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Abstract—Build systems are responsible for transforming
static source code artifacts into executable software. While
build systems play such a crucial role in software development
and maintenance, they have been largely ignored by software
evolution researchers. With a firm understanding of build
system aging processes, project managers could allocate per-
sonnel and resources to build system maintenance tasks more
effectively, reducing the build maintenance overhead on regular
development activities. In this paper, we study the evolution
of ANT build systems from two perspectives: (1) a static
perspective, where we examine the build system specifications
using software metrics adopted from the source code domain;
and (2) a dynamic perspective where representative sample
build runs are conducted and their output logs are analyzed.
Case studies of four open source ANT build systems with a
combined history of 152 releases show that not only do ANT
build systems evolve, but also that they need to react in an
agile manner to changes in the source code.

I. INTRODUCTION

Software build systems are responsible for automatically
transforming the source code of a software project into a
collection of deliverables such as executables and develop-
ment libraries. Such a build process may involve hundreds
of command invocations that must be executed in a specific
order to correctly produce a set of deliverables. First, the
build tools and configurable features are selected based on
specifications written in a (mostly ad hoc) configuration
language. Second, the deliverables are constructed in the
correct order by observing dependencies that are typically
specified in a build system language such as make or ANT.

Build systems play a key role in software development
processes. Build systems simplify the lives of developers,
who constantly need to re-build testable artifacts after com-
pleting a code modification. Build systems also play a key
role in team coordination. For example, the continuous in-
tegration development methodology involves automatically
executing project builds and publishing results via email or
web sites to provide direct feedback to developers about
software quality [1]. Maintaining a fast and correct build
system is pivotal to the success of modern software projects.

Build systems require substantial maintenance effort. A
first example of this is given by Kumfert et al., who find that
on average, build systems induce a 12% overhead on devel-
opment effort [2]. Second, the Linux build engineers made
integration of new code trivial to encourage contributions.

The core build machinery, which is hidden behind an intri-
cate facade, has evolved into a highly complex build system
that requires considerable effort to maintain [3]. Third, the
maintenance of the KDE 3 project’s build system was such a
burden that it drastically impacted the productivity of KDE
developers, and even warranted migration to a new build
technology, requiring a substantial investment of effort [4].

Despite the crucial role of build systems and their non-
trivial maintenance effort, software engineering research
rarely focuses on them. Initial findings have shown that the
size and complexity of build systems grow over time [3, 5],
yet this evolution has only been studied in two make-based
build systems. In this paper, we present an empirical study
of traditional source code evolution phenomena in four build
systems. We address the following two research questions:
RQ1) Do the static size and complexity of source code and

build system evolve similarly?
Static code analysis of build system specifications
indicates not only that build systems follow linear or
exponential evolution patterns in terms of size and
complexity, but also that such patterns are highly
correlated with the evolution of the source code.

RQ2) Does the perceived build-time complexity evolve?
Build-time complexity measures the perceived com-
plexity observed by the build system user. Our dy-
namic analysis of build systems did not reveal a
common pattern in the studied projects, although we
observe linear growth and other interesting trends in
build-time length and recursive depth dimensions.

This paper provides the following contributions:
• An empirical study of the evolution of ANT build

systems for four small-to-large open source systems;
• A definition of the Halstead suite of complexity metrics

for the domain of build systems;
• Evidence of the high correlation between the evolution

of build systems and the source code.
The remainder of the paper is organized as follows.

Section II introduces the ANT build language and associated
terminology. Section III elaborates on the research questions
that we address. Section IV discusses the methodology for
the case studies we conducted on four open source systems,
while Section V presents the results. Section VI surveys
related work. Finally, Section VII draws conclusions.
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sub/build.xml
<project name="example" default="link">
   <property name="blddir" location="build" />
   <property name="classes" location="${blddir}/classes" />
   <property name="dist" location="${blddir}/dist" />

   <target name="init">
      <mkdir dir="${blddir}" />
      <mkdir dir="${classes}" />
      <mkdir dir="${dist}" />
   </target>

   <target name="compile" depends="init">
      <javac
         destdir="${classes}"
         srcdir="maindir"
         includes="**/*.java"
      />

      <ant
         antfile="sub/build.xml"
         target="compile"
      />
   </target>

   <target name="link" depends="compile">
      <jar
         jarfile="${dist}/example.jar"
         basedir="${classes}"
      />
   </target>

   <target name="clean">
      <delete dir="${blddir}" />
   </target>
</project>

build.xml
<project name="example-sub" default="compile">
   <target name="init">
      <echo message="In sub/build.xml" />
   </target>

   <target name="compile" depends="init">
      <javac
         destdir="${classes}"
         srcdir="."
         includes="**/*.java"
      />
   </target>
</project>

build.xml sub/build.xml
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Figure 1. Example ANT build.xml files (left, top-right) and the resulting build graph (bottom-right). The build graph has a depth of 2 (i.e., “compile” in
build.xml references “init” in sub/build.xml) and a length of 5 (i.e., execute (1), (2), (3), (4), then (5)).

