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Abstract

The Mining Software Repositories (MSR) field analyzes software repository data
to uncover knowledge and assist development of ever growing, complex systems.
However, existing approaches and platforms for MSR analysis face many chal-
lenges when performing large-scale MSR studies. Such approaches and plat-
forms rarely scale easily out of the box. Instead, they often require custom
scaling tricks and designs that are costly to maintain and that are not reusable
for other types of analysis. We believe that the web community has faced many
of these software engineering scaling challenges before, as web analyses have to
cope with the enormous growth of web data. In this paper, we report on our
experience in using a web-scale platform (i.e., Pig) as a data preparation lan-
guage to aid large-scale MSR studies. Through three case studies, we carefully
validate the use of this web platform to prepare (i.e., Extract, Transform, and
Load, ETL) data for further analysis. Despite several limitations, we still en-
courage MSR researchers to leverage Pig in their large-scale studies because of
Pig’s scalability and flexibility. Our experience report will help other researchers
who want to scale their analyses.

Key words: Software engineering; Mining Software Repositories; Pig;
MapReduce

1. Introduction

Software projects and systems continue to grow in size and complexity. The
first version of the Linux kernel, which was released in 1991, consisted of 10,239
lines of source code (SLOC), while version 2.6.32 released in 2009 consists of
12,606,910 SLOC. In eighteen years, the size of the Linux kernel has increased
by a factor larger than 1,200. Similarly, Gonzalez-Barahona et al. find that the
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size of the Debian Linux distribution doubles approximately every two years
(25 mSLOC in 1998 vs. 288 mSLOC in 2007) [1, 2]. Moreover, recent work
by Mockus shows that a universal repository of the version history of all open
source software systems available online contains TBs of data and that the
process to collect such a repository is rather lengthy and complicated, taking
over a year [3]. The size of the code available continues to grow and so do the
challenges of amassing and analyzing such large code bases.

This explosive growth in the availability and size of software data has led to
the formation of the Mining Software Repositories (MSR) field [4]. The MSR
field recovers and studies data from a large number of software repositories,
including source control repositories, bug repositories, archived communications,
deployment logs, and code repositories to uncover knowledge and assist software
development. The process adopted by most large-scale MSR studies is similar
to the Extract - Transform - Load (ETL) data preparation process used by
data warehouses, i.e., data is extracted from software repositories, transformed
into certain formats and loaded into a data warehouse. MSR data preparation
is typically performed by specialized programming scripts in general-purpose
query or scripting languages. The prepared data is then further analyzed using
modelling tools like R [5], Weka [6], or other specially built tools.

As the size of software repository data increases, more complex platforms
are needed to enable rapid and efficient ETL of data. Software engineering re-
searchers typically try to scale up ETL by means of specialized one-off solutions
that are hard to reuse and that are costly to maintain. For example, to iden-
tify clones across the FreeBSD operating system (131,688 kSLOC), Livieri et al.
developed their own distributed platform dedicated to performing large-scale
code clone detection [7]. We believe that in many ways the ETL phase is seen
as a necessary evil by most researchers. Having to tweak tools to scale up to
bigger data may distract focus and effort from the actual MSR analysis on the
prepared data.

Many of the challenges associated with data preparation in MSR studies have
already been faced in the web field by companies like Google and Facebook. The
web field has developed several platforms to enable the large-scale preparation
and processing of web-scale data sets, for example to analyze web crawl data
or to process personal messages. Hadoop [8] and Pig [9] are examples of such
platforms. We firmly believe that the software engineering field can adopt many
of these platforms to scale MSR studies. For instance, in prior work [10, 11]
we showed that we could scale and speed-up software evolution studies using
Hadoop, an open-source implementation of MapReduce, which is a distributed
framework based on a simple programming model [12].

However, our prior experience highlighted some of the limitations of Hadoop
as a platform for large-scale software engineering analysis. In particular, the
use of Hadoop requires rather tedious low-level programming effort. To counter
this limitation, this paper evaluates the use of a higher-level web-scale platform
called Pig. Pig uses a high-level data processing language on top of Hadoop
that sacrifices some scalability for increased flexibility. This paper evaluates
Pig’s ability of preparing data for large-scale MSR study.
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Three case studies with Pig show that it can successfully prepare data for
large-scale MSR studies, with similar scalability as Hadoop. The major contri-
butions of this paper are:

1. We evaluate Pig’s ability to prepare data in a modular way by performing
three large-scale MSR studies in detail. Our implementation1 can be re-
used by other MSR researchers.

2. We compare the use of Pig and Hadoop for preparing data for MSR stud-
ies.

3. We report the lessons learnt with Pig in order to assist other researchers
who want to use Pig as a data preparation language in their MSR studies.

Our experience shows that, compared to existing MSR data preparation
approaches, Pig has several advantages, such as scalability, modular design and
flexible data schemas. However, there are also several disadvantages of using
Pig, including extra programming effort and lack of debugging support. Despite
such limitations, we believe that Pig can be adopted by other MSR researchers
to assist in large-scale MSR data preparation.

The rest of the paper is organized as follows. Section 2 illustrates the data
preparation of MSR studies.

Then, we present Pig by using it to prepare data for a simple MSR study
in Section 3. We perform three detailed MSR studies with Pig to evaluate its
ability to prepare data for large-scale MSR studies (Section 4). We evaluate
Pig’s performance in data preparation for large-scale MSR studies in Section 5
and distill the lessons we learned from using Pig as a data preparation language
for MSR studies in Section 6. Finally, Section 8 discusses related work and
Section 9 presents the conclusions of this paper.

2. Data preparation in MSR studies

In this section, we use a motivating example from our real-life research ex-
perience [14] to illustrate the data preparation (ETL) of MSR studies.

The data preparation tool that we use in this example is J-REX, i.e., a highly
optimized ETL tool for Java systems similar to C-REX [15], with the following
functionalities:

• Extracting every Java file revision from a CVS repository.

• Transforming Java source code into an XML representation.

• Abstracting line-level change information (“line 10 has changed”) to the
program entity level (“function f1 no longer calls function f2”).

• Calculating software metrics, such as number of lines of code (#LOC).

1The source code is available in the first author’s Master’s thesis [13].
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Figure 1: ETL pipeline for large-scale MSR studies.

Researcher Lily wants to study software defects and code clones using the
source control repository of a large, long-lived software project.
Step 0. Initially, Lily tries to use evolutionary data prepared by the original
J-REX [10]. This data describes the individual program entities that changed
in each revision. However, since Lily wants to study code clones, she also needs
the complete source code snapshots to perform code clone detection. Hence, the
authors need to enhance the existing J-REX tool to support Lily’s study.
Step 1. Lily requests every snapshot of each source code file and also a report
about which methods were added or deleted in each snapshot. The authors
modify the original J-REX to prepare the required data.
Step 2. In order to study software defects in the data that we prepare for
her, Lily wants to use a heuristic that relates changes in source code to bugs
by checking for keywords like “bug” or “fix” in the commit logs of the source
control system. Since J-REX did not yet extract commit log data, the authors
need to add this functionality to J-REX, as well as the heuristic for relating
source code changes to bugs.
Step 3. While performing data analysis on the prepared data, Lily finds that
the source code content of some methods is missing. She also requires the
deletion of methods to be associated with the first snapshot after the deletion
instead of with the snapshot of the deletion. For example, if method foo was
in snapshot 1.0 but not in snapshot 1.1, Lily needs the deletion of foo to be
recorded for snapshot 1.1, not for snapshot 1.0.
Step 4. Because of the large-scale data, the authors spend much effort to fix
bugs, prepare the new data, and deliver the prepared data to Lily. She makes
great progress in her research, but now she has to perform clone detection on the
extracted methods in the source code. As the authors are not clone detection
experts, they choose to use an existing clone detection tool. Even though the
authors already extracted the source code of methods, they now have to output
the source code in the data format used by the clone detection tool. After doing
the clone detection, the authors then need to collect the results and indicate if
a method in the method list contains code clones.

