
Mining Performance Regression Testing Repositories

for Automated Performance Analysis

King Chun Foo1, Zhen Ming Jiang2, Bram Adams2, Ahmed E. Hassan2, Ying Zou1, Parminder Flora3

Department of Electrical and Computer Engineering1

Queen’s University

Kingston, ON, Canada

{k.foo, ying.zou}@queensu.ca

School of Computing2

Queen’s University

Kingston, ON, Canada

{zmjiang, bram, ahmed}@cs.queensu.ca

Performance Engineering3

Research In Motion

Waterloo, ON, Canada

Abstract— Performance regression testing detects performance

regressions in a system under load. Such regressions refer to

situations where software performance degrades compared to

previous releases, although the new version behaves correctly. In

current practice, performance analysts must manually analyze

performance regression testing data to uncover performance

regressions. This process is both time-consuming and error-prone

due to the large volume of metrics collected, the absence of

formal performance objectives and the subjectivity of individual

performance analysts. In this paper, we present an automated

approach to detect potential performance regressions in a

performance regression test. Our approach compares the test

results against correlations among performance metrics

extracted from performance regression testing repositories. Our

approach scales well to large industrial systems, and detects

performance problems that are often overlooked by performance
analysts.

Keywords: Mining software repositories, performance

regression testing, performance analysis

I. INTRODUCTION

Performance regression testing is integrated into traditional
regression testing to reveal performance bottleneck and design
problems early [9]. Traditional regression testing focuses on
verifying the functional correctness of a change [17]. However,
research on large industrial projects shows that the primary
problems observed in the field are often performance related
[19]. Examples of such problems are response time
degradation, or higher than expected resource utilization. This
phenomenon of performance degradation is known as
performance regression, which refers to situations where
software performance degrades compared to previous releases.

Performance regression testing is the process of putting
load on a system to test whether the system is able to support a
specific demand that resembles the field usage intensity [6, 7].
In performance regression testing, a load consists of a mix of
scenarios to be executed and the rates at which each scenario
appears [13]. For example, the MMB3 [2] benchmark which is
used to measure the performance of computers running
Microsoft Exchange Server specifies that a typical user will
send 8 emails per day on average, 15% of which have high
priority, and another 15% have low priority. A performance
regression test usually spans from a few hours to a few days.

During the course of the test, various performance data about
the running system is recorded (e.g., CPU and memory
utilizations). After each test, performance analysts would use
domain-knowledge and prior tests to manually look for large
deviations of metric values between the past test and the new
test. A defect report will be filed if the performance analyst
concludes that the observed deviations represent performance
regressions. In a large enterprise system, an analysis of a
performance regression test can take up to a few days.

Unfortunately, the current practice of performance
regression test analysis is both time consuming and error-
prone. Because of the number metrics available, it is difficult
for performance analysts to manually look for metric
correlations and instances when the correlations are violated.
As a result, performance analysts often overlook potential
performance problems that may exist in a test. Furthermore, a
formal performance baseline rarely exists. A performance
analyst must often exert her own judgment to decide whether
an observation constitute a performance problem.

Performance regression testing repositories are used to
archive performance regression testing results for bookkeeping
purposes, but are rarely used in performance analysis. In this
paper, we introduce an automatic approach to derive
performance signatures by capturing the correlations among
metrics from performance regression testing repositories.
Violations of these performance signatures are flagged as
potential performance problems. In an e-commerce application
for example, as visitors make purchases on the site, transaction
records are stored in the database. As a result, a correlation
between the visitor arrival rate, application server’s CPU
utilization, and database disk writes/sec can be extracted as a
performance signature. In a new version of the software with
the same visitor arrival rate, a significant drop in the number of
database disk writes would lead to a violation of the extracted
performance signature, signifying a potential performance
problem (e.g. deadlock in database).

 The performance regression reports generated by our
approach signal potential problematic metrics that violate the
extracted performance signatures. Performance analysts can
leverage our report to ensure better coverage in their
assessments of performance regression tests. The main
contributions of our work are as follows:

1. Our approach is the first work to leverage performance
regression testing repositories to automatically detect
occurrences of performance regression in a
performance regression test.

2. Performance analyst can leverage information such as
the expected metric correlations and visualizations in
our performance regression report to derive the cause
of a performance problem.

The paper is organized as follows. Section 2 provides an
overview of the current practice and limitations of performance
regression testing. Section 3 gives an example of a report
generated by our research prototype and how performance
analysts can benefit from it. Section 4 provides the details of
our performance regression approach. Section 5 presents three
case studies on two open source systems and one commercial
system to demonstrate the effectiveness of our approach.
Section 6 discusses our approach and future research
directions. Section 7 discusses related research and Section 8
concludes the paper.

II. CURRENT PRACTICE AND LIMITATIONS

As shown in Figure 1, the typical process of conducting and
analyzing a performance regression test involves 4 phases:

1. Performance analysts start a performance regression test.
During the course of the test, various performance
metrics are recorded.

2. After the test has completed, performance analysts use
tools to perform simple comparisons of the averages of
metrics against a pre-defined thresholds.

3. Performance analysts visually compare the metrics
between past runs and the new run to look for evidence
of performance regressions or divergences of
supposedly correlated metrics. If a metric in the new run
exhibits deviations from past runs, this run is probably
troublesome and worth further investigation. Depending
on individual judgments, a performance analyst would
decide whether the changes are significant and file
defect reports accordingly.

