A Large Scale Empirical Study on User-Centric Performance Analysis

Shahed Zaman, Bram Adams, Ahmed E. Hassan
Software Analysis & Intelligence Lab, School of Computing
Queen’s University, Canada
{zaman,bram,ahmed} @cs.queensu.ca

Abstract—Measuring the software performance under load
is an important task in both test and production of a software
development. In large scale systems, a large amount of metrics
and usage logs are analyzed to measure the performance of the
software. Most of these metrics are analyzed by aggregating
across all users to get general results for the scenario, i.e., how
individual users have perceived the performance is typically
not considered in software performance research and practice.
To analyze a software’s performance, user’s perception of
software performance metrics should be considered along with
the scenario-centric perspective of system tester or operator.

In our empirical study, we analyzed the impact of per-
formance on individual users to see if performance analysis
results based on the user’s perception is really different from
the scenario-centric (aggregated) one. Case studies on common
use case scenarios in two commercial large telecommunication
systems and one open source performance benchmark show
scenarios where user-centric software performance analysis
was able to identify performance issues that would be in-
visible in a scenario-centric analysis. We find that the user-
centric approach does not replace the existing scenario-centric
performance analysis approaches, but complements them by
identifying more performance issues.

Keywords-Software performance, user, metric, load test.

I. INTRODUCTION

Measuring the software performance perceived by the
user during test or production of a software allows an
organization to adjust the deployment of a software system
in order to meet the performance expectations of its users
[1], [2]. Since performance measurements gather gigabytes
of log and performance counter data, performance analysts
typically aggregate this data across all user, or clusters of
users with the same quality of service (QoS), to get more
manageable information. For example, a system is analyzed
to see if 99% of the response time for a test scenario was
under 2 milliseconds.

Aggregation of performance data loses knowledge about
how individual users are affected by the performance. A
large software system may have a low average system
response time, which suggests that everyone is happy, while
from the user perspective, it may be possible that some
thousands (out of millions) of users are always unhappy
because of persistent high response time (i.e., because of
software compatibility issues at the user’s end). In a com-
petitive market with other options for the user, user perceived
quality is important for user satisfaction and user loyalty to

the service provider [3]. Moreover, if these unlucky users
are the major users, it can be disastrous for a business.

User perceived quality has been studied in the field
of software system design, usability analysis, product and
process quality [4], [5], [6], [7], [8]. The user’s perspective
of quality can be different from the developer or manager’s
aggregated perspective. Performance can be viewed as one
of the characteristics of software quality [9].

We compared individual user performance data (user-
centric) with the aggregated performance data (scenario-
centric) to see whether or not the user-centric performance
analysis data provide the same information as the scenario-
centric data. In our controlled case study of two large enter-
prise systems, and one small open-source e-commerce Sys-
tem’s test data (with simulated load), we calculate scenario-
centric and user-centric metrics to address the following
three research question:

Q1) How does the user-centric performance experience
differ from the scenario-centric one?
One of the enterprise systems showed major perfor-
mance improvements for 2 (out of 4) use case sce-
narios while the scenario-centric comparison could not
identify these improvements. In the open source e-
commerce system, user-centric analysis in 3 (out of 3)
scenarios showed that 40% of the users in each scenario
had a bad performance in at least 30% of their requested
operations, while the scenario-centric analysis showed
that on average, 13.11% to 20.80% of these operations
behaved badly in these three scenarios.

02) How does the user and scenario-centric performance
evolve over time?
When a system is running for a long time, it may
encounter performance problems that could not be
visible if it was running for a short amount of time.
2 (out of 4) and 5 (out of 6) scenarios in the two
enterprise software systems and 1 (out of 3) scenarios
in the open source system showed a different time
trend from the scenario and user perspective. These
differences suggest that scenario-centric performance
trends do not necessarily reflect the performance trends
perceived by user.

03) How consistent are the user and scenario-centric per-
formance characteristics?
A system may sometimes perform outstandingly good

Histogram : Scenario# 1 Histogram : Scenario# 2

0.15

% of users
0.10
% of users

0.05
0.00 0.02 0.04 0.06 0.08

0.00

r T T T T T 1

5 10 15 5 10 15 20 25 30 35
of instances # of instances
(total # of users = 29769) (total # of users = 30000)

Figure 1.

and sometimes very poorly while the users in the sys-
tem may expect a moderate and consistent performance
from the system all of the time. From user-centric
analysis, we found scenarios where a large percentage
of users had an inconsistent performance while the
system’s performance looked consistent in scenario-
centric analysis (on average).

The paper is organized as follows. Section II, discusses
the study design and data source for our study. Section
III explains the motivation, approach and results for our
three research questions. Section IV summarizes the related
work. Section V discusses the threats to validity. Section VI
presents the conclusion of the paper.

II. STUDY DESIGN

In this section, we discuss our three case studies in
which we performed both user-centric and scenario-centric
performance analysis. User-centric analysis measures the
metrics from the individual user’s perspective and scenario-
centric analysis measures the metrics for a scenario across
all users. Table I shows an overview of the three projects in
our study, i.e., two commercial enterprise systems (ES) and
one open source e-commerce system, the Dell DVD store
(DS2). For each system, we considered the most popular use
cases. For each instance of such a use case, we collected the
response time (i.e., the time between start and end) and user
id. All the metrics used in our analysis are derived from this
response time and user id data.

