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Abstract— Performance regression testing detects performance 

regressions in a system under load. Such regressions refer to 

situations where software performance degrades compared to 

previous releases, although the new version behaves correctly. In 

current practice, performance analysts must manually analyze 

performance regression testing data to uncover performance 

regressions. This process is both time-consuming and error-prone 

due to the large volume of metrics collected, the absence of 

formal performance objectives and the subjectivity of individual 

performance analysts. In this paper, we present an automated 

approach to detect potential performance regressions in a 

performance regression test. Our approach compares the test 

results against correlations among performance metrics 

extracted from performance regression testing repositories. Our 

approach scales well to large industrial systems, and detects 

performance problems that are often overlooked by performance 
analysts. 

Keywords: Mining software repositories, performance 

regression testing,  performance analysis 

I.  INTRODUCTION 

Performance regression testing is integrated into traditional 
regression testing to reveal performance bottleneck and design 
problems early [9]. Traditional regression testing focuses on 
verifying the functional correctness of a change [17]. However, 
research on large industrial projects shows that the primary 
problems observed in the field are often performance related 
[19]. Examples of such problems are response time 
degradation, or higher than expected resource utilization. This 
phenomenon of performance degradation is known as 
performance regression, which refers to situations where 
software performance degrades compared to previous releases.  

Performance regression testing is the process of putting 
load on a system to test whether the system is able to support a 
specific demand that resembles the field usage intensity [6, 7]. 
In performance regression testing, a load consists of a mix of 
scenarios to be executed and the rates at which each scenario 
appears [13]. For example, the MMB3 [2] benchmark which is 
used to measure the performance of computers running 
Microsoft Exchange Server specifies that a typical user will 
send 8 emails per day on average, 15% of which have high 
priority, and another 15% have low priority. A performance 
regression test usually spans from a few hours to a few days. 

During the course of the test, various performance data about 
the running system is recorded (e.g., CPU and memory 
utilizations). After each test, performance analysts would use 
domain-knowledge and prior tests to manually look for large 
deviations of metric values between the past test and the new 
test. A defect report will be filed if the performance analyst 
concludes that the observed deviations represent performance 
regressions. In a large enterprise system, an analysis of a 
performance regression test can take up to a few days.  

Unfortunately, the current practice of performance 
regression test analysis is both time consuming and error-
prone. Because of the number metrics available, it is difficult 
for performance analysts to manually look for metric 
correlations and instances when the correlations are violated. 
As a result, performance analysts often overlook potential 
performance problems that may exist in a test. Furthermore, a 
formal performance baseline rarely exists. A performance 
analyst must often exert her own judgment to decide whether 
an observation constitute a performance problem.  

Performance regression testing repositories are used to 
archive performance regression testing results for bookkeeping 
purposes, but are rarely used in performance analysis. In this 
paper, we introduce an automatic approach to derive 
performance signatures by capturing the correlations among 
metrics from performance regression testing repositories. 
Violations of these performance signatures are flagged as 
potential performance problems. In an e-commerce application 
for example, as visitors make purchases on the site, transaction 
records are stored in the database. As a result, a correlation 
between the visitor arrival rate, application server’s CPU 
utilization, and database disk writes/sec can be extracted as a 
performance signature. In a new version of the software with 
the same visitor arrival rate, a significant drop in the number of 
database disk writes would lead to a violation of the extracted 
performance signature, signifying a potential performance 
problem (e.g. deadlock in database). 

 The performance regression reports generated by our 
approach signal potential problematic metrics that violate the 
extracted performance signatures. Performance analysts can 
leverage our report to ensure better coverage in their 
assessments of performance regression tests. The main 
contributions of our work are as follows: 



 

1. Our approach is the first work to leverage performance 
regression testing repositories to automatically detect 
occurrences of performance regression in a 
performance regression test.  

2. Performance analyst can leverage information such as 
the expected metric correlations and visualizations in 
our performance regression report to derive the cause 
of a performance problem. 

The paper is organized as follows. Section 2 provides an 
overview of the current practice and limitations of performance 
regression testing. Section 3 gives an example of a report 
generated by our research prototype and how performance 
analysts can benefit from it. Section 4 provides the details of 
our performance regression approach. Section 5 presents three 
case studies on two open source systems and one commercial 
system to demonstrate the effectiveness of our approach. 
Section 6 discusses our approach and future research 
directions. Section 7 discusses related research and Section 8 
concludes the paper. 

II. CURRENT PRACTICE AND LIMITATIONS 

As shown in Figure 1, the typical process of conducting and 
analyzing a performance regression test involves 4 phases:  

1. Performance analysts start a performance regression test. 
During the course of the test, various performance 
metrics are recorded. 

2. After the test has completed, performance analysts use 
tools to perform simple comparisons of the averages of 
metrics against a pre-defined thresholds. 

3. Performance analysts visually compare the metrics 
between past runs and the new run to look for evidence 
of performance regressions or divergences of 
supposedly correlated metrics. If a metric in the new run 
exhibits deviations from past runs, this run is probably 
troublesome and worth further investigation. Depending 
on individual judgments, a performance analyst would 
decide whether the changes are significant and file 
defect reports accordingly. 

