
On the Relationship between Comment Update
Practices and Software Bugs

Walid M. Ibrahima, Nicolas Bettenburga, Bram Adamsa,∗, Ahmed E. Hassana

aSoftware Analysis and Intelligence Lab (SAIL), School of Computing, Queen’s University,
Canada

Abstract

When changing source code, developers sometimes update the associated
comments of the code (a consistent update), while at other times they do not
(an inconsistent update). Similarly, developers sometimes only update a com-
ment without its associated code (an inconsistent update). The relationship
of such comment update practices and software bugs has never been explored
empirically. While some (in)consistent updates might be harmless, software en-
gineering folklore warns of the risks of inconsistent updates between code and
comments, because these updates are likely to lead to out-of-date comments,
which in turn might mislead developers and cause the introduction of bugs in
the future. In this paper, we study comment update practices in three large
open-source systems in C (FreeBSD and PostgreSQL) and Java (Eclipse). We
find that these practices can better explain and predict future bugs than other
indicators like the number of prior bugs or changes. Our findings suggest that
inconsistent changes are not necessarily correlated with more bugs. Instead,
a change in which a function and its comment are suddenly updated inconsis-
tently, whereas they are usually updated consistently (or vice versa), is risky
(high probability of introducing a bug) and should be reviewed carefully by
practitioners.

Keywords: code quality, software bugs, software evolution, source code
comments, empirical studies

1. Introduction

Source code comments play a central and important role in understanding
legacy systems. Comments are often the only form of documentation avail-
able for a system, explaining algorithms, informally specifying constraints like
pre- and post-conditions, or warning developers of the peculiarities of complex

∗Corresponding author
Email addresses: walid@cs.queensu.ca (Walid M. Ibrahim), nicbet@cs.queensu.ca

(Nicolas Bettenburg), bram@cs.queensu.ca (Bram Adams), ahmed@cs.queensu.ca (Ahmed
E. Hassan)

Preprint submitted to Journal of Systems and Software September 21, 2011

code [1]. Such documentation is crucial to avoid that developers lose grasp of
the system as it ages and evolves [2, 3].

When changing the source code, developers either update the associated
comments (a “consistent update”) or not (an “inconsistent update”). Updating
a comment without the associated code (up to 50% of the comment changes [4])
can also be considered as an inconsistent update. The ill-effects of inconsistent
updates between code and comments are often noted as anecdotes by researchers
and practitioners. An example of such anecdotes is the change comment at-
tached to change #27068 on October 15, 2007 in the PostgreSQL project (we
highlight in bold the most relevant part):

“Fix pg wchar table[] to match revised ordering of the encoding ID enum.
Add some comments so hopefully the next poor sod doesn’t fall into the
same trap. (Wrong comments are worse than none at all. . .)”

Siy et al. [5] made the same observation during one of their case studies, and
noted:

“According to most developers we talked to, once they encounter an in-
consistent comment, they lose confidence in the reliability of the rest of
the comments [. . .] and they ignore the remainder of the comments”

Indeed, inconsistent updates can be quite critical, as they likely introduce
out-of-date comments, which in turn might mislead developers and lead to bugs
in the future. For example, a recent manual analysis of the bug reports for the
FreeBSD project found sixty bugs that are due to out-of-date comments [6].
However, Fluri et al. [4] found that API (Application Programming Interface)
changes, although they impact countless other developers, are typically not
commented until later revisions.

While prior research has empirically demonstrated the negative impact of
code churn and prior bugs on future code quality, for example in the form of
bugs, little is known about the impact of comment update practices. Sund-
bakken [7] found that the average number of comment lines per C++ class is
a good indicator of source code maintainability, yet it is not clear how this re-
lates to comment update practices. While some (in)consistent updates might
be harmless (or even expected), others might lead to out-of-date comments, and
hence possibly to bugs.

In this paper, we study comment update practices in three large open-source
systems in C (FreeBSD and PostgreSQL) and Java (Eclipse) to determine the
impact of comment update practices on future bugs. We refine two traditional
bug prediction models with information about the comment update practices of
the three systems (mined from the source code repositories) to study whether
comment update practices are able to explain and predict future bugs. We
indeed find a strong relation between comment update practices and future
bugs. Closer analysis of our bug models shows that a deviation in the common
update practices for a particular function (i.e., the function and its comment
are always consistently updated, until suddenly an inconsistent update occurs,
or vice versa) is a risk that practitioners must review carefully.

2

The main contributions of this paper are as follows:

• We empirically study the evolution of comment update practices in three
large, long-lived, open-source systems (FreeBSD, PostgreSQL and Eclipse).
• We establish an empirical link between comment update practices and future

bugs.

Overview of the Paper: Section 2 provides the necessary background
and related work on comments and bug prediction. Section 3 introduces the
comment update practices considered in our study, whereas Section 4 explains
how we extract the comment update practices from source code repositories.
Section 5 studies the distribution over time of comment update practices and
future bugs, followed by an exploration of the relation between the comment
update practices and bugs in Section 6. Section 7 discusses our findings. Sec-
tion 8 elaborates on possible threats to the validity of our findings, and Section 9
concludes this work.

2. Background and Related Work

This section discusses typical use case scenarios of source code comments,
and presents related work on the evolution of source code comments and on
code quality analysis.

2.1. The Use of Comments in Source Code

The most widely-known use of source code comments is to document devel-
oper knowledge and assumptions about the source code. A survey of software
maintainers done by Souza et al. finds that developers use comments as a key
element to understand source code [8]. Similarly, Nurvitadhi et al. report on
the significant impact of code comments on improving program understanding
among students [9]. Both studies highlight the important and critical role of
comments for software development and maintenance.

Recent studies show that comments are also used for other purposes beyond
documenting the knowledge of developers. Ying et al. observed that commercial
developers use comments to communicate with colleagues through messages such
as “TODO” or “FIXME” and to address code-related questions from specific
team members [10]. Storey et al. report similar findings through an online
survey on a larger, more varied population of developers working on different
types of projects [11]. These findings demonstrate the extensive use of source
code comments for collaboration and communication throughout the software
development process.

A work that is closer to ours is by Tan et al., who use natural language
processing techniques to automatically identify and extract locking-related pro-
gramming rules from comments [6]. Tan et al. then analyze the source code
to locate deviations from these extracted rules. This analysis locates current
bugs in the Linux kernel code based on inconsistencies between source code and
comments, whereas we study the impact of inconsistent comment updates on
future bugs in the whole software system, not just the commented code snippet.

3

Sundbakken [7] performed an empirical study to identify the major indica-
tors of maintainability of open-source C++ software systems. Although the
total number of comment lines is not a good indicator, the average number of
comment lines per C++ class is a major indicator of maintainability, because
it includes information about the spread of comments across all classes. This
work differs from our work in multiple ways. Instead of measuring comments in
software releases to analyze their role in the ability of developers to maintain
source code, we consider the changes in between releases to identify whether
(in)consistent updates to comments are related with future bugs.

2.2. Updating Code Comments

The work most closely related to this paper is that on co-evolution of com-
ments and source code by Fluri et al. [4]. The authors perform a fine-grained,
AST-level analysis of how comments evolve over time. Based on empirical anal-
ysis of eight open-source and commercial systems, the authors find that com-
ments and source code grow similarly (normalized for size) and that 51% to
69% of all comment changes were driven by source code changes, usually in the
same commit. Our study builds on the latter finding, yet analyzes comments
at the function-level, not statement-level. Instead of focusing on the quality of
comments, we try to find an empirical link between comment update practices
and the quality of a software system, in terms of future bugs.