Table T
PROPERTIES OF THREE CASE STUDIES

Enterprise Enterprise Dell
Factor System System DVD
1 2 store
Functionality Telecommunications E-commerce
Vendor’s Busi- Commercial Open-source
ness Model
Size Ultra Large Large Small
Complexity Complex Complex Simple

Enterprise System 1 (ES 1): The first system for our

% of users

Histogram : Scenario# 3 Histogram : Scenario# 4

% of users
0.1 0.2 0.3 0.4

0.00 0.02 0.04 0.06 0.08 0.10

0.0

r T T T T T 1 r T T T T T 1
0 20 40 60 80 100 120 2 4 6 8 10 12 14
of instances # of instances
(total # of users = 128104) (total # of users = 123462)

Enterprise System 1 - Histogram of number of scenario instances per user

case study is an ultra large scale distributed system for
which we had access to the performance regression test log
data. A test was run on two versions of the system with
the same test operational profile (i.e., a realistic distribution
of user input requests). Any performance deviation found
in the new version’s performance is reported by the tester
to the developer. One hour of test log data was collected.
Log lines contain log messages that can be grouped into
sequences per user session and mapped to a use case using
log sequence patterns known to the system experts [10], [11],
[12]. We compare the old and the new version of the ES 1
to verify if the scenario-centric performance analysis differs
from the user-centric performance analysis. Out of around
100 scenarios, we considered the four most occurring ones
as the four major use-cases of this system. Other scenarios
had a too low frequency of occurrence to comment on
their performance. Every scenario’s first and last log line’s
time-stamp was used to calculate the response time for that
scenario. Ideally, every user in these tests are expected to
perceive a similar response time.

Enterprise System 2 (ES 2): The second system in our
case study is a large scale enterprise system of which we
could use the test log data. The test was run on one version
under development and 10 hours of log data was collected
and analyzed. We used a similar log sequence analysis
approach as we did for ES 1. Out of 1092 scenarios, we
considered the top 6 most popular log sequences.

Dell DVD store (DS2): The third case study was per-
formed on the Dell DVD store (DS2). DS2 is an open-
source three tier simulation of an e-commerce website [13].
We set up the DS2 test server in a lab environment using
two Pentium 3 servers running Windows 2008 and Windows
XP with 512MB of RAM. The first machine is the Apache
Tomcat web application server [14] and the second machine
is the MYSQL 5.5 database server [15]. The load for
this test was generated using the DS2 web load driver
running on a Pentium 4 machine with 2GB of RAM. The
load generator simulates multiple users by sending HTTP
requests to the web server for each user, the web server
processes the request by communicating to the database

server, then replies to the user (load generator) again.

We ran the test for more than 11 hours and monitored the
server resource utilization logs to identify the initialization
period of the system. We removed the initial 1 hour log
data to remove the system initialization performance from
our study and concentrated on the normal operation of the
system. Details of the Dell DVD store (DS2) load gener-
ator configuration can be found in our replication package
online [16]. We instrumented the DS2 driver program that
generates the load to the web application to create log files
containing one line for each user’s HTTP request+reply (i.e.,
for each instance of every use case scenario). As a simple e-
commerce system, DS2 has four scenarios: Create new user,
Login to the system, Browse products and Purchase. As the
scenario ‘Create new user’ occurred only once for each user,
we dropped it from our study.

In total, our study contains 4 use-case scenarios from ES 1
(2 versions), 6 use-case scenarios from ES 2 and 3 use-case
scenarios from the Dell DVD store e-commerce system.

III. CASE STUDY RESULTS

For each question, we present the motivation behind the
research question, the approach and a discussion comparing
the results of the user-centric approach with those of the
scenario-centric approach for analysis.

A. How does the user-centric performance experience differ
from the scenario-centric one?

Motivation: A user’s initial experience to the system
(i.e., the experience of the first few operations performed
by a user) is very important to the user’s confidence in the
system’s performance and to keep him using the system. In
a competitive market, bad experience of usage may cause
the user to ask for a refund, look for another new service
provider, repeatedly call to system support lines or ask for
technical support.

A user’s overall experience (i.e., the experience across all
operations by a user during our test analysis time frame)
explains whether the initial experience was representative
for the full experience. For example, if there are some users
who have a persistent problem in their network or system
configuration, they will always perceive a bad experience. In
case of a relatively small number of such unlucky users, the
scenario-centric analysis of the system’s performance may
miss such information, although the performance problem
of those users can be important. A good run from scenario-
centric perspective may actually be a bad run from the user-
centric perspective.

