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Abstract Context : The recent meteoric rise in the use of smartphones and other
mobile devices has led to a new class of software applications (i.e., mobile apps).
One reason for this success is the extensive support available to mobile app devel-
opers through the APIs provided by mobile platforms (e.g., Android).
Motivation: In our previous research, we found that mobile apps tend to depend
highly on these platform-specific APIs. High dependence on a particular mobile
platform may introduce instability and defects, as these mobile platforms are
rapidly evolving. Therefore, the extent of platform dependence may be an in-
dicator of software quality.
Goal : In this paper, we examine the relationship between platform dependence
and defect-proneness of the source code files of an Android app to determine if
software metrics based on platform dependence can be used to prioritize software
quality assurance efforts.
Finding: We find that 1) source code files that are defect-prone have a higher
dependence on the platform than defect-free files and 2) increasing the platform
dependence increases the likelihood of a defect being present in a source code file.
Thus platform dependence may be used to prioritize the most defect-prone source
code files for code reviews and unit testing by the software quality assurance team.
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1 Introduction

Mobile apps are software applications that run on mobile devices (e.g., smart-
phones and tablets). Although applications for mobile devices have existed for
decades, the development of mobile apps exploded in 2008 when Apple first opened
its App Store. Since then, mobile apps have rapidly grown into a multi-billion dol-
lar market (Chetan Sharma 2010). The revenues from mobile apps have risen from
$4.1 billion in 2009 to $6.5 billion in 2010 (International Data Corp. 2011) and are
projected to reach $74 billion in 2016 (Chetan Sharma 2010).

Mobile devices (e.g., smartphones and tablets) have a diverse set of hardware
specifications, such as touch-screens, GPS, cameras and accelerometers in com-
parison to laptops, desktops or servers. These hardware accessories are accessed
through APIs provided by the platform (e.g., Android). The platform also pro-
vides APIs to 1) access commonly required functionality and 2) interface to the
operating system. Such APIs are used by the developers to quickly build mobile
apps that exploit the platform and device features.

In our previous work, we found that developers depend heavily on platform
APIs to build their mobile apps (Syer et al 2011). The reason is three-fold: One,
similar to web applications (Hassan and Holt 2002), mobile apps are rapidly devel-
oped by small teams who may only have limited experience with software devel-
opment (Butler 2011; Lohr 2010; Wen 2011; Gavalas and Economou 2011). Two,
the rapid succession of mobile technologies and fierce competition amongst devel-
opers forces them to release new features at break-neck speed, without sacrificing
quality. Platform APIs provide commonly required functionality that developers
may reuse. Three, the proliferation of mobile devices means that developers cannot
make any assumptions about the environment in which their mobile apps will be
operating, and hence prefer to use a standard environment that will also provide
a standard “look and feel” to their mobile apps. According to industry experts,
leveraging the functionality provided by underlying mobile platforms is the cat-
alyst behind the rapid development of many mobile apps (Black Duck Software
Inc. 2011).

However, too much dependence on the APIs from the underlying mobile plat-
form can lock an app into that platform. This does not only have repercussions
on the portability of the app to other platforms (potentially requiring a complete
rewrite), but also has a major impact on the quality of the app. For example, the
rapid evolution of mobile platforms makes it hard for app developers to keep their
app working on newer platform versions, leading to defects and inconsistencies
that impact the end user.

As dependency metrics have been shown to be highly correlated to defects in
source code files (Zimmermann and Nagappan 2008), we are interested in ana-
lyzing whether this finding holds as well for mobile apps when dependencies are
interpreted as “platform dependencies.” Linares-Vásquez et al. have shown that
dependence on fault-prone APIs is significantly lower in highly rated mobile apps
(i.e., mobile apps with generally positive customer feedback) (Linares-Vásquez
et al 2013). However, app ratings are influenced by many factors, such as soft-
ware quality, cost and privacy concerns (Khalid 2013). Hence, we are interested
in determining the specific relationship between software quality (i.e., a software
engineering concern that influences app ratings), as measured by the number of
source code defects, and platform dependence.
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In this paper, we conduct a case study on five Android mobile apps to address
the following three research questions:

– RQ1: Are defect-prone source code files more dependant on the Android platform? –
Yes. We find that defect-prone files in all five apps have a statistically significant
higher dependence on the Android platform compared to defect-free files.

– RQ2: Does the extent of platform dependence help explain why some source code

files are more defect-prone than others? – Yes. We find that the ratio of platform
dependencies to the total number of dependencies (i.e., the platform depen-
dency ratio) significantly increases our ability to statistically explain defects in
source code files.

– RQ3: What is the impact of platform dependence on source code quality? – We find
that in four out of the five mobile apps, increasing the platform dependency
ratio increases the statistical likelihood of defects in source code files.

The findings from this paper indicate that the platform dependency ratio may
be used to prioritize the most defect-prone source code files for code reviews and
unit testing. This does not necessarily imply that platform dependencies introduce
defects, although dependence on defect-prone platform APIs has been shown to
reduce app quality (Linares-Vásquez et al 2013). However, the purpose of this
paper is to empirically determine whether the platform dependency ratio may be
used to help prioritize software quality assurance efforts.

This paper is organized as follows: Section 2 motivates our case study of the
source code quality implications of mobile platform dependence and presents re-
lated work in mobile apps and dependency analysis. Section 3 describes the setup
of our case study and Section 4 discusses the results of our case study. Section 5
outlines the threats to validity. Finally, Section 6 concludes the paper.

2 Motivation and Related Work

The rise of mobile apps is a relatively recent trend in software engineering. How-
ever, software engineering researchers are now beginning to explore the challenges
and issues surrounding mobile apps and platforms (Workshop on Mobile Soft-
ware Engineering 2011). Researchers are also studying mobile apps from other
perspectives, including app ecosystems (Harman et al 2012; Kim et al 2011), cross
platform development and development tools (Wu et al 2010; Xin 2009; Gasimov
et al 2010; Charland and LeRoux 2011; Tracy 2012) and security (Enck et al 2009;
Shabtai et al 2010; Grace et al 2012a,b). However, there are only a few studies of
mobile apps from a software engineering perspective.