II. BACKGROUND

We now provide an overview of build system concepts and
the ANT build language, which is the focus of our study.

A. Build Systems Concepts

A typical build system consists of two major layers [6].
The configuration layer allows a user or developer to select
code features, compilers, and third-party libraries to use
during the build process, while enforcing any constraints
or conflicts between these configuration options. The con-
figuration layer may automatically detect a default set of
configuration options by examining the build environment,
but these default values can be overridden by the user. In
this paper, we ignore the configuration layer and assume that
the default set of configuration options will suffice.

The construction layer considers the configuration options
that were selected by the user and parses the build specifi-
cation files to determine the necessary build tasks and the
order in which they must be executed to produce the correct
output. Construction layer (a.k.a. build) specifications are
typically expressed in a build system language. Among build
system languages, popular choices include make [7] and
ANT [8].

Build specification files consist of various build target
declarations. A build target represents an abstract build goal
(or collection of goals) such as “completing all compilation
commands”. A target typically has two key characteristics,
(1) a build rule that defines the set of commands that must
be executed when the target is triggered, and (2) a list of
dependent targets that determine whether the initial target
should be triggered. Heuristics are used to speed up a build
such that a target is only triggered if its output files do

not exist yet, are older than its input files, or at least one
dependent target has been rebuilt.

B. ANT

We study the evolution of open source build systems im-
plemented in the ANT build language. ANT, an acronym for
Another Neat Tool, was created by James Duncan Davidson
in 1999. He was fed up with some of the inconsistencies in
the make build language, which was and still is the de facto
standard among build system languages [9]. Although make
pioneered many build system concepts, there are some rather
gruesome flaws in its design, such as the inherent platform
dependence of commands inside the make build rules and
the common recursive architecture found in many make
build systems. To resolve these flaws, ANT was designed
to be small, extensible, and operating system independent.
Still, many of the concepts introduced by make survive in
ANT. An example ANT specification file and the resulting
build graph are shown in Figure 1.

An ANT build system is specified in a collection of XML
files. <project> tags contain all of the code relating to
a software project. <target> tags correspond to the build
targets we explained above. Such a <target> is responsible
for a sequence of related tasks such as “compile all source
files” (“compile” target in Figure 1) or “collect all class
files in a jar archive” (“link” target in Figure 1). <task>
tags represent specific system-level commands inside a build
<target>’s build rule. A task may “create a directory”
(“mkdir” tasks in the “init” target of build.xml) or “run the
compiler on the given set of source files” (“javac” task in
the “compile” target of either XML file). The <task> is the
lowest level of granularity in an ANT build specification file.



The ANT build language comes stocked with a library
of common build <task>s. If a <task> implementation
does not exist, ANT provides an Application Programmer
Interface (API) for developing expansion tasks. The Task
API, like the ANT parser itself, is implemented for the Java
SE platform.

ANT targets may “depend” on one another. In this sense,
a build dependency graph may be constructed consisting of
length and depth dependencies. For instance, consider the
build graph shown in the bottom-right section of Figure 1.
In this example, ANT has been instructed to execute the
“link” target however, its dependencies must be satisfied
first. The “link” target depends on the “compile” target
which in turn depends on the “init” target. As an example
of a depth dependency, the “compile” target (via its <ant>
task) depends on another “compile” target in a different
specification file (i.e., sub/build.xml). The build graph shown
in Figure 1 is said to have a length of five since five
targets were triggered, and a depth of two since two was
the maximum depth encountered in the graph.

III. RESEARCH QUESTIONS

Software evolution studies the aging process of source
code. For example, Lehman et al. established the laws of
software evolution, which suggest that as software ages, it
increases in size and complexity [10, 11, 12]. Godfrey et
al. found that the Linux source code grows super-linearly in
size and complexity [13].

