

Pinpointing the Subsystems Responsible for the
Performance Deviations in a Load Test

Haroon Malik, Bram Adams, Ahmed E. Hassan

School of Computing
Queen’s University
Kingston, Canada

{malik, bram, ahmed}@cs.queensu.ca

Abstract—Large scale systems (LSS) contain multiple subsystems

that interact across multiple nodes in sometimes unforeseen and

complicated ways. As a result, pinpointing the subsystems that

are the source of performance degradation for a load test in LSS

can be frustrating, and might take several hours or even days.

This is due to the large volume of performance counter data

collected such as CPU utilization, Disk I/O, memory consumption

and network traffic, the limited operational knowledge of analysts

about all subsystems of an LSS and the unavailability of up-to-

date documentation in a LSS. We have developed a methodology

that automatically ranks the subsystems according to the

deviation of their performance in a load test. Our methodology

uses performance counter data of a load test to craft performance

signatures for the LSS subsystems. Pair-wise correlations among

the performance signatures of subsystems within a load test are

compared with the corresponding correlations in a baseline test

to pinpoint the subsystems responsible for the performance

violations. Case studies on load test data obtained from a large

telecom system an open source benchmark application show that

our approach provides an accuracy of 79% and our approach

don’t require any instrumentation or domain knowledge to

operate.

Keywords-Pinpointing; Performance Counters; Load Testing;

I. INTRODUCTION

Large scale systems (LSS) such as Google, Facebook,
Hotmail and eBay keep on growing in size1 and in complexity.
They provide composite services, support a large user base and
handle complex business demands. In line with Lehman’s laws
of continuing change and increasing complexity [1], the
periodic maintenance of such LSS has become more critical
and challenging than before since processing is spread across
thousands of subsystems and millions of hardware nodes (and
users).

Performance analysts and developers of LSS spend
considerable time dealing with functional and performance
bugs. Deadlocks and memory management bugs are examples
of functional problems under load. Performance problems
include an application not responding fast enough, crashing or
hanging under heavy load or not meeting the desired service

1 No of nodes: Facebook 10000+[36], Google 30000+[37], Hotmail 7000+[38]

level agreements (SLA). Problems after the release of an
application are seldom due to feature error, but rather due to
systems not scaling to field workloads [2] [9, 34]. Companies
like ‘AT&T’ and ‘Research In Motion’ also report their
concerns about performance degradation and resource
saturation as fundamental post-release problems [3, 4]. As a
result of functional and performance bugs, it becomes
increasingly likely that a given subsystem of LSS might fail,
potentially propagating to the entire system and resulting in
large monetary losses. For example, an hour-long PayPal
outage due to periodic maintenance may have prevented up to
$7.2 million in customer transactions [5].

Load testing is an important weapon in LSS development to
uncover functional and performance problems of a system
under load [6]. One or more load generators are used to
simulate committing thousands of concurrent transactions to an
application under test [7]. During the course of a load test
(which may span over many days), the application is closely
monitored and a huge volume of performance counter data is
logged. The performance counter log captures the run-time
system’s performance properties such as CPU utilization, disk
I/O, queues and network traffic. Such information is of vital
interest to performance analysts, as it helps them to observe the
system’s behavior under load by comparing against
documented behavior of an application/system or with an
expected behavior.

LSS are vulnerable to propagation of failures due to inherit
coupling between their subsystems and unexpected propagation
of faults because of hidden dependencies. Hence, failures
manifestation propagates to non-faulty subsystems affecting
their performance. These non-faulty subsystems prove to be
false-positive recommendations to an analyst. In practice, for
LSS, it is impossible for an analyst to skim through the huge
volume of performance counters to identify the subsystems that
are the cause of starting performance degradation in a load test.
Some post-deployment approaches to identify the problems
and failures in the distributed systems exist [8-10][11-14], but
these approaches do not explicitly pinpoint the subsystems in
LSS that are the cause of problem or failure. Moreover, they
are not fully automatic, since they do not sufficiently capture
the dynamic complexity of LSS and require analysts to input
extensive knowledge of the system [8-10].

Our previous work aimed to help performance analysts to
automatically identify the performance deviated subsystems in
a load test by crafting performance signatures [16]. Such a
signature consists of the essential performance counters for a
particular load test. However, our technique reported all
subsystems with deviating performance counters, without
ranking them according to criticality. An analyst is only
interested in those subsystems that are the real cause of
performance deviations among all the performance deviated
subsystem reported. Without support, troubleshooting the cause
of the performance deviation in a load test is both expert-
intensive and time-sensitive activity.

 In this paper, we improve our previous technique to rank
the subsystems with performance deviations according to the
extent of deviation from the baseline. The paper makes the
following contributions:

C1. We empirically validate our proposed methodology
through a case study on a real-world industrial
software system and an open-source benchmark
application.

C2. We show how simple pair-wise correlation between
the performance signatures of subsystems can rank the
performance deviated subsystems in order of their
likelihood of causing the performance deviation.

Organization of the Paper

The rest of the paper is organized as follows: The paper
first presents a motivating scenario in section II, followed by
the current practice of load testing and its limitations in section
III. We present our methodology in section IV. Section V
presents case study setup along with case study findings in
section VI. The related work is presented in section VII. The
conclusion and future work are reported in section VIII.

II. MOTIVATING SCENARIO

 It was not a surprise for John to see a pile of testing
documents being shoved-up on his desk, with a sticky note of
his boss saying: “we want to go live with the BigMail project
this Friday. We have a new automatic load test analysis system
to help you. I am sure you can do it John.” John has been load
testing the features of the BigMail in the past. But this time
there is a twist. The lab (mail servers supporting 30,000 users)
is physically at another location due to all testing resources
being fully occupied at such busy time. John has been assigned
the remote lab from 5 pm to 5 am. John gets busy like a bee
setting up the test environment, installing some domain
specific application and configuring load testing tools (load
generators, performance monitors, emulators etc). John is done
setting up the environment by 4:30. He again verifies all the
steps with his check-list to ensure everything is setup correctly.
John knows that a slight negligence can cost him a whole day’s
effort. He starts the first test at 5:00pm and leaves to home.
Next day, John finds the load test analysis report in his mailbox
generated by an automated load test support tool. John was
disappointed to see the load test failed with high deviation from
the baseline test. However, he was surprised to see 1) a neatly
organized report with the list of performance deviated
subsystems sorted on the basis of importance, 2) a visualization

for every deviated subsystem, comparing their important
counters with the base- load test and 3) a correlation table that
provides statistical analysis result between the two tests.