As illustrated by the five steps above, MSR researchers need to perform
multiple iterations of different types of analyses on prepared data from software
repositories. Figure 1 summarizes the typical ETL pipeline of MSR studies,
consisting of the following three phases:

1. Data extraction. Most data gathered during the software engineering
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process was not anticipated to be used for empirical studies. In order to
extract actionable data, special tools are needed to process software repos-
itories or software archives. For example, bug repositories track the histo-
ries of bug reports and feature requests. Tools to process such repositories
are typically implemented in general-purpose programming languages. In
the motivating example, the data extraction uses J-REX to extract the
source code change information and commit logs for the source control
repository.

2. Data transformation. After the raw data is extracted from the soft-
ware repositories and software archives, it typically needs to be abstracted
and merged with other extracted data for further analysis.
We performed a number of different data transformations in the moti-
vating example in Section 2. For example, we transformed the extracted
source code to a list of methods, we transformed the extracted commit
log data to boolean values that indicate whether changes are related to
bugs, and we processed the list of methods to a list of boolean values that
indicate whether methods contain cloned code.

3. Data loading. In this phase, the transformed data is converted into the
right format to be loaded into various types of analysis environments, such
as relational databases, R and Weka, for further analysis. Data loading
can even be as simple as writing transformed results to files in a certain
format. In our motivating example, the output data is loaded into XML
files that are prepared for further analysis.

Data preparation (ETL) is a highly iterative process. For example, if the results
of statistical analysis in the data analysis step look suspicious, researchers need
to examine the output of the data extraction, transformation and loading phases,
refine the phases and re-prepare the data, as our example made clear.

This paper focuses on the data preparation (ETL) steps in Figure 1. We
want to improve the iterative process of MSR data preparation by making it
modular and scalable. We use a distributed framework from the web community,
i.e., Pig, to achieve this. In the next section, we present the main concepts of
Pig by using it to prepare data for a simple MSR study.

3. PIG

Pig [9] is a Hadoop-based [8] platform designed for analyzing massive amounts
of data. Pig provides a high-level data processing language called Pig Latin [9].
To illustrate how Pig can prepare data for MSR studies, we use it in a simple
MSR study to measure the evolution of #LOC (number of LOC) in the different
snapshots of the source code in a software project. The corresponding Pig Latin
code is shown in Figure 2. All variables in our code snippets use upper case,
all Pig Latin key words use lower case, and the names of user-defined functions
use camel case.

In the source code shown in Figure 2, line 1 loads all data from a CVS
repository as a (“file name”, “file content”) pair into Pig storage, This storage
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1 RAWDATA = load ’$inputdata ’ using ExtPigStorage ()
as (filename:chararray , filecontent:chararray);

2 HISTORYLOG = foreach RAWDATA generate ExtractLog(
filename , filecontent);

3 HISTORYVERSIONS = foreach HISTORYLOG generate
ExtractVersions($0);

4 CODE = foreach HISTORYVERSIONS generate
ExtractSourceCode($0);

5 LOC=foreach CODE generate GenLOC($0);
6 dump LOC;

In the source code shown in Figure 2, line 1 loads all data from a CVS
repository into Pig storage, which is based on the Hadoop Distributed File
System [26] (HDFS), as a (file name, file content) pair. The data conceptually
is stored into different fields of a table, which can be accessed by name or field
index. The value of the parameter inputdata is specified from the command line
or specified by a parameter file.

Line 2 extracts CVS log data of every source code file. Each of the program
units in Pig, such as ExtractLog in line 2, is implemented as a Java Class with a
method named exec. The Java source code of the exec method of the program
unit ExtractLog is shown in Figure 3. In the Java source code shown in Figure 3,
the parameter of method exec is a (”CVS file name”, ”CVS file content”) tuple.
Because the rlog tool that generates the historical log of CVS files needs a file as
input, lines 7 to 10 write the file content to a temporary file. Line 11 generates
the historical log by calling the method extractRlog that wraps the tool rlog.
Using program wrappers in Java source code is the only way to access existing
tools by Pig. Lines 12 to 15 create and return a new (”CVS file name”, ”CVS
historical log”) tuple. The whole method contains less than 20 lines of code and
uses an existing tool to complete the process.

In the remainder of the Pig Latin script in Figure 2, line 3 parses every
source code file’s log data and generates the historical version numbers of every
source code file. The “$1” in line 3 represents the first elements in the tuple
of “HISTORYLOG”. After generating the version numbers, line 4 uses CVS
commands and extracts source code snapshots of every file. Line 5 counts the
LOC of each snapshot of every source code file and Line 6 outputs the result
data. Intermediate data of each step is stored as variables, such as CODE,
which can be examined during the process of analysis.

We can see that the whole process of measuring the evolution of #LOC con-
tains 4 program units: ”ExtractLog”, ”ExtractVersions”, ”ExtractSourceCode”,
and ”GenLOC”, and a general data loading method ExtPigStorage.

4.3. Discussion
The above examples of using Hadoop and Pig to perform MSR studies shows

that the MapReduce computing model of Hadoop forces developers to transform
their system into separate “Map” and “Reduce” steps. Each step requires extra
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Figure 2: Pig Latin script for measuring the evolution of the total number of lines of code
(#LOC) in the different snapshots of a source control repository.

is based on the Hadoop Distributed File System [8] (HDFS), which conceptually
stores data into different fields of a table, accessible by name or by field index.
The value of the parameter inputdata is specified from the command line or
specified by a parameter file.

Line 2 extracts CVS log data of every source code file. Each of the program
units in Pig, such as ExtractLog in line 2, is implemented as a Java Class with a
method named exec. The Java source code of the exec method of the program
unit ExtractLog is shown in Figure 3. In the Java source code shown in Figure 3,
the parameter of method exec is a (“CVS file name”, “CVS file content”) tuple.
Because the rlog tool that generates the historical log of CVS files needs a file as
input, lines 7 to 10 write the file content to a temporary file. Line 11 generates
the historical log by calling the method extractRlog that wraps the tool rlog.
Using program wrappers in Java source code is the only way to access existing
tools from Pig if their source code is not available. Lines 12 to 15 create and
return a new (“CVS file name”, “CVS historical log”) tuple. The whole method
contains less than 20 lines of code and uses an existing tool to complete the
process.