We conjecture that build systems also evolve in terms
of size and complexity. For example, Adams et al. found
initial evidence of increasing complexity in the Linux kernel
build dependency graphs [3]. Zadok also found evolving
complexity in the Berkeley Automounter build system [5],
measured in terms of lines of build code and the number of
conditionally compiled code branches.

Inspired by these early studies on build system complex-
ity, we are interested in studying whether their findings
generalize to different build systems and technologies. We
formulate the following two research questions:

RQ1) Do the static size and complexity of source code and
build system evolve similarly?
Previous research has shown that by quantitatively
analyzing release snapshots of source code, one may
infer trends of software evolution [13]. Hence, we
are interested in measuring build system specifications
to find out whether they exhibit similar evolutionary
trends in size and complexity. Moreover, how do these
trends relate to the evolution of the source code.

RQ2) Does the perceived build-time complexity evolve?
Measuring dynamic properties yields insight into how
complex a build system is as perceived by build sys-
tem users. That is, how much build code is routinely
exercised and how long a typical build takes. We

Table I
STUDIED PROJECTS

ArgoUML Tomcat JBoss Eclipse

Domain UML Web App IDE
Editor Container Server

Source Size ≤ 176 ≤ 277 ≤ 731 ≤ 2, 900(KSLOC)
Build System ≤ 6 ≤ 11 ≤ 29 ≤ 200Size (KSBLOC)
Timespan 2002-09 1999-09 2002-09 2001-09
Number of 12 90 25 25Releases
Shortest Rel. 53 days 2 days 13 days 32 daysCycle
Longest Rel. 593 days 714 days 398 days 176 daysCycle
Average Rel. 228 days 95 days 130 days 110 daysCycle
Release Style Single Parallel Parallel Single

are interested in investigating whether this perceived
complexity exhibits evolutionary trends.

IV. METHODOLOGY

To track the progress of software build systems, we
define and analyze build system metrics for release snapshots
of a software project. The focus of these metrics is on
the identification of trends related to RQ1 and RQ2. An
overview of our approach is shown in Figure 2. We now
explain each step of our approach.

A. Data Retrieval

We consider official software releases of a project as the
level of granularity for our analysis. While no software team
can guarantee their product to be buildable at any arbitrary
time in the development cycle, a release snapshot is by
nature a buildable and runnable version of a project. This
decision is critical for our dynamic analysis in RQ2.

For each project, a collection of source code snapshots
were retrieved corresponding to official project releases.
These releases were downloaded from the official release
archives, except for the ArgoUML data, which was retrieved
from a source code repository at the suggestion of the project
documentation [14]. The released versions of ArgoUML
were marked in the repository with annotated tags.

B. Evolution Metrics

In our study, we use various static and dynamic metrics
to quantify a wide variety of build systems characteristics
across the release snapshots. The metrics are summarized
in Table II. SBLOC, build target/task/file count, and Hal-
stead complexity are gathered statically. Dynamically, build
system content is measured with the length and depth
dimensions of the build graph. Metrics such as SBLOC,
file count, DBLOC and the Halstead suite of complexity
metrics are inspired by corresponding source code metrics,
others such as target count and task count are inspired by [3].
Build graph depth and target coverage are new to this study.
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Figure 2. Overview of our approach to study the evolution of build systems.

Table II
METRICS USED IN BUILD SYSTEM ANALYSIS

Group Metric Description

Static

Static Build Lines of Code (SBLOC) The number of lines of code in build specification files.
Target Count The number of build targets in the build specification files.
Task Count The number of tasks in the build specification files.
File Count The number of specification files in the build system.
Halstead Complexity The quantity of information contained in the build system (Volume), the mental difficulty

associated with understanding the build system specification files (Difficulty), and the weighted
Difficulty with respect to Volume (Effort).

Dynamic Build Graph Length The length of a build graph either in terms of the total number of executed tasks or of the total
number of executed targets.

Build Graph Depth The depth of a build in terms of the maximum level of depth references made.
Target Coverage The percentage of targets in the build system that are exercised by the default or clean targets.
Dynamic Build Lines of Code (DBLOC) The percentage of code in the build system that is exercised by the default or clean targets.

Most of the metrics are self-explanatory, except for the
Halstead complexity metrics, as we had to adapt its defini-
tion from source code to build systems. To our knowledge,
the notion of such an explicit metric for static build system
complexity is new. We use a source code metric to measure
the complexity of ANT files because build specification files
share many similarities with source code implemented in
an interpreted programming language. Case in point, the
SCons build language [15] is entirely based on the Python
programming language. With this in mind, we conjecture
that build system complexity can be measured using source
code complexity metrics on build system description files.