4. All performance data is archived in a central repository
for bookkeeping purposes.

There are three major challenges associated with the current
practice of performance regression testing analysis.

First, during the course of the test, a large number of
metrics is collected. It is difficult for performance analysts to
compare multiple metrics at the same time. Although correlated
metrics could be plotted on the same graph based on heuristics
defined by domain experts, these heuristics only give a limited
view of the correlations in order not to overload the plots. For
example, in a performance regression test for an e-commerce
website, one heuristic would be to group arrival rate and

throughput in one graph while ignoring other related metrics
such as request queue length. Although performance analysts
can use these composite graphs to spot metrics that deviate
from the correlation, the analysts must manually look for and
analyze other metrics which are related to the observed
anomalies in order to determine the cause.

Second, a correct and up-to-date performance baseline
rarely exists. Performance analysts usually base the analysis of
a new test on a recently passed test [13]. However, it is rarely
the case that a performance regression test is problem free.
Using just one prior test as baseline typically ignores problems
that are common in both the baseline test and the new test.

Third, subjectivity of performance analysts may influence
their judgment on identifying performance regressions.
Performance analysts usually compare the metrics’ averages
between two tests, ignoring the fluctuations that might exist.
This would results in inconsistent conclusions among
performance analysts. For example, one analyst notes in her
analysis a 5% increase of the number of database transactions
per second to be worrying while another analyst would ignore
the increase because it can be attributed to experimental
measurement error.

Due to the above challenges, we believe that the current
practice of performance regression testing analysis is neither
efficient nor sufficient to uncover performance problems. There
is a high chance that performance analysts would bypass or
overlook abnormal metric values due to the volume of the data
and individual subjectivity. Our approach focuses on aiding the
analysis effort (phase 3) by automating the detection of
performance regressions in a performance regression test.

III. ILLUSTRATION OF OUR APPROACH

To overcome the challenges presented in the previous
section, we have developed an approach to automatically
compare a new test to a set of expected metric correlations
extracted from prior tests. Our approach generates a report with
those metrics that violate the expected metric correlations. Our
report can shorten the time required for locating performance
regressions in the new test and ensure better coverage of
potential problematic metrics.

In this section, we present an example of how a
performance analyst, Derek, can leverage our report to spot
performance problems. Derek is given the task to assess the
performance of a new version of an e-commerce application.
After conducting a performance regression test on the new
version of the software, Derek decides to examine the two
metrics that he deems the most important: CPU utilization and
the number of disk writes per second in the database. He finds
that there is a 5% increase in average CPU utilization between
a recently passed test and the new test, but the CPU utilization
is still below the pre-defined threshold of 75%. Because of a
tight deadline, Derek runs our research prototype to check
whether the increase in CPU usage represents a performance
regression and whether there are any other performance
problems in the new test. Our prototype generates a
performance regression report such as the one shown in Figure
2. The sections below explain how Derek can use the report to
uncover performance problems.

Figure 1. Performance Regression Testing Process

(b) Details of Performance Regressions

(c) Performance Comparison

(a) Overview of Problematic Metrics

Figure 2. An Example Performance Regression Report

Figure 3. Overview of Performance Regression Analysis Approach

Report Summary: The table shown in Figure 2(a)
provides a summary of the metrics that are flagged by our
approach because they deviate from the expected behavior. The
metrics are sorted by the level of severity. Severity is the
fraction of time intervals in which a metric exhibits problems.
By looking at this summary, Derek discovers that 3 metrics
(CPU and memory utilizations in the application server, and #
of disk read bytes/sec in the backend database) are flagged with
severity greater than 0.5, meaning that these three metrics
deviate from the expected behavior for over half of the test
duration.

Details of Performance Regression: Derek clicks on the
“Show Rules” hyperlink to reveal a list of metric correlations
that are violated by the flagged metric. The list is ordered by
the degree of deviation between the correlation confidence of
the new test and prior tests. Correlation confidence measures
how well a correlation holds for a data set.

By looking at Figure 2(b), Derek realizes that historically
the application server’s CPU utilization, memory usage, and
various database metrics are always observed to be in the
medium range together. However, in the new run, all flagged
metrics shift from medium to high (highlighted in red and blue
in Figure 2b). Derek can conclude that all 3 flagged metrics
represent performance degradation. Instead of requiring Derek
to examine each metric manually, our report automatically
identifies metrics in the new test that show significant
deviations from prior tests. It is up to Derek to study these
metrics to conclude if they represent performance problems.

Performance Comparison and In-depth Analysis: Derek
can conveniently compare the metric values in prior tests and
the new tests by opening a series of charts such as Figure 2(c).
The charts on the left are the box-plots of the violated metrics
(e.g. Application server’s CPU utilization) for the new test and
prior tests. A box-plot shows the five-number summaries about
a metric: the minimum, first, second, and third quartile, and
maximum value observed. By placing the box-plots side-by-
side, Derek can visually compare the value ranges in the new
test and prior tests. In this example, Derek can easily see that
half of the observed values of the Application server’s CPU
utilization in the new test exceed the historical range.

To streamline Derek’s analysis, our report places the time-
series plots of the flagged metrics next to the box-plots. The
two dotted lines define the boundaries of the high, medium, and
low levels extracted from metric ranges in prior tests. The
shaded areas show the time instances where the flagged metric
exhibits problems. Using the time-series plot, Derek can
pinpoint the moments when the metric correlation is violated.