4. All performance data is archived in a central repository 
for bookkeeping purposes. 

There are three major challenges associated with the current 
practice of performance regression testing analysis. 

First, during the course of the test, a large number of 
metrics is collected. It is difficult for performance analysts to 
compare multiple metrics at the same time. Although correlated 
metrics could be plotted on the same graph based on heuristics 
defined by domain experts, these heuristics only give a limited 
view of the correlations in order not to overload the plots. For 
example, in a performance regression test for an e-commerce 
website, one heuristic would be to group arrival rate and 

throughput in one graph while ignoring other related metrics 
such as request queue length. Although performance analysts 
can use these composite graphs to spot metrics that deviate 
from the correlation, the analysts must manually look for and 
analyze other metrics which are related to the observed 
anomalies in order to determine the cause. 

Second, a correct and up-to-date performance baseline 
rarely exists. Performance analysts usually base the analysis of 
a new test on a recently passed test [13]. However, it is rarely 
the case that a performance regression test is problem free. 
Using just one prior test as baseline typically ignores problems 
that are common in both the baseline test and the new test.  

Third, subjectivity of performance analysts may influence 
their judgment on identifying performance regressions. 
Performance analysts usually compare the metrics’ averages 
between two tests, ignoring the fluctuations that might exist. 
This would results in inconsistent conclusions among 
performance analysts. For example, one analyst notes in her 
analysis a 5% increase of the number of database transactions 
per second to be worrying while another analyst would ignore 
the increase because it can be attributed to experimental 
measurement error.  

Due to the above challenges, we believe that the current 
practice of performance regression testing analysis is neither 
efficient nor sufficient to uncover performance problems. There 
is a high chance that performance analysts would bypass or 
overlook abnormal metric values due to the volume of the data 
and individual subjectivity. Our approach focuses on aiding the 
analysis effort (phase 3) by automating the detection of 
performance regressions in a performance regression test. 

III. ILLUSTRATION OF OUR APPROACH 

To overcome the challenges presented in the previous 
section, we have developed an approach to automatically 
compare a new test to a set of expected metric correlations 
extracted from prior tests. Our approach generates a report with 
those metrics that violate the expected metric correlations. Our 
report can shorten the time required for locating performance 
regressions in the new test and ensure better coverage of 
potential problematic metrics.  

In this section, we present an example of how a 
performance analyst, Derek, can leverage our report to spot 
performance problems. Derek is given the task to assess the 
performance of a new version of an e-commerce application. 
After conducting a performance regression test on the new 
version of the software, Derek decides to examine the two 
metrics that he deems the most important: CPU utilization and 
the number of disk writes per second in the database. He finds 
that there is a 5% increase in average CPU utilization between 
a recently passed test and the new test, but the CPU utilization 
is still below the pre-defined threshold of 75%. Because of a 
tight deadline, Derek runs our research prototype to check 
whether the increase in CPU usage represents a performance 
regression and whether there are any other performance 
problems in the new test. Our prototype generates a 
performance regression report such as the one shown in Figure 
2. The sections below explain how Derek can use the report to 
uncover performance problems.  

 
Figure 1. Performance Regression Testing Process 



 

(b) Details of Performance Regressions 

 

(c) Performance Comparison 

 

(a) Overview of Problematic Metrics 

 

Figure 2.    An Example Performance Regression Report 

 
Figure 3. Overview of Performance Regression Analysis Approach 

 



Report Summary: The table shown in Figure 2(a) 
provides a summary of the metrics that are flagged by our 
approach because they deviate from the expected behavior. The 
metrics are sorted by the level of severity. Severity is the 
fraction of time intervals in which a metric exhibits problems. 
By looking at this summary, Derek discovers that 3 metrics 
(CPU and memory utilizations in the application server, and # 
of disk read bytes/sec in the backend database) are flagged with 
severity greater than 0.5, meaning that these three metrics 
deviate from the expected behavior for over half of the test 
duration. 

Details of Performance Regression: Derek clicks on the 
“Show Rules” hyperlink to reveal a list of metric correlations 
that are violated by the flagged metric. The list is ordered by 
the degree of deviation between the correlation confidence of 
the new test and prior tests. Correlation confidence measures 
how well a correlation holds for a data set. 

By looking at Figure 2(b), Derek realizes that historically 
the application server’s CPU utilization, memory usage, and 
various database metrics are always observed to be in the 
medium range together. However, in the new run, all flagged 
metrics shift from medium to high (highlighted in red and blue 
in Figure 2b). Derek can conclude that all 3 flagged metrics 
represent performance degradation. Instead of requiring Derek 
to examine each metric manually, our report automatically 
identifies metrics in the new test that show significant 
deviations from prior tests. It is up to Derek to study these 
metrics to conclude if they represent performance problems. 