Mojica et al. studied code reuse in Android apps and found that, on average,
61% of the classes in a mobile app are reused by other apps in the same domain
(Israel et al 2012) (e.g., social networking). The authors also found that 23% of
the classes in their case study inherit from a class in the Android platform. Given
this wide-spread dependence on the Android platform, it is important to study
the impact of this dependence on source code defects.

Maji et al. studied defect reports in the Android and Symbian platforms to
understand where defects occur in these platforms and how defects are fixed (Ku-
mar Maji et al 2010). The authors determine that development tools, web browsers
and multimedia modules are the most defect-prone and that most defects require
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minor code changes. The authors also determine that despite the high cyclomatic
complexity of the Android and Symbian platforms, defect densities are surprisingly
low. In this paper, we study Android apps, not the platform itself.

Minelli and Lanza have developed SAMOA, a tool that can gather and visualize
basic source code metrics (e.g., size and complexity) from mobile apps (Minelli
and Lanza 2013). SAMOA is intended to help developers better understand the
development and evolution of their app, whereas the purpose of our work is to
empirically establish the relationship between static source code metrics and source
code quality.

Linares-Vásquez et al. studied app ratings (i.e., customer feedback) in Android
apps and found that highly rated mobile apps depend on significantly fewer fault-
prone and change-prone APIs than lower rated apps. However, app ratings are
influenced by many factors, such as software quality, cost and privacy concerns
(Khalid 2013). Therefore, we are interested in determining the specific relationship
between software quality (i.e., source code defects) and platform dependence.

In our previous work, we performed a study of three pairs of functionally
equivalent mobile apps from two popular mobile platforms (i.e., the Android and
BlackBerry platforms), as a first step towards understanding the development and
maintenance process of mobile apps (Syer et al 2011). We found that BlackBerry
apps are much larger and rely more on third party libraries. However, they are less
susceptible to platform changes since they rely less on the underlying platform. On
the other hand, Android apps tend to concentrate code into fewer large files and
rely heavily on the Android platform. On both platforms, we found code churn to
be high. However, we are unaware of the implications of our findings (e.g., high
platform dependence) on source code quality.

Software engineering researchers have proposed and evaluated several models
of how high quality, successful software is developed and maintained. These models
aim to tie aspects of software artifacts (e.g., size and complexity) (Zimmermann
et al 2007; Chidamber and Kemerer 1994; Shihab et al 2010), their development
(e.g., number of changes) (Nagappan and Ball 2005; Shihab et al 2010) and their
developers (e.g., developer experience) (Bird et al 2011; Weyuker et al 2008) to def-
initions of quality (e.g., post-release defects). However, such models have primarily
been evaluated against large-scale projects (Robinson and Francis 2010).

One such model aims to use dependency metrics to enhance the prediction
of defects in software systems. Binkley and Schach proposed a new dependency
metric (i.e., the coupling dependency metric) and demonstrated that their met-
ric outperforms existing metrics (e.g., lines of code and complexity) at predicting
run-time failures and maintenance effort (Binkley and Schach 1998). Schröter et
al. showed that import dependencies can predict software defects (e.g., import-
ing compiler packages is riskier than importing UI packages) (Schröter et al 2006).
Zimmerman and Nagappan (Zimmermann and Nagappan 2008) performed a study
of Windows Server 2003 to determine how models predicting software defects may
be enhanced by using metrics based on Social Network Analysis (SNA). The au-
thors show that SNA metrics improved the prediction of post-release failures by
10%. This study was replicated by Nguyen et al. who found similar results in the
Eclipse project (Nguyen et al 2010). Similarly, we are trying to improve the pre-
diction of defects, however, our focus is on mobile apps rather than large-scale
software systems (mobile apps have been shown to differ from such large-scale
systems (Syer et al 2013)).
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3 Case Study Setup

This section outlines our approach to understanding the source code quality im-
plications of mobile platform dependence. First, we selected mobile apps for our
case study. Second, we extracted static source code metrics from the selected mo-
bile apps. Finally, we calculated whether each source code file was defect-prone or
defect-free.

3.1 Mobile App Selection

In this paper, we studied mobile apps written for the Android platform. The
Android platform is the largest (by user base) and fastest growing mobile platform.
In addition, the Android platform itself is open-source and has more free and open-
source mobile apps than any other major mobile platform (Distimo 2011; Black
Duck Software Inc. 2010, 2011, 2012).

Mobile apps for Android devices are primarily hosted in Google Play (formerly
the Android Market) (Android Market 2014). Google Play records details such
as cost, user ratings, reviews and the number of downloads in the previous 30
days for each mobile app. However, Google Play does not publish two key metrics
1) the number of cumulative downloads (only very broad ranges are displayed in
the store) and 2) the development status (i.e., open-source or closed-source) with
links to the source code repositories. Therefore, we supplement the information
provided by Google Play with information from two additional sources:

– FDroid – A third-party mobile app store that exclusively contains free and
open-source (FOSS) Android apps that are also listed in Google Play. As of
May 1, 2012, the FDroid repository contained 236 FOSS Android apps.

– AppBrain – A third-party interface to Google Play, to get the number of cu-
mulative downloads (App Brain 2014).

We used the data provided by these three sources and the following criteria to
select our case study subjects.

– Open-source – Mobile apps must be open-source in order to access their source
code repositories. This limits the number of potential case study subjects to
236 (i.e., the number of mobile apps in the FDroid repository).