In the remainder of the Pig Latin script in Figure 2, line 3 parses every
source code file’s log data and generates the historical revision numbers of every
source code file. The “$0” in line 3 represents the first field in the tuples
of “HISTORYLOG”. After generating the revision numbers, line 4 uses CVS
commands and extracts source code snapshots of every file. Line 5 counts the
#LOC of each snapshot of every source code file and line 6 outputs the result
data. Intermediate data of each step is accessible as variables, such as CODE,
which can be examined during the process of analysis.

We can see that the whole process of measuring the evolution of #LOC con-
tains 4 program units: “ExtractLog”, “ExtractVersions”, “ExtractSourceCode”,
and “GenLOC”, and a general data loading method “ExtPigStorage”.

To scale to large input data, Pig exploits another distributed framework
from the web community called Hadoop. Hadoop is an implementation of the
MapReduce programming paradigm [12]. MapReduce consists of two phases:
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number, count the #LOC of the corresponding source file and generate as output
intermediate key/value pairs of the form “version number/#LOC”. For example,
for a file named “a.java” with 100 LOC in version 1.0, a Mapper would generate
a key/value pair of “1.0/100”. Afterwards, each list of key/value pairs with the
same key, i.e., version number, is sent to the same Reducer, which sums #LOCs
in the list, and generates output as a key/value pair “version number/SUM
#LOC”. If a Reducer receives a list with key “1.0”, and the list consists of two
values “100” and “200”, the Reducer will sum the values “100” and “200” and
output “1.0/300”.

The above MapReduce steps of using Hadoop needs to be implemented man-
ually if Pig is not used. Each step requires extra programming effort in following
MapReduce paradigm, which is considered burden of MSR researchers. In ad-
dition, the Java code for Hadoop contains large amount of tedious boiler-plate
Java code. In our previous work, we migrate J-REX to Hadoop [10]. In the
Hadoop version of J-REX, more than 80 percent of the source code is such
boiler-plate Java code. On the other hand, Pig requires much less programming
effort of preparing data for MSR studies than using Hadoop. In the next sec-
tion, we setup three case studies to evaluate using Pig as a data preparation
language for large-scale MSR studies.

1 public Tuple exec(Tuple input) throws IOException {
2 if (input == null || input.size() == 0)
3 return null;
4 try{
5 String name = (String)input.get (0);
6 String content =( String)input.get (1);
7 File file=new File(name);
8 FileWriter fw=new FileWriter(file);
9 fw.write(content);

10 fw.close();
11 String rlog=extractRlog(name);
12 Tuple tname = DefaultTupleFactory.

getInstance ().newTuple ();
13 tname.append(name);
14 tname.append(rlog);
15 return tname;
16 }catch(Exception e){
17 throw WrappedIOException.wrap("Caught 

exception processing ", e);
18 }
19 }
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Figure 3: Java source code of the exec method of the programming unit ”ExtractLog” (gen-
erating source code history log).

a massively parallel “Map” phase, followed by an aggregating “Reduce” phase.
The input data for MapReduce is a list of key/value pairs. Mappers (processes
assigned to the “Map” phase) accept the incoming pairs, process them in parallel
and generate intermediate key/value pairs. Each group of intermediate data
having the same key is then passed to a specific Reducer (processes assigned to
the “Reduce phase”). Each Reducer performs computations on a group of data
and reduces it to one single key/value pair. The output of all Reducers is the
final result of the MapReduce process.

The Pig Latin script in Figure 2 will be transformed to Hadoop Java code
that follows the MapReduce paradigm. For example, a possible transformation
of the script in Figure 2 might consist of two steps of MapReduce:

1. A list of file data is extracted from the source control repository, containing
the raw data of the history of each file. Each Mapper accepts a file as input,
uses rlog to analyze it, collects the output of rlog and generates key/value
pairs of the form (“file name”, “rlog output of the file”). Reducers accept
these pairs and generate the revisions of each file depending on the rlog
output. The output of the Reducers is represented as a key/value pair
of the form (“file name”, “revision number”). If file “a.java” has two
revisions 1.0 and 2.0, the output contains two key/value pairs (“a.java”,
“1.0”) and (“a.java”, “2.0”).

2. Mappers take the output pairs of the previous step to extract the specific
code revision given by the pair’s value, count the #LOC of the correspond-
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ing source file and generate intermediate key/value pairs of the form (“re-
vision number”, “#LOC”). For example, for a file named “a.java” with
100 LOC in revision 1.0, a Mapper would generate a key/value pair of
(“1.0”, “100”). Afterwards, each list of key/value pairs with the same
key, i.e., revision number, is sent to the same Reducer, which sums all
#LOCs in the list, and generates output as a key/value pair of the form
(“revision number”, “SUM #LOC”). If a Reducer receives a list with key
“1.0”, and the list consists of two values “100” and “200”, the Reducer
will sum the values “100” and “200” and output (“1.0”, “300”).

Without Pig, a researcher would need to manually implement the above
MapReduce steps. Each step requires tedious, low-level programming effort,
which is a burden for MSR researchers, especially because none of this low-level
code is easily reusable. For example, in our previous work, we migrated J-REX
to Hadoop [10]. In the Hadoop version of J-REX, more than 80 percent of the
source code consisted of such boiler-plate Java code.

Pig’s high-level preparation language is promising, since it requires signifi-
cantly less programming effort than Hadoop. The Pig Java functions that need
to be implemented to run existing MSR tools still represent some overhead; yet
can easily be reused for other MSR analyses. In our experience, the portion of
boiler-plate code in Pig is only around 40% to 50%, which is much lower than
that of Hadoop. In the next section, we discuss three case studies in which we
evaluate Pig as a data preparation language for large-scale MSR studies.

4. Experience report

In this section, we present our experience of preparing data for three large-
scale MSR studies using Pig. We first explain the requirements and implemen-
tation of each case study in detail and then we evaluate the modular design of
our Pig implementations.

4.1. Case study requirements and implementation
We use Pig to perform data preparation (ETL) on three MSR studies. For

each study, we show what data is required for the analysis and how we imple-
mented the data’s preparation with Pig. The subject system for the three case
studies is the source control system of Eclipse, which contains around 10GB of
data.
Study one: correlation between comment updates and bugs

The first software study is an empirical study on the correlation between
updating comments in the source code and the appearance of bugs.
Required data: This analysis requires the following data for every change in the
source control system:

1. is the change related to a bug?
2. does the change update source code comments?
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Implementation: The first step of implementing a Pig program is to break down
the process into a number of program units. The following program units are
used:

1. Loading data from a CVS repository into Pig storage as a (“filename”,
“file content”) pair.

2. Generating log data for every source code file.
3. Generating a list of revision numbers and commit logs for every source

code file.
4. Using heuristics on commit logs to check if a change contains a bug fix.
5. Extracting every revision of source code for every source code file.
6. Transforming every snapshot of every source code file into XML format.
7. Comparing every two consecutive revisions of source code to check whether

there is any comment change.