Performance Comparison and In-depth Analysis: Derek 
can conveniently compare the metric values in prior tests and 
the new tests by opening a series of charts such as Figure 2(c). 
The charts on the left are the box-plots of the violated metrics 
(e.g. Application server’s CPU utilization) for the new test and 
prior tests. A box-plot shows the five-number summaries about 
a metric: the minimum, first, second, and third quartile, and 
maximum value observed. By placing the box-plots side-by-
side, Derek can visually compare the value ranges in the new 
test and prior tests. In this example, Derek can easily see that 
half of the observed values of the Application server’s CPU 
utilization in the new test exceed the historical range. 

To streamline Derek’s analysis, our report places the time-
series plots of the flagged metrics next to the box-plots. The 
two dotted lines define the boundaries of the high, medium, and 
low levels extracted from metric ranges in prior tests. The 
shaded areas show the time instances where the flagged metric 
exhibits problems. Using the time-series plot, Derek can 
pinpoint the moments when the metric correlation is violated. 

Using our performance regression report, Derek was able to 
verify his initial analysis and discover new performance 
problems that he would have missed with only a manual 
analysis. Furthermore, our report allows Derek to reason about 
the detected problem by accompanying the flagged metrics 
with the metric correlations that are violated. 

IV. OUR APPROACH 

Our approach to detect performance regressions in a 
performance regression test has 4 phases as shown in Figure 3. 
The input of our approach consists of the new test and the 

performance regression testing repository from which we distill 
a historical dataset consisting of a collection of prior passed 
tests. We apply data-mining techniques to extract performance 
signatures by capturing metric correlations that are frequently 
observed in the historical data. In the new test, metrics which 
violate the extracted performance signatures are flagged. Based 
on the flagged metrics, a performance regression report is 
generated. We now discuss each phase of our approach. 

1. Metric Normalization  

Before we can carry out our analysis, we must eliminate 
irregularities in the collected data, such as: 

Clock Skew: Components of a large enterprise system are 
usually deployed across multiple machines, each of which is 
responsible for gathering performance data. Since the clock on 
each machine might be out-of-sync, metrics recorded by 
different machines will have slightly different timestamps. 
Moreover, metrics can be recorded at different rates. For 
example, the CPU utilization can be recorded every 10 seconds 
while disk I/O is recorded every half minute.  

Extended Test: After the load generator has stopped, there 
may be unprocessed requests queued in the system. 
Performance analysts usually allow the test to continue until all 
requests are processed. As a result, metrics may be recorded for 
a prolonged period of time. 

Delay: There may be a delay in the start of metric 
collection between the machines that are used in a test. 

To overcome these irregularities, we extract the portion of 
metric data that corresponds to the expected duration of a test. 
For example, Figure 4a shows the CPU utilization of a system 
in a performance regression test. We filter out the last 20 
seconds, which correspond to the period where the load 
generator has stopped (Figure 4b). Then, we resample all 
metrics at a consistent rate to obtain a normalized data set. 

 

(a) Original Metric Data 

 

(b) Metric Discretization  

(Shaded area corresponds to the medium Discretization level) 
Figure 4. Metric normalization and Discretization  



 

2. Metric Discretization 

Since the machine learning techniques we use only take 
categorical data, we need to discretize metric values into levels 
(e.g. high/medium/low). Figure 5 shows how the Discretization 
levels are calculated from the historical dataset. 

To discretize the historical data and the new test, we divide 
time into equal intervals (e.g. every five seconds). Each interval 
is represented by a vector of metric medians. Each element in 
the vector is put into one of the 3 levels defined above. For 
example, assuming the median and standard deviation in Figure 
4b are 74 and 14 respectively. The medium level will span 
from 60 to 88. As a result, the CPU utilization around the 50th 
second will be mapped to medium. We have experimented with 
using arithmetic mean instead of median but found that 
arithmetic mean suffered from the effect of outliers and failed 
to group similar values into the same level. 

3. Derivation of Performance Signatures 

The third phase extracts performance signatures by 
capturing frequently observed correlations among metrics from 
the historical dataset. Many metrics will exhibit strong 
correlations under normal operation. For example, medium 
request arrival rate would lead to medium usage of system 
processing power, and medium throughput. Thus, one signature 
of frequently observed correlation could be {Arrival Rate = 
Medium, CPU utilization = Medium, Throughput = Medium}.  

To extract metric correlations, we use two data mining 
concepts: frequent item set and association rule. A frequent 
item set describes a set of metrics that appears together 
frequently. In this paper, we use the Apriori algorithm [5] to 
discover the frequent item sets. Association rules can be 
derived from a frequent item set. For example, Figure 6 shows 
one of the three association rules that can be derived from the 
frequent item set in the previous example. An association rule 
has a premise and a consequent. The rule predicts the 
occurrence of the consequent based on occurrences of the 
premise. The Apriori uses support and confidence to reduce the 
number of candidate rules generated: 

 Support is defined as the frequency at which all items 
in an association rule are observed together. Low 
support means that the rule occurs simply due to 
chance and should not be included in our analysis.  

 Confidence measures the probability that the rule’s 
premise leads to the consequent. For example, if the 
rule in Figure 6 has a confidence value close to 1, it 
means that when arrival rate and throughput are both 
medium, there is a high tendency that medium CPU 
utilization will be observed. 