Figure 1. Performance load testing process

John pressed the ‘Diagnostic button’ in the html report and was
presented with the list of 20 subsystems that deviated from
baseline test. All the deviated subsystems belong to the remote
lab. The report also pinpointed the subsystem (mail server-A)
as the cause of the performance deviation. The visualization
clearly showed high deviation of the mail server-A’s counter
‘disk Read/sec’ from the base-line load test. Such high
deviations could only have been possible under extreme stress
conditions. John calls the mail server-A’s administrator at
remote location and finds out that heavy disk utilization noticed
for the server ‘A’ was the result of scheduled maintenance
activity that runs every sunday night. No doubt, John’s location
was 24 hours ahead of the remote lab location. John is happy;
the automated system helped him to identify the problem
subsystem. He did not have to spend time skimming through
the large volume of performance counter data, piecing together
the cause of test failure. He hurries to start the test again.

III. CURRENT PRACTICE OF LOAD TESTING

The typical process of load testing involves four phases, as
shown in Figure 1.
1. Environment setup is the most important phase of load

testing. Most common load test failures occur due to
improper environment setup for a load test [15, 16]. The
environment setup includes installing the application and
the load testing tools, possibly on different operating
platforms. Load generators, which emulate the user’s
interaction with the system, need to be carefully
configured to match the real workload in the field.

2. Load test execution involves starting the components of
the systems under load test, i.e., starting the required
services, hardware resources and tools (load generators and
performance monitors). During the execution of a load test,
the application/system under load is strictly monitored and
performance counters are recorded in performance logs.

3. Load test analysis involves comparing the results of a load
test against a baseline, such as another load test’s result, or
against pre-defined thresholds. Unlike functional and unit
testing, which result in a pass or failure classification for
each test, load testing involves additional quantitative
metrics like response time, throughput and hardware
resource utilizations to summarize results. The
performance analyst selects few of the important
performance counters among the thousands of collected to
compare them with the baseline. Based on his experience
and the domain knowledge, the performance analyst
manually compares the selected performance counters with
those of past runs to look for evidence of performance
deviation, for example using plots and correlation tests.

Environment
Setup

Load Test
Execution

Load Test
Analysis

Report
Generation

Figure 2: The steps involved in the proposed methodology

4. Report generation includes reporting the performance
deviations, if found, based on the personal judgment of the
analyst. In most cases the results filed in a performance
report are verified by an experienced analyst. Based on the
extent of performance deviation and its relevance to a team
responsible for handling the subsystems such as database,
application, web system etc., the respective subsystem is
then assigned to a relevant team for rectification.

Many challenges and limitations associated with the current
practice of load test analysis remain unsolved:

1. Large number of performance counters: Load tests last
from a couple of hours to several days. They generate
performance logs that can be of several terabytes in size.
Even logging all counters on a typical machine at 1Hz
generates about 86.4 million values in a single week. A
cluster of 12 machines over one week would generate 13
TB of performance counter data per week, assuming a 64
bit representation for each counter [17]. Analysis of such
large counter logs to identify the subsystem that is the cause
of performance deviation in a load test is still a huge
challenge. In practice, it is impossible for analysts to skim
through the huge volume of performance counters to find
the required information in LSS. Instead, analysts use few
key performance counters known to them from the past
practices, performance experts and domain trends as ‘rules
of thumb’ [18]. Applying such ‘rules of thumb’ on load
tests can provide misleading information about
performance issues [18], thereby leading to pinpoint
incorrect performance deviated subsystem(s).

2. Limited time: Performance analysts in LSS have only
limited time to reach and complete diagnostics on
performance counter logs and to make necessary
configuration changes. Load testing is usually the last step
in an already tight and usually delayed release schedule.
Hence, managers are always eager to reduce the time
allocated for performance testing.

TABLE I: OBSERVATIONS BEFORE DATA PREPARATION

 Observations
Var Tot Mis Avail Mini Max Mean Std. Dev
Q 599 0 599 246.18 1946.11 754.654 292.00
R 599 0 599 009.59 0063.46 023.427 011.14
S 0 0 0 000.00 0000.00 000.000 000.00
T 599 2 597 001.00 0117.11 0030.90 018.99

TABLE II: OBSERVATIONS AFTER DATA PREPARATION

 Observations
Var Tot Mis Avail Mini Max Mean Std. Dev
Q 599 0 597 -13.37 000.07 0.00 1.00
R 599 0 597 -00.71 006.52 0.00 1.00
T 597 0 597 -1.694 001.46 0.00 1.00

3. Limited global knowledge: Load test analysis is error-

prone because of the manual process involved in analyzing

performance counter data in current practice. There is no
single person with complete knowledge of end to end
geographically distributed system activities in an LSS [19].
An analyst with good knowledge of the database server will
quickly uncover important database counters from
performance counter logs however; he may overlook some
important web counters.

Due to the above challenges, we believe that the current
practice to perform load test analysis in LSS is neither efficient
nor sufficient to pinpoint performance deviated subsystems
accurately and in limited time.

IV. THE METHODOLOGY

In this section, we present and discuss our methodology to
help analysts in load test analysis by pinpointing the
subsystems that are likely the actual cause of performance
deviations in limited time. Figure 2 shows the steps of our
methodology.

A. Data Preparation

The performance logs obtained from a load test need to be
prepared to make them suitable for the statistical techniques
employed by our methodology. The three steps involved in
data preparation are 1) Data sanitization: Missing
performance counter variables i.e., partially or completely are
removed from the analysis. For example, the performance
counter ‘S’ in TABLE I belongs to missing variable category.
The performance counter ‘T’ in TABLE I belongs to
incomplete variable category. Statistical techniques such as
list wise deletion are employed to handle incomplete variables
[21]. 2) Pre-treatment: The data is converted into a format that
is understood by our data reduction technique, i.e., Principal
Component Analysis (PCA) [22]. Therefore, all performance
counter variables are scaled to unit variance (mean of 0 and
standard deviation of 1), as shown in TABLE II. 3)
Normalization: Different applications and systems may
publish the same performance counter with different names.
Normalization ensures the portability of our approach across
different systems/platforms.

