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ABSTRACT
A good understanding of the impact of different types of
bugs on various project aspects is essential to improve soft-
ware quality research and practice. For instance, we would
expect that security bugs are fixed faster than other types
of bugs due to their critical nature. However, prior research
has often treated all bugs as similar when studying various
aspects of software quality (e.g., predicting the time to fix
a bug), or has focused on one particular type of bug (e.g.,
security bugs) with little comparison to other types. In this
paper, we study how different types of bugs (performance
and security bugs) differ from each other and from the rest
of the bugs in a software project. Through a case study
on the Firefox project, we find that security bugs are fixed
and triaged much faster, but are reopened and tossed more
frequently. Furthermore, we also find that security bugs in-
volve more developers and impact more files in a project.
Our work is the first work to ever empirically study perfor-
mance bugs and compare it to frequently-studied security
bugs. Our findings highlight the importance of considering
the different types of bugs in software quality research and
practice.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms
Performance, Security, Management

Keywords
Performance bugs, security bugs, empirical study, Firefox,
Bugzilla.

1. INTRODUCTION
Previous studies show that maintenance and evolution

activities represent over 90% of the software development
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cost [1, 2]. Improving quality assurance effort in software
projects is an important task to keep the existing customers
satisfied and to compete in a competitive market. Research
has focused on improving the quality assurance of software
projects. For example, software defect prediction models use
various code, process, social structure, geographical distri-
bution and organizational structure metrics to predict the
number of defects and their locations [1, 3, 4, 5, 6, 7, 8, 9].
Other work focuses on predicting the time it takes to fix a
bug [10, 11, 12], and which developer should fix a bug [13].

One common theme in the aforementioned quality assur-
ance research is that most of them treat all bugs equally, i.e.,
they do not distinguish between different kinds of bugs. For
example, one would expect bugs that are labeled as security
risks to experience a different treatment than typos in code
comments or user interface quirks. Yet, most techniques
build generic models for generic bugs.

We believe that a thorough understanding of the vari-
ous aspects associated with the different types of bugs is
needed. In this paper, we empirically study the characteris-
tics and differences among security, performance and other
bugs in the Firefox open source project to show that these
characteristics are different from each other in practice. We
pick security and performance bugs, since they are impor-
tant non-functional types of bugs. Security bugs are of high
risk, and performance issues are very commonly occurring
in the field [14]. Yet both types have never been compared
against each other to see if there are differences and if these
differences are likely to impact or affect current work in the
area of software quality assurance. We address the following
three research questions:

Q1). How fast are bugs fixed?

On average, security bugs are fixed 2.8 times faster
than performance bugs, but they are reopened 2.5 times
more than performance bugs and approximately 4.5
times more than other bugs.

On average, security bugs are triaged 3.64 times faster
than performance bugs and 3.38 times faster than the
rest of the bugs, but security bugs are tossed 2.67 times
more than performance and 4.7 times more than the
rest of the bugs.

Q2). Who fixes bugs?

On average, security bugs are assigned 2.39 times more
developers than performance and 3.51 times more de-
velopers than the rest of the bugs. Performance and
security bugs are fixed by more experienced develop-
ers.
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Figure 1: Overview of our approach to study the differences in characteristics of security, performance and
other bugs

Q3). What are the characteristics of bug fixes?

On average, security bug fixes are 1.48 times more
complex than performance bug fixes and 1.6 times
more complex than the fixes for rest of the bug.

On average, fixing a performance bug requires change
in 2.6 times more files than for security bugs.

Overview of the paper: Section 2 discusses our ap-
proach. Section 3 is divided into three sub-sections accord-
ing to the studied research questions. Each sub-section of
Section 3 discusses a motivation, approach and the results
of the specific question. In section 4, we discuss the work
related to our study. Finally, Section 5 discusses threats to
validity and Section 6 presents the conclusion of the paper.