We apply the association rules extracted from the historical 
dataset to the new test and flag metrics in the rules that have 
significant change in confidence, as defined in eqn. (1). 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑐𝑎𝑛𝑔𝑒 = 1 −
𝑉𝑏
     ∙ 𝑉𝑛    

 𝑉𝑏
       𝑉𝑛     

 (1) 

=
𝐶𝑜𝑛𝑓𝑏 × 𝐶𝑜𝑛𝑓𝑛 +  1 −𝐶𝑜𝑛𝑓𝑏 ×  1 −𝐶𝑜𝑛𝑓𝑛 

 𝐶𝑜𝑛𝑓𝑏
2 +  1 − 𝐶𝑜𝑛𝑓𝑏 2 𝐶𝑜𝑛𝑓𝑛

2 +  1 −𝐶𝑜𝑛𝑓𝑛 2

 
 

𝑉𝑏
     = (𝐶𝑜𝑛𝑓𝑏 , 1 −𝐶𝑜𝑛𝑓𝑏) (2) 

𝑉𝑛    = (𝐶𝑜𝑛𝑓𝑛 , 1 −𝐶𝑜𝑛𝑓𝑛) (3) 

Confb and Confn represent the confidence of a rule in the 
historical dataset and the new test respectively. Confidence 
change is defined with cosine distance which measures the 
similarity between two vectors. It is necessary to convert the 
scalar confidence values into vector form (eqn. 2 and 3). 

The confidence change for a rule will have a value between 

0 and 1. A value of 0 means the confidence for a particular 

rule has not changed in the new test; value of 1 means the 

confidence of a rule is completely different in the new test. If 

the confidence change for a rule is higher than a specified 

threshold, we can conclude that the behavior described by the 

rule has changed significantly in the new test and the metrics 

in the rule’s consequent are flagged. For example, if the rule in 

Figure 6 drops in confidence from 0.9 to 0.2 in the new test, it 

indicates that medium arrival rate and medium throughput 

would no longer be associated with medium CPU utilization 
for the majority of the time. As a result, CPU utilization 

exhibits a significant change of behavior and should be 

investigated. 

4. Report generation 

In the last phase, we generate a report of the flagged metrics 

which highlights the association rules that the metrics violate. 
To further help a performance analyst to prioritize her time, 

we rank the metrics by level of severity (eqn. 3). For each 

metric, the report lists the violated rules ordered by confidence 

change (eqn. 1) as shown in inner table in Figure 2b. 

 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =  
# of time instances containing the flagged metic

total # of time instances
   (3) 

 
Severity represents the fraction of time in the new test which 

contains the flagged metric. Severity ranges between 0 and 1. 

If there are only a few instances where the metric is observed 

to be problematic, the severity will have a value close to 0. On 

the other hand, if the metrics are violated many times over, 

severity will have a value close to 1 (Figure 1a). Finally, if no 

metric is flagged in the report, we can conclude that the new 

 

Figure 6. Example of an Association Rule 

For each metric, 

High = All values above the medium level 

Medium = Median +/- 1 standard deviation 

Low = All values below the medium level 

Figure 5. Definition of Metric Discretization Levels 



test performance has no performance regression and can be 

included in the historical dataset for analysis of future tests. 

V. CASE STUDY 

We conducted three case studies on two open source e-
commerce applications and a large enterprise system. In each 
case study, we wanted to verify that our approach can reduce 
the amount of data a performance analyst must analyze and the 
subjectivity involved by automatically reporting a list of 
potential problematic metrics. 

We manually injected faults into the test scenarios of the 
two open source e-commerce systems. This allows us to assess 
our approach using the precision (eqn. 4) and recall (eqn. 5) 
evaluation metrics.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  1 −
# 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑓𝑙𝑎𝑔𝑔𝑒𝑑 
  (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
# 𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎𝑡𝑖𝑐 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 

# 𝑜𝑓 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑡𝑎𝑡 𝑠𝑜𝑢𝑙𝑑 𝑒𝑥𝑖𝑏𝑖𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠
 (5) 

High precision and recall mean that our approach can 
accurately detect most performance problems. Performance 
analysts can reduce the effort required for an analysis by 
investigating the flagged metrics. Note that false positives are 
metrics that are incorrectly flagged (they do not lead to a 
performance regression). 

For the large enterprise system, we use the existing 
performance metrics collected by the Performance Engineering 
team as the input of our technique. We seek to compare the 
results generated by our approach against the performance 
analysts’ observations. In cases where our approach flagged 
more metrics than the performance analysts noted, we verify 
the additional problematic metrics with the organization’s 
Performance Engineering team to determine whether if the 
metrics truly represent performance regressions. Since we do 
not know the actual number of performance problems, we can 
only provide the precision of our approach. 

We use the average precision and recall to show the overall 

performance of our approach across all test scenarios for each 

system. Average precision and recall combine the precision 

(eqn. 6) and recall (eqn. 7) for all k different test scenarios 

(t1,t2 ,… ,tk) conducted for a system. Table 1 summarizes the 
performance of our approach in each case study.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝑘
×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡𝑘

𝑘

1

 (6) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =  
1

𝑘
×  𝑅𝑒𝑐𝑎𝑙𝑙𝑡𝑘

𝑘

1

 (7) 

 
Research Prototype: Our research prototype is 

implemented in Java and uses the Weka package [20] to 
perform various data-mining operations. The graphs in the 
performance analysis report are generated with R [4]. 

