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Abstract—Large scale systems (LSS) contain multiple subsystems 

that interact across multiple nodes in sometimes unforeseen and 

complicated ways. As a result, pinpointing the subsystems that 

are the source of performance degradation for a load test in LSS 

can be frustrating, and might take several hours or even days. 

This is due to the large volume of performance counter data 

collected such as CPU utilization, Disk I/O, memory consumption 

and network traffic, the limited operational knowledge of analysts 

about all subsystems of an LSS and the unavailability of up-to-

date documentation in a LSS. We have developed a methodology 

that automatically ranks the subsystems according to the 

deviation of their performance in a load test. Our methodology 

uses performance counter data of a load test to craft performance 

signatures for the LSS subsystems. Pair-wise correlations among 

the performance signatures of subsystems within a load test are 

compared with the corresponding correlations in a baseline test 

to pinpoint the subsystems responsible for the performance 

violations.  Case studies on load test data obtained from a large 

telecom system an open source benchmark application show that 

our approach provides an accuracy of 79% and our approach 

don’t require any instrumentation or domain knowledge to 

operate.  
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I.  INTRODUCTION  

Large scale systems (LSS) such as Google, Facebook, 
Hotmail and eBay keep on growing in size1  and in complexity. 
They provide composite services, support a large user base and 
handle complex business demands. In line with Lehman’s laws 
of continuing change and increasing complexity [1], the 
periodic maintenance of such LSS has become more critical 
and challenging than before since processing is spread across 
thousands of subsystems and millions of hardware nodes (and 
users). 

Performance analysts and developers of LSS spend 
considerable time dealing with functional and performance 
bugs. Deadlocks and memory management bugs are examples 
of functional problems under load. Performance problems 
include an application not responding fast enough, crashing or 
hanging under heavy load or not meeting the desired service 

                                                           
1  No of nodes: Facebook 10000+[36], Google 30000+[37], Hotmail 7000+[38] 

level agreements (SLA). Problems after the release of an 
application are seldom due to feature error, but rather due to  
systems not scaling to field workloads [2] [9, 34]. Companies 
like ‘AT&T’ and ‘Research In Motion’ also report their 
concerns about performance degradation and resource 
saturation as fundamental post-release problems [3, 4]. As a 
result of functional and performance bugs, it becomes 
increasingly likely that a given subsystem of LSS might fail, 
potentially propagating to the entire system and resulting in 
large monetary losses. For example, an hour-long PayPal 
outage due to periodic maintenance may have prevented up to 
$7.2 million in customer transactions [5].  

Load testing is an important weapon in LSS development to 
uncover functional and performance problems of a system 
under load [6]. One or more load generators are used to 
simulate committing thousands of concurrent transactions to an 
application under test [7]. During the course of a load test 
(which may span over many days), the application is closely 
monitored and a huge volume of performance counter data is 
logged. The performance counter log captures the run-time 
system’s performance properties such as CPU utilization, disk 
I/O, queues and network traffic. Such information is of vital 
interest to performance analysts, as it helps them to observe the 
system’s behavior under load by comparing against 
documented behavior of an application/system or with an 
expected behavior.  

LSS are vulnerable to propagation of failures due to inherit 
coupling between their subsystems and unexpected propagation 
of faults because of hidden dependencies. Hence, failures 
manifestation propagates to non-faulty subsystems affecting 
their performance. These non-faulty subsystems prove to be 
false-positive recommendations to an analyst. In practice, for 
LSS, it is impossible for an analyst to skim through the huge 
volume of performance counters to identify the subsystems that 
are the cause of starting performance degradation in a load test. 
Some post-deployment approaches to identify the problems 
and failures in the distributed systems exist [8-10][11-14], but 
these approaches do not explicitly pinpoint the subsystems in 
LSS that are the cause of problem or failure. Moreover, they 
are not fully automatic, since they do not sufficiently capture 
the dynamic complexity of LSS and require analysts to input 
extensive knowledge of the system [8-10].  



Our previous work aimed to help performance analysts to 
automatically identify the performance deviated subsystems in 
a load test by crafting performance signatures [16]. Such a 
signature consists of the essential performance counters for a 
particular load test. However, our technique reported all 
subsystems with deviating performance counters, without 
ranking them according to criticality. An analyst is only 
interested in those subsystems that are the real cause of 
performance deviations among all the performance deviated 
subsystem reported. Without support, troubleshooting the cause 
of the performance deviation in a load test is both expert-
intensive and time-sensitive activity. 

 In this paper, we improve our previous technique to rank 
the subsystems with performance deviations according to the 
extent of deviation from the baseline. The paper makes the 
following contributions: 

C1.  We empirically validate our proposed methodology 
through a case study on a real-world industrial 
software system and an open-source benchmark 
application. 

C2.  We show how simple pair-wise correlation between 
the performance signatures of subsystems can rank the 
performance deviated subsystems in order of their 
likelihood of causing the performance deviation.  

 
Organization of the Paper 

The rest of the paper is organized as follows:  The paper 
first presents a motivating scenario in section II, followed by 
the current practice of load testing and its limitations in section 
III. We present our methodology in section IV. Section V 
presents case study setup along with case study findings in 
section VI. The related work is presented in section VII. The 
conclusion and future work are reported in section VIII. 

