
Preserving Knowledge in Software Projects

Omar Alama, Bram Adamsb,∗, Ahmed E. Hassanc

aSEL, School of Computer Science, McGill University, Canada
bMCIS, Département de Génie Informatique et Génie Logiciel, École Polytechnique de Montréal, Canada

cSAIL, School of Computing, Queen’s University, Canada

Abstract

Up-to-date preservation of project knowledge like developer communication and de-
sign documents is essential for the successful evolution of software systems. Ideally,
all knowledge should be preserved, but since projects only have limited resources, and
software systems continuously grow in scope and complexity, one needs to prioritize
the subsystems and development periods for which knowledge preservation is more
urgent. For example, core subsystems on which the majority of other subsystems build
are obviously prime candidates for preservation, yet if these subsystems change contin-
uously, picking a development period to start knowledge preservation and to maintain
knowledge for over time become very hard. This paper exploits the time dependence
between code changes to automatically determine for which subsystems and develop-
ment periods of a software project knowledge preservation would be most valuable. A
case study on two large open source projects (PostgreSQL and FreeBSD) shows that
the most valuable subsystems to preserve knowledge for are large core subsystems.
However, the majority of these subsystems (1) are continuously foundational, i.e., ide-
ally for each development period knowledge should be preserved, and (2) experience
substantial changes, i.e., preserving knowledge requires substantial effort.

Keywords: software maintenance; documentation; knowledge preservation; empirical
analysis; mining software repositories

1. Introduction

The global scale of today’s software development makes it very easy for project
teams to lose track of the context and knowledge about their systems, such as best
practices and design rationale [1, 2, 3]. Even for those projects that have preserved
system knowledge in the form of code comments [1], design documentation, manuals,
tutorials, comprehensive test suites, dedicated system experts, developer training [4]
and/or archives of relevant development artifacts, it is very challenging to keep this

∗Corresponding author
Email addresses: omar.alam@mail.mcgill.ca (Omar Alam), bram.adams@polymtl.ca

(Bram Adams), ahmed@cs.queensu.ca (Ahmed E. Hassan)

Manuscript accepted by Journal of Systems and Software April 2, 2012

knowledge up-to-date [3]. This is problematic, since lack of up-to-date system knowl-
edge has been identified as the second largest root cause of defects in software sys-
tems [4]. Preservation of knowledge is also crucial for decision processes and program
understanding [5].

The reason why up-to-date system knowledge is often lacking is not just ignorance,
but rather that preserving all knowledge simply is infeasible because of the abundance
of knowledge that could be preserved. Software systems keep on growing in size and
complexity over time [6, 7], and this growth is typically accompanied by a growth in
the number of contributors, mailing list discussions and bug reports [8, 9]. Figuring out
for which subsystems preservation of knowledge would be the most valuable and sus-
tainable is complicated. Ideally, so-called “foundational” subsystems, i.e., subsystems
that have many other subsystems building and depending on their APIs (Application
Programming Interfaces), are prime candidates for preservation. Yet, blindly preserv-
ing knowledge of every development period of a foundational subsystem is not feasible
nor efficient, since for some subsystems all periods contain major changes that force
dependent subsystems to change, while for others hardly any period contains major
changes (e.g., only internal bug fixes).

To support practitioners in prioritizing subsystems and development periods for
which knowledge should be preserved the most, it is important to consider the trade-off
between space, time and effort. For example, since HTML rendering is the core busi-
ness of web browsers, the HTML rendering subsystem is a foundational subsystem
on which many other subsystems build (space) and that continuously evolves (time)
because of major performance and functionality changes (effort). Other browser sub-
systems, like the SSL/TLS subsystem, have less subsystems building on them (space),
and change less frequently (time) and significantly (effort). The space and time di-
mensions determine the subsystem and its development periods that are most valuable
to preserve knowledge for, whereas the effort dimension determines how much new
knowledge potentially needs to be preserved. The HTML rendering subsystem is more
valuable to preserve knowledge for than the SSL/TLS subsystem, but requires preser-
vation of the knowledge of almost every development period, which takes significant
effort given the many changes. Hence, in some cases practitioners could opt to preserve
knowledge for SSL/TLS instead.

To support the analysis of the space, time and effort dimensions of knowledge
preservation in real-life software systems, we propose an automated approach to iden-
tify foundational subsystems and periods for a project. The approach is based on our
earlier work on the time dependence of changes [10, 11]. Time dependence of changes
captures for each source code entity E in a particular revision of a software system the
specific revision of all source code entities (such as API methods) on which E builds.
In this paper, we lift time dependence of changes up from revisions to development
periods and from entities to subsystems. This lifted version of time dependence allows
us to calculate for each subsystem in each development period:
• the “foundationality” 1, i.e., the degree to which other subsystems build on the

1Although the word foundationality does not exist in the English dictionary, it has been used by philosophers and even
by some computer scientists .

2

subsystem;
• the “sporadicity”, i.e., how irregularly the foundationality of the subsystem is

distributed across development periods;
• the number of source code changes to a subsystem, i.e., how much new knowl-

edge is added (and potentially should be preserved).
We apply our approach on two large open source systems (PostgreSQL and FreeBSD)

to address the following three research questions:

Q1 Which subsystems should have a higher priority for knowledge preservation?

A project develops few highly foundational subsystems that provide the project’s
core structure and hence should be preserved first.

Q2 Which development periods should have a higher priority for knowledge preserva-
tion?

Most foundational subsystems are continuously foundational, which means that
ideally knowledge should be preserved for every development period.

Q3 How much effort is involved in preserving knowledge of foundational subsystems?

Foundationality of a subsystem in a development period correlates with the num-
ber of changes to the subsystem in that period. In other words, a lot of new
knowledge is added in foundational development periods, which requires more
effort to preserve.

Our work provides practitioners with an automatic approach to help them prioritize
which subsystems to preserve knowledge for. However, since the most foundational
subsystems turn out to require substantial preservation effort (experience most of the
changes), more work is needed on prioritizing the foundational subsystems that need
knowledge to be preserved.

Organization of the Paper. The paper is organized as follows. Section 2 presents
our methodology based on the time dependence of changes. Section 3 presents the
three research questions that we study using our methodology. Section 4 explains the
setup of the two case studies that we performed, and discusses the case study results
for each research question. Section 5 discusses threats to validity, whereas Section 6
discusses related work. Section 7 summarizes our findings and concludes the paper.

2. Methodology

This section introduces the concepts used to measure the space, time and effort
dimensions of knowledge preservation for subsystems of a software project. Similar to
other work [6], a subsystem can be any logical (e.g., all functions collaborating on a
major feature) or physical (e.g., file system directories) collection of source code files.
Two of our measures, i.e., foundationality and sporadicity, are based on the concept
of time dependence between source code entities. This concept was introduced in our
previous work to track the progress of projects [10] and to detect foundational periods

3

void sub1.f1(void){
sub2.f2();
sub3.f3();

}

(a)

void sub1.f1(void){
sub2.f2();
sub1.f4();

}

(b)

Add
sub1.f4()

Add
sub2.f2()

Change 1 Change 3 Change 4 Change 5

Modify
sub1.f4()

Modify
sub1.f1()

Change 6 Change 7Change 2

Period 1 Period 2 Period 3

Add
sub1.f1()

remove

add

Period 4

Add
sub3.f3()

Modify
sub3.f3()

(c)

Sub1 Sub1

remove

add

Sub2 Sub3 Sub1Sub3

Period 1 Period 2 Period 3 Period 4

(d)

Figure 1: 1a) and 1b show a source code snippet before and after source code change 7, respectively. The
corresponding change-level time dependence relations are shown in Figure 1c. Figure 1d lifts up the change-
level time dependence relations to the subsystem level.

of software systems [11]. Here, we refine the concept in space by allowing specific
subsystems to be foundational at different points in time, instead of the whole system at
once. The remainder of this section first outlines the necessary background information
on time dependence, then presents all three measures used in this paper as well as how
we implemented them.

