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Abstract—Software quality researchers build software qual-
ity models by recovering traceability links between bug reports
in issue tracking repositories and source code files. However,
all too often the data stored in issue tracking repositories is not
explicitly tagged or linked to source code. Researchers have to
resort to heuristics to tag the data (e.g., to determine if an issue
is a bug report or a work item), or to link a piece of code to
a particular issue or bug.

Recent studies by Bird et al. and by Antoniol et al. suggest
that software models based on imperfect datasets with missing
links to the code and incorrect tagging of issues, exhibit biases
that compromise the validity and generality of the quality
models built on top of the datasets. In this study, we verify the
effects of such biases for a commercial project that enforces
strict development guidelines and rules on the quality of the
data in its issue tracking repository. Our results show that
even in such a perfect setting, with a near-ideal dataset, biases
do exist – leading us to conjecture that biases are more likely
a symptom of the underlying software development process
instead of being due to the used heuristics.
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I. INTRODUCTION

Software repositories allow researchers to closely study
and examine the different factors that influence and im-
pact the quality of a software system [1]–[3]. A good
understanding of these factors helps improve the quality of
future releases of a software system. Using these factors,
practitioners can allocate testing and code-review efforts
in large projects, enabling cost-effective and timely quality
control processes.

Much of the information stored in software repositories
must be processed and cleaned for further analysis. Such
processing and cleaning is often done using assumptions
and heuristics. One popular assumption is that most issue
tracking systems (e.g., Bugzilla1) contain just bug reports
while in reality they contain other items such as tasks or
enhancements. On the other hand, heuristics, such as those
described in [4] and [5], link bug reports to the location of
the bug in the code by locating bug IDs in change messages
in a source control repository.

The quality of these assumptions and heuristics represents
a threat to the validity of results derived from software
repositories. Recent studies by Antoniol et al. [6] and Bird

1http://www.bugzilla.org

et al. [7] have casted doubts on the quality of data produced
using such heuristics. These prior studies have identified two
types of biases:

• Linkage bias: Bird et al. [7] note that when considering
links between bug reports and actual code, there exists
bias in the severity level of bugs and the experience of
developers fixing bugs. The higher the severity of a bug,
the less chance it will be linked to source code. This
implies that quality models will be more biased towards
the lower severity bugs. Bird et al. also found that there
are more bugs linked by experienced developers than
by less experienced developers. A quality model built
using only the linked bugs, will be biased towards the
behaviour of more experienced developers.

• Tagging bias: Antoniol et al. [6] note that many of
the issues in an issue tracking system do not actually
represent bug reports. Instead developers often use issue
tracking systems to track other issues such as tasks,
decisions, and enhancements. Therefore, using such
data might lead to incorrect bug counts for the different
parts of a software system.

While prior studies have shown that the above biases
exist, they never explored if such biases are due to the
software development process in general (e.g., it might be
the case that experienced developers are by definition more
likely to fix bugs over junior developers), or if they are
due to the used heuristics. To answer such a question,
we would require a perfect dataset where such linkages
and tagging of issues was done by professional developers
and with great attention to detail. While such a perfect
dataset might not exist, we believe that a near-ideal dataset
does exist. This dataset is derived from the IBM JazzTM2

project. The IBM Jazz project follows a disciplined software
development process with careful attention to continuously
maintaining the linkages between issues and code changes
through automated tool support. The strong discipline and
the automated tool support gives us strong confidence that
this project represents a near-ideal real-life case of high
quality linkage dataset that is correctly tagged.

Using this near-ideal dataset we re-examine the aforemen-

2http://www.jazz.net. IBM and Jazz are trademarks of IBM Corporation
in the US, other countries, or both.



tioned biases. We find that even in such an ideal setting,
biases do exist in the linked dataset, indicating that such
biases are more likely due to the software development pro-
cess rather than being a side-effect of the linking heuristics.
We also find that, even under tagging bias, bug prediction
models, such as those in [5], [8], [9], will still perform
almost as if there is no bias. Our results suggest that
these biases may exist in software data as properties of
the software process itself and that these biases should not
stop researchers from using the dataset. However, as our
results are derived from a single dataset, we encourage other
researchers to replicate our study to verify the generality of
the findings.

This paper provides the following two contributions:
• We argue that linkage bias is not a symptom of imper-

fect linkage but more likely a property of the software
process.

• We suggest that tagging bias does not significantly
affect bug prediction models.