B. Performance Signatures

Performance signatures basically correspond to a minimal set
of performance counters that describe the essential
characteristics of a particular load test. We use a robust and
scalable statistical technique for this, i.e., Principal Component
Analysis (PCA) [22]. PCA transforms all load test counters
into a smaller number of synthesized variables called Principal
Components (PCs). Every PC is independent and uncorrelated
with other PCs. TABLE III shows the PCA for a real world
performance counter log consisting of 18 performance counter
variables reduced into 12 PCs.

Report Generation

Data Preparation
1. Sanitization

2. Pre-Treatment

3. Normalization

Performance
Signature

1. PCA

2. Vector Decomposition

3. Counter Ranking

Extractinging
Performance
Deviations

Pinpointing
Pair-wise correlation

between performance

signatures

TABLE III: PCA TABLE IV: A SIGNATURE

PC Eigen-
Value

Variability
%

Cumulative
Variability %

PC1 11.43 63.506 63.506

PC2 2.47 15.260 78.765
PC3 1.720 9.554 88.319
PC4 0.926 5.143 93.463
⁞ ⁞ ⁞ ⁞

PC12 0.001 0.003 100.00

Rank PC Counter Imp

1 PC1 N 0.974
2 PC1 M 0.972
3 PC1 R 0.966
4 PC1 Q 0.946
5 PC1 P 0.944
6 PC1 E 0.933
7 PC2 I 0.912

The first component PC1 has an eigen-value of 11.431, which
means that it explains 11.431 times as much variance as a
single counter variable. This accounts for 63.560% of the
variability of the entire performance counter data set. To
further trim the performance counter data, we only select the
first N PCs that explain 90% of the ‘% Cumulative Variability’.
90% is adequate to explain most of the data with minimal loss
in information [22].

We then decompose the selected principal components using
the eigenvectors technique to map the PCs back to concrete
counter variables [22]. Each performance counter is given a
weight (importance) in accordance to its association with a PC.
The larger the weight of a performance counter, the more it
contributes to a PC. We applied the threshold to decide on the
important performance counter variables and discard the rest
[20]. TABLE IV shows seven performance counter variables
out of 18, ranked according to their importance. Our
methodology achieved a 61% data reduction. These 7
performance counters of a system forms its performance
signature.

C. Extracting Performance Deviations

The goal of our methodology is to help performance analysts
by automatically identifying the subsystems of LSS that
deviate from the baseline. This step of our methodology
measures the correlation between the performance signatures
of a subsystem in the load test with that of the corresponding
signature of a baseline test. Prior research has shown that
usually stable relationships between metrics exist in a well-
behaved system [23-25]. The relationships are often disturbed
when error occurs [25]. We illustrate this with an example.

Figure 3: The sensitivity of performance signature

TABLE V: AVERAGE
CORRELATIONS

 Base Deviated-Sys Dev %

A 0.87 0.72 0.15 17.1
B 0.88 0.82 0.05 6.46
C 0.89 0.83 0.06 7.03
D 0.78 0.73 0.05 6.92

0
.7

Figure 4: Pair-wise Correlations

Figure 3 shows a performance signature-A consisting of 6
important performance counters for a load test.
The thickness of the edges between the performance counters
shows the strength of the association between them. Running
the load test under the same workload and environment will
produce the same signature. When a change (CPU stress) is
introduced during the load test, disturbing the existing
relationship between performance counters, a different
signature-B is generated.

When a performance signature is crafted at subsystem level, it
acts as a finger-print to the respective subsystem of LSS and
helps to identify and compare the performance with baseline
subsystems. The importance of the performance counters in a
signature only holds for the same environment and workload of
the test. However, when an error or unknown change occurs in
the load test environment or in the workload, such as server
replications and background antivirus scan, the importance of
performance counters for a subsystem shifts, causing a change
in performance signature of the subsystem of LSS. This change
in performance counter signature enables us to detect
performance deviations at subsystem level.

 We use Spearman’s rank correlation to find the extent of
deviation between performance signatures [26]. A value of +1
confirms that two performance signatures are identical and that
there is no performance deviation between the respective
subsystems. We choose Spearman’s rank correlation over other
correlation coefficients such as Pearson product-momentum,
Kendall’s tau and gamma because Spearman’s rank correlation
does not require any assumptions about the frequency
distribution of the variables. This is necessary because load test
data contains traces that do not follow normal distribution of
data.

D. Pinpointing

Whereas the previous step of our methodology identifies all
subsystems that deviate from the baseline performance, the
pinpointing step of our methodology ranks the subsystem(s)
that is/are likely the cause of performance violation among all
performance deviated subsystems in the load test.

To rank the subsystems, we calculate the average pair-wise
correlation �∆ρ� that exists between the performance
signatures of a performance deviated subsystem with that of
the other misbehaved subsystems in a load test. The average
pair-wise correlation of the subsystem is compared with the
average pair-wise correlation of the respective subsystem in a
baseline load test to determine the extent of performance
deviation. Among the performance deviated subsystems, the
subsystem having the highest deviation is likely to be the
culprit subsystem.

We explain the pinpointing step of our methodology with
the help of the following example. For a load test ‘Test-I’, the
methodology extracts four performance deviated subsystems
A, B, C and D. Among the pool of performance deviated
subsystems, the methodology computes pair-wise correlations
between the performance signatures of each subsystem with
that of the rest in the pool, i.e., it calculates the pair-wise
correlation ��� of subsystem A with that of B, C and D
(AB=0.7, AC=0.7, AD=0.9) as shown in Figure 3.