Approach: a) For the initial experience, we considered
the response time for the first “n” instances of a scenario for
each user. The idea behind a metric for initial experience is
to see how many users had a bad experience initially. In
this paper, we measure bad experience or bad instance of a

Table II
ENTERPRISE SYSTEM 1 - SCENARIO-CENTRIC COMPARISON OF

PERFORMANCE
Scenario # ol New
Mean 227.34 226.1
1 Median 204 203
% of bad instances 12.65 11.32
Mean 410.62 | 425.89
2 Median 406 406
% of bad instances 16.48 0.21
Mean 44.82 42.25
3 Median 46 32
% of bad instances 7.19 0.37
Mean 8.24 7.14
4 Median 0 0
% of bad instances 5.03 4.64

Table III
DS2 - SCENARIO-CENTRIC COMPARISON OF PERFORMANCE
Scenario # Mean Median | % of bad instances
Login 545.31 531.25 13.11
Browse 517.05 515.63 12.87
Purchase 6062.84 | 5984.38 20.8

scenario as an instance with the following delay or response
time criteria:

delay >
standard deviation(scenario)

This threshold uses the median and standard deviation of
response time for each scenario.

Out of the “n” initial instances, we measured the per-
centage of bad instances. We choose the value of “n” to be
the maximum of the 10th percentile and 5. For example, in
Figure 1, we can see the histogram of the total number of
instances of a user for each scenario in ES 1. For scenario
1 and 4, the 10th percentile was 1 and using only the first
instance to measure the initial experience would give us only
two levels of initial experience, either 0% or 100%. Hence,
for these two scenarios, we considered the first 5 instances
to measure the initial experience and for scenarios 2 and 3,
we considered the first 7 instances (as the 10th percentile
value was 7). In ES 2, we considered n=11,11,9,5,5,5 for
six scenarios and in DS2, n=5,7,5 for the 3 scenarios.

median(scenario) +

b) For the user-centric performance measure of overall
experience, “n”’ represents all instances for a user during
the whole period of analysis. For example, if a user had
35 instances during one hour of analysis, we identified
the number of bad instances in these 35 instances us-
ing the same threshold delay > median(scenario) +
standard deviation(scenario), then calculated the per-

centage of bad instances of that user.

¢) For the scenario-centric performance analysis, we do

Scenario # 1 Scenario # 2

e p— 2 P———
? | ool ?
3 t T
g o7 * g o7
> & >
z z
o o

< <
g o] g o]
k<t k<t
S S
E 3 = Old g 3+ m Old
s m New ° H New

< T T T T T T < T T T T

0 20 40 60 80 100 0 20 40 60 80

% of bad instances % of bad instances

Cumulative Desnsity (users)

Scenario # 3 Scenario # 4

o -— e —
@ 5 gl
S 7 2 S
=
© | 2 <9 |
S 2 s
]
a
< <
s 2 S
k<t
S
S 7 = Old E 3 = Ol
o
o | B New o | m New
s s
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

% of bad instances % of bad instances

Figure 2. Enterprise System 1 - Cumulative Density Plot of user Overall Experience in % of bad instance

not need to define “n”, since performance trend curves
(discussed in subsection III-B) over time can show the
scenario-centric initial performance.

d) For the overall scenario-centric performance measure of
a scenario, we considered the mean, median and density
of the response time, as well as the percentage of bad
instances across all users. For example, if a scenario had
50 users and they had 500 instances of a scenario during
one hour of analysis, we calculated the mean, median and
standard deviation of these 500 instances across all users.
The mean value gives us the average across all observation
data including outliers, while the median quantifies the
central point of the dataset, neutralizing the outliers. We
graphically compare the distribution of response time with
kernel density plots (regular and cumulative).

With median and standard deviation values, we used
the same threshold delay > median(scenario) +
standard deviation(scenario) to define a bad instance.
Finally, we measured the scenario-centric % of bad instances
in each scenario (shown in Table II for ES 1 and in Table IIT
for DS2). For scenario-centric comparison of mean response
time values between old and new ES1 version, we also used
Welch’s statistical t-test to check whether that the mean
difference is statistically significant.

Findings - Enterprise System 1: User-centric perfor-
mance analysis is showing users with serious performance
problems while the aggregated scenario-centric performance
metrics (mean, median) are reporting no performance prob-
lems. The user-centric performance analysis showed ma-
jor performance improvements for 2 (out of 4) use case
scenarios while the scenario-centric analysis showed major
performance improvements for 1 use case scenario.

Figure 2 shows the visible difference (between old and
new version) in cumulative density plot of the user-specific
response time for enterprise system. We are not showing
here the initial experience curve for the users as it is similar
to Figure 2.

In scenario #2, using median values (scenario-centric,
across all users) we find that most of the instances in both
versions had the same response time of 406 units indicating

no performance deviation between these two versions. Using
mean values, we find approximately 3.72% performance
degradation (statistically significant) on average in the newer
version, while from user-centric analysis, (Figure 2) we
found that the newer version of the system performs better
than the older version. We found that more than 90% of the
users using the older system had at least 1 bad instance (%
of bad instances > 0 in Figure 2), while less than 5% users
had such bad experience in the new system.

In scenario #3, we can see from Table II that on average
and for most of the instances (median), the newer version
had a better overall performance (5.73% better on average,
statistically significant and 30.43% using median). The user-
specific overall experience curve for this scenario also con-
firms that performance improvement (Figure 2).