II. MOTIVATING SCENARIO 

 It was not a surprise for John to see a pile of testing 
documents being shoved-up on his desk, with a sticky note of 
his boss saying: “we want to go live with the BigMail project 
this Friday. We have a new automatic load test analysis system 
to help you.  I am sure you can do it John.” John has been load 
testing the features of the BigMail in the past. But this time 
there is a twist. The lab (mail servers supporting 30,000 users) 
is physically at another location due to all testing resources 
being fully occupied at such busy time. John has been assigned 
the remote lab from 5 pm to 5 am. John gets busy like a bee 
setting up the test environment, installing some domain 
specific application and configuring load testing tools (load 
generators, performance monitors, emulators etc). John is done 
setting up the environment by 4:30. He again verifies all the 
steps with his check-list to ensure everything is setup correctly. 
John knows that a slight negligence can cost him a whole day’s 
effort. He starts the first test at 5:00pm and leaves to home. 
Next day, John finds the load test analysis report in his mailbox 
generated by an automated load test support tool. John was 
disappointed to see the load test failed with high deviation from 
the baseline test. However, he was surprised to see 1) a neatly 
organized report with the list of performance deviated 
subsystems sorted on the basis of importance, 2) a visualization 

for every deviated subsystem, comparing their important 
counters with the base- load test and 3) a correlation table that 
provides statistical analysis result between the two tests.   

 

 

Figure 1. Performance load testing process 

John pressed the ‘Diagnostic button’ in the html report and was 
presented with the list of 20 subsystems that deviated from 
baseline test. All the deviated subsystems belong to the remote 
lab. The report also pinpointed the subsystem (mail server-A) 
as the cause of the performance deviation. The visualization 
clearly showed high deviation of the mail server-A’s counter 
‘disk Read/sec’ from the base-line load test. Such high 
deviations could only have been possible under extreme stress 
conditions.  John calls the mail server-A’s administrator at 
remote location and finds out that heavy disk utilization noticed 
for the server ‘A’ was the result of scheduled maintenance 
activity that runs every sunday night. No doubt, John’s location 
was 24 hours ahead of the remote lab location. John is happy; 
the automated system helped him to identify the problem 
subsystem. He did not have to spend time skimming through 
the large volume of performance counter data, piecing together 
the cause of test failure. He hurries to start the test again. 

III. CURRENT PRACTICE OF LOAD TESTING 

The typical process of load testing involves four phases, as 
shown in Figure 1. 
1. Environment setup is the most important phase of load 

testing. Most common load test failures occur due to 
improper environment setup for a load test [15, 16]. The 
environment setup includes installing the application and 
the load testing tools, possibly on different operating 
platforms. Load generators, which emulate the user’s 
interaction with the system, need to be carefully 
configured to match the real workload in the field. 

2. Load test execution involves starting the components of 
the systems under load test, i.e., starting the required 
services, hardware resources and tools (load generators and 
performance monitors). During the execution of a load test, 
the application/system under load is strictly monitored and 
performance counters are recorded in performance logs. 

3. Load test analysis involves comparing the results of a load 
test against a baseline, such as another load test’s result, or 
against pre-defined thresholds. Unlike functional and unit 
testing, which result in a pass or failure classification for 
each test, load testing involves additional quantitative 
metrics like response time, throughput and hardware 
resource utilizations to summarize results. The 
performance analyst selects few of the important 
performance counters among the thousands of collected to 
compare them with the baseline. Based on his experience 
and the domain knowledge, the performance analyst 
manually compares the selected performance counters with 
those of past runs to look for evidence of performance 
deviation, for example using plots and correlation tests. 
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Figure 2: The steps involved in the proposed methodology 

4. Report generation includes reporting the performance 
deviations, if found, based on the personal judgment of the 
analyst. In most cases the results filed in a performance 
report are verified by an experienced analyst. Based on the 
extent of performance deviation and its relevance to a team 
responsible for handling the subsystems such as database, 
application, web system etc., the respective subsystem is 
then assigned to a relevant team for rectification. 

Many challenges and limitations associated with the current 
practice of load test analysis remain unsolved: 

1. Large number of performance counters: Load tests last 
from a couple of hours to several days. They generate 
performance logs that can be of several terabytes in size. 
Even logging all counters on a typical machine at 1Hz 
generates about 86.4 million values in a single week. A 
cluster of 12 machines over one week would generate 13 
TB of performance counter data per week, assuming a 64 
bit representation for each counter [17]. Analysis of such 
large counter logs to identify the subsystem that is the cause 
of performance deviation in a load test is still a huge 
challenge. In practice, it is impossible for analysts to skim 
through the huge volume of performance counters to find 
the required information in LSS. Instead, analysts use few 
key performance counters known to them from the past 
practices, performance experts and domain trends as ‘rules 
of thumb’ [18]. Applying such ‘rules of thumb’ on load 
tests can provide misleading information about 
performance issues [18], thereby leading to pinpoint 
incorrect performance deviated subsystem(s). 

2. Limited time:  Performance analysts in LSS have only 
limited time to reach and complete diagnostics on 
performance counter logs and to make necessary 
configuration changes. Load testing is usually the last step 
in an already tight and usually delayed release schedule. 
Hence, managers are always eager to reduce the time 
allocated for performance testing.  