– Large user community – “Successful” mobile apps have hundreds of thousands
of downloads every month (Android Market 2014). Therefore, in order to study
what successful mobile apps are doing “right,” we look at the mobile apps with
at least 250,000 cumulative downloads (the highest download bracket) (An-
droid Market 2014; App Brain 2014). This limits the number of potential case
study subjects to 56.

– Simplicity – The code base for the mobile app must be easily identified (i.e.,
contained within its own source code repository). For example, Firefox for
Android was excluded because, at the time of our data extraction in on May
1, 2012, we could not differentiate the source code of the mobile version from
the desktop version because they share the same source code repository (after
performing our analysis, the independent Frennec mobile version of Firefox was
released (MozillaWiki 2014)). This limits the number of potential case study
subjects to 44.
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– Significant code base – Mobile apps must have at least 200 source code files.
In regression modelling, a general rule of thumb is that at least 10 cases are
required per independent variable (Harrell et al 1984). In our experience, ap-
proximately 20% of the source code files in a mobile app are defect-prone,
therefore, we need mobile apps with at least 50 source code files for each source
code metric in our regression models (i.e., 20%×50 = 10). As we are including
four source code metrics in our regression models (see Subsection 3.2), mo-
bile apps must have at least 200 source code files. This limits the number of
potential case study subjects to 5.

Table 1 contains the final list of mobile apps that were included in our case
study. Our case study was performed on the source code repository as of May 1,
2012.

Table 1 Mobile Apps Included in Our Case Study

Project Description Homepage

ConnectBot SSH Client https://github.com/kruton/connectbot/
FBReader E-Book Reader https://github.com/geometer/FBReaderJ
KeePassDroid Password Vault https://github.com/bpellin/keepassdroid
Sipdroid VOIP Client http://code.google.com/p/sipdroid/
XBMCRemote Remote Control http://code.google.com/p/android-xbmcremote/

Table 2 presents the minimum, target and/or maximum version of the Android
SDK (when specified) that is compatible with the app. This information is available
in the AndroidManifest.xml file that is required in the root directory of every
Android app.

Table 2 Android SDK Version Dependencies of the Mobile Apps Included in Our Case Study.
NA indicates that the value has not been specified AndroidManifest.xml file.

Project Minimum Version Target Version Maximum Version

ConnectBot 3 11 NA
FBReader 5 NA 10
KeePassDroid 3 10 NA
Sipdroid 3 4 NA
XBMCRemote 3 9 NA

3.2 Source Code Metrics

We used the Understand tool by SciTools (Scitools 2014) to extract static source
code metrics from each of the subject mobile apps. Understand is a static analysis
toolset for measuring and analyzing the source code of small- to large-scale soft-
ware projects written in a number of programming languages. We extracted the
following metrics for each class in each of the subject mobile apps:

– Lines of code – The total number of lines of code (LOC).
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– Coupling – The number of coupled classes (Coupling). Class A is said to be
coupled to class B if class A uses a type, data, or member from class B.

– Cohesion – The average cohesion across each class data member (Cohesion).
The cohesion of a class data member is defined as the percentage of methods
in the class that use that data member. Class A is said to be cohesive if a high
percentage of class A’s methods use each of class A’s variables.

We also used the Understand tool to extract the class dependencies for each
mobile app. Class dependencies describe how each class in a mobile app depends
on 1) other classes in the mobile app and 2) external libraries (e.g., the Java
library), the Android library and (possibly) third-party libraries. Whereas coupling
measures the total number of unique coupled classes, class dependencies measures
the intensity of the coupling for each coupled class (e.g., is class A depending on
class B for one method call, five method calls, or five methods calls and two data
types?) Therefore, we are better able to measure the extent of dependence between
two classes.

In this paper, we studied source code defects in mobile apps that depend on
an underlying mobile platform (i.e., the Android platform). Therefore, for each
class in a mobile app, we calculated the total number of dependencies on classes in
the Android platform (Platform) in addition to the total number of dependencies.
These values are used to calculate the platform dependency ratio, i.e., the ratio
of the number of platform dependencies to the total number of dependencies (i.e.,
the number of platform dependencies plus the number of other dependencies).

We calculated each metric at the file level. We calculated lines of code, coupling,
the number of platform dependencies and the total number of dependencies at the
file level by summing each metric over every class in a source code file (89% of
the source code files contain only a single named class.). We calculated cohesion
at the file level by averaging the cohesion of each class in the file, weighted by the
number of lines of code in the class.

We have selected lines of code, coupling and cohesion for two reasons. First,
these metrics have been shown to be good predictors of source code defects (Zim-
mermann et al 2007; Nagappan and Ball 2005; Chidamber and Kemerer 1994;
Shihab et al 2010). Second, similar to the platform dependency ratio, these met-
rics are product metrics (i.e., static source code metrics). We do not include process
metrics (e.g., code churn), as process metrics have been shown to be better predic-
tors of source code defects than product metrics (Nagappan and Ball 2005; Shihab
et al 2010). Hence, comparing the platform dependency ratio (a product metric)
to process metrics would be an unfair comparison.

Therefore, four metrics are associated with each source code file (i.e., lines
of code, coupling, cohesion and platform dependency ratio).
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3.3 Source Code Quality

Source code quality can be defined and measured in a number of ways. One com-
monly used technique is to use the number of defects in a file as a measure of
quality. In practice, this number is typically approximated by the number of de-
fect fixing changes made to the source code file. This technique assumes that each
defect fixing change corresponds to a defect in the source code file and ignores 1)
reported, but not yet fixed, and 2) unreported bugs.

We measure the total number of defects in a source code file by counting the
number of times the file is changed by a defect fixing change. To identify such
changes, it is important to realize that when developers contribute source code to
a source code repository, they are prompted to provide an explanation (i.e., commit
log message) of what they changed and why the change was made. Hence, we can
find the number of defect fixing changes by mining these commit log messages for a
specific set of key words (Hassan 2008a; Mockus and Votta 2000). These keywords
are “fix(ed,es)”, “bug(s)”, “defect(s)” and “patch(s)”.