Paper Organization. The next section describes the re-
lated work and the background on bias in software research.
Section III introduces our data collection and analysis tech-
niques. Section IV presents our results. Section V discusses
the implications of our results on software quality models.
Section VI discusses the threats to the validity. Section VII
concludes the paper.

II. BACKGROUND AND RELATED WORK

Scientific studies build models of and theories about the
nature of the subject under study. Such scientific models
and theories have to be validated by evidence. Evidence
consists of facts that are collected by the researchers from
the subject under study. For example, if a biologist wants to
study the behaviour of a certain kind of birds, he or she will
have to find and observe the behaviour of some individual
birds. The problem is that the biologist cannot observe all
the birds of a specific kind, but hopes that the studied birds
are representative of all the birds of that kind.

What if the birds that the researcher was able to find
behave differently from their siblings because of local adap-
tation? In that case, the behavioural model built by the
researcher will not be representative for all the birds of
that kind. This problem is called sampling bias. A famous
example of sampling bias in social science is the 1936 U.S.
presidential election poll [10]. Prior to the election date, the
Literary Digest magazine conducted a survey via postage
mail and concluded that the Republican party’s candidate
was going to win. However, the magazine collected its
mailing list through the telephone book and the automobile
register list. In the 1930s, telephones and automobiles were
only affordable by richer Americans, who favoured the Re-
publican party at the time. The Democrat party’s candidate
won the election by the widest margin in history.

Software quality studies will probably not be as inaccurate
as the Literary Digest. However, the question of sample
bias is a valid concern that should be addressed. There are
not many studies about data quality in software engineering
literature. The need for a systematic review of data qual-
ity in software engineering is outlined by Liebchen and
Shepperd [11], [12]. They surveyed 552 research papers
in major software engineering conferences and found that
only 23 actually reported the quality of the data. Their
report cast doubt about the quality of data in software
engineering research. Mockus [13] stated that the quality
of the data is more important than the choice of analysis
method. He emphasized missing or invalid data as a common
source of sampling bias in software engineering. He outlined
techniques to deal with missing data.

As mentioned in the introduction, we concentrate on two
sources of sampling bias in this study, as reported by Bird
et al. [7] and Antoniol et al. [6].

A. Linkage bias

We call the population of all bug fixes Bf . Software
quality researchers intend to build their models based on
this dataset, but, in the majority of the cases, researchers
can only recover Bfl. Bfl are the bug fixes that would be
linked to an actual change set in the source control system.
Since the bug tracking system, such as BugZilla, and the
source control system, such as CVS or SVN, are standalone
systems that are usually not linked together, researchers have
to rely on heuristics to detect linkages between a change set
and a bug. For example, in some projects such as Eclipse,
developers put the bug report number in the comment field of
the change set that fixes the bug. Hence, a popular heuristic
is to scan the comments of the change sets and detect the
bug report numbers [4], [5]. Unfortunately, such heuristics
are imperfect. Developers might have forgotten to enter the
bug report number.

Because of the imperfection of the traceability heuristic,
the linked bugs, Bfl, are normally only a fraction of all fixed
bugs, Bf . Thus, models built on Bfl can be biased. This is
the main thesis of Bird et al. [7]. They examined if there
is bias between Bfl and Bf along the following features of
bugs:

• F1 Severity: There is a difference in the distribution
of severity levels between Bfl and Bf .

• F2 Experience: Bugs in Bfl are fixed by more expe-
rienced people than those who fix bugs in Bf .

• F3 Maturity: Bugs that are linked are more likely to
have been closed later in the project than unlinked bugs.

• F4 Release pressure: Bugs that are closed near a
project release date are less likely to be linked.

• F5 Collaboration: Bugs that are linked will have more
people or events associated with them than bugs that
are not.



Table I
THE IBM JAZZ DATASET.

Attribute Value
Time 14 months, 5 iterations

# Issues 23,025
# Change sets 5,780

# Issue reporters 288
# Developers 141
# Location 22

Bird et al. [7] found that there is bias in F1 and F2. In this
paper, we will replicate their study to confirm if the biases
caused by missing linkages also exist in a project that strictly
enforces linkages. We call this type of bias linkage bias.
We note that Bird et al. also identify verifiability as another
potential bias feature. However, all resolved bug reports in
the system we examine must be either approved, verified, or
peer reviewed. Hence, we cannot test for bias in this feature,
because most bug reports are verified one way or the other.