Since establishing a definitive measure of static complex-
ity for build systems is not the focus of this paper, we only
focus on the Halstead suite of complexity metrics [16]. In
future work, we plan to examine the McCabe cyclomatic
complexity [17] and how it applies to build systems, al-
though results of our case study indicate that (similar to
source code [18, 19]), size metrics already provide a good
approximation of build system complexity.

We now define the Halstead suite of complexity metrics
for build system languages. The Halstead complexity metrics
measure:
• Volume: How much information a reader has to absorb

in order to understand a program’s meaning.
• Difficulty: How much mental effort a reader must

expend to create a program or understand its meaning.
• Effort: How much mental effort would be required to

recreate a program.

Each Halstead metric depends on four tally metrics that
are based on source code characteristics. First, we must
tally the number of operators, i.e., functions that take input
parameters to produce some output. Within the scope of
ANT build systems, we consider an operator as any target
or task. Next, we must tally the number of operands used in
the source code. Within the scope of ANT build systems, we
consider operands as the parameters passed to a target or task
tag. Tallies of both the operators/operands that occur at least
once (n1 or n2) and the total number of operators/operands
(N1 or N2) are collected. The tallies with the ‘1’ suffix
represent the number of operators, and the tallies with the
‘2’ suffix represent the number of operands. These values
are then used to calculate the Halstead volume, difficulty,
and effort as follows:

Volume = (N1 + N2)× log2(n1 + n2) (1)

Difficulty =
n1
2
× N2

n2
(2)

Effort = D × V (3)

C. Analysis Methodology

We analyze each release snapshot using two perspectives.
First, build system files and program source files of each
release are examined statically. We measure source code
size (in SLOC) so that we may compare it against build
system size (in SBLOC). SLOC was measured using David
A. Wheeler’s sloccount utility [20]. We developed a
SAX-based Java tool to measure static build metrics such



as target count, task count, and the Halstead complexity
of build system specification files. Since comment and
whitespace lines are discarded by the sloccount tool, our
SBLOC count also discards them using a sed script and the
remaining lines are tallied using wc.

Second, the build system of each release was exercised
(using the default build configuration) and the results were
logged. The ANT output was exported to an XML log using
the built-in ANT XML logger (-logger=XmlLogger). This
log embodies the dynamic build graph. To analyze the graph,
our Java tool was extended to calculate dynamic metrics such
as target coverage, build graph length and depth in terms of
both targets and tasks, and the time elapsed during the build.

Historical project documentation such as mailing list
archives, release notes, and source code revision comments
were consulted in order to investigate our findings.

D. Studied Projects

We selected four open source projects of different size,
domain, and release style. Table I summarizes the charac-
teristics of the projects, ranked from small to large.

ArgoUML is a Computer Aided Software Engineering
(CASE) tool for producing Unified Modelling Language
(UML) diagrams. Tomcat is popular implementation of the
Java Servlet and Java Server Pages (JSP) technologies.
JBoss is a well-known Java Application Server. Eclipse is a
general-purpose Integrated Development Environment (IDE)
developed by IBM.

V. CASE STUDY

In this section, we present the results of the study with
respect to our two research questions.

RQ1) Do the static size and complexity of source code and
build system evolve similarly?

We explored the evolution of build system specification
files from three angles. First, we use Figure 3 to show a
general trend of increasing size in the four projects, then we
use Table III and IV to show that there is a strong correlation
between the growth in the static size and complexity of a
build system, and finally we use Figure 3 and Table III
again to show that the build system and source code evolve
similarly.

Growth in the Size of Build Systems: In Figure 3, we
plot the standardized SBLOC and SLOC metrics so that
we may compare these two metrics in one graph, as SLOC
values have a much higher scale than SBLOC values. This
standardization is calculated by weighting each data point
in terms of its distance from the average SBLOC or SLOC
across all releases of a system, measured in units of standard
deviation (i.e., Y = n−µ

σ ). In projects with parallel releases,
we standardized values with respect to each branch rather
than across all releases. A logarithmic transformation was

explored, but we found that it compressed many of the subtle
characteristics of the trends.