1

5 6 4

2

3

Signature-A

C
h
an

g
e

Signature-B

1

6 4 5

2

3

Test Dev

Load Test-1 0.5

Load Test-2 0.5
Load Test-3 1

Load Test-4 0.2

Test Deviation

Load Test-1 Subsystems Dev Vis
DB-03 0.8
Mail-01 0.7
Web-01 0.3
DB-01 0.2

Load Test-2 0.5
Load Test-3 1

Load Test-4 0.2

Subsystems Dev Vis

DB-03 0.8

Mail-01 0.7

Web-01 0.3

DB-01 0.2

Subsystems Dev Vis

DB-03 0.8

Mail-01 0.7

Web-01 0.3

DB-01

A
vg

.
B

a
se

li
n

e

D
B

-0
3

M
a
il

-0
1

W
eb

-0
1

A
vg

.
D

B
-0

1

%
 D

ev

0.87 0.7 0.7 0.9 0.76 12

Figure 5: An example of a performance report

 Then, for each subsystem the average of all pair-wise
correlations that exists for the particular subsystem’s signature
with other performance deviated subsystem is computed. For
performance deviated subsystem A, the average correlation of
its performance signature is
∆ρ � �0.7
 0.7
 0.9
 1.0� 4 � 0.72 ⁄ , as shown in TABLE V.
The average pair-wise correlation of each performance
deviated subsystem is compared with that of the corresponding
subsystem in a base-line test. If the signature of a different
system contains a different number of performance counters,
the common performance counters between two signatures are
considered. The subsystem with the higher deviation among
the pool of performance deviated subsystems i.e., ‘A’ is
pinpointed to be likely the source of performance deviation in
load test ‘Test-I’ as shown in TABLE V. As the pinpointing
step of our methodology calculates the average pair-wise
correlation between the signatures of multiple subsystems, the
probability of a Type I error is higher. Thus, Bonferroni’s

correction is made to the p-values of the Spearman
correlations to correct for multiple testing. In essence, each p-
value is multiplied by the number of comparisons and the
adjusted p-value is compared to the standard significance level
(0.05) to determine significance. Bonferroni’s correction is
chosen because it is a rather conservative test.

E. Report Generation

To help a load tester examine the performance deviations, we
generate performance deviation reports. The report is
generated in dynamic HTML so that the testers can easily
attach it to emails that are sent out while investigating a
particular subsystem’s performance deviations. The report
contains visualizations and correlation tables to point out the
divergence between two subsystems, as shown in Figure 5. It
also includes a list of performance deviated subsystems. The
subsystem having the highest average performance deviation
is pinpointed as the cause of performance deviation in the load
tests.

V. CASE STUDY SETUP

To evaluate the performance and reliability of our
methodology, we conducted a case study on two different
applications, i.e., the open source Dell DVD store and a large,
proprietary telecom system. The goal of our case study is to
thoroughly examine the following research hypothesis:

 Our methodology accurately pinpoints the subsystems that
are the cause of performance deviations in a load test

A. The DELL DVD Store

The Dell DVD Store (DS2) application is an open source
enterprise software application developed by Dell as a
benchmarking workload for white papers and demonstrations
of Dell’s hardware solutions [2]. DS2 has a typical three-tier
architecture, which consists of an application server
component, database server components and a load generator
engine (client emulator). The source code for the load
generator is publicly available and runs on various platforms.
The load generator can generate load on the application server,
or directly generate load on the database server, skipping the
application server altogether. The load generator emulates
website users by sending HTTP requests to the application
front-end. The application encodes the various business rules,
such as ordering new titles or declining an order in case of
insufficient inventory. All customers, titles and transactional
data are stored in the database server tier.

We chose DS2 over other applications for many reasons.
First, it is an open-source application, allowing us to debug and
fix many problems with the application. Second, it is simple to
use, through a command line interface. We created the load test
environment for Dell DVD store similar to Figure 6, with three
Tomcat containers running the JSP version of DS2, and a
MySQL server as database server.

B. An Enterprise Application

Figure 6 shows the load test environment of the commercial
system that we used as our second subject system. The four

Figure 6. Components of test environment

TABLE VI. BASELINE CONFIGURATION FOR DS2

Parameter Value

Duration 7 hours
Number of driver threads 50
Startup request rate 5
Think time (time it takes a customer to complete an order) 30 sec
Database size Large
Percentage of new customers 15%
Average number of searches per order 3
Average number of items returned in each search 5
Average number of items per order 5

subsystems are enclosed within a dotted line. The enterprise
application runs on a cluster and utilizes a database to store
data. The enterprise application uses two web systems to allow
users to share documents, schedule meetings and access
intranet resources between geographically separated locations.
An internal load generator mimics user interaction within an
enterprise application by performing simultaneous concurrent
transactions, placing load on the database. The external load
generators emulate a large volume of traffic from the outside of
the intranet to stress web systems. A customized performance
monitoring tool monitors the system’s performance counters.

VI. CASE STUDY FINDINGS

 We conducted an experiment to find out how accurately
our approach helps a performance analyst to pinpoint in
limited time the subsystems that are the actual cause of
performance deviation for a load test. The goal of the
experiment was to validate ranking procedure of our technique
under a number of representative tests. The experiment
consisted of a baseline-test along with four more load tests
conducted on Dell DVD store application and one load test
conducted for proprietary system.

The workload configuration for the base-load test for DS2
is listed in TABLE VI. In our first load test, we stressed the
system by pushing 4 times (4-X) more load than that of the
base-line load. The reason to conduct such type of load test is
based on the fact that most of the performance violations in
load tests occur due to miss-configurations of load generators
and during setup of complex test environments [7]. Also,

unexpected intervention from other applications such as
antivirus, disk scrubs, RAID reconstructions and data
replication add to the change in normal workload [27]. In our
second and third test, to simulate resource saturation, we
stressed the CPUs of different subsystems. The reason to
conduct such test was based on the fact that most of the post-
release problems in LSS are related to performance
degradation and resource saturation instead of feature bugs.
This is because many feature bugs get resolved at earlier
stages of testing by unit and functional testing. In the fourth
test, we injected a memory bug in the database subsystem of
DS2 , which is another way to stress the system.