B. Tagging bias

The second potential threat of sampling bias is the type
of bug report. The purpose of bug tracking systems such as
Bugzilla is to report unexpected behaviour of a software
system. However, as bug tracking systems become more
popular, especially in open-source software (OSS) projects,
developers start to use Bugzilla not only to track bugs, but
also to specify tasks, enhancements, or even requirements.
Antoniol et al. [6] reported that most bug reports are not
really bugs. Through manual inspection, they found that, in
a large project such as Eclipse, the number of actual bugs is
only about a third of all bug reports. This poses a challenge,
because bug prediction studies [1], [5], [14] assume that all
bug reports are actually defects. Could this be the reason
why generalizing bug prediction models from one project to
other projects does not work [3]? In this paper, we examine
the existence of bias on the features of bugs, mentioned
above, between all bug reports and reports that are actual
defects. We call this type of bias tagging bias.

III. CASE STUDY SETUP

A. Data collection

Our study uses software quality data from a commercial
software project, i.e., the IBM Jazz software project, that
develops integrated development environments (IDE). We
choose to study this particular team because, as explained
before, the team strictly enforces the linkages between the
bugs and the change sets. When developers check in a
change set, they have to explicitly specify the bug/issue that
the change set is supposed to fix. This practice (theoretically)
eliminates linkage bias on this dataset. Secondly, their bug
reporting system tracks the different types of reports, such
as tasks, enhancements, or actual bugs. This capability of

BAfl: All linked
          fixed issues

BAf: All fixed issues (i.e., task, enhancement, defects)

BDfl: Linked defects

Not linked BDf: Defects only

Figure 1. An overview of the IBM Jazz dataset that we use to examine the
existence of biases. To check for linkage bias, we compare the distribution
of each feature between BAf vs. BAfl and BDf vs. BDfl. To check
for tagging bias, we compare the distribution of each feature between BAf

vs. BDf .

the bug reporting system (theoretically) eliminates tagging
bias in this dataset.

We are not claiming that this dataset is perfect, because
a developer can still misclassify a task as a bug. He or she
can also link the wrong bug to the committing change set.
However, we claim that the quality of this dataset is as
ideal as one can get from a software repository, because
of two reasons. The first reason is that Jazz is a commercial
project with a stable base of developers. Each developer has
responsibility to his or her team and reports to his or her
team lead. Hence, we believe that mistakes in linking and
classifying bug reports should be minimal. The second, and
more important reason, is that the bug report system and the
source control system is part of the software product they
are building. The developers have a motivation to customize
and utilize their tools. Because of these two reasons, we
believe that this dataset does not suffer from linkage and
tagging bias. Therefore, if we still determine that a feature
is biased in this dataset, the bias is most likely a property
of the software development process itself instead of being
caused by inexact heuristics.

The IBM Jazz team has about 200 developers located in
Canada, the United States, Europe and Asia. Table I shows
basic information about the team. The team follows an agile
development methodology. Each iteration takes about 12
weeks. Each iteration may result in one or two deliveries,
either in the middle and/or at the end of the iteration. We
are able to collect data of five iterations, which span about
14 months. All five iterations belong to the same product
version.

In total, there are 23,025 bug reports over the five iter-
ations, of which, 13,367 are fixed. This is the dataset that
we will use in our study. Figure 1 shows how we divided
the data such that we can test the effect of the two biases.



Table II
NUMBER OF FIXED ISSUES IN EACH DATASET. THE RELATIONSHIP

AMONG THE DATASETS IS PRESENTED IN FIGURE 1.

Dataset Linkage Notation # Issues
All fixed issues (defect,
task, enhanc.)

All BAf 13,367
Linked BAfl 10,960

Defects only All BDf 9,462
Linked BDfl 8,038

Table II shows the amount of data in each set. To avoid
confusion, we call the set of all fixed bug reports “all issues”
or BAf , to distinguish it from the set of actual bugs that
we will call “defects only” or BDf . We will call the set of
issues that are linked as BAfl and the set of linked defects as
BDfl. In total, there are 13,367 bug reports (BAf ). About
82% of which, i.e., 10,960 issues, can be linked to source
code (BAfl). Among all bug reports are 9,462 real defects
(BDf ), out of which, 8,038 (85%) are linked to source code
(BDf l).

