
A Qualitative Study on Performance Bugs

Shahed Zaman∗, Bram Adams† and Ahmed E. Hassan∗
∗SAIL, Queen’s University, Canada
{zaman,ahmed}@cs.queensu.ca

†MCIS, École Polytechnique de Montréal, Canada
bram.adams@polymtl.ca

Abstract—Software performance is one of the important
qualities that makes software stand out in a competitive market.
However, in earlier work we found that performance bugs
take more time to fix, need to be fixed by more experi-
enced developers and require changes to more code than
non-performance bugs. In order to be able to improve the
resolution of performance bugs, a better understanding is
needed of the current practice and shortcomings of reporting,
reproducing, tracking and fixing performance bugs. This paper
qualitatively studies a random sample of 400 performance and
non-performance bug reports of Mozilla Firefox and Google
Chrome across four dimensions (Impact, Context, Fix and Fix
validation). We found that developers and users face problems
in reproducing performance bugs and have to spend more
time discussing performance bugs than other kinds of bugs.
Sometimes performance regressions are tolerated as a trade-
off to improve something else.

Keywords-Performance bugs, qualitative study, Mozilla Fire-
fox, Chromium.

I. INTRODUCTION

Software performance is one of the most influential non-
functional requirements [1], with the power to make or break
a software system in today’s competitive market. It basically
measures how fast and efficiently a software system can
complete a certain computing task [2]. Resolving perfor-
mance bugs, i.e., performance problems like high resource
utilization or slow response time is as important as adding
new features to the system to keep the users happy and loyal
to the software system.

Despite being an important software quality problem,
there has not been significant research on performance bugs.
Research has focused especially on improving the overall
software quality by doing qualitative and quantitative studies
on software bugs in general. For example, software defect
prediction models use metrics derived from software bugs
in general to predict the number of defects and the locations
where to fix them [3] [4] [5]. Other work focuses on different
types of bugs like security bugs, or usability bugs [6] [7] [8]
[9].

However, performance bugs are different and require
special care. Our earlier work on performance bugs found
that performance bugs take more time (at least 32% more
on average) to fix, are fixed by more experienced developers
and require changes to larger parts of the code than non-

performance bugs [10]. Unfortunately, our analysis primarily
considered high-level quantitative data like the overall bug
fix time, the number of developers involved, and the size
of the bug fix, but ignored qualitative process data like the
content of discussions and the identity of people involved
in the bug fix process. Although we were able to pinpoint
differences between performance and other kinds of bugs,
we could not fully explain these findings or make concrete
suggestions to improve performance bug handling.

In order to understand the differences in the actual
process of fixing performance and non-performance bugs,
and potentially identify concrete ways to improve perfor-
mance bug resolution, this paper qualitatively studies perfor-
mance bug reports, comments and attached patches of the
Mozilla Firefox and Google Chrome web browsers. More
in particular, we studied 100 performance and 100 non-
performance bug reports and comments from each project
(Mozilla Firefox and Google Chrome, 400 bugs in total) to
discover the knowledge, communication and collaboration
specific to fixing performance problems in a software sys-
tem. We qualitatively compared the sampled performance
and non-performance bugs across four dimensions and 19
sub-dimensions. These are our major findings for each
dimension:

1) Impact on the stakeholder.
Performance bugs suffer from tracking problems. For
example, Chrome has seven times more regression bugs
that are performance-related than non performance-
related. In Firefox, 19% of the performance bugs were
fixed out of the blue without any concrete link to
the patch or change that fixed them. Furthermore, in
8% of the performance bugs of Firefox, bug com-
menters became frustrated enough to (threaten to)
switch to another browser, compared to only 1% for
non-performance bugs.

2) Context of the bug.
Despite the tracking problems and low reproducibil-
ity of performance bugs, 34% of performance bugs
in Firefox and 36% in Chrome provided concrete
measurements of e.g., CPU usage, disk I/O, memory
usage and the time to perform an operation in their
report or comments. In addition, twice (32%) as many



 

Performance 

Bugs 

Non-Performance 

Bugs 

100 Perf. Bugs 

100 Non-Perf. 

Bugs 

Study 
Aspects and 

Dimension 

Selection 

Analysis Bug 

Repository 

Bug Type 

Classification 

random 

sampling 

random 

sampling 

Figure 1. Overview of our approach to qualitatively study the performance bugs of a system.

performance bugs as non-performance bugs in Firefox
provided at least one test case in their bug report or
comment.

3) The bug fix.
Fixing performance bugs turns out to be a more collab-
orative activity than for non-performance bugs. 47% of
the performance bugs in Firefox and 41% in Chrome
required bug comments to co-ordinate the bug analysis,
while only 25% of the non-performance bugs required
them. Some performance regression bugs are not fixed
on purpose.

4) Bug Fix Validation.
We found no significant difference in how performance
bug fixes are reviewed and validated compared to non-
performance bugs.

Overview of the paper: Section II explains our case
study approach. Section III is divided into four sub-sections
according to the dimensions considered in our study. Each
sub-section of Section III discusses our findings for the
different sub-dimensions found in the specific dimension.
In section IV, we summarize the findings of this paper
with respect to our previous quantitative study on Firefox
performance bugs [10]. In section V, we discuss the threats
to validity of our study. Finally, Section VI discusses related
work and Section VII presents the conclusion of the paper.

II. CASE STUDY APPROACH

This section presents the design of our qualitative study
on performance bugs. Figure 1 shows an overview of our
approach. For a particular project, we first extract the nec-
essary data from its bug repository. Then, we identify the
bug reports related to performance and randomly sample
100 performance and 100 non-performance bugs. We then
studied the sampled bugs to identify the different dimensions
and their sub-dimensions that can be used to compare the
bug fixing process of performance and non-performance
bugs. Finally, we perform our analysis based on these sub-
dimensions. This section elaborates on each of these steps.