2.1. Time Dependence between Entities

Entity-level time dependence establishes time dependence relations between dif-
ferent revisions of source code entities (functions and variables). An entity E that is
changed at time T builds (depends) on the most recent revision of all entities to which
accesses or calls existed (possibly removed now) or were added at time T . Figure 1 il-
lustrates entity-level time dependence using a small example that runs across four time
periods. Change 7 modifies function f1() in Figure 1a by removing the call to f3()
and adding a call to f4(), resulting in Figure 1b. Hence, f1() in change 7 builds on
the last revision of f1() itself (Change 4), the last revision of all entities called before
Change 7 (f2() and f3()), and the last revision of newly called entities (f4()).

4

In this paper, we focus on time dependence in-the-large instead of on time depen-
dence in-the-small. More in particular, we lift up time dependence from the level of
individual changes/revisions to the changes’ encompassing periods (such as quarters
or years), and, more importantly, from time dependence between individual entities to
time dependence between the subsystems to which those entities belong. Hence, time
dependence has a notion of space (subsystems) and time (periods). Figure 1d shows
how all change-level dependencies between entities in Figure 1 were lifted up to period-
level entities between subsystems. Note that the “add” edge between “sub1.f1()” and
“sub1.f4()” is lifted up into a self-edge. We can now define the concepts needed to
study knowledge preservation.

2.2. Measures for Knowledge Preservation

Space Dimension: Foundationality. Foundational subsystems and development peri-
ods are subsystems and periods that have a large impact on the development of other
subsystems. The latter subsystems heavily access or call variables and functions devel-
oped or changed by a foundational subsystem in a foundational period. In other words,
the changes to the foundational subsystem in a foundational development period trig-
gered changes in many, possibly all dependent subsystems. As such, it is important to
preserve knowledge of the specific development that happened during this period. If
the subsystem’s change in this development period would not have triggered changes
in so many other subsystems, that development period would not be foundational for
the subsystem and would seem less critical to preserve knowledge for.

The foundationality of a subsystem S in a particular development period D for-
mally is defined as the number of incoming time dependence relations for S in period
D originating from subsystems in period D or later. A higher foundationality means
that more subsystems changed later on because of the changes to S in D. For example,
the foundationality of “Sub2” in “Period 1” is 1 (edge from “Sub1” in “Period 4”), be-
cause to make the changes to “Sub1” in “Period 4”, one needs knowledge about “Sub2”
in “Period 1”. The foundationality of “Sub1” in “Period 4” is also 1 (self-edge).

The total foundationality of a subsystem is the sum of the subsystem’s founda-
tionalities across all development periods [12]. A higher total foundationality means
that more subsystems changed later on because of changes to S. For example, “Sub1”
has a total foundationality of 3, whereas for “Sub2” it is 1, meaning that “Sub1” has
played a more foundational role in the lifetime of the project (its changes forced more
dependent subsystems to change).

Time Dimension: Sporadicity. A second important concept is the sporadicity of a sub-
system. For example, Figure 2a plots the foundationality of PostgreSQL’s odbc sub-
system in each period (PostgreSQL is one of the case study subject systems). odbc
is a “sporadically foundational” subsystem, since its foundationality is concentrated
in only two, clearly distinct development periods. In contrast, FreeBSD’s kern sub-
system (FreeBSD is the second case study subject system) in Figure 2b experiences
dramatic variation in foundationality, almost continuously throughout all development
periods. Hence, kern can be considered a “continuously foundational” subsystem. For
such subsystems, it can be very hard to prioritize development periods for knowledge

5

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

1
9
9
7	

1
9
9
8	

1
9
9
9	

2
0
0
0	

2
0
0
1	

2
0
0
2	

2
0
0
3	

2
0
0
4	

2
0
0
5	

2
0
0
6	

2
0
0
7	

2
0
0
8	

Fo
un

da
'o

na
lit
y	

Time	

(a) PostgreSQL

0	

10000	

20000	

30000	

40000	

50000	

1
9
9
4	

1
9
9
5	

1
9
9
6	

1
9
9
7	

1
9
9
8	

1
9
9
9	

2
0
0
0	

2
0
0
1	

2
0
0
2	

2
0
0
3	

2
0
0
4	

2
0
0
5	

2
0
0
6	

2
0
0
7	

2
0
0
8	

2
0
0
9	

Fo
un

da
'o

na
lit
y	

Time	

(b) FreeBSD

Figure 2: The foundationality of the odbc subsystem in PostgreSQL and the kern subsystem in FreeBSD
across development periods. odbc is more sporadically foundational than kern.

preservation, since dependent subsystems are impacted by changes to the foundational
subsystem almost all the time.

We capture sporadicity of a subsystem in terms of the normalized entropy of foun-
dationality over time [13], i.e.:

sporadicity(s) = 1− normalized entropy(s),∀subsystems s

= 1 +
1

log2 (n)
×

n∑
i=1

pi(s)× log2 (pi(s)) ,∀subsystems s

with

pi(s) =
foundationality of s in period i

total foundationality of s
n∑

i=1

pi(s) = 1

6

Sp
or
ad
ic
ity

lo
w

hi
gh

low high
Foundationality

1 2

3 4

continuous
unneeded

sporadic
needed

sporadic
unneeded

continuous
needed

Figure 3: Comparison of the concepts of foundationality and sporadicity.

n = total number of development periods

This entropy expresses how uniform the distribution of foundationality is across
time. A normalized entropy of 1 means that foundationality is uniformly distributed
across time (“continuous”), whereas a normalized entropy of 0 means that all founda-
tionality is concentrated in one development period (“sporadic”). Since we do not want
to measure uniformity, but sporadicity, we subtract the normalized entropy from 1. In
other words, if each development period experiences the same foundationality, the spo-
radicity is 0 (p(s) = 1

n), i.e., the foundationality is continuous. If, on the other hand, all
foundationality is focused in one development period, then sporadicity is 1 (pj(s) = 1
and pi(s) = 0,∀i 6= j). The sporadicity of odbc is 0.63, whereas the sporadicity of
kern is 0.07, i.e., the foundationality of odbc is much more sporadic. This is because
odbc was migrated to a different source control repository in 2002 [11], causing the
extremely low foundationality afterwards (Figure 2a).

Effort Dimension: Number of Changes. The effort involved with preserving the knowl-
edge of a subsystem in a particular development period follows from the amount of
new knowledge about a subsystem added in that period. To approximate this amount
of new knowledge, we use the number of source code changes to the subsystem in that
period. Alternative measures could be the size of source code changes or the volume
of messages on mailing lists, but a 100% accurate measure is hard to achieve.

Discussion. The relation between foundationality and sporadicity is illustrated in Fig-
ure 3. Subsystems in zones 1 and 3 are not that foundational (we call them “hardly
foundational”), and hence have a lower need (priority) for up-to-date preservation of
project knowledge. If one would be interested in the subsystems in zone 3, typically
knowledge would need to be preserved for most of the subsystems’ development pe-
riods. Zones 2 and 4 theoretically correspond to the most foundational subsystems
(“highly foundational”). Preservation of knowledge is recommended for both zones,

7

but for subsystems in zone 2 it is easier to prioritize knowledge preservation, since
there are only a limited number of development periods to consider.

The number of changes and foundationality are two different measures, since it is
possible for development periods to be foundational based on only one source code
change, for example a new version of a library that is imported into a source code
repository. All dependent subsystems will need to update their dependency on this li-
brary, introducing a substantial number of time dependency edges, and hence increas-
ing foundationality.

