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Abstract—Current research on code clones tries to address
the question whether or not code clones are harmful for the
quality of software. As most of these studies are based on the
fine-grained analysis of inconsistent changes at the revision
level, they capture much of the chaotic and experimental
nature inherent to any ongoing software development process.
Conclusions drawn from the inspection of highly fluctuating
and short-lived clones are likely to exaggerate the ill effects
of inconsistent changes. To gain a broader perspective, we
perform an empirical study on the effect of inconsistent changes
on software quality at the release level. Based on a case study
on two open source software systems, we observe that only
1% to 3% of inconsistent changes to clones introduce software
defects, as opposed to substantially higher percentages reported
by other studies. Our findings suggest that developers are able
to effectively manage and control the evolution of cloned code
at the release level.

Keywords-Software Engineering; Maintenance management;
Reuse models; Scalability, Maintainability

I. INTRODUCTION

A code clone is a part of the source code that is identical,
or at least highly similar, to another part (clone) in terms
of structure and semantics. Related clones belong to the
same clone group, and the evolution of a particular clone
group over the course of multiple versions of a software
system forms a clone genealogy. In the past, cloning was
generally considered to be harmful [1]–[7], due to the belief
that changes to one clone need to be propagated to all related
clones, thus increasing both the maintenance effort and the
likelihood of introducing defects. Recently, a series of stud-
ies established cloning as a reasonable software engineering
method for common software development problems [8]–
[11]. It is not clear yet which of these two visions prevails,
or whether the right vision depends on the software system
at hand.

The on-going debate about the harmfulness of cloning has
sparked many empirical studies on the trade-offs of cloning.
Typically, inconsistent changes of clones are analyzed in a
single snapshot of the software system, or between very
small development increments (e.g., revisions) [5], [11]–
[15]. Thus far, all studies on code cloning seem to focus on
the impact of cloning on developers, such as the developers’
ability to consistently update all clones or to understand the
full extent of a clone group.

Although fine-grained studies are indispensable, we argue

that they paint a too negative image of the world. The
primary stakeholder in software development is not the
developer, nor the architect or tester, but the end user, who
installs an “official software release”, then runs the software.
Since many code clones are only temporary phenomena
used for experimentation [11] and seem to disappear over
time [15], we hypothesize that the end user faces far less
(inconsistently changed) code clones than developers do, and
hence experiences far less ill-effects caused by cloning. In
other words: code clones are not harmful to end-users.

In this paper, we present an empirical study on incon-
sistent changes to code clones in two large open source
software systems, at the level of releases. We identify six
challenges inherent to studying clones at such a coarse-
grained level, and address three research questions:

Q1) What are the characteristics of long-lived clone ge-
nealogies at the release level?

On average, a clone group survives 6.79 releases and
contains 2.34 clones.

Q2) What is the effect of inconsistent changes to code
clones when measured at the release level?

The percentage of inconsistent changes that lead to
software defects ranges between 1.26% (6 defects out
of 462 inconsistent changes) and 3.23% (2 defects out
of 62 inconsistent changes).

Q3) What types of cloning patterns are observed at re-
lease level?

The replicate and specialize, API and language id-
ioms are the most frequent patterns of cloning.

The rest of the paper is organized as follows: Section II
situates our work in the context of prior clone detection re-
search. We present and motivate our three research questions
in Section III, then present the design of our case study
in Section IV. Section V reports the results of our case
study, after which we summarize the challenges involved
in release-level clone detection and tracking (Section VI).
Finally, Section VII discusses threats to validity and Sec-
tion VIII presents the conclusion of this paper.



II. RELATED WORK

Recently, multiple excellent surveys on code clones and
detection tools have been published, in particular [16]–[18].
We focus on the most closely related work in characterizing
the potential threats and virtues of code clones, and in
analyzing the evolution of clones over time.

Kapser et al. [9] distill eleven patterns of code clone
usage, all of which have both positive and negative con-
sequences on software quality. These patterns show that
cloning is often used in practice as a principled engineering
method. However, many other works [1]–[4] argue about
the negative impact of code clones on software quality.
Recently, for example, Lozano et al. [7] show that methods
with clones require more maintenance effort than methods
without. This effort increases with the number of code
clones. Juergens et al. [6] find, after manual inspection of
clones in four industrial and one open source system, that
inconsistent changes to clones are very frequent and can lead
to significant numbers of faults in software.

