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Abstract—Test-Driven Development (TDD) is a software de-
velopment practice that prescribes writing unit tests before
writing implementation code. Recent studies have shown that
TDD practices can significantly reduce the number of pre-release
defects. However, most TDD research thus far has focused on
new development. We investigate the adaptation of TDD-like
practices for already implemented code, in particular legacy
systems. We call this adaptation of TDD-like practices for already
implemented code “Test-Driven Maintenance” (TDM).

In this paper, we present an approach that assists software
development and testing managers, who employ TDM, utilize the
limited resources they have for testing legacy systems efficiently.
The approach leverages the development history of the project
to generate a prioritized list of functions that managers should
focus their unit test writing resources on. The list is updated
dynamically as the development of the legacy system progresses.
To evaluate our approach, we conduct a case study on a large
commercial legacy software system. Our findings suggest that
heuristics based on the function size, modification frequency and
bug fixing frequency should be used to prioritize the unit test
writing of legacy systems.

I. INTRODUCTION

Test-Driven Development (TDD) is a software development
practice where developers consider a small subset of require-
ments, write and run unit tests that would pass once the
requirements are implemented, implement the requirements
and re-run the unit tests to make sure they pass [1], [2]. The
unit tests are generally written at the granularity of the smallest
separable module, which is the function in most cases [3].

Recently, empirical evidence has shown that TDD can
reduce pre-release defect densities by as much as 90%,
compared to other similar projects that do not implement
TDD [4]. In addition, other studies showed that TDD helps
produce better quality code [5], [6], improve programmer
productivity [7] and strengthen the developer confidence in
their code [8].

Most of the previous research to date studied the use of TDD
for new software development. However, previous studies
showed that more than 90% of the software development
cost is spent on maintenance and evolution activities [9],
[10]. Other studies showed that an average Fortune 100
company maintains 35 million lines of code and this amount
of maintained code is expected to double every 7 years [11].
For this reason, we believe it is extremely beneficial to study
the adaptation of TDD-like practices for the maintenance of

already implemented code, in particular for legacy systems. In
this paper we call this Test-Driven Maintenance (TDM).

Applying TDM to legacy systems is important because
legacy systems are often instilled in the heart of newer,
larger systems and continue to evolve with new code [12]. In
addition, due to their old age, legacy systems lack proper doc-
umentation and become brittle and error-prone over time [13].
Therefore, TDM should be employed for these legacy systems
to assure quality requirements are met and reduce the chance
of failures due to evolutionary changes.

However, legacy systems are typically large and writing unit
tests for an entire legacy system at once is time consuming
and practically infeasible. To mitigate this issue, TDM uses
the same divide-and-conquer idea of TDD. However, instead
of focusing on a few tasks from the requirements documents,
developers that apply TDM isolate functions of the legacy
system and individually unit test them. Unit tests for the
functions are incrementally written until a desired quality
target is met.

The idea of incrementally writing unit tests is very practical
and has 3 main advantages. First, it gives resource-strapped
managers some breathing room in terms of resource allocation
(i.e., it alleviates the need for long-term resource commit-
ments). Second, developers can get more familiar with the
legacy code through the unit test writing effort [14]. Third,
unit tests can be easily maintained and updated in the future
to assure the high quality of the legacy system [3].

Even after isolating functions of the large legacy system,
the question of how to prioritize the writing of unit tests to
achieve the best return on investment still lingers. Do we
randomly write unit tests for functions? Do we write unit
tests for the functions that we worked on most recently?
Using the right prioritization strategy can save developers time,
save the organization money and increase the overall product
quality [15], [16].

In this paper, we present an approach that prioritizes the
writing of unit tests for legacy software systems, based on
the development history of these systems. We propose several
heuristics to generate prioritized lists of functions to write unit
tests for.

To evaluate our approach, we perform a case study on
a large commercial legacy system. Our results show that
using the proposed heuristics significantly improves the testing



efforts, in terms of potential bug detection, when compared to
random test writing. Heuristics that prioritize unit testing effort
based on function size, modification frequency and bug fixing
frequency are the best performing.
Organization of Paper. We motivate our work using an
example in Section II. Section III details our approach. The
simulation-based case study is described in Section IV. The
results of the case study are presented in Section V. A
discussion on the effect of the simulation parameters on our
results is provided in Section VI. The list of the threats to
validity are presented in Section VII, followed by the related
work in Section VIII. Section IX concludes the paper.