Marin shows that developers are more likely to update the comments of well-
commented code. Developers are also more likely to update comments for large
and complex changes [12]. Similar results were found by Malik et al., who built
a model to predict the likelihood of updating a comment [13]. Their model is
influenced in particular by the complexity of the performed change, the time
of the change, and developer characteristics. The fact that the complexity of
a function is a good indicator for the appearance of bugs [14] suggests that
updating a comment (or missing to do so) is likely to lead to future bugs.

Arafat et al. [15] found that commenting source code is an important practice
in open-source development. They studied the density of comments in source
code changes, i.e., the proportion of new comment lines in a source code change,
in more than 5,000 open-source systems. Small changes turn out to have the
highest comment density (> 60% for 1-line changes). Larger changes have ever
smaller density, asymptotically approaching 19% (1 comment line per 5 code
lines). Comment density is independent of project and team size, but depends
on the programming language.

Finally, Siy et al. [5] found that updating comments is often a major priority
for companies. More than 28% of all issues identified during code inspection
are related to documentation problems. In particular, missing or outdated com-
ments, together with incorrect comment layout and typos in the comments,
represent the main source of documentation issues. Furthermore, almost half of
the source code lines that are changed or added in response to the inspection
results are comments.

4

// Set Timing
char* opt = psql_scan(scan_state,
 OT_NORMAL,NULL,false);
if (opt)
 pset.timing=ParseBool(opt);
else
 pset.timing = !pset.timing;

if (!pset.quiet) {
 if(pset.timing)
 puts(_("Timing is on."));
 else
 puts(_("Timing is off."));
}
free(opt);

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

(a) Inconsistent Change (IC)

// Set Timing with optional on/off
// argument.
char* opt = psql_scan(scan_state,
 OT_NORMAL,NULL,false);
if (opt)
 pset.timing=ParseBool(opt);
else
 pset.timing = !pset.timing;

if (!pset.quiet) {
 if(pset.timing)
 puts(_("Timing is on."));
 else
 puts(_("Timing is off."));
}
free(opt);

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

(b) Consistent Change (CC)

Figure 1: Example of consistent and inconsistent comment updates (PostgreSQL #28555).

2.3. Bug Prediction

Bug prediction models play an important role in the prioritization of testing
and code inspection efforts. For example, if a prediction model determines that a
particular component will see a significant increase in error-proneness, managers
can react by allocating more testing and inspection efforts, instead of having to
wait for bug reports from clients after release [16]. Bug prediction models can
also be used to model and explain the reasons for bug occurrences. Projects can
control such reasons by improving the software development process. In this
paper, we use the models to explain and predict future bugs.

Product-based and process-based models are two common types of bug pre-
diction models. Product-based models use code metrics [17, 18], such as the
cyclomatic complexity, lines of code (LOC), and the number of nested state-
ments. Process-based models [16, 19, 20, 21] use historical information about
the development process to predict the number of future bugs. Examples of
such historical information are the number of prior code changes (we name such
models “CHANGES models”), and the number of prior bugs [22] (BUGS mod-
els). Moser et al. and Graves et al. show that process metrics (especially BUGS
models) perform better than code metrics to predict future bugs [19, 23, 24, 25].

To show an empirical link between comment update practices and future bugs,
this paper explores whether the ability of comment update practices to explain
and predict future bugs is at least as good as that of the established CHANGES
and BUGS models.

3. Comment Update Practices

This paper considers the comments of source code functions, which com-
prise both comments inside the function body (internal comments) and outside
(external comments). In a consistent change, a developer would update (add,
remove, or modify) a piece of code inside a function and its associated comment

5

(at least one internal or external comment of the function). If the developer
updates a piece of code but does not update its associated comment (or vice
versa), then we consider this change as an inconsistent change.

Figure 1 illustrates the concepts of consistent and inconsistent changes on
change #28555 for the PostgreSQL system. In Figure 1(a), the source code
change that introduces an extra command line argument was not accompanied
by an update to the code snippet’s internal comment (inconsistent change).
Ideally, the developer should have noted her change inside the internal comment
(or an external one of the function) to make the new behaviour of the method
more explicit for her colleagues, as shown in Figure 1(b) (consistent change).

Our definitions of (in)consistent change implicitly assume that each change
to a function ideally should be accompanied by a comment change. On the
one hand, this assumption is in line with established programming guidelines
and common sense. We already discussed in Section 2.2 how open-source
projects [15] and companies [5] value comment updates in source code changes.
In addition, to avoid outdated, unreliable comments (“comment rot” [26]), well-
known software development books recommend that “when you fix, add, or
modify any code, [then] fix, add, or modify any comments around it” [27]. Fur-
thermore, comments are meant to explain the “why” of a piece of source code
instead of the “how” [28]. When a bug is fixed, it is important to indicate to
other developers the tricky piece of code responsible for the bug. When a per-
formance optimization is introduced, it is crucial to indicate the idea behind the
optimization. This philosophy has led to a popular practice called “Pseudocode
Programming Process” [28], or, more colloquially, “comment-driven develop-
ment” [29], which complements test-driven development and design-by-contract.
Instead of directly programming an algorithm or class, developers describe the
design of the functionality in terms of high-level pseudo-code [30, 31]. This
pseudo-code is iteratively refined into actual code with the original pseudo-code
left as comments. Every time the design changes, the pseudo-code, and hence
the comments, should be updated before the actual code can be changed.

On the other hand, the assumption that all source code changes should be
accompanied by a comment change is a simplification, because code changes
that fix small typos or refactor the code probably do not require updating the
comments. Although Arafat et al. [15] found that small changes had comment
densities of up to 60%, many small changes might be falsely interpreted as incon-
sistent. Unfortunately, it is hard to determine which changes require comments
and which ones do not, not only for the actual developers, but also for other
practitioners or researchers. Hence, based on our industrial experience and the
various supporting literature, this paper assumes that each source code change
requires a comment change, yet we need to take this simplification into account
when discussing the results of our study.

To study the impact of comment update practices on future bugs, a variety of
strategies can be used. We choose to compare the ability of the practices to ex-
plain and predict future bugs relative to the established BUGS and CHANGES
bug prediction models [19, 23, 24, 25]. Our goal is not to present a new predic-
tion model, but to show that comment update practices are somehow related

6

to the occurrence of bugs, because they are able to explain and predict future
bugs with similar performance to real bug prediction models.

Such a comparison approach to established models has been used before
by Graves et al. [32, 19] and requires to refine the established models with
information about the new concept one wishes to evaluate. In our case, we
refine the concept of “change” in the CHANGES model into:
• Consistent Change (CC): represents any change to the source code, either

to add a new feature or to perform a maintenance task like bug fixing, that
is also reflected in the corresponding source code comment(s).
• Inconsistent Change (IC): represents any change to the source code that

is not reflected in the corresponding source code comment(s), or vice versa.