A. Choice of Subject System

In our case study, we study the Mozilla Firefox and
Google chrome web browsers, since these are the two most
popular web browsers with publicly available bug tracking
system data. We focus on the domain of web browsers, since
for web browsers that support multiple platforms and system
environments, performance is one of the major software

quality requirements. For that reason, performance bugs
are reported in both systems and are tagged explicitly in
the issue tracking systems of both projects. We considered
Mozilla’s Bugzilla data from September 9, 1994 to August
15, 2010 and Chrome’s issue tracker data from August 30,
2008 to June 10, 2010.

For Firefox, we first had to identify the bugs that are re-
lated to the Firefox web browser, since Mozilla’s bug track-
ing system manages multiple projects. It contains 567,595
bug reports for all different Mozilla components combined,
like Mozilla Core, Firefox, SeaMonkey, and Thunderbird.
For Firefox, we took bug reports that are related to Core
(shared components used by Firefox and other Mozilla
software, including the handling of Web content) and to the
Firefox component. We have reused the same dataset for
Firefox as we had in our previous work [10]. For the Chrome
web browser, our data was extracted from the Chrome issue
tracker dump provided in the MSR challenge 2011 [11].

B. Bug Type Classification

In Bugzilla (the issue tracking system for Mozilla Fire-
fox), the “keyword” field is tagged with “perf” for per-
formance bugs. In Google’s issue tracker for Chrome, the
“label” field is tagged as “performance” for performance
related bugs. However, in both projects, this tagging is not
mandatory, and we found many performance bugs that do
not have any such tag.

Hence, to identify performance bugs, we had to use
heuristics. We looked for the keywords ‘perf’, ‘slow’, and
‘hang’ in the bug report “title” and “keyword” field. Al-
though the keyword ‘perf’ gave us bug reports that had
‘performance’ in their title (as intended), we found that
there are many bug reports containing the word ‘perfect’,
‘performing’ or ‘performed’, without having any relation
to performance problems. We had to automatically exclude
these keywords from the list using regular expressions. In
previous work [10], we used this heuristics-based approach
on the Firefox bug data and classified 7,603 bugs (4.14% out
of 183,660 bugs) as performance-related. Manual analysis
of a random sample of 95 bugs classified as performance-
related and 96 bugs classified as non-performance related
showed that our heuristics had a precision of 100 ± 10%
and recall of 83.3 ± 10% (see confusion matrix in Table
II). The sample sizes were chosen to obtain a confidence
interval of 10.



Table I
TAXONOMY USED TO QUALITATIVELY STUDY THE BUG REPORTS OF PERFORMANCE AND NON-PERFORMANCE BUGS. BOLD SUB-DIMENSIONS SHOW

A STATISTICALLY SIGNIFICANT DIFFERENCE IN AT LEAST ONE PROJECT.

Impact on the User Context of the bug The Fix Fix Validation

Regression Measurement Used Problem discussion in comments Discussion about the patch
Blocking Has test cases Dependent on other bug Technical
WorksForMe after a long time - by reporter Other bugs depend on this bug Non-Technical
People talking about switching ·with report Reporter has some hint on the actual fix Review

- later Patch uploaded by Super-review
Contains stack traces - reporter

- in report ·with report
- in follow-up ·later

Has reproducible info - Others
- in report
- in follow-up

Problem in reproducing
Duplicate Bug
Improvement suggestion
Reported by a project member

Using the same approach for the Google Chrome issue
tracking system data, we classified 510 bugs as being
performance-related (1.13% out of 44,997 bugs). In order
to estimate precision and recall for this dataset, we again
performed a statistical sampling with a 95% confidence level
and a confidence interval of 10. We randomly selected and
checked 81 performance (out of 510 bugs classified as being
performance-related) and 96 non-performance (out of 44,487
bugs classified as being non-performance) bugs [12]. Out
of these 81 bugs classified as being performance-related,
73 were actual performance bugs, yielding a precision of
90.12 ± 10%. Out of the sampled 96 bugs classified as
being non-performance, 94 were indeed non-performance
bugs, yielding a recall of 97.33 ± 10%. In other words,
the heuristics seem to apply to Chrome as well.

Table II
CONFUSION MATRIX FOR THE DATASETS

Actual → Firefox Chrome

Prediction ↓ P NP P NP

P 95 0 73 8

NP 19 77 2 94

C. Selection of Samples
For our 4 datasets of performance and non-performance

bugs of Firefox and Chrome, the largest one is the set of
Firefox non-performance bugs, with 176,057 bugs. With
a 95% confidence level and 10% confidence interval, the
sample size should be 96 bug reports. This means that if
we find a sub-dimension to hold for n% of the bugs (out of
these 96 non-performance Firefox bugs), we can say with
95% certainty that n ± 10% of the bugs contains that sub-
dimension. The datasets with less bugs required less than
96 bug reports to be sampled to ensure this 10% confidence
interval in the result. However, to simplify, we randomly
sampled 100 bug reports from each dataset, resulting in a
confidence interval of 10% or less for each dataset.

D. Identification of bug report and comment dimensions

Before being able to compare performance and non-
performance bugs, we first need to establish the criteria to
compare on. The different fields and characteristics recorded
by bug repositories are a good start, but our study requires
knowledge of how testers and developers collaborate on
and think about (non-)performance bugs. This knowledge
is part of the natural language content of bug comments
and discussions, but we are not aware of any taxonomy or
other work for analyzing qualitative bug report data. Hence,
we first performed a manual study of the sampled data to
identify such a taxonomy.