II. MOTIVATING EXAMPLE

In this section, we use an example to motivate our approach.
Lindsay is a software development manager for a large legacy
system that continues to evolve with new code.

To assure a high level of quality of the legacy system,
Lindsay’s team employs TDM practices. Using TDM, the team
isolates functions of the legacy system and writes unit tests for
them. However, deciding which functions to write unit tests
for is a challenging problem that Lindsay and his team have
to answer.

Writing unit tests for all of the code base is nearly im-
possible. For example, if a team has enough resources to
write unit tests to assess the quality of 100 lines of system
code per day, then writing unit tests for a 1 million line of
code (LOC) system would take over 27 years. At the same
time, the majority of the team is busy with new development
and maintenance efforts. Therefore, Lindsay has to utilize his
resources effectively in order to obtain the best return for his
resource investment.

A primitive approach that Lindsay tries is to randomly
pick functions and write unit tests for them or write tests for
functions that are recently worked on. However, he quickly
realizes that such an approach is not very effective. Some of
the recently worked on functions are rarely used later, while
others are so simple that writing unit tests for them is not a
priority. Lindsay needs an approach that can assist him and his
team prioritize the writing of unit tests for the legacy system.
To assist development and testing teams like Lindsay’s, we
present an approach that uses the history of the project to
prioritize the writing of unit tests for legacy software systems.
The approach uses heuristics extracted from the project history
to recommend a prioritized list of functions to write unit tests
for. The size of the list can be customized to the amount of
resources the team has at a specific time. The approach updates
using the history of the project and continues to recommend
functions to write unit tests for as the project progresses.

III. APPROACH

In this section, we detail our approach, which is outlined
in Figure 1. In a nutshell, the approach extracts a project’s
historical data from its code and bug repositories, calculates
various heuristics and recommends a list of functions to write
unit tests for. Then, it re-extracts new data from the software

Fig. 1. Approach overview

repositories to consider new development activity and starts
the process of calculating heuristics and generating a list of
functions again. In the next three subsections, we describe
each phase in more detail.

A. Extracting Historical Data

The first step of the approach is to extract historical data
from the project’s development history. In particular, we
combine modification information and source code from the
source code control system (e.g., SVN [17], CVS [18]) with
bug data stored in the bug tracking system (e.g., Bugzilla [19]).
Each modification record contains the time of the modification
(day, month, year and local time), the author, the files that
changed, the version of the files, the line number where the
change occurred in the file and a short description of the
change. Similar to previous studies (e.g. [20]–[22]), we used
a lexical technique to automatically classify modifications.
The technique searches the modification record logs, that are
stored in the source code repository, for keywords, such as
“bug” or “bugfix”, and bug identifiers (which we use to search
the bug database) to do the classification. If a modification
record contained a bug identifier or one of the keywords
associated with a bug, then it is classified as a bug fixing
modification. The modification records were grouped into
two main categories: bug fixing modifications and general
maintenance modifications.

The next step involves mapping the modification types to
the functions that changed. To achieve this goal, we identify
the files that changed and their file version numbers. Then,
we extract the all versions of the files, parse them (to identify
the individual functions) and compare consecutive versions of
the files to identify which functions changed. Since we know
which files and file versions were changed by a modification,
we can pinpoint the functions modified by each modification.
We label each of the changed functions with the modification
type.

B. Calculating Heuristics

We use the extracted historical data to calculate various
heuristics. The heuristics are used to prioritize different func-
tions that we recommend for testing. We choose to use
heuristics that can be extracted from a project’s history for
two main reasons: 1) legacy systems ought to have a very rich
history that we can use to our advantage and 2) previous work
in fault prediction showed that history based heuristics are
good indicators of future bugs (e.g., [23], [24]). We conjecture
that heuristics used for fault prediction will perform well, since



ideally, we want to write unit tests for the functions that have
bugs in them.

The heuristics fall under four main categories: modification
heuristics, bug fix heuristics, size heuristics and risk heuristics.
The heuristics are listed in Table I. We also include a random
heuristic that we use to compare the aforementioned heuristics
to. For each heuristic, we provide a description, our intuition
for using the heuristic and any related work.