The SBLOC of ArgoUML shows a clearly increasing
trend with the exception of one period in between releases
0.18.1 and 0.20 (Figure 3(b)). During this period, ArgoUML
underwent a restructuring where modules for C# code gener-
ation and internationalization were migrated from the main
ArgoUML repository into separate repositories. In doing
so, the ArgoUML team seized an opportunity to revise the
associated build specifications for these modules. As a result,
the overall build system size was reduced. The ArgoUML
team confirmed these findings.

Tomcat shows two unique trends of growth in SBLOC. In
the 4.0.x releases, the build system was initially subject to a
rapid increase in SBLOC (Figure 3(d)). This was due to ex-
tensive work in the Catalina subproject. 568 lines of SBLOC
were added to implement configuration detection and release
packaging logic in the Catalina build specification file. This
period was followed by a rather calm period where only
critical bug fixes were committed to the branch as it neared
the end of its maintenance life. The 4.1.x branch begins its
life with a calm period, followed by an 18-month hiatus
between revisions 4.1.31 and 4.1.32 (Figure 3(e)) as Tomcat
moved out of the Jakarta project and was rebranded as a
standalone Apache project. This period shows an explosive
increase of both SBLOC and SLOC as a result of the 18
month project structure overhaul. After the restructuring was
complete, the branch returns to a relatively calm progression
as it approaches its end of maintenance life.

Refactoring efforts at Figure 3(f) and Figure 3(g) skew
the first half of the results in JBoss, which otherwise point
to an increasing trend in SBLOC. During Figure 3(f), an
entire rewrite of the enormous testsuite build specification
file resulted in the removal of approximately 5,000 SBLOC.
During Figure 3(g), code for supporting JAX-RPC was
moved out of the main JBoss project and into a separate
plugin project called JBoss WS (Web Services). In addition,
the ‘common’ module was removed and its source code was
integrated into other areas of the project hierarchy. As a
result, the main JBoss project lost two build specification
files and 568 SBLOC.

In tracking the progress of the Eclipse build system
size over time, we see an exponentially increasing trend
in SBLOC (Figure 4). This exponential trend is accounted
for by the plugin nature of Eclipse. The Eclipse project
maintains a modular and self-contained build system for
each plugin. The top level of the build system simply chains
together the builds for each plugin. It then follows that with
each new plugin added, a large amount of build code is also
introduced. As popularity rises and more plugins make their
way into the Eclipse project mainline, these new plugins
introduce with themselves more build code. We calculated
the Pearson correlation between the number of plugins in
each release and SBLOC to be 0.99. This suggests that
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Figure 3. Standardized SBLOC and SLOC values. Trends are very similar. Anomalies are encircled.

Table III
CORRELATION OF STATIC SIZE METRICS (ARGOUML, TOMCAT, JBOSS, ECLIPSE)

Task Count File Count SBLOC SLOC
A T J E A T J E A T J E A T J E

Target Count 0.99 0.99 0.88 0.97 0.98 0.99 0.75 0.98 0.98 0.99 0.40 0.98 0.78 0.97 0.89 0.95
Task Count 0.95 0.98 0.64 0.99 1.00 1.00 0.15 1.00 0.90 0.97 0.78 0.99
File Count 0.94 0.99 0.59 0.99 0.88 0.98 0.88 0.98

SBLOC 0.89 0.98 0.40 0.99

the exponentially rising trend in build system size strongly
correlates with the trend in the number of plugins per release.

Similar to Lehman’s first law of software evolution,
build system specifications tend to grow over time
unless explicit effort is put into refactoring them.

The Evolution of Build System Static Complexity:
Table III shows the Pearson correlation between the static
size metrics for each studied system. With the exception of
the JBoss project, the high correlation values indicate that
SBLOC is a good approximation for build system size.

We also found that the Halstead complexity metrics follow
trends similar to SBLOC. Table IV shows, for each studied
system, the Pearson correlation between each Halstead com-
plexity metric and the SBLOC. With the exception of the
JBoss project, the results indicate that build specification
complexity is highly correlated with build specification size
(SBLOC). This finding seems to agree with similar findings
from research in the source code domain [18, 19].

The JBoss build system deviates from the trend, as it is
implemented with a different style. It leverages the under-
lying XML roots of ANT specification files to introduce a
system of abstraction. The <!ENTITY> macro substitution

Table IV
PEARSON CORRELATION BETWEEN HALSTEAD METRICS (ROWS) AND

SBLOC (COLUMNS)

ArgoUML Tomcat JBoss Eclipse
Volume 0.99 1.00 0.17 1.00

Difficulty 0.98 0.99 0.20 1.00
Effort 0.93 0.98 0.11 0.96

tag is used extensively to import build specification code
from external files, similar to header file inclusion in C. The
expansion is performed at run-time. This causes skew in our
results as we study SBLOC in the unexpanded build files,
whereas for the three other systems there is no difference
between expanded and unexpanded form.