Using our performance regression report, Derek was able to
verify his initial analysis and discover new performance
problems that he would have missed with only a manual
analysis. Furthermore, our report allows Derek to reason about
the detected problem by accompanying the flagged metrics
with the metric correlations that are violated.

IV. OUR APPROACH

Our approach to detect performance regressions in a
performance regression test has 4 phases as shown in Figure 3.
The input of our approach consists of the new test and the

performance regression testing repository from which we distill
a historical dataset consisting of a collection of prior passed
tests. We apply data-mining techniques to extract performance
signatures by capturing metric correlations that are frequently
observed in the historical data. In the new test, metrics which
violate the extracted performance signatures are flagged. Based
on the flagged metrics, a performance regression report is
generated. We now discuss each phase of our approach.

1. Metric Normalization

Before we can carry out our analysis, we must eliminate
irregularities in the collected data, such as:

Clock Skew: Components of a large enterprise system are
usually deployed across multiple machines, each of which is
responsible for gathering performance data. Since the clock on
each machine might be out-of-sync, metrics recorded by
different machines will have slightly different timestamps.
Moreover, metrics can be recorded at different rates. For
example, the CPU utilization can be recorded every 10 seconds
while disk I/O is recorded every half minute.

Extended Test: After the load generator has stopped, there
may be unprocessed requests queued in the system.
Performance analysts usually allow the test to continue until all
requests are processed. As a result, metrics may be recorded for
a prolonged period of time.

Delay: There may be a delay in the start of metric
collection between the machines that are used in a test.

To overcome these irregularities, we extract the portion of
metric data that corresponds to the expected duration of a test.
For example, Figure 4a shows the CPU utilization of a system
in a performance regression test. We filter out the last 20
seconds, which correspond to the period where the load
generator has stopped (Figure 4b). Then, we resample all
metrics at a consistent rate to obtain a normalized data set.

(a) Original Metric Data

(b) Metric Discretization

(Shaded area corresponds to the medium Discretization level)
Figure 4. Metric normalization and Discretization

2. Metric Discretization

Since the machine learning techniques we use only take
categorical data, we need to discretize metric values into levels
(e.g. high/medium/low). Figure 5 shows how the Discretization
levels are calculated from the historical dataset.

To discretize the historical data and the new test, we divide
time into equal intervals (e.g. every five seconds). Each interval
is represented by a vector of metric medians. Each element in
the vector is put into one of the 3 levels defined above. For
example, assuming the median and standard deviation in Figure
4b are 74 and 14 respectively. The medium level will span
from 60 to 88. As a result, the CPU utilization around the 50th
second will be mapped to medium. We have experimented with
using arithmetic mean instead of median but found that
arithmetic mean suffered from the effect of outliers and failed
to group similar values into the same level.

3. Derivation of Performance Signatures

The third phase extracts performance signatures by
capturing frequently observed correlations among metrics from
the historical dataset. Many metrics will exhibit strong
correlations under normal operation. For example, medium
request arrival rate would lead to medium usage of system
processing power, and medium throughput. Thus, one signature
of frequently observed correlation could be {Arrival Rate =
Medium, CPU utilization = Medium, Throughput = Medium}.

To extract metric correlations, we use two data mining
concepts: frequent item set and association rule. A frequent
item set describes a set of metrics that appears together
frequently. In this paper, we use the Apriori algorithm [5] to
discover the frequent item sets. Association rules can be
derived from a frequent item set. For example, Figure 6 shows
one of the three association rules that can be derived from the
frequent item set in the previous example. An association rule
has a premise and a consequent. The rule predicts the
occurrence of the consequent based on occurrences of the
premise. The Apriori uses support and confidence to reduce the
number of candidate rules generated:

 Support is defined as the frequency at which all items
in an association rule are observed together. Low
support means that the rule occurs simply due to
chance and should not be included in our analysis.

 Confidence measures the probability that the rule’s
premise leads to the consequent. For example, if the
rule in Figure 6 has a confidence value close to 1, it
means that when arrival rate and throughput are both
medium, there is a high tendency that medium CPU
utilization will be observed.

We apply the association rules extracted from the historical
dataset to the new test and flag metrics in the rules that have
significant change in confidence, as defined in eqn. (1).

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑐𝑎𝑛𝑔𝑒 = 1 −
𝑉𝑏
 ∙ 𝑉𝑛

 𝑉𝑏
 𝑉𝑛

 (1)

=
𝐶𝑜𝑛𝑓𝑏 × 𝐶𝑜𝑛𝑓𝑛 + 1 −𝐶𝑜𝑛𝑓𝑏 × 1 −𝐶𝑜𝑛𝑓𝑛

 𝐶𝑜𝑛𝑓𝑏
2 + 1 − 𝐶𝑜𝑛𝑓𝑏 2 𝐶𝑜𝑛𝑓𝑛

2 + 1 −𝐶𝑜𝑛𝑓𝑛 2

𝑉𝑏
 = (𝐶𝑜𝑛𝑓𝑏 , 1 −𝐶𝑜𝑛𝑓𝑏) (2)

𝑉𝑛 = (𝐶𝑜𝑛𝑓𝑛 , 1 −𝐶𝑜𝑛𝑓𝑛) (3)

Confb and Confn represent the confidence of a rule in the
historical dataset and the new test respectively. Confidence
change is defined with cosine distance which measures the
similarity between two vectors. It is necessary to convert the
scalar confidence values into vector form (eqn. 2 and 3).