TABLE I: OBSERVATIONS BEFORE DATA PREPARATION 

 Observations 
Var Tot Mis Avail Mini Max Mean Std. Dev 
Q 599 0 599 246.18 1946.11 754.654 292.00 
R 599 0 599 009.59 0063.46 023.427 011.14 
S 0 0 0 000.00 0000.00 000.000 000.00 
T 599 2 597 001.00 0117.11 0030.90 018.99 

 
TABLE II: OBSERVATIONS AFTER DATA PREPARATION 

 Observations 
Var Tot Mis Avail Mini Max Mean Std. Dev 
Q 599 0 597 -13.37 000.07 0.00 1.00 
R 599 0 597 -00.71 006.52 0.00 1.00 
T 597 0 597 -1.694 001.46 0.00 1.00 

 
3. Limited global knowledge: Load test analysis is error-

prone because of the manual process involved in analyzing 

performance counter data in current practice. There is no 
single person with complete knowledge of end to end 
geographically distributed system activities in an LSS [19]. 
An analyst with good knowledge of the database server will 
quickly uncover important database counters from 
performance counter logs however; he may overlook some 
important web counters.  

Due to the above challenges, we believe that the current 
practice to perform load test analysis in LSS is neither efficient 
nor sufficient to pinpoint performance deviated subsystems 
accurately and in limited time. 

IV. THE METHODOLOGY 

In this section, we present and discuss our methodology to 
help analysts in load test analysis by pinpointing the 
subsystems that are likely the actual cause of performance 
deviations in limited time. Figure 2 shows the steps of our 
methodology. 

A. Data Preparation 

The performance logs obtained from a load test need to be 
prepared to make them suitable for the statistical techniques 
employed by our methodology. The three steps involved in 
data preparation are 1) Data sanitization: Missing 
performance counter variables i.e., partially or completely are 
removed from the analysis. For example, the performance 
counter ‘S’ in TABLE I belongs to missing variable category. 
The performance counter ‘T’ in TABLE I belongs to 
incomplete variable category. Statistical techniques such as 
list wise deletion are employed to handle incomplete variables 
[21]. 2) Pre-treatment: The data is converted into a format that 
is understood by our data reduction technique, i.e., Principal 
Component Analysis (PCA) [22]. Therefore, all performance 
counter variables are scaled to unit variance (mean of 0 and 
standard deviation of 1), as shown in TABLE II.  3) 
Normalization: Different applications and systems may 
publish the same performance counter with different names. 
Normalization ensures the portability of our approach across 
different systems/platforms. 

B. Performance Signatures 

Performance signatures basically correspond to a minimal set 
of performance counters that describe the essential 
characteristics of a particular load test. We use a robust and 
scalable statistical technique for this, i.e., Principal Component 
Analysis (PCA) [22]. PCA transforms all load test counters 
into a smaller number of synthesized variables called Principal 
Components (PCs). Every PC is independent and uncorrelated 
with other PCs. TABLE III shows the PCA for a real world 
performance counter log consisting of 18 performance counter 
variables reduced into 12 PCs. 
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TABLE III: PCA TABLE IV: A SIGNATURE 

PC Eigen-
Value 

Variability 
% 

Cumulative 
Variability % 

PC1 11.43 63.506 63.506 

PC2 2.47 15.260 78.765 
PC3 1.720 9.554 88.319 
PC4 0.926 5.143 93.463 
⁞ ⁞ ⁞ ⁞ 

PC12 0.001 0.003 100.00 
 

Rank PC Counter Imp 

1 PC1 N 0.974 
2 PC1 M 0.972 
3 PC1 R 0.966 
4 PC1 Q 0.946 
5 PC1 P 0.944 
6 PC1 E 0.933 
7 PC2 I 0.912 

 

The first component PC1 has an eigen-value of 11.431, which 
means that it explains 11.431 times as much variance as a 
single counter variable. This accounts for 63.560% of the 
variability of the entire performance counter data set. To 
further trim the performance counter data, we only select the 
first N PCs that explain 90% of the ‘% Cumulative Variability’. 
90% is adequate to explain most of the data with minimal loss 
in information [22].  

We then decompose the selected principal components using 
the eigenvectors technique to map the PCs back to concrete 
counter variables [22]. Each performance counter is given a 
weight (importance) in accordance to its association with a PC. 
The larger the weight of a performance counter, the more it 
contributes to a PC. We applied the threshold to decide on the 
important performance counter variables and discard the rest 
[20]. TABLE IV shows seven performance counter variables 
out of 18, ranked according to their importance. Our 
methodology achieved a 61% data reduction. These 7 
performance counters of a system forms its performance 
signature.  

C. Extracting Performance Deviations 

The goal of our methodology is to help performance analysts 
by automatically identifying the subsystems of LSS that 
deviate from the baseline. This step of our methodology 
measures the correlation between the performance signatures 
of a subsystem in the load test with that of the corresponding 
signature of a baseline test. Prior research has shown that 
usually stable relationships between metrics exist in a well-
behaved system [23-25]. The relationships are often disturbed 
when error occurs [25]. We illustrate this with an example. 
 