A. Studied System: Dell DVD Store 

System description: The Dell DVD Store (DS2) 
application [3] is an open source simulation of an online e-
commerce website. It is designed for benchmarking Dell 
hardware. DS2 includes basic e-commerce functionalities such 
as user registrations, user login, product search and purchase.  

DS2 consists of a back-end database component, a Web 
application component, and driver programs. DS2 has multiple 
distributions to support different languages such as PHP, JSP, 
or ASP and databases such as MySQL, Microsoft SQL server, 
and Oracle. The load driver can be configured to deliver 
different mixes of workload. For example, we can specify the 
average number of searches and items per purchase. 

In this case study, we have chosen to use the JSP 
distribution and a MySQL database. The JSP code runs in a 
Tomcat container. Our load consists of a mix of use cases, 
including user registration, product search and purchases. 

Data collection: We collected 19 metrics as summarized in 
table 2. The data is grouped into 2-minute intervals. We ran 4 
one-hour performance regression tests. The same load is used 
in tests A, B, and C. Our performance signatures are derived 
from Test A during which normal performance is assumed. For 
tests C and D, we manually inject faults into either the JSP 
code or the load driver settings to simulate implementation 
defects and performance analysts’ mistakes. The types of faults 
we injected are commonly used in other studies [13]. Prior the 
case study, we derive a list of metric that are expected to show 
performance problems as summarized in Table 3. Recall of our 
approach is calculated based on the metrics listed in Table 3. 

 

TABLE II.     SUMMARY OF METRICS COLLECTED FOR DS2 

Load 

Generator 

% Processor Time 

# Orders/minute 

# Network Bytes Sent/sec  

# Network Bytes Received/Sec 

Tomcat 

% Processor Time 

# Threads 

# Virtual Bytes 

# Private Bytes 

MySQL 

% Processor Time 

# private bytes 

# Bytes written to disk/sec 

# Context Switches/sec 

# Page Reads/sec 

# Page Writes/sec 

% Committed Bytes In Use 

# Disk Reads/sec 

# Disk Writes/sec 

# I/O Reads Bytes/sec 

# I/O Writes Bytes/sec 

 

TABLE I.   AVERAGE PRECISION AND RECALL 

 
# of Test 

Scenarios 

Duration 

per Test 

(hours) 

Size of 

Data 

per 

Test 

Avg. 

Precision 

Avg. 

Reca

ll 

DS2 4 1 
360 

KB 
100% 57% 

JPetStore 2 0.5 92 KB 75% 67% 

Enterprise 

System 
13 8 

4.5 

MB 
93% N/A 

 



 

 

Analysis of Test B: The goal of this experiment is to show 
that the rules generated by our approach are stable under 
normal system operation. Since Test B shares the same 
configuration and same load as Test A, ideally our approach 
should not flag any metric.  

Our prototype did not report any problematic metric in Test 
B. The output is as expected since Test B uses the same 
configuration as Test A and no performance bug was injected.  

Analysis of Test C: In test C, we injected a database-
related bug to simulate the effect of an implementation error. 
This bug affects the product browsing logic in DS2. Every time 
a customer performs a search on the website, the same query 
will be repeated numerous times, causing extra workload for 
the backend database and Tomcat server. 

Our approach flagged a database related metric (# Disk 
Reads/sec) and two Tomcat server related metrics (# Threads 
and # private bytes). All three metrics have severity of 1, 
signifying that the metrics are violated during the whole test. 
The result agrees with the nature of the injected fault: each 
browsing action generates additional queries to the database. 
As a result, increase in database transaction leads to an increase 
of # Disk Reads/sec. When the result of the query returns, the 
application server uses additional memory to extract the results. 
Furthermore, since each request would take longer to complete 
due to the extra queries, more threads are created in the Tomcat 
server to handle the otherwise normal workload. Since 3 out of 
6 expected problematic metrics are detected, the precision and 
recall of our approach in Test C are 100% and 60% 
respectively. 

Analysis of Test D: We injected a configuration bug into 
the load driver to simulate that a wrongly configured workload 
is delivered to the system. This type of fault can either be 

caused by a malfunctioning load generator or by a performance 
analyst when preparing for a performance regression test [14]. 
In the case where a faulty load is used to test a new version of 
the system, the assessment derived by the performance analyst 
may not depict the actual performance of the system under test. 

In Test D, we double the visitor arrival rate in the load 
driver. Furthermore, each visitor is set to perform additional 
browsing for each purchase. Figure 7 below shows the violated 
metrics reported by our prototype. The result is consistent with 
the nature of the fault. Additional threads and memory are 
required in the Tomcat server to handle the increased demand. 
Furthermore, the additional browsing and purchases lead to an 
increase in the number of database read and write. The extra 
demand on the database leads to additional CPU utilization. 