The confidence change for a rule will have a value between

0 and 1. A value of 0 means the confidence for a particular

rule has not changed in the new test; value of 1 means the

confidence of a rule is completely different in the new test. If

the confidence change for a rule is higher than a specified

threshold, we can conclude that the behavior described by the

rule has changed significantly in the new test and the metrics

in the rule’s consequent are flagged. For example, if the rule in

Figure 6 drops in confidence from 0.9 to 0.2 in the new test, it

indicates that medium arrival rate and medium throughput

would no longer be associated with medium CPU utilization
for the majority of the time. As a result, CPU utilization

exhibits a significant change of behavior and should be

investigated.

4. Report generation

In the last phase, we generate a report of the flagged metrics

which highlights the association rules that the metrics violate.
To further help a performance analyst to prioritize her time,

we rank the metrics by level of severity (eqn. 3). For each

metric, the report lists the violated rules ordered by confidence

change (eqn. 1) as shown in inner table in Figure 2b.

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =
of time instances containing the flagged metic

total # of time instances
 (3)

Severity represents the fraction of time in the new test which

contains the flagged metric. Severity ranges between 0 and 1.

If there are only a few instances where the metric is observed

to be problematic, the severity will have a value close to 0. On

the other hand, if the metrics are violated many times over,

severity will have a value close to 1 (Figure 1a). Finally, if no

metric is flagged in the report, we can conclude that the new

Figure 6. Example of an Association Rule

For each metric,

High = All values above the medium level

Medium = Median +/- 1 standard deviation

Low = All values below the medium level

Figure 5. Definition of Metric Discretization Levels

test performance has no performance regression and can be

included in the historical dataset for analysis of future tests.

V. CASE STUDY

We conducted three case studies on two open source e-
commerce applications and a large enterprise system. In each
case study, we wanted to verify that our approach can reduce
the amount of data a performance analyst must analyze and the
subjectivity involved by automatically reporting a list of
potential problematic metrics.

We manually injected faults into the test scenarios of the
two open source e-commerce systems. This allows us to assess
our approach using the precision (eqn. 4) and recall (eqn. 5)
evaluation metrics.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1 −
𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑓𝑙𝑎𝑔𝑔𝑒𝑑
 (4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎𝑡𝑖𝑐 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑜𝑓 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑡𝑎𝑡 𝑠𝑜𝑢𝑙𝑑 𝑒𝑥𝑖𝑏𝑖𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠
 (5)

High precision and recall mean that our approach can
accurately detect most performance problems. Performance
analysts can reduce the effort required for an analysis by
investigating the flagged metrics. Note that false positives are
metrics that are incorrectly flagged (they do not lead to a
performance regression).

For the large enterprise system, we use the existing
performance metrics collected by the Performance Engineering
team as the input of our technique. We seek to compare the
results generated by our approach against the performance
analysts’ observations. In cases where our approach flagged
more metrics than the performance analysts noted, we verify
the additional problematic metrics with the organization’s
Performance Engineering team to determine whether if the
metrics truly represent performance regressions. Since we do
not know the actual number of performance problems, we can
only provide the precision of our approach.

We use the average precision and recall to show the overall

performance of our approach across all test scenarios for each

system. Average precision and recall combine the precision

(eqn. 6) and recall (eqn. 7) for all k different test scenarios

(t1,t2 ,… ,tk) conducted for a system. Table 1 summarizes the
performance of our approach in each case study.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑘
× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡𝑘

𝑘

1

 (6)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝑘
× 𝑅𝑒𝑐𝑎𝑙𝑙𝑡𝑘

𝑘

1

 (7)

Research Prototype: Our research prototype is

implemented in Java and uses the Weka package [20] to
perform various data-mining operations. The graphs in the
performance analysis report are generated with R [4].

A. Studied System: Dell DVD Store

System description: The Dell DVD Store (DS2)
application [3] is an open source simulation of an online e-
commerce website. It is designed for benchmarking Dell
hardware. DS2 includes basic e-commerce functionalities such
as user registrations, user login, product search and purchase.

DS2 consists of a back-end database component, a Web
application component, and driver programs. DS2 has multiple
distributions to support different languages such as PHP, JSP,
or ASP and databases such as MySQL, Microsoft SQL server,
and Oracle. The load driver can be configured to deliver
different mixes of workload. For example, we can specify the
average number of searches and items per purchase.

In this case study, we have chosen to use the JSP
distribution and a MySQL database. The JSP code runs in a
Tomcat container. Our load consists of a mix of use cases,
including user registration, product search and purchases.

Data collection: We collected 19 metrics as summarized in
table 2. The data is grouped into 2-minute intervals. We ran 4
one-hour performance regression tests. The same load is used
in tests A, B, and C. Our performance signatures are derived
from Test A during which normal performance is assumed. For
tests C and D, we manually inject faults into either the JSP
code or the load driver settings to simulate implementation
defects and performance analysts’ mistakes. The types of faults
we injected are commonly used in other studies [13]. Prior the
case study, we derive a list of metric that are expected to show
performance problems as summarized in Table 3. Recall of our
approach is calculated based on the metrics listed in Table 3.