The heuristics listed in Table I are a small sample of the
heuristics that can be used to generate the list of functions.
We chose to use these heuristics since previous work on fault
prediction has proven their ability to perform well. However,
any metric that captures the characteristics of the legacy
system and can be linked to functions may be used to generate
the list of functions.

C. Generating a List of Functions

Following the heuristic extraction phase, we use the
heuristics to generate prioritized lists of functions that are
recommended to have unit tests written for. Each heuristic
generates a different prioritized list of functions. For example,
one of the heuristics we use (i.e., MFM) recommends that
we write tests for functions that have been modified the
most since the beginning of the project. Another heuristic
recommends that we write tests for functions that are fixed
the most (i.e. MFF).

Then, we loop back to the historical data extraction phase,
to include any new development activity and run through the
heuristic calculation and list generation phases. Each time, a
new list of functions, that should have unit tests written for
them, is generated.

IV. SIMULATION-BASED CASE STUDY

To evaluate the performance of our approach, we conduct
a simulation-based case study on a large commercial system.
The software system is a legacy system, written in C and
C++, which contains tens of thousands of functions totalling
hundreds of thousands of lines of code. We used 5.5 years
of the system’s history to conduct our simulation, in which
over 50 thousand modifications were analyzed1. In this section,
we detail the case study steps and introduce our evaluation
metrics.

A. Simulation study

The simulation ran in iterations. For each iteration we:
1) extract the historical data, 2) calculate the heuristics, 3)
generate a prioritized list of functions, 4) measure the time
it takes to write tests for the recommended list of functions
and 5) filter out the list of functions that were recommended.
Then, we advance the time (i.e., account for the time it took
to write the unit tests) and do all of the aforementioned steps
over again.

1We cannot disclose any more details about the studied system for confi-
dentiality reasons.

Step 1. We used 5.5 years of historical data from the
commercial legacy system to conduct our simulation. The first
6 months of the project were used to calculate the initial set
of heuristics and the remaining 5 years are used to run the
simulation.

Step 2. To calculate the heuristics, we initially look at the
first 6 months of the project. If, for example we are calculating
the MFM heuristic, we would look at all functions in the first 6
months of the project and rank them in descending order based
on the number of times they were modified during that 6 month
period. The amount of history that we consider to calculate
the heuristics advances as we advance in the simulation. For
example, an iteration 2 years into the simulation will use 2.5
years (i.e. the initial 6 months and 2 years of simulation time)
of history when it calculates the heuristics.

Step 3. Next, we recommend a prioritized list of 10
functions that should have unit tests written for them. One
list is generated for each of the heuristics. The list size of
10 functions is an arbitrary choice we made. If two functions
have the same score, we randomly choose between them. We
study the effect of varying the list size on our results in detail
in Section VI. Furthermore, in our simulation, we assume that
once a list of 10 functions is generated, tests will be written
for all 10 functions before a new list is generated.

Step 4. Then, we calculate the time it takes to write tests
for these 10 functions. To do so, we measure the size of the
functions and divide by the total resources available. The size
of the functions is used as a measure for the amount of effort
required to write unit tests for those 10 functions [33], [34].
Since complexity is highly correlated with size [25], larger
functions will take more effort/time to write unit tests for.

The number of available resources is a simulation parameter,
expressed as the number of lines of code that testers can
write unit tests for in one day. For example, if one tester is
available to write unit tests for the legacy system and that
tester can write unit tests for 50 lines of code per day, then
a list of functions that is 500 lines will take him 10 days. In
our simulation, we set the total test writing capacity of the
available resources to 100 lines per day. We study the study
the effect of varying the resources available to write unit tests
in more detail in Section VI.

Step 5. Once a function is recommended to have a test
written for it, we filter it out of the pool of functions that
we use to generate future lists. In other words, we assume
that once a function has had a unit test written for it, it will
not need to have a new test written for it from scratch in the
future; at most the test may need to be updated. We make
this assumption for the following reason: once the function is
recommended and the initial unit test is written, then this initial
unit test will make sure all of the function’s current code is
tested. Also, since the team adopts TDM practices any future
additions/changes to the function will be accompanied by unit
tests that test the new additions/changes, therefore, they will
not need to be prioritized again.