Although many mobile apps record a list of tasks (e.g., defects to be fixed and
features to be implemented) in an issue tracking system, we were unable to use
these issues because these tend not to include information regarding how the defect
was fixed (e.g., the patch or location of the defect). Further, very few commit log
messages contain a reference to the issue tracking system (e.g., a defect ID). Hence,
heuristics based on the commit message are the only way to identify defect fixing
changes due to the lack of a connection between the source code repository and
issue tracking system.

4 Case Study Results

This section presents the results of our case study on the mobile apps selected in
Subsection 3.1.

Preliminary Data Analysis

Prior to answering our research questions, we perform a preliminary analysis of
the data by calculating descriptive statistics. Such a preliminary analysis helps us
choose the right pre-processing steps and statistical methods for the analysis in
the research questions. Table 3 presents the mean, standard deviation (SD), min-
imum value (Min) and maximum value (Max), skew and kurtosis for each metric
extracted from each project. It is necessary to study these descriptive statistics,
skew and kurtosis in particular, in order to determine if transformations are re-
quired before the data can be modelled.

Skew is a measure of the amount of asymmetry in a distribution (i.e., the
difference between the left and right sides of the distribution). A positive skew
indicates that most values are concentrated to the left of the mean, with extreme
values to the right. A negative skew indicates that most values are concentrated to
the right of the mean, with extreme values to the left. -0.5 ≤ skew ≤ 0.5 indicates
that the distribution is approximately symmetric.
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Kurtosis (excess kurtosis) is a measure of the “peakness” of a distribution
with respect to the normal distribution (i.e., the shape of the peak and tails of the
distribution compared to the normal distribution). A positive kurtosis indicates
that the peak is higher and sharper and the tails are longer and thicker than
the normal distribution. A negative kurtosis indicates that the peak is lower and
broader and the tails are shorter and thinner than the normal distribution. -
0.5 ≤ kurtosis ≤ 0.5 indicates that the shape of the distribution does not differ
considerably from the normal distribution.

Table 3 Preliminary Data Analysis

Project Metric Mean SD Min Max Skew Kurtosis

ConnectBot LOC 152.10 223.34 4 1300.00 2.54 6.98
Coupling 13.07 25.66 0 196.00 4.59 25.00
Cohesion 55.49 32.24 0 100.00 0.09 -1.44
Platform 10.11 23.16 0 93.33 2.20 3.42

FBReader LOC 85.00 126.51 2 1199.00 3.37 17.39
Coupling 12.38 15.28 0 114.00 2.84 10.28
Cohesion 66.44 32.36 0 100.00 -0.31 -1.37
Platform 9.71 18.90 0 96.43 2.08 3.68

KeePassDroid LOC 80.61 104.73 3 799.00 3.56 17.34
Coupling 9.54 11.97 0 79.00 3.20 12.45
Cohesion 62.24 33.55 0 100.00 -0.22 -1.34
Platform 13.00 27.32 0 100.00 1.97 2.47

Sipdroid LOC 105.40 152.99 5 837.00 2.41 5.89
Coupling 11.02 16.79 0 111.00 3.22 11.87
Cohesion 60.10 36.60 0 100.00 -0.11 -1.63
Platform 13.17 26.57 0 94.44 1.75 1.53

XBMCRemote LOC 155.80 194.86 4 1367.00 2.78 10.14
Coupling 23.68 29.46 0 208.00 2.52 8.23
Cohesion 49.11 31.53 0 100.00 0.39 -1.02
Platform 15.93 25.19 0 95.83 1.33 0.54

From Table 3 we find that LOC, Coupling and Platform have a high (≥ 0.5)
positive skew (i.e., the metrics are concentrated to the left of the mean with ex-
treme values to the right) and high positive kurtosis (i.e., the peaks are higher
and sharper and the tails are longer and fatter than the normal distribution). This
effect can be seen in Figure 1. Figure 1 presents the distribution of LOC across
the source code files of one of the studied mobile apps (i.e., ConnectBot). From
Figure 1 and Table 3, we find that the source code files in the ConnectBot project
vary between 4 and 1300 LOC, but there is a peak at around 35 LOC (the left side
of Figure 1). Similar distributions were found in all of our subject mobile apps.
Therefore, we log transform LOC, Coupling and Platform (i.e., each value X is
transformed as log(X + 1)).

From Table 3 we find that Cohesion has high (≤ -0.5) negative kurtosis (i.e.,
peaks are lower and broader and the tails are shorter and thinner than the normal
distribution). Similar distributions were found in all of our subject mobile apps.
Therefore, we square-root transform Cohesion.

In the remainder of this paper, whenever we refer to LOC, Coupling, Cohesion
or Platform, we actually are referring to the transformed values.
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Fig. 1 Distribution of lines of code across the source code files of ConnectBot.

In addition to our analysis of the skew and kurtosis of each metric extracted
from each project, we also assess the multicollinearity. Multicollinearity may be
caused by high correlation between supposedly independent variables. As inde-
pendent variables become highly correlated, it becomes difficult to distinguish the
effect of each independent variable on the dependent variable. Therefore, we use
the variance inflation factor (VIF) measure to capture the multicollinearity of each
metric extracted from each project. For each project, we iteratively calculate the
VIF measure for each metric and remove the metric with the highest VIF measure,
until no metric has a VIF measure higher than 5 (Fox 2008). Table 4 presents the
VIF measure for each metric extracted from each project.