Johnson [19] was the first to study the evolution of
clones (between two versions of the GCC compiler). Over
the years, similar studies have been performed on longer-
lived and larger systems, such as a large telecommunication
system [15] and the Linux kernel [20]. The former study
surprisingly finds that a significant number of clones disap-
pear automatically from a system over time, and that most
clones are never changed after their creation: Programmers
seem to be aware of the clones in a system. Geiger et
al. [5] conjecture that the more clones are shared between
files, the more these files are changed together, which would
suggest that clones are consistently updated. No statistically
significant results could be obtained, however.

Kim et al. [11] were the first to map clones in different
versions of the source code to each other, in order to
study how clone groups evolve over time (genealogy), and
more in particular to analyze inconsistent changes inside
genealogies. They report that up to 72% of the clone groups
in the investigated system disappear within 8 commits in
the source code repository. Up to 38% of the clone groups
are always changed consistently. Aversano et al. [12] extend
these findings, and report that most of the cloned code is con-
sistently maintained in the same commit or shortly after. In
contrast, Krinke [14] reports that in the systems he analyzed
half of the changes to code clone groups are inconsistent
and that corrective changes following inconsistent changes
are rare. Finally, Bakota et al. [13] present a technique to
map clones in different versions of the source code based
on machine learning techniques.

This paper studies code clones at the release level to
investigate the effect of inconsistent changes on software
quality, in particular on the number of bugs in the clones.
This has previously only been done at the revision level [6],
[11]–[14], [21], as up until now studies at the release level

focused on the evolution of clones instead of on (the impact
of) inconsistent changes [5], [8], [15], [19], [20]. Looking
at the release level enables us to factor out the effect of
temporary code clones on software quality.

III. RESEARCH QUESTIONS

Contrary to previous studies, we focus on the impact of
inconsistent changes on code clones at the release level.
For this study, we formulate the following three research
questions:

Q1) What are the characteristics of long-lived clone ge-
nealogies at the release level?
Previous research has shown that many clones are
short-lived [11] or “automatically” disappear over
time [15]. Hence, we are interested in the quantitative
characteristics of clone genealogies at the release
level, i.e., the number of clone groups, their average
size and their average lifetime. Such characteristics
play an important role for the management of these
genealogies.

Q2) What is the effect of inconsistent changes to code
clones when measured at the release level?
Measuring the effect of inconsistent changes at a
fine-grained level, such as the revision level, might
overestimate the real impact of inconsistent changes,
as many clones are only short-lived [9], [11], [12].
Studying the effect of inconsistent changes at the
release level filters out clones due to experimentation
and refactoring, and allows focusing on the nature
and impact of long-lived, inconsistent changes.

Q3) What types of cloning patterns are observed at the
release level?
If short-lived clones, as identified in previous re-
search [11], are experimental by nature, can we find
specific stereotypes of clones that survive multiple re-
leases? Since different types of clones have different
consequences for the maintenance effort and overall
quality of a software system, it is important to study
which kinds of clones prevail at the release level.

IV. STUDY DESIGN

This section presents the design of our case study to an-
alyze inconsistent changes at the release level. An overview
of our approach is shown in Figure 1. We first download
all considered releases of the two open source software
systems that we studied. For each individual release, we use
a clone detection tool to identify cloned source code parts.
We then transform the identified code clones into an abstract
representation that allows us to track code clones between
releases. For each resulting clone genealogy, we identify all
changes that were not consistently propagated to all cloned
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Figure 1. Overview of our approach to study inconsistent changes of code clones at release level.

parts and manually inspect them to investigate whether they
introduced errors into the software. Additionally, we perform
a manual classification of clone genealogies into eleven
categories [9]. This section elaborates on each of these steps.

A. Choice of Subject Systems

We chose two open source software systems of different
size and application domain as subjects for our case study:

• Apache Mina1 is a network application framework,
designed for easier development of network applica-
tions in Java. We chose Apache Mina, as due to
the similarity between network protocols, the system is
likely to contain much duplicated code.

• JEdit2 is a popular graphical text editor that has been
used as a case study subject in related work [7], [8].