In line 1 of the script in Figure 5, the data is loaded and stored as variable
“CVSMETADATA”, which consists a list of tuples that consist of the name and
content of every file in the CVS repository raw data. In line 2 of the script
in Figure 5, the CVS log of every file is generated and stored with the corre-
sponding file name in another list as variable “HISTORYLOG”. In line 3 of
the script in Figure 5, information about all commits of every file is generated
by analyzing the log data in “HISTORYLOG”. Information about every com-
mit makes a tuple which consists of the version of the commit, the file name,
the author, etc. A collection of tuples of commits of one file are stored in a
data bag. The data bag and the corresponding file name are stored as variable
“HISTORYVERSIONS”.

1 CVSMETADATA=load ’EclipseCvsData ’ using
ExtPigStorage () as (filename:chararray ,
filecontent:chararray);

2 HISTORYLOG=foreach CVSMETADATA generate ExtractLog(
filename , filecontent);

3 HISTORYVERSIONS=foreach HISTORYLOG generate
ExtractVersions($0);

4 BUGCHANGES=filter HISTORYVERSIONS by IsBug{$0};
5 NOBUGCHANGES=filter HISTORYVERSIONS by not IsBug{$0

};
6 CODE=foreach HISTORYVERSIONS generate

ExtractSourceCode($0);
7 XMLS=foreach CODE generate ConvertSourceToXML($0);
8 COMMENTEVO=foreach XMLS generate EvoAnalysisComment

($0);
9 BUGRESULT=join BUGCHANGES by $0.$0, COMMENTEVO by

$0.$0;
10 NOBUGRESULT=join NOBUGCHANGES by $0.$0, COMMENTEVO

by $0.$0;
11 dump BUGRESULT;
12 dump NOBUGRESULT;

Study two:
The second software study is an empirical study on software defects in both

cloned and non-cloned methods in a software system, which is actually the
motivating example presented in Section 2.1.
Required data: This analysis requires the following data for every file at every
revision:

1. is the revision caused by a bug?
2. (for every method in the file) is the method new or has it been deleted?
3. source code for every method.
4. (for every method) is the method cloned?

Implementation:

12

Figure 4: Pig Latin script for study one.

The Pig Latin source code for study one is shown in Figure 4. In the script,
line 1 loads the content of every file from the input data. Line 2 generates the
CVS log data for every file and line 3 generates the historical revisions from the
CVS log data. Line 4 and line 5 check if a change is related to bugs. Line 6
extracts every historical revision of all the source code files. These snapshots
of source code files are transformed to XML files by line 7. Line 8 analyzes the
evolution of comments of every source code file. Line 9 and line 10 join the
evolution of comments, i.e., the output of line 8, with the bug-related changes
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and non-bug-related changes respectively. The Pig Latin script expresses high-
level information about the process of the MSR study, in contrast to the low-
level of Hadoop programs. Pig helps researchers focus on the MSR study itself
instead of on the implementation details.
Study two: correlation between code clones and bugs

The second software study is an empirical study on software defects in both
cloned and non-cloned methods in a software system [14], which is actually the
motivating example presented in Section 2.
Required data: This analysis requires the following data for every file at every
revision:

1. is the revision a bug fix?
2. (for every method in the file) is the method new or has it been deleted?
3. source code for every method.
4. (for every method) is the method cloned?

Implementation:
Because of the modular programming style of Pig, we re-used the program

units in lines 1 to 7 from study one (Figure 4) without any modification. In
addition, we also need program units for:

1. Checking which methods have been added or deleted in every revision of
every source code file.

2. Generating every method’s content.
3. Performing clone detection on the source code of all the methods.
4. Ruling out falsely reported cloned methods.

The Pig Latin script for study two, which re-uses the existing variables from
study one, is shown in Figure 5.

1 METHODEVO=foreach XMLS generate EvoAnalysisMethod(
$0);

2 METHODCONTENTS=foreach CODE generate GetMethod($0);
3 METHODPAIRS=cross METHODCONTENTS , METHODCONTENTS;
4 CLONES=foreach METHODPAIRS generate CloneDetection(

$0);
5 CLONES=filter CLONES by TimeOverlap($0);
6 BUGRESULT=join BUGCHANGES by $0.$0, CLONES by $0.$0

, METHODEVO by $0.$0;
7 NOBUGRESULT=join NOBUGCHANGES by $0.$0, CLONES by

$0.$0 , METHODEVO by $0.$0;
8 dump BUGRESULT;
9 dump NOBUGRESULT;

Study three:
In the third experiment, we prepare data to calculate the evolution of the

complexity of the source code changes. Hassan uses this data to predict software
defects [27].
Required data: This analysis requires the number of changed LOC in Feature In-
troduction Modification (FI) changes, i.e., changes that introduce new features,
for every time period.
Implementation:

Study three re-uses program units 1, 2 and 3 in study one. Three more
program units are required:

1. Checking for every change whether the change is an FI change.
2. Grouping changes per time period. In particular, we use the quarters in

2008 as time spans.
3. Counting changed #LOC.

The corresponding Pig Latin script, which uses the variables from experi-
ment one and two, is shown in Figure 7.

1 FIVERSIONS= filter HISTORYVERSIONS by
IsFI($0);

2 TIMESPANS = foreach FIVERSIONS
generate TimeSpan($0, (
"2008/01/01" , "2008/04/01" ,
"2008/07/01" , "2008/10/01" ,
"2009/01/01" ));

3
4 TIMESPAN_GROUP = group TIMESPANS by

$8;
5 CHANGEDLOC_TIMESPAN= foreach

TIMESPAN_GROUP generate ChangeLOC
($0);

6 dump CHANGEDLOC_TIMESPAN;

In the Pig Latin script of experiment three, line 2 uses 120
days as a parameter of evolution period and line 3 groups
every concatenated 1000 modifications into one evolution
period.

B. Experience Report

We now discuss our experiences with Pig to perform data
preparation in the three three software studies.

Modular Design

Pig stimulates a modular design in which each Pig pro-
gram is decomposed into a number of small program units.
Pig Latin composes the whole program by combining the
program units together. With such modular programming
style, adding a new program unit or changing one program
unit does not affect other program units. Program units in
Pig are re-usable for data preparation of different software
studies.

The program units we identified for the three software
studies are summarized in Table II. Many program units
are re-used in all of the three case studies. Figure 6 shows
how we composed different program units into the data
preparation process of the three software studies. The most
widely re-used program units provide basic functionalities
of software studies.

Scalability

In our previous research, we verified the feasibility of
using MapReduce to prepare data for software studies [14].
Our experiments show that using Hadoop (an open source
MapReduce implementation) on a 4 machine-cluster im-
proves the computation time by 30-50% when analyzing the
CVS [30] source control repository of the Eclipse project.

The Pig platform runs on top of Hadoop. Pig programs
are compiled to MapReduce automatically. The running time
of a Pig program is only 1.3 times as long as the running

Table II
PROGRAM UNITS FOR CASE STUDIES.

Program
unit
number

Program unit name Description

1 ExtPigStorage Loading data into Pig.
2 ExtractLog Generating CVS repos-

itory log.
3 ExtractVersions Parsing CVS log to

generate historical ver-
sions.