2. STUDY DESIGN
This section presents the design of our case study to com-

pare security, performance and other bugs in Firefox. Fig-
ure 1 shows an overview of our approach. First, we extract
the necessary data from the bug repository (Bugzilla) and
source code repository (CVS). Then, we classify the bug re-
ports related to performance and security. Using CVS data,
we also identify the bug fix information. For every type of
bug, we calculate several metrics, then statistically compare
the metrics across the types of bugs (performance, security
and other). This section elaborates on each of these steps.

2.1 Choice of Subject System
In our case study, we study the Firefox web browser, since

Firefox is one of the most popular web browsers and runs on
different platforms and system environments. Performance
and security are two major software quality requirements for
a browser like Firefox. Bugzilla, the issue tracking system
used by Mozilla, contains and documents all reported bugs.
We start our approach with Mozilla’s Bugzilla bug data from
September, 1994 to August 15, 2010.

First, we had to identify the bugs that are related to the
Firefox web browser, since Mozilla’s bug tracking system
manages multiple projects, including Firefox. Bugzilla con-
tains 567,595 bug reports of different Mozilla components,
like Core, Firefox, SeaMonkey, and Thunderbird. For Fire-
fox, we took bug reports that are related to Core (shared
components used by Firefox and other Mozilla software, in-
cluding the handling of Web content) and to Firefox.

2.2 Bug Type Classification
Bugzilla does not have a built-in categorization or tagging

for performance and security bugs. Firefox uses the keyword
‘perf’ for performance-related bugs, but this tagging is not
mandatory and we found many bugs that do not have any
such tag.

Hence, to classify performance bugs, we had to use heuris-
tics. We looked for the keywords ‘perf’, ‘slow’, and ‘hang’
in the bug report title and keyword field. Although the
keyword ‘perf’ gave us bug reports that had ‘performance’
in their title, we found that there are many bug reports
containing the word ‘perfect’, ‘performing’ or ‘performed’,
without having any relation to performance. We had to
automatically exclude these keywords from the list using
regular expressions. Using these heuristics, we found 7,603
performance bugs.

Since heuristics are not perfect, we performed a statistical
sampling to estimate their precision and recall. To calculate
precision with a 95% confidence level and a confidence inter-
val of 10, we randomly sampled and checked 95 of the 7,603
bugs [15]. All 95 randomly selected samples were indeed
performance bugs, yielding a precision of 100 ± 5%. To cal-
culate recall, we did statistical sampling on the 287,595 non-
performance bugs. For the same 95% confidence level and
confidence interval of 10, we randomly sampled and checked
96 bugs. 19 out of these 96 samples bug reports were found
to be related to performance, yielding a recall of 80 ± 5%.

To identify the security bugs, we use the Mozilla Founda-
tion Security Advisory (MFSA) [16]. MFSA contains links
to security bugs for every issued advisory. MFSA has been
issuing security advisories for Mozilla’s products since 2005.
Based on the MFSA, we extracted a dataset of 847 secu-
rity and 294,351 non-security bugs. As security bugs were
marked by the experts of the security advisory team of Fire-
fox, we did not estimate the precision and recall as we did
for performance bugs.

2.3 Distribution of Bugs
Figure 2 shows the number of reported bugs over time in

log scale. The earliest security bug in our data was reported
in May, 2003. Hence, we do not study bugs reported prior
to May, 2003. 2003 was also the year in which the Firefox
project started. This leaves us with 4,293 performance bugs,
847 security bugs and 178,531 other bugs for our study (May,
2003-August, 2010. Performance and security bugs have 11
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Figure 2: Distribution of the number of bugs reported (quarterly) for security, performance and other bugs.

bugs in common. Out of these 11 bugs, 7 had security threat
and caused the browser to hang/crash. We kept these 11
bugs in security and performance groups in our study.

To better understand the composition of each group of
bugs, we analyzed a topic model [17]. Topics are collections
of words that co-occur frequently of the bugs in a corpus of
text. These topics describe the major themes that span a
corpus [18], which provide a means of automatically summa-
rizing and organizing the various data of a software project.
Recently, researchers have applied topic models to various
aspects of a software project, including source code [19, 20,
21, 22] and documentation [23, 24]. Statistical topic models,
such as latent Dirichlet allocation (LDA) [17], can automat-
ically discover a set of topics within a corpus.