Scenario-centric analysis (shown in Table II) shows that,
depending on the scenario, the difference between the old
and new version was within the range of 0.39% to 16.27%.

Findings - Enterprise System 2: In ES 2, user-centric
analysis in 5 (out of 6) scenarios showed that 50% of the
users in each scenario had a bad performance in at least 20%
of their instances, while the scenario-centric analysis showed
2.09% to 18.35% bad instances across all users. Different
perspectives of the system performance are shown by these
two approaches. We are not showing the data and curves for
ES 2 as these looked similar to the ones shown for ES 1.

Findings - DS2: In DS2, a user-centric analysis for the
3 (out of 3) scenarios showed that 40% of the users in each
scenario had a bad performance at least in 30% of their
instances (Figure 3), while scenario-centric analysis shows
13.11% to 20.8% bad instances across all users (Table III).
Having less than 20% bad instances on average may be
acceptable for a scenario, but having 40% bad instances
across 30% of the customers may be too high from a user-
centric perspective.

Figure 3 shows the cumulative density function (CDF)
plot of the user’s overall experience (user-centric analysis
result) and Table III shows the mean, median and % of bad
instances across all users (scenario-centric analysis result) .

We can see that on average, a login or browse scenario
in DS2 takes around 500 milliseconds or 0.5 seconds and

Scenario # Login

Scenario # Browse

Scenario # Purchase

1.0

Cumulative Desnsity (users)

m DS2 m DS2

0.0

e 4 e 4
«© ©
o 7 o 7
[2
° °
3 3
2 2
> < | > < |
2 3 2 3
2 2
w m
3 3
a a
2 < £ 3
T ° £ o
= =
£ £
5 5
o o
o | o
o o
o | m DS2 o |
S S
T T T T T T T T
0 10 20 30 40 50 0 10
% of bad instances
Figure 3.

around 12-13% of instances had a response time higher
than median + standard deviation. From a scenario-centric
perspective, the performance may look good, but when we
look at the user-centric view in Figure 3, we find that
more than 80% of the users using DS2 had at least one
performance deviation. Moreover, we found around 10%
of the users with more than 30% of the requests having
a performance deviation.

Response time (Table IIT) and CDF plot (Figure 3) of the
purchase scenario show that on average across users, the re-
sponse time was more than 6 seconds (which is surprisingly
high) and similar to the login and browse scenarios, 50% of
the users perceived a bad performance in more than 25% of
their instances.

User-centric performance analysis shows users with
serious performance problems in 10 scenarios (out of
13) that would be invisible from the scenario-centric
performance metrics.

B. How does the user and scenario-centric performance
evolve over time?

Motivation: Progressive degradation of software perfor-
mance is a common phenomenon called “software aging”
[17]. The measurement, analysis and prediction of system
resource usages, response time is done to counteract soft-
ware aging [18]. Software system performance trends can
show how the system’s performance changes over time while
the system is running. Typically, aggregated summaries of
the data (e.g., per minute or week) are plotted over time
for system performance analysis. Again, the user aspect
is missing in such time trends. A software tester may be
interested to know how system performance changes for an
individual user with time. For example, it may be possible
that in the beginning, the average response time for a
user may be higher than later on (because of the initial
registration process for each new user or due to cache not

T
20

% of bad instances

T T T T T T T T T
30 40 50 0 10 20 30 40 50

% of bad instances

DS2-Cumulative Density Plot of user Overall Experience in % of bad instances

being filled up yet), and the tester wants to investigate these.
Moreover, it may be possible that from scenario-centric
performance trends, a software’s performance is steady over
time (from mean or median in scenario-centric analysis),
while from the user-centric view, as he/she uses the system
more and more, the performance actually degrades. The
scenario and user-centric perspective of experience over time
may give different performance trends over time.

Approach: From the scenario-centric perspective, the
time trend of a system’s performance is measured by col-
lecting the instance response time and plotting this response
time over the instance start/end time. For example, for
the duration of our test analysis period, we collected the
response time and instance start time for each scenario
instance in the system. In a period of 1 hour for ES 1 and 10
hours for ES 2 and DS2, we used “loess” (locally weighted
scatter plot smoothing) [19] to get the time trend curve for
the system’s performance.

For the user-centric time trend, for each scenario, we
consider the first instance of each user as the user’s time
1, the second instance as time 2, and so on. At each time
X, we calculate the mean and median of the response time
of all Xth instances. Since in most of the scenarios, only a
few users (usually less than 20) have the highest number of
scenario instances (for example in Figure 1 for ES 1), we
drop data points with less than 100 users in our plots.

Findings - Enterprise System 1: In ES 1, 2 scenarios (out
of 4) showed a different time trend when we considered the
time from the scenario-centric and user-centric perspectives.
Both time trends showed useful information and one cannot
be replaced by another.