B. Analysis Techniques

To determine the effects of linkage bias, we will compare
the distribution of the five features of Bird et al. (Section II)
between the linked issues/defects and the entire population
of all issues/defects. In other words, we will compare
between BAf and BAfl, and between BDf and BDfl.
To determine the effects of tagging bias, we will compare
the distribution of each feature between all issues, i.e., BAf

and defects only, i.e., BDf .
We will use two statistical tests in our analysis: Fisher’s

exact test [15] and a two-sample Kolmogorov-Smirnov (K-
S) test. Both tests have the same purpose: to compare the
distribution of each feature between two datasets. The tests
will tell us if two datasets come from the same population,
i.e., there is no statistically significant difference between
their distributions. The null hypothesis in both tests is that
the two datasets have the same distribution. The tests will
give us a statistic and a p-value. If the p-value is smaller than
a certain threshold, we can reject the null hypothesis, which
means that the datasets do not have the same distribution.
In both tests, we will use a p-value threshold of 0.01.

The difference between Fisher and K-S is that Fisher is
used for nominal data, such as the severity level, while K-S
is used for ordinal and continuous data, such as developer
experience. An alternative for Fisher’s exact test is Pearson’s
χ2 test, which is much faster but computes an approximation
for Fisher’s. We were able to run Fisher’s test on the largest
dataset, BAf , in under 15 minutes, so we opt to use Fisher’s
test for accuracy. An alternative for the K-S test is the two-
sample t-test. This t-test requires the data distribution to
be normal. As we will show through the box plots in the
next section, our data is not normally distributed. Hence, we
decided to use the K-S test.

Table III
SEVERITY (FEATURE 1): DISTRIBUTION OF SEVERITY IN BAf AND
BDf MEASURED AS THE PERCENTAGE OF ISSUES/DEFECTS IN EACH

SEVERITY LEVEL OVER THE TOTAL POPULATION. THE LAST TWO
COLUMNS SHOW THE P-VALUE OF THE FISHER TEST BETWEEN THE

DATASETS.
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Fisher’s p
BAf 1.2 3.2 9.2 83.9 2.6 0.72

<
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BAfl 1.2 3.2 9.6 83.3 2.8
BDf 1.5 4.0 11.4 80.1 3.0 0.94
BDfl 1.4 4.0 11.6 79.9 3.2

IV. ANALYSIS AND RESULTS

In this section, we analyze the IBM Jazz dataset for each
bug feature, as introduced in Section II.

A. Feature 1: Severity

Motivation. In the original study, Bird et al. [7] reported
that the severity of linked bugs Bfl is biased toward less
critical bugs. Software quality models that are built on Bfl

will not be representative for all bugs, but rather will be
focused on less severe bugs.

Approach and Finding. Table III shows the distribution
of severity in the Jazz data. The table shows the percentage
of issues in each severity level over the overall population.
For the effect of linkage bias, we can see that when we
use all bug reports, there are small differences between the
distribution of the Major, Normal and Minor severity levels
for the linked BAfl and all issues BAf . When we only use
the real defects, BDf vs. BDfl, the differences are smaller.
In order to confirm the difference, we run Fisher’s exact
test to determine if the two populations should come from
the same population. The test shows that in either case the
difference is not large enough to be statistically significant
(second to last column on Table III). Thus we cannot reject
the null hypothesis that there is no difference. For the
effect of tagging bias, we can see that there is definitely
a difference between BAf and BDf . Fisher’s exact test
confirms the statistical significance of the difference (last
column on Table III).�
�

�
�

We cannot find evidence of linkage bias for the
severity feature. However, there is tagging bias for
the severity feature.

B. Feature 2: Experience

Motivation. Experience is another feature of bugs that
was reported to be biased. Experience is defined as the
number of bugs a developer has fixed before fixing that
particular bug. Bird et al. [7] found that linked bugs are
normally fixed by more experienced developers compared to
all fixed bugs. This implies that if we build quality models
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Figure 2. Developer experience in Jazz (feature 2). Experience is defined
as the number of previously fixed bugs.

using the linked bugs, the model will be biased toward the
behaviour of experienced developers.

Approach and Finding. In order to test the theory of Bird
et al., we calculate the experience of developers in Jazz using
the same method in Bird et al. [7]. For each bug, we count
the number of bugs that the developer who fixed the bug has
fixed before. Figure 2 shows the experience of bug fixers. As
we can see in both datasets, linked issues BAfl and defects
BDfl are fixed by more experienced developers compared
to BAf and BDf . To make sure that the differences are
statistically significant, we run K-S tests between BAf and
BAfl, and between BDf and BDfl. Both tests indicate the
existence of bias at p<0.001. Hence, there is a clear effect
of linkage bias on experience. This is similar to what Bird
et al. [7] found.