We repeat the 5-step process mentioned above for a period
of 5 years. To evaluate the performance of the different



TABLE I
LIST OF ALL HEURISTICS USED TO PRIORITIZE THE WRITING OF UNIT TESTS FOR LEGACY SYSTEMS

Category Heuristic Prioritization
Order Description Intuition Related Work

Modifications

Most
Frequently
Modified
(MFM)

Highest to
lowest

Functions that were mod-
ified the most since the
start of the project.

Functions that are modified frequently tend to
become disorganized over time, leading to more
bugs.

The number of prior
modifications to a file is
a good predictor of its
potential bugs [23], [25],
[26], [27].

Most
Recently
Modified
(MRM)

Latest to old-
est

Functions that were most
recently modified.

Functions that were modified most recently are
the ones most likely to have a bug in them (due
to the recent changes).

More recent changes con-
tribute more bugs than
older changes [25].

Bug Fixes

Most
Frequently
Fixed (MFF)

Highest to
lowest

Functions that were fixed
the most since the start of
the project.

Functions that are frequently fixed in the past
will have to be fixed in the future.

Prior bugs are a good
indicator of future
bugs [28].

Most
Recently
Fixed (MRF)

Latest to old-
est

Functions that were most
recently fixed.

Functions that were fixed most recently are
more likely to have a bug in them in the future.

The recently fixed heuris-
tic was used to prior-
itize buggy subsystems
in [22].

Size

Largest
Modified
(LM)

Largest to
smallest

The largest (in terms
of total lines of code),
modified functions. To-
tal lines of code account
for source, comment and
blank lines of code.

Large functions are more likely to have bugs
than smaller functions.

The simple lines of code
metric correlates well
with most complexity
metrics (e.g., McCabe
complexity) [25],
[27], [29] and [30].

Largest
Fixed (LF)

Largest to
smallest

The largest (in terms of
total lines of code), fixed
functions. Total lines of
code account for source,
comment and blank lines
of code.

Large functions that need to be fixed are most
likely to have more bugs than smaller functions
that are fixed less.

The simple lines of code
metric correlates well
with most complexity
metrics (e.g., McCabe
complexity) [25],
[27], [29] and [30].

Risk
Size Risk
(SR)

Highest to
lowest

Riskiest functions, de-
fined as the number of
bug fixing changes di-
vided by the size of the
function in lines of code.

Since larger functions may naturally need to be
fixed more than smaller functions, we normalize
the number of bug fixing changes by the size of
the function. This heuristic will mostly point out
the small functions that are fixed a lot (i.e., have
high defect density).

Using relative churn
metrics performs better
than using absolute
values when predicting
defect density [31].

Change Risk
(CR)

Highest to
lowest

Riskiest functions, de-
fined as the number of
bug fixing changes di-
vided by the total number
of changes.

The number of bug fixing changes normalized
by the total number of changes. For example, a
function that changes 10 times in total and out
of those 10 times 9 of them were to fix a bug
should have a higher priority to be tested than
a function that changes 10 times where only 1
of those ten is a bug fixing change.

Using relative churn
metrics performs better
than using absolute
values when predicting
defect density [31].

Random Random Random
Randomly selects func-
tions to write unit tests
for.

Randomly selecting functions to test can be
thought of as a base line scenario. Therefore,
we use the random heuristic’s performance as
a base line to compare the performance of the
other heuristics to.

Previous studies on test
prioritization used a ran-
dom heuristic to compare
their performance [15],
[16], [32].

heuristics, we periodically (every 3 months) measure the
performance using two metrics: Usefulness and Percentage of
Optimal Performance (POP), which we describe next.

B. Performance Evaluation Metrics

Usefulness
The first question that comes up after we write unit tests
for a set of functions is - was writing the tests for these
functions worth the effort? For example, if we write unit tests
for functions that rarely change and/or have no bugs after the
tests are written, then our effort may be wasted. Ideally, we
would like to write unit tests for the functions that have bugs
in them.

We define the usefulness metric to answer the
aforementioned question. The usefulness metric is defined as
the percentage of functions we write unit tests for that have
one or more bugs after the tests are written. The usefulness
metric indicates how much of our effort on writing unit tests
is actually worth the effort.

We use the example in Figure 2 to illustrate how we
calculate the usefulness. Functions A and B have more than 1
bug fix after the unit tests were written for them (after point
2 in Figure 2). Function C did not have any bug fix after
we wrote the unit test for it. Therefore, for this list of three
functions, we calculate the usefulness as 2

3 = 0.666 or 66.6%.