Similarly, we refine the concept of “bug fix” in the BUGS model into:
• Consistent Bug Fix (CB): restricts consistent changes to bug fix changes

with the associated comment(s) updated.
• Inconsistent Bug Fix (IB): restricts inconsistent changes to bug fix changes

with no update to the associated comment(s), or vice versa.

The remainder of this paper focuses on the comparison of the explanatory
and predictive power of the refined CHANGES (in terms of CC/IC) and BUGS
(in terms of CB/IB) models to the original CHANGES (in terms of changes)
and BUGS (in terms of bugs) models.

4. Data Collection

We now present the systems studied in this paper and we discuss our tech-
nique to automatically extract the comment update practices from the develop-
ment repository of these systems.

4.1. Studied Systems

We use three open-source software systems with a combined development his-
tory of about 30 years. These systems come from different domains, to address
possible bias in our results towards a particular problem domain or develop-
ment process. Similar to other work [33], we define a subsystem as any logical
or physical collection of source code files. For the C systems, we use file system
directories, for the Java systems, packages.

We considered the following subject systems:
• FreeBSD [34] is a UNIX-like operating system written in C. The studied

system contains 3 MLOC spread across 152 subsystems [35]. We studied the
development period between June 1993 and August 2005.
• PostgreSQL [36] is an open-source database management system written

in C. PostgreSQL contains 0.5 MLOC spread across 280 subsystems [35]. We
studied the development period between July 1996 and February 2008.
• Eclipse [37] is an open-source integrated development environment (IDE)

written in Java. Eclipse contains 1.2 MLOC over 661 subsystems [38]. We
studied the development period between November 2001 and December 2004,
as provided by Zimmermann et al.’s PROMISE data set [39].

7

4.2. Recovery of Comment Update Practices

For our analysis, we must recover the number of consistent and inconsistent
changes and bug fixes. However, such data is not directly available, as source
control systems like CVS and Subversion do not provide fine-grained source code
and comment change-tracking. These source control systems only keep track of
changed lines of code, regardless of whether the line belongs to a function, a
data definition or a comment.

To overcome these limitations of source control systems, we use an evo-
lutionary code extractor (C-REX [40, 32] for FreeBSD and PostgreSQL, and
J-REX [41] for Eclipse). These evolutionary code extractors use robust pars-
ing techniques, such as island grammars [42], to map historical code changes
to the corresponding code entities and to link internal and external comments
to their corresponding entities. External comments followed by a function or
data structure definition are linked to that definition, whereas other external
comments are linked to the enclosing file. To determine whether or not a (bug
fix) change to a function is (in)consistent, we check whether the change modifies
any external or internal comment of the function. For example, if a parameter
is changed without changing any external or internal comment associated to the
function, this change is considered an IC.

As is common practice in the community (e.g., [24, 32, 43]), we approximate
the number of bugs in each subsystem by the number of bug fix changes in the
subsystem. This approximation is necessary, because (1) only fixed bugs can be
mapped to specific pieces of code, (2) not all reported bugs are real bugs, (3)
not all bugs have been reported, and (4) there are many duplicate bug reports.

However, the mapping between changes in source control repositories and
bugs in bug tracking systems is rarely explicit. To determine which changes are
bug fix changes, we used two techniques. For FreeBSD and PostgreSQL, we use
an automatic lexical classification technique [44, 45] that analyzes the change
messages attached to each change for keywords indicative of a bug fix, followed
by a number. Common keywords include “fix”, “bug”, or “PR”, followed by a
unique bug identifier that denotes the bug that is being fixed. We performed
a manual verification of a representative sample of the extracted bugs to make
sure that they are actual bugs [45]. The average precision for extracted bugs is
91%, while the average recall is 60%. For Eclipse, we use the bug data extracted
by Zimmermann et al. [39], which has become a de facto benchmark for bug
prediction studies.

Using the change and bug data extracted for the three systems, we can count
the number of consistent and inconsistent changes and bug fixes in FreeBSD,
PostgreSQL and Eclipse.

5. Studying Update Practices

This section analyzes the distributions of (in)consistent changes (CC/IC)
and (in)consistent bug fixes (CB/IB) in the three subject systems to determine
the appropriate prediction model to build in the next section. Because this

8

0

100

200

300

400

500

600

0

200

400

600

800

1000

1200

1400

1600

1800

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

#
 o

f
B

u
g

s

#
 o

f
C

h
a

n
g

e
s

Consistent Changes

Inconsistent Changes

Bugs

(a) FreeBSD

0

100

200

300

400

500

600

0

200

400

600

800

1000

1200

1400

1600

1800

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

#
 o

f
B

u
g

s

#
 o

f
C

h
a

n
g

e
s

Consistent Changes

Inconsistent Changes

Bugs 0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

800

900

1000

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

o

f
B

u
gs

#
o

f
C

h
a

n
g

e
s

Consistent Changes

Inconsistent Changes

Bugs

(b) PostgreSQL

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

2000

4000

6000

8000

10000

12000

2001 2002 2003 2004

o

f
B

u
gs

#
o

f
Ch

an
ge

s Consistent Changes

Inconsistent Changes

Bugs

(c) Eclipse

Figure 2: Comment update practices for code changes.

study focuses on future bugs caused by out-of-date comments, we especially
look at the relation between the number of CCs and ICs for a given year with
the number of bugs in the following year [19, 24].

Approach. We perform the following analyses:
• we study the evolution of the total (across all subsystems) number of CCs/ICs/CBs/IBs

9

0

100

200

300

400

500

600

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

#
o

f
B

u
g

s
Inconsistent Bug Fix

Consistent Bug Fix

Bugs

(a) FreeBSD

0

100

200

300

400

500

600

0

200

400

600

800

1000

1200

1400

1600

1800

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

#
 o

f
B

u
g

s

#
 o

f
C

h
a

n
g

e
s

Consistent Changes

Inconsistent Changes

Bugs 0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

800

900

1000

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

o

f
B

u
gs

#
o

f
C

h
a

n
g

e
s

Consistent Changes

Inconsistent Changes

Bugs
0

1000

2000

3000

4000

5000

6000

0

2000

4000

6000

8000

10000

12000

2001 2002 2003 2004 2005 2006 2007

o

f
B

u
gs

#
o

f
Ch

an
ge

s

Consistent Changes

Inconsistent Changes

Bugs
0

100

200

300

400

500

600

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

#
o

f
B

u
g

s

Inconsistent Bug Fix

Consistent Bug Fix

Bugs
0

100

200

300

400

500

600

700

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

#
o

f
B

u
g

s

Consistent Bug Fix

Inconsistent Bug Fix

Bugs

(b) PostgreSQL

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2001 2002 2003 2004

#
o

f
B

u
g

s Consistant Bug Fix

Inconsistent Bug Fix

Bugs

(c) Eclipse

Figure 3: Comment update practices for bug fixes.

and the number of extracted bugs over time via plots;
• we graphically examine possible statistical interactions between the number

of CCs/ICs (or CBs/IBs) per subsystem in a given year and the number of
bugs per subsystem in the following year.
The absence of statistical interaction would mean that, as the number of

10

(for example) CCs increases, the number of bugs increases at the same rate,
independent of the IC value. However, if there is an interaction, then, as the
number of (for example) CCs increases, the number of bugs increases at a dif-
ferent rate depending on the IC value. The presence of an interaction would
require us to build a more complex model in the next section.