Because of the extra connections made to the database due 
to the increased number of visitors, we would expect high 
context switch rate in the database throughout the test. To 
investigate the reason for low severity of a database’s context 
switch rate, we examined the rules accompanying the metric. 
We found that the premises of most rules contain one or more 
flagged metrics. Because most flagged metrics have high 
severity, the premises are seldom satisfied. It results in low 
detection rates of the metrics in the consequents. Since 7 out of 
13 expected metrics are detected, the precision and recall of our 
approach in this test are 100% and 54% respectively. 

B. Studied System: JPetStore 

System description: JPetStore [1] is a larger and more 
complex e-commerce application than DS2. JPetStore is a re-
implementation of Sun's original J2EE Pet Store and shares the 
same functionality as DS2. Since JPetStore does not ship with a 
load generator, we use a web testing tool to record and replay a 
scenario of a user logging in and browsing items on the site. 

Data collection: In this case study, we have conducted two 
one-hour performance regression tests (A and B). Our 
performance signatures are extracted from Test A during which 
caches are enabled. Test B is injected with a configuration bug 
in MySQL. Unlike the DS2 case study where the configuration 
bug is injected in the load generator, the bug used in Test B 
simulates a performance analyst’s mistake to accidentally 
disable all caching features in the MySQL database. Because of 
the nature of the fault, we expect the following metrics of the 
database machine to be affected: CPU utilization, # threads, # 
context switches, # private bytes, and # I/O read and write 
bytes/sec. 

Analysis of Test B: Our approach detected a decrease in 
memory footprint (# private bytes) and “# I/O writes bytes / 
sec” in the database, and increase in “# disk reads/sec” and “# 
threads” in the database. The I/O metrics include reading and 
writing data to network, file, and device. These observations 
align with the injected fault: Since the caching feature is turned 
off in the database, less memory is used during the execution of 
the test. In exchange, the database needs to read from the disk 
for every query submitted. The extra workload in the database 
translates to a delay between when a query is received and the 
result is sent back, leading to a decrease in “# IO write 
bytes/sec” to the network.  

 
Figure 7. Performance Regression Report for DS2 Test 4 (Increased Load) 

TABLE III.     SUMMARY OF INJECTED FAULTS FOR DS2 

Test Fault Injected Expected Problematic metric 

A No fault N/A 

B No fault No problem should be observed. 

C 

Busy loop injected in the 

code responsible for 

displaying  item search 

results 

Increase in # I/O reads bytes /sec, 

and # disk read/sec in database 

Increase in # threads, # private and 

virtual bytes, and CPU utilization in 

Tomcat server. 

D 

Heavier load applied to 

simulate error in load test 

configuration 

Increase in CPU utilization and # 

threads and # private and virtual 

bytes in Tomcat server. 

Increase in database CPU 

utilization, # disk reads, writes and 

I/O read bytes per second, and # 

context switches. 

Increase in # orders/minute and 

network activities in load generator. 

 

 



An unexpected drop of the # threads was detected in the 
database. Upon verifying with the raw data for both tests, we 
found that the “thread count” in Test A (with cache) and Test B 
(without cache) consistently remains at 22 and 21 respectively. 
Upon inspecting the data manually, we do not find that the 
decrease of one in thread count constitutes a performance 
problem and is therefore a false positive. Finally, throughout 
the test, there is no significant degradation in the average 
response time. Since 4 out of 6 expected problems are detected, 
our performance regression report has a precision of 75% and 
recall of 67%. 

C. Studied System: A Large Enterprise System 

System description: Our third case study is conducted on a 
large distributed enterprise system. This system is designed to 
support thousands of concurrent requests. Thus, performance of 
this system is a top priority for the organization. For each build 
of the software, performance analysts must conduct a series of 
performance regression tests to uncover performance 
regressions and file bug reports accordingly. Each test is run 
with the same workload, and usually spans from a few hours to 
a few days. After the test, a performance analyst will upload 
the metric data to an internal website to generate a time series 
plot for each metric. This internal site also serves the purpose 
of storing the test data for future reference. Performance 
analysts then manually evaluate each plot to uncover 
performance issues. To ensure correctness, a reviewer must 
sign off the performance analyst’s analysis before the test can 
be concluded. Unfortunately, we are bounded by a Non-
Disclosure Agreement and cannot give more details about the 
commercial system. 

Data collection: In this case study, we selected thirteen 8-
hour performance regression tests from the organization’s 
performance regression testing repository. These tests were 
conducted for a minor maintenance release of the software. The 
same workload was applied to all tests. In each test, over 2000 
metrics were collected. 

Out of the pool of 13 tests, 10 tests have received a pass 
status from the performance analysts and are used to derive 
performance signatures. We evaluated the performance of the 3 
remaining tests (A, B and C) and compared our findings with 
the performance analysts’ assessment (summarized in table 4). 
In the following sections, we will discuss our analysis on each 
target test (A, B and C) separately.  

Analysis of Test A: Using the history of 10 tests, our 
approach flagged all throughput and arrival rate metrics in the 
system. The rules produced in the report imply that throughputs 
and arrival rates should fall under the same range. For example, 
component A and B should have similar request rate and 
throughput. However, our report indicates that half of the 
arrival rates and throughputs metrics are high while the other 
half is low. Our approach has successfully uncovered problems 
associated with the arrival rate and throughput in Test A which 
were not mentioned in the performance analyst’s report. We 
have verified our finding with a performance analyst. Our 
performance regression report has a precision of 100%. 