 
 
 
 
 
 
 

Figure 3: The sensitivity of performance signature 

TABLE V: AVERAGE 
CORRELATIONS 

 Base Deviated-Sys Dev % 

A 0.87 0.72 0.15 17.1 
B 0.88 0.82 0.05 6.46 
C 0.89 0.83 0.06 7.03 
D 0.78 0.73 0.05 6.92 

 

0
.7

 

Figure 4: Pair-wise Correlations 

Figure 3 shows a performance signature-A consisting of 6 
important performance counters for a load test. 
The thickness of the edges between the performance counters 
shows the strength of the association between them. Running 
the load test under the same workload and environment will 
produce the same signature. When a change (CPU stress) is 
introduced during the load test, disturbing the existing 
relationship between performance counters, a different 
signature-B is generated.  

When a performance signature is crafted at subsystem level, it 
acts as a finger-print to the respective subsystem of LSS and 
helps to identify and compare the performance with baseline 
subsystems. The importance of the performance counters in a 
signature only holds for the same environment and workload of 
the test. However, when an error or unknown change occurs in 
the load test environment or in the workload, such as server 
replications and background antivirus scan, the importance of 
performance counters for a subsystem shifts, causing a change 
in performance signature of the subsystem of LSS. This change 
in performance counter signature enables us to detect 
performance deviations at subsystem level.  

 We use Spearman’s rank correlation to find the extent of 
deviation between performance signatures [26].  A value of +1 
confirms that two performance signatures are identical and that 
there is no performance deviation between the respective 
subsystems. We choose Spearman’s rank correlation over other 
correlation coefficients such as Pearson product-momentum, 
Kendall’s tau and gamma because Spearman’s rank correlation 
does not require any assumptions about the frequency 
distribution of the variables. This is necessary because load test 
data contains traces that do not follow normal distribution of 
data. 

D. Pinpointing 

Whereas the previous step of our methodology identifies all 
subsystems that deviate from the baseline performance, the 
pinpointing step of our methodology ranks the subsystem(s) 
that is/are likely the cause of performance violation among all 
performance deviated subsystems in the load test.  

To rank the subsystems, we calculate the average pair-wise 
correlation �∆ρ�  that exists between the performance 
signatures of a performance deviated subsystem with that of 
the other misbehaved subsystems in a load test. The average 
pair-wise correlation of the subsystem is compared with the 
average pair-wise correlation of the respective subsystem in a 
baseline load test to determine the extent of performance 
deviation.  Among the performance deviated subsystems, the 
subsystem having the highest deviation is likely to be the 
culprit subsystem.  

We explain the pinpointing step of our methodology with 
the help of the following example. For a load test ‘Test-I’, the 
methodology extracts four performance deviated subsystems 
A, B, C and D. Among the pool of performance deviated 
subsystems, the methodology computes pair-wise correlations 
between the performance signatures of each subsystem with 
that of the rest in the pool, i.e., it calculates the pair-wise 
correlation ���  of subsystem A with that of B, C and D 
(AB=0.7, AC=0.7, AD=0.9) as shown in Figure 3. 
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Figure 5: An example of a performance report 

 Then, for each subsystem the average of all pair-wise 
correlations that exists for the particular subsystem’s signature 
with other performance deviated subsystem is computed. For 
performance deviated subsystem A, the average correlation of 
its performance signature is 
∆ρ � �0.7 
 0.7 
 0.9 
 1.0� 4 � 0.72 ⁄ , as shown in TABLE V. 
The average pair-wise correlation of each performance 
deviated subsystem is compared with that of the corresponding 
subsystem in a base-line test. If the signature of a different 
system contains a different number of performance counters, 
the common performance counters between two signatures are 
considered. The subsystem with the higher deviation among 
the pool of performance deviated subsystems i.e., ‘A’ is 
pinpointed to be likely the source of performance deviation in 
load test ‘Test-I’ as shown in TABLE V. As the pinpointing 
step of our methodology calculates the average pair-wise 
correlation between the signatures of multiple subsystems, the 
probability of a Type I error is higher. Thus, Bonferroni’s 

correction is made to the p-values of the Spearman 
correlations to correct for multiple testing. In essence, each p-
value is multiplied by the number of comparisons and the 
adjusted p-value is compared to the standard significance level 
(0.05) to determine significance. Bonferroni’s correction is 
chosen because it is a rather conservative test. 

E. Report Generation 

To help a load tester examine the performance deviations, we 
generate performance deviation reports. The report is 
generated in dynamic HTML so that the testers can easily 
attach it to emails that are sent out while investigating a 
particular subsystem’s performance deviations. The report 
contains visualizations and correlation tables to point out the 
divergence between two subsystems, as shown in Figure 5. It 
also includes a list of performance deviated subsystems. The 
subsystem having the highest average performance deviation 
is pinpointed as the cause of performance deviation in the load 
tests. 

V. CASE STUDY SETUP 

To evaluate the performance and reliability of our 
methodology, we conducted a case study on two different 
applications, i.e., the open source Dell DVD store and a large, 
proprietary telecom system. The goal of our case study is to 
thoroughly examine the following research hypothesis: 

 Our methodology accurately pinpoints the subsystems that 
are the cause of performance deviations in a load test 

A. The DELL DVD Store 

The Dell DVD Store (DS2) application is an open source 
enterprise software application developed by Dell as a 
benchmarking workload for white papers and demonstrations 
of Dell’s hardware solutions [2]. DS2 has a typical three-tier 
architecture, which consists of an application server 
component, database server components and a load generator 
engine (client emulator). The source code for the load 
generator is publicly available and runs on various platforms. 
The load generator can generate load on the application server, 
or directly generate load on the database server, skipping the 
application server altogether. The load generator emulates 
website users by sending HTTP requests to the application 
front-end. The application encodes the various business rules, 
such as ordering new titles or declining an order in case of 
insufficient inventory. All customers, titles and transactional 
data are stored in the database server tier.  