The opposite is also possible, i.e., a non-foundational development period with
thousands of source code changes, for example to the “main” function of a system.
Although our definition of foundationality takes these changes into account via time
dependence self-edges, the absence of any incoming relation from other subsystems
generally leads to a low foundationality. Hence, such changes typically end up with
a low priority for knowledge preservation, unless other dependencies would be taken
into account in addition to time dependence. We consider this to be future work.

2.3. Implementation

The source control repository of a project (e.g., CVS or SVN) contains all the in-
formation required to calculate foundationality, sporadicity and the number of changes.
The main issue is that such repositories typically contain rather low-level information.
Instead of subsystem-level information like “subsystem 1 now depends on subsystem
2, which was last changed 1 quarter ago” or at least source code entity-level informa-
tion like “a function call to g was added to function f, and g was last changed 5 weeks
ago”, repositories typically contain line-level information like “line 5 was changed on
the 8th of December 2011”.

In order to lift up the line-level information to the subsystem- and period-level re-
quired for our purposes, one can use evolutionary extractors like C-REX [14]. Such ex-
tractors statically analyze all change transactions that happened over time. They parse
the source code changes to identify added and removed function calls and variable
accesses, then link these calls and accesses to the files containing the corresponding
function and variable definitions. Since static analysis is used, this linking is not 100%
accurate. For example, two files could both contain a function with the same name.
Ideally, the actual build configuration should be considered to know which of the two
files is really used in a particular release of the product, however we did not do this for
this paper (nor for our previous work [10, 11]).

In this paper, we use the C-REX evolutionary extractor and some scripts that lift
up function- and week-level information to subsystem- and quarter-level, and calculate
the metrics discussed in this section. C-REX ignores changes done for indentation or
copyright updates [15]. Furthermore, it follows a lexical approach to process source
code changes, not a full parser. This allows processing uncompilable code changes, but
(as mentioned above) slightly reduces the accuracy of the linking. To address this, we
use heuristics based on the most specific common super-folder. For example, if files
“/a/b/c/d.c” and “/a/b/e/f.c” contain a function named “f” and a third file “/a/b/c/g.c”
calls “f”, the most specific common super-folder of “/a/b/c/d.c” and “/a/b/c/g.c” is
“a/b/c”, whereas for “/a/b/e/f.c” and “/a/b/c/g.c” it is “a/b”. Since “a/b/c” is longer

8

than “a/b”, we resolve the call to “f” to “/a/b/c/d.c”, since the latter file likely is related
more closely to “/a/b/c/g.c”.

3. Research Questions

Using our methodology, we study three research questions, one for each dimension
of knowledge preservation:

Q1 Which subsystems should have a higher priority for knowledge preservation?

According to the previous section, foundational subsystems are the subsystems
that we would give a high priority for knowledge preservation. Hence, we are
interested in which subsystems are foundational for a given software project. Do
foundational subsystems provide core functionality (i.e., system libraries or com-
ponents with crucial APIs that provide the essential structure for other subsys-
tems), or can non-core end user subsystems be foundational as well?

Q2 Which development periods should have a higher priority for knowledge preserva-
tion?

Does a subsystem typically exhibit short bursts of foundationality (sporadically
foundational subsystem), or is it uniformly foundational throughout the lifetime
of the project (continuously foundational subsystem)? It is easier for sporadically
foundational subsystems to determine the development periods that should have
the highest priority for knowledge preservation.

Q3 How much effort is involved in preserving knowledge of foundational subsystems?

In previous work [11], we found that foundational periods typically experienced
a high number of source code changes. If the same holds at the level of foun-
dational subsystems, preserving knowledge for foundational subsystems will re-
quire substantial effort. Hence, in this question we study if there is a correlation
between the foundationality of subsystems in development periods and the num-
ber of changes performed to these subsystems.

4. Case Study

To explore the three research questions, we performed a case study on two large,
long-lived open source projects. We first present the two studied systems, then present
the results for our three questions.

Studied Systems

For our case study, we used the source code histories of the open source Post-
greSQL (1996–2008) and FreeBSD (1993–2009) projects, as explained by Table 1.
PostgreSQL is a relational database system of which the original design goes back to
the 1980s [18], whereas FreeBSD is an operating system distribution derived from the

9

Table 1: Characteristics of the studied systems.
PostgreSQL FreeBSD

type DBMS Operating System
CVS module pgsql/ [16] src/ [17]

period 10/1996–06/2008 07/1993–12/2009
#quarters 47 66
#changes 84,311 1,074,858
#entities 31,863 617,000

#files 2,053 37,724
#bug fixes 22,913 144,582

#subsystems 64 957

Berkeley flavour of UNIX [19]. We studied the FreeBSD system including the ker-
nel. We used quarters (3 sequential months) as “period”, since it is a common time
period for project planning (other time periods could easily be explored using our ap-
proach) [20]. We picked both systems due to their long and archived history of changes
(Table 1), and our experience with them from our prior work [10, 11]. The two systems
being from two different domains (databases and operating systems) helps us validate
the generality of our findings across different domains.

Before starting our case studies, we studied the available documentation for Post-
greSQL and FreeBSD. On the one hand, since both projects have academic roots and
later gathered a large developer and user community, many books, papers and tutori-
als have been written on PostgreSQL and FreeBSD. On the other hand, keeping this
documentation up-to-date requires substantial effort.

For example, both projects dedicate specific developers to documentation and use
collaborative media like wikis to actively involve users in the documentation process
(“Consider contributing your knowledge back.” [21]). Furthermore, FreeBSD has a
dedicated “documentation project” with explicit todo lists [22]. The FreeBSD bug
report system also lists numerous entries for outdated documentation [23]. At the time
of writing (November 2010), there were 37 critical documentation bug reports, and 293
non-critical ones. For example, there was no documentation for “The New SCSI layer
for FreeBSD (CAM)”, and large parts of the architecture handbook and USB audio
support were outdated. PostgreSQL has a smaller list (6 entries) of open problem
reports related to documentation [24], which mainly contains more technical issues
such as migration to other documentation formats.

To address our research questions, we used the approach outlined in C-REX (Fig-
ure 2.3) on the CVS repositories of PostgreSQL and FreeBSD (Table 1). As proposed
by prior work [6], this paper considers the second level directories as subsystems of
PostgreSQL (e.g., odbc in /interfaces/odbc/Attic/) and the fourth level directories as
subsystems of FreeBSD (e.g., dev in /freebsd/src/sys/dev/cxgb/). As mentioned ear-
lier, we wrote scripts to calculate the three metrics from Section 2.2.

10

0	
20000	
40000	
60000	
80000	

100000	
120000	
140000	
160000	
180000	
200000	

u)
ls	

ac
ce
ss
	

st
or
ag
e	

co
m
m
an
ds
	

op
)m

ize
r	

ca
ta
lo
g	

po
st
m
as
te
r	

pg
_d

um
p	

th
re
ad
	

lib
pg
ea
sy
	

lib
	

re
ge
x	

re
w
rit
e	

sn
ow

ba
ll	

re
gr
es
s	

pg
in
se
rt
	

m
b	 tc
l	

da
te
)m

e	
lib
pg
tc
l	

sc
rip

ts
	

lo
ca
le
	

m
on

ito
r	

pg
_c
on

fig
	

pg
_p

as
sw

d	
)o

ga
	

pg
_c
on

tr
ol
da
ta
	

C-‐
co
de

	
en

ta
b	

st
rin

g	
pg
_e
nc
od

in
g	

pg
ev
en

t	

Fo
un

da
'o

na
lit
y	

(a)

0	
100000	
200000	
300000	
400000	
500000	
600000	
700000	
800000	
900000	

de
v	

he
im

da
l	

ca
m
	

ha
ck
	

nf
ss
er
ve
r	

w
pa
_s
up

pl
ic
an
t	

la
rn
	

ro
ut
e6
d	

lib
kv
m
	

sa
il	

vm
st
at
	

xi
ns
ta
ll	

co
m
_e
rr
	

kr
b	

m
or
se
	

qu
ot
ac
he

ck
	

vn
co
nfi

g	 su
	

po
six

4	
sy
sc
on

s	
bu

gfi
le
r	

pr
oc
st
at
	

lib
co
m
_e
rr
	

du
m
pc
is	

lo
ca
le
	

w
lc
on

fig
	

rp
c.
yp
xf
rd
	

ru
p	

di
g	

tp
ut
	

bo
ot
pg
w
	

kd
b_

in
it	

re
ni
ce
	

yp
po

ll	
w
ha
Gs
	

ke
yl
og
ou

t	

Fo
un

da
'o

na
lit
y	

(b)

Figure 4: Distribution of total foundationality across the subsystems of (a) PostgreSQL and (b) FreeBSD.
The dashed line represents the border between highly and hardly foundational subsystems based on our
threshold.