TABLE II. SUMMARY OF METRICS COLLECTED FOR DS2

Load

Generator

% Processor Time

Orders/minute

Network Bytes Sent/sec

Network Bytes Received/Sec

Tomcat

% Processor Time

Threads

Virtual Bytes

Private Bytes

MySQL

% Processor Time

private bytes

Bytes written to disk/sec

Context Switches/sec

Page Reads/sec

Page Writes/sec

% Committed Bytes In Use

Disk Reads/sec

Disk Writes/sec

I/O Reads Bytes/sec

I/O Writes Bytes/sec

TABLE I. AVERAGE PRECISION AND RECALL

of Test

Scenarios

Duration

per Test

(hours)

Size of

Data

per

Test

Avg.

Precision

Avg.

Reca

ll

DS2 4 1
360

KB
100% 57%

JPetStore 2 0.5 92 KB 75% 67%

Enterprise

System
13 8

4.5

MB
93% N/A

Analysis of Test B: The goal of this experiment is to show
that the rules generated by our approach are stable under
normal system operation. Since Test B shares the same
configuration and same load as Test A, ideally our approach
should not flag any metric.

Our prototype did not report any problematic metric in Test
B. The output is as expected since Test B uses the same
configuration as Test A and no performance bug was injected.

Analysis of Test C: In test C, we injected a database-
related bug to simulate the effect of an implementation error.
This bug affects the product browsing logic in DS2. Every time
a customer performs a search on the website, the same query
will be repeated numerous times, causing extra workload for
the backend database and Tomcat server.

Our approach flagged a database related metric (# Disk
Reads/sec) and two Tomcat server related metrics (# Threads
and # private bytes). All three metrics have severity of 1,
signifying that the metrics are violated during the whole test.
The result agrees with the nature of the injected fault: each
browsing action generates additional queries to the database.
As a result, increase in database transaction leads to an increase
of # Disk Reads/sec. When the result of the query returns, the
application server uses additional memory to extract the results.
Furthermore, since each request would take longer to complete
due to the extra queries, more threads are created in the Tomcat
server to handle the otherwise normal workload. Since 3 out of
6 expected problematic metrics are detected, the precision and
recall of our approach in Test C are 100% and 60%
respectively.

Analysis of Test D: We injected a configuration bug into
the load driver to simulate that a wrongly configured workload
is delivered to the system. This type of fault can either be

caused by a malfunctioning load generator or by a performance
analyst when preparing for a performance regression test [14].
In the case where a faulty load is used to test a new version of
the system, the assessment derived by the performance analyst
may not depict the actual performance of the system under test.

In Test D, we double the visitor arrival rate in the load
driver. Furthermore, each visitor is set to perform additional
browsing for each purchase. Figure 7 below shows the violated
metrics reported by our prototype. The result is consistent with
the nature of the fault. Additional threads and memory are
required in the Tomcat server to handle the increased demand.
Furthermore, the additional browsing and purchases lead to an
increase in the number of database read and write. The extra
demand on the database leads to additional CPU utilization.

Because of the extra connections made to the database due
to the increased number of visitors, we would expect high
context switch rate in the database throughout the test. To
investigate the reason for low severity of a database’s context
switch rate, we examined the rules accompanying the metric.
We found that the premises of most rules contain one or more
flagged metrics. Because most flagged metrics have high
severity, the premises are seldom satisfied. It results in low
detection rates of the metrics in the consequents. Since 7 out of
13 expected metrics are detected, the precision and recall of our
approach in this test are 100% and 54% respectively.

B. Studied System: JPetStore

System description: JPetStore [1] is a larger and more
complex e-commerce application than DS2. JPetStore is a re-
implementation of Sun's original J2EE Pet Store and shares the
same functionality as DS2. Since JPetStore does not ship with a
load generator, we use a web testing tool to record and replay a
scenario of a user logging in and browsing items on the site.

Data collection: In this case study, we have conducted two
one-hour performance regression tests (A and B). Our
performance signatures are extracted from Test A during which
caches are enabled. Test B is injected with a configuration bug
in MySQL. Unlike the DS2 case study where the configuration
bug is injected in the load generator, the bug used in Test B
simulates a performance analyst’s mistake to accidentally
disable all caching features in the MySQL database. Because of
the nature of the fault, we expect the following metrics of the
database machine to be affected: CPU utilization, # threads, #
context switches, # private bytes, and # I/O read and write
bytes/sec.

Analysis of Test B: Our approach detected a decrease in
memory footprint (# private bytes) and “# I/O writes bytes /
sec” in the database, and increase in “# disk reads/sec” and “#
threads” in the database. The I/O metrics include reading and
writing data to network, file, and device. These observations
align with the injected fault: Since the caching feature is turned
off in the database, less memory is used during the execution of
the test. In exchange, the database needs to read from the disk
for every query submitted. The extra workload in the database
translates to a delay between when a query is received and the
result is sent back, leading to a decrease in “# IO write
bytes/sec” to the network.

Figure 7. Performance Regression Report for DS2 Test 4 (Increased Load)

TABLE III. SUMMARY OF INJECTED FAULTS FOR DS2

Test Fault Injected Expected Problematic metric

A No fault N/A

B No fault No problem should be observed.

C

Busy loop injected in the

code responsible for

displaying item search

results

Increase in # I/O reads bytes /sec,

and # disk read/sec in database

Increase in # threads, # private and

virtual bytes, and CPU utilization in

Tomcat server.

D

Heavier load applied to

simulate error in load test

configuration

Increase in CPU utilization and #

threads and # private and virtual

bytes in Tomcat server.

Increase in database CPU

utilization, # disk reads, writes and

I/O read bytes per second, and #

context switches.

Increase in # orders/minute and

network activities in load generator.