We ran LDA on the bug report comments to find out the
topics that describe the major themes that span these per-
formance and security bugs. For security bugs, as the num-
ber of security bugs was very small, the recovered LDA top-
ics (such as“build-tinderbox related”, “window-javascript re-
lated”, “user-cookie related”) could not be grouped together
which could constitute a sub-category.

From the LDA output (due to space constraints, we have
put the results online [25]) of performance bug comments,
we find two major sub-categories of performance bugs: (1)
Plugin-related (like java applet plugin and the flash plu-
gin) and (2) GUI-related (user interface related libraries,
like gfx and gecko) performance issues. Other smaller types
of performance issues (like, topics related to network, his-
tory, bookmark, speed, IO, memory, file system, build and
document structure) add up to the majority of performance
bugs. Figure 4 shows the distribution over time of plugin
and user interface related bugs and their relation to all per-
formance bugs. This figure is in log scale, so the peaks here
donote large changes in the number of bugs reported. Be-
tween the release of version 2.0 and 3.0 of Firefox (shown
in Figure 4), there was an increase in GUI-related perfor-
mance bugs. Version 2.0 included updates that were related
to GUI such as a tabbed browsing environment, and an ex-
tensions manager. Study of the bug reports at a finer level
of granularity can be helpful to explain the effect of different
software quality measures.

3. CASE STUDY RESULTS
Each subsection below discusses one of the three research

questions that we studied using the Firefox data. For each
question, we present the motivation behind the research

question, the approach and a discussion of our findings. Ta-
ble I summarizes the results of each of the three studied
questions.

3.1 How Fast are Bugs Fixed?
Motivation: A project manager typically wants some

types of bugs, like security and performance bugs to be as-
signed faster than others, because of their inherent impor-
tance in software quality assurance. In addition, he wants to
pick the best developer for that bug, such that later on the
bug does not need to be tossed to someone else to fix [27].
Finally, the bug needs to be fixed completely, such that it
does not need to be reopened afterwards, prolonging the
total time to fix the bug. Our study measures these charac-
teristics for Firefox performance and security bugs.

Approach: Once a bug is reported to the bug repository,
it browses through a complex life cycle (Figure 3), from the
UNCONFIRMED state to the CLOSED state. Figure 3
shows the life cycle of a bug report in Bugzilla. In every
state, it takes some time for the bug report to go to the
next state.

We used four metrics for this question. First, we calcu-
late the time to fix, i.e., the time between bug assignment
(ASSIGNED) and the bug fix date (FIXED and then RE-
SOLVED). This time was calculated for all bugs that went
to the ASSIGNED state first and then from that, the bug
went to the RESOLVED state followed by FIXED (bolded
arrow in Figure 3). Since some bugs are closed prematurely
and have to be re-opened later (e.g., because of an incom-
plete fix), we measure both the total time to fix (total time
of each assignment to final fix) and the average time of each
fix attempt. We used a t-test to compare the total and aver-
age times and the cumulative density function of the metrics
for the three groups (performance, security and other bugs).
As shown in sub-section 2.3, there is a huge difference in
the number of security, performance and other bugs. Since
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Figure 3: Life cycle of a bug [26].
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Figure 4: Comparison of the distribution of the number of bugs reported for all performance bugs and the
two sub-categories of Plugin and GUI-related performance bugs.

we use the Wilcoxon t-test, this difference does not have an
impact on our analysis.

The second metric that we use for comparison is the num-
ber of times a bug is reopened. In the ideal case, one would
want a bug to be FIXED on the first try. In practice, a
bug may be CLOSED, then REOPENED again. Reopened
bugs take a considerably longer time to resolve, and hence
increase the maintenance cost. For example, in the Eclipse
platform 3.0 project reopened bugs take more than twice the
time to resolve as a non-reopened bug [1]. In addition, an
increased bug resolution time consumes valuable time from
the already-busy developers, and reopened bugs may nega-
tively impact the overall end-user’s experience and trust in
the quality of a software product.