We can also see that there is a difference between BAf

and BDf . It appears that developers who fix defects only
are less experienced than developers who resolve all issues.
A K-S test confirms this difference. This means that tagging
bias exists for the experience feature.�
�

�
�

We observe both linkage and tagging biases for the
experience feature.

Table IV
MATURITY (FEATURE 3): PERCENTAGE OF LINKED BUGS OVER ALL

BUGS OVER FIVE MILESTONES.

Data M1 M2 M3 M4 M5
BAf 78.83 81.88 80.02 83.67 83.75
BDf 84.05 84.70 83.67 85.09 86.26

C. Feature 3: Maturity
Motivation. Providing linkages along with the committed

change sets requires discipline from the developers. There is
a possibility that the percentage of linked bugs relative to all
bugs increases as the project matures. Bird et al. [7] tested
this theory, but found no evidence to support it. In the Jazz
project, the linkages are automatically enforced by tools.
Regardless of maturity, all change sets have to be linked.

Approach and Finding. We look for evidences of bias
by calculating the portion of linked over all bugs along the
five milestones. Table IV shows the results. We can observe
the increase in the percentage of linked bugs as the project
matures. For all issues, BAf , the increase from M1 to M5
is about 5%. For defect only, BDf , the increase is about
3%. This is evidence of the linkage bias for the maturity
feature. We can also observe that the percentage of linked
bug is higher when we only consider the defects, BDf ,
compare to when we consider all issues, BAf . This shows
the existence of tagging bias.�
�

�
�

In contrast to Bird et al. [7], our data shows linkage
and tagging biases for the maturity feature.

D. Feature 4: Release pressure
Motivation. As the release date approaches, team leads

will be more vigilant about newly committed changes be-
cause changes increase the chance the build will break. They
might even freeze the code near the release date. Thus,
developers who commit code near the end of a release may
be more careful about linking their changes to a bug. Thus
the closer to the release date, the more fixed bugs should be
linked compared to the beginning of the iteration. However,
Bird et al. [7] found no evidence of this in the projects they
studied.

Approach and Finding. To test the existence of linkage
bias, we calculate the time from the resolution date of each
bug to the nearest release. Then, we compare the distribution
of these times for linked bugs and all bugs.

Figure 3 shows the box plot of days before the release date
of each bug. We can observe that there is a small difference
between the linked issues/defects and all issues/defects, i.e.,
BAf vs. BAfl and BDf vs. BDfl. A K-S test shows that
these differences are statistically insignificant (p>0.01).

As for tagging bias, we can observe that there is also
not much difference between BAf and BDf . A K-S test
confirms that the difference is statistically insignificant.
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Figure 3. Release pressure (feature 4): Days before release date in Jazz.
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Similar to Bird et al. [7], we find no evidence in
the Jazz project of linkage and tagging biases for the
release pressure feature.

E. Feature 5: Collaboration

Motivation. Some bugs require collaboration from many
developers. There is a possibility that if a bug requires
collaboration, the owner of the bug will be more inclined
to add references to the commit log when he/she checks in
the code. However, Bird et al. [7] did not find any evidence
of this.

Approach. To test this potential bias, we count the
number of people that were involved during the lifetime
of each bug. Involvement in a bug is defined as creating,
owning (fixing), commenting on or subscribing to the bug
report. While there is only one creator for each bug, there
might be many owners for a bug, because the ownership of
a bug can be changed during the bug’s lifetime.

Finding. Figure 4 shows box plots of the all and linked
issues/defects in both datasets. Regarding the effect of link-
age bias, we observe that in both datasets, i.e., all bugs BAf

and defect only BDf , there is no difference in the number
of people involved. Thus there is no evidence of linkage
bias. K-S tests confirm that the difference is statistically
insignificant. As for tagging bias, we observe no difference
between BAf and BDf . The K-S test confirms that there
is no statistically significant difference.

BAf BAfl BDf BDfl

1
2

3
4

5
6

7
8

Number of developers involved in a bug

Figure 4. Collaboration (feature 5): The number of developers involved
in a bug. Involvement is defined as creating, fixing, commenting on or
subscribing to a bug report.