Finally, the fifth test is based on the performance logs
extracted from the load test repository of a large telecom
enterprise. The motivation behind the fifth load test was to
analyze how our methodology scales up to a large volume of
performance logs.

We used the framework of Thakkar et al. to automate the
DS2 load tests and to ensure that the environment remains
constant throughout the experiments [4]. All load tests for DS-
2 were repeated a minimum of five times to ensure the
consistency among the results. The ramp-up and ramp-down
periods of load tests were excluded from the analysis as the
system usually is not stabilized at these periods. The results
reported in TABLE VII and Figure 7 are the average of the
correlations between the performance signatures of the
respective subsystems of the load tests. A custom monitoring
tool was used to record the 60 performance counters across the
four subsystems of the Dell DVD Store. The tool collected the
performance data periodically after every 15 sec (sampling
interval). Over a period of 8 hours, the tool collected 1920
instances (numeric readings). The performance counter logs
obtained from the repository of large enterprise contained 1400
performance counters. We are going to explain each test in
more detail.

Base-line load test: Three load generators are configured to
push the load on the three web servers (Tomcat running JSP
application). The system under test is closely monitored and
performance counter logs are collected from all the
subsystems. We applied our methodology on the performance
counter logs and extracted the performance signatures for all
the subsystems of the base-line load test. The performance
signatures of the web servers consist of 6 performance
counters each. The performance signature for the database
server contained 8 important performance counters. The
Spearman rank correlation is used to calculate the extent of
association between the subsystem’s performance signatures
as shown in Figure 7(a).

Test 1: To mimic the problems resulting from mis-
configuration of the load generators, we conducted a test by
pushing 4-X more load on webserver-1 than in the base-line
load. The workload mix was kept the same as that of the
baseline, except that we increased its intensity 4 times.

Clustered
Application

System
Web Server

(A)

Web Server
(B)

Database Internal
Load

Generator

Performance
Logs

Performance Monitoring Tool

Ext. Load
Generator

Web-1

Web-3

DB

Web-2

0.
9

0.7

0.
75

0.9

0
.7

0.93

Web-1

Web-3

DB

Web-2

0.
7

0.7

0.
73

0.7

0
.5

0.9

Web-1

Web-3

DB

Web-2

0.
61

0.7

0.
7

0.63

0
.5

2

0.9

Web-1

Web-3

DB

Web-2

0.
86

0.6

0.
6

0.87

0
.6

2

0.89

(a) Base-line test (b) Test-1 (c) Test-2 (d) Test-4

Figure 7: Correlations between the performance signatures of subsystems.

TABLE VII: AVERAGE PERFORMANCE DEVIATIONS OF SUBSYTEMS COMPARED TO BASE-LINE TEST

 Base 4-X Dev %

*Web-1 0.87 0.72 0.15 17.1

Web-2 0.88 0.82 0.05 6.46

Web-3 0.89 0.83 0.06 7.03

DB 0.78 0.73 0.05 6.92

 Base CPU Dev %

*Web-1 0.87 0.69 0.18 21.1

Web-2 0.88 0.80 0.08 9.29

Web-3 0.89 0.80 0.09 10.6

DB 0.78 0.73 0.05 7.24

 Base CPU Dev %

Web-1 0.87 0.83 0.03 4.28

Web-2 0.88 0.83 0.04 5.04

Web-3 0.89 0.84 0.05 6.14

*DB 0.78 0.78 0.08 10.4

 Base MEM Dev %

Web-1 0.87 0.81 0.06 7.42

*Web-2 0.88 0.75 0.13 14.9

Web-3 0.89 0.81 0.08 9.49

DB 0.78 0.7 0.087 11.0

(a) Test-1 (b) Test-2 (c) Test-3 Test-4

We illustrate what we mean by workload mix and varying
intensity. For example, the load of an e-commerce website
would contain information such as: browsing (40%) with a
min/average/max rate of 5/10/20 requests/sec, and purchasing
(40%) with a min/average/max rate of 2/3/5 requests/sec. In
our experiment, we keep the workload mix (browsing 40% and
purchasing 40%) constant; however, we varied test’s intensity
(rate). The load pushed on the other web servers was the same
as that of the base-line load test.

Test 2: Often the load test deviates from the base-line test
either due to hardware failures or due to resource saturation.
For example, the hard disk may fill up because the tester
forgot to clean up the data from an older run. Once the disk is
full, the application under test may turnoff specific features
causing the test to deviate from its base-line performance.
Resource saturation arising due to the intervention from other
applications, i.e., from unknown background loads such as
unplanned replication, virus scanner and disk-scrubs affects
the performance of the load test. We slowed down the CPU of
webserver-1 using a CPU stress tool known as winThrottle
[28], webserver-1 is the weakest machine in our load test
environment. We choose winThrottle over other CPU stress
tools because it is an open source tool and can exploit a
feature in system hardware that directly modifies the CPU
clock speed, rather than using software "delay loops" or HLT
instructions to slow down the machine. This method provides
very smooth slowdowns without any incompatibilities with
software. For an 8 hour load test, we stressed the CPU of the
webserver-1 for 30 minutes.

Test 3: Test 3 is analogous to test 2, spanning over 8 hours,
except that we stressed the database server, which runs on a
more powerful machine than webserver-1. Since the database
is used by all three different web servers, stressing the CPU of
the database will affect all three web-servers, mimicking the
propagation of performance problems from one subsystem to
others. Since test 2 and test 3 are of similar nature, they enable
us to validate the consistency of our methodology in
pinpointing the same type of performance problem, i.e., CPU
saturation, among different subsystems (webserver-1 and a
database server).

TABLE VIII: CORRELATION BETWEEN THE LOAD TESTS

 Test-A Test-B Test-C Test-D Test-E

Test-A 1 0.9603 0.9732 0.37418 0.1790
Test-B 1 0.9778 0.45823 0.1359
Test-C 1 0.42581 0.1392
Test-D 1 0.2305
Test-E 1

Test 4: We conducted a load test with the same workload as
the base-line load test, but injected a memory bug into
webserver-2 using a customized open-source memory stress
tool called EatMem [29]. The tool allocates a random amount
of available memory at recurring intervals. To mimic a
memory leak, webserver-2 was stressed for 30 minutes using
EatMem.