Figure 4 shows the time trend of scenario-centric system
performance and Figure 5 shows the user-centric perfor-
mance trend. The scenario-centric trend for all scenarios
shows that most of the time, the older version had a higher
response time, although in the middle of the test run for
scenario #1, the newer version had a very large response

Scenario # 1 Scenario # 2 Scenario # 3 Scenario # 4
1 i 1 w
m Old g m Old - m Old
| New | New | New
o 2
- =
g% 2 2e gel| |
[= o = S | A
© @ @ @
2o 2% 2., - |
5& 2 o8 g \ |
2 2 2 g1 | |
T o g o« [is
& h 8
N i - o o
3 % 4 @ 8 1w w0 P& w0 20 30 a0 5o 0 S0 1000 1500 2000 0 100 200 800 400
Time Time Time Time
Figure 4. Enterprise System 1 - scenario-centric time trend of the system performance
Scenario # 1 Scenario # 2 Scenario # 3 Scenario # 4
e _— o
AN g/ — | Ho—
o AN o - e |
& —_— § 7 g =
g« g g = g g
Y § % % b S
2 2 8 2 2 8
') 3 F
o E [[- [3 4
§ 2 o =]
a = Od = Od el -~/ = Od =N = Od
B m_Ne E B New | New 2 | New
- - - - S - R & - - - - -
0 5 10 15 0 3 10 15 20 25 30 35 0 20 40 60 80 100 120 140 0 2 4 [8 10 12
Instance # for a User Instance # for a User Instance # for a User Instance # for a User
Figure 5. Enterprise System 1 - Time trend showing the user-centric trend of system performance (After using LOWESS smoother)

Table IV
NUMBER OF USERS AND SCENARIO INSTANCES IN EACH SCENARIO

Scenario # in ES # of scenario instances # of users
1 (old version)

1 142,528 29,769

2 498,338 30,000

3 2,025,645 128,104

4 391,959 123,462
Scenario # in ES ~ # of scenario instances # of users

2

1 8,387 500

2 8,287 500

3 7,051 500

4 4,616 500

5 4,310 487

6 3,908 500
Scenario in DS2 # of scenario instances # of users
Login 138,318 19,984
Browse 418,395 21,385
Purchase 139,733 21,384

peak. From the scenario-centric trend lines, we can identify
the time periods during the test data analysis hour when the
system performed poorly for each scenario and version.

From the user-centric performance trend lines, we can see
that the older version had a higher response time (similar to
the scenario-centric trend line), although we could not see
any peak as we found in the scenario-centric trend lines of
scenario #1.

Moreover, in scenario #3, in the user-centric view (Figure
5) , the users who are involved in more than 30 instances

Scenario : Browse Scenario : Browse

512 514 516

Response Time
504 506 508 510 512 514

Response Time (mean)
510

T
0 100 200 300 400 500 60 0 10

Running Time (in minutes)

20 30 40

Message Number

Figure 6. DS2 - Scenario-centric (left) and user-centric (right) time trend
of system performance for “browse” response time

(3,409 or 2.66% users), perceived a very bad performance
(in comparison to the older version) for those instances after
the 30th one. This information could not be observed in
scenario-centric analysis.

In scenario #2, for the older version the performance got
worse too for users over time, but in the newer version (in
green) this problem seems to be fixed. Such a conclusion
cannot be made from the scenario # 1 and # 4 curves (Figure
5) as the Y axis scale suggests that the fluctuation was very
small in comparison to the median value.

Findings - Enterprise System 2: In ES 2, 5 scenarios
(out of 6) showed a completely different time trend when
we considered the time from the scenario and user perspec-
tive. However, user-centric and scenario-centric trends were
complementary both showing useful trends for performance

analysis.

Findings - DS2: In DS2, 1 scenario (out of 3) showed
a different time trend when we considered the time from
scenario-centric and user-centric perspective. Figure 6 shows
how the DS2 performance for the browse scenario changes
over time. From the scenario-centric trend curve, we can see
that the response time increased first, then decreased in this
six hour period, while from the user’s perspective, we found
that as a user browses the DVD store more, his performance
to the system improves. The other two scenarios, login
and purchase showed similar performance trends in both
scenario-centric and user-centric analysis.

The time trends drawn from the scenario and user-
centric perspective show different aspects in 8 sce-
narios (out of 13) of our case study.

C. How consistent are the user-centric and scenario-centric
performance characteristics?

Motivation: Performance consistency is an important
factor for a user. A user using a system regularly with
a slow response time may be used to that slow perfor-
mance, but if the system performs sometimes very fast
and sometimes very slowly, this would show to the user
that a better experience is possible and he/she is likely to
start demanding such level of services. On the other hand,
there may be a case where consistent poor performance may
be more expected than inconsistent poor performance. For
example, a network service provider may have some users
with specific Quality of Service (QoS) requirements that
specify that the user needs a consistent but poor performance
(relative to the system’s performance capability). Preference
of consistency is dependent on the system operator’s and the
user’s performance expectation.