The first author studied each sampled bug report and
tagged it with any word or phrase describing the intent or
content of the bug comments and discussions. Each time
new tags were added, older reports were revisited until a
stable set of 19 tags was identified with which we could tag
all reports. Afterwards, we analyzed the tags and grouped
them into 4 clusters (“dimensions”): the impact of the bugs
on stakeholders, the available context of the bug, the actual
bug fix and the validation of the bug fix. The resulting
dimensions and “sub-dimensions” (tags) are shown in Table
I and are used to compare performance and non-performance
bugs on. We discuss the sub-dimensions in more detail in
our study results.

In order to determine, for a particular system, whether the
percentage of performance bugs related to a sub-dimension
(e.g., Blocking) is statistically significantly higher than the
percentage of non-performance bugs related to that sub-
dimension, we used the “joint confidence interval” or “com-
parative error”. This measure is often used to compare two
independent samples [13]. If the difference between the
percentage of performance and non-performance bugs for
a sub-dimension is greater than their calculated comparative
error, then the difference is considered to be statistically
significant.



III. STUDY RESULTS

Each subsection below discusses one of the four dimen-
sions in our study on using Mozilla Firefox and Google
Chrome data. For each dimension, we present the description
of the dimension, the sub-dimensions and a discussion of
our findings. All differences between performance and non-
performance bugs mentioned in our findings are statistically
significant unless stated otherwise. Any percentage value
mentioned in our findings has a maximum confidence in-
terval of 10%.

A. Impact on the stakeholder

Since different stakeholders are involved with a software
system, e.g., developers, users, testers and managers, a bug
can impact any of them. This impact can vary widely,
from blocking a software release, to an annoying regression
bug that pops up again, or to small annoyances in user
experience. For example, release blocking bugs typically
require immediate attention and priority from the developer
assigned, while a small hiccup during start-up might be
forgiven. In the worst case, failure to adequately fix a major
bug can incite users to switch to a competitor’s product when
tired of a software problem. To understand the impact and
severity of performance bugs and how stakeholders deal with
that, we need to study this dimension.

Sub-dimensions:
Regression: A regression bug is caused by a certain event

(like software upgrade, another bug fix patch, or daylight
saving time switch) that reintroduces a previously fixed prob-
lem to the system [14]. This problem can be a performance
problem or any other problem, like functionality or security-
related. It typically is (re-)discovered via a failing test. Both
bug tracking systems support the tagging of regression bugs,
but do not enforce it. We identified the regression bugs
from existing tagging and by studying the report details. The
patch, build or version from which the regression started is
typically also indicated.

Blocking: By “blocking release”, we refer to bugs that
prevent a release from being shipped, typically because they
are showstopper bugs. These bugs are flagged in the ‘Flags’
field of a bug report in Firefox and labeled as ‘ReleaseBlock’
in Chrome. That label or flag also mentions the specific
release version that is blocked. For example, in Chrome, the
label mentions either ‘Beta’, ‘Dev’ or ‘Stable’ meaning that
the bug blocks that release channel. If while working on a
bug report, the project contributor feels that the bug has to
be fixed before that release, she tags it as a release blocker.

WorksForMe after a long time: In our study, we found
many bugs that were reported, confirmed to be valid, then
closed after a long time with a WFM (Works For Me),
Fixed or Won’t Fix status. By “closed after a long time”, we
mean that a bug report is closed after several months and in
many cases, more than a year. The ‘WFM’ (WorksForMe)
status is specific to the Mozilla project and indicates that

the problem mentioned by the reporter was not reproducible
by the project contributor or others. Instead of ‘WFM’, the
Chromium project uses ‘Won’t Fix’ or ‘Invalid’ as a closing
status for such bugs.

People talking about switching: We counted the number
of bugs where in the bug comments, at least one user
mentioned being unhappy and thinking about switching to
another browser because of that bug. Out of the millions of
users of these browser, a comment from a few people may
not seem to be significant. However, since bug reporters are
tech-savvy users, we can expect that each of them voices
the opinion of many more other users in total.

Findings:
22% of the performance and 3% of the non-performance
bugs are regression bugs [Chrome].

A similar phenomenon occurred in Firefox, but the differ-
ence was not significant (19% vs. 13%). Problems related
to non-performance regressions include browser crashes,
missing functionality, and unexpected behavior.

Since performance regressions are common problems,
both projects have a dedicated framework to detect and
report them. In Firefox, regression bugs are reported like
any other performance bug, then identified and/or confirmed
(and usually tagged) as a regression by the reporter and/or
contributors. In Chrome, most of the regression bugs found
in our study are manually reported by project members who
detected the regression in the automated compile/test cycle.
The report contains a link to automatically generated graphs
that show the performance deviation between the build
under test and the previous build. The reporter also provides
some notes specifying the specific metric that showed the
deviation as there are many metrics plotted in those graphs.
Most of the Firefox regression bugs were reported after the
software affected the user, while Chrome’s bug reports are
showing an early detection practice.
Not all regressions are unexpected.

We found regression bugs that, although unexpected by
the reporter, turned out to be known and tolerated by de-
velopers. Often, the performance bug was tolerated because
of a trade-off with a more essential performance feature. In
Chrome, we found the following comment in a regression
bug (bug # 7992, comment # 3) that was closed with
“WontFix” status.