Table 4 Multicollinearity Analysis

Project LOC Coupling Cohesion Platform

ConnectBot 6.05 3.08 3.17 1.67
FBReader 2.50 2.55 1.38 1.41
KeePassDroid 4.37 3.87 1.24 1.40
Sipdroid 3.25 2.68 1.52 1.44
XBMCRemote 3.02 3.30 1.14 1.37

From Table 4, we find that the LOC variable in the ConnectBot project exhibits
a VIF measure greater than 5. Therefore, this LOC is excluded from our analysis
of the ConnectBot project.
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RQ1: Are defect-prone source code files more dependant on the Android platform?

Motivation

Mobile apps are known to be highly dependent on both the Android and Java
platforms (Syer et al 2011). In our previous work, we defined the “platform depen-
dency ratio” as the ratio of dependencies on the platform to the total number of
dependencies (Syer et al 2011). A low platform dependency ratio indicates that de-
velopers do not rely significantly on the platform APIs. For example, their mobile
app may be simple or self-contained, or the platform may be too difficult to use.
Conversely, a high platform dependency ratio indicates that mobile app develop-
ers rely heavily on the platform APIs. However, this leads to platform “lock-in,”
which may complicate porting to other platforms and potentially introduce insta-
bility due to the rapid evolution of mobile platforms. For example, the Android
platform has undergone a major release every year. If such lock-in does occur, we
believe that developers should be aware of the consequences of depending on these
platforms.

Approach

We used three techniques to determine whether source code files that are tightly
coupled to the Android platform are more defect-prone.

First, we split the source code files of each mobile app into two subsets: defect-
free source code files, which have never experienced a defect, and defect-prone
source code files, which have experienced at least one defect. We then visualized
the distribution of platform dependency ratios across source code files with and
without defects using box plots. Box plots graphically depict the smallest observa-
tion, lower quartile, median, upper quartile, and largest observation using a box.
Circles correspond to outliers.

Second, we used a two-sided unpaired t-test (parametric test) to determine if
the difference between the platform dependency ratios across the defect-free and
defect-prone source code files is statistically significant. The two-sided unpaired
t-test is used to compare the population means of two independent populations
(e.g., defect-free and defect-prone source code files). T-tests are one of the most fre-
quently performed statistical tests (Elliott 2006). We also use a two-sided unpaired
Wilcoxon signed rank test (non-parametric test) to determine if the difference
between the platform dependency ratios across the defect-free and defect-prone
source code files is statistically significant. The unpaired Wilcoxon signed rank
test is resilient to strong departures from the t-test assumptions, therefore, the
Wilcoxon test helps ensure that non-significant t-test results are not simply due
to violations of the t-test assumptions (Rice 1995).

Finally, we measured the Spearman correlation between the platform depen-
dency ratio and the number of defects.

Results

We visualize the distribution of platform dependency ratios across source code files
with and without defects for each mobile app using box plots. Figures 2(a), 2(b),
2(c), 2(d) and 2(e) present these box plots.
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(a) ConnectBot (b) FBReader

(c) KeePassDroid (d) Sipdroid

(e) XBMCRemote

Fig. 2 Distribution of platform dependency ratios across the defect-free and defect-prone
source code files

From Figures 2(a), 2(c), 2(d) and 2(e), we find that defect-prone source code
files tend to rely on the platform libraries more than defect-free source code files.
The median platform dependency ratio in defect-prone source code files across
all mobile apps is 3.25 (26%), whereas the median platform dependency ratio in
defect-free source code files across all mobile apps is 0. Further, in all cases except
FBReader, most defect-prone source code files have at least some dependence on
the platform (median ≥ 0), whereas most source code files that are defect-free
also have no dependencies on the platform (the log transform of the value 0 is
log(zero + 1) and, hence, 0).
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However, from Figure 2(b), we find that one project (i.e., FBReader) does
not appear to show a significant difference between the distribution of platform
dependency ratios across source code files with and without defects.

Table 5 presents the results of a two-sided unpaired t-test and a two-sided un-
paired Wilcoxon signed rank test performed to determine if the difference between
the distribution of platform dependency ratios across source code files with and
without defects, seen in Figures 2(a), 2(b), 2(c), 2(d) and 2(e), are statistically
significant. The values in bold indicate that the difference is statistically significant
(p ≤ 0.05). Again, the difference between the distribution of platform dependency
ratios across source code files with and without defects is statistically significant
in all mobile apps except FBReader.

Table 5 T-Tests and Wilcoxon Tests

Project t-test Wilcoxon test

ConnectBot 2.77 * 10−12 3.41 * 10−21

FBReader 9.68 * 10−2 9.12* 10−2

KeePassDroid 1.93 * 10−5 1.29 * 10−7

Sipdroid 8.87 * 10−9 1.44 * 10−12

XBMCRemote 2.59 * 10−35 2.50 * 10−33

Finally, Table 6 presents the Spearman correlation between 1) the platform
dependency ratio and the number of defects and 2) LOC and the number of defects.
We have selected LOC for comparison (i.e., a baseline) because it has been shown
to be highly correlated with defects and a good predictor of defects (Zimmermann
et al 2007; Nagappan and Ball 2005; Chidamber and Kemerer 1994; Shihab et al
2010). Indeed, from Table 6, we find that LOC of a source code file has a moderately
positive correlation (median of 0.38) with the number of defects in that source code
file for all of our mobile apps. This correlation is similar to the observed correlation
in desktop applications. For example, Zimmerman et al. (Zimmermann et al 2007)
found a correlation of 0.40 between LOC and defects in Eclipse.

Table 6 Correlation Between Source Code Metrics and Defects

Project LOC Platform

ConnectBot 0.38 0.67
FBReader 0.44 -0.06
KeePassDroid 0.16 0.33
Sipdroid 0.43 0.53
XBMCRemote 0.21 0.72

Median 0.38 0.53

From Table 6, we find that the Spearman correlation between the platform de-
pendency ratio and the number of defects (Platform) is higher than the Spearman
correlation between LOC and defects in four of the five mobile apps. The median
Platform correlation is 0.53, which indicates a strong positive relationship, and is
greater than the median LOC correlation.