Figure 7 shows the simplest possible combination of
performance and consistency. For overall experience, a user
may have either Good (G) or Bad (B) experience while for
performance consistency, a user may have either Consistent
(C) or Inconsistent (I) performance. The first square, which
represents the users with consistently good experience per-
ceived from the system, is desired by everyone (user and
system operator). If it is not possible to have most of the
users in square #1, the system operator, depending on his
preference, may prefer to have most of the users in one
of the other three squares. Intuitively, it seems that any
user in the third block (marked as 3), is the most unlucky
one. Depending on the QoS offered to the user (if the QoS
offered is a slow but steady performance), this can also be
the desired performance by the system operator. Research
in the field of marketing shows that there may be some
rational users who may want to rationally choose a lower
quality [20]. For example, some users may be interested in
a cheaper service that may not give them the best overall

performance (i.e., response time), but still they would want
this cheaper performance to be consistent. Such performance
and consistency analysis (shown in Figure 7) can identify the
users in each of these performance regions.

Approach: To measure the performance consistency over
time (scenario-centric), we calculated the median and stan-
dard deviation of scenario instances in every one minute
interval and plotted the median + standard deviation values
in every such interval using “loess”. For the performance
consistency trend over user-perspective of time, we plotted
the median + standard deviation values for the 1st, 2nd, 3rd,
... nth scenario instances across all users (similar to research
question 2). Median £ standard deviation plots create two
lines forming the standard deviation band in which most of
the scenario instance delay varies.

To measure the performance consistency, we used vari-
ance (which is the square of standard deviation). For
scenario-centric variance, we calculated the standard de-
viation of all instances across all users. For user-centric
variance, we calculated the variance of scenario instance
response time for each user. To observe the relation between
user-centric performance consistency and the user’s overall
performance experience as described in Figure 7, we plotted
the scatter-plot of variance vs overall performance for each
user (Figure 10). In the same plot, we added the scenario-
centric variance values by using horizontal lines.

Findings - Enterprise System 1: Drawing the perfor-
mance consistency trends from user perspective or using the
overall performance vs consistency scatter plot and dividing
it into four boxes, these approaches cannot replace the
scenario-centric analysis approach, but can be helpful to
better assess the performance of a software system.

Figure 8 shows the scenario-centric performance consis-
tency trend of the system for scenario #2 and #3. We used
green for the new version and red for the older version
to show the area of standard deviation band. In scenario
#2, we see that in the beginning (from X=0 to X=100) the
newer version performed more inconsistently than the older
version (green region of newer version showing beyond the
overlapped region). In scenario #3, we see that the older
version performed more inconsistently than the newer ver-
sion. From the user-centric performance consistency trend
in Figure 9, we see the inconsistent performance during
initial scenario instances of the newer version. We are not
showing in the paper the other two scenarios (#1 and #4) as
they did not show any visibly significant difference between
scenario-centric and user-centric performance consistency
error bands. Both user-centric and scenario-centric consis-
tency trends show useful information and the purpose of
one cannot be achieved by the other one.

Figure 10 shows the variance and performance experience
of each user as a single semi-transparent dot. In this Figure,
darker (green or red) dots and dotted regions corresponding
to over-plotting of several semi-transparent dots represent

— 4 3
o
c
o]
k%
(%]
c
8

o 1 2

G B

[

>
Overall experience

Figure 7. Four options to choose between performance and consistency
Scenario # 2 Scenario # 3
] | 8
@ 2
= Qld = Qld
| ®m New o | m New
[=) E
g 84 E
= N
g
- 8
g g | 3
gz <
Q
2
(3]
0 500 1500 2500 3500 0 500 1500 2500 3500
Time Time

Figure 8. Enterprise System 1 - Scenario-centric performance consistency
- showing the error band after using LOWESS smoother

the existence of many users in that region. Clearly visible
scattered green dots with higher values of variance in sce-
nario #2 and #3 show many users in the newer version with
performance inconsistencies. Moreover, most of the green
dots (new version) to the left of the plot indicate the lower
% of bad instances experienced by the users in the new
version.

Depending on the threshold set by the system operator
to define good/bad performance and consistent/inconsistent
performance, each plot in Figure 10 can be divided and
mapped into the four regions as shown in Figure 7. For
example, in scenario #2, most of the green dots along the
Y axis indicate that most of the users in the newer version
are either in square #1 or #4 (most of them had a good
experience depending on the threshold). In scenario #3, most
of the users using both versions were in either region #1 or
#2 (most of them had a consistent experience depending on
the threshold).

Findings - Enterprise System 2: The scenario-centric
and user-centric time trend of performance inconsistency
did not show any difference for ES2. 6 scenarios (out of
6) had a similar error band curve from the scenario and
user-centric perspective. More investigation by variance vs
% of bad instances showed that most of the users had a
consistent performance, although they were scattered into

Scenario # 2 Scenario # 3
e)
1 = Old B = Old
= | New
o B -
E - o S
= EN
o |
@
[=
9 % E] 2 o4
8 B 3
T ° o o
o &]
[=]
"0 5 10 15 20 25 30] 20 40 60 80
Instance # for user Instance # for user
Figure 9. Enterprise System 1 - User-centric performance consistency -

showing the error band after using LOWESS smoother

Scenario # 3

Scenario # 2

o

= QOld
= New

30000
L
LR

S ODIBoome 4 5 o

Variance

Variance
20000
0.0e+00 1.0e+07 2.0e+07 3.0e+07

10000

I ——

0 20 40 60 80 100
% of bad instances

1]

0 10 20 30 40 50 B0 70
% of bad instances

Figure 10. Enterprise System 1 - User’s Experience Variance vs Overall
Experience scatter plot

different levels of performance experience (scattered along
X axis).