The third metric that we used for our comparison is the
bug triage time. Triage time is considered separately from
time to fix, as triaging and bug fixing are usually done by
different people and comprise two different processes. Bug
Triaging is the process of reviewing a reported bug in order
to assign the right developer to fix it. Each project has a
different strategy for this. Due to the volume of reports,
reports submitted to the Mozilla bug repository are triaged
by quality assurance volunteers, rather than by the develop-
ers [13]. Ideally, one would want a bug to be triaged as fast
as possible. We calculate the difference between bug report-
ing (UNCONFIRMED) and first assignment (ASSIGNED)
as bug triage time. Although bug triage time affects the
total bug fix time, one would also want to take the time to
select the right person.

Our fourth metric measures the number of bug tosses,
i.e., the number of times a bug was reassigned before being
resolved completely [27]. Tossing may occur due to triaging
inaccuracy, i.e., the developer assigned does not have the
expertise to fix the time. Another reason for tossing could
be bug complexity, i.e., the assigned developer could only
fix part of the bug and needed another developer to fix the
rest of that complex bug.

Findings: Performance bugs take the largest time
to fix. Figure 5 plots the “total time between every assign-
ment and fix”. We used log-scale here to better show the
differences between the three kinds of bugs. We can see a
distinct difference for larger values. We ran t-tests to de-
cide if the differences in mean between these three groups
are statistically significant or not. We found a statistically

Figure 5: CDF (cumulative density function) of time
between bug assignment and fix (total in log scale)

significant (p < 0.05) difference between security and per-
formance bugs. Security bugs generally take less time to fix
than performance bugs. Other bugs take less time to fix
than Performance bugs. However, the difference between
security and other bugs was not found to be statistically
significant(p = 0.0538, it is close though). According to the
CDF plot, mean values and t-test result, we find that secu-
rity bugs take the most amount of time to fix, followed by
performance bugs and other bugs.

We also considered the average time to see how fast the
developer responds to fix the bug. Considering the aver-
age time (each fix attempt’s time), security bugs are fixed
fastest, i.e., developers seem to respond quickly to them. On
the other hand, performance bugs take the largest time for
each developer. One possible explanation for this is that
they often require changes across different subsystems of
the architecture (see Q3). The difficulty of fixing such bugs
might cause them to be postponed to future releases/milestones.

Security bugs are reopened most. Figure 6 shows
the number of times a bug is reopened. As we can see, most



C
um

ul
at

iv
e 

D
en

si
ty

Figure 6: Histogram of number of times bug re-
opened

of the bugs are never reopened (count reopened = 0), but
more than 10% of the security bugs are reopened at least
once. Pairwise t-test comparison of the distribution of the
number of times bugs are reopened shows that the differ-
ence between the three groups is statistically significant (p
< 0.05). On average, security bugs tend to be reopened
more than twice as often as performance bugs and perfor-
mance bugs tend to be reopened almost twice as often as
other bugs. There are various possible explanations for this.
Security bugs might be more complex to solve and test than
others. Alternatively, while trying to fix the security bugs
as fast as possible (as seen above), there is a possibility that
developers are not able to do sufficient security testing for
these bugs, which leads the bug to be reopened later. We
plan to conduct a grounded theory study to better under-
stand the rationale for those findings.

Security bugs are triaged faster than performance
and other bugs. Statistical comparison of bug triage time
reveals that performance bugs are not statistically differ-
ent from other bugs in terms of bug triage time (p = 0.15 >
0.05), but security bugs have a smaller (70% smaller on aver-
age) triage time than others. A possible explanation for this
might be that, to avoid the possibility of a security loophole
being exploited, security bugs are kept secret (hidden) until
the bug is fixed. Different software projects have different
disclosure strategies [28].