Analysis of Test B: Our approach flagged two arrival rate 
metrics, two job queue metrics (each represents one sub-
process), and the “# database scans/sec” metric. Upon 
consulting with the time-series plots for each flagged metric as 
well as the historic range, we found that the “# database 
scans/sec” metric has three spikes during the test. These spikes 
are likely the cause of the rule violations. Upon discussing with 
a performance analyst, we find that the spikes are likely to be 
caused by the system’s periodic maintenance and do not 
constitute a performance problem. Therefore, the “# database 
scans/sec” metric is a false positive. Our performance analysis 
report has a precision of 80%. 

Analysis of Test C: Our approach did not flag any rule 
violation for this test. Upon inspection of the historical value 
for the metrics noted by the performance analyst, we notice that 
the increase of “# database transactions/sec” observed in Test C 
actually falls within the metric historical value range. Upon 
discussing with the Performance Engineering team, we 
conclude that the increase does not represent a performance 
problem. In this test, we show that our approach of using a 
historical dataset of prior tests is more resistant to fluctuations 
of metric values. Our approach achieves a precision of 100%. 

The case studies show that our approach is able to detect 
problems in metrics when the faults are present in the systems. 
Our approach detects problematic metrics with high precisions 
in all three case studies. Our approach is able to cover 57% and 
67% of the expected problematic metrics for the two open 
source systems.  

VI. DISCUSSION AND FUTURE WORK 

A. Quantitive Techniques 

Although there are existing techniques [10, 11] to correlate 
anomalies with the performance metrics by mining the raw 
performance data, these techniques usually assume the 
presence of Service Level Objectives (SLO) that can be used to 
determine precisely when an anomaly occurs. As a result, 
classifiers can be induced by analyzing the raw performance 
data augmented with information about the compliance or 
violation of SLO. Unfortunately, SLO rarely exists during 
development. Identification of performance regression 
becomes a manual task of finding metric deviations in the new 
test with a previous test as baseline. In practice, subjectivity of 
individual analyst often leads to valid performance regressions 
being overlooked. Moreover, descriptions that accompany the 
reported performance regressions are often limited, e.g., “there 
is a 15% increase of CPU”, making precise identification of 

TABLE IV.      SUMMARY OF ANALYSIS FOR THE ENTERPRISE SYSTEM 

Test 
Performance Analyst’s 

Report 

Our Findings 

A 
No performance problem 

found. 

Our approach identified 

abnormal behaviors in 

system arrival rate and 

throughput metrics. 

B 

Arrival rates from two load 

generators differ significantly. 

Abnormally high Database 

transaction rate. 

High spikes in job queue. 

Our approach flagged the 

same metrics as the 

performance analyst’s 

analysis with one false 

positive. 

C 
Slight elevation of database 

transactions/sec. 
No metric flagged. 

 



anomalies difficult. Finally, automated identification of metric 
deviations is also challenging as there could be phase shifts in 
the performance tests, e.g., the spikes do not align. These 
limitations prevent us from using classifier based techniques to 
detect performance regression. 

B. Sampling period and Metric Discretization 

We choose the size of time interval for metric discretization 
based on how often the original data is sampled. For example, 
an interval of 200 seconds is used to discretize data of the 
enterprise system which was originally sampled approximately 
every 3 minutes. The extra 20 second gap is used because there 
was a mismatch in sampling frequencies for some metrics. We 
also experimented with different interval lengths; we found that 
less metrics are flagged as the length of the interval increases, 
while precision was not affected. 

In our case studies, we found that the false negatives 
(metrics that were expected to show performance regressions 
but was not detected by our approach) were due to the fact that 
no rule containing the problematic metrics was extracted by the 
Apriori algorithm. This was caused by our discretization 
technique sometimes putting all values of a metric that had 
large standard deviation into a single level. Candidate rules 
containing those metrics would exhibit low confidence and 
were thus pruned. In the future, we will experiment on other 
discretization techniques such as Equal Width Interval Binning. 

C. Performance Regression Testing 

Our approach is limited to detecting performance 
regressions; functional failures that do not have noticeable 
effect on performance of the system will not be detected. 
Furthermore, problems that span across the historical dataset 
and the new test will not be detected by our approach. For 
example, no problem will be detected if both the historical 
dataset and the new test show the same amount of memory 
leak. Our approach will only register when the memory leak 
worsens or improves. 

D. Passed Tests 

The historical dataset from which the association rules are 
generated should contain tests which have the same workload, 
configuration, preferably same hardware, and exhibit correct 
behavior. Using tests that contain performance problems will 
decrease the number of frequent item sets extracted, making 
our approach less effective in detecting problems in the new 
test. In our case study with the enterprise system, we applied 
the following measure to avoid adding problematic tests to our 
historical dataset: 

1. We selected a list of tests from the repository that have 

received a pass status from the performance analyst. 