Findings - DS2: The scenario-centric consistency plot for
DS2, similar to Figure 8, showed us that the DS2 overall
performance variance was consistent over time (two almost
straight and parallel lines formed by median + standard
deviation lines). The user-centric performance consistency
plot also showed a similar curve.

However, user-centric analysis of performance variance vs
experience (% of bad scenario instance) in Figure 11 shows
that for the login and browsing scenarios, the users faced less
performance variance than for purchasing (relatively high Y
axis value of variance in the purchase scenario than login
and browse scenario). In the purchase scenario, a straight
dark line along the Y axis represents a large number of users
with good but inconsistent performance experience (region
#2 in Figure 7).

User-centric analysis showed us performance con-
sistency trends that offered a complementary useful
and different view from scenario-centric performance
consistency trends.

IV. RELATED WORK

We discuss related work in the areas of software engi-
neering and user-centric analysis. A user oriented approach

Scenario # Login

Be+05

a m DS2

Be+05

200000

vanance
4e+05
0
veo
vanance

o
°
°
°

2e+05

o
)
o

L] o

DE‘,% H H L e @
I aaitbbdilid el i | ardeie.

oa
50000 100000

0e+00

Scenario # Browse

Scenario # Purchase

m DS2 m DS2

48 o

o] °
o

@

@

05 O CoyEmg—", 0 C0 0
o

o0

T ——————C 0P O

& mmoasm)
oo 00 0o o
0 0 G SRR 0 00 00

a0 omogme

vanance
o

L)

0
O —

0 10 20 30 40
% of bad instances

Figure 11.

has been considered before for different characteristics of
software quality. In the field of software reliability modeling,
Cheung described the software reliability from the point of
view of a user [21] as “the probability that the program will
give the desired output with a typical set of input data from
that user environment”. He showed that the reliability model
can be formulated depending on the user profile (frequency
distribution of the use of different features in the system) .

User-centric analysis has also been considered in the field
of usability analysis. Terry et al. used end-user oriented
analysis on instrumented software to analyze the real-world
practices of the users of that software [4]. They collected
and analyzed different types of usage data to measure the
usability of a software system. Calongne worked on web
site and other usability goals [5]. One of those goals for
a designer is “high task performance”, i.e., the quantifiable
speed in which the web page should load and display the
requested information given a particular system hardware
and software configuration.

The ISO 9126 standard for software product quality
has six characteristics that describe product quality [22].
“Efficiency” is the closest characteristic to the definition of
performance [9]. This standard describes three set of metrics
for software efficiency evaluation, time behavior metrics,
resource utilization metrics and efficiency compliance met-
rics. ISO 9126 also mentions the view of software quality
from three perspectives, user, developer and manager. Our
empirical study results show the importance of considering
the user’s perspective along with the other two perspectives
for the analysis of these performance related metrics.

Chulani et al. derived a software quality view from
customer satisfaction and service data to obtain a better
understanding of customer view of software quality [7].
Mockus et al. worked on finding the predictors of customer-
perceived software quality [1]. From their study, they iden-
tified the factors like software defect reports, requests for
assistance and field technician dispatches as the predictor of

% of bad instances

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07

s
.
P
a
i1
20 30 40
% of bad instances

T T T
30 40 o 10

DS2 - User’s Performance Experience Variance vs Overall Performance Experience scatter plot

customer perceived quality for a large telecommunications
software system. Mockus et al. also worked on relating
the customer-perceived quality to process quality [8]. They
developed and evaluated a practical measure of customer
perceived quality based on the probability that a customer
will observe a problem. The measure is calculated from
software problem tracking and customer support systems
data. Our analysis shows the importance of such user-
centric analysis for software performance, which is a sub-
characteristic of software quality.

Gould et al. theoretically and empirically recommended
three principles of system design that should be followed
to design a useful and easy to use software system [6].
The three recommended principles were, to focus on users
and task early in the development process, empirical mea-
surement, and iterative design. They also emphasized on
the designers understanding about the users of the system
by studying the users directly (by studying their cognitive,
behavioral characteristic) or in part (by studying the nature
of the work expected to be accomplished). Their research
emphasizes on considering the user’s perspective from early
stages of development life cycle.

V. THREATS TO VALIDITY

Our study was done on three software systems of different
scale (ultra large, large and small) and different type (open-
source and commercial). To generalize our user-centric
performance analysis results, more projects from different
software domains should be studied.

This study is based on virtual users that are simulated
by software load generators. Although no real users were
involved in this study, the load generators used in test
environments follow realistic loads, typically sampled from
real users.