Q1. Which subsystems should have a higher priority for knowledge preservation?

To facilitate our discussion, we picked a meaningful threshold to distinguish be-
tween hardly and highly foundational subsystems. By no means this is the only possible
threshold, since the right threshold to use depends on the resources (such as time and
personnel) available to an organization for preserving knowledge. If more resources
are available, a lower threshold should be used to consider more subsystems as highly
foundational. Figure 5 plots the distribution of the number of highly foundational sub-
systems for the range of foundationality values of the subsystems in PostgreSQL and
FreeBSD. We can see that this number changes slowly for high foundationality values,
yet for small values the number increases rapidly. This suggests diminishing returns
when picking a threshold that is too low.

To focus our discussion, we selected a threshold based on the differences (deltas)
in foundationality between neighbouring subsystems, as visualized by the horizontal
lines in Figure 5. These differences are roughly decreasing towards less foundational
subsystems. Hence, we selected as highly foundational all subsystems starting from
the subsystem with the highest foundationality down to the first subsystem with a delta

11

0 50000 100000 150000 200000

1
2

5
10

20
50

foundationality

#s
ub

sy
st

em
s

w
ith

 h
ig

he
r f

ou
nd

at
io

na
lit

y

foundationality threshold=47208

(a)

0e+00 2e+05 4e+05 6e+05 8e+05

1
5

10
50

10
0

50
0

10
00

foundationality

#s
ub

sy
st

em
s

w
ith

 h
ig

he
r f

ou
nd

at
io

na
lit

y

foundationality threshold=170385

(b)

Figure 5: Plot with for all the possible choices of foundationality threshold in (a) PostgreSQL and (b)
FreeBSD the number of subsystems with higher foundationality, i.e., the number of highly foundational
subsystems. The dashed line shows the threshold that we used. The delta in foundationality of a subsystem
corresponds to the length of the horizontal line ending at the subsystem’s foundationality value.

12

0	
50	
100	
150	
200	
250	
300	
350	
400	
450	
500	

u)
ls	

ac
ce
ss
	

st
or
ag
e	

co
m
m
an
ds
	

op
)m

ize
r	

ca
ta
lo
g	

po
st
m
as
te
r	

pg
_d

um
p	

th
re
ad
	

lib
pg
ea
sy
	

lib
	

re
ge
x	

re
w
rit
e	

sn
ow

ba
ll	

re
gr
es
s	

pg
in
se
rt
	

m
b	 tc
l	

da
te
)m

e	
lib
pg
tc
l	

sc
rip

ts
	

lo
ca
le
	

m
on

ito
r	

pg
_c
on

fig
	

pg
_p

as
sw

d	
)o

ga
	

pg
_c
on

tr
ol
da
ta
	

C-‐
co
de

	
en

ta
b	

st
rin

g	
pg
_e
nc
od

in
g	

pg
ev
en

t	

#fi
le
s	

(a)

0	

1000	

2000	

3000	

4000	

5000	

de
v	

cp
io
	

to
ol
s	

pk
g_
in
st
al
l	

nd
p	

ne
7s
o	

ge
nc
at
	

pw
d_

m
kd
b	

w
at
ch
	

uu
en

co
de

	
lib
bl
ue

to
ot
h	

tc
on

v	
co
nf
	

lfs
_c
le
an
er
d	

m
ak
ew

ha
7s
	

gz
ip
	

jo
in
	

re
vn
et
gr
ou

p	
lib
te
rm

	
fif
ol
og
	

lim
its
	

nf
sio

d	
sp
pp

co
nt
ro
l	

ne
xt
bo

ot
	

di
rn
am

e	
m
ou

nt
_f
de

sc
	

#fi
le
s	

(b)

Figure 6: Distribution of the #files in each subsystem in the last studied period of (a) PostgreSQL and (b)
FreeBSD. The subsystems are sorted by decreasing total foundationality (cf. Figure 4). Subsystems that no
longer exist in the last studied period were awarded the median #files across all subsystems.

larger than a particular value (one tenth of the maximum delta, i.e., 8,452 for Post-
greSQL and 28,398 for FreeBSD). This threshold corresponds to the dashed vertical
line on Figures 4a, 4b and 5, which separates hardly (left) and highly (right) founda-
tional subsystems.

Figures 4a and 4b plot the distribution of total foundationality across the subsys-
tems of PostgreSQL and FreeBSD. We observe that only a small percentage of sub-
systems have a high total foundationality. Table 2 lists the top 20 most foundational
subsystems of PostgreSQL and FreeBSD, including all highly foundational ones (based
on our threshold). Only 9.4% of the subsystems in PostgreSQL (6 out of 64) and 1.4%
of the subsystems in FreeBSD (13 out of 957) are highly foundational.

The highly foundational subsystems all provide core functionalities. For example,
the top 5 subsystems in PostgreSQL are utils (built-in data types and routines for mem-
ory management, database transactions and text encoding), nodes (structure for stor-

13

Table 2: Table showing for the top 20 most foundational subsystems for PostgreSQL (out of 64) and for
FreeBSD (out of 957): (1) total foundationality (Found.), (2) sporadicity (Spor.), and (3) the Spearman
correlation between each quarter’s foundationality and total number of changes. Bold numbers for Found.
highlight highly foundational subsystems, whereas bold numbers for Spor. highlight sporadically founda-
tional subsystems.

PostgreSQL FreeBSD
Subsystem Found. Spor. Corr. Subsystem Found. Spor. Corr.

utils 193,533 0.11 0.68 dev 918,375 0.05 0.79
nodes 109,014 0.37 0.86 kern 838,289 0.07 0.67
access 105,867 0.15 0.61 i386 554,306 0.18 0.94
odbc 74,289 0.63 0.99 sys 444,248 0.19 0.40

storage 67,762 0.18 0.75 gcc 354,610 0.61 0.98
libpq 47,208 0.14 0.63 user.bin 299,445 0.49 0.92

commands 37,798 0.05 0.79 libc 291,723 0.23 0.78
port 33,798 0.51 0.82 netinet 244,350 0.12 0.67

optimizer 29,798 0.16 0.91 boot 242,008 0.30 0.91
parser 29,269 0.18 0.91 net 206,489 0.18 0.68
catalog 25,506 0.16 0.87 gdb 173,414 0.73 0.98

executor 24,073 0.17 0.82 contrib 171,629 0.35 0.95
postmaster 21,782 0.15 0.79 binutils 170,385 0.68 1.00

tcop 19,597 0.20 0.75 pc98 141,303 0.45 0.97
pg dump 19,357 0.21 0.85 vm 139,107 0.20 0.90

ecpg 18,708 0.30 0.91 amd64 138,220 0.15 0.84
thread 16,210 0.80 1.00 perl5 133,159 0.96 1.00
psql 11,314 0.27 0.96 libstdc++ 113,946 0.76 1.00

libpgeasy 6,564 0.99 0.88 openssh 105,528 0.49 1.00
initdb 5,461 0.55 1.00 openssl 105,429 0.68 1.00

ing SQL queries), access (query algorithms based on b-trees and r-trees), odbc (API
for accessing PostgreSQL on the Windows platform [25]), and storage (manages the
PostgreSQL storage system). In FreeBSD, the top 5 subsystems are kern (kernel im-
plementation), dev (device drivers), i386 (architecture-specific kernel implementation
for the i386 platform), sys (kernel header files), and gcc (GCC compiler).