We chose projects from differing contexts to help counter
a potential bias of our case study towards any specific kind of
software system. For each project, we capture all minor and
major releases during a certain period of time. For Apache
Mina we extract 22 releases between October 2006 and
October 2007. For jEdit we extract 50 releases between
December 2000 and May 2004. A more detailed overview
of our subject systems is presented in Table I. The average
length of a release cycle is 51 days for Apache Mina and
36 days for jEdit.

B. Clone Detection within Releases

There are four conventional approaches for clone de-
tection: text-based, token-based, syntax-based
and metrics-based. Based on existing surveys of tech-
niques [16], [18], [22], [23] and previous studies on

1http://mina.apache.org/, last checked June 2009
2http://http://www.jEdit.org/, last checked June 2009

Table I
OVERVIEW OF THE OPEN SOURCE CASE STUDY SUBJECTS.

Apache Mina jEdit
#Releases 22 50
Start release 0.8.3 3.0.4
Start date Oct. 01, 2006 Dec. 03, 2000
End release 1.1.3 4.2.13
End date Oct. 02, 2007 May 14, 2004
Lines of code 11,908–15,463 47,500–88,305
Shortest release cycle 15 days 1 day
Longest release cycle 96 days 69 days
Average release cycle 51 days 36 days

the evolution of code clones [12], [13], we opted for a
syntax-based clone detection tool [2]. This kind of tool
identifies clones that form syntactic units by identifying sim-
ilar subtrees in the abstract syntax trees (AST) of a program.
Syntax-based clone detection techniques can identify
exact clones (with or without differences in comments)
and clones with small differences in expression, type or
identifier nodes. Some techniques are able to identify clones
with larger differences, such as swapped lines or unrelated
statements inside the clones. In general, the precision of the
clone detection results is high, but at the expense of a lower
recall.

We used the SimScan syntax-based clone detection
tool for our case studies as it is a clone detection tool
for Java systems that has successfully been used before by
other researchers [8], [12]. SimScan is based on the ANTLR
parser generator framework and is robust against reformat-
ting, renaming of identifiers and type names, insertions and
deletions of additional code in clones, and reordering of
statements and declarations.



As is typical for syntax-based clone detection tools,
it shows minor deficiencies in scalability and recall but it
yields satisfactory results for the purpose of our study. The
output generated by the tool is extremely detailed and easy
to parse.

C. Clone Tracking between Releases

To study the evolutions of clones in a clone group, we
need to track clone groups across different versions. A clone
genealogy [11] for a particular clone group and version of
the source code is a directed acyclic graph which connects
the clone group with all corresponding clone groups in the
next studied version of the source code, and recursively
connects those clone groups to the corresponding ones in
the following version.

Various techniques have been used before to map clone
groups in different source code versions to each other [8],
[11], [13], [14]. We chose to use the recent clone region
descriptors (CRD) technique [8], which shows promising
results for the tracking of code clones in evolving software.
A clone region descriptor is a lightweight, abstract represen-
tation of a clone region in an AST that combines syntactic,
structural and lexical information (Figure 2). A CRD locates
a code clone region based on its location in the abstract
syntax tree, e.g., “the for loop inside method a() of class
B in the default package”. To discriminate between similar
code entities in the same containing entity (e.g., two for-
loops in the same method), so-called corroboration metrics
are used to distinguish the conflicting code entities.

While traversing the abstract syntax tree of a class, we
record all entities on the path from the root of the AST to
the largest child node that contains a code clone region.
The recorded information contains the type of the node
(e.g., method declaration or finally region of a try-catch
block) and contextual information about the node (e.g., the
method’s signature or the caught Exception). This extended
path information forms the CRD for a single clone region.

To track clone groups over two different versions A and B,
we compare every clone group in version A to every clone
group in version B. If any CRD of a clone in a clone group
i in version A matches to the CRD of a clone in a clone
group j in version B, we know that the clone in i and the
clone in j are the same. Due to the transitivity of the equals
relation we can then infer that clone group i is related to
clone group j.

Finally, we compute if any code region corresponding to
a clone was changed between two consecutive versions. For
this purpose, we analyze the source code of the correspond-
ing clone regions and do a textual comparison. If a change
is detected, we generate a marked-up report of the textual
differences between the two versions of the clone, suitable
for human interpretation.