Fig. 2. Usefulness example

Percentage of Optimal Performance (POP)
In addition to calculating the usefulness, we would like to
measure how well a heuristic performs compared to the
optimal (i.e., the best we can ever do). Optimally, one would
have perfect knowledge of the future and write unit tests for
functions that are the most buggy. This would yield the best
return for their investment.

To measure how close we are to the optimal performance,
we define a metric called Percentage of Optimal Performance
(POP). To calculate the POP, we generate two lists: one is
the list of functions generated by the heuristic and the second
is a optimal list of functions. The optimal list contains the
functions with the most bugs from the time the unit tests were
written till the end of the simulation. Assuming that the list
size is 10 functions, we calculate the POP as the number of
bugs in the top 10 functions, from the list generated by the
heuristics, divided by the number of bugs the top 10 optimal
functions contain (i.e., functions in the optimal list). Simply
put, the POP is the percentage of bugs we can avoid using a
heuristic compared to the best we can do if we had perfect
knowledge of the future.

We illustrate the POP calculation using the example shown
in Figure 3. At first, we generate a list of functions that
we write unit tests for using a specific heuristic (e.g., MFM
or MFF). Then, based on the size of these functions, we
calculate the amount of time it takes to write unit tests for
these functions (point 2 in Figure 3). From that point on, we
calculate the number of bugs for all of the functions and rank
them in descending order. For the sake of this example, let us
assume we are considering the top 3 functions. Assuming our
heuristic identifies functions A, B and C as the functions we
need to write unit tests for, however, these functions may not
be the ones with the most bugs. Assuming that the functions
with the most bugs are functions A, D and E (i.e., they are
the top 3 on the optimal list). From Figure 2 , we can see that
functions A, B and C had 8 bug fixes in total after the unit
tests were written for them. At the same time, Figure 3 shows
that the optimal functions (i.e., functions A, D and E) had 13
bug fixes in them. Therefore, the best we could have done is
to remove 13 bugs. We were able to remove 8 bugs using our
heuristic, hence our POP is 8

13 = 0.62 or 62%.
It is important to note that the key difference between

the usefulness and the POP values is that usefulness is the
percentage of functions that we found useful to write unit tests

Fig. 3. POP example

for. On the other hand, POP measures the bugs we could avoid
using a specific heuristic.

V. CASE STUDY RESULTS

In this section, we present the results of the usefulness and
POP metrics for the proposed heuristics. Ideally, we would
like to have high usefulness and POP values. To evaluate the
performance of each of the heuristics, we use the random
heuristic as our baseline. If we cannot do better than just
randomly choosing functions to add to the list, then the
heuristic is not that effective. Previous studies on test case
prioritization, such as [15], [16], [32], commonly used random
lists to compare their proposed solutions to. Since the random
heuristic can give a different ordering each time, we use the
average of 5 runs, each of which uses different randomly
generated seeds.

A. Usefulness

Usefulness measures how many of the functions recom-
mended to have unit tests written for have one or more bugs
after the unit tests are written. We calculate the usefulness for
each heuristic and plot it over time in Figure 4. The dashed
black line in each of the figures depicts the results of the
random heuristic. From the figures, we can observe that in all
cases and throughout the simulation, the proposed heuristics
outperform the random heuristic.

The median usefulness values for each of the heuristics are
listed in Table II. Since the usefulness values change over
the course of the simulation, we chose to present the median
values to avoid any sharp fluctuations. The last row of the
table shows the usefulness achieved by the random heuristic.
The heuristics are ranked from 1 to 9, with 1 indicating the
best performing heuristic and 9 the worst.

The LF, LC, MFF and MFM are the top performing heuris-
tics, having median values in the range of 80% to 87%. These
heuristics perform much better than the, i.e., writing tests for
functions that they currently work on (i.e., MRM and MRF).
We can observe from the Figures 4(a) and 4(b) that the recency
heuristics (i.e., MRM and MRF) perform poorly compared to
their frequency counterparts (i.e., MFM and MFF) and the
size-based heuristics.