Hardly foundational subsystems turn out to be subsystems that either do not provide
essential functionality, or represent “consumer” subsystems like end user applications
and scripting engines. A consumer subsystem only builds on (consumes) other subsys-
tems, without providing functionality to other subsystems in return. Such subsystems
are less important to preserve knowledge for, since they are not of interest to developers
of other subsystems.

Examples of hardly foundational subsystems in PostgreSQL are soundex (user-
defined function for matching based on similar sounding names), pg encoding (utility
to check encoding of data) and pg id (id utility for shell scripts), whereas examples of
consumer subsystems are cli (command line interface), main (main module of Post-
greSQL) and python (Python interface). Examples of hardly foundational subsystems

14

in FreeBSD are scrshot (screenshot utility), setpmac (run command with different
MAC process label) and fib (Fibonacci heap library), whereas examples of consumer
subsystems are perl (Perl interpreter), dnsquery (DNS query utility) and keylogin
(decryption tool).

Are foundational subsystems by definition larger than non-foundational ones? Fig-
ures 6a and 6b plot the number of files for each subsystem (in the last studied period),
ordered by decreasing total foundationality (cf. Figure 4). For subsystems that did
not exist anymore in the last studied period, we used the median file size across all
subsystems.

Highly foundational subsystems tend to be larger than hardly foundational ones. In
PostgreSQL, the median number of files for highly foundational subsystems is 139.5
files compared to 19 for hardly foundational subsystems, whereas in FreeBSD it is
1,469 compared to 6. Overall, the Spearman correlation between foundationality and
file size is 0.73 for PostgreSQL and 0.69 for FreeBSD, i.e., moderately high. Hence,
hardly foundational subsystems tend to be larger.

Of the four largest subsystems of PostgreSQL, utils is highly foundational, whereas
(from left to right) port (substitute system APIs for the Windows platform), regress
(regression test and infrastructure) and include (shared interfaces across all subsys-
tems) are hardly foundational. For FreeBSD, user.bin (UNIX system utilities), libc (C
standard library) and dev are highly foundational. openssl (SSL/TLS library) on the
other hand is hardly foundational (#20 in Table 2).�

�

	
Highly foundational subsystems, i.e., subsystems of which knowledge should be
preserved first, correspond to large, core subsystems. Subsystems with lower pri-
ority to preserve knowledge for either provide less essential functionality, or rep-
resent consumer subsystems like end user applications.

Q2. Which development periods should have a higher priority for knowledge preser-
vation?

In the previous research question, we prioritized foundational subsystems from a
knowledge preservation point of view. However, do such subsystems exhibit sporadic
periods of foundationality, or are they continuously foundational throughout the life-
time of a project? A subsystem that exhibits only sporadic periods of foundationality
intuitively should be easier to preserve knowledge for, since only a relatively limited
number of development periods is foundational. On the other hand, subsystems that
are foundational throughout the lifetime of a project continuously undergo restructur-
ing and refactoring that impact hundreds of other subsystems. Such continuously foun-
dational subsystems require knowledge preservation of most (if not all) development
periods, since there is no single most foundational development period with highest
priority.

Figures 7a and 7b plot the distribution of sporadicity across subsystems, sorted in
descending order. These curves are clearly different from each other. Whereas the
distribution of sporadicity follows a concave trend for FreeBSD, PostgreSQL follows
a much more accidental trend, with some plateaus.

15

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

co
m
m
an
ds
	

lib
pq

	
ac
ce
ss
	

ca
ta
lo
g	

ex
ec
ut
or
	

pa
rs
er
	

pg
_d

um
p	

pl
pg
sq
l	

no
de

s	 lib
	

tc
l	

bo
ot
st
ra
p	

pl
py
th
on

	
sc
rip

ts
	

ex
am

pl
es
	

pg
_c
on

tr
ol
da
ta
	

od
bc
	

pg
_c
on

fig
	

re
ge
x	

re
gr
es
s	

m
b	

lib
pq

++
	

pg
_e
nc
od

in
g	

en
ta
b	

lib
pg
ea
sy
	

sn
ow

ba
ll	

in
cl
ud

e	
lo
ca
le
	

pg
4_
du

m
p	

ar
ra
y	

st
rin

g	
pg
ev
en

t	

Sp
or
ad

ic
ity

	

(a)

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

de
v	

0p
d	

m
d5

	
rp
c	

m
ou

nt
_i
fs
	

tz
se
tu
p	

m
ou

nt
_m

sd
os

kl
dl
oa
d	

lib
uf
s	

rt
so
ld
	

m
ks
na
p_

ffs
	

w
pa
_s
up

pl
ic
a

rp
c.
rq
uo

ta
d	

pp
ps
ta
ts
	

le
ss
	

Em
ed

	
ra
nl
ib
	

lib
ka
dm

	
rp
c.
yp
xf
rd
	

lin
ux
	

sg
sc
	

rp
c.
yp
up

da
te
d	

ge
tN
AM

E	
gd
to
a	 rs
	

kt
rd
um

p	
lib
g+
+	

hw
pm

c	
cp
uc
on

tr
ol
	

kd
es
tr
oy
	

Sp
or
ad

ic
ity

	

(b)

Figure 7: Distribution of sporadicity across (a) PostgreSQL and (b) FreeBSD subsystems. The dashed line
represents the border between sporadically and continuously foundational subsystems.

Similar to foundationality, the right sporadicity threshold to use depends on the
number and kind of resources available. To determine a sporadicity threshold for our
discussion, we basically use the same delta-based methodology as for the foundation-
ality threshold in Q1. This time, Figure 5 plots the number of subsystems with lower
sporadicity for the range of sporadicity values of the subsystems in PostgreSQL and
FreeBSD (sorted from low to high). Since the deltas in sporadicity in Figure 8 (length
of horizontal lines) do not follow the steady downward trend of for example Figure 5,
we manually picked the threshold between both groups by looking for an out-of-place
long delta (this is the most clear for PostgreSQL). With the dashed line thresholds,
35.9% of the PostgreSQL subsystems (23 out of 64) and 5.1% of the FreeBSD subsys-
tems (49 out of 957) would be continuously foundational.

Using these thresholds, we now analyze sporadically and continuously foundational
subsystems in PostgreSQL and FreeBSD, then compare them to highly and hardly

16

0.2 0.4 0.6 0.8 1.0

1
2

5
10

20
50

sporadicity

#s
ub

sy
st

em
s

w
ith

 lo
w

er
 s

po
ra

di
ci

ty

sporadicity threshold=0.416630344

(a)

0.2 0.4 0.6 0.8 1.0

1
5

10
50

10
0

50
0

10
00

sporadicity

#s
ub

sy
st

em
s

w
ith

 lo
w

er
 s

po
ra

di
ci

ty

sporadicity threshold=0.421261499

(b)

Figure 8: Plot with for all the possible choices of sporadicity threshold in (a) PostgreSQL and (b) FreeBSD
the number of subsystems with lower sporadicity, i.e., the number of sporadically foundational subsystems.
The dashed line shows the threshold that we used. The delta in sporadicity of a subsystem corresponds to
the length of the horizontal line ending at the subsystem’s sporadicity value.