D. Manual Inspection of Inconsistent Changes

We perform a manual inspection of each inconsistent
change to a clone genealogy. Three authors of this paper
carried out this inspection independently and compared the
results, in order to account for possible human error. For
each inspected inconsistent change, we evaluate whether or
not the change should have been applied to all parts of the
source code clone, i.e., whether the change introduced a
bug into the software system. For this, we track for every
inconsistent change if a change with similar semantics was
applied to another part of the same clone group at a later
point in time. If this was the case, we consult the commit
messages of the version archives, as well as the projects’
bug tracking repositories to check if the observed changes
resulted in software defects.

E. Classification of Clone Genealogies

Cloning of source code can occur due to different reasons.
Kapser et al. identified eleven types of cloning, each having
distinct patterns, purpose, as well as short and long term
related management issues [9]. In order to better understand
the clone genealogies of each project and to assess the
overall risks, we have three authors of this paper act as
human oracles, who independently perform a manual inspec-
tion of the source code and classify each clone genealogy
discovered into one of eleven categories.

We use Fleiss’ Kappa – a statistical method that measures
the agreement of multiple raters on a categorization of
several observations into various classes – to evaluate our
consensus on the classification.

V. CASE STUDY RESULTS

This section presents the findings of our case study with
respect to our three research questions. After a quantitative
analysis of the code clones and code clone groups in the
two studied software systems (Q1), we present our findings
on the impact of inconsistent changes to clone genealogies
(Q2). To better understand the observations of our case
study, we conduct a classification of clone groups (Q3).

Q1) What are the characteristics of long-lived clone ge-
nealogies at the release level?

We detect a total of 1,387 groups of code clones in 22
releases of Apache Mina and a total of 11,160 groups
of code clones in 50 releases of jEdit. The generation
of clone genealogies via clone group tracking reduces the
set of 1,387 unrelated groups of code clones to 306 clone
genealogies for Apache Mina, and the set of 11,160
unrelated groups to 818 genealogies for jEdit.

For these genealogies, we then measure the average
lifetime and size. Our findings are presented as beanplots in
Figure 3. Beanplots are a boxplot alternative for summariz-
ing and comparing the distribution of different data sets [24].
The beanplot shows the individual observations of our two
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systems in the form of two asymmetrical, one-dimensional
density plots and additionally displays estimated densities
(white lines) as well as the averages of each set (black lines)
and for both sets combined (dotted lines).

For Apache Mina, 79.7% (244 out of 306) of clone
genealogies have a lifetime that spans multiple releases. We
measure the average lifetime of a genealogy in Mina to be
4.59 releases and the average size of a genealogy are 2.56
clones. The smallest clone genealogy observed consisted of
a single clone (as the cloned parts were within the smallest
syntactical unit observable by our approach), and the largest
one consisted of 14 clones.

For jEdit, 91.2% (746 out of 818) of clone ge-
nealogies have a lifetime that spans multiple releases.
The average lifetime of a genealogy in jEdit is 9.00
releases and the average size of a genealogy are 2.13
clones. The largest clone genealogy in jEdit contains
166 cloned parts and is created by the BeanShell parser
class (org.gjt.sp.jedit.bsh.Parser), which con-
tains large amounts of automatically generated parsing code.

Overall, we find the average lifetime of clone genealogies
across releases to be 6.79 releases and the average size to
consist of 2.34 cloned parts.

Q2) What is the effect of inconsistent changes to code clones
when measured at the release level?

To study inconsistent changes we need to look at the
evolution of the clone genealogies obtained by the previous
step. As we aim to study the relation between inconsistent
changes and bugs, we distinguish between reformatting
changes such as code beautification and syntactical changes
that modify the actual source code.

For Apache Mina we record a total of 679 inconsistent
changes. Of these, 6 changes were flagged as inconsistent

reformatting changes. For jEdit, we record a total of 85
inconsistent changes, of which 10 were flagged as incon-
sistent reformatting changes. We then discard inconsistent
reformatting changes and perform a detailed manual inspec-
tion of the remaining 748 inconsistent changes.

During the manual inspection of the inconsistent changes,
we found that a number of clone groups generated by
SimScan are false positives. Such false positive clone
groups have clones with very similar syntactical structure,
but are otherwise unrelated. In order to keep our study sound,
we decided to ignore clone genealogies generated by these
false positive groups and all the inconsistent changes they
account for, respectively. For Apache Mina, we found
2 false positive clone groups that account for a total of
13 changes. For jEdit, we found 74 false positive clone
groups that account for a total of 277 changes.