“I talked to dglazkov and darin. This regression is ex-
pected and OK. dglazkov mentioned rebaselining the test,
but I’m not sure that matters.
The ... is a heavy user of the WebCore cache, and recent
changes tilted the tuning toward memory usage instead
of speed. If you look at the memory usage, you’ll see a
corresponding drop where the perf slows down.”
Performance improvement may cause regression.

We found different bug comments where a performance
regression was introduced to the system while trying to opti-
mize the performance. For example, in Firefox bug #449826,



the bug was reported as a possible performance improvement
suggestion, but the resulting performance ended up being
much slower and still open since September, 2008.

14% of the performance bugs and 4% of the non-
performance bugs are release blocking [Firefox].

A similar finding, but not significant, was found in
Chrome (8% vs. 4%). Release blocking bugs have the
highest priority to the developers.

19% of the performance and 6% of the non-performance
bugs are marked as WFM/Fixed/Won’tFix after a long
time [Firefox]

Although the final outcome of these three groups was
different, in all of them bugs have a traceability problem
as we do not know how the bug was fixed, what caused the
bugs, or why this bug will not be fixed. The reporter and
other commenters who participated in the discussion of the
bug report did not receive a response for a long time.

There are various reasons behind the popularity of these
kind of bug reports. For example, these bug reports might
have been insufficient to work on a fix, or the bug might have
been too complex. Ideally, some note on the state of the bug
should have been recorded. This type of bug was also found
in Chrome without any significant difference (10% perf. vs.
9% non-perf.)

8% of the performance and 1% of the non-performance
bugs drove at least one user to threaten to switch to
another browser [Firefox].

In Chrome, 7% of performance and 2% of non-
performance bugs are of this type and the difference was
not statistically significant. These percentages do not include
comments by users who are just frustrated with a bug. 7
users threatening to leave Firefox might not seem much, but
for each user that reports a bug, X other non-contributor
users encounter the same issue and feel the same pain. For
example, in a comment on Firefox bug #355386, (comment
#10), the user said:

“... This bug is really bothering us and forcing us [his
company] to recommend IE +SVG Adobe plugin to cus-
tomers... ”.

Surprisingly, this bug was only closed with WFM status
after more than 2 years. In the Chromium project, a com-
menter said (bug #441, comment #6):

“I no longer use Chrome/Chromium for anything much
and can no longer recommend to any of my friends or
acquaintances or random people in the street that they use
it. I still try it regularly in the hopes that the issue has been
sorted out but as soon as the problem shows up I switch
back to one of the others.”. Again, in this case, the problem
was found to be not happening (WFM) anymore and closed
with the status ‘WontFix’ after more than 10 months.

Users and developers compare the performance with
other browsers.

In both projects, we found that users and developers
compare their product performance with other competitors.
While submitting a bug report in the Chromium project, the
default bug report template suggests the reporter to provide
information if the same problem was observed in other
browsers. Mozilla bug reports usually also contain a com-
parison with other browsers. This is a common and expected
practice irrespective of the bug type. It came as a surprise
to us, however, to find bug reports in Google Chromium
declared by the developers as “WontFix” only because the
other popular browsers have the same performance issue or
their browser at least was not slower than others. Users were
not amused by this. For example, in Chrome, we found a
comment (bug # 441, comment # 15) saying:

“Thats a poor reason for closing a verifiable bug in
something other than the rendering engine.
Just becuase firefox consumes 100% cpu on something as
basic as scrolling doesnt mean chrome should.”

One acceptable case of this pattern, however, happens
when comparing Chrome functionality to that of the Safari
browser. Since both share the same layout engine “WebKit”,
many performance bugs had their root cause in webkit.
In that case, the bug is identified as a “webkit” bug,
reported to the webkit project’s issue tracking system and
the corresponding link is added to the Chrome bug report
as a comment.

B. Context of the Bug

This second dimension captures the context available
about a bug when reported in an issue tracking system.
Bettenburg et al. did a survey on developers and users where
they identified the factors that are considered to be helpful
by the developers and reporters [15]. Both developers and
reporters accepted that ‘steps to reproduce’ in bug reports
are the most helpful information. Test cases and stack traces
were next in the list. In the context of performance bugs,
we need to know if these kinds of information are used
more/less/similarly in order to understand the performance
bug reporting process. Access to more relevant context can
reduce the performance bug fix time and thus the overall
quality of software.

Sub-dimensions:
Measurement used: We counted the number of bugs

that include any kind of measurements in their report. By
“measurement”, we mean the use of any numerical value
(e.g., CPU usage, disk I/O, or memory usage) in the bug
report or comments to describe the problem.

Has test cases: Test cases are provided by the bug reporter
or any other commenter to help reproduce the problem.
We found different forms of test cases, i.e., specific web
links, and attached or copy-pasted HTML/JavaScript files.
In Chrome, very few bugs had test cases attached to them.



Instead, they use problematic web links as test case. We
found the use of attachments more convenient as web links
may become unavailable or are expected to be changed.

Contains stacktrace: Stack traces are also provided by
the reporter and sometimes by other people in the bug
comments. We counted the number of bugs where a stack
trace was provided in the report or in the comments, since
we also found bugs where the developer had to request for
a stack trace to the bug reporter.

Has reproducible info and problem in reproducing: It is
common practice in bug reporting to provide a step by step
process to reproduce a bug. This process should include any
non-default preference, hardware requirement and software
configuration needed to trigger the bug. However, we found
many bugs where despite having the steps to reproduce
the bug, people had substantial problems reproducing the
bug and requested more information or suggestions for
reproducing the bug. We counted the number of bugs where
commenters mentioned such problems in reproducing.

Reported by a project member: Chromium bug reports
contain information about whether the bug is reported by a
project member or someone else. In Firefox bug reports, we
could not see any such information. Hence, we counted the
number of performance and non-performance bugs reported
by a project member only for Chrome.