17

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 20000	 40000	 60000	 80000	 100000	 120000	 140000	 160000	 180000	 200000	

Sp
or
ad

ic
ity

	

Founda/onality	

1 2

3 4

odbc
portinitdb

libpq
storage access

nodes

commands
optimizer

catalog/executor

thread

libpgeasy

utils

(a)

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 100000	 200000	 300000	 400000	 500000	 600000	 700000	 800000	 900000	 1000000	

Sp
or
ad

ic
ity

	

Founda/onality	

1 2

3 4
devnetinet

kern

gcc
gdblibstdc++

perl5

user.binopenssh
opensslbinutils

contrib
pc98

(b)

Figure 9: Scatterplot of sporadicity vs. foundationality for (a) PostgreSQL and (b) FreeBSD.

foundational subsystems.

Sporadically Foundational Subsystems in PostgreSQL

The most continuously foundational subsystems of PostgreSQL are commands
(random collection of portal and utility support code), utils (see question Q1) and
libpq (PostgreSQL front-end library). Other core components of PostgreSQL, such
as postmaster (dispatcher of front-end queries to back-end), optimizer (query plan
generation) and catalog (system catalog manipulation) are also highly continuously
foundational.

The most sporadically foundational PostgreSQL subsystems are those subsystems
with the lowest foundationality. Many of these subsystems were introduced in the very
first quarter of the PostgreSQL project, but were never foundational again afterwards
(no changes triggered other subsystems to change). One exception is libpgeasy (sim-
plified version of libpq), which is the 19th most foundational subsystem in Table 2.
Four other highly foundational subsystems are sporadically foundational as well, i.e.,

18

thread (threading API), odbc (see question Q1), initdb (database initialization) and
port (see question Q1).

Sporadically Foundational Subsystems in FreeBSD

The most continuously foundational subsystems of FreeBSD are dev (see ques-
tion Q1), kern (kernel implementation) and netinet (IP/TCP protocol stack). Similar
to PostgreSQL, most of the continuously foundational subsystems are core subsys-
tems. The findings for sporadically foundational subsystems are also similar to those
of PostgreSQL. There are nine sporadically foundational subsystems among the 20
most foundational subsystems in Table 2, i.e., perl5 (Perl), libstdc++ (C++ runtime
support), gdb (debugger), binutils (linking and assembly tools), openssl (see question
Q1), gcc (compiler), user.bin (see question Q1), openssh (secure network protocol)
and pc98 (port of FreeBSD for the NEC PC-98x1 architecture).

All of these subsystems are core development tools or libraries that are not main-
tained by the FreeBSD development team. Instead, they are imported at very specific
moments in time for customization [11], which can trigger significant changes in other
subsystems. This explains why these subsystems are sporadically foundational. Of
course, this does not mean that the imported subsystems do not evolve in between
the import times. The full development history is maintained in the subsystems’ own
source code repository where all regular development occurs. FreeBSD only sees the
major snapshots.

Sporadicity vs. Foundationality

Up until now, we have found that the top foundational subsystems generally tend to
be continuously foundational, which is relatively bad news from the point of knowledge
preservation (hard to prioritize a specific period to preserve knowledge for). Here, we
are interested in better understanding the specific relation between foundationality and
sporadicity. For this, we use a scatter plot visualization similar to Figure 3.

Figures 9a and 9b provide interesting insights into the differences between Post-
greSQL and FreeBSD. We demarcated the four zones of Figure 3 based on the thresh-
olds used for foundationality in question Q1 and sporadicity earlier in this section.
Although other thresholds obviously will shift subsystems around between the four
zones, the major trends discussed below remain similar.

In PostgreSQL, most subsystems are in zone 1, with some subsystems in zones 3
and 4, and even fewer in zone 2. This means that most subsystems do not urgently
require knowledge preservation (zones 1 and 3). Of those subsystems that should have
a higher priority for knowledge preservation (zones 2 and 4), most are continuously
foundational (zone 4), i.e., most of their development periods should get a high priority
for knowledge preservation. odbc, port and thread are the sporadically foundational
subsystems with highest foundationality.

In FreeBSD, the situation is different. The majority of subsystems belongs to
zones 1 and 3, followed by zones 4 and 2. The two most foundational subsystems,
i.e., dev and kern, clearly require knowledge preservation in almost every develop-
ment period. The highly foundational subsystems that are sporadically foundational
(i.e., gdb, binutils, gcc and user.bin) are mostly developed upstream (gdb, binutils

19

0 20000 40000 60000 80000

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

Foundationality

#c
ha
ng
es

Figure 10: Scatterplot of the #changes versus the foundationality of the development periods of the sys
subsystem of FreeBSD.

and gcc) or are already mature subsystems (user.bin). In the former case, each period
in which an upstream project is imported potentially could have a high impact on other
subsystems and hence warrant knowledge preservation to answer questions like “which
APIs were changed?” and “how to update to the new API version?”.�
�

�
�

Most highly foundational subsystems are continuously foundational throughout
the lifetime of a project, whereas most hardly foundational subsystems are spo-
radically foundational.

Q3. How much effort is involved in preserving knowledge of foundational subsystems?

To study the effort involved with preserving knowledge for subsystems, we use the
number of changes to a subsystem in a period as a proxy. We calculate two types of
Spearman rank correlations (we use a non-parametric correlation, since the data is not
normally distributed):

Global correlation We calculate the Spearman rank correlation between the total num-
ber of changes and the total foundationality of each subsystem, to get a rough

20

indication of whether foundationality and number of changes correlate across all
subsystems.

Subsystem-level correlation Per subsystem S, we calculate the Spearman rank cor-
relation between the number of changes to S and the foundationality of S, across
all quarters. This tells us for individual subsystems whether or not development
periods of subsystems for which knowledge should be preserved are typically
associated with substantial effort.

We find that the global correlation is very high: 0.87 for PostgreSQL and 0.91 for
FreeBSD. At the subsystem-level (see Table 2), the correlation is very high for most
of the subsystems. This suggests that highly foundational subsystems are not only
more continuously foundational, but also that preserving the knowledge of founda-
tional development periods and keeping the knowledge up-to-date needs to consider a
significantly larger amount of changes (i.e., effort).

These observations are confirmed when analyzing the median total number of changes
for highly foundational subsystems and for hardly foundational subsystems. Highly
foundational subsystems have a significantly higher median number, i.e., 4,451.5 vs.
87 for PostgreSQL and 22,575 vs. 69 for FreeBSD.

There is only one highly foundational subsystem that has a low subsystem-level
correlation. sys (see question Q1) has a correlation of only 0.40. This follows from
the fact that some less foundational quarters saw more changes, as shown in Figure 10.
Since sys consists of kernel header files, it is indeed obvious that small changes might
impact a large number of subsystems. The top right data point corresponds to the oldest
development period that we considered.�
�

�
�

Most foundational subsystems are not only continuously foundational, they also
experience substantially more code changes, hence requiring more substantial
effort to preserve knowledge and keep this knowledge up-to-date.

5. Threats to Validity

Threats to construct validity [26] relate to whether our measurements quantify what
we intended them to. Our calculation of time dependence is primarily based on quar-
ters. Other periods like months, years, releases could be used and might lead to dif-
ferent findings. Also, our time dependence relations are derived from static call graph
dependencies. Implicit dynamic dependencies are not captured. Therefore, we miss
some of the time dependence relations between changes.

Since our technique is based on the historical source code changes archived in
source control repositories, the most recent development periods and subsystems typi-
cally will have lower foundationality than older periods. This does not mean that it is
not important to preserve knowledge for the former periods and subsystems. We are
currently experimenting with a weighting system to eliminate the skew towards older
development periods and subsystems.

We define subsystems as a fixed level in the file system hierarchy of PostgreSQL
(second level) and FreeBSD (fourth level), as explained in Section 4. Although this

21

approach is well-known (e.g., [6]), and provides us with subsystems for which concrete
project documentation is available, other definitions of subsystem should be explored.
For example, subsystems might be defined at different levels in the future: a subsystem
S might consist of directories C and Y in /A/B/C/ and /X/Y /Z/.