In the remaining total of 458 inconsistent changes
(Apache Mina and jEdit together), we found seven
inconsistent changes that led to software defects: two in
Apache Mina and five in jEdit. We describe these
changes in the following:

• [Mina] A bug fix (#JIRA-186) was applied between
release 0.9.2 and 0.9.3 to the putString() method
of the ByteBuffer class, in order to fix a de-
fect that caused abnormal program termination when
an UTF-8 formatted string was used as input for a
buffer. However, this change was not reflected in the
getString() method. Developers fixed this problem
by applying a similar bug fix to the getString()
method between version 0.9.3 and 0.9.4.

• [Mina] Developers introduced a call to
fireExceptionCaught() in the doFlush()
method of the SocketIOProcessor class
between version 0.9.5 and 1.0. This call would
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Figure 3. Distribution of clone group lifetime (in # of releases) and clone
group size (in # of clones) for Apache Mina and jEdit.

notify event listeners that an error was found during
execution and that the method could successfully
handle it (#JIRA-273, #JIRA-283). However, this new
behavior of doFlush() was not reflected in the rest
of the clone group. This was fixed in a later update
between 1.0.0 and 1.0.1.

• [jEdit] The coordinates to display a user interface ele-
ment are changed for the getToolTipLocation()
method of the BrowserView class between 4.0-pre3
and 4.0-pre4. However, this change is not applied to the
cloned getToolTipLocation() methods of other
classes in this clone group. This was fixed later between
4.0-pre4 and 4.0-pre5.

• [jEdit] An audible beep event was removed from the
goToNextFold() method of the EditTextArea
class between 4.0-pre3 and 4.0-pre4. However,
removing the beep from the cloned method

goToPrevFold() in the same class was missed.
This was fixed later between 4.0-pre5 and 4.0-pre6.

• [jEdit] The EnhancedMenuItem class gets an
extra shortcut for Mac OSX between 4.0-pre9
and 4.1-pre1, but this shortcut is not introduced
to the cloned classes MarkersMenuItem and
EnhancedCheckBoxMenuItem. A later bug fix be-
tween 4.1-pre11 and 4.2-pre1 corrects this.

• [jEdit] A bug fix to hide the welcome screen when
jEdit was started with the -nosettings switch
was applied to the newView() method of the main
class between 4.0-pre3 and 4.0-pre4. However, the
developers missed to apply the fix to another over-
loaded version of the same method. This was corrected
between 4.0-pre5 and 4.0-pre6.

• [jEdit] A request for focus in the constructor of the
EditAbbrevDialog class was removed between
4.0-pre3 and 4.0-pre4, but was missed to be removed
from the cloned class VFSFileChooserDialog.
This was fixed in a later patch between 4.2-pre2 and
4.2-pre3.

For each of the seven defects encountered, we mea-
sured the time between the introduction of defects by an
inconsistent change to a clone genealogy and the change
that fixes them. The results are presented in Table II. For
Apache Mina, all defects were fixed very quickly with
no intermediate defective releases. For jEdit, three defects
were fixed quickly within on intermediate defective release,
and two defects were present in the software over a very
long period of time.

Overall, we find that only 1.26% of inconsistent changes
in jEdit and 3.23% of inconsistent changes in Apache
Mina led to the introduction of a bug into the software. This
contrasts the findings of studies performed at fine-grained
levels such as commit-level, which report a substantially
higher fraction of bug introducing inconsistent changes [6],
[12], [14].

In addition to the software defects described above, we
encountered two instances of what we believe to be unde-
tected bugs introduced by inconsistent changes. For both
occasions we were not able to manually relate any bug report
to the source code region affected. However, further inquiry

Table II
TIME BETWEEN THE INTRODUCTION OF A DEFECT AND ITS FIX.

Defective Fixed
Project Release Release #Releases #Days
Mina 0.9.3 0.9.4 0 30
Mina 1.0.0 1.0.1 0 61
jEdit 4.0.4 4.0.5 0 13
jEdit 4.0.4 4.0.6 1 27
jEdit 4.1.1 4.2.1 10 321
jEdit 4.0.4 4.0.6 1 27
jEdit 4.0.4 4.2.3 19 530
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Figure 4. Classifications of clone groups in Apache Mina and jEdit
show a high amount of replicate and specialize clones.

was impossible, as the suspicious parts disappeared in later
versions due to refactoring, without being noticed in the
meanwhile.