Test5: The last test was conducted on the performance logs
obtained from the test repository of a large telecom enterprise.
The performance analysts gave us the performance logs of 5
load tests A, B, C, D and E. Test A was marked as a base-line
test by the performance analysts and its performance counters
were thoroughly analyzed by them for any performance
discrepancy. Analysts told us that among the four tests, 2 tests
were good and 2 of them violated performance requirements.

Figure 8: Comparison with the base-line performance signature

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

C
o

u
n

te
r

Im
p

o
rt

a
n

ce

Performance Counters

Test- A Test-B Test-C

Test-D Test-E

TABLE IX: PERFORMANCE OF OUR METHODOLOGY

Load Test Performance Measure
No. Sampling Interval Precision Accuracy

Load Test-1 15 Sec 82% 79%
Load Test-2 30 Sec 82% 79%
Load Test-3 1 Min 77% 70%

The analysts were keen on finding out if our methodology
could pinpoint the subsystems that were the cause of
performance deviation between the baseline and the two failed
tests. We applied our methodology on base-line test A to
extract the performance signatures. The signatures consisted
of 169 important performances counters out of a total of 1440
counters. We used the signatures as the base-line performance
counters and compared them across the other tests.

Findings: Figure 7 shows the correlation between performance
signatures of the DS2 subsystems. The ‘ ’ marks the
subsystem where a performance bug is injected. The ‘*’ in
TABLE VII indicates the subsystem that is pinpointed by our
methodology as likely the cause of performance deviation in a
load test. For test-1, our methodology correctly identified
web-1 as the source of performance deviation in the load test.
Web-1 has the largest deviation from the base-line based on
the average pair-wise correlation of performance signatures
shown in Figure 7 (b) and TABLE VII (a). Among CPU stress
tests, i.e., test 2 and test 3, webserver-1 and the database
server are pinpointed as the culprit subsystems. Hence, our
methodology is consistent in pinpointing the accurate
subsystems under same stress load (i.e. CPU stress). Although
the same CPU stress was applied on webserver-1 during load
test 2 and on the database server during load test 3, however,
the extent of ‘%’ average performance deviation is different
for both. The last test conducted on Dell DVD store
application shows that webserver-2 is r the source of
performance deviations, which is correct, as a memory-bug
was injected into webserver-2 for 30 minutes.

Finally, we report the findings of test 5 conducted on the
performance counter logs of a large telecom enterprise. The
performance analysts agreed to the authenticity of the reduced
but important set of performance counters recommended by
our methodology (performance signature). They agreed that all
169 performance counters are needed and the crafted
performance signature is a true representative of the system
under test. Figure 8 is a line plot that shows the comparison
between the important performance counters of the base-line
load test with that of the other 4 tests. Load tests B and C are
found very similar to that of the baseline test-A. The test D & E
are found deviated from the baseline, which confirms the
findings of the performance analysts. TABLE VIII provides the
statistical evidence of the findings. Furthermore, our
methodology pinpointed the web server to be the source of
performance deviation in both the test D and E and
performance analysts acknowledged the findings of our
methodology. Once our methodology pinpointed the culprit
subsystem i.e., the web server, the performance counters
representing the deviated resource were further identified by
comparing the signatures crafted by our methodology for the
web server of load test D&E with that of baseline load test.
The Packet Outbound Discarded, Packets Sent/sec and

Message Queue length performance counters were notably
deviated from the base-line counters. It was found that the web
server was unable to get a connection to the remote database
server due to some network constraints, hence was unable to
write messages to the store. This caused an enormous message
queue build-up at web server. Once the queue got full, the web
server silently started to drop the messages without any
notifications. This is a common behavior of an application
during resource saturation or under stress. By pinpointing the
web server as the source of performance deviation in load tests
along with an indication of its deviated performance counters,
performance analysts had no problem in piecing together the
cause of the performance deviation of the load test from its
base-line test.

A. The effect of sampling interval on our methodology

There is no universal sampling rate set for logging performance
counter data during load testing. If the load test tends to span
over multiple days, an analyst will prefer a large sampling
interval, i.e., either every minute or every five minutes, to keep
the growth of the performance log under control. However, if
the load test takes only a couple of hours, a performance
analyst may tend to sample the system under test more
aggressively, i.e., every 5 sec. We wanted to find out if the
sampling interval has any effect on the performance of our
methodology.

Approach: To evaluate the effectiveness of our methodology
we used two metrics: precision and accuracy. Precision is the
ratio between the correctly identified faults and all the
predicted faults. For example, predicting the set {A,B,C,D,E}
when only A and B are faulty subsystems gives a precision of
40%. Accuracy is the second metric we use in our evaluation.
A result is accurate when all subsystems that are the root cause
of performance deviations are pinpointed correctly. If 5 faults
are injected into a subsystem {A,B,C,D,E} and our
methodology only identifies 4 subsystems to be faulty then it
achieved 80% of accuracy.

We performed three load tests on the dell DVD application
using the base-line workload. Each test was 1 hour long. For
the first test, the performance counters were sampled at the rate
of 15 sec. For the second test sampling interval was set to 30
sec and finally for the third test the sampling interval was 1
minute. We randomly choose a subsystem and manually
injected a fault after every 5 minute and kept a note of the
name of the subsystem and time when the fault was injected.
The fault was injected by stressing the CPU of the subsystem
for 30 seconds. Once the load test is finished, we divided the
performance counter logs into five minutes intervals [22]. We
had in total 24 performance counter logs for each type of
sampling interval. We applied our methodology on each of the
performance counter logs to find out how effective our
methodology was in pinpointing the subsystems that are the
cause of performance deviations in the load tests.

Our methodology can help performance analysts to
automatically pinpoint the subsystem that is the source
of performance deviation in a load test with an
accuracy of 79%.

Findings: TABLE IX shows that our methodology is able to
achieve 82% precision and 79% accuracy with its suggestions.
The sampling interval of performance counter data does affect
the accuracy of our methodology. The methodology performs
better at smaller sampling intervals.