We use a common statistical interaction analysis [46, 47] that has been used
before in empirical software engineering [48]. We classify the subsystems in each
system into three groups, based on the number of ICs of each subsystem: low
IC (the 33% of the subsystems with the lowest number of ICs), high IC (the
33% of the subsystems with the highest number of ICs), and medium IC (all
other subsystems). For each group, we then make a scatterplot that shows, for
each subsystem in the IC group, its total number of CCs in one year versus its
number of bugs in the following year. The best fitting curves for the scatter
plots reveal whether or not there is an interaction between ICs and CCs. If
there is no interaction, we expect to see three near-parallel lines — one for each
of the low, medium, and high groups. The larger the difference between the
slopes, the larger the interaction effect. We use the same approach for CBs and
IBs. We use the log of CCs, ICs, CBs, and IBs to handle the high skew in the
data.

Comment update practices are system-dependent.
Figure 2 plots the evolution of the total number of CCs and ICs in FreeBSD,

PostgreSQL, and Eclipse, together with the number of bugs:

1. In FreeBSD: There are about twice as many inconsistent changes as con-
sistent changes. The number of ICs is always higher than the number of
CCs.

2. In PostgreSQL: The early years of development show slightly more ICs
than CCs, but, from 1999 on, the number of CCs significantly increases to
about one and a half times the number of ICs.

3. In Eclipse: There are about three times as many consistent changes as
inconsistent changes. The number of CCs is always higher than the number
of ICs.

The differences between FreeBSD, PostgreSQL, and Eclipse indicate that
these systems are different, not only in domain, but also in their developers’
comment update practices. Despite the system-dependent nature of their com-
ment update practices, all systems show a similar trend in the number of bugs:
a fast growth in the first two years, followed by a slowdown. The plots for the
number of CBs and IBs (Figure 3) follow a similar trend as the plots for CCs
and ICs.

Statistical interaction between comment update practices and fu-
ture bugs.

Figure 4 shows the interaction curves of the CCs and ICs for the three
systems in 2002 (other years are similar). The figure shows a clear interaction
effect between CC and IC in all three systems, as each IC group has a different
slope. For low IC, the number of bugs remains almost the same (near zero) as
the number of CCs increases, while for high IC the number of bugs increases

11

Log(CC+1)

L
o

g
(B

u
g

s
+

1
)

high IC

medium IC

Log(CC+1)

L
o

g
(B

u
g

s
+

1
)

high IC

medium IC

low IC

Log(CC+1)

L
o

g
(B

u
g

s
+

1
)

high IC

medium IC

low IC

Log(CC+1)

L
o

g
(B

u
g

s
+

1
)

high IC

medium IC

low IC

(a) FreeBSD

Log(CC+1)

L
o

g
(B

u
g

s
+

1
)

high IC

medium IC

Log(CC+1)

L
o

g
(B

u
g

s
+

1
)

high IC

medium IC

low IC

(b) PostgreSQL

Log(CC+1)

L
o

g
(B

u
g

s
+

1
)

high IC

medium IC

Log(CC+1)

L
o

g
(B

u
g

s
+

1
)

high IC

medium IC

low IC

Log(CC+1)

L
o

g
(B

u
g

s
+

1
)

high IC

medium IC

low IC

(c) Eclipse

Figure 4: The interaction effects of consistent and inconsistent changes in FreeBSD, Post-
greSQL and Eclipse.

more rapidly as the number of CCs increases. Therefore, the impact of CC on
the number of bugs depends on the value of IC. A similar interaction effect was
observed when grouping subsystems based on CC values. The interaction curves
for the CBs and IBs (Figure 5) also indicate the presence of (slightly weaker)
interaction for FreeBSD and PostgreSQL, whereas Eclipse does not exhibit any
interaction at all.

In summary, for most cases, there exists an interaction between comment
update practices and future bugs. Hence, the next step is to account for this
observed interaction in our models to explain and predict future bugs.

12

Log(CB+1)

L
o

g
(B

u
g

s
+

1
)

hi
gh

 IB

medium IB

low IB

(a) FreeBSD

Log(CB+1)

L
o

g
(B

u
g

s
+

1
)

high IB

medium IB

low IB

(b) PostgreSQL

Log(CB+1)

L
o

g
(B

u
g

s
+

1
)

high IB

medium IB

low IB

(c) Eclipse

Figure 5: The interaction effects of consistent and inconsistent bug fixes in FreeBSD, Post-
greSQL and Eclipse.

6. Impact on Future Bugs

To study the impact of comment update practices on future bugs, we com-
pare the ability of update practices to explain and predict future bugs to the
ability of two well-known and frequently used measures, i.e., the number of prior
changes (CHANGES model) and the number of prior bugs (BUGS model) [19].

For each studied system, we build six different linear regression models to
model the number of future bugs in a subsystem. Four of them (ModelC ,
ModelB , ModelIC+CC , and ModelIB+CB) are additive models of the form ŷ =
β0 + β1x1 + β2x2, while the other two models (ModelIC∗CC and ModelIB∗CB)
are multiplicative models of the form ŷ = β0 + β1x1 + β2x2 + β3(x1 · x2). In
these formulas, ŷ is the predicted number of bugs in a subsystem. The inde-
pendent variables xi are summarized in Table 1. They represent the number

13

Table 1: The independent variables of our six regression models.

Model Value of xi
ModelC x1 = # changes in a subsystem and x2 =0.
ModelB x1 = # bug fixes in a subsystem and x2 =0.
ModelCC+IC x1 = # CC and x2 = # IC in a subsystem.

ModelCB+IB x1 = #CB and x2 = # IB in a subsystem.

ModelCC∗IC x1 = # CC, x2 = # IC, and interaction in a subsystem.
ModelCB∗IB x1 = # CB, x2 = # IB, and interaction in a subsystem.

of bugs, changes, or comment update practices in a subsystem, depending on
the particular model. To stabilize the variance of the error in the built models,
which is one of the requirements for linear models, we use the natural log of
xi + 1 instead of xi [49].

The multiplicative models capture the interaction β3(x1 · x2) between the
comment update practices discovered in the previous section. To make sure that
this interaction term does not lead to over-fitting, we always compare the multi-
plicative models to the simple additive models, ModelCC+IC and ModelCB+IB .

The construction of the six models requires a training and prediction phase:
Training phase: For FreeBSD and PostgreSQL, we train the linear regres-

sion models that predict the number of future bugs in a subsystem (dependent
variable) for a year F3 based on the independent variables (Table 1) in the two
previous years (F1 and F2). We perform year-based prediction, because out-of-
date comments have a higher probability of causing bugs as time goes by, with
developers forgetting the context of source code changes. Similar to previous
work [43, 39], we perform release-based analysis for Eclipse instead of year-based
analysis. We train the linear regression models that predict the number of post-
release bugs (dependent variable) based on the independent variables (Table 1)
collected one year prior to a release.

Testing phase: For FreeBSD and PostgreSQL, we use the trained model
for year F3 to predict the number of bugs in the fourth year (F4) using input
from years F2 and F3. We repeat this setup six times, because we have 12 years
worth of historical data for FreeBSD and PostgreSQL. We do not use the data
of the first two years of each system because of transient effects in those early
years, as can be seen in Figure 2. For Eclipse, we use the trained model to
predict the number of post-release bugs of the following release. We test our
models using data from releases 2.1 and 3.0.