Table V
SUMMARY OF LINKAGE BIAS FOR THE FIVE STUDIED FEATURES. THE

POSSIBLE IMPLICATIONS OF THE RESULTS ARE PRESENTED IN
TABLE VI.

Feature Imperfect
linkage [7]

Ideal linkage
All (BAf ) Defect

only
(BDf )

Severity Yes No No
Experience Yes Yes Yes
Maturity No Yes Yes
Release pressure No No No
Collaboration No No No

�
�

�
�

Similar to Bird et al. [7], we cannot find evidence
of linkage or tagging biases for the collaboration
feature.

V. DISCUSSION

A. Summary of results

Table V summarizes the effect of linkage bias for each
studied feature. The imperfect linkage biases are the findings
of Bird et al. [7] based on imperfect OSS data. The ideal
linkage data are based on our study on the Jazz project.
Table VII summarizes the effect of tagging bias on the five
studied features.



Table VI
POSSIBLE IMPLICATIONS OF THE DIFFERENCES IN BIASES.

Imperfect
linkage

Ideal
linkage

Conclusion

Bias Not bias We confirm that when all bugs are linked
properly, the bias will not exist.

Bias Bias We suggest that the bias is a feature of
the software quality process itself; not a
feature of the imperfect linked data.Not bias Bias

Not bias Not bias We confirm that it is unlikely that the
feature contains bias.

Table VII
EFFECT OF TAGGING BIAS ON AN ISSUE’S FEATURE.

Feature Bias
Severity Yes

Experience Yes
Maturity Yes

Release pressure No
Collaboration No

B. Does linkage bias matter?

As mentioned in Section II, research in software quality
often has to rely on data from OSS projects such as Eclipse,
Mozilla, or Apache. The effect of linkage bias on OSS data,
as reported by Bird et al. [7], causes serious concerns over
the validity of software quality studies, because heuristics to
recover the linkage in OSS projects are not perfect. In their
study, Bird et al. [7] state that they do not have truly unbiased
data. We argue in Section III-A that the Jazz data, conversely,
is considerably unbiased. This enables us to determine if
linkage bias also exists in an unbiased dataset.

As we can see from Table V, of the two features that Bird
et al. [7] identify as affected by linkage bias, we find that
severity is not affected in our dataset. This implies that limi-
tation of linkage heuristics is a plausible explanation for the
bias in severity. However, developer experience still exhibits
bias behaviour. So even in a near-ideal dataset that does not
suffer from the linkage problems, developer experience is
still biased. This suggests that developer experience bias is
not caused by limitation of linkage heuristics, but is likely
a property of the software development process followed by
the Jazz team itself.

Of the three features that were found not to be affected
in Bird et al.’s case study [7] of seven projects, maturity
exhibits bias in the Jazz project. This shows that bias might
exist in a near-ideal dataset even though it does not in
imperfect datasets. The observed maturity bias is not caused
by limitation of linkage heuristics but is likely a property of
the Jazz team’s software process.

We believe that the inconsistencies between our findings
and Bird et al.’s findings provide evidences that linkage bias

is not a property of missing traceability, but a fundamental
property of the software process itself. For instance, the
experience feature still exhibits bias behaviour even on an
unbiased dataset. Maturity, on the other hand, exhibits bias
behaviour in an unbiased dataset, but did not on biased
datasets.

We must note that our findings are based on a single
case study. So we cannot claim conclusively that linkage
bias does not matter to software quality data. We believe
future studies are required to verify our claims. However,
determine whether bias is harmful or not is, in our opinion,
a difficult problem. The first reason is that near-ideal dataset
such as Jazz are very rare at the moment. The second reason
is that determining the effect of linkage bias is inherently
difficult. To detect the effect of bias, we have to compare
the distribution of the features between all bugs and the
linked bugs, which is a subset of all bugs. When the data
is imperfect, there will be less linked bug. So we might be
able to see the difference in distribution. However, when
the data is ideal, the number of linked bugs is almost
the same as the population of all bugs. So comparing the
distribution of a feature in this case would be hard to reveal
bias. For example, the percentages of linked bugs in the
seven case studies by Bird et al. [7] range from 8.12%
to 54.90%. In our near-ideal case study, this percentage
is 81.99% for all issues (|BAfl|/|BAf |) and 84.95% for
defects only (|BDfl|/|BDf |). In game theory terminology,
this is a no-win situation, colloquially known as the Catch-22
problem. When there is a linkage problem, we can see bias.
To determine the effects of linkage bias, we have to use a
dataset that does not have linkage problems. However, when
there is no linkage problem, the linked bugs correspond to
almost all of the bugs. Hence analyzing bias in a dataset
is hard. This dilemma implies that it is difficult to argue if
linkage biases affect software quality data.

