

[18] D. A. Wheeler, “SLOCCount,”
http://www.dwheeler.com/sloccount/, viewed on:
30-Jul-2011.

[19] E. E. M. Gonçalves, “Current approaches to add offline
work in web applications,” Technical University of
Lisbon, Lisbon, Portugal, Tech. Rep. 2542/D, 2008.

[20] E. E. M. Gonçalves and A. M. Leitão, “Implementing
offline work in web applications for rich domains,”
in Proc. of the 11th Int’l Symposium on Web Systems
Evolution (WSE). IEEE, 2009, pp. 79–82.

[21] Google, “Google gears,” http://gears.google.com/, last
viewed: 30-Jul-2011.

[22] L. C. Briand, Y. Labiche, and Y. Miao, “Towards the
Reverse Engineering of UML Sequence Diagrams,” in
Proc. of the 10th Working Conf. on Reverse Engineer-
ing (WCRE). IEEE, 2003, p. 57.

[23] L. C. Briand, Y. Labiche, and J. Leduc, “Toward
the Reverse Engineering of UML Sequence Diagrams
for Distributed Java Software,” Transactions on Soft-
ware Engineering (TSE), vol. 32, no. 9, pp. 642–663,
September 2006.

[24] Crawljax, “Crawljax: Automate ajax crawling and test-
ing,” http://crawljax.com/, viewed on: 30-Jul-2011.

[25] D. Amalfitano, A. Fasolino, A. Polcaro, and P. Tra-
montana, “Comprehending Ajax Web Applications by
the DynaRIA Tool,” in Proc. of the 7th Int’l Conf. on
Quality of Information and Communications Technol-
ogy (QUATIC), 2010, pp. 122–131.

[26] T. Eisenbarth, R. Koschke, and D. Simon, “Locating
Features in Source Code,” Transactions on Software
Engineering (TSE), vol. 29, no. 3, pp. 195–209, March
2003.