Taking the median values in Table II, we can see that for
MFM we were able to achieve 80% median usefulness. This
means that approximately 8 out of the 10 functions we wrote



(a) Usefulness of modification heuristics (b) Usefulness of fix heuristics

(c) Usefulness of size heuristics (d) Usefulness of risk heuristics

Fig. 4. Usefulness of heuristics compared to the random heuristic

(a) POP of modification heuristics (b) POP of fix heuristics

(c) POP of size heuristics (d) POP of risk heuristics

Fig. 5. POP of heuristics compared to the random heuristic



TABLE II
USEFULNESS RESULTS

Heuristic Median Usefulness Rank

LF 87.0% 1
LM 84.7% 2

MFF 83.8% 3
MFM 80.0% 4
MRF 56.9% 5
CR 55.0% 6
SR 48.8% 7

MRM 43.1% 8

Random 27.7% 9

unit tests for had one or more bugs in the future. Therefore,
writing the unit tests for these functions was useful. On the
contrary, for the random heuristic, approximately 3 out of
every 10 functions we wrote unit tests for had 1 or more bugs
after the unit tests were written.�




�

	
Size, modification frequency and fix frequency heuris-
tics should be used to prioritize the writing of unit
tests for legacy systems. These heuristics achieve
median usefulness values between 80–87%.

B. Percentage of Optimal Performance (POP)

In addition to calculating the usefulness of the proposed
heuristics, we would like to know how close we are to the
optimal list of functions that we should write unit tests for if
we have perfect knowledge of the future. We present the POP
values for each of the heuristics in Figure 5. The performance
of the random heuristic is depicted using the dashed black
line. The figures show that in all cases, the proposed heuristics
outperform the random heuristic.

The median POP values are shown in Table III. The POP
values for the heuristics are lower than the usefulness values.
The reason is that usefulness gives the percentage of functions
that have one or more bugs. However, POP measures the
percentage of bugs the heuristic can potentially avoid in com-
parison to the best we can do, if we have perfect knowledge
of the future.

Although the absolute POP percentages are lower compared
to the usefulness measure, the ranking of the heuristics re-
mained quite stable (except for the SR and MRM, which
exchanged 7th and 8th spot). Once again, the best performing
heuristics are LF, LM, MFF and MFM. The median values
for these top performing heuristics are in the 20% to 32.4%
range. These values are much higher than the 1.7% that can
be achieved using the random heuristic.

We can observe a decline in the usefulness and POP values
at the beginning of the simulation, shown in Figures 4 and 5.
This decline can be attributed to the fact that initially, there
are many buggy functions for the heuristics to choose from.
Then, after these buggy functions have been recommended,
we remove them from the pool of functions that we can
recommend. Therefore, the heuristics begin to recommend
some functions that are not buggy. This phenomenon is evident

TABLE III
PERCENTAGE OF OPTIMAL PERFORMANCE RESULTS

Heuristic Median POP Rank

LF 32.4% 1
LM 32.2% 2

MFF 22.2% 3
MFM 21.8% 4
MRF 7.0% 5
CR 5.5% 6

MRM 4.9% 7
SR 4.3% 8

Random 1.7% 9

in all types of simulations, where a small warm-up period is
required for the simulation to reach steady state [35].�
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Size, modification frequency and fix frequency heuris-
tics should be used to prioritize the writing of unit
tests for legacy systems. These heuristics achieve POP
values between 21.8–32.4%.

VI. DISCUSSION

During our simulation study, we needed to decide on two
simulation parameters: list size and available resources. In
this section, we discuss the effect of varying these simulation
parameters on our results. It is important to study the effect of
these simulation parameters on our results because it helps us
better understand the results we obtain from the simulation.
Due to space limitations, we only present the POP values.

A. Effect of List Size

In our simulations, each of the heuristics would recommend
a list of functions that should have unit tests written for.
Throughout our study, we used a list size of 10 functions.
However, this list size was an arbitrary choice. We could have
set this list size to 5, 20, 40 or even 100 functions. The size
of the list will affect the usefulness and POP values.

To analyze the effect of list size, we vary the list size
and measure the corresponding POP values. We measure the
median POP for each list size and plot the results in Figure 6.
The y-axis is the log of the median POP value and the x-axis
is the list size. We observe a common trend - an increase in the
list size increases the POP for all heuristics. Once again, our
top performing heuristics are unchanged with LF, LC, MFF
and MFM scoring in the top for all list sizes. The same trend
was also observed for the usefulness values.