The results presented indicate that defect-prone source code files tend to
be more dependant on the Android platform than defect-free source code files.
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Discussion

It is interesting to note that FBReader is an extreme project in the results above
(i.e., unlike ConnectBot, KeePassDroid, Sipdroid and XBMCRemote, the differ-
ence between the platform dependency ratios across the defect-free and defect-
prone source code files is not statistically significant). In order to examine why
this might be the case, we calculate the percentage of source code files that are
defect-prone in each mobile app and presented in Table 7. From Table 7, we find
that FBReader has many more commits and source code files than any other
project. Further, we find that the source code files of FBReader are generally
more defect-prone. Since more files have defects in them, it is likely that even files
with no (or low) platform dependency can have defects in them.

Table 7 Percentage of Defect-Prone Source Code Files

Project # Commits # Source Code % Defect-Prone
Files Source Code Files

ConnectBot 476 201 20%
FBReader 4685 405 54%
KeePassDroid 492 257 19%
Sipdroid 622 202 26%
XBMCRemote 781 301 40%

RQ2: Does the extent of platform dependence help explain why some source code
files are more defect-prone than others?

Motivation

In our previous research question, we found that there is a more than moderate
positive relationship between the platform dependency ratio and defects. In this
research question, we study whether the platform dependency ratio contributes
unique information to our understanding of defect-proneness. In particular, we
study whether combining platform dependency ratio with the traditional source
code metrics can enhance our ability to explain the defect-proneness of source code
files, or whether the impact of the dependency ratio can be explained by the other
metrics.

Approach

We built logistic regression models and used two techniques to determine whether
the platform dependency ratio can help in explaining defects. Logistic regression
models allow us to determine the relationship between the platform dependency
ratio and defect-proneness while controlling for other metrics (i.e., lines of code,
coupling and cohesion).

In order to build logistic regression models, we first characterized each source
code file as either defect-prone (at least one defect) or defect-free (no defects).
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We then built two logistic regression models for each mobile app. The first
model (Traditional model) was built using traditional metrics (LOC, Coupling
and Cohesion (Nagappan and Ball 2005; Chidamber and Kemerer 1994)). The
second model (Full model) was built using both traditional metrics and Platform
dependency ratio.

Finally, we validated these models in two ways.

First, we analyzed the impact that each observation has on our model using df-
beta residuals. The dfbeta residual approximates the influence of each observation
by calculating, for each coefficient, the ratio of the change in the coefficient when
an individual observation is removed to the coefficient’s standard error. In small
data sets, overly influential observations will have dfbeta residuals with absolute
values greater than 1 (der Meera et al 2010; Cohen et al 2002). We removed overly
influential observations and rebuilt our models on the new data sets.

Second, we assessed the statistical significance of each coefficient in the new
full model (built after removing overly influential observations) to determine which
metrics are statistically significant when modelling defects.

We compared the two models by calculating the change in explanatory power
from the Traditional model to the Full model. The explanatory power of a logistic
regression model varies between 0-100% and quantifies the variability of the data
set that is explained by the model. An explanatory power of 100% indicates that
our model can perfectly explain the dependent variable in the data set.

Results

We calculated dfbeta residuals for each coefficient in each model. Figure 3 presents
these dfbeta residuals for the coefficient modelling Coupling in ConnectBot.

From Figure 3, we find that there are no overly influential observations. There-
fore, no observations were removed from the ConnectBot data set. We repeated
this procedure for each coefficient in each project. ConnectBot was the only project
where we identified any overly influential observations. We then rebuilt our models
when one or more observations were removed (i.e., we rebuild on models using a
data set with no overly influential observations)

Table 8 presents the coefficients in the full model (i.e., the models built with
both traditional metrics and the platform dependency ratio) for each mobile app
(recall that these metrics were transformed in Subsection 4). The coefficients in
bold are statistically significant (p ≤ 0.05).

Table 8 Coefficients in the Full Model of each Mobile App

Project (Intercept) LOC Coupling Cohesion Platform

ConnectBot -2.874 NA 1.074 -0.449 1.026
FBReader -3.017 0.718 0.247 0.0330 -0.241
KeePassDroid -1.120 -0.897 1.902 -0.173 0.212
Sipdroid -2.972 0.170 0.897 -0.186 0.483
XBMCRemote -1.875 0.288 -0.287 -0.0714 1.084
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Fig. 3 DFBeta residuals for the coefficient modelling coupling in ConnectBot

From Table 8, we find that Platform is significant in four mobile apps and Cou-
pling is significant in three mobile apps. This is strong evidence that dependency
metrics can be used to explain defects in source code files (i.e., these metrics tend
to be statistically significantly correlated with the presence of defects in mobile
apps). Further, LOC is statistically significant in only two mobile apps.

Despite being related measures, Coupling and Platform appear to complement
each other (i.e., in some projects Coupling, but not Platform, is statistically signif-
icant and vice versa). Coupling is statistically significant in KeePassDroid whereas
the platform dependency ratio is not and the platform dependency ratio is statis-
tically significant in FBReader and XBMCRemote whereas coupling is not.

It is interesting to note that KeePassDroid was ported from another platform,
whereas ConnectBot, FBReader, Sipdroid and XBMCRemote were developed as
Android apps. This may explain why traditional metrics (i.e., LOC, Coupling and
Cohesion) are statistically significant in KeePassDroid but Platform is not.

From Table 8, we found that the platform dependency ratio is statistically sig-
nificant and appears to enhance traditional source code metrics. To verify this, we
compare the explanatory power of a logistic regression model (Traditional) built
using traditional metrics (LOC, Coupling and Cohesion) and a logistic regression
model (Full) built using both traditional metrics and the platform dependency
ratio. We perform an ANOVA analysis to determine if the difference between the
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Traditional and the Full model is statistically significant. The values in bold in-
dicate that the increase in explanatory power is statistically significant. Table 9
presents this data, as well as the median explanatory power across all five Tra-
ditional models (one for each mobile app) and all five Full models (one for each
mobile app).