6.1. Measuring the Explanatory Power

Approach. We calculate the proportion of variance (R2) of our six re-
gression models to assess how well the regression models fit (i.e., explain) the
training data. The higher the R2, the better the fit. We compare the change-
based models to each other and the bug-based models to each other (i.e., we
compare R2

C with R2
CC+IC and R2

CC∗IC , and R2
B with R2

CB+IB and R2
CB∗IB).

We also perform an ANOVA analysis (α = 0.05) to determine if the interaction

14

Table 2: The R2 statistic for the regression models. The greyed cells contain R2 statistics
that are statistically significant compared to ModelC and ModelB . The * indicates that the
interaction term is statistically significant according to the ANOVA test (α = 0.05).

(a) FreeBSD

Model
built for
year

R2
C R2

CC+IC R2
CC∗IC R2

B R2
CB+IB R2

CB∗IB

1999 0.42 0.43 0.44 * 0.38 0.39 0.41 *

2000 0.51 0.53 0.57 * 0.47 0.50 0.51

2001 0.61 0.65 0.70 * 0.62 0.66 0.66

2002 0.56 0.57 0.61 * 0.60 0.61 0.63 *

2003 0.50 0.53 0.58 * 0.53 0.54 0.55

2004 0.60 0.63 0.70 * 0.61 0.63 0.66 *

(b) PostgreSQL

Model
built for
year

R2
C R2

CC+IC R2
CC∗IC R2

B R2
CB+IB R2

CB∗IB

2002 0.80 0.81 0.83 * 0.76 0.76 0.81 *

2003 0.82 0.84 0.85 * 0.86 0.88 0.88

2004 0.77 0.78 0.78 0.77 0.78 0.79 *

2005 0.76 0.78 0.78 0.72 0.73 0.81 *

2006 0.76 0.77 0.82 * 0.80 0.81 0.82

2007 0.73 0.75 0.81 * 0.75 0.76 0.78 *

(c) Eclipse

Model
built for
release

R2
C R2

CC+IC R2
CC∗IC R2

B R2
CB+IB R2

CB∗IB

2.0 0.45 0.49 0.50 * 0.56 0.57 0.57

2.1 0.59 0.64 0.66 * 0.78 0.80 0.80

3.0 0.61 0.66 0.69 * 0.78 0.80 0.80

term of the multiplicative model is needed in our models and to determine the
statistical significance of the observed improvement in explanatory power (R2).

Findings. Table 2 shows the R2 values for the trained models of the three
systems. A * next to a value indicates that the interaction term is statistically
significant according to the ANOVA with a 5% level of significance (i.e., α =
0.05). We find that:

• For all years and most systems, the additive models (i.e., ModelCC+IC and
ModelCB+IB) show an R2 value that is at least as good as the value for
basic models (i.e., ModelC and ModelB).

• For all years and systems, the multiplicative models (i.e., ModelCC∗IC and
ModelCB∗IB) show an R2 value that is at least as good as the value for

15

the additive models (i.e., ModelCC+IC and ModelCB+IB). For many of the
years, the difference between the multiplicative and additive models caused
by the interaction term is statistically significant based on the ANOVA tests.
• As expected from the absence of interaction between CB and IB for Eclipse,

the corresponding bug-based multiplicative model ModelCB∗IB performs
identical to the additive model ModelCB+IB .

�
�

�
�

The CHANGES and BUGS models enhanced with comment update practices
show statistically significant improvements in explanatory power over the ba-
sic, non-enhanced CHANGES and BUGS models.

6.2. Measuring the Predictive Power

Approach. We compare the prediction performance of the four regression
models that use knowledge about comment update practices to the performance
of the CHANGES model (ModelC) and the BUGS model (ModelB). To eval-
uate the overall improvement in performance of each model for a particular
system in a particular year, we measure the total prediction error EModel of
a model across all n subsystems of the system during that year as: EModel =√∑n

i=1(ŷi − yi)2, where yi is the actual number of bug fixes in subsystem i
during the prediction year (see Section 4.2), while ŷi is the predicted number
of bugs for subsystem i. In Tables 3 and 4 and Figure 6 , we transform the
predicted number of bugs from log(ŷ + 1) back to ŷ to make our explanation
easier to follow.

A model might outperform another model due to chance. Thus, we per-
form a statistical evaluation of the observed difference in performance. For this
purpose, we use statistical hypothesis tests to assess the significance of the differ-
ence in prediction errors between each model. Our statistical analysis assumes
a 5% level of significance (i.e., α = 0.05), when testing the following hypotheses:
H0 : µ(eA,i − eB,i) = 0, HA : µ(eA,i − eB,i) 6= 0, where µ(eA,i − eB,i) denotes
the population mean of the difference between the total prediction error of the
two models A and B for each subsystem. If the p-value is lower than α = 0.05,
we can reject H0 with high probability, which means that the difference in per-
formance is statistically significant, i.e., not due to chance.

To test these hypotheses, we conduct a parametric (t-test) and a non-
parametric (Wilcoxon signed rank test) paired statistical test. We perform
a Wilcoxon test to ensure that non-significant results are not simply due to the
departure of the data from the t-test assumptions. For the results presented,
both tests are consistent, hence we only report the values of the t-test. We also
adjust the level of significance of the t-test using a Bonferroni correction based
on the number of tests that are performed [50]. For example, if we would per-
form 20 hypothesis tests, then 1 out of the 20 tests would show a significance
at a confidence level of α = 0.05, even if the differences are not statistically
significant. Therefore, we must adjust our α and make it stricter. For example,

16

Table 3: Total prediction error improvement for bug prediction models based on the
CHANGES model. A positive value means that ModelCC∗IC performs better than ModelC
(smaller error). The value in parentheses is the percentage of improvement relative to EC .
The greyed error improvements are statistically significant.

(a) FreeBSD

Pred.
Year

EC ECC+IC ECC∗IC EC -
ECC∗IC(%)

1999 85.8 83.0 76.8 9.0 (10.5%)

2000 76.3 69.7 54.9 21.4 (28.0%)

2001 82.7 73.3 65.7 17.0 (20.6%)

2002 95.3 90.4 48.5 46.8 (49.1%)

2003 115.6110.1 63.0 52.6 (45.5%)

2004 122.3116.7 53.5 68.8 (56.3%)

(b) PostgreSQL

Pred.
Year

EC ECC+IC ECC∗IC EC -
ECC∗IC(%)

2002 57.2 55.4 49.7 7.5 (13.1%)

2003 43.4 43.8 43.2 0.2 (0.5%)

2004 61.2 58.1 49.9 11.3 (18.5%)

2005 56.1 53.6 39.6 16.5 (29.4%)

2006 57.1 54.4 55.6 1.5 (2.6%)

2007 77.9 74.5 55.7 22.2 (28.5%)

(c) Eclipse

Pred.
Release

EC ECC+IC ECC∗IC EC - ECC∗IC(%)

2.1 239.4 230.4 207.9 31.5 (13.2%)

3.0 345.9 345.4 313.4 32.5 (9.3%)

in Table 3(a) we perform 6 t-tests for FreeBSD. Therefore, we use a corrected
Bonferroni confidence level of α = 1−(1−0.05)1/6 = 0.0085 instead of α = 0.05.