Fast assignment is not identical to correct assignment.
Our comparison of the number of bug tosses reveals that se-
curity bugs are tossed more frequently than perfor-
mance and other. As shown in Figure 7 and Table I, secu-
rity bugs are tossed more than performance (166.7% more)
and other bugs (371.2% more). These differences among the
three groups are significant. One common reason for toss-
ing is incorrect assignment to a developer who does not own
the defective source or may not have the expertise to fix the
bug [27]. In any case, tossing events slow down the process
and increase the total time to fix a bug.�
�

�
�

While security bugs are re-opened and tossed more fre-
quently, they are fixed and triaged the fastest.
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Figure 7: Histograms of number of bug tossing com-
parison

3.2 Who Fixes Bugs?
Motivation: The task of finding the person with the

most expertise to fix a bug is critical. In an empirical study
on finding experts in a software development company, Ack-
erman and Halverson [29] observed that experience was the
primary criterion engineers used to determine expertise [30].
For example, performance bugs are critical in the sense that
they require thorough knowledge of the software system,
compilation tool chain, execution bottlenecks and memory
layout. Similarly, fixing a security bug requires the under-
standing of possible security loopholes in the source code.
In our case study, we are particularly interested in finding
any relation between the performance or security bug fixers
and their development experience.

Approach: To measure the number of developers whose
expertise was needed to fix a bug, we count the number of
unique developers assigned to a bug in its life time. For
example, if a developer was assigned twice to the same bug
(because of tossing or re-opening) we count this developer
as one developer assignment.

We measure the experience of a developer fixing a partic-
ular bug using the following two metrics:

− Number of previously fixed bugs by the developer.

− Experience in days, i.e., the number of days from the first
bug fix of the developer to the current bug’s fix date.

For both metrics, if a bug was fixed by more than one
developer (because of tossing and/or re-opening), we take
the average experience of these developers.

A bug tracking system like Bugzilla uses an email ad-
dress as developer identification, yet a developer often has
more than one email address [31]. For example, a bug could
be fixed by John Doe@mozilla.org and another bug could
be fixed by John Doe@gmail.com years ago, although both
bug fixers are the same person. For all bugs, We use only
the name part of the email address to deal with email alias-
ing, a technique commonly used for bug report and email
mining [32, 33]

Findings: Security bugs require more developers
to fix than performance and other bugs. This fol-
lows from Figure 8 and a t-test on the data in Table I (p



Table 1: Mean and median metric values for the three research questions.

Metric
Mean Median

Security Performance Other Security Performance Other

Time

Time between assignment
41,588.81 116,501.93 88,011.43 10,211 13,016 9,078

and fix (total time in minutes)

# of times bug reopened 0.15 0.06 0.033 0 0 0

Bug Triage time (in minutes) 57,347.80 208,983.55 193,700.40 4,098.03 8,904.97 6,714.02

# of bug tossing 0.344 0.129 0.073 0 0 0

Person

# of developers assigned 1.203 0.503 0.343 1 0 0

Experience

# of days 1,238.92 1,011.87 926.639 1,178 946 820

# of prior
808.448 777.424 660.249 505 472 389

bugs fixed

Bug Fix

# of lines changed 222.966 401.459 195.203 75.5 66 26

# of files changed 3.236 8.396 4.527 1 2 2

Complexity (entropy) 0.814 0.55 0.51 0.903 0.628 0.627
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Figure 8: CDF of number of developers assigned

< 0.05). From the CDF plot in Figure 8, we see that 73%
of other bugs and more than 62% of performance bugs are
never assigned, compared to 14% of security bugs. Manual
inspection of security bugs without developer assignment re-
veals that they are fixed very quickly, even before being as-
signed to someone. This is probably due to the security bug
disclosure strategy followed by Firefox [28]. Alternatively,
some security bugs are fixed before they are entered in the
bug repository by the developer. On the other hand, perfor-
mance and other bugs are often not assigned because they
are found to be a ‘duplicate’ of other bug reports that were
fixed already, or found to be ‘invalid’ or ‘resolved’. Secu-
rity or performance bug fixers are more experienced
than fixers of other bugs. From Figure 9 and Table I,
we can say, on average, security bug fixers and performance
bug fixers have fixed a similar number of bugs before, but
fixed significantly more number of bugs than other bug fix-
ers. In terms of experience days, on average, security bug
fixers are 22.45% more experienced than performance bug
fixers, and performance bug fixers are 9.19% more experi-
enced than other bug fixers (for both cases, the t-test holds

with p value < 0.05). In short, it appears that security and
performance bugs require more experience to fix.�
�

�
�

On average, more developers are assigned to security
bugs. Performance and security bugs require more ex-
perienced bug fixers than other bugs.