Table 9 Deviance Explained by Traditional and Full Models

Project Traditional Full Difference

ConnectBot 36.45 59.84 +64%
FBReader 11.58 13.09 +13%
KeePassDroid 21.89 23.31 +7%
Sipdroid 29.98 35.79 +19%
XBMCRemote 5.45 40.42 +641%

Median 21.89 35.79 +19%

From Table 9, we find that adding the platform dependency ratio to our models
increases the explanatory power. The median explanatory power using traditional
source code metrics is 21.89 and the median explanatory power using traditional
source code metrics combined with Platform is 35.79 (a 63% increase with respect
to the median values). The median increase of the Full model over the Traditional
model is 19%.

The smallest increase in deviance explained (7%) is in KeePassDroid, where
the difference between the Full model and the Traditional model is not statistically
significant. As previously mentioned, KeePassDroid was ported from another plat-
form and the platform dependency ratio is not a statistically significant predictor.
Conversely, the largest increase in deviance explained (641%) is in XBMCRemote.
This may be because XBMCRemote has a greater portion of its source code files
depending on the Android platform. Table 10 presents the percentage of source
code files that depend on the Android Platform.

Table 10 Percentage of Source Code Files Depending on the Android Platform

Project % Source Code Files

ConnectBot 21%
FBReader 30%
KeePassDroid 24%
Sipdroid 24%
XBMCRemote 36%

Median 24%

From Table 10, we find that a greater portion of the source code files in XBM-
CRemote depend on the Android platform compared to any other mobile apps.

The results presented indicate that the platform dependency ratio can
help in statistically explaining defects in source code files. Hence, the platform
dependency ratio could be used to help prioritize software quality efforts (e.g.,
code reviews and unit testing).
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Discussion

This results of this research question indicate that that the platform dependency
ratio can help in statistically explaining defects in source code files. However, the
underlying reasons for this relationship remain unclear.

Platform dependencies may cause defects when the underlying platform is
defect-prone or the APIs are difficult to use (i.e., the APIs are prone to be called
incorrectly). For example, one defect in ConnectBot was caused by a defect in
the Android android.widget.ViewFlipper API. In a defect fix with the commit
log message “Workaround for ViewAnimator bug,” (ViewFlipper inherits from
ViewAnimator) the developer implemented his own ViewFlipper with the comment
“REMOVE THIS CLASS WHEN ViewAnimator IN ANDROID IS FIXED.”

It is also possible that platform dependence is higher in parts of the code
base that contain more complex application logic. However, our multicollinearity
analysis in in Subsection 4 did not identify a high correlation between the platform
dependency ratio and coupling, cohesion or lines of code, metrics shown to be
highly correlated to the complexity of a software application (Lind and Vairavan
1989; Herraiz et al 2007).

Regardless of the underlying cause, the platform dependency ratio can help in
explaining defects in source code files. Hence, the platform dependency ratio could
be used to prioritize software quality efforts (e.g., code reviews and unit testing).

RQ3: Which source code metrics have the largest impact on source code quality?

Motivation

In our previous research question, we found that the platform dependency ratio
can help in explaining defects in source code files. In this research question, we
study which source code metrics have the largest impact on source code quality.
In particular, we study the effects of a proportional increase in each source code
metric. For example, relative to a baseline, are source code files with twice as many
lines of code than expected more defect-prone than source code files with twice
the number of coupled classes than expected?

Approach

In the previous research question, we built a logistic regression model for each
mobile app using both traditional metrics (LOC, Coupling and Cohesion) and
the Platform metric. Here, we calculate the change in defect-proneness due to a
proportional increase of each source code metric to determine which source code
metric has the largest impact on source code quality.

We first calculate the average value of each source code metric (i.e., LOC,
Coupling, Cohesion and Platform). Similar to Shihab et al. (Shihab et al 2011),
a baseline hypothetical source code file is built using the average value for each
source code metric. Four hypothetical files are constructed by increasing each
source code metric in the baseline by 10%, one at a time (keeping the other metrics
constant at their average value). Table 11 shows the hypothetical source code files
for FBReader.
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Table 11 Hypothetical Source Code Files For FBReader.

File LOC Coupling Cohesion Platform

Baseline 85.00 12.38 66.44 9.71
File1 93.49 12.38 66.44 9.71
File2 85.00 13.61 66.44 9.71
File3 85.00 12.38 73.09 9.71
File4 85.00 12.38 66.44 10.68

We use the logistic models built in the previous question to predict the defect-
proneness for each hypothetical source code file. The defect-proneness is the prob-
ability that a source code file is defect-prone. Finally, we calculate the change in
defect-proneness of each hypothetical source code file compared to the baseline.

Results

Table 12 presents the change in defect-proneness from a 10% increase in each
metric over the baseline (average) values for each mobile app. For example, the
second value in the first row, 23.22%, indicates that increasing Coupling by 10%,
increases the probability that a source code file is defect-prone by 23.22%. The
values in bold in Table 12 correspond to a 10% increase in a metric that was found
to be statistically significant in Table 8.

Table 12 Impact of an Increase in Each Source Code Metric on Defect-Proneness.

Project LOC Coupling Cohesion Platform

ConnectBot NA 23.22% -17.61% 6.141%
FBReader 11.71% 2.33% 1.14% -1.04%
KeePassDroid -26.63% 37.36% -10.78% 1.69%
Sipdroid 5.44% 15.01% -10.49% 3.66%
XBMCRemote 7.80% -4.48% -2.79% 8.51%

Median 6.62% 15.01% -10.49% 3.66%

From Table 12, we find that Coupling and Cohesion have the greatest impact
on defects. “High cohesion and low coupling leads to high quality” is a classic
software engineering concept (Chidamber and Kemerer 1994).