2. We manually examined the performance metrics that are 

normally used by a performance analyst in each test to 

ensure no abnormal behavior is found. 

E. System Evolution and Size of Trainnig Data 

The system is often updated to support new environments 
or requirements. These updates may lead to changes in 
performance. A large variability in metric values will 
negatively affect the confidence of association rules generated 
in our approach. Therefore, it is necessary to update the set of 

tests included in the historical dataset. In the future, we will 
study the effect of using a sliding window to select prior tests 
to include in the historical dataset. A sliding window allows us 
to automatically discard outdated tests that no longer reflect the 
up-to-date system’s performance. However, the optimal size of 
the sliding window will likely be project dependent since each 
project has different release frequency. 

Alternatively, the historical dataset can also be derived 
from within the run. For example, the first hour of the current 
test can be used to derive performance signatures. Assuming 
that the system runs correctly during the first hour, the 
performance signature generated from this historical dataset 
will be useful to assess the stability of the system. 

F. Hardware Differences 

In practice, performance regression tests of a system can be 
carried out on different hardware. Furthermore, third party 
components may change in between tests. In the future, we 
plan to improve our learning algorithm so that, given a new 
test, our tool will automatically select the tests from the 
repository with similar configurations. 

G. Automated Diagnosis 

Our approach automatically flags metrics by using 
association rules that show high deviations in confidence 
between the new tests and the historical dataset. These 
deviations represent possible performance regressions or 
improvements and are valuable to performance analyst in 
assessing the system under test. Performance analysts can 
adjust the deviation threshold to restrict the number of rules 
used and, thus, limit the number of metrics flagged. Alongside 
with the flagged metrics, our tool also displays the list of rules 
that the metric violated. Performance analysts can inspect these 
rules to understand the relations among metrics. From our case 
study, we notice that some of the rules produced are highly 
similar. In the future, we will research for ways to merge 
similar rules to further condense information for performance 
analysts to analyze. 

The association rules presented in our performance 
regression report represent metric correlations rather than 
causality. Performance analysts can make use of these 
correlations to manually derive the cause of a given problem. 

VII. RELATED WORK 

Our goal in this work is to detect performance problems in a 

new test using historical data. Existing approaches monitor or 

analyze a system through one of two sources of historical data: 

execution logs and performance metrics.  

A. Analyzing Execution Logs:  

Aguilera et al. [18, 22] developed various algorithms to 
performance debugging on distributed systems. Their approach 
infers a set of high impact causal paths of multiple 
communicating components and extracts the components 
which account for a significant fraction of the system’s latency. 
Unfortunately, the accuracy of the inferred paths decreases as 
the degree of parallelism increases, leading to low precision in 
identifying problematic components. Our approach is different 
from Aguilera’s in that we identify general performance issues 



rather than system components that contribute significantly to 
system latency. Jiang et al. introduce an technique [14] to 
identify functional problems in a load test from execution logs. 
The authors extended the approach to analyze performance in 
scenarios as well as the steps of each scenario [13]. Chen et al. 
proposed Pinpoint in [21] to locate the subset of system 
components that are likely to be the cause of failures. Our work 
is different from Pinpoint in that they focus on identifying 
system fault rather than performance regression, which can 
occur even when the system functions correctly. 

In contrast to the above studies which analyze execution 
logs, our approach analyzes performance metrics to identify 
performance problems. 

B. Analyzing Performance Metrics: 

Bondi [9] presented a technique to automatically identify 
warm-up and cool-down transients from measurements of a 
load test. While Bondi’s technique can be used to determine if 
a system ever reaches a stable state in the test, our approach 
can detect performance problems at the metric level.  

Cohen et al. [11, 12] applied supervised machine learning 
techniques to induce models on performance metrics that are 
likely to correlate with observed faults. Bodik et al. improved 
Cohen’s work [8] by using logistic regression. Our approach is 
different from the above work as we do not require knowledge 
of violations of Service Level Objectives. 

Jiang et al. proposed an approach [16] for fault detection 
using correlations of two system metrics. A fault is suspected 
when the portion of all derived models that reports outliers 
exceeds a predefined threshold. Our approach is based on 
frequent item sets which can output correlations of more than 
two metrics. Performance analysts can leverage these metric 
correlations to better understand the cause of a fault. Jiang et al. 
[15] proposed an approach to identify clusters of correlated 
metrics with Normalized Mutual Information as similarity 
measure. The authors were able to detect 77% of the injected 
faults and the faulty subsystems, without any false positives. 
While the approach in [15] can output only the faulty 
subsystems, our approach can detect and report details about 
performance problems, including metrics that deviate from the 
expected behaviors. 

VIII. CONCLUSIONS 

It is difficult for performance analysts to manually analyze 
performance regression testing results due to time pressure, 
large volumes of data, and undocumented baselines. 
Furthermore, subjectivity of individual analysts may lead to 
incorrect performance regressions being filed. In this paper, we 
explored the use of performance regression testing repositories 
to support performance regression analysis. Our approach 
automatically compares new performance regression tests to a 
set of association rules extracted from past tests. Potential 
performance regressions of system metrics are presented in a 
performance regression report ordered by severity. 
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