The Halstead complexity of a build system is highly
correlated with the build system’s size (SBLOC),
indicating that SBLOC is a good approximation of
build system complexity.

Correlation of Source Code and Build System Growth:
Based on our observations of size and complexity trends, we
are now able to verify whether growth periods of the build
system coincide with growth periods of the source code.
For each project, we: (1) calculated the Pearson correlation
between SBLOC and SLOC; and (2) visually compare the



trends of SBLOC and SLOC in Figure 3.
Table III shows that SBLOC and SLOC are highly corre-

lated, suggesting that the build system and source code tend
to evolve together. Once again, the JBoss results are skewed
because of their <!ENTITY> code inclusion method.

The correlation between the growth in SBLOC and SLOC
for the four subject systems is illustrated in Figure 3. In
most cases, the characteristics of the source code and build
specification curves are very similar, which suggests that
SBLOC and SLOC are co-dependent. Deviations from the
trend are analyzed by investigating individual commits in
the respective source code repositories.

In ArgoUML, anomalies occur at Figure 3(a), (b),
and (c). During Figure 3(a), a refactoring was performed
where source code that was previously hard-coded in six
java source files, became automatically generated from an
ANTLR grammar file. The build specifications were updated
to perform the Java code generation task. Hence, we see an
increase in SBLOC and a sharp decrease in SLOC. During
Figure 3(b), C# code generation and internationalization
modules were moved out of the main ArgoUML repository
and into individual repositories (as mentioned above) and
the test source code of the unit tests module was distributed
across different areas of the project hierarchy. The build
specifications for the original unit tests module were deleted.
Since no source was removed in the restructuring process
and development work in other areas was continuing, we
see an increase in project source code. During Figure 3(c),
another refactoring effort was undertaken where the doc-
umentation module was removed and placed into its own
repository. In ArgoUML, the majority of build system re-
structuring seems to be instigated by source code evolution.

In the Tomcat project, the trends suggest that the source
code and build system are growing in sync with each other.
The increases at Figure 3(d) and (e) are explained above.

For the two parallel release branches of the JBoss project,
it would appear that there is little correlation between
the SBLOC and SLOC trends. During the rewrite of the
build specification file in the testsuite module in the Fig-
ure 3(f) interval, the system source code was unaffected
and hence, was subject to the standard growth. The build
system size apparently reached such a critical point that
explicit steps were taken to restructure the build system.
During Figure 3(g), JAX-RPC support was moved out of
the main JBoss project and as a result, the SLOC reduced
by 72 KSLOC. These events produce considerable noise in
otherwise highly correlated SBLOC and SLOC trends.

In Eclipse, the trends in SBLOC and SLOC are very simi-
lar. However, in between releases 3.5 and 3.5.1 (Figure 3(h)),
we observe a sharp increase in SBLOC and a moderate
increase in SLOC. The SBLOC increase is due to the intro-
duction of a special plugin with the express purpose of driv-
ing the build system. The org.eclipse.releng.eclipsebuilder
plugin contains ANT code that invokes script generators to
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Figure 4. The exponential trend in Eclipse SBLOC. The trend line has
an R2 value of 0.98.

build all of the shipped Eclipse plugins. The plugin contains
nine new ANT files and 1,127 SBLOC.

In most projects, SBLOC and SLOC are highly
correlated. Manual inspection suggests that many
large restructurings in the build system are caused
by major restructurings in the source code.

RQ2) Does the perceived build-time complexity evolve?

We study the evolution of perceived build system com-
plexity from three angles. First, we use Figure 5 to show
growth of build graph length and depth in the four studied
build systems, then we use Table V to examine the build re-
cursion complexity, and finally we analyze changes in target
coverage: a measure of perceived build system complexity.

Build Graph Behaviour Analysis: We study the dynamic
behaviour of a build system, by examining changes to the
standardized length and depth of its build graph.

During Figure 5(a), ArgoUML shows a large change in
both dimensions of the build graph. This was caused by
the introduction of new internationalization and unit test
compilation targets that became part of the default build.
The Figure 5(b) interval corresponds to the Figure 3(b)
interval. The restructuring of modules into independent
projects results in a considerable decrease in the build graph
dimensions, and hence build time of the main project.