We used the number of changes in a development period as a proxy for the amount
of knowledge that should be preserved, i.e., the effort involved with preservation. This
is a simplification, since a small change like switching the implementation of for ex-
ample “malloc” requires careful documentation of the rationale of the switch and the
implementation details of the new version. Similarly, renaming a method that is called
throughout the system is a trivial change that does not require major preservation.

Our analysis is based on two thresholds, i.e., one for foundationality and one for
sporadicity. Although we documented our methodology for determining the thresh-
olds, this methodology by no means is the only acceptable one. Different thresholds
can be used according to the needs and resources of the practitioner. If significant peo-
ple and funding are available, lower thresholds can be used (more highly foundational
and continuously foundational systems). Otherwise, higher thresholds should be used
(less highly foundational and continuously foundational systems). In our case stud-
ies, we showed how the number of highly foundational and sporadically foundational
subsystems evolves for all possible threshold values.

External validity relates to the generalization of our study results. Our case studies
are based on two open source C systems. Although they come from different domains
(database and operating system), our results may not generalize to systems of other
domains or commercial systems. Also, systems in different programming languages
or even paradigms (OO) might show different results. Additional studies are needed to
investigate this.

Finally, our approach focuses on supporting practitioners in prioritizing subsys-
tems for which knowledge should be preserved. This approach was used in this paper
to retro-actively study which development periods of which subsystems are most im-
portant to preserve knowledge for. However, to prove the effectiveness of our approach
in pro-actively guiding practitioners, we need to perform a user study.

6. Related Work

In this section, we discuss the closest related work on the different dimensions of
knowledge preservation. We also relate this paper to our earlier work on time depen-
dence. Brudaru and Zeller propose to measure the genealogy of changes, which uses a
directed acyclic graph to model the impact of changes on defects [27]. They build this
genealogy by iteratively establishing change dependencies at the level of lines of code.
During this process, the changes that break the system are observed and the impact
of changes on future defects is analyzed. Although their approach was not validated
in practice, Brudaru et al.’s concept of change dependency has some similarity to our
approach. Our approach considers information from the source control repositories at
subsystem-level and across time instead of at line-level.

German et al. [28] introduce the concept of Change Impact Graph (CIG) to detect
the impact of a change on its dependent changes when changing a source code en-
tity. They iteratively visualize the call graph of a function and call graphs of its called

22

entities within a time window. The approach aims primarily at locating bugs of a func-
tion. Our approach aims to assist practitioners to identify subsystems and development
periods for which knowledge preservation is needed.

Existing software evolution research does not explore the temporal dependence
between changes. Usually, software metrics such as LOC [29, 30] are measured to
monitor and detect the development periods with rapid or slow growth. Tilley et al. [5]
reverse-engineer the subsystem dependencies in one snapshot of a software system for
re-documentation purposes. They do not consider the time and effort dimension.

The work on change coupling between software entities, like classes and methods,
analyzes what other parts of the code need to be changed if a given piece of code is
changed [31]. However, the dependencies studied in that line of work relate entities to
other entities in the same version of the code base, whereas time dependence relates a
change of an entity to past changes of itself and other called entities.

Kothari et al. [32] introduce the concept of canonical changes to categorize the
change clusters of a project into different areas or activities, like maintenance and new
development. Our approach is somewhat similar in intent, but focuses on the effort to
preserve and maintain knowledge.

Other time-related research analyzes historical data to better understand large, long-
lived software systems. Mockus et al. [33] use historical data from version systems to
identify code experts. Chen et al. [34] developed a tool called CVSSearch, which uses
the CVS comments to track source code fragments. Hassan and Holt [35] introduce
the idea of attaching Source Sticky Notes to static dependency graphs, which assist in
better understanding the software architecture. Our approach leverages time depen-
dence between changes to identify the foundational subsystems. Kim et al. [36] trace
the evolution of software clones in a clone group across time, i.e., they identify time
dependence of clones.

There is quite some effort-related work on bug prediction techniques. Most recent
techniques are based on process metrics derived from the change history of a sys-
tem [37, 38, 4, 39]. These techniques typically look at code churn [39] or the number
of changes to a file. Bernstein et al. [37], for example, use the number of revisions
and reported issues in the last quarter to predict the location and number of bugs in
the next month. More recently, different techniques have been proposed to factor bug
fixing effort into bug prediction models [40]. In future work, we plan to compare the
performance of our approach against approaches that use other types of historical data.

Finally, in our previous work [10], we used the concept of time dependence to assist
project managers to track the progress of their project. We also studied the impact of
the most recent time dependence on the appearance of bugs. To study the foundational
periods of a software project [11], we considered time dependence relations at the entity
level instead of at the subsystem level. This paper lifts up time dependence between
source code entities to subsystems and studies the characteristics of these subsystems
over their evolution, i.e., we consider both space and time.

7. Conclusion

To keep track of the software development process and to support future evolution
of a software system, preserving and maintaining related software artifacts and their

23

metadata is indispensable. However, at the same time such knowledge preservation
is hard to achieve because of the continuous evolution of software projects in size and
complexity, whereas only a limited amount of project resources are available for preser-
vation. This paper proposes an automated technique to analyze which subsystems to
prioritize for knowledge preservation without having to spend too much effort. Our ap-
proach is based on the foundationality and sporadicity metrics that can be derived from
the time dependence relations between the subsystems of a project, and on the number
of source code changes stored in the source control repository. Basically, highly foun-
dational subsystems are subsystems whose changes in a particular development period
typically trigger a massive amount of changes in dependent subsystems.

Through a case study on two large open source systems, we find that, as could be
expected, highly foundational subsystems mostly correspond to relatively large, core
subsystems. These subsystems definitely should get a high priority when preserving
and updating knowledge. However, most of those subsystems are continuously foun-
dational, i.e., almost all development periods are important to preserve knowledge for.
In addition, the high number of changes in those periods means that knowledge preser-
vation requires substantial effort.

Although our technique can support practitioners to automatically recommend valu-
able subsystems for which knowledge preservation is feasible with reasonable effort,
there is definitely room for future work. In particular, what foundationality and spo-
radicity thresholds should be used in what context? How should one prioritize the
subsystems in a specific zone in the foundationality-sporadicity scatter plot? How
should one deal with the large group of continuously foundational subsystems for
which knowledge preservation has a high priority (zone 4)? Who should preserve the
knowledge of a particular subsystem, and who has the required knowledge? Finally,
does missing to preserve important knowledge really lead to significantly more bugs
and wasted development effort?

Acknowledgments.The authors want to thank Weiyi Shang and the anonymous re-
viewers for their insightful suggestions and comments.
References

[1] U. Dekel, J. D. Herbsleb, Improving API documentation usability with knowl-
edge pushing, in: Proc. of the 31st Intl. Conf. on Software Engineering (ICSE),
Vancouver, BC, Canada, 2009, pp. 320–330.

[2] T. Fritz, G. C. Murphy, Using information fragments to answer the questions
developers ask, in: Proc. of the 32nd ACM/IEEE Intl. Conf. on Software Engi-
neering - Volume 1 (ICSE), Cape Town, South Africa, 2010, pp. 175–184.

[3] T. D. LaToza, G. Venolia, R. DeLine, Maintaining mental models: a study of
developer work habits, in: Proc. of the 28th Intl. Conf. on Software Engineering
(ICSE), Shanghai, China, 2006, pp. 492–501.

[4] M. Leszak, D. E. Perry, D. Stoll, Classification and evaluation of defects in a
project retrospective, J. Syst. Softw. 61 (2002) 173–187.