The observations from our manual inspection indicate
that a substantial amount of clones (41% for Apache
Mina and 64% for jEdit) in long-lived clone genealogies
evolve independently. However, even changes to indepen-
dently evolving clones occasionally need to be carried out
consistently. These changes exhibit a high risk of introducing
a bug into the system.

Q3) What types of cloning patterns do we observe at the
release level?

In order to understand the dominant types of cloning
patterns that we can observe from long-lived clone genealo-
gies at release level, we performed a classification of the
encountered clone genealogies into different categories of
cloning [9]. For the three judges and eleven categories,
we measured an inter-rater agreement of κ = 0.271 at
p < 0.001. This result shows a statistically significant and
fair level of agreement, considering the low number of
judges and high number of categories [25]. While discussing
our ratings, we found that most disagreements rooted in
subtle semantics of the source code, which blurred the
borders between categories. Kapser et al. observed a similar
problem in an experiment that showed the difficulty of
defining and classifying code clones [26].

The results of our classification of clone genealogies are
presented in Figure 4. For both systems, the majority (46%
for Apache Mina and 68% for jEdit) of long-lived code
clones were found to belong to the replicate and specialize
cloning pattern. In this form of cloning, existing code with
similar functionality is copied and customized to implement
a new functionality of the software. We found that changes to
these types of clones in both systems are usually carried out
inconsistently because the cloned parts evolve independently.

The second largest pattern of cloning we found in both
systems is the API cloning pattern, which describes the
cloning of a series of program steps, pre-determined by the
usage of a specific interface.

A special kind of cloning forms the third largest class of
code clones in Apache Mina: cloning due to language
idioms. Mina as a network API that makes heavy use
of Java exception handling, iterators and data structures,
which involve tedious, yet frequently needed code frag-
ments.

The remaining clone types observed in both projects were
verbatim copy and pasting, cloning to implement cross-
cutting concerns and parameterized cloning. We found only
one instance of cloning due to experimentation in jEdit
when developers introduced different parameter types during
the transition of version 3.x to 4.x. This confirms our belief
that studying clones at the release-level filters out temporary
clones, which are done for experimentation.

Of the seven inconsistent changes that introduced software
defects, we found three bug introducing inconsistent changes
to clone groups of class replicate and specialize, two bug
introducing inconsistent changes to clone groups of class
API, one bug introducing inconsistent change to a clone
group of class experimentation and one bug introducing
inconsistent change to a clone group of class verbatim.

In all cases, our observations confirm the risks and long-
term issues identified by Kapser et al. [9] for the types
of cloning we encountered. Overall, our findings show a
dominance of replicate and specialize cloning among both
projects. These clones typically evolve independently and
exhibit a risk of errors introduced by reduced awareness of
their presence in the source code. As we could not observe
a high fraction of errors introduced to these clone groups
through inconsistent changes, we believe that the developers
of both projects are aware of these long-lived clones in their
software systems and are able to effectively manage their
independent evolution.

VI. CHALLENGES OF INTER-RELEASE CLONE
DETECTION

Several researchers have studied code clones in different
software releases [5], [8], [15], [19], [20] or between evenly-
spread source control commits [13], [14]. Although none
of these papers elaborate on the challenges encountered,
our case studies taught us that performing clone detection



between fragmented releases or versions is not straight-
forward. Harder et al. [21], for example, point out that
too long intervals between analyzed code versions hide too
many details. This section reports all challenges with clone
detection and tracking at release level we had to address
in our case study, only some of which have been reported
before. For each challenge, we briefly discuss its rationale,
consequences for clone detection, and how we addressed the
challenge.

C1. Discrete Change Information
Rationale: A series of contiguous changes committed to

a source code repository provides a continuous view on the
evolution of a software system. As soon as the repository
information is sampled by leaving out particular versions or
only focusing on milestone versions (releases), information
is lost about some individual refactorings and added features.
The lower the sampling rate, the longer the intervals between
selected versions, the more information is lost.

Consequence: Discrete changes might hide important de-
tailed patterns, i.e. the accuracy of the analysis degrades. For
example, a particular clone group could have been left in an
inconsistent state for months before the inconsistency even-
tually is fixed, but if the inconsistent period lies completely
between two successive versions, it will not be discovered.
It is important to consider the required accuracy for a study.