Figure 5(2) does not show data for Tomcat 3.x, 4.x and 6.x
because of an interesting evolution. The Tomcat build system
automatically downloads required third party Java archives
(.jar files) based on hardcoded URLs of the archive release
locations. The hardcoded URLs for Tomcat 3.x and 4.x have
become stale by now, preventing us from building these
releases. The Tomcat 5.x, URLs were still valid, allowing us
to build these releases. During Figure 5(c), Tomcat shows an
increase in build graph length and depth where a collection
of third party library dependencies were, for a brief period
built from source instead of downloaded prebuilt. In the 6.x
release branch, Tomcat switched from an ANT build system
to a Maven build system because Maven has support for
maintaining third party library dependencies and avoiding
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Figure 5. Standardized build graph dimensions. Build graph length (in targets) and depth have an R2 value of 0.94 and 0.88.

hard-coded external URLs. As we only consider ANT build
systems, we did not measure the builds of the 6.x branch.
The inability to build Tomcat 3.x and 4.x and the move to
Maven show that managing third-party dependencies is an
important driver for build system evolution.

In JBoss 3.x, the trend in build graph length sees rapid
change initially followed by a lull in later releases. However,
JBoss 4.x shows a decrease in build length at (d) due to the
removal of the JAX-RPC support and its build files from
the main project at release 4.0.5 (mentioned above). JBoss
5.x is not plotted since only three releases in this branch are
analyzed and this is not enough data to derive a solid trend.

In the Eclipse project, we see a steady linear increase
for both the length and depth dimensions. The correlation
between these two dimensions are discussed below.

We found no general laws for build graph behaviour.
Studied systems show either increasing trends in
build graph length, or periods of growth and reduc-
tion.

Constant Depth vs. Varying Depth: Figure 5 shows two
distinct trends in the build graph depth: (1) a near-constant
depth (Tomcat and JBoss); and (2) a depth which seems to
vary in trends similar to build graph length (ArgoUML and
Eclipse). Table V shows the Pearson correlation between
build graph depth and length metrics. The table indicates
that the ArgoUML and Eclipse builds are recursive in design
while Tomcat and JBoss are not. We also find that once
a recursive or non-recursive design has been selected, the
project maintains the design and does not change.

As the Eclipse project ages, the maximum depth of recur-

Table V
PEARSON CORRELATION BETWEEN DYNAMIC METRICS (ROWS) AND

BUILD GRAPH DEPTH (COLUMNS)

ArgoUML Tomcat JBoss Eclipse

Elapsed Time 0.37 0.14 0.40 0.92

Build Graph Length 0.92 0.37 0.48 0.96(Targets)
Build Graph Length 0.94 0.12 0.26 0.96(Tasks)

sion reached during its build process increases. This implies
that as the project ages, the build process actually grows lin-
early in both length and depth dimensions. The build system
had grown to such a state that the Eclipse team has intro-
duced in version 3.5.1 the org.eclipse.releng.eclipsebuilder
plugin mentioned earlier. Both JBoss and Tomcat make
limited use of recursion, only ever reaching a maximum
depth of two. These projects only grow in length.

The studied build systems are either recursive in
design or not. Once a design has been selected, the
studied projects do not switch.

Build Coverage Behaviour Analysis: To study the dy-
namic coverage of a typical build, we calculate the propor-
tion of code exercised in a typical build relative to the total
amount of static specification code. We do not show a graph
for coverage because the values remain relatively constant
unless a major event occurs.

In ArgoUML, the coverage varies between 14-29% with
two notable increases of 7% and 8% corresponding to project
restructuring periods (Figure 5(b) and (c)). The SBLOC
shrank during the restructuring, which implies that they were



bloated with unused code prior to the project restructuring.
The coverage metrics in both Tomcat and JBoss do not

show any significant change in value hovering at around
30% and 40% respectively. Minor fluctuations of ±3%
occur between release branches (e.g.: Tomcat 5.0.x to 5.5.x),
however the major restructurings that were mentioned above
do not seem to have an effect on the build system coverage.

In Eclipse, there is one notable change in the otherwise
constant coverage showing an increase of 36% from 2.x
to 3.x. This was caused by a decrease in total number of
existing targets and an increase in the number of targets hit
by the default build. The decrease in total targets was caused
by the removal of redundant build logic. This indicates that
while major changes were made to system functionality
(enough to warrant an increase in major release number),
a similar amount of work was invested in the build system.