This trend can be explained by the fact that a bigger list
size will make sure that more functions have unit tests written
for them earlier on in the project. Since these functions are
tested earlier on, we are able to avoid more bugs and the POP
increases.

B. Effect of Available Resources

Another important simulation parameter that we needed to
set in the simulations is, the effort available to write unit tests.
This parameter determines how fast a unit test can be written.



Fig. 6. Effect of varying list size on POP

For example, if a function is 100 lines of code, and a tester
can write unit tests for 50 lines of code per day, then she will
be able to write unit tests for that function in 2 days.

Throughout our study, we set this value to 100 lines per
day. If this value is increased, then testers can write unit tests
faster (due to an increase in man power or due to more efficient
testers) and write tests for more functions. On the other hand,
if we decrease this value, then it will take longer to write unit
tests.

We varied this value from 50 to 200 lines per day and
measured the median POP. The results are plotted in Figure 7.
We observe three different cases:

1) POP decreases as we increase the effort for heuristics
LF, LM, MFF and MFM.

2) POP increases as we increase the effort for heuristics
CR and SR.

3) POP either increases, then decreases or decreases, then
increases as we increase the effort for heuristics MRF,
MRM and Random.

We examined the results in more depth to try and explain the
observed behavior. We found that in case 1, the POP decreases
as we increase the effort because as we write tests for more
functions (i.e., increasing effort available to 200 lines per day),
we were writing tests for functions that did not have bugs after
the tests were written. Or in other words, as we decrease the
effort, less functions had unit tests written for them and this
decreases the chance of prioritizing functions that do not have
as many (or any) bugs in the future. In case 2, we found
that the risk heuristics mostly identified functions that had
a small number of bugs. Since an increase in effort means
more functions can have unit tests written for them, therefore,
we see an increase in the POP as effort is increased. In case
3, the MRF and MRM heuristics identify functions that are
most recently modified or fixed. Any change in the effort will
change the time it takes to write unit tests. This change in time
will change the list of functions that should have unit tests
written for them. Therefore, an increase or decrease in the
effort randomly affects the POP. As for the random heuristic,
by definition, it picks random functions to write unit tests
for. Therefore, an increase or decrease in the effort randomly

Fig. 7. Effect of varying effort on POP

affects its POP.

VII. THREATS TO VALIDITY

Construct validity: We used the POP and Usefulness mea-
sures to compare the performance of the different heuristics.
Although POP and Usefulness are good measures, they may
not capture all of the costs associated with creating the unit
tests, maintaining the test suites and the cost of the different
bugs (i.e., minor vs. major bugs).
Internal validity:In our simulations, we used 6 months to
calculate the initial set of heuristics. Changing the length of
this period may effect the results from some heuristics. In the
future, we plan to study the effect of varying this initial period
in more detail.

Our approach assumes that there is enough history about
each function so that the different heuristics can be extracted.
Although our approach is designed for legacy systems, in
certain cases new functions may be added, in which case little
or no history can be found. In such cases, we ask practitioners
to carefully examine and monitor such functions manually
until enough history is accumulated to use our approach.

When calculating the amount of time it takes to write
the unit test for a function in our simulations, we make the
assumption that all lines in the function will require the same
effort. This may not be true for some functions.

Additionally, our simulation assumes that if a function is
recommended once, it needs not be recommended again. This
assumption is fueled by the fact that TDM practices are being
used and after the initial unit test, all future development will
be accompanied by unit tests that test the new functionality.

We assume that tests can be written for individual functions.
In some cases, functions are closely coupled with other
functions. This may make it impossible to write unit tests for
the functions or impose the condition that unit tests for these
closely coupled functions need to be written simultaneously.

Throughout our simulation study, we assume that all bug
fixes are treated equally. However, some bugs have a higher
severity and priority than others. In the future, we plan to
consider the bug severity and priority in our simulation study.



External validity: Although our study focused on a large
commercial legacy software system with a rich history, our
findings might not generalize for all commercial or open
source software systems.

VIII. RELATED WORK

The related work can be categorized into two main cat-
egories: test case prioritization and fault prediction using
historical data.
Test Case Prioritization.
The majority of the existing work on test case prioritization has
looked at prioritizing the execution of tests during regression
testing to improve the fault detection rate [15], [32], [36]–[38].