4 ExtractSourceCode Extracting source code
files.

5 ConvertSourceToXMLEval Converting source code
to XML format.

6 ChangeLOC Counting number of
changed LOC for a
source code file.

7 EvoAnalysisComment Comment evolution
analysis.

8 EvoAnalysisMethod Method evolution anal-
ysis.

9 GetMethod Generating method
content.

10 CloneDetection Detecting clones on
program entity pairs.

11 TimeOverlap Ruling out false clones.
12 TimeSpan Checking if a change is

in a time period.
13 IsBug Checking if a change is

related to a bug.
14 IsFI Checking if a change

is a feature introducing
(FI) change.

time of native Hadoop [31]. We verified this finding for our
case.

Because of the iterative nature of large scale studies and
the thinking involved with converging to a composition of
program units that provides all required data extraction and
transformation, we did not time the total running time of
Pig in each of the three case studies. Instead, we directly
compared the performance of J-REX with MapReduce and
J-REX programmed by Pig on the jdt package of Eclipse,
which is one of the ”core” packages of Eclipse. The running
time of the Pig based J-REX turned out to be around 1.5
times the running time of the MapReduce based J-REX. The
Pig based J-REX still turned out to be much more scalable
than the original (undistributed) J-REX that was developed
in a general-purpose programming language.

Based on our experience with the scalability of the
MapReduce framework and the fact that Yahoo! uses Pig to
analyze extremely large data sets [27], we consider the Pig
platform to provide efficient scalability for data preparation
of large scale software studies.

Debuggability

In our case studies, Pig proved to be a debuggable
platform.

7

Figure 6: Pig Latin script for study three.

14

Figure 5: Pig Latin script for study two.

In this Pig Latin script, line 1 analyzes the evolution of methods in every
source code file. Line 2 generates the source code content of every method in
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each source code file. To perform clone detection, line 3 generates the cross
product of all method contents. The cross products consist of pairs of method
content, such that line 4 can perform clone detection between each pair of
method content. Running clone detection on all source code files that ever
existed may falsely report code clones between parts of the source code that
never existed at the same point in time. Line 5 filters out those false code
clones. Lines 6 and 7 join the evolutionary data of methods, the result of code
clone detection, and historical revisions respectively related and not related to
bugs. Lines 8 and 9 dump the results to a terminal. Alternatively, the results
can be stored into files by using keyword “store” instead of “dump”. The Pig
Latin language directly supports commonly used functionalities like joins, which
substantially simplifies the implementation of MSR studies using Hadoop.
Study three: evolution of the complexity of source code changes

In the third experiment, we prepare data to calculate the evolution of the
complexity of source code changes. Hassan uses this data to predict software
defects [16].
Required data: This analysis requires the number of changed LOC in Feature In-
troduction Modification (FI) changes, i.e., changes that introduce new features,
for every time period.
Implementation:

Study three re-uses line 1 to 3 in study one (Figure 4). Three more program
units are required:

1. Checking for every change whether the change is an FI change.
2. Grouping changes per time period. In particular, we focus on the four

quarters in 2008.
3. Counting the changed #LOC.

The corresponding Pig Latin script, which uses the variables from experi-
ment one and two, is shown in Figure 6. Line 2 uses five specific days to indicate
the four quarters in 2008 as time spans and line 3 uses the key value generated
by line 2 as “$8” to group the commits into time spans. Line 4 counts the
changed #LOC of every group of changes generated by line 3.�

�
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The Pig scripts of the three MSR studies show that
the high-level language of Pig Latin helps focus on
the process of the MSR studies rather than on the
details of implementation or parallelization. How-
ever, one still needs to implement Java modules
that will be called by Pig scripts.

4.2. Modular design overview
Pig stimulates a modular design in which each Pig program is decomposed

into a number of small program units. With such a modular programming style,
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1 METHODEVO=foreach XMLS generate EvoAnalysisMethod(
$0);

2 METHODCONTENTS=foreach CODE generate GetMethod($0);
3 METHODPAIRS=cross METHODCONTENTS , METHODCONTENTS;
4 CLONES=foreach METHODPAIRS generate CloneDetection(

$0);
5 CLONES=filter CLONES by TimeOverlap($0);
6 BUGRESULT=join BUGCHANGES by $0.$0, CLONES by $0.$0

, METHODEVO by $0.$0;
7 NOBUGRESULT=join NOBUGCHANGES by $0.$0, CLONES by

$0.$0 , METHODEVO by $0.$0;
8 dump BUGRESULT;
9 dump NOBUGRESULT;

Study three:
In the third experiment, we prepare data to calculate the evolution of the

complexity of the source code changes. Hassan uses this data to predict software
defects [27].
Required data: This analysis requires the number of changed LOC in Feature In-
troduction Modification (FI) changes, i.e., changes that introduce new features,
for every time period.
Implementation:

Study three re-uses program units 1, 2 and 3 in study one. Three more
program units are required:

1. Checking for every change whether the change is an FI change.
2. Grouping changes per time period. In particular, we use the quarters in

2008 as time spans.
3. Counting changed #LOC.

The corresponding Pig Latin script, which uses the variables from experi-
ment one and two, is shown in Figure 7.

1 FIVERSIONS= filter HISTORYVERSIONS by
IsFI($0);

2 TIMESPANS = foreach FIVERSIONS
generate TimeSpan($0, (
"2008/01/01" , "2008/04/01" ,
"2008/07/01" , "2008/10/01" ,
"2009/01/01" ));

3
4 TIMESPAN_GROUP = group TIMESPANS by

$8;
5 CHANGEDLOC_TIMESPAN= foreach

TIMESPAN_GROUP generate ChangeLOC
($0);

6 dump CHANGEDLOC_TIMESPAN;

In the Pig Latin script of experiment three, line 2 uses 120
days as a parameter of evolution period and line 3 groups
every concatenated 1000 modifications into one evolution
period.

B. Experience Report

We now discuss our experiences with Pig to perform data
preparation in the three three software studies.

Modular Design

Pig stimulates a modular design in which each Pig pro-
gram is decomposed into a number of small program units.
Pig Latin composes the whole program by combining the
program units together. With such modular programming
style, adding a new program unit or changing one program
unit does not affect other program units. Program units in
Pig are re-usable for data preparation of different software
studies.

The program units we identified for the three software
studies are summarized in Table II. Many program units
are re-used in all of the three case studies. Figure 6 shows
how we composed different program units into the data
preparation process of the three software studies. The most
widely re-used program units provide basic functionalities
of software studies.

Scalability

In our previous research, we verified the feasibility of
using MapReduce to prepare data for software studies [14].
Our experiments show that using Hadoop (an open source
MapReduce implementation) on a 4 machine-cluster im-
proves the computation time by 30-50% when analyzing the
CVS [30] source control repository of the Eclipse project.

The Pig platform runs on top of Hadoop. Pig programs
are compiled to MapReduce automatically. The running time
of a Pig program is only 1.3 times as long as the running

Table II
PROGRAM UNITS FOR CASE STUDIES.

Program
unit
number

Program unit name Description

1 ExtPigStorage Loading data into Pig.
2 ExtractLog Generating CVS repos-

itory log.
3 ExtractVersions Parsing CVS log to

generate historical ver-
sions.