Target coverage remains more or less constant for
each project. Major fluctuations of ±10% corre-
spond with major project events such as restructuring
efforts or major releases.

Threats to Validity

Our case studies are based on open source projects and
more specifically, open source projects built using ANT. Our
results may not generalize to commercial systems or even
open source systems that are built using a different build
system language. To combat this limitation, we considered
projects of differing size, domain, and release style.

Our analysis focuses on the release level. At this reso-
lution, we may miss some build system events that happen
during the development cycle. We avoid development revi-
sions because there is no guarantee that the system is in a
buildable and working state.

Similar to [3], our builds are all based on a single platform
and configuration. The platform we used is Linux on an
x86-based processor and the configuration is the default
configuration suggested for this platform. This decision
was made to ensure that we used consistent platform for
comparison. By only exploring a single configuration, we
may have left areas of the build unexplored.

The SBLOC metric measures lines of build specification
code and does not consider build task implementation code.
As such, custom ANT task implementations did not factor
into the build system size or complexity. Build task imple-
mentation code remains an unmeasured dimension of the
build system size and complexity.

VI. RELATED WORK

We present work related to our study and in the areas of
build system and software evolution.

In [21], Robles et al. argue that software artifacts other
than source code also require research. In our paper, we

present a study of the evolution of build systems, an entity
which co-exists with project source code.

In [3], Adams et al. conjecture that not only do build
systems evolve but also that they co-evolve with the program
source code. They present their study of the Linux kernel
build system, implemented using make, in which they found
a super-linear (i.e., exponential) trend in the size of build
specifications. We only found a super-linear growth in the
Eclipse build system. We studied ANT build systems while
the Linux build system is implemented in make.

In [22], Miller presents his study of make build systems
implemented using the common recursive paradigm. He
explains some of the rather gruesome pitfalls of the paradigm
when used in an unbounded fashion. In our study, we use
our build graph depth metrics to keep track of the maximum
level that a build recursively encounters. We have no data
about whether the practice of build recursion in ANT is a
good design choice for build systems.

In [2], Kumfert and Epperly investigate the development
overhead involved with maintaining the build system. In
a survey they conducted, developers claim that anywhere
between 0% and 35.71% of their development time is
spent maintaining the build system. For one specific case,
Kumfert and Epperly validate their survey result of 20% by
mining the project team’s CVS history, categorizing each
commit as relating to the build, the project source, and a
few other categories that are out of this scope. We study
software releases to try to uncover why developers find
build systems complex, with the aim of eventually proposing
better methods for managing build systems.

In [11, 12], Lehman et al. discuss their laws of program
evolution. Based on the patterns observed in proprietary
software, they find that source code tends to grow in size and
entropy. Whereas Lehman et al. focus on the evolution of
programs and changes in their environment, we focus on the
evolution of build systems and changes in their environment.

In [5], Zadok studied the effect of introducing the GNU
Autotools build infrastructure on the complexity of the
Berkeley Automounter build system. We observe the effect
that environmental factors such as the source code and de-
velopment libraries have on the evolution of build systems.

VII. CONCLUSIONS

Software build systems are complex entities in and of
themselves. They evolve both statically and dynamically in
terms of size and complexity. We find that Lehman’s first
two laws apply in the context of build systems. That is, our
case study indicates that build systems continuously change,
especially due to changes in their environment (i.e., source
code and development libraries). Furthermore, build systems
grow in complexity as a side effect of the changes induced
by Lehman’s first law. The evolution of a build system is
often in sync with the project’s source code.



Through a case study of four open source projects, we
made the following important observations:
• Both the static and dynamic size and complexity of

build systems show differing patterns of growth over
time that correlate with their project source code.

• The exponential growth of Eclipse’s build system is
highly correlated with the project plugin count.

• Build systems are either recursive in design or not.
Once a build system has established either a recursive
or flat design, it does not switch to the other.

• The Halstead complexity of a build system is highly
correlated with the build system’s size (SBLOC).

• As observed in Tomcat, management of third-party
libraries is a crucial factor in build system evolution.

• Large fluctuations in target coverage (±10%) corre-
spond with major project events such as restructuring
efforts and major releases.

Armed with this understanding, project managers can
predict that periods of substantial change in the source
code will be accompanied by similar change in the build
system. This allows them to allocate more resources to the
maintenance and testing of the source code and build system.
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