We chose DS2 over other applications for many reasons. 
First, it is an open-source application, allowing us to debug and 
fix many problems with the application. Second, it is simple to 
use, through a command line interface. We created the load test 
environment for Dell DVD store similar to Figure 6, with three 
Tomcat containers running the JSP version of DS2, and a 
MySQL server as database server. 

B. An Enterprise Application 

Figure 6 shows the load test environment of the commercial 
system that we used as our second subject system. The four  

 



 

 

 
 
 
 
 
 

 
 

 
Figure 6. Components of test environment 

TABLE VI. BASELINE CONFIGURATION FOR DS2 

Parameter Value 

Duration 7 hours 
Number of driver threads 50 
Startup request rate 5 
Think time (time it takes a customer to complete an order) 30 sec 
Database size Large 
Percentage of new customers 15% 
Average number of searches per order 3 
Average number of items returned in each search 5 
Average number of items per order 5 

 

subsystems are enclosed within a dotted line. The enterprise 
application runs on a cluster and utilizes a database to store 
data. The enterprise application uses two web systems to allow 
users to share documents, schedule meetings and access 
intranet resources between geographically separated locations. 
An internal load generator mimics user interaction within an 
enterprise application by performing simultaneous concurrent 
transactions, placing load on the database.  The external load 
generators emulate a large volume of traffic from the outside of 
the intranet to stress web systems. A customized performance 
monitoring tool monitors the system’s performance counters. 

VI. CASE STUDY FINDINGS 

 We conducted an experiment to find out how accurately 
our approach helps a performance analyst to pinpoint in 
limited time the subsystems that are the actual cause of 
performance deviation for a load test. The goal of the 
experiment was to validate ranking procedure of our technique 
under a number of representative tests. The experiment 
consisted of a baseline-test along with four more load tests 
conducted on Dell DVD store application and one load test 
conducted for proprietary system.  

The workload configuration for the base-load test for DS2 
is listed in TABLE VI. In our first load test, we stressed the 
system by pushing 4 times (4-X) more load than that of the 
base-line load. The reason to conduct such type of load test is 
based on the fact that most of the performance violations in 
load tests occur due to miss-configurations of load generators 
and during setup of complex test environments [7]. Also, 

unexpected intervention from other applications such as 
antivirus, disk scrubs, RAID reconstructions and data 
replication add to the change in normal workload [27]. In our 
second and third test, to simulate resource saturation, we 
stressed the CPUs of different subsystems. The reason to 
conduct such test was based on the fact that most of the post-
release problems in LSS are related to performance 
degradation and resource saturation instead of feature bugs. 
This is because many feature bugs get resolved at earlier 
stages of testing by unit and functional testing. In the fourth 
test, we injected a memory bug in the database subsystem of 
DS2 , which is another way to stress  the system.   

Finally, the fifth test is based on the performance logs 
extracted from the load test repository of a large telecom 
enterprise. The motivation behind the fifth load test was to 
analyze how our methodology scales up to a large volume of 
performance logs.  

We used the framework of Thakkar et al. to automate the 
DS2 load tests and to ensure that the environment remains 
constant throughout the experiments [4]. All load tests for DS-
2 were repeated a minimum of five times to ensure the 
consistency among the results. The ramp-up and ramp-down 
periods of load tests were excluded from the analysis as the 
system usually is not stabilized at these periods.  The results 
reported in TABLE VII and Figure 7  are the average of the 
correlations between the performance signatures of the 
respective subsystems of the load tests. A custom monitoring 
tool was used to record the 60 performance counters across the 
four subsystems of the Dell DVD Store. The tool collected the 
performance data periodically after every 15 sec (sampling 
interval). Over a period of 8 hours, the tool collected 1920 
instances (numeric readings). The performance counter logs 
obtained from the repository of large enterprise contained 1400 
performance counters.  We are going to explain each test in 
more detail.  

Base-line load test: Three load generators are configured to 
push the load on the three web servers (Tomcat running JSP 
application). The system under test is closely monitored and 
performance counter logs are collected from all the 
subsystems. We applied our methodology on the performance 
counter logs and extracted the performance signatures for all 
the subsystems of the base-line load test. The performance 
signatures of the web servers consist of 6 performance 
counters each. The performance signature for the database 
server contained 8 important performance counters. The 
Spearman rank correlation is used to calculate the extent of 
association between the subsystem’s performance signatures 
as shown in Figure 7(a). 

Test 1: To mimic the problems resulting from mis- 
configuration of the load generators, we conducted a test by 
pushing 4-X more load on webserver-1 than in the base-line 
load. The workload mix was kept the same as that of the 
baseline, except that we increased its intensity 4 times.