4 ExtractSourceCode Extracting source code
files.

5 ConvertSourceToXMLEval Converting source code
to XML format.

6 ChangeLOC Counting number of
changed LOC for a
source code file.

7 EvoAnalysisComment Comment evolution
analysis.

8 EvoAnalysisMethod Method evolution anal-
ysis.

9 GetMethod Generating method
content.

10 CloneDetection Detecting clones on
program entity pairs.

11 TimeOverlap Ruling out false clones.
12 TimeSpan Checking if a change is

in a time period.
13 IsBug Checking if a change is

related to a bug.
14 IsFI Checking if a change

is a feature introducing
(FI) change.

time of native Hadoop [31]. We verified this finding for our
case.

Because of the iterative nature of large scale studies and
the thinking involved with converging to a composition of
program units that provides all required data extraction and
transformation, we did not time the total running time of
Pig in each of the three case studies. Instead, we directly
compared the performance of J-REX with MapReduce and
J-REX programmed by Pig on the jdt package of Eclipse,
which is one of the ”core” packages of Eclipse. The running
time of the Pig based J-REX turned out to be around 1.5
times the running time of the MapReduce based J-REX. The
Pig based J-REX still turned out to be much more scalable
than the original (undistributed) J-REX that was developed
in a general-purpose programming language.

Based on our experience with the scalability of the
MapReduce framework and the fact that Yahoo! uses Pig to
analyze extremely large data sets [27], we consider the Pig
platform to provide efficient scalability for data preparation
of large scale software studies.

Debuggability

In our case studies, Pig proved to be a debuggable
platform.

7

Figure 6: Pig Latin script for study three.
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Figure 6: Pig Latin script for study two.

In the third experiment, we prepare data to calculate the evolution of the
complexity of the source code changes. Hassan uses this data to predict software
defects [27].
Required data: This analysis requires the number of changed LOC in Feature In-
troduction Modification (FI) changes, i.e., changes that introduce new features,
for every time period.
Implementation:

Study three re-uses program units 1, 2 and 3 in study one. Three more
program units are required:

1. Checking for every change whether the change is an FI change.
2. Grouping changes per time period. In particular, we use the quarters in

2008 as time spans.
3. Counting changed #LOC.

The corresponding Pig Latin script, which uses the variables from experi-
ment one and two, is shown in Figure 7.

1 FIVERSIONS= filter HISTORYVERSIONS by IsFI($0);
2 TIMESPANS = foreach FIVERSIONS generate TimeSpan($0

, ( "2008/01/01" , "2008/04/01" , "2008/07/01" ,
"2008/10/01" , "2009/01/01" ));

3 TIMESPAN_GROUP = group TIMESPANS by $8;
4 CHANGEDLOC_TIMESPAN= foreach TIMESPAN_GROUP

generate ChangeLOC($0);
5 dump CHANGEDLOC_TIMESPAN;

In the Pig Latin scripts of study three shown in Figure 7, line 2 uses five
specific days to indicate the four quarters in 2008 as time spans and line 4 uses
the key value generated by line 2 as “$8” to group the commits into time spans.
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Figure 6: Pig Latin script for study three.

adding a new program unit or changing one program unit does not affect other
program units as long as the order of the fields of the data did not change. This
flexibility reduces coupling between modules but necessitates good documenta-
tion about the format of the data. Program units also comprise dedicated Java
modules. These Java modules are automatically reused when the program unit
that they belong to is used for data preparation of different MSR studies, which
can be as simple as wrapping an existing tool in a separate process.
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Figure 7: Composition of the data preparation process for the three MSR studies performed
with PIG. Modules with name in bold are used by more than one case study, whereas modules
with name in italic are used by J-REX.

The program units that we identified for the three software studies are sum-
marized in Figure 7. Three out of fourteen program units are reused in all three
case studies and six out of fourteen program units are reused in at least two
case studies (bold in Figure 7). Figure 7 also shows how we composed different
program units into the data preparation process of the three MSR studies. The
most widely re-used program units provide basic functionalities of MSR studies.
The case studies are representative of most tasks done in MSR [17].

To conclude, we made the following findings during the implementation of
three MSR studies using Pig: 1) the modular design of Pig supports the reuse of
program units; 2) existing MSR tools can be migrated to Pig in a straightforward
way.
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5. Comparing Pig and Hadoop

In our previous research, we verified the feasibility of using Hadoop to pre-
pare data for software studies [10, 11] by evaluating the J-REX data preparation
tool on the Hadoop platform. In this section, we use 10 out of the 14 program
units of the three MSR studies (italic in Figure 7) to migrate J-REX to the
Pig platform and compare the Hadoop-based J-REX and the Pig-based J-REX.
We use J-REX to perform the comparison for two reasons: 1) we have both
Hadoop-based and Pig-based implementations of J-REX and 2) J-REX is well
understood by the authors from previous studies and covers most (10 out of 14)
of the program units in this paper.

Table 1: Comparison of the Hadoop and Pig based J-REX source code.

# Java LOC # Pig script # Modules # Boiler-plate
LOC LOC (%)

Hadoop 277 N/A 1 235 (85%)

Pig 761 13 10 342 (45%)

5.1. Source code
We first compare the source code of the Hadoop and Pig implementations.

An overview of this data is shown in Table 1. In our previous research [10], only
277 lines of additional Java code were required to migrate J-REX to Hadoop. In
our case studies, we used less than 10 lines of Pig script for combining program
units and 761 lines of java code for the various J-REX modules.

From our experience, preparing MSR data using Pig requires more Java code
than using Hadoop, for a number of reasons. The Pig implementation has more
modules than Hadoop (10 in Pig versus 1 in Hadoop for our implementation).
Each module repeats boiler-plate code, taking up 45% of all Pig Java code.
Moreover, the modular design of Pig requires researchers to break down the
data preparation process into reusable modules that can be combined together.
Therefore, the researchers cannot treat the overall process as a black box, but
rather need to understand the process and design the interaction between mod-
ules. Hence, each module needs additional boiler-plate code for loading inter-
mediate results and storing the output for later modules. These requirements
increase the burden of developing the data preparation program, as well as the
amount of source code. We consider the design of Java code in Pig as one of
its major disadvantages. That said, once the initial effort for implementing a
module has been invested, subsequent tools likely can reuse modules, reducing
future development effort.

5.2. Program design
Designing a Hadoop-based data preparation program requires designing five

classes for each MapReduce step: a Mapper class, a Reducer class, an Input-
format class, an Outputformat class and a RecordReader class. In addition, a
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driver class is required to combine all the MapReduce steps together. Hence,
not only the Map and Reduce classes require effort. Moreover, one often needs
to design customized data types, which increases effort even more.

In principle, a Hadoop program with multiple MapReduce steps can have
a similar modular design as a Pig program, supporting multiple modules with
intermediate data for each MapReduce step. However, such a design is not
optimal in practice. Each step of MapReduce requires additional design effort
for the five classes mentioned above. Moreover, additional I/O for reading and
saving data to the disk and un-negligible start-up phase overhead are introduced
by each MapReduce step. Therefore, Hadoop users typically design a minimal
number of MapReduce steps.