3.3 Characteristics of the Bug Fix
Motivation: So far, we have seen that security bugs re-

quire more bug fixers and are reopened more often than
performance and other bugs. One possible reason for these
findings might be the complexity of the bug fix. Consider
an example of two bugs. In the fix of the first bug (the more
complex bug), the developer had to change over a dozen files.
When asked about the steps required to fix the feature, she
or he may not recall half of them. For a bug fix for which the
developer had to change only one file, recalling the changes
required for that bug is much easier. In general, if we have
a bug that required change across all or most of the files of
a software system, developers will have a hard time keeping
track of all these changes.

Approach: To quantify complexity, we used three met-
rics:

− Total number of lines added/deleted.

− Total number of files changed for fixing a bug.

− Bug fix Entropy [34].

Bug tracking systems and bug reports do not contain the
source code of a bug fix. To get the actual data related
to a bug fix, one needs to link the bug report to the code
repository (CVS). For this, we used the algorithm described
by Sliwerski et al. [35]

We implemented their algorithm for the Firefox CVS code
repository. As this approach relies on the developer revision
comments having a bug id, we did not get the fix information
for all of the bugs: 303 performance, 174 security and 7,800
other bugs could be linked to their source code changes.
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Figure 9: CDF of developer experience

Length of fix (number of lines added/deleted/edited) and
spread across files (number of files changed) are straight-
forward to measure. To measure the bug fix entropy, we
used the normalized Shannon Entropy, which is defined as:

Hn(P ) = −
n∑

k=1

(pk ∗ logn pk), where pk ≥ 0, ∀k ∈ 1, 2, ..., n

and
n∑

k=1

pk = 1. For a distribution P where all elements have

the same probability of occurrence (pk = 1
n
, ∀k ∈ 1, 2, ..., n),

we achieve maximum entropy. On the other hand, for a dis-
tribution P where only one element i has a probability of
occurrence, we achieve minimal entropy (0).

For example, to fix a bug, three files A(3 lines), B(2 lines)
and C(2 lines) are changed. We calculate the number of
lines changed as the sum of the number of lines added and
deleted. We define a file change probability distribution P as
the probability that filei is changed for a bug’s fix. For each
file, we count the total number of lines changed in that file
and divide by the total number of lines changed for all files.
Hence, in our example, we have p(fileA) = 3

7
, p(fileB) =

2
7
, p(fileC) = 2

7
. Finally we can calculate the normalized

Shannon Entropy for that bug’s fix Hn (P ) = 0.982. If an-
other bug had the same total number of lines (7) changed in
seven files, then Entropy would be, Hn (P ) = 1. This means
that the former bug fix is more concentrated, and hence less
complex.

Findings: Performance bug fixes change more lines
than fixes for other bugs. From Figure 11, Table I and
t-test, we find that for fix size: number of lines changed,
except for the pair of performance and other bugs , the dif-
ference was not statistically significant.

For the fix spread or number of files changed to fix a
bug, we found that fixing a performance bug requires
change in more files than fixing a security bug.