An unexpected drop of the # threads was detected in the
database. Upon verifying with the raw data for both tests, we
found that the “thread count” in Test A (with cache) and Test B
(without cache) consistently remains at 22 and 21 respectively.
Upon inspecting the data manually, we do not find that the
decrease of one in thread count constitutes a performance
problem and is therefore a false positive. Finally, throughout
the test, there is no significant degradation in the average
response time. Since 4 out of 6 expected problems are detected,
our performance regression report has a precision of 75% and
recall of 67%.

C. Studied System: A Large Enterprise System

System description: Our third case study is conducted on a
large distributed enterprise system. This system is designed to
support thousands of concurrent requests. Thus, performance of
this system is a top priority for the organization. For each build
of the software, performance analysts must conduct a series of
performance regression tests to uncover performance
regressions and file bug reports accordingly. Each test is run
with the same workload, and usually spans from a few hours to
a few days. After the test, a performance analyst will upload
the metric data to an internal website to generate a time series
plot for each metric. This internal site also serves the purpose
of storing the test data for future reference. Performance
analysts then manually evaluate each plot to uncover
performance issues. To ensure correctness, a reviewer must
sign off the performance analyst’s analysis before the test can
be concluded. Unfortunately, we are bounded by a Non-
Disclosure Agreement and cannot give more details about the
commercial system.

Data collection: In this case study, we selected thirteen 8-
hour performance regression tests from the organization’s
performance regression testing repository. These tests were
conducted for a minor maintenance release of the software. The
same workload was applied to all tests. In each test, over 2000
metrics were collected.

Out of the pool of 13 tests, 10 tests have received a pass
status from the performance analysts and are used to derive
performance signatures. We evaluated the performance of the 3
remaining tests (A, B and C) and compared our findings with
the performance analysts’ assessment (summarized in table 4).
In the following sections, we will discuss our analysis on each
target test (A, B and C) separately.

Analysis of Test A: Using the history of 10 tests, our
approach flagged all throughput and arrival rate metrics in the
system. The rules produced in the report imply that throughputs
and arrival rates should fall under the same range. For example,
component A and B should have similar request rate and
throughput. However, our report indicates that half of the
arrival rates and throughputs metrics are high while the other
half is low. Our approach has successfully uncovered problems
associated with the arrival rate and throughput in Test A which
were not mentioned in the performance analyst’s report. We
have verified our finding with a performance analyst. Our
performance regression report has a precision of 100%.

Analysis of Test B: Our approach flagged two arrival rate
metrics, two job queue metrics (each represents one sub-
process), and the “# database scans/sec” metric. Upon
consulting with the time-series plots for each flagged metric as
well as the historic range, we found that the “# database
scans/sec” metric has three spikes during the test. These spikes
are likely the cause of the rule violations. Upon discussing with
a performance analyst, we find that the spikes are likely to be
caused by the system’s periodic maintenance and do not
constitute a performance problem. Therefore, the “# database
scans/sec” metric is a false positive. Our performance analysis
report has a precision of 80%.

Analysis of Test C: Our approach did not flag any rule
violation for this test. Upon inspection of the historical value
for the metrics noted by the performance analyst, we notice that
the increase of “# database transactions/sec” observed in Test C
actually falls within the metric historical value range. Upon
discussing with the Performance Engineering team, we
conclude that the increase does not represent a performance
problem. In this test, we show that our approach of using a
historical dataset of prior tests is more resistant to fluctuations
of metric values. Our approach achieves a precision of 100%.

The case studies show that our approach is able to detect
problems in metrics when the faults are present in the systems.
Our approach detects problematic metrics with high precisions
in all three case studies. Our approach is able to cover 57% and
67% of the expected problematic metrics for the two open
source systems.

VI. DISCUSSION AND FUTURE WORK

A. Quantitive Techniques

Although there are existing techniques [10, 11] to correlate
anomalies with the performance metrics by mining the raw
performance data, these techniques usually assume the
presence of Service Level Objectives (SLO) that can be used to
determine precisely when an anomaly occurs. As a result,
classifiers can be induced by analyzing the raw performance
data augmented with information about the compliance or
violation of SLO. Unfortunately, SLO rarely exists during
development. Identification of performance regression
becomes a manual task of finding metric deviations in the new
test with a previous test as baseline. In practice, subjectivity of
individual analyst often leads to valid performance regressions
being overlooked. Moreover, descriptions that accompany the
reported performance regressions are often limited, e.g., “there
is a 15% increase of CPU”, making precise identification of

TABLE IV. SUMMARY OF ANALYSIS FOR THE ENTERPRISE SYSTEM

Test
Performance Analyst’s

Report

Our Findings

A
No performance problem

found.

Our approach identified

abnormal behaviors in

system arrival rate and

throughput metrics.

B

Arrival rates from two load

generators differ significantly.

Abnormally high Database

transaction rate.

High spikes in job queue.

Our approach flagged the

same metrics as the

performance analyst’s

analysis with one false

positive.

C
Slight elevation of database

transactions/sec.
No metric flagged.

anomalies difficult. Finally, automated identification of metric
deviations is also challenging as there could be phase shifts in
the performance tests, e.g., the spikes do not align. These
limitations prevent us from using classifier based techniques to
detect performance regression.