Duplicate bug: Bug reports contain information about du-
plicate bugs, i.e., bugs that are in fact identical to an already
reported bug without the reporter noticing this. We found
that duplicate bugs are afterwards identified and marked
by the project contributors and sometimes by the reporter.
Firefox has a field “duplicates” where all the duplicate bugs
are listed. In Chrome, we identified duplicate bugs from the
bug status “Duplicate” or from comments like, “Issue ...
has been merged into this issue”. We counted the number
of bugs with duplicates for all sampled performance and
non-performance bugs in our study.

Improvement suggestion: We counted the number of bugs
that were about improvement (both performance and non-
performance) of the software, not about defects. We identi-
fied bugs related to improvement by checking if the report
is about speed, resource utilization, usability or code quality
improvement instead of a specific bug.

Findings:
34% of the Firefox and 36% of the Chrome performance
bugs contain performance measurements.

More than one third of the performance bug reports and/or
comments provided measurements of different performance
metrics. We observed an interesting difference in the use of
measurements between Chromium and Firefox. In Firefox,
the measurements included in bug reports were numerical,
i.e., CPU usage, disk I/O, memory usage, time to perform an
operation, or profiler output. In addition to these numerical
values, Chrome performance bug reports also contained the
metric values calculated using Chromium’s performance test

scripts that run on “buildbot”, the continuous integration
server used by Chromium. Although Mozilla also had test
suites for the “tinderbox” [16] continuous integration server,
we could not find any bug reports in our sample that referred
to this test suite.

As expected, we could not find any non-performance bug
that had any kind of measurement mentioned in its bug
report, since it is hard to quantify a functional bug.

32% of the performance and 16% of the non-
performance bug reports or comments contain a test
case [Firefox].

Most of the time (more than 70% of the time for both bug
types and projects), test cases are uploaded by the reporter.
In Chrome, the difference was not statistically significant
(21% performance vs. 16% non-performance).

10% of the performance and 1% of the non-performance
bugs contain a stack trace in the report or a comment
[Chrome].

In Chrome, we could not find a statistically significant dif-
ference between performance (13%) and non-performance
bugs (8%). Stack traces are normal for functional bugs that
cause the system to crash. Sometimes, performance bugs
make the software slow, which eventually causes a crash
as well. Furthermore, performance bugs may also cause
the software to hang, which requires the software to be
manually aborted. Stack traces are used in such cases for
debugging from the sequence of functions called just before
the software hung or crashed.

15% of the performance and 6% of the non-performance
bugs had comments related to problems with reproduc-
ing the bug [Firefox].

Insufficient information provided by the reporter or the
unavailability of a test case is one of the most common
reasons behind being unable to reproduce any bug. More-
over, for many performance bugs, the problem was caused
by the use of a specific (or a specific version of an) extension
or plugin of which the reporter could not collect sufficient
information. We often found that in the bug comments,
commenters guide the reporter by giving instructions and
web links on how to collect the required context that will
help the commenter and other people to reproduce the bug.
Intermittent problems are also found to be hard to reproduce.
In Chrome, 16% of the performance and 8% of the non-
performance bugs had comments related to problems in
reproducing, but this difference between performance and
non-performance bugs was not statistically significant.

58% of the performance and 35% of the non-
performance bugs are reported by a project member
[Chrome].

One possible reason of this difference may be that per-
formance regression bugs found by an automated test script



are always reported by a project member. We found that
out of the 22% performance regression bugs in Chrome
more than 86% were reported by a project member, which
shows a larger involvement of project members in reporting
performance bugs.

In both projects, many performance bugs are caused by
external programs.

We found that 11% of the performance bugs in Firefox
and 14% of the performance bugs in Chrome are caused
by a program that was not developed within the project.
Investigations of these bugs showed performance problems
caused by an “add-on” or “plugin” (i.e., flash), a single web
application/page (i.e., yahoo mail or gmail) or any other third
party software in the system (i.e., antivirus).

In Firefox, comment # 1 of bug # 463051 in November,
2008 mentioned,

“Report problems caused by external programs to their
developers. Mozilla can’t fix their bugs. ...”.

The bug was marked as resolved with resolution “invalid”.
In the next comment, which was submitted more than two
years later, we found a comment saying,

“We’re now tracking such bugs. This doesn’t mean it’s
something we can fix, merely something we hope to be
able to point vendors to so they can investigate. This is an
automated message.”.

After that comment in March, 2011, the bug was assigned
a new QA (Quality Assurance) contact and since then, the
status of that bug is “unconfirmed”.

The Chromium issue repository kept track of these issues
from the beginning, to support the QA team in collaborating
with the users and/or third party developers facing the
reported problem.

Non-performance bugs have more duplicate bugs re-
ported than performance bugs [Firefox].

In Firefox, the difference was significant (26% perfor-
mance vs. 40% non-performance), while we could not
find a statistically significant difference in Chrome (24%
performance vs. 32% non-performance).

Although steps to reproduce are used in most of the bug
reports, we could not find any statistically significant differ-
ence between their use in performance and non-performance
bugs. We also could not find any significant difference for
the sub-dimension “improvement suggestion”.

C. The Bug Fix

Process metrics like the response time of the fix process
can be used to measure software quality [17]. However, in
order to improve the performance bug fixing process and
overall quality, we need to know how, given the context of
the second dimension, a performance bug is fixed and what
(if any) makes the performance bug fixing process different
from other bugs in practice.