C. Why are there fixed bugs that are not linked?

Our results show that there are biases in developer ex-
perience and maturity. To understand the existence of these
biases, we want to understand why there are fixed bugs that
resulted in no code change in the first place.

To find the answer we manually inspect a random subset
of fixed but not-linked issues following the principles of
the grounded theory methodology [16]. Grounded theory
is a common technique to inductively extract quantitative
data and develop theory from unstructured data. We first
randomly pick 50 fixed but not-linked bugs, which is about
2% of the population. We investigate the first 20 bugs’
description and comments to determine how each bug was
fixed. We code the reasons. Then, we inductively group the
related reasons into bigger categories. This results in five
categories as shown in Table VIII. Then we classify the rest
of the 50 bugs using the five categories.



Table VIII
REASONS WHY FIXED BUT NOT-LINKED BUGS RESOLVED

Reason Percentage
Fixed somewhere else 50%
Fixed by changes outside of the repository 18%
Cannot be determined 14%
General communication 10%
Invalid bug 4%

Table VIII shows the five categories and the percentage
of not-linked bugs in each category. In about 50% of the
cases, the bug seems to be fixed as a side effect of other
related fixes. For example, one bug reported that there were
some uninitialized objects. The bug owner closed the bug
with a message indicating that the issue should have been
fixed when they refactored the code in the latest development
stream. In some cases, the owner also recorded the related
bug that is linked to the change. The Jazz system actually has
a resolution state called Fixed Upstream. We do not include
fixed upstream bugs in our analysis because they are most
likely not linked. However, the bugs in this category (fixed
somewhere else) are only marked as fixed with no linking
to a particular code change. Perhaps, it is because the fix is
a side effect or the owner cannot identify the upstream bug.

18% of the not-linked bugs appear to produce changes.
However, the changes are outside of the repository. For
example, the team maintains a wiki that contains documen-
tation such as tutorials or instructions. In some instances,
the fix to a bug is just updating the work-around instruction
on the wiki.

About 10% of the bugs represent general communication
such as questions, announcements, or reminders. For exam-
ple, one bug simply describes performance test results on
a new database system. In another example, the reporter
just asks for opinions about naming a certain user interface
element.

The remaining 4% are invalid bugs which means that
they should not be filed in the first place. The existence of
invalid bugs is interesting because the Jazz system actually
has a resolution state called Invalid. So bugs in this category
should not have been marked as fixed, and hence should not
be in our data. This demonstrates that even in a near-ideal
dataset, tagging mistakes still exist.

Unfortunately, we cannot determine the reason for 14% of
the not-linked bugs because there is no comment indicating
the final status of the bug.

Interestingly, the high percentage of fixed somewhere else
bugs among the bugs that are not-linked may help explain
the observed maturity bias. Those bugs occur when there are
other changes that have already fixed the bug. The larger a
change is, the higher the chance that it fixes other bugs as
well. At the beginning of the project, there are larger changes
to the system compared to later on. Thus, the number of

fixed somewhere else bugs is higher at the beginning of the
project compared to at the end. This however requires further
investigation.

D. Does tagging bias matter?

As for tagging bias, we show in Table VII that it exists
for the severity, experience, and maturity features. This is
an indicator that tagging bias does affect software models.
If we build a software quality model using this data, then
the model will likely be biased. However, does such bias
make bug prediction studies inaccurate?

With only a single case study, we cannot provide a
definitive answer to the question. However, we can examine
the possible effects of tagging bias on a class of recent bug
prediction studies [5], [8], [9]. In these studies, researchers
use the number of defects associated with, for example, a
class or a package to build a prediction model, such that
they can predict high-risk classes or packages. These models
explore correlation between some factors of the class or
package and the number of defects. For example, Nagappan
et al. [9] used in-process testing metrics to predict defects.
However, as Antoniol et al. [6] pointed out, not all bug
reports are defects. So if the data is from an OSS project
and it is using, as in most cases, Bugzilla, the model will
suffer from tagging bias because Bugzilla cannot distinguish
between defects and tasks or enhancements. But to what
extent will the model suffer?