A more surprising result was found when we compared
the entropy values. Security bug fixes have the highest
entropy. There is a huge difference between security bugs
and the other two groups of bugs. On average, security bug
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Figure 10: CDF of entropy

fixes have 48% more entropy than performance bugs, and
59.6% more entropy than other bugs. This means that se-
curity bugs are much more complex to fix than performance
and other bugs. For example, we found that in the extreme
case, for bug id 289940, there were 296 changes in the code
repository. Further investigation showed that this bug re-
vealed a security flaw that was extremely invasive: “...The
big part of this change is to mark all our internal events as
trusted, where applicable. This will be done by changing the
constructors of the various ns*Event classes ..”�
�

�
�

Security bug fixes are more complex than performance
and other bugs, yet they affect fewer files than perfor-
mance bugs.
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Figure 11: CDF of fix size

4. RELATED WORK
We discuss related work in the areas of bug classifica-

tion. The literature contains several bug classification tax-
onomies [36]. The draft of the IEEE Standard Classification
for Software Anomalies is a standard classification of soft-
ware defects [37]. In this classification, software security
and performance represent two out of six types of problems
based on the effect of defects. Hamill et al. identify the
common trends in software fault and failure data [38] by
identifying fault types according to the source of the fault,
i.e., design fault, data problem or requirements fault. Ahsan
et al. propose an automatic bug triaging system based on a
categorization of bug reports using text mining [39]. Gegick
et al identify security bug reports via text mining [40]. We
propose the use of classification of the bug reports according
to their effect type (i.e., effects performance, security etc.)
to improve software quality.

5. THREATS TO VALIDITY
Our empirical study focuses on one system (the Firefox

web browser). It is not clear whether our results generalize
to other open source systems (possibly in different domains),
or to commercial systems.

We used heuristics on bug report titles and keywords to
identify performance bugs. Since our study critically relies
on bug classification, we statistically verified our heuristics
for performance bug identification (section 2.2). A statisti-
cal sampling technique (with 95% confidence level and con-
fidence interval of 10) showed that our heuristics have a high
precision and recall.

Our data contains relatively few (847) security bugs in
comparison to the large number of other (178,531) and per-
formance (4,293) bugs. For the identification of security
bugs, we are relying on the Mozilla Foundation Security
Advisory and its links to Bugzilla. MFSA has been used
in prior research as a source of security bug information [41,
42]. If there are any security bugs that were not linked to
an MFSA advisory, they are treated as other bugs in this

study. In future work, we also plan to use heuristics on
bug comments and titles, similar to the case of performance
bugs.

For collecting bug fix data using code repository revision
comments, we used the information from revision comments
using the algorithm described by Sliwerski et al. [35] (SZZ
algorithm). Due to the limited number of revision com-
ments with fix information and bug id, we could only get
the associated fix code for 303 performance (20.2% of 1,503
performance bug fixes), 174 security (20.7% of 839 security
bug fixes) and 7,800 other bug fixes (16.26% of 47,970 other
bug fixes) for our study.

Finally, bugzilla fields for bug report time and bug history-
related time do not necessarily correspond to the actual
time.

6. CONCLUSION AND FUTURE WORK
In this empirical study, we analyzed the differences in time

to fix, developer experience and bug fix characteristics be-
tween security, performance and the rest of the bugs to val-
idate our conjecture that different type of bugs are different
and hence quality assurance should take into account the
bug type. We found that security bugs in Firefox behave
differently than other. Security bugs require more develop-
ers with more experience, but need less triage time and are
fixed faster than others. At the same time, security bug fixes
are more complex than the fixes of performance and other
bugs, and are reopened and tossed more than performance
bugs.

Similar to security bugs, performance bugs require more
experienced developers to fix, and more developers are in-
volved in performance bugs than other bugs. In terms of
bug triage time, performance bugs are not different from
any other bugs. Furthermore, fixing a performance bug re-
quires changes in more files, so performance bug fixers will
need good knowledge of the system.

Different kinds of bugs have different characteristics, in
particular regarding the time to fix, the person who fixes



bugs and the bug fix itself. Research on defect prediction
and other models (time to fix, triaging model) should take
this into account. Bug type-specific quality assurance could
be used to shorten the time to fix, and optimize bug triaging.

We plan on performing case studies on other open source
software systems from the same software domain and from
other domains. From this, we will be able to generalize our
findings. We also plan to consider additional types of non-
functional bugs, like usability, serviceability, functionality
and others [37].
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