 
 

Clustered 
Application 

System 
Web Server 

(A) 

Web Server 
(B) 

Database Internal 
Load 

Generator 

Performance 
Logs 

Performance Monitoring Tool 

Ext. Load 
Generator  

 



Web-1

Web-3

DB

Web-2

0.
9

0.7

0.
75

0.9

0
.7

0.93

 

Web-1

Web-3

DB

Web-2

0.
7

0.7

0.
73

0.7

0
.5

0.9

 

Web-1

Web-3

DB

Web-2

0.
61

0.7

0.
7

0.63

0
.5

2

0.9

 

Web-1

Web-3

DB

Web-2

0.
86

0.6

0.
6

0.87

0
.6

2

0.89

 

(a)  Base-line test (b) Test-1 (c) Test-2 (d) Test-4 

Figure 7: Correlations between the performance signatures of subsystems. 

TABLE VII: AVERAGE PERFORMANCE DEVIATIONS OF SUBSYTEMS COMPARED TO BASE-LINE TEST  

 Base 4-X Dev % 

*Web-1 0.87 0.72 0.15 17.1 

Web-2 0.88 0.82 0.05 6.46 

Web-3 0.89 0.83 0.06 7.03 

DB 0.78 0.73 0.05 6.92 
 

 Base CPU Dev % 

*Web-1 0.87 0.69 0.18 21.1 

Web-2 0.88 0.80 0.08 9.29 

Web-3 0.89 0.80 0.09 10.6 

DB 0.78 0.73 0.05 7.24 
 

 Base CPU Dev % 

Web-1 0.87 0.83 0.03 4.28 

Web-2 0.88 0.83 0.04 5.04 

Web-3 0.89 0.84 0.05 6.14 

*DB 0.78 0.78 0.08 10.4 
 

 Base MEM Dev % 

Web-1 0.87 0.81 0.06 7.42 

*Web-2 0.88 0.75 0.13 14.9 

Web-3 0.89 0.81 0.08 9.49 

DB 0.78 0.7 0.087 11.0 
 

(a) Test-1 (b) Test-2 (c) Test-3 Test-4 

We illustrate what we mean by workload mix and varying 
intensity. For example, the load of an e-commerce website 
would contain information such as: browsing (40%) with a 
min/average/max rate of 5/10/20 requests/sec, and purchasing 
(40%) with a min/average/max rate of 2/3/5 requests/sec. In 
our experiment, we keep the workload mix (browsing 40% and 
purchasing 40%) constant; however, we varied test’s intensity 
(rate). The load pushed on the other web servers was the same 
as that of the base-line load test. 

Test 2:  Often the load test deviates from the base-line test 
either due to hardware failures or due to resource saturation. 
For example, the hard disk may fill up because the tester 
forgot to clean up the data from an older run. Once the disk is 
full, the application under test may turnoff specific features 
causing the test to deviate from its base-line performance. 
Resource saturation arising due to the intervention from other 
applications, i.e., from unknown background loads such as 
unplanned replication, virus scanner and disk-scrubs affects 
the performance of the load test. We slowed down the CPU of 
webserver-1 using a CPU stress tool known as winThrottle 
[28], webserver-1 is the weakest machine in our load test 
environment. We choose winThrottle over other CPU stress 
tools because it is an open source tool and can exploit a 
feature in system hardware that directly modifies the CPU 
clock speed, rather than using software "delay loops" or HLT 
instructions to slow down the machine. This method provides 
very smooth slowdowns without any incompatibilities with 
software. For an 8 hour load test, we stressed the CPU of the 
webserver-1 for 30 minutes. 

Test 3: Test 3 is analogous to test 2, spanning over 8 hours, 
except that we stressed the database server, which runs on a 
more powerful machine than webserver-1. Since the database 
is used by all three different web servers, stressing the CPU of 
the database will affect all three web-servers, mimicking the 
propagation of performance problems from one subsystem to 
others. Since test 2 and test 3 are of similar nature, they enable 
us to validate the consistency of our methodology in 
pinpointing the same type of performance problem, i.e., CPU 
saturation, among different subsystems (webserver-1 and a 
database server). 

 

TABLE VIII: CORRELATION BETWEEN THE LOAD TESTS 

 Test-A Test-B Test-C Test-D Test-E 

Test-A 1 0.9603 0.9732 0.37418 0.1790 
Test-B  1 0.9778 0.45823 0.1359 
Test-C   1 0.42581 0.1392 
Test-D    1 0.2305 
Test-E     1 

Test 4:  We conducted a load test with the same workload as 
the base-line load test, but injected a memory bug into 
webserver-2 using a customized open-source memory stress 
tool called EatMem [29]. The tool allocates a random amount 
of available memory at recurring intervals. To mimic a 
memory leak, webserver-2 was stressed for 30 minutes using 
EatMem.  

Test5:  The last test was conducted on the performance logs 
obtained from the test repository of a large telecom enterprise. 
The performance analysts gave us the performance logs of 5 
load tests A, B, C, D and E. Test A was marked as a base-line 
test by the performance analysts and its performance counters 
were thoroughly analyzed by them for any performance 
discrepancy. Analysts told us that among the four tests, 2 tests 
were good and 2 of them violated performance requirements.  

 

Figure 8: Comparison with the base-line performance signature 
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TABLE IX: PERFORMANCE OF OUR METHODOLOGY 

Load Test Performance Measure 
No. Sampling Interval Precision Accuracy 

Load Test-1 15 Sec 82% 79% 
Load Test-2 30 Sec 82% 79% 
Load Test-3 1 Min 77% 70% 

 

The analysts were keen on finding out if our methodology 
could pinpoint the subsystems that were the cause of 
performance deviation between the baseline and the two failed 
tests. We applied our methodology on base-line test A to 
extract the performance signatures. The signatures consisted 
of 169 important performances counters out of a total of 1440 
counters. We used the signatures as the base-line performance 
counters and compared them across the other tests.  