Addressed: We explicitly conduct our study at the release
level to rule out temporary and experimental changes.

C2. Huge Changes between Releases
Rationale: In addition to hiding important information,

discrete changes with long intervals between them exhibit
more large restructurings at once than contiguous changes
do. Instead of observing gradual re-engineering steps with
occasional big-bang restructuring, large restructurings such
as file renaming or restructuring of inheritance hierarchies
become the norm rather than the exception.

Consequence: Clone detection tools need to be more
robust to large restructurings such as copying and moving
of clones, with more powerful mapping strategies between
corresponding clones in different versions. Harder et al. [21]
suggest to define and measure the correctness of mapping
in order to provide the clone detection user with feedback
about the robustness of the clone detection process.

Addressed: We adopt the CRD technique for clone track-
ing, which has shown high accuracy before [8].

C3. Irregular Release Schedule
Rationale: Whereas individual source code changes typi-

cally occur at a constant rate, with intervals typically going
from seconds to a few days, releases tend to have periodic
major releases and irregular minor releases (for example to
fix security or stability issues). The time interval between
releases ranges from days to months.

Consequence: The large variation in time interval between
releases not only makes the consequences of challenges C1
and C2 worse, but has an impact on the interpretation of
analysis results. A metric like the average number of clones
per release does not make sense if one considers two distant
major releases and two minor releases closely following the
second major release.

Addressed: The release schedule of jEdit and Mina is
regular and ranges from one day to three months.

C4. Parallel Releases
Rationale: The versioning numbering of releases is not

necessarily chronological. Often a maintenance release for
an older version of a software system (e.g., 3.1.4) is released
at the same time as a new feature release of a newer version
(e.g., 4.2). Typically, parallel releases share bug fixes but
differ in the major features they provide, whereas sequential
releases like 3.1.3 and 3.1.4 share major features but differ
in bug fixes.

Consequence: The main consequence is that the release
schedule has to be well-understood in order to determine
between which versions corresponding clones should be
mapped, i.e. within versions such as 3.x and 4.x or between
chronological releases such as 3.1.4 and 4.2, and to consider
whether it makes sense to compare the last 3.x release with
4.0.

Addressed: The release schedule of jEdit is sequential,
whereas the release schedule of Mina is parallel starting
from the 1.0.x and 1.1.x series. We resolved this minor issue
with Mina manually.

C5. Selective Releases
Rationale: Official releases usually are cleaned up ver-

sions of the contents of the source code repository on a
particular moment in time. Temporary or experimental files
are removed, together with any confidential or private files.

Consequence: The missing files in official releases influ-
ence clone detection results. For example, it does not make
sense to generalize findings about the number of experimen-
tation variation clone groups [9] by only considering yearly
releases. One should consider the goal of the study before
selecting releases.

Addressed: We choose 22 releases from Mina and 50
releases from jEdit. The absence of temporary or experi-
mental files does not affect our study.

C6. Traceability of Releases
Rationale: Whereas contiguous source code changes are

typically explicitly linked to change log and bug report data,
releases are only linked to the repository they originate from
via their name (e.g., 2.1 alpha 1). Especially in older source
control systems, it is hard to find the actual revisions and
change logs of the specific versions of the files in the release.

Consequence: Unless more modern source control sys-



tems are used, recovering the traceability of releases usually
requires a lot of manual browsing through source code and
bug repositories and explicit combination of information
from the different repositories.

Addressed: To overcome this challenge, we have 3 people
manually inspecting change logs and bug reports individu-
ally, to make the results objective and accurate.

VII. THREATS TO VALIDITY

In addition to addressing the challenges described in the
previous section, we identified the following threats to the
validity of our research.

• Hidden impact of intermediate clones on end users.
Even though the impact of clones at the release level
seems to be limited, clones in intermediate (developer)
versions of the source code still might have a hidden
impact on the software quality of the official releases,
and hence on the end user. For example, maintenance
problems with intermediate clones could have sparked a
huge rewrite of important components, leading to bugs
(not directly related to clones) and delayed releases.

• Robustness of clone detection technique. Our approach
relies on the quality of the underlying clone detection
tool to detect the clones inside a release. We countered
this threat by a careful selection and evaluation of
clone detection techniques. We settled on using the
SimScan tool, which was used in previous studies in
this research area [12], [27]. These studies report a good
performance and accuracy of the tool.