Although the platform dependency ratio does not have the greatest effect on
defect-proneness, it is the most consistent. The range (i.e., the difference between
the maximum and minimum values) for LOC, Coupling and Cohesion are 38.34%,
41.84% and 18.75% respectively, whereas the range for Platform is only 9.55%.

From Table 12, we see that the platform dependency ratio has the smallest im-
pact on source code quality, despite its ability to significantly increase the explana-
tory power of our models. This may be because the average platform dependency
ratio is low and only a subset of the source code files (20%-36%) actually depend
on the platform. This can be seen in Tables 3, 10 and 11. Therefore, knowing that
a source code file has any dependence on the platform may be enough to identify
defect-prone source code files.

The results presented indicate that the Platform metric has the most con-
sistent impact on source code quality.
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5 Threats to Validity

5.1 Threats to Construct Validity

Threats to construct validity describe concerns regarding the measurement of our
metrics.

We have performed our analysis on metrics collected at the file-level as opposed
to the class level. However, in practice each source code files contains a single
named class. For example, 89% of the source code files across the five mobile apps
in our case study contain a single named class.

The number of defects in each source code file was measured by identifying
the source code files that were changed in a defect fixing change. Although this
technique has been found to be effective (Hassan 2008a; Mockus and Votta 2000), it
is not without flaws. We identified defect fixing changes by mining the commit logs
for a set of keywords. Therefore, we are unable to identify defect fixing changes (and
therefore defects) if we failed to find a specific keyword, if the committer misspelled
the keyword or if the committer failed to include any commit message. We are
also unable to determine which source code files have defects when defect fixing
modifications and non-defect fixing modifications are made in the same commit.
However, this is a common problem when mining software repositories (Hassan
2008b).

5.2 Threats to Internal Validity

Threats to interval validity describe concerns regarding alternate explanations for
our results.

Our results indicate that 1) defect-prone source code files tend to be more
dependant on the Android platform than defect-free source code files and 2) in-
creasing the platform dependence increases the likelihood of finding a defect in
a source code file. However, the underlying reasons remain unclear because this
correlation does not necessarily imply causation. Regardless of the underlying rea-
son, the platform dependency ratio may be used to prioritize the most defect-prone
source code files for code reviews and unit testing by the software quality assurance
team.

5.3 Threats to External Validity

Threats to external validity describe concerns regarding the generalizability our
results.

We have limited our study to a very small subset of open-source mobile apps.
In addition, we have only studied the mobile apps of a single mobile platform (i.e.,
the Android Platform). Finally, we did not consider mobile app games, which
are the most commonly downloaded mobile apps, because we were unable to find
mobile app games that met our requirements (Nielsen Co. 2010a,b). Therefore, it
is unclear how our results will generalize to 1) other mobile apps, 2) close-source
mobile apps and 3) other mobile platforms.
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In addition to the aforementioned threats to validity, our selection of mobile
apps excluded, by necessity, mobile apps with small code bases, few source code
commits and poor documentation. Several open-source mobile apps were excluded
based on our selection criteria. For example, Firefox for Android was excluded
because we could not differentiate the source code of the mobile version from
the desktop version because they share the same source code repository (Frennec
did not yet exist (MozillaWiki 2014)) and WordPress for Android was excluded
because it did not have 200 source code files (we were unable to build a model with
any statistically significant coefficients). Therefore, it is unclear how our results
will generalize to these types of mobile apps.

The dependency metrics used in this study are very simple. For example, we
do not consider the functionality provided by the dependency, the complexity of
setting up the dependency or the source code quality of the source or target of the
dependency. Therefore, our results may not apply to other types of dependency
metrics.

6 Conclusions and Future Work

This paper presented a study of the relationship between platform dependence
and defect-proneness of the source code files of an Android app. Our study was
performed to determine whether software metrics based on platform dependence
can be used to prioritize software quality assurance efforts. In particular, we stud-
ied 1) whether defect-prone source code files are more dependant on the Android
platform than defect-free source code files, 2) whether the platform dependency
ratio can help in statistically explaining defects and 3) which source code metrics
have the largest impact on source code defects. We addressed these questions by
studying five open-source mobile apps written for the Android platform.

We found that 1) defect-prone source code files tend to be more dependant
on the Android platform than defect-free source code files and 2) increasing the
platform dependence increases the likelihood of finding a defect in a source code
file. However, the underlying reasons remain unclear. Are Android APIs hard
to use? Are they more buggy? Do developers avoid relying on a rapidly evolving
platform? Is platform dependence coincidentally greater in more complex files? We
intend to address these questions in future studies. In the mean time, developers

looking to prioritize their software quality assurance efforts should first examine source

code files with the highest platform dependency ratios.
We also found that mobile apps do exhibit some of the classical relationships

between source code metrics and quality (e.g., “high cohesion and low coupling
lead to high quality” (Chidamber and Kemerer 1994)), but not necessarily others.
For example, “larger source code files are more defect-prone” was found to hold
in only three of our five mobile apps. Hence, focusing on reducing coupling and
increasing cohesion seems to be more important from the perspective of software
quality of mobile apps than reducing the size.

In the future, we intend to extend our analysis to additional mobile apps and
mobile platforms. We intend to divide the dependencies into finer categories. For
example, instead of treating the entire Android platform as one category, it could
be split into User Interface APIs, Networking APIs, Persistent Data APIs, etc.
We also intend to divide the dependencies based on the type of dependency. For
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example, inheriting from the API, implementing an API interface or instantiating
an API object. Our future studies should help to shed light on the nature of the
relationship between a mobile app’s dependence on the Android platform and the
defect-proneness of the mobile app’s source code files.
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