Assume that there is no linkage bias, i.e., we can link
bugs to the source code with maximum accuracy, and that
we are lucky enough to be able to separate defects from
other kinds of issues, as if we are using the Jazz data.
Table IX shows the number of classes and packages, in
Jazz, that are associated with defects (the Defect column)
and those that are associated with all other issues (the
Other column). We can observe that the number of unique
classes and packages that are not defect-related are only
31% (3,940/12,711) and 12% (116/958) respectively because
the number of classes and packages that were changed due
to both defects and other issues is very high (the Shared
column). We can measure the extent to which tagging bias
affects these models by correlating the defect count when
considering all linked issues, i.e., BAfl as defect, and the
defect count when we only consider the actual linked defects
BDfl. In this case, BAfl is the biased data because it is
equivalent to just using every bug report in Bugzilla. On the
other hand, BDfl is the non-biased data containing only
real bugs. If the correlation is high, it means that if the risk
prediction use the biased BAfl, the prediction should be
similar to if they use the non-biased BDfl. On the other
hand, if the correlation is low, it means that the prediction
would have been very inaccurate because of tagging bias.

As typically done by bug prediction studies [5], [8], [9],
we run both the Pearson’s product-moment correlation test
(Pearson) and the Spearman rank correlation test (Spearman)



Table IX
THE NUMBER OF CLASSES AND PACKAGES THAT ARE ASSOCIATED

WITH DEFECTS VS. ALL OTHER ISSUES.

Defect Shared Other Total
Classes 3,726 5045 3,940 12,711

Packages 454 388 116 958

to compare the predicted number of defects to the actual
number of defects. Pearson is a parametric correlation test
while Spearman is non-parametric. Both Pearson and Spear-
man return a coefficient between -1 and 1. Values of 1 or -1
mean that there is a perfect positive or negative correlation.
0 means that there is no correlation.

On our data, for the packages, Spearman correlation
returns a coefficient of .94 and Pearson yields .97. For
the classes, the correlations are .85 and .92 respectively.
The high correlations mean that the bias defect counts are
almost the same as the non-bias counts. This provides the
answer to our question: there are almost no differences in
defect counts, even when we suffer from tagging bias. Since
defect count is the only metric used by many bug prediction
studies [5], [8], [9], we conjecture that tagging bias does
not significantly affect the result of such studies. However,
this paper is based only a single case study. We believe
that further investigations, once more near-ideal datasets are
available, are required to confirm our claims.

VI. THREATS TO VALIDITY

As in any empirical software engineering study, our
findings are subject to certain threats to validity. We believe
that the largest threat is the external validity of the study,
because of the sample size. We only conducted a case
study on one software project. Also, the IBM Jazz data we
have access to only comprises five milestones within one
version of the software. This is comparatively smaller than
the data that was studied by Bird et al. [7] and Antoniol et
al. [6]. Unfortunately, near-ideal datasets such as Jazz are
very rare at this moment. We hope that in the future, when
the adoption of integrated issue and source control tools such
as Jazz become widespread, we can collect more near-ideal
data to strengthen the external validity of our findings.

A possible threat to the internal validity of our study is the
use of grounded theory in Section V-C. Because grounded
theory method requires the authors to judge and classify the
bug, it can be subjective. To counter this threat, researchers
can use independent investigators to perform part of the
classification and report the inter-agreement between the
authors and the independent investigators. However, the non-
disclosure agreement prevents us from showing the data to a
third party. Thus we cannot perform this step in this study.

VII. CONCLUSION

In this paper, we examine the linkage and tagging biases
on bug features. Our results indicate that biases exist even
in a near-ideal dataset. This suggests that biases are most
likely properties of the software process itself, and are not
caused by imperfect linkage as previously thought. This is
both good news and bad news. The good news is that we
should be able to continue studying OSS projects because
even though biases exist in the datasets, they are more
likely properties of the project itself. The bad news is that
researchers should be careful about checking for biases and
verifying the reasons for such biases as they may vary from
project to project. As for tagging bias, our study shows that it
does exist. However, we show that even under tagging bias,
software quality models can produce very similar results. We
note, however, that this study is only a single data point. We
encourage future studies to replicate and verify our claims.

We believe that more research is needed to examine the
effect of bias in software quality data. For example, although
we show that bug prediction models may not be affected by
tagging bias, it is not clear what is the impact of bias on
models that predict the resolution time or analyze the flow
of bugs? The effect of tagging bias in those cases is still
unknown.
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