• Robustness of clone region descriptors. Although CRDs
greatly improve the robustness of finding clone regions
in evolving source code, this technique is not without
problems. CRDs encode the position of a cloned source
code region as the position in the abstract syntax tree
of a source code. However, if the source code is
changed in a way such that nodes along the path from
the root node to the subtree of the clone region are
altered, tracking of the genealogy is lost. We tried to
counter this problem by using transitivity as described
in Section IV-C.

• Lack of domain-specific knowledge. The authors are
not experts in network API programming, nor in the
design of a text editor. Hence, our manual inspections
might miss important insights, due to a lack of required
domain-specific knowledge. We address this threat by
having three different authors with diverse backgrounds
and knowledge perform the inspection and discuss the
results.

• Generalizability. As case study subjects, we picked
two open source Java projects. Although we chose

both projects to avoid potential biasing of our study
towards any specific kind of software domain or size,
our findings may not generalize to other open source
projects of different nature. Due to the study of open
source systems, where a large amount of developers
freely contribute to the development of a projects, our
findings may not generalize to an industrial setting.
This threat can only be countered by doing additional
case studies, especially on the effect of inconsistent
changes in industrial projects, which are part of our
future work. As many cloning patterns are specific to a
certain programming language, our findings might not
generalize beyond Java projects.

VIII. CONCLUSIONS

This paper presents an empirical study on inconsistent
changes to code clones at release level, in order to evaluate
the impact of these changes on the quality of software re-
leases. Whereas previous work on clone detection is essential
for the understanding of the immediate effects cloning has
for day-to-day development processes, our study focuses
on the impact of clones on the software quality of official
releases, as perceived by the end user.

In both studied projects (Apache Mina and jEdit),
we observe the presence of long-lived, yet small, clone ge-
nealogies. In contrast to traditional fine-grained analyses, we
discover only a fraction of 1.26% to 3.23% of inconsistent
changes to introduce software errors. The extensive manual
inspection and categorization of clone genealogies suggests
a number of possible explanations for this effect. The
dominance of the replicate and specialize class of cloning
means that the clones were meant to evolve independently,
and hence cause many inconsistent changes.

As the number of defects through inconsistent changes,
when observed at the release level, is substantially lower
compared to observations at the revision level, we find
that, for the two studied systems, the indirect effect of
clones on the end-user seems limited. This confirms earlier
findings [15] that developers are able to successfully manage
inconsistent changes, even for long-lived clone genealogies.
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[21] J. Harder and N. Göde, “Modeling clone evolution,” in
IWSC ’09: Proceedings of the 4rd International Workshop
on Software Clones, Kaiserlautern, Germamy, March 2009.

[22] S. Bellon, “Comparison and evaluation of clone detection
tools,” IEEE Trans. Softw. Eng., vol. 33, no. 9, pp. 577–591,
2007, member-Koschke, Rainer and Member-Antoniol, Giulio
and Member-Krinke, Jens and Member-Merlo, Ettore.

[23] C. K. Roy and J. R. Cordy, “Scenario-based comparison of
clone detection techniques,” in ICPC ’08: Proceedings of the
2008 The 16th IEEE International Conference on Program
Comprehension. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 153–162.

[24] P. Kampstra, “Beanplot: A boxplot alternative for visual
comparison of distributions,” Journal of Statistical Software,
Code Snippets, vol. 28, no. 1, pp. 1–9, 2008.

[25] J. Sim and C. C. Wright, “The kappa statistic in reliability
studies: Use, interpretation, and sample size requirements,”
Physical Therapy, vol. 85, no. 3, pp. 257–268, March 2005.

[26] C. Kapser, P. Anderson, M. Godfrey, R. Koschke, M. Rieger,
F. van Rysselberghe, and P. Weis̈gerber, “Subjectivity in clone
judgment: Can we ever agree?” in Duplication, Redundancy,
and Similarity in Software, ser. Dagstuhl Seminar
Proceedings, R. Koschke, E. Merlo, and A. Walenstein,
Eds., no. 06301. Dagstuhl, Germany: Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2007. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2007/970

[27] E. Duala-Ekoko and M. P. Robillard, “Clonetracker: tool sup-
port for code clone management,” in ICSE ’08: Proceedings
of the 30th international conference on Software engineering.
New York, NY, USA: ACM, 2008, pp. 843–846.