Findings. Tables 3 and 4 present the total prediction error for the CHANGES
and BUGS models. The last column shows the difference between the total pre-
diction error of the basic model and that of the multiplicative model, together
with the percentage of improvement of the total prediction error compared to
the error of the basic model. Grey cells in the tables indicate differences that
are statistically significant. We observe that:

• For most of the years, the additive models (i.e., ModelCC+IC andModelCB+IB)
show better total prediction error values than the basic models (i.e., ModelC
and ModelB). Yet, none of the improvements are statistically significant.

• For most of the years, the multiplicative models (i.e., ModelCC∗IC and
ModelCB∗IB) show better total prediction error values than the additive
(i.e., ModelCC+IC and ModelCB+IB) and basic models (i.e., ModelC and
ModelB). Most of the recorded reductions of error are statistically significant
compared to the basic models (greyed cells). For the change-based multi-
plicative models, the statistically significant reduction of error forModelCC∗IC
over ModelC is between 9.3% and 56.3% with an average of 26.8%. For
the bug-based multiplicative models, the statistically significant reduction
of error for ModelCB∗IB over ModelB is between -11.5% and 65.0% with
an average of 26.0%. ModelCB∗IB for 2003 is an outlier, since it performs
significantly worse than ModelB .

• Table 4(c) shows that the prediction error of ModelCB∗IB for Eclipse is

17

Table 4: Total prediction error improvement for bug prediction models based on the BUGS
model. A positive value means that ModelCB∗IB performs better than ModelB (smaller
error). The value in parentheses is the percentage of improvement relative to EB . The greyed
error improvements are statistically significant.

(a) FreeBSD

Pred.
Year

EB ECB+IB ECB∗IB EB -
ECB∗IB(%)

1999 83.9 79.6 75.7 8.2 (9.8%)

2000 74.9 61.8 48.1 26.8 (35.8%)

2001 65.8 46.2 50.2 15.6 (23.7%)

2002 76.9 64.0 46.4 30.5 (65.0%)

2003 99.0 87.8 56.4 42.6 (43.0%)

2004 103.588.2 61.5 42.0 (40.6%)

(b) PostgreSQL

Pred.
Year

EB ECB+IB ECB∗IB EB -
ECB∗IB(%)

2002 50.9 49.0 50.1 0.8 (1.6%)

2003 43.5 51.5 48.5 -0.5 (-11.5%)

2004 57.5 53.6 53.2 4.3 (7.5%)

2005 45.1 40.5 34.5 10.6 (23.5%)

2006 37.6 34.9 35.1 2.5 (6.6%)

2007 58.3 59.6 46.7 11.6 (19.9%)

(c) Eclipse

Pred.
Release

EB ECB+IB ECB∗IB EB - ECB∗IB(%)

2.1 169.6 140.9 152.1 17.5 (10.3%)
3.0 238.3 209.9 211.2 27.1 (11.4%)

higher than the prediction error for ModelCB+IB and that the performance
of ModelCB∗IB is not statistically significant. This result was expected, as
the R2 for ModelCB+IB and ModelCB∗IB was identical in Table 2(c) and
our earlier interaction analysis indicated that no interaction existed.

�
�

�
�

The CHANGES and BUGS models enhanced with comment update practices
show statistically significant improvements in predictive power over the basic
CHANGES and BUGS models.

7. Discussion

According to our findings, models taking into account comment update prac-
tices and the interaction between them show a statistically significant improve-
ment over the explanatory and prediction power of basic bug models. According
to the research approach that we have used [32, 19], this statistically significant
improvement means that we have demonstrated an empirical link between com-
ment update practices and future software bugs. As a side-effect, the convincing
improvement of explanatory and predictive power using comment update pat-
terns suggests that researchers should consider integrating these comment up-
date patterns in future bug models. In particular, our Eclipse comment update
models are showing an improvement (although not statistically significant) over
the BUGS model, which is the top performing prediction model for the Eclipse
data set [23].

18

B
u

g
s

CC or IC

high IC

high C
C

(a) FreeBSD

B
u

g
s

CC or IC

high IC

hi
gh

 C
C

(b) PostgreSQL

B
u

g
s

CC or IC

high IC

high C
C

(c) Eclipse

Figure 6: The plots of case 1 vs. case 2 explaining the interaction term for ModelCC∗IC . The
plots are not in log scale.

To fully understand how specific comment update practices influence future
bugs, we should perform a more fine-grained study, including a manual analysis
of source code changes and bug repositories. We consider this to be future
work. However, our regression models allow us to get an initial, high-level idea
of the effect of comment update practices and their interaction on future bugs.
To make our discussion more concrete, we use the following two representative
multiplicative models from the FreeBSD system (built to predict bugs in 2002):

ŷFreeBSD = 0.06− 0.04CC + 0.16IC + 0.14CC ∗ IC (1)

ŷFreeBSD = 0.22 + 0.24CB + 0.16IB + 0.17CB ∗ IB (2)

The negative coefficient of CC in Equation 1 suggests that consistent changes
(CC) improve code quality, i.e., reduce the probability of future bugs. Inconsis-

19

tent changes and bug fixes all increase the number of bugs (positive coefficients).
Surprisingly, consistent bug fixes (CB) negatively impact quality (positive coef-
ficient in Equation 2). To understand this observation, we carefully study the
interaction terms in Equations 1 and 2 using the interaction analysis techniques
of Section 5. We consider the four extreme cases of comment update practices
and interpret Equations 1 and 2 for these cases:
1. Changes often update comments (High CC)
2. Changes rarely update comments (High IC)
3. Bug fixes often update comments (High CB)
4. Bug fixes rarely update comments (High IB)

Figure 6 shows the data of FreeBSD, PostgreSQL, and Eclipse for cases 1
and 2, i.e., the impact on the number of bugs for functions whose comments are
often updated (High CC, for different numbers of ICs) versus functions whose
comments are rarely updated (High IC, for different numbers of CCs). The High
IC and High CC interaction lines of a particular system both contain data for
the same number of subsystems (i.e., one third of all subsystems, see Section 5).
We can observe that:

• The High CC curve is always higher than the High IC curve, which means
that failing to update a piece of code that is usually updated (High CC) has
a higher probability of introducing bugs than updating a comment that is
rarely updated (High IC).
• The High IC curve (the dashed line) shows that the number of bugs increases

in a logarithmic fashion. This logarithmic increase indicates that for the
average High IC function in a subsystem, the relative impact of updating a
comment is higher when the number of comment updates (CCs) is small.
• The logarithmic pattern is not as pronounced for the High CC curves of

FreeBSD and PostgreSQL, which indicates that in those systems the rela-
tive impact of missing an update is more or less consistent across different
numbers of ICs.

In summary, it appears that (1) not updating comments when one usually
updates comments and (2) updating comments when one usually does not, are
indications of code changes that have a higher probability of introducing a bug
than changes that always (not) update comments.

We performed the same analysis for cases 3 and 4, but only for FreeBSD
and PostgreSQL, because Eclipse does not experience interaction effects. The
findings are identical to those for cases 1 and 2, except that the High IB curve
is higher than the High CB curve instead of the other way around, i.e., the
impact of inconsistency on code quality is much higher for bug fixes than for
regular changes. These results support earlier work [12, 13] that highlights the
critical need for tools that can recommend which comments to update. More
detailed analysis is needed to understand if these initial observations hold for
all regression models and if they generalize to other systems as well.