B. Sampling period and Metric Discretization

We choose the size of time interval for metric discretization
based on how often the original data is sampled. For example,
an interval of 200 seconds is used to discretize data of the
enterprise system which was originally sampled approximately
every 3 minutes. The extra 20 second gap is used because there
was a mismatch in sampling frequencies for some metrics. We
also experimented with different interval lengths; we found that
less metrics are flagged as the length of the interval increases,
while precision was not affected.

In our case studies, we found that the false negatives
(metrics that were expected to show performance regressions
but was not detected by our approach) were due to the fact that
no rule containing the problematic metrics was extracted by the
Apriori algorithm. This was caused by our discretization
technique sometimes putting all values of a metric that had
large standard deviation into a single level. Candidate rules
containing those metrics would exhibit low confidence and
were thus pruned. In the future, we will experiment on other
discretization techniques such as Equal Width Interval Binning.

C. Performance Regression Testing

Our approach is limited to detecting performance
regressions; functional failures that do not have noticeable
effect on performance of the system will not be detected.
Furthermore, problems that span across the historical dataset
and the new test will not be detected by our approach. For
example, no problem will be detected if both the historical
dataset and the new test show the same amount of memory
leak. Our approach will only register when the memory leak
worsens or improves.

D. Passed Tests

The historical dataset from which the association rules are
generated should contain tests which have the same workload,
configuration, preferably same hardware, and exhibit correct
behavior. Using tests that contain performance problems will
decrease the number of frequent item sets extracted, making
our approach less effective in detecting problems in the new
test. In our case study with the enterprise system, we applied
the following measure to avoid adding problematic tests to our
historical dataset:

1. We selected a list of tests from the repository that have

received a pass status from the performance analyst.

2. We manually examined the performance metrics that are

normally used by a performance analyst in each test to

ensure no abnormal behavior is found.

E. System Evolution and Size of Trainnig Data

The system is often updated to support new environments
or requirements. These updates may lead to changes in
performance. A large variability in metric values will
negatively affect the confidence of association rules generated
in our approach. Therefore, it is necessary to update the set of

tests included in the historical dataset. In the future, we will
study the effect of using a sliding window to select prior tests
to include in the historical dataset. A sliding window allows us
to automatically discard outdated tests that no longer reflect the
up-to-date system’s performance. However, the optimal size of
the sliding window will likely be project dependent since each
project has different release frequency.

Alternatively, the historical dataset can also be derived
from within the run. For example, the first hour of the current
test can be used to derive performance signatures. Assuming
that the system runs correctly during the first hour, the
performance signature generated from this historical dataset
will be useful to assess the stability of the system.

F. Hardware Differences

In practice, performance regression tests of a system can be
carried out on different hardware. Furthermore, third party
components may change in between tests. In the future, we
plan to improve our learning algorithm so that, given a new
test, our tool will automatically select the tests from the
repository with similar configurations.

G. Automated Diagnosis

Our approach automatically flags metrics by using
association rules that show high deviations in confidence
between the new tests and the historical dataset. These
deviations represent possible performance regressions or
improvements and are valuable to performance analyst in
assessing the system under test. Performance analysts can
adjust the deviation threshold to restrict the number of rules
used and, thus, limit the number of metrics flagged. Alongside
with the flagged metrics, our tool also displays the list of rules
that the metric violated. Performance analysts can inspect these
rules to understand the relations among metrics. From our case
study, we notice that some of the rules produced are highly
similar. In the future, we will research for ways to merge
similar rules to further condense information for performance
analysts to analyze.

The association rules presented in our performance
regression report represent metric correlations rather than
causality. Performance analysts can make use of these
correlations to manually derive the cause of a given problem.

VII. RELATED WORK

Our goal in this work is to detect performance problems in a

new test using historical data. Existing approaches monitor or

analyze a system through one of two sources of historical data:

execution logs and performance metrics.

A. Analyzing Execution Logs:

Aguilera et al. [18, 22] developed various algorithms to
performance debugging on distributed systems. Their approach
infers a set of high impact causal paths of multiple
communicating components and extracts the components
which account for a significant fraction of the system’s latency.
Unfortunately, the accuracy of the inferred paths decreases as
the degree of parallelism increases, leading to low precision in
identifying problematic components. Our approach is different
from Aguilera’s in that we identify general performance issues

rather than system components that contribute significantly to
system latency. Jiang et al. introduce an technique [14] to
identify functional problems in a load test from execution logs.
The authors extended the approach to analyze performance in
scenarios as well as the steps of each scenario [13]. Chen et al.
proposed Pinpoint in [21] to locate the subset of system
components that are likely to be the cause of failures. Our work
is different from Pinpoint in that they focus on identifying
system fault rather than performance regression, which can
occur even when the system functions correctly.

In contrast to the above studies which analyze execution
logs, our approach analyzes performance metrics to identify
performance problems.

B. Analyzing Performance Metrics:

Bondi [9] presented a technique to automatically identify
warm-up and cool-down transients from measurements of a
load test. While Bondi’s technique can be used to determine if
a system ever reaches a stable state in the test, our approach
can detect performance problems at the metric level.

Cohen et al. [11, 12] applied supervised machine learning
techniques to induce models on performance metrics that are
likely to correlate with observed faults. Bodik et al. improved
Cohen’s work [8] by using logistic regression. Our approach is
different from the above work as we do not require knowledge
of violations of Service Level Objectives.