VII. RELATED WORK

Most of the work in literature is post-deployment centric,
focusing on automatic problem diagnosis techniques for
enterprise systems. The main aim of these post-deployment
centric approaches is on alleviating the prohibitive cost of
downtime by continuously monitoring important software
systems and diagnosing the root-cause of failure when they
occur. Our work is pre-deployment centric and aims to uncover
performance problems in a load test. In particular, it pinpoints
the subsystems that are the cause of the performance problem.

The closest work to ours is that of Jiang et al. [7] to
automate the performance analysis of a load test. Unlike our
work, they rely on executions logs. Though the execution logs
capture the detailed event information and provide finer
granularities than that of the performance counter logs,
however, they are vendor and application specific. This means,
that the different subsystems in an LSS (web servers, databases
and mail servers) produce a variety of execution logs, each
with different levels of information and formats. There is no
single person of an LSS that has knowledge of all its
subsystems. Analogous to performance counter logs, which
provide a greater level of unification across subsystems in an
LSS; it is impractical for an analyst to skim through wide verity
of detailed information of executions logs with limited
knowledge. Jiang et al. work is the only work that has been
incorporated into the load testing domain to detect automatic
performance problems in a load test. However their work does
not explicitly pinpoint the subsystems that are the cause of
performance problems in a load test.

Sandeep et al. work is second closest to ours [27]. They
used principal feature analysis (PFA) to achieve data reduction.
The main difference between their approach and ours is that
they utilized machine learning to distil the large counter set
into a smaller set to describe the workload. In addition, their
work is partially automated and requires continuous training to
produce accurate results. Huck and Malony proposed a
performance data mining framework for large-scale parallel
computing. The framework tries to manage data complexity by
using techniques such as clustering and dimensionality
reduction [30]. This data mining framework utilizes random
linear projections and PCA to reduce performance data. The
framework does not transform the PCs back to individual
performance counters. Cohen [27] developed an application
signature based on the various system metrics (like CPU and
memory).

Few researchers have exploited static dependency models
to capture the dynamic complexity of large systems [8, 31-33].
They use these dependency models to describe the relationship

among the hardware and software components in the systems.
These dependency models are used to determine which
components might be responsible for the symptoms of the
given problem. The first major limitation of such a dependency
model is the difficulty of generating and maintaining an
accurate model of a constantly evolving large system. The
second limitation is that they typically only model a logical
system, and do not distinguish among replicated components
but in a large enterprise system, there will be many replicated
components.

Pinpoint and Magpie track communication dependencies
with the aim of isolating the root-cause of misbehavior; they
require instrumentation of the application to tab client requests
[11, 34]. Our methodology does not require any
instrumentation of the system. Magpie characterizes
transaction resource footprints in fine detail but requires that
the application logic be meticulously encoded in an “event
Schema”. Unlike Magpie, our methodology does not require
any system knowledge. Pip aims to infer paths and requires an
explicit specification of the expected behavior of a system [12].
Our methodology does not require such explicit specifications
of the expected behavior. It relies heavily on statistical methods
to automatically extract the expected behavior for baseline
tests. X-trace uses application-level instrumentation to
determine paths in network protocols [35]. Application level
instrumentation obscures the performance of an application
during load test and may cause the system performance to
deviate from the base-line test. Most of the work described
cannot be directly plugged into performance analysis of load
testing with little or no modification.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented our methodology to pinpoint the
subsystems that are likely the real cause of performance
deviations in a load test. Our methodology uses Principal
Component Analysis, to reduce the large volume of
performance counter data. Furthermore, our methodology
crafts the performance signatures for each LSSs subsystem by
ranking performance counters based on their relevance for the
load test. The performance signature changes for respective
subsystems of a system if any error or deviation from the
normal behavior occurs. Further, the methodology helps
performance analyst to pinpoints the subsystems that are the
likely cause of performance deviation by ranking them by their
extent of performance deviations criticality. A case study on a
real-world industrial software system and on an open source
bench-mark application provides empirical evidence on the
ability of our methodology to pinpoint the subsystems in a load
test that are the likely cause of performance degradation
without implying any domain knowledge.

 Our technique cannot be generalized to other domains such
as network traffic and security monitoring. This is due to the
fact that there is no guarantee that the directions of maximum
variance will contain good variables for discrimination. A large
anomaly may inadvertently pollute the normal subspace,
thereby skewing the assumption that large variances always
have important dynamics.

As future work, we also plan to compare the performance
of our methodology with that of other techniques such as

The performance of our methodology increases when
the performance counters are sampled at smaller
intervals

Naïve-bayes classifier and factor analysis to yield further
improvement in constructing effective performance signatures.
Currently, our methodology cannot distinguish between the
two independent problem causes for set of subsystems that are
tightly coupled and are always operated together. We are
currently incorporating techniques that can differentiate
between the tightly coupled subsystems.

REFERENCES
[1] M. M. Lehman, "Programs, life cycles, and laws of software evolution,"

Proceedings of the IEEE, vol. 68, pp. 1060-1076, 1980.

[2] M. Woodside, G. Franks and D. C. Petriu, "The future of software
performance engineering," in FOSE '07: 2007 Future of Software
Engineering, 2007, pp. 171-187.

[3] E. J. Weyuker and F. I. Vokolos, "Experience with Performance Testing of
Software Systems: Issues, an Approach, and Case Study," IEEE
Trans.Softw.Eng., vol. 26, pp. 1147-1156, 2000.

[4] D. Thakkar, A. E. Hassan, G. Hamann and P. Flora, "A framework for
measurement based performance modeling," in WOSP '08: Proceedings
of the 7th International Workshop on Software and Performance,
Princeton, NJ, USA, 2008, pp. 55-66.

[5] S. Stephen, "PayPal hit by global outage," in 2009, .
Web:http://www.zdnet.co.uk/news/it-strategy/2009/08/04/paypal-hit-by-
global-outage-39705017/. Downloaded August, 2010

[6] B. Beizer, Software System Testing and Quality Assurance. 1984.

[7] Zhen Ming Jiang, A. E. Hassan, G. Hamann and P. Flora, "Automated
performance analysis of load tests," in Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on, 2009, pp. 125-134.