20

8. Threats to Validity

External Threats to Validity. We studied the comment update prac-
tices of three large, open-source systems in the domains of operating systems,
databases, and IDEs. These domains are commonly used in bug prediction
studies and cover a wide range of systems, development styles, and system
sizes. However, our results might not generalize to systems of different do-
mains, programming paradigms, or documentation paradigms (e.g., business
applications). open-source systems have special characteristics that may not
hold for commercial software systems. With developers of open-source projects
commonly distributed across the globe, they might rely more heavily on source
code comments for project documentation and collaboration.

Our findings may not generalize to environments that put emphasis on exter-
nal documentation (like API documents) as the main source of documentation
instead of on code comments. This seems unlikely, given the role and impor-
tance of source code comments (see Sections 2 and 3). In addition, even in
these environments, the basic problem of keeping code changes consistent with
the external documentation remains, as Arisholm et al. demonstrate in a study
on the impact of UML documentation on software maintenance [51].

Internal Threats to Validity. We used two specialized extractors to de-
tect changes to comments and changes to code entities (e.g., functions). The
extractor used a robust parsing technique called island grammars to parse un-
compilable code. There is a chance that this technique might fail due to complex
macro definitions or that we might map comment changes to incorrect code en-
tities. However, past research has shown that the extractor that we used has a
very high accuracy and reliability, even on large software systems like the Linux
kernel [52]. The extractor has also been used independently by other groups on
commercial systems [32].

Our approach used heuristics to classify whether a given change is consistent
or inconsistent. However, as we did not consider the semantics of the performed
changes, we might perform wrong classifications. For example, a developer
might change both the source code and the associated comment, but render the
comment out-of-date by adding incomplete or wrong information to it. A pos-
sible solution is to use natural language processing techniques to automatically
identify incomplete or incorrect comment updates.

Similarly, we assumed that all code changes require corresponding comment
changes and that otherwise such changes are considered to be inconsistent. Sec-
tions 2 and 3 argued that such an assumption makes sense, based on common
development guidelines [29, 27, 28] and earlier research [15, 5]. Still, more work
is needed to validate this assumption and to explore less strict definitions of
consistency.

Our regression models are based solely on comment update practices and as
such might ignore additional variables that could increase the model accuracy.
Nevertheless, our ANOVA tests show that all of the variables that we used in
the model are necessary for prediction and cannot be left out. In addition, the
BUGS and CHANGES models are currently the best performing bug prediction

21

models [23].
Our prediction models cannot show a causal effect of inconsistent changes

on future bugs. However, we demonstrate that there is an improvement in ex-
planatory and predictive power when using comment update practices to predict
future bugs.

As explained in Section 6, we predict the number of bugs for a given year
(FreeBSD and PostgreSQL) or for a given release (Eclipse). Hassan [24] and
Graves [19] built their prediction model based on years, while Zimmermann [39]
and Nagappan [43] built their prediction models based on releases. We use both
approaches to predict future bugs to verify the generality of our findings for
cross/intra-release quality management.

9. Conclusion

Comments are essential for software developers and maintainers, yet out-
of-date comments can put developers on the wrong track and lead to software
bugs, often a long time after the code changes that caused the comments to be
out-of-date. In this study, we established an empirical link between comment
update practices and future bugs, by showing that established bug prediction
models refined by comment update practices statistically significantly improve
on the explanatory and predictive power of the original bug prediction models.

However, the relation between (in)consistent code changes and future bugs
is not straightforward, because there is a statistical interaction between the
number of consistent and inconsistent changes. In other words, inconsistent
changes do not necessarily increase the number of future bugs. More work is
needed on the interpretation of this finding and its implications on practitioners.
Preliminary analysis suggests that the probability of future bugs increases for
changes that (1) miss to update a comment in a subsystem whose comments
are usually always updated or (2) update a comment in a subsystem whose bug
fixes usually do not update its comments. Careful review of such changes and
bug fixes is advised.

More detailed, fine-grained analysis is needed to derive more concrete com-
ment updating guidelines and to drive the development of methodologies and
tools to prevent out-of-date comments.

Acknowledgments. The authors want to thank Yasutaka Kamei and reviewers
of earlier revisions for their insightful suggestions and comments.

References

[1] S. N. Woodfield, H. E. Dunsmore, V. Y. Shen, The effect of modularization
and comments on program comprehension, in: Proc. of the 28th Intl. Conf.
on Software Engineering (ICSE), 1981, pp. 215–223.

[2] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition, 2nd Edition, Addison-Wesley Professional, 1995.

22

[3] D. L. Parnas, Software aging, in: Proc. of the 16th Intl. Conf. on Software
Eng. (ICSE), 1994, pp. 279–287.

[4] B. Fluri, M. Wursch, H. C. Gall, Do code and comments co-evolve? on the
relation between source code and comment changes, in: Proc. of the 14th
Working Conf. on Reverse Engineering (WCRE), 2007, pp. 70–79.

[5] H. Siy, L. Votta, Does the modern code inspection have value?, in: Proc. of
the IEEE Intl. Conf. on Software Maintenance (ICSM), 2001, pp. 281–290.

[6] L. Tan, D. Yuan, G. Krishna, Y. Zhou, /*icomment: bugs or bad com-
ments?*/, in: Proc. of 21st ACM SIGOPS Symp. on Operating Systems
Principles (SOSP), 2007, pp. 145–158.

[7] M. Sundbakken, Assessing the maintainability of c++ source code, Mas-
ter’s thesis, Washington State University, Pullman, Washington (December
2001).

[8] S. C. B. de Souza, N. Anquetil, K. M. de Oliveira, A study of the docu-
mentation essential to software maintenance, in: Proc. of the 23rd annual
Intl. Conf. on Design of Comm. (SIGDOC), 2005, pp. 68–75.

[9] E. Nurvitadhi, W. W. Leung, C. Cook, Do class comments aid java program
understanding?, 33rd Annual Frontiers in Education (FIE) 1 (2003) T3C–
13–T3C–17.

[10] A. T. T. Ying, J. L. Wright, S. Abrams, Source code that talks: An explo-
ration of eclipse task comments and their implication to repository mining,
in: Proc. of the 2005 Intl. wrksh. on Mining Software Repositories (MSR),
2005, pp. 1–5.

[11] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, J. Singer, Todo or to bug:
exploring how task annotations play a role in the work practices of soft-
ware developers, in: Proc. of the 30th Intl. Conf. on Software Engineering
(ICSE), 2008, pp. 251–260.

[12] D. P. Marin, What motivates programmers to comment?, Master’s thesis,
EECS Department, University of California, Berkeley (Nov 2005).

[13] H. Malik, I. Chowdhury, H.-M. Tsou, Z. M. Jiang, A. E. Hassan, Under-
standing the rationale for updating a function’s comment, in: Proc. of the
24th IEEE Intl. Conf. on Software Maintenance (ICSM), 2008, pp. 167–176.

[14] I. Herraiz, J. M. Gonzalez-Barahona, G. Robles, Towards a theoretical
model for software growth, in: Proc. of the 4th Intl. Wrksh. on Mining
Software Repositories (MSR), 2007, pp. 21–28.