Jiang et al. proposed an approach [16] for fault detection
using correlations of two system metrics. A fault is suspected
when the portion of all derived models that reports outliers
exceeds a predefined threshold. Our approach is based on
frequent item sets which can output correlations of more than
two metrics. Performance analysts can leverage these metric
correlations to better understand the cause of a fault. Jiang et al.
[15] proposed an approach to identify clusters of correlated
metrics with Normalized Mutual Information as similarity
measure. The authors were able to detect 77% of the injected
faults and the faulty subsystems, without any false positives.
While the approach in [15] can output only the faulty
subsystems, our approach can detect and report details about
performance problems, including metrics that deviate from the
expected behaviors.

VIII. CONCLUSIONS

It is difficult for performance analysts to manually analyze
performance regression testing results due to time pressure,
large volumes of data, and undocumented baselines.
Furthermore, subjectivity of individual analysts may lead to
incorrect performance regressions being filed. In this paper, we
explored the use of performance regression testing repositories
to support performance regression analysis. Our approach
automatically compares new performance regression tests to a
set of association rules extracted from past tests. Potential
performance regressions of system metrics are presented in a
performance regression report ordered by severity.

ACKNOWLEDGMENT

We are grateful to Research In Motion (RIM) for providing

access to the enterprise application used in our case study. The

findings and opinions expressed in this paper are those of the

authors and do not necessarily represent or reflect those of

RIM and/or its subsidiaries and affiliates. Moreover, our

results do not in any way reflect the quality of RIM’s products.

REFERENCES

[1] iBATIS JPetStore, http://sourceforge.net/projects/ibatisjpetstore/

[2] MMB3, http://technet.microsoft.com/en-

us/library/cc164328%28EXCHG.65%29.aspx

[3] The Dell DVD Store, http://linux.dell.com/dvdstore/

[4] The R Project for Statistical Computing. http://www.r-project.org

[5] R. Agrawal and R.Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases,” Proc. of the 20

th
 Int’l Conf. on Very Large

Data Bases, pp. 487-499, 1994.

[6] A. Avritzer and B. Larson, “Load testing software using deterministic
state testing,” Proc. of Int’l Symp. on Software Testing and Analysis,

Cambridge, pp. 82-88, 1993.

[7] A. Avritzer and E. J. Weyuker, “The automatic generation of load test
suites and the assessment of the resulting software,” IEEE Trans. Softw.

Eng., 21(9), 1995.

[8] P. Bodik, M. Goldszmidt, and A. Fox, “HiLighter: Automatically

Building Robust Signatures of Performance Behavior for Small- and
Large-Scale Systems”, Proc. of the 3

rd
 SysML, Dec 2007.

[9] A. B. Bondi, “Automating the Analysis of Load Test Results to Assess

the Scalability and Stability of a Component,” Proc. of 33rd Int’l CMG
Conf., San Diego, CA, USA, Dec. 2-7, 2007.

[10] L. Bulej, T. Kalibera, and P. Tuma, “Regression Benchmarking with

Simple Middleware Benchmarks,” Proc. of the 2004 IPCCC, pp. 771-
776, 2004.

[11] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase

“Correlating instrumentation data to system states: A building block for
automated diagnosis and control,” Proc. of the 6th OSDI, pp.16, Dec.

2004.

[12] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox,
“Capturing, indexing, clustering, and retrieving system history” Proc. of

the 20th ACM symposium on Operating systems principles, pp. 105-
118, 2005.

[13] Z. M. Jiang, A. E. Hassan, G. Hamann and P. Flora, “Automated

Performance Analysis of Load Tests,” Proc. of the 25th ICSM, Sept 09.

[14] Z. M. Jiang, A. E. Hassan, P. Flora, and G. Hamann, “Automatic

Identification of Load Testing Problems,” Proc. of the 24th ICSM,
Beijing, China, pp. 307-316, Sept. 28 – Oct 2008.

[15] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A.S. Ward,

“Automatic Fault Detection and Diagnosis in Complex Software
Systems by Information-Theoretic Monitoring,” Proc. DSN, Jun 2009.

[16] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. S. Ward “System

Monitoring with Metric-Correlation Models: Problems and Solutions,”
Proc. of the 6th ICAC, pp. 13-22, 2009.

[17] T. Kalibera, L. Bulej, and P. Tuma, “Automated Detection of

Performance Regressions: The Mono Experience,” 13
th
 MASCOTS ’05.

[18] P. Reynolds, J. L. Wiener, J.C. Mogul, M. K. Aguilera, and A. Vahdat,
“WAP5: Black-box Performance Debugging for Wide-Area Systems,”

Proc. of the 15th Int’l World Wide Web Conf.s, 2006.

[19] E. J. Weyuker and F. I. Vokolos, “Experience with performance testing
of software systems: Issues, an approach, andcase study,” IEEE Trans.

Softw. Eng., 26(12), pp. 1147 – 1156, 2000.

[20] I. H. Witten, E. Frank, “Data Mining: Practical Machine Learning Tools

and Techniques,” Morgan Kaufmann, June 2005.

[21] M. Y. Chen , E. Kiciman , E. Fratkin , A. Fox , E. Brewer, “Pinpoint:
Problem Determination in Large, Dynamic Internet Services,” Proc. of

the 2002 International Conf. on Dependable Systems and Networks,
p.595-604, June 23-26, 2002

[22] M. K. Aguilera , J. C. Mogul , J. L. Wiener , P. Reynolds , A.

Muthitacharoen, “Performance debugging for distributed systems of
black boxes,” Proc. of the 19th ACM symposium on Operating systems

principles, Oct 2003