Pig requires less design effort than Hadoop. Researchers only need to design
one Java class for each step of a Pig-based data preparation program when the
internal operators of Pig, such as GROUP and JOIN, cannot complete the func-
tionality. Two additional classes are needed for the whole Pig program when
customized data loading and storing is used. Since Pig uses an internal data for-
mat (which is similar to JSON [18]), no additional design for input and output
data format of each step or data serialization is required, such that Pig users can
focus on the real data processing. The Pig platform automatically transforms,
schedules and combines Pig program units into a minimal number of MapRe-
duce steps to avoid the overhead from initializing MapReduce and dealing with
intermediate data. Therefore, Pig users typically design the Pig program with
a relatively larger number of modules than the number of MapReduce steps in
Hadoop.

Comparing the design of Hadoop and Pig programs, we first find that al-
though Pig’s modular design brings additional boiler-plate Java code, it assists
in isolating bugs when testing the program. Second, the Pig program units are
easier to reuse than Hadoop program. Third, we find that Pig has as advantage
a less constrained design. For example, users of Pig do not have to design their
program following the MapReduce paradigm. On the other hand, Hadoop users
can customize their programs more. For example, the internal data format may
not be the most suitable one, and users may want to define their own data type
as well as the identity and equality of the customized data type.

5.3. Performance
In addition to the source code and design characteristics, we also compare

the performance of Pig for MSR studies to the performance of Hadoop and non-
distributed programming. Our previous experiment shows that using Hadoop on
a 4 machine-cluster reduces the computation time by 60-70% when analyzing the
CVS [19] source control repository of the Eclipse project [10]. Pig uses a high-
level language that is automatically compiled into Hadoop code, which means
that it sacrifices some performance for the flexibility and ease of implementation.
Here, we want to examine the relative scalability of Pig compared to Hadoop.
The performance evaluation of Pig should include both the running time of MSR
studies and the time spent on iterative analysis.
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Table 2: Configuration of the server machine and the distributed computing environment.

Server machine Distributed computing en-
vironment

# Machines 1 5

CPU 16 × Intel(R) Xeon X5560
(2.80GHZ)

8 × Intel(R) Xeon E5540
(2.53GHz)

Memory 64GB 12GB per server

Network Gigabit Gigabit

OS Ubuntu 9.10 Ubuntu 9.10

Disk type SSD SATA

In the experiment, we analyze three pieces of input data with different sizes
on the non-distributed J-REX, the Hadoop-based J-REX and the Pig-based J-
REX. We first used the optimized, non-distributed J-REX to prepare data from
three major sub-folders of the Eclipse CVS repository on a powerful server ma-
chine (see Table 2). We then ran J-REX on both the Hadoop platform and
the Pig platform. The Hadoop and Pig platforms are deployed in our private
distributed computing environment. The configuration of the distributed com-
puting environment is shown in Table 2. The performance results are shown in
Table 3.

Table 3: Average running time across three runs of J-REX on a single machine, the Hadoop
platform and the Pig platform.

Sub-folder Size On single On Hadoop On Pig
machine platform platform

runtime 11MB 12 min 2 min 1.5 min
e4 219MB 164 min 20 min 23 min
pde 269MB 240 min 16 min 24 min

The average running time across three runs is shown in Table 3. The average
running time of the Pig-based J-REX turned out to be slightly higher than the
average running time of the Hadoop-based J-REX. Even though the original
J-REX ran on a very powerful server, the Pig-based J-REX is much faster than
the original J-REX. These findings seem to confirm recent research findings that
showed that the running time of a Pig program is around 1.3 times as long as
the running time of native Hadoop [20]. However, in our experiments, we found
that Pig sometimes could be more efficient than Hadoop-based J-REX. This
can be explained by the fact that additional I/O is introduced and the Hadoop-
based J-REX stores intermediate data after each step, while the intermediate
data in the Pig-based J-REX is only calculated and stored on demand.

As shown in the introductory example in Section 2, MSR studies require
iterative analysis. Without Pig, MSR researchers may need to run the whole
experiment for MSR studies again and again for every iteration. In our previous
research, running J-REX on the whole Eclipse CVS repository took 80 minutes
in a 10-node cluster [11], which shows that the running time of one iteration is
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not trivial. With Pig, MSR researchers can store and load data into variables as
desired, without having to design and implement data formats and additional
methods, which reduces the overall time to prepare MSR data. Yet, it is very
hard to measure the actual time spent in our case studies on iterative analysis,
for a number of reasons. First, the total time encompasses the time needed to
think about changing the MSR tool and to test the tool, which is very hard
to measure. Second, the learning effect from our earlier experience with the
stand-alone and Hadoop versions of J-REX makes time information unreliable.

Still, we can get an idea of the order of magnitude of difference between
Pig and MapReduce. J-REX on a single machine and the Pig platform both
required development in a similar high-level programming language, such that
given their time difference in Table 3, iterative execution will be much faster for
Pig.

6. Other lessons learnt

In this section, we distill the lessons learnt from our experience with the
three case studies that are not included in the comparison between Hadoop and
Pig in Section 5.

6.1. Data storage
As Pig runs on top of Hadoop, the input data of a Pig program needs to be

loaded into Hadoop data storage, i.e., HDFS [8]. The data prepared by Pig also
needs to be copied from HDFS to the local file system if researchers need to use
other data analysis techniques like R [5] and Weka [6] to analyze the prepared
data. Because software engineering data is typically large, the performance and
efficiency of data storage is important for Pig to prepare data for MSR studies.
We now discuss the advantages and disadvantages of the data storage of Pig.

The advantage of HDFS includes optimized data reading and fault tolerance.
HDFS optimizes the performance of data reading [8], which takes up most of
the I/O in MSR studies [17]. Hence, although data in software repositories is
growing ever larger and faster, the scalability of Pig-based data preparation is
not limited by I/O bandwidth. HDFS also provides a fault tolerance mechanism
to ensure the correctness and completeness of software repository data, since
machine failure is common in large distributed computing environments.

However, HDFS also brings disadvantages to the users of Pig. The most
important disadvantage is that HDFS does not support either updating or ap-
pending data. This disadvantage prevents mining software data incrementally.
In addition, as mentioned above, MSR data needs to be loaded into HDFS
before being processed by Pig, which corresponds to run-time overhead.

6.2. Data structure
Pig Latin’s default data structure is a flexible data format, as mentioned in

Section 5. However, from our experience and the scripts in Figure 4, 5 and 6,
we find that the data format of the input and output of program units in Pig
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Latin is not explicitly specified. Users of Pig need to know the corresponding
data format when they want to reuse the program units, which might introduce
bugs and require additional comprehension effort.

6.3. Debugging and performance optimization
As an important disadvantage, Pig does not provide mature and sophis-

ticated debugging or performance optimization techniques. Debugging Pig is
mostly based on print statements. Even though Pig Latin has keywords such as
LIMIT and SAMPLE to randomly select a representative sample of the data
to assist in verification and debugging, the debugging of the whole pipeline is
still poorly supported. To the best of our knowledge, performance optimization
techniques for Pig program are not readily available either. The performance
optimization is mostly based on users’ experiences and trial-and-error.