Findings: Figure 7 shows the correlation between performance 
signatures of the DS2 subsystems. The ‘     ’ marks the 
subsystem where a performance bug is injected. The ‘*’ in 
TABLE VII indicates the subsystem that is pinpointed by our 
methodology as likely the cause of performance deviation in a 
load test. For test-1, our methodology correctly identified 
web-1 as the source of performance deviation in the load test. 
Web-1 has the largest deviation from the base-line based on 
the average pair-wise correlation of performance signatures 
shown in Figure 7 (b) and TABLE VII (a). Among CPU stress 
tests, i.e., test 2 and test 3, webserver-1 and the database 
server are pinpointed as the culprit subsystems. Hence, our 
methodology is consistent in pinpointing the accurate 
subsystems under same stress load (i.e. CPU stress).  Although 
the same CPU stress was applied on webserver-1 during load 
test 2 and on the database server during load test 3, however, 
the extent of ‘%’ average performance deviation is different 
for both. The last test conducted on Dell DVD store 
application shows that webserver-2 is r the source of 
performance deviations, which is correct, as a memory-bug 
was injected into webserver-2 for 30 minutes. 

Finally, we report the findings of test 5 conducted on the 
performance counter logs of a large telecom enterprise. The 
performance analysts agreed to the authenticity of the reduced 
but important set of performance counters recommended by 
our methodology (performance signature). They agreed that all 
169 performance counters are needed and the crafted 
performance signature is a true representative of the system 
under test. Figure 8 is a line plot that shows the comparison 
between the important performance counters of the base-line 
load test with that of the other 4 tests.  Load tests B and C are 
found very similar to that of the baseline test-A. The test D & E 
are found deviated from the baseline, which confirms the 
findings of the performance analysts. TABLE VIII provides the 
statistical evidence of the findings. Furthermore, our 
methodology pinpointed the web server to be the source of 
performance deviation in both the test D and E and 
performance analysts acknowledged the findings of our 
methodology. Once our methodology pinpointed the culprit 
subsystem i.e., the web server, the performance counters 
representing the deviated resource were further identified by 
comparing the signatures crafted by our methodology for the 
web server of load test D&E with that of baseline load test.  
The Packet Outbound Discarded, Packets Sent/sec and 

Message Queue length performance counters were notably 
deviated from the base-line counters. It was found that the web 
server was unable to get a connection to the remote database 
server due to some network constraints, hence was unable to 
write messages to the store. This caused an enormous message 
queue build-up at web server. Once the queue got full, the web 
server silently started to drop the messages without any 
notifications.  This is a common behavior of an application 
during resource saturation or under stress. By pinpointing the 
web server as the source of performance deviation in load tests 
along with an indication of its deviated performance counters, 
performance analysts had no problem in piecing together the 
cause of the performance deviation of the load test from its 
base-line test.  

 

 

 

 

A. The effect of sampling interval on our methodology 

There is no universal sampling rate set for logging performance 
counter data during load testing. If the load test tends to span 
over multiple days, an analyst will prefer a large sampling 
interval, i.e., either every minute or every five minutes, to keep 
the growth of the performance log under control. However, if 
the load test takes only a couple of hours, a performance 
analyst may tend to sample the system under test more 
aggressively, i.e., every 5 sec. We wanted to find out if the 
sampling interval has any effect on the performance of our 
methodology.  

Approach: To evaluate the effectiveness of our methodology 
we used two metrics: precision and accuracy. Precision is the 
ratio between the correctly identified faults and all the 
predicted faults. For example, predicting the set {A,B,C,D,E} 
when only A and B are faulty subsystems gives a precision of 
40%. Accuracy is the second metric we use in our evaluation. 
A result is accurate when all subsystems that are the root cause 
of performance deviations are pinpointed correctly. If 5 faults 
are injected into a subsystem {A,B,C,D,E} and our 
methodology only identifies 4 subsystems to be faulty then it 
achieved 80% of accuracy.  

We performed three load tests on the dell DVD application 
using the base-line workload. Each test was 1 hour long. For 
the first test, the performance counters were sampled at the rate 
of 15 sec. For the second test sampling interval was set to 30 
sec and finally for the third test the sampling interval was 1 
minute. We randomly choose a subsystem and manually 
injected a fault after every 5 minute and kept a note of the 
name of the subsystem and time when the fault was injected. 
The fault was injected by stressing the CPU of the subsystem 
for 30 seconds. Once the load test is finished, we divided the 
performance counter logs into five minutes intervals [22]. We 
had in total 24 performance counter logs for each type of 
sampling interval. We applied our methodology on each of the 
performance counter logs to find out how effective our 
methodology was in pinpointing the subsystems that are the 
cause of performance deviations in the load tests. 

Our methodology can help performance analysts to 
automatically pinpoint the subsystem that is the source 
of performance deviation in a load test with an 
accuracy of 79%.  