We used median + standard deviation (1 standard de-
viation) threshold to define a scenario instance response
time to be affected by bad performance. Depending on
the performance criteria of the system used, this threshold

should be adjusted. However, we also checked the median £+
3 * standard deviation threshold and found similar findings
(overall observation, although the percentages and values
were different) showing that the user-centric analysis can
give us different and complementary useful findings from
scenario-centric analysis.

VI. CONCLUSION

Our goal in this study is to show the importance of
user-centric software performance analysis. Researchers in
many fields such as marketing, software usability, software
reliability have a broad knowledge on how to do user-centric
analysis in their field. By the use of these analysis techniques
in software performance analysis, we were able to detect
performance problems in a software system that could not be
detected from existing scenario-centric performance analysis
techniques. User-centric analysis could track the percentage
of users with very bad experience and identify users with
good but very inconsistent performance. However, we also
found scenarios where performance peaks were detected by
existing scenario-centric analysis, but not by user-centric
analysis. Hence, we find the user-centric analysis to be
complementary to the existing scenario-centric performance
analysis approaches.

VII. ACKNOWLEDGEMENT

We would like to thank Research in Motion (RIM) for
providing the enterprise data used for this study. The findings
and opinions expressed in this paper are those of the authors
and do not necessarily represent or reflect those of RIM
and/or its subsidiaries and affiliates. Moreover, our results
do not in any way reflect the quality of RIM’s products.

REFERENCES

[1] A. Mockus, P. Zhang, and P. L. Li, “Predictors of customer
perceived software quality,” in Proceedings of the 27th Inter-
national Conference on Software engineering, ICSE, 2005,
pp- 225-233.

[2] J. Humble and D. Farley, Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Au-
tomation, 1st ed. Addison-Wesley Professional, 2010.

[3] P. Chang and H. Chong, “Customer satisfaction and loyalty
on service provided by malaysian telecommunication compa-
nies,” in Proceedings of the 3rd International Conference on
Electrical Engineering and Informatics (ICEEI), july 2011,

pp- 1 6.

[4] M. Terry, M. Kay, B. Van Vugt, B. Slack, and T. Park,
“Ingimp: introducing instrumentation to an end-user open
source application,” in Proceeding of the 26th annual SIGCHI
Conference on Human factors in computing systems, 2008,
pp. 607-616.

[5] C. M. Calongne, “Designing for web site usability,” Journal
of Computing Sciences in Colleges, vol. 16, pp. 39-45, March
2001.

[6] J. D. Gould and C. Lewis, “Human-computer interaction,”
R. M. Baecker, Ed. = San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1987, ch. Designing for usability:
Key principles and what designers think, pp. 528-539.

[7]1 S. Chulani, P. Santhanam, D. Moore, B. Leszkowicz, and
G. Davidson, “Deriving a software quality view from cus-
tomer satisfaction and service data,” in Proceedings of Euro-
pean Conference on Metrics and Measurement, 2001.

[8] A. Mockus and D. Weiss, “Interval quality: relating customer-
perceived quality to process quality,” in Proceedings of the
30th International Conference on Software engineering, ser.
ICSE °08, 2008, pp. 723-732.

[9] S. Becker, “Dependability metrics.” Springer-Verlag, 2008,
ch. Performance-related metrics in the ISO 9126 Standard,
pp- 204-206.

[10] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using
magpie for request extraction and workload modelling,” in
Proceedings of the 6th Conference on Symposium on Opeart-
ing Systems Design and Implementation, 2004, pp. 259-272.

[11] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: problem determination in large, dynamic internet
services,” in Proceedings of the International Conference on
Dependable Systems and Networks, 2002, pp. 595 — 604.

[12] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Auto-
matic identification of load testing problems,” in Proceedings
of the 24th IEEE International Conference on Software Main-
tenance, 2008, pp. 307-316.

[13] Dell Inc., “Dell dvd store database test suite,” Version 2.1.

[14] The Apache Software Foundation, “Tomcat, 2010,” Version
5.5.

[15] MySQL AB, “Mysql community server, 2011,” Version 5.5.

[16] “Replication package,” http://research.cs.queensu.ca/~zaman/
cust-centric-perf-analysis/, November 2011.

[17] D. L. Parnas, “Software aging,” in Proceedings of the 16th
International Conference on Software engineering, ser. ICSE,

1994, pp. 279-287.

[18] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Analysis
of software aging in a web server,” IEEE Transactions on
Reliability, vol. 55, no. 3, pp. 411 —420, sept. 2006.

[19] W. S. Cleveland, S. J. Devlin, and J. B. Wagenaar, “Locally-
weighted regression: An approach to regression analysis by
local fitting,” Journal of The American Statistical Association,
1988.

[20] R. T. Rust, J. J. Inman, J. Jia, and A. Zahorik, “What
you don’t know about customer-perceived quality: The role
of customer expectation distributions,” Marketing Science,
vol. 18, pp. 77-92, 1999.

[21] R. Cheung, “A user-oriented software reliability model,” IEEE
Transactions on Software Engineering, vol. SE-6, no. 2, pp.
118 — 125, march 1980.

[22] ISO 9126:2003, Software engineering — Product quality.
ISO, Geneva, Switzerland, 2003.