7. Limitations and Threats to Validity

This section presents the threats to validity and limitations of our research.

External validity
We chose to present three software studies with Pig. Although the three

experiments have a different motivation, they are all based on mining version
control repositories. Prior research identifies eight major types of MSR stud-
ies [17], but our three software studies are only related to five of them (i.e.,
Metadata analysis, Static source code analysis, Source code differencing, Soft-
ware metrics and Clone detection). Our findings may not generalize to other
software studies. This threat can be countered only by performing more software
studies with Pig in practice.

Construct validity
Our research can include subjective bias. For example, most program units

developed in our case studies re-use modules of J-REX, which was developed
by the authors. Using our own tool as a case study may cause subjectivity bias.
However, in practice one will typically only alter the source code of familiar sys-
tems. In addition, the experience and performance measurements in Section 6
are based on our optimized implementation of the original, MapReduce-based
and Pig-based J-REX. Even though we tried our best to optimize the imple-
mentations to gain better performance, our implementations may not be the
optimal ones. We plan to further optimize our implementations and report the
performance in our future work.

Moreover, program units in Pig are developed in Java. Researchers that
develop ETL tools in other programming languages, such as Python, may not
have the same experience as us. However, the existing tools for software studies
can be re-used by wrapping them in a Java program.
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8. Related Work

In this section, we discuss the related work of this paper in three areas of
software engineering research.

8.1. Domain-Specific Languages for software engineering research
Various languages are currently used in software engineering research. The

Grok language [21], developed by Holt, is based on binary relational algebra for
the purpose of studying software architecture. Using the Grok language, soft-
ware repository data can be stored in a fact database for analysis [21]. Emden
et al. [22] used the Grok language to detect code smells, such as code dupli-
cation, as indicators of bad code quality and the necessity of code refactoring.
A number of other researchers [21] use the Grok language to tackle software
architectural and software analysis problems.

The Dependence Query Language (DQL) [23] is a Domain-Specific Language
developed by Wang et al. to locate source code that depends on other source
code, such as “component A depends on components B and C ”. DQL performs
queries on a pre-extracted System Dependence Graph from the source code to
locate subgraphs matching the query patterns, then it uses text constraints to
further refine the query results.

Emden et al. [22] evaluated their approach using Grok on one Java program
(46 KLOC), whereas DQL [23] was evaluated on four versions of two different
open source projects (130 KLOC in total). However, we deal with substantially
larger data such as the Eclipse source code (7,375 KLOC). Neither Grok, nor
DQL has built-in distribution or multi-threading techniques. Ad hoc program-
ming is required to scale these two languages to large-scale MSR studies. Pig,
on the other hand, provides much better scalability out-of-the-box.

8.2. MSR platforms
Kenyon [24] is a data extractor for different kinds of source control systems.

Kim et al. combined data extracted by Kenyon with CC-Finder [25], a code clone
detector, and a location tracker that tracks code clones across versions [26] to
perform Clone Genealogy Analysis [26].

Relational databases and SQL are widely used as platform for MSR studies.
For example, FLOSSMole [27] is a public relational database that contains data
extracted from a large number of software repositories. Many researchers use
FLOSSMole as a platform. For example, Herraiz et al. [28] used data in FLOSS-
Mole [27] to perform analysis to illustrate that most of the software projects are
governed by short term goals rather than long term goals.

Alitheia Core [29], developed by Gousios et al., is a platform for software
quality analysis. The platform stores extracted software engineering data in a
database and enables software engineering researchers to develop extensions for
their customized experiments on the extracted data.

Even though software engineering researchers perform experiments on the
above platforms, none of the platforms is designed for experiments with large-
scale data. Researchers suffer from either the fact that experiments need a long
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time to finish or cannot even be performed on such platforms. Since Pig is built
on Hadoop, it can scale up easily, even using commodity hardware.

8.3. Scaling software engineering research
There is some existing work on scaling software engineering research, typi-

cally involving ad hoc distributed programs. D-CCfinder [7], for example, scales
CC-Finder [25] to run in an ad hoc distributed environment to support large-
scale clone detection. D-CCfinder reduces the running time for detecting code
clones in the FreeBSD source code from 40 days to 52 hours on an 80-machine
cluster. However, such an ad hoc distributed platform requires additional pro-
gramming and maintenance effort that most software engineering researchers
are not interested in. In contrast to ad hoc distributed platforms, MapReduce-
based data preparation platforms are scalable and general-purpose [12].

In our previous work, Hadoop, a MapReduce implementation, is used to
enable large-scale MSR studies [10, 11]. Even though the MapReduce plat-
form requires much less effort in programming and maintenance than ad hoc
distributed platforms, researchers still need to transform software engineering
research tools into Map and Reduce steps, and such tools are hard to debug on
MapReduce platforms with large-scale software engineering data. Pig provides
a scripting language that is automatically compiled to Hadoop code, to improve
ease of programming. Even though Java programming is still required in Pig,
the programming focuses mainly on the process of the MSR study and reuse of
existing modules.

Other than Hadoop and Pig, some other techniques have been proposed to
provide high-level languages and techniques and are also possible candidates to
scale software engineering research. FlumeJava [30] and PLINQ [31] are ex-
amples of such techniques. FlumeJava provides a Java library to support pro-
cessing data in distributed computing environment in parallel. Java programs
can leverage such a library to enable large-scale data analysis by parallelizing
the processing. Similarly, PLINQ introduces parallel data operations into the
languages of the .NET framework, but does not support distributed comput-
ing. FlumeJava’s open-source version (Plume) is still in its early development
stages, while Hadoop and Pig are much more mature and have already been
widely used in practice.

9. Conclusion

Traditional software analysis platforms fail to perform large-scale MSR stud-
ies with ever larger and more complex data. Even though MapReduce is ca-
pable of being a general platform for MSR studies, migrating traditional non-
distributed MSR tools to MapReduce requires additional design and program-
ming effort, and does not support reuse in practice. In this paper, we evaluate
Pig, a high-level data-processing programming language on top of MapReduce,
to improve the re-usability and scalability of MSR studies.

We use Pig as a data preparation (i.e., Extract, Transform, and Load) lan-
guage for three MSR studies and present our implementation in detail. In
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addition, a performance comparison between Hadoop, Pig and a traditional
non-distributed programming language shows that Pig provides similar scal-
ability as Hadoop, which features a much lower-level distributed computing
paradigm. Finally, we also report the lessons we learnt while using Pig as a
data preparation language for MSR studies.

The most important advantages of Pig include the optimized data reading
performance, the semi-structured data, and modular design. These Pig features
support MSR researchers to prepare data for MSR studies with more flexible
processes and to process large-scale data with reusable modules. However, sev-
eral limitations should not be ignored, such as the large amount of boiler-plate
Java code (although proportionally less than Hadoop), the effort for learning
how to use Pig and the lack of debugging techniques. These limitations either
cause overhead when using Pig, or prevent some MSR studies, such as real-time
log mining. Despite Pig’s limitations, we believe that Pig can be adopted today
by other MSR researchers. Our experience and source code [13] can assist them
in using Pig to perform large-scale MSR studies.
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