 



Findings: TABLE IX shows that our methodology is able to 
achieve 82% precision and 79% accuracy with its suggestions. 
The sampling interval of performance counter data does affect 
the accuracy of our methodology. The methodology performs 
better at smaller sampling intervals. 

 

 

 

VII. RELATED WORK 

Most of the work in literature is post-deployment centric, 
focusing on automatic problem diagnosis techniques for 
enterprise systems. The main aim of these post-deployment 
centric approaches is on alleviating the prohibitive cost of 
downtime by continuously monitoring important software 
systems and diagnosing the root-cause of failure when they 
occur. Our work is pre-deployment centric and aims to uncover 
performance problems in a load test. In particular, it pinpoints 
the subsystems that are the cause of the performance problem.  

The closest work to ours is that of Jiang et al. [7] to 
automate the performance analysis of a load test. Unlike our 
work, they rely on executions logs. Though the execution logs 
capture the detailed event information and provide finer 
granularities than that of the performance counter logs, 
however, they are vendor and application specific. This means, 
that the different subsystems in an LSS (web servers, databases 
and mail servers) produce a variety of execution logs, each 
with different levels of information and formats. There is no 
single person of an LSS that has knowledge of all its 
subsystems. Analogous to performance counter logs, which 
provide a greater level of unification across subsystems in an 
LSS; it is impractical for an analyst to skim through wide verity 
of detailed information of executions logs with limited 
knowledge. Jiang et al. work is the only work that has been 
incorporated into the load testing domain to detect automatic 
performance problems in a load test. However their work does 
not explicitly pinpoint the subsystems that are the cause of 
performance problems in a load test.   

Sandeep et al. work is second closest to ours [27]. They 
used principal feature analysis (PFA) to achieve data reduction. 
The main difference between their approach and ours is that 
they utilized machine learning to distil the large counter set 
into a smaller set to describe the workload. In addition, their 
work is partially automated and requires continuous training to 
produce accurate results. Huck and Malony proposed a 
performance data mining framework for large-scale parallel 
computing. The framework tries to manage data complexity by 
using techniques such as clustering and dimensionality 
reduction [30]. This data mining framework utilizes random 
linear projections and PCA to reduce performance data. The 
framework does not transform the PCs back to individual 
performance counters. Cohen [27]  developed an application 
signature based on the various system metrics (like CPU and 
memory).  

Few researchers have exploited static dependency models 
to capture the dynamic complexity of large systems [8, 31-33]. 
They use these dependency models to describe the relationship 

among the hardware and software components in the systems.  
These dependency models are used to determine which 
components might be responsible for the symptoms of the 
given problem. The first major limitation of such a dependency 
model is the difficulty of generating and maintaining an 
accurate model of a constantly evolving large system. The 
second limitation is that they typically only model a logical 
system, and do not distinguish among replicated components 
but in a large enterprise system, there will be many replicated 
components. 

Pinpoint and Magpie track communication dependencies 
with the aim of isolating the root-cause of misbehavior; they 
require instrumentation of the application to tab client requests 
[11, 34]. Our methodology does not require any 
instrumentation of the system. Magpie characterizes 
transaction resource footprints in fine detail but requires that 
the application logic be meticulously encoded in an “event 
Schema”. Unlike Magpie, our methodology does not require 
any system knowledge. Pip aims to infer paths and requires an 
explicit specification of the expected behavior of a system [12]. 
Our methodology does not require such explicit specifications 
of the expected behavior. It relies heavily on statistical methods 
to automatically extract the expected behavior for baseline 
tests. X-trace uses application-level instrumentation to 
determine paths in network protocols [35]. Application level 
instrumentation obscures the performance of an application 
during load test and may cause the system performance to 
deviate from the base-line test.  Most of the work described 
cannot be directly plugged into performance analysis of load 
testing with little or no modification.  

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we presented our methodology to pinpoint the 
subsystems that are likely the real cause of performance 
deviations in a load test. Our methodology uses Principal 
Component Analysis, to reduce the large volume of 
performance counter data. Furthermore, our methodology 
crafts the performance signatures for each LSSs subsystem by 
ranking performance counters based on their relevance for the 
load test. The performance signature changes for respective 
subsystems of a system if any error or deviation from the 
normal behavior occurs. Further, the methodology helps 
performance analyst to pinpoints the subsystems that are the 
likely cause of performance deviation by ranking them by their 
extent of performance deviations criticality. A case study on a 
real-world industrial software system and on an open source 
bench-mark application provides empirical evidence on the 
ability of our methodology to pinpoint the subsystems in a load 
test that are the likely cause of performance degradation 
without implying any domain knowledge. 

 Our technique cannot be generalized to other domains such 
as network traffic and security monitoring. This is due to the 
fact that there is no guarantee that the directions of maximum 
variance will contain good variables for discrimination. A large 
anomaly may inadvertently pollute the normal subspace, 
thereby skewing the assumption that large variances always 
have important dynamics.  

As future work, we also plan to compare the performance 
of our methodology with that of other techniques such as 

The performance of our methodology increases when 
the performance counters are sampled at smaller 
intervals  



Naïve-bayes classifier and factor analysis to yield further 
improvement in constructing effective performance signatures. 
Currently, our methodology cannot distinguish between the 
two independent problem causes for set of subsystems that are 
tightly coupled and are always operated together. We are 
currently incorporating techniques that can differentiate 
between the tightly coupled subsystems.  
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