[8] Jaesung Choi, Myungwhan Choi and Sang-Hyuk Lee, "An alarm
correlation and fault identification scheme based on OSI managed object
classes," in Communications, 1999. ICC '99. 1999 IEEE International
Conference on, 1999, pp. 1547-1551 vol.3.

[9] I. Rouvellou and G. W. Hart, "Automatic alarm correlation for fault
identification," in INFOCOM '95. Fourteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Bringing
Information to People. Proceedings. IEEE, 1995, pp. 553-561 vol.2.

[10] A. T. Bouloutas, S. Calo and A. Finkel, "Alarm correlation and fault
identification in communication networks," Communications, IEEE
Transactions on, vol. 42, pp. 523-533, 1994.

[11] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox and E. Brewer, "Pinpoint:
Problem determination in large, dynamic internet services," in
Dependable Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on, 2002, pp. 595-604.

[12] F. Mattosinho, "Pip: Detecting the Unexpected in Distributed Systems"
Proceedings of the 3rd conference on Networked Systems Design &
Implementation - Volume 3, San Jose, CA, 2006.

[13] S. Pertet, R. Gandhi and P. Narasimhan, "Fingerpointing correlated
failures in replicated systems," in Proceedings of the Second Workshop
on Tackling Computer Systems Problems with Machine Learning, 2007.

[14] S. Pertet, R. Gandhi and P. Narasimhan, "Group communication: Helping
or obscuring failure diagnosis," Group Communication: Helping Or
Obscuring Failure Diagnosis, 2006.

[15] Z. M. Jiang, A. E. Hassan, G. Hamann and P. Flora, "Automatic
identification of load testing problems," in IEEE International
Conference on Software Maintenance, 2008. ICSM 2008, 2008, pp. 307-
316.

[16] Tech Report: M. Qadir, "Role of Automation in Computer-based
Systems",http://www.cs.rutgers.edu/~rmartin/teaching/spring06/cs553/p
apers/008.pdf.

[17] M. W. Knop, P. K. Paritosh, P. A. Dinda and J. M. Schopf, "Windows
performance monitoring and data reduction using WatchTower and
argus (extended abstract)," in Proceedings of SHAMAN, 2001, .

[18] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly and A. Fox,
"Capturing, indexing, clustering, and retrieving system history,"
SIGOPS Oper.Syst.Rev., vol. 39, pp. 105-118, 2005.

[19] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons and J. S. Chase,
"Correlating instrumentation data to system states: A building block for

automated diagnosis and control," in OSDI'04: Proceedings of the 6th
Conference on Symposium on Operting Systems Design \&
Implementation, San Francisco, CA, 2004, pp. 16-16.

[20] Malik, H., Jiang, Z. M., Adams, B, Hassan, A. E., "
Automatic Comparison of Load Tests to Support the Performance
Analysis of Large Enterprise System," in proceedings of the 14th
European Conference on Software Maintenance and Reengineering
(CSMR 2010). Madrid, Spain. March 16-18, 2010.

[21] Haroon Malik, Bram Adams, Ahmed E. Hassan, Parminder Flora, Gilbert
Hamann, "Using load tests to automatically compare the subsystems of a
large enterprise system," in proceedings of the 34th Computer Software
and Applications Conference (COMPSAC 2010), Seoul, Korea, 2010.

[22] I. Jolliffe, Principal Component Analysis. Springer verlag, 2002.

[23] Z. Guo, G. Jiang, H. Chen and K. Yoshihira, "Tracking probabilistic
correlation of monitoring data for fault detection in complex systems," in
DSN '06: Proceedings of the International Conference on Dependable
Systems and Networks, pp. 259-268, 2006.

[24] G. Jiang, H. Chen and K. Yoshihira, "Modeling and Tracking of
Transaction Flow Dynamics for Fault Detection in Complex Systems,"
IEEE Trans.Dependable Secur.Comput., vol. 3, pp. 312-326, 2006.

[25] M. A. Munawar and P. Ward, "Adaptive monitoring in enterprise
software systems," SysML, June, 2006.

[26] B. A. Rosner, Fundamentals of Biostatistics. Duxbury Resource Center,
2006.

[27] S. R. Sandeep, M. Swapna, T. Niranjan, S. Susarla and S. Nandi,
"CLUEBOX: A Performance Log Analyzer for Automated
Troubleshooting," WASL, San Diego, CA, 2008.

[28] Leyda, M. and Geiss, R., "WinThrottle," Downloaded 2010.

[29] J. McCaffrey, "Test Run: Stress Testing," .

[30] K. A. Huck and A. D. Malony, "PerfExplorer: A performance data
mining framework for large-scale parallel computing," in
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005
Conference, 2005, pp. 41-41.

[31] A. Brown, G. Kar and A. Keller, "An active approach to characterizing
dynamic dependencies for problem determination in a distributed
environment," in Integrated Network Management Proceedings, 2001
IEEE/IFIP International Symposium , pp. 377-390, 2001.

[32] B. Gruschke, "A new approach for event correlation based on
dependency graphs," in 5th Workshop of the OpenView University
Association, 1998 .

[33] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini and D. Ohsie, "High speed
and robust event correlation," Communications Magazine, IEEE, vol.
34, pp. 82-90, 1996.

[34] P. Barham, A. Donnelly, R. Isaacs and R. Mortier, "Using magpie for
request extraction and workload modelling," in Symposium on
Operating Systems Design and Implementation, pp. 259–272, 2004.

[35] R. Fonseca, G. Porter, R. H. Katz, S. Shenker and I. Stoica, "X-trace: A
pervasive network tracing framework," in Networked Systems Design
and Implementation, 2007, .

[36] M. Kryczka, R. Cuevas, C. Guerrero, E. Yoneki and A. Azcorra, "A First
Step Towards User Assisted Online Social Networks," 2010.

[37] J. Gray, "Dependability in the internet era," in Keynote Presentation at
the 2nd HDCC Workshop, 2001, .

[38] J. L. Hennessy, D. A. Patterson, D. Goldberg and K. Asanovic, Computer
Architecture: A Quantitative Approach. Morgan Kaufmann, 2003.