Sub-dimensions:
Problem discussion in comments: We studied the bug

comments where people discussed the problems related to
the bug report and the uploaded patch for that bug. To
distinguish between problem discussion and patch discussion
in Firefox, we considered all comments before the first
patch upload as problem discussion, and all comments after
the first patch upload as patch discussion (see Bug Fix
Validation dimension). As Chrome uses a different tool for
patch review than the issue tracking system, we considered
all bug comments as problem discussion.

Dependent on other bug or other bug depends on the
bug: We also studied the dependency information provided
in the issue tracking system. When a bug’s fix depends on
the resolution of another bug, this dependency is provided in
both issue tracking systems in two different fields (“Depends
on” and “Blocking”).

Reporter has some hint on the actual fix: We found many
bugs (especially improvement suggestion bugs) where the
reporter had an idea about the fix and provided a hint and
sometimes the patch with the bug report. We counted the
number of performance and non-performance bugs of this
type.

Patch uploaded by: We found bug patches that were
uploaded by its reporter, sometimes within a few minutes
after reporting. We counted the number of bugs where
the patch was uploaded by the reporter (immediately after
reporting/later) and by others.

Findings:
Performance bugs are discussed more than non-
performance bugs in order to develop a fix.

47% of the performance bugs of Firefox and 41% of the
performance bugs in Chrome required a discussion in the
bug comments, while only 25% of the non-performance bugs
in both projects had such a discussion. By discussion, we
mean the process of exchanging ideas in order to understand
a problem, identify the possible fix, and reach a decision.
We did not count those bugs that had only comments saying
something like, “it happens to me too” rather than trying to
find out the reason for that problem. As such, this finding
suggests that performance bugs are harder to resolve, or at
least require collaboration between multiple people.

Table III
NUMBER OF BLOCKING AND DEPENDENT BUGS (BOLD NUMBERS HAVE

STATISTICALLY SIGNIFICANT DIFFERENCE).

Project Type Blocking Depends on

Firefox
Perf. 44 42

Non-perf. 27 15

Chrome
Perf. 2 6

Non-perf. 6 4



Performance bugs are more dependent on other bugs
and more performance bugs are blocking than non-
performance bugs [Firefox].

Table III shows the dependency information found in our
studied bugs. When ‘B’ blocks the resolution of bug ‘A’, bug
‘B’ is marked as blocking bug ‘A’ and bug ‘A’ is marked
as depending on ’B’. Only Firefox is showing a difference
between performance and non-performance bugs (42% vs.
15% for depends on and 44% vs. 27% for blocking) with
statistical significance. Very few dependency information
was found in the Chromium project and the difference was
not statistically significant.

Patches are not always used for fixing a bug.
We found that many of the performance bugs in

Chromium project are reported by a project member
who observed a performance deviation in the automated
performance test result. The performance test scripts
running on “buildbot” compare the performance
metric against a performance expectation baseline.
The performance expectations are written in a file
(“/trunk/src/tools/perf expectations/perf expectations.json”)
that has the expected ‘improve’ and ‘regress’ values. By
comparing these values to the actual value, the performance
regression testing script identifies both “performance
regression” and “unexpected speedup” (bug # 18597,
comment # 11). We found many patches related to
performance bugs where this expectation baseline file was
patched to readjust after a definitive performance speedup
or an accepted regression. For accepted regressions, the
corresponding bug is no longer a bug, but expected
behavior. Moreover, some patches are only intended for
troubleshooting. For example, in bug # 34926 comment #
9, a patch was uploaded to determine if another revision
caused the performance deviation.

Although the sub-dimensions “reporter has some hint
about the fix” and “patch uploaded by” were interesting,
we could not find any significant difference between perfor-
mance and non-performance bugs for them.

D. Bug Fix Validation

After a software fix has been proposed, it needs to be
validated by reviewers to ensure software quality. Basically,
reviewers comment on the approach, algorithm used, and
code quality in order to ensure that the patch really fixes the
bug and the fix does not introduce any new bug. Sometimes,
depending on the importance of the bug and complexity of
the fix, a more rigorous validation effort needs to be spent.

Sub-dimensions:
Discussion about the patch: After a patch is uploaded and

linked to the issue tracking system, people can discuss the
patch in order to validate its effect. In the Firefox Bugzilla
repository, patch discussion appears in the bug comments of
the bug report. In Chrome, this discussion can be found on

the Chromium code review page for that patch (a separate
page whose link is posted as a bug comment).

Some discussions focus solely on the code changes in the
patch. We call these technical discussions. Other discussions
are not source code specific, i.e., they discuss about whether
the problem is still observed by others, and what changes
people can see after the patch is used. We call these non-
technical discussions.

Review and super-review: In both projects, the code was
reviewed by one or more code reviewers. Moreover, we
found the use of the term “super-review” in Mozilla. A
super-review is performed by a super-reviewer (a list of
reviewers indexed by area) and is required for certain types
of critical changes mentioned in Mozilla’s super-review
policy [18].

Findings:
For none of the projects and sub-dimensions, performance

bug reports behave statistically significantly different from
non-performance bugs.

Table IV
COMPARISON OF FINDINGS ABOUT PERFORMANCE BUGS BETWEEN OUR

PREVIOUS QUANTITATIVE STUDY [10] AND THIS STUDY.

Previous Quantitative Study This Qualitative study

Require more time to Fix 1. WorksForMe (WFM) after
a long time,

2. Problem in reproducing
3. More dependencies between bugs
4. Collaborative root cause

analysis process
Fixed by more 1. More release blocking

experienced developers 2. People switch to other systems

More lines of code changed N/A

IV. DISCUSSION

In our previous work, we found that performance bugs
take more time to fix, are fixed by more experienced
developers, and that more lines of code are changed to fix
performance bugs. Based on the qualitative findings in the
current paper (summarized in Table IV), we are now able to,
at the minimum, provide more context about our previous
findings and, likely, provide a strong indication about the
actual rationale behind those quantitative findings.