24

[5] S. R. Tilley, H. A. Müller, M. A. Orgun, Documenting software systems with
views, in: Proc. of the 10th annual international conf. on Systems documentation
(SIGDOC), Ottawa, ON, Canada, 1992, pp. 211–219.

[6] M. W. Godfrey, Q. Tu, Evolution in open source software: A case study, in: Proc.
of the Intl. Conf. on Software Maintenance (ICSM), San Jose, CA, US, 2000, pp.
131–142.

[7] S. Koch, Software evolution in open source projects—a large-scale investigation,
Journal of Software Maintenance and Evolution 19 (6) (2007) 361–382.

[8] G. von Krogh, S. Spaeth, K. R. Lakhani, Community, joining, and specialization
in open source software innovation: a case study, Research Policy 32 (7) (2003)
1217 – 1241.

[9] Y. Wang, D. Guo, H. Shi, Measuring the evolution of open source software
systems with their communities, SIGSOFT Software Engineering Notes 32 (6)
(2007) 7–13.

[10] O. Alam, B. Adams, A. E. Hassan, Measuring the progress of projects using
the time dependence of code changes, in: Proc. of the 25th IEEE Intl. Conf. on
Software Maintenance (ICSM), Edmonton, AB, Canada, 2009, pp. 329–338.

[11] O. Alam, B. Adams, A. E. Hassan, A study of the time dependence of code
changes, in: Proc. of the 16th Working Conf. on Reverse Engineering (WCRE),
Lille, France, 2009, pp. 21–30.

[12] R. C. Holt, Structural manipulations of software architecture using tarski rela-
tional algebra, in: Proc. of the Working Conf. on Reverse Engineering (WCRE),
Honolulu, HI, US, 1998, pp. 210–219.

[13] C. E. Shannon, Prediction and entropy of printed english, Bell System Technical
Journal 3 (1951) 53–64.

[14] A. E. Hassan, Mining software repositories to assist developers and support man-
agers, Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada (2004).

[15] A. E. Hassan, Automated classification of change messages in open source
projects, in: Proc. of the 2008 ACM Symposium on Applied Computing (SAC),
Fortaleza, Ceara, Brazil, 2008, pp. 837–841.

[16] PostgreSQL, Cvs repository (pgsql/ module), :pserver:anoncvs@
postgresql.org:/usr/local/cvsroot.

[17] FreeBSD, Cvs repository (src/ module), anoncvs@anoncvs1.FreeBSD.
org:/home/ncvs.

[18] http://www.postgresql.org/.

[19] http://www.freebsd.org/.

25

:pserver:anoncvs@postgresql.org:/usr/local/cvsroot
:pserver:anoncvs@postgresql.org:/usr/local/cvsroot
anoncvs@anoncvs1.FreeBSD.org:/home/ncvs
anoncvs@anoncvs1.FreeBSD.org:/home/ncvs
http://www.postgresql.org/
http://www.freebsd.org/

[20] A. E. Hassan, R. C. Holt, The chaos of software development, in: Proc. of the
6th Intl. Wrksh. on Principles of Software Evolution (IWPSE), Helsinki, Finland,
2003, pp. 84–94.

[21] http://developer.postgresql.org/pgdocs/postgres/
resources.html.

[22] http://www.freebsd.org/docproj/todo.html.

[23] http://www.FreeBSD.org/cgi/query-pr-summary.cgi?
category=docs&responsible=.

[24] http://wiki.postgresql.org/wiki/Todo#Source_Code.

[25] http://www.postgresql.org/developer/ext.backend_dirs.
html.

[26] R. K. Yin, Case Study Research: Design and Methods - Third Edition, SAGE
Publications, London, 2002.

[27] I. I. Brudaru, A. Zeller, What is the long-term impact of changes?, in: Proc. of
the intl. wrksh. on Recommendation Systems for Software Engineering (RSSE),
Atlanta, Georgia, 2008, pp. 30–32.

[28] D. M. German, A. E. Hassan, G. Robles, Change impact graphs: Determining the
impact of prior codechanges, Inf. Softw. Technol. 51 (2009) 1394–1408.

[29] H. Gall, M. Jazayeri, J. Krajewski, CVS release history data for detecting logical
couplings, in: Proc. of the 6th Intl. Wrksh. on Principles of Software Evolution
(IWPSE), Helsinki, Finland, 2003, pp. 13–23.

[30] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, W. M. Turski, Metrics and
laws of software evolution - the nineties view, in: Proc. of the 4th Intl. Symposium
on Software Metrics (METRICS), Albuquerque, NM, US, 1997, pp. 20–32.

[31] S. Mirarab, A. Hassouna, L. Tahvildari, Using bayesian belief networks to predict
change propagation in software systems, in: Proc. of the 15th IEEE Intl. Conf. on
Program Comprehension (ICPC), Banff, AB, Canada, 2007, pp. 177–188.

[32] J. Kothari, A. Shokoufandeh, S. Mancoridis, A. E. Hassan, Studying the evolution
of software systems using change clusters, in: Proc. of the 14th IEEE Intl. Conf.
on Program Comprehension (ICPC), Athens, Greece, 2006, pp. 46–55.

[33] A. Mockus, L. G. Votta, Identifying reasons for software changes using historic
databases, in: Proc. of the Intl. Conf. on Software Maintenance (ICSM), San Jose,
CA, US, 2000, pp. 120–130.

[34] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, A. Michail,
CVSSearch: Searching through source code using CVS comments, Proc. of the
IEEE Intl. Conf. on Software Maintenance (ICSM) 0 (2001) 364–373.

26

http://developer.postgresql.org/pgdocs/postgres/resources.html
http://developer.postgresql.org/pgdocs/postgres/resources.html
http://www.freebsd.org/docproj/todo.html
http://www.FreeBSD.org/cgi/query-pr-summary.cgi?category=docs&responsible=.
http://www.FreeBSD.org/cgi/query-pr-summary.cgi?category=docs&responsible=.
http://wiki.postgresql.org/wiki/Todo#Source_Code
http://www.postgresql.org/developer/ext.backend_dirs.html
http://www.postgresql.org/developer/ext.backend_dirs.html

[35] A. E. Hassan, R. C. Holt, Using development history sticky notes to understand
software architecture, in: Proc. of the 12th IEEE Intl. Wrksh. on Program Com-
prehension (IWPC), Bari, Italy, 2004, pp. 183–192.

[36] M. Kim, V. Sazawal, D. Notkin, G. Murphy, An empirical study of code clone ge-
nealogies, in: Proc. of the 10th European software engineering conf. held jointly
with the 13th ACM SIGSOFT intl. symp. on Foundations of software engineering
(ESEC/FSE-13), Lisbon, Portugal, 2005, pp. 187–196.

[37] A. Bernstein, J. Ekanayake, M. Pinzger, Improving defect prediction using tem-
poral features and non linear models, in: 9th intl. wrksh. on Principles of software
evolution (IWPSE), Dubrovnik, Croatia, 2007, pp. 11–18.

[38] T. L. Graves, A. F. Karr, J. S. Marron, H. Siy, Predicting fault incidence using soft-
ware change history, IEEE Transactions on Software Engineering 26 (7) (2000)
653–661.

[39] N. Nagappan, T. Ball, Use of relative code churn measures to predict system
defect density, in: Proc. of the 27th Intl. Conf. on Software engineering (ICSE),
St. Louis, MO, US, 2005, pp. 284–292.

[40] T. Mende, R. Koschke, M. Leszak, Evaluating defect prediction models for a
large evolving software system, in: Proc. of the European Conf. on Software
Maintenance and Reengineering (CSMR), Madrid, Spain, 2009, pp. 247–250.

27

	Introduction
	Methodology
	Time Dependence between Entities
	Measures for Knowledge Preservation
	Implementation

	Research Questions
	Case Study
	Threats to Validity
	Related Work
	Conclusion