Rothermel et al. [38] proposed several techniques that use
previous test execution information to prioritize test cases for
regression testing. Their techniques ordered tests based on
the total coverage of code components, the coverage of code
components not previously covered and the estimated ability
to reveal faults in the code components that they cover. They
showed that all of their techniques were able to outperform
untreated and randomly ordered tests. Similarly, Aggrawal et
al. [37] proposed a model that optimizes regression testing
while achieving 100% code coverage.

Elbaum et al. [15] showed that test case prioritization
techniques can improve the rate of fault detection of test suites
in regression testing. They also compared statement level and
function level techniques and showed that at both levels, the
results were similar. In [32], the same authors improved their
test case prioritization by incorporating test costs and fault
severities and validated their findings using several empirical
studies [32], [39], [40].

Kim et al. [41] utilized historical information from previous
test suite runs to prioritize tests. Walcott et al. [42] used
genetic algorithms to prioritize test suites based on the testing
time budget.

Our work differs from the aforementioned work in that we
do not assume that tests are already written, rather, we are
trying to deal with the issue of which functions we should
write tests for. We are concerned with the prioritization of
unit test writing, rather than the prioritization of unit test
execution. Due to the fact that we do not have already written
tests, we have to use different heuristics to prioritize which
functions of the legacy systems we should write unit tests
for. For example, some of the previous studies (e.g., [41]) use
historical information based on previous test runs. However,
we do not have such information since the functions we are
trying to prioritize have never had tests written for them in the
first place.
Fault Prediction using Historical Data.
Another avenue of closely related work is the work done
on fault prediction. Nagappan et al. [24], [31] showed that
dependency and relative churn measures are good predictors
of defect density and post-release failures. Holschuh et al. [43]
used complexity, dependency, code smell and change metrics
to build regression models that predict faults. They showed that
these models are accurate 50-60% of the time, when predicting

the 20% most defect-prone components. Additionally, studies
by Arishlom et al. [23], Graves et al. [25], Khoshgoftaar
et al. [26] and Leszak et al. [27] have shown that prior
modifications are a good indicator of future bugs. Yu et
al. [28], and Ostrand et al. [29] showed that prior bugs are
a good indicator of future bugs. Hassan [44] showed that the
complexity of changes are good indicators of potential bugs.

Mende and Koschke [34] examined the use of various per-
formance measures of bug prediction models. They concluded
that performance measures should always take into account
the size of source code predicted as defective, since the cost
of unit testing and code reviews is proportional to the size of
a module.

Other work used the idea of having a cache that recom-
mends buggy code. Hassan and Holt [22] used change and
fault metrics to generate a Top Ten list of subsystems (i.e.,
folders) that managers need to focus their testing resources
on. Kim et al. [45] use the idea of a cache that keeps track of
locations that were recently added, recently changed and where
faults were fixed to predict where future faults may occur (i.e.
faults within the vicinity of a current fault occurrence).

There are two key differences between our work and the
work on fault prediction. First, our work prioritizes functions
at a finer granularity than previous work on fault prediction.
Instead of identifying buggy files or subsystems, we identify
buggy functions. This difference is critical since we are look-
ing to write unit tests for the recommended functions. Writing
unit tests for entire subsystems or files may be wasteful, since
one may not need to test all of the functions in the file or
subsystem. Second, fault prediction techniques provide a list of
potentially faulty components (e.g., faulty directories or files).
Then it is left up to the manager to decide how to test this
directory or file. Our work puts forward a concrete approach
to assist in the prioritization of unit test writing, given the
resources available and knowledge about the history of the
functions.

IX. CONCLUSIONS

In this paper, we present an approach to prioritize the
writing of unit tests for legacy systems. Different heuristics
are used to generate lists of functions that should have unit
tests written for them. To evaluate the performance of each
of the heuristics, we perform a simulation-based case study
on a large commercial legacy software system. We compared
the performance of each of the heuristics to that of a random
heuristic, which we use as a base line comparison. All of
the heuristics outperformed the random heuristic in terms of
usefulness and POP. Furthermore, our results showed that
heuristics based on the function size, modification frequency
and bug fixing frequency perform the best for the purpose of
unit test writing prioritization. Finally, we studied the effect
of varying list size and the resources available to write unit
test on the performance of the heuristics.

In the future we plan to combine heuristics and study
whether there exists an optimal combinations of heuristics that
can be used to effectively prioritize the writing of unit tests.
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