Related to the finding that Firefox performance bugs take
more time to fix, we found for Firefox that people face
problems in reproducing performance bugs and have to
discuss more to find the root cause of these bugs. These
collaborative activities may require more time in a project
of global scale like Firefox. Moreover, we also found that
performance bugs have more dependencies on other bugs,
which implies that performance bug fixing may be delayed
because of the time to fix the dependent bug first. On the
other hand, we also found indications that our measurements
of the time to fix a bug might have been inflated. Indeed,
19% of the performance bugs in Firefox are fixed after a long
time (in the order of months, sometimes years) without any



trace of related fixing process. They were basically fixed as
a side-effect of some other bug. Since the corresponding bug
report has been open (and probably forgotten) for so long,
the unnatural fix time of these bugs may cause the average
fixing time to be higher than it should be.

Related to the finding that performance bugs are fixed by
more experienced developers in Firefox, we found in this
study that a higher percentage of performance bugs is release
blocking than non-performance bugs in Firefox. Release
blocking bugs are known to be of the highest priority and this
may prompt projects to assign experienced developers to fix
performance bugs. Furthermore, the difficulty to reproduce
performance bugs and fix them also suggests that experts
are better equipped to fix performance bugs.

Finally, we did not find direct qualitative support for
our finding that performance bug fixes are larger than non-
performance fixes. However, our findings that performance
bugs have many dependencies and require experienced de-
velopers to fix them could give some indications that perfor-
mance bugs need more system-wide knowledge instead of
knowledge about one component. More analysis is needed
to further explore this possibility.

Our findings for Firefox and Chrome performance bugs
were different in most of the cases. Possible explanations
are the differences in development and quality assurance
processes and policies of these two projects. Studies on other
projects should be done to obtain a more complete picture
of performance bugs.

V. THREATS TO VALIDITY

Since this is a qualitative study, there may be some
human factors and subjectivity in our bug analysis, since
it is very difficult to prevent or detect researcher-induced
bias. Although only the first author performed the qualitative
analysis, he took care to consider all available bug data
sources and to double-check findings when in doubt.

There may be more dimensions and/or more sub-
dimensions in the selected dimensions other than the ones
we selected, since our selection is based on the sampled
data in Firefox and Chrome. We iteratively identified tags
until a stable set of tags was found that could cover all
sub-dimensions of sampled reports. Conceptually, the (sub-
)domains cover most of the qualitative aspects of bug
reports, and preliminary analysis on other projects supports
the claim.

Our qualitative study focuses on two projects. It is
not clear whether our findings generalize to other open
source projects or to commercial projects. However, we
have selected the two most popular open source projects
(Mozilla Firefox and Chrome) from the browser domain,
since performance bugs matter in this domain and we had
access to all relevant data.

We used heuristics on bug report titles and keywords to
identify performance bugs. Since our study critically relies

on bug classification, we statistically verified our heuristics
for performance bug identification. A statistical sampling
technique (with 95% confidence level and confidence inter-
val of 10) showed that our heuristics have a high precision
and recall.

VI. RELATED WORK

A. Bug Repositories and Qualitative Analysis

The use of issue tracking systems as a communication
and collaboration medium among customers, project man-
agers, quality assurance personnel, and programmers has
been qualitatively studied by Bertram et al. [19]. From
questionnaire and semi-structured interviews, they found
issue trackers to be an ever-growing knowledge store where
each stakeholder contributes knowledge and information via
individual bugs and features. In our study, we tried to exploit
this knowledge to learn about software performance bugs
and their fixing process.

Bug reports from different open-source projects have also
been qualitatively studied by Zibran et al. to identify and
rank usability issues related to designing and developing
software APIs [20]. Guo et al. qualitatively studied bug
reports from the Microsoft Windows Vista operating system
project to find out the primary reasons for bug reassignment
[21]. They used a qualitative study on bug reports to provide
support for their survey findings on Microsoft employees.
Andrew et al. did a qualitative study on 100 bug reports from
3 different open-source software projects to find out how
teams of distributed developers discuss and reach consensus
in bug reports [22].

Bettenburg et al. performed a survey on developers and
reporters related to software issue repositories in order to
find out the qualities of a good bug report [15] [23]. In their
survey, the developers and reporters identified and ranked
different types of information provided in bug reports, i.e.,
steps to reproduce, test cases, and stack traces. Our study
also found active use of this kind of information in bug
reports to fix performance bugs.

B. Performance Bugs

There also has been research on detecting performance
bugs. Jovian et al. worked on finding performance bugs by
automatically monitoring the deployed application behavior
in order to provide helpful information for performance
problem tracing to the developer [24]. Narpurkar et al.
worked on efficient remote profiling of mobile devices
that can help users to dynamically provide information
to developers to help isolate bugs, maintain and improve
performance. These two papers focus on improving the
performance bug detection and tracing process, while we
study the bug reporting, tracing and fixing process followed
in practice.

In our previous study [10], we quantitatively studied
performance bugs and compared results with security and



other bugs of Firefox. Different metrics were considered
in three dimensions, i.e., Time, People and Fix. In these
dimensions, we found that performance bugs take more time
to fix, are fixed by more experienced developers and require
changes to more lines than non-performance bugs. These
quantitative findings, although interesting, resulted in more
questions than we started out with. Hence, in the current
paper, we tried to understand what happens during the bug
reporting, tracking and fixing to find an explanation of our
quantitative results.