[15] O. Arafat, D. Riehle, The commenting practice of open source, in: Proc. of
the 24th ACM SIGPLAN conf. companion on Object Oriented Program-
ming Systems Languages and Applications (OOPSLA), 2009, pp. 857–864.

23

[16] E. Arisholm, L. C. Briand, Predicting fault-prone components in a Java
legacy system, in: Proc. of the 2006 ACM/IEEE Intl. Symposium on Em-
pirical Software Engineering (ISESE), Rio de Janeiro, Brazil, 2006, pp.
8–17.

[17] V. R. Basili, B. T. Perricone, Software errors and complexity: An empirical
investigation, Commun. ACM 27 (1) (1984) 42–52.

[18] L. Hatton, Reexamining the fault density-component size connection, IEEE
Software 14 (2) (1997) 89–97.

[19] T. L. Graves, A. F. Karr, J. S. Marron, H. Siy, Predicting fault incidence
using software change history, IEEE Trans. Softw. Eng. 26 (7) (2000) 653–
661.

[20] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, J. P. Hudepohl, Data min-
ing for predictors of software quality, International Journal of Software
Engineering and Knowledge Engineering 9 (5) (1999) 547–564.

[21] M. Leszak, D. E. Perry, D. Stoll, Classification and evaluation of defects in
a project retrospective, J. Syst. Softw. 61 (3) (2002) 173–187.

[22] T.-J. Yu, V. Y. Shen, H. E. Dunsmore, An analysis of several software
defect models, IEEE Trans. Softw. Eng. 14 (9) (1988) 1261–1270.

[23] R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the efficiency
of change metrics and static code attributes for defect prediction, in: Proc.
of the 30th Intl. Conf. on Software Engineering (ICSE), 2008, pp. 181–190.

[24] A. E. Hassan, Predicting faults using the complexity of code changes, in:
Proc. of the 31st Intl. Conf. on Software Engineering (ICSE), 2009, pp.
78–88.

[25] N. Nagappan, T. Ball, Use of relative code churn measures to predict system
defect density, in: Proc. of the 27th Intl. Conf. on Software Engineering
(ICSE), 2005, pp. 284–292.

[26] Aargh, Part Five: Comment Rot, http://blogs.msdn.com/b/ericlippert/ar-
chive/2004/05/04/125893.aspx, last accessed, April 2011.

[27] P. Goodliffe, Code Craft: The Practice of Writing Excellent Code, No
Starch Press, San Francisco, CA, USA, 2006.

[28] S. McConnell, Code Complete, Second Edition, Microsoft Press, Redmond,
WA, USA, 2004.

[29] Comment-Driven Development, http://blogs.sitepoint.com/comment-
driven-development/, last accessed, April 2011.

24

[30] S. H. Caine, E. K. Gordon, Pdl: a tool for software design, in: Proc.
of the National Computer Conference and Exposition (AFIPS), 1975, pp.
271–276.

[31] H. R. Ramsey, M. E. Atwood, J. R. Van Doren, Flowcharts versus program
design languages: an experimental comparison, Commun. ACM 26 (1983)
445–449.

[32] M. Cataldo, A. Mockus, J. A. Roberts, J. D. Herbsleb, Software dependen-
cies, work dependencies, and their impact on failures, IEEE Trans. Software
Eng. 35 (6) (2009) 864–878.

[33] M. W. Godfrey, Q. Tu, Evolution in open source software: A case study,
in: Proc. of the Intl. Conf. on Software Maintenance (ICSM), 2000, pp.
131–142.

[34] FreeBSD, http://www.freebsd.org/, last accessed, February 2010.

[35] Z. Li, S. Lu, S. Myagmar, Y. Zhou, Cp-miner: A tool for finding copy-paste
and related bugs in operating system code, in: OSDI, 2004, pp. 289–302.

[36] PostgreSQL, http://www.postgresql.org/, last accessed, February 2010.

[37] Eclipse, http://www.eclipse.org/, last accessed, February 2010.

[38] T. Mens, J. Fernandez-Ramil, S. Degrandsart, The evolution of eclipse, in:
Proc. of the 24th IEEE Intl. Conf. on Software Maintenance (ICSM), 2008,
pp. 386 –395.

[39] T. Zimmermann, R. Premraj, A. Zeller, Predicting defects for eclipse, in:
Proc. of the 3rd International Wrksh. on Predictor Models in Software
Engineering (PROMISE), 2007, pp. 9–15.

[40] A. E. Hassan, R. C. Holt, C-Rex: An Evolutionary Code Extractor for C,
presented at Consortium for Software Engineering Meeting (CSER) (2004).

[41] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, Mapreduce as a general
framework to support research in mining software repositories, in: Proc. of
the 6th Intl. Working Conf. on Mining Software Repositories (MSR), 2009,
pp. 21–30.

[42] L. Moonen, Generating robust parsers using island grammars, in: Proc. of
the 8th Working Conf. on Reverse Engineering (WCRE), 2001, pp. 13–22.

[43] N. Nagappan, T. Ball, A. Zeller, Mining metrics to predict component
failures, in: Proc. of the 28th Intl. Conf. on Software Engineering (ICSE),
2006, pp. 452–461.

[44] A. Mockus, L. G. Votta, Identifying reasons for software change using his-
toric databases, in: Proc. of the 16th Intl. Conf. on Software Maintenance
(ICSM), 2000, pp. 120–130.

25

[45] A. E. Hassan, Automated classification of change messages in open source
projects, in: Proc. of the 2008 ACM Symp. on Applied Computing (SAC),
2008, pp. 837–841.

[46] J. Jaccard, R. Turrisi, Interaction effects in multiple regression, 2nd Edi-
tion, SAGE, 2003.

[47] L. S. Aiken, S. G. West, R. R. Reno, Multiple regression: testing and
interpreting interactions, 1st Edition, SAGE, 1991.

[48] L. C. Briand, Y. Labiche, M. D. Penta, H. D. Yan-Bondoc, An experimental
investigation of formality in UML-based development, IEEE Transactions
on Software Engineering 31 (2005) 833–849.

[49] S. Weisberg, Applied Linear Regression, John Wiley and Sons, 1980.

[50] H. Abdi, Bonferroni and Sidak corrections for multiple comparisons, in:
Encyclopedia of Measurement and Statistic, Sage, 2007, pp. 103–107.

[51] E. Arisholm, L. C. Briand, S. E. Hove, Y. Labiche, The impact of UML doc-
umentation on software maintenance: An experimental evaluation, IEEE
Transactions on Software Engineering 32 (6) (2006) 365–381.

[52] A. E. Hassan, Z. M. Jiang, R. C. Holt, Source versus object code extraction
for recovering software architecture, in: Proc. of 12th Working Conf. on
Reverse Engineering (WCRE), 2005, pp. 67–76.

26

	Introduction
	Background and Related Work
	The Use of Comments in Source Code
	Updating Code Comments
	Bug Prediction

	Comment Update Practices
	Data Collection
	Studied Systems
	Recovery of Comment Update Practices

	Studying Update Practices
	Impact on Future Bugs
	Measuring the Explanatory Power
	Measuring the Predictive Power

	Discussion
	Threats to Validity
	Conclusion