VII. CONCLUSION

Mozilla Firefox and Google Chrome are the two most
popular open source web browser projects with millions of
users and hundreds of developers and contributors around
the world. We studied sampled performance bugs in these
two projects to observe how project members collaborate to
detect and fix performance bugs.

Performance bugs have different characteristics, in par-
ticular regarding the impact on users and developers, the
context provided about them and the bug fix process. Our
findings suggest that in order to improve the process of
identifying, tracking and fixing performance bugs in these
projects:

• Techniques should be developed to improve the quality
of the “steps to reproduce”, both in the performance
bug reports as well as in the system as a whole.

• More optimized means to identify the root cause of
performance bugs should be developed.

• Collaborative root cause analysis process should be
better supported.

• The impact of changes on performance should be
analyzed, e.g., by linking automated performance test
results to commits, such that performance bugs no
longer magically (dis)appear.

We plan on performing case studies on other open source
software systems from the same domain and from other
domains to be able to generalize our findings.

REFERENCES

[1] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-
based performance prediction in software development: a survey,”
Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 295
– 310, may 2004.

[2] H. H. Liu, Software Performance and Scalability: a Quantitative
Approach. Wiley & Sons, Inc., 2009.

[3] M. Cataldo, A. Mockus, J. Roberts, and J. Herbsleb, “Software
dependencies, work dependencies, and their impact on failures,”
Software Engineering, IEEE Transactions on, vol. 35, no. 6, pp. 864
–878, nov.-dec. 2009.

[4] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault inci-
dence using software change history,” Software Engineering, IEEE
Transactions on, vol. 26, no. 7, pp. 653 –661, jul 2000.

[5] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proc. of the 30th international conference on Software
engineering, ser. ICSE ’08, 2008, pp. 181–190.

[6] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo, “Securing web application code by static analysis and runtime
protection,” in Proc. of the 13th international conference on World
Wide Web, ser. WWW ’04, 2004, pp. 40–52.

[7] P. Anbalagan and M. Vouk, “An empirical study of security problem
reports in Linux distributions,” in Proc. of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement,
ser. ESEM ’09, 2009, pp. 481–484.

[8] “The whiteboard: Tracking usability issues: to bug or not to bug?”
interactions, vol. 8, pp. 15–19, May 2001.

[9] F. Heller, L. Lichtschlag, M. Wittenhagen, T. Karrer, and J. Borchers,
“Me hates this: exploring different levels of user feedback for
(usability) bug reporting,” in Proc. of the 2011 annual conference
extended abstracts on Human factors in computing systems, ser. CHI
EA ’11, 2011, pp. 1357–1362.

[10] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: a case study on Firefox,” in Proc. of the 8th Working Conference
on Mining Software Repositories, ser. MSR ’11, 2011, pp. 93–102.

[11] A. Schröter, “MSR challenge 2011: Eclipse, Netbeans, Firefox, and
Chrome,” in Proc. of the 8th Working Conference on Mining Software
Repositories, ser. MSR ’11, 2011, pp. 227–229.

[12] G. Kalton, Introduction to Survey Sampling. Sage Publications, Inc,
September 1983.

[13] S. England, “Briefing Note: confidence intervals and statistical sig-
nificance within the Active People Survey,” unpublished.

[14] D. Nir, S. Tyszberowicz, and A. Yehudai, “Locating regression bugs,”
in Hardware and Software: Verification and Testing, ser. Lecture
Notes in Computer Science, 2008, vol. 4899, pp. 218–234.

[15] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann, “What makes a good bug report?” in Proc. of the
16th ACM SIGSOFT International Symposium on Foundations of
software engineering, ser. SIGSOFT ’08/FSE-16, 2008, pp. 308–318.

[16] C. R. Reis, “An overview of the software engineering process and
tools in the Mozilla project,” in Open Source Software Development,
2002, pp. 155–175.

[17] S. Kim and E. J. Whitehead, Jr., “How long did it take to fix bugs?”
in Proc. of the 2006 international workshop on Mining software
repositories, ser. MSR ’06, 2006, pp. 173–174.

[18] “Mozilla super-review policy,”
http://www.mozilla.org/hacking/reviewers.html, February 2012.

[19] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams,” in Proc. of the 2010 ACM conference on Computer
supported cooperative work, ser. CSCW ’10, 2010, pp. 291–300.

[20] M. Zibran, F. Eishita, and C. Roy, “Useful, but usable? factors
affecting the usability of APIs,” in Reverse Engineering (WCRE),
2011 18th Working Conference on, oct. 2011, pp. 151 –155.

[21] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, ““Not
my bug!” and other reasons for software bug report reassignments,”
in Proc. of the ACM 2011 conference on Computer supported
cooperative work, ser. CSCW ’11, 2011, pp. 395–404.

[22] A. J. Ko and P. K. Chilana, “Design, discussion, and dissent in open
bug reports,” in Proc. of the 2011 iConference, ser. iConference ’11,
2011, pp. 106–113.

[23] N. Bettenburg, S. Just, A. Schröter, C. Weiß, R. Premraj, and
T. Zimmermann, “Quality of bug reports in Eclipse,” in Proc. of
the 2007 OOPSLA workshop on eclipse technology eXchange, ser.
eclipse ’07, 2007, pp. 21–25.

[24] M. Jovic, A. Adamoli, and M. Hauswirth, “Catch me if you can:
performance bug detection in the wild,” in Proc. of the 2011 ACM
international conference on Object oriented programming systems
languages and applications, ser. OOPSLA ’11, 2011, pp. 155–170.


