
Recovering a Balanced Overview of Topics
in a Software Domain

Matthew B. Kelly, Jason S. Alexander, Bram Adams, Ahmed E. Hassan
School of Computing

Queen’s University
Kingston, ON, Canada

{matthew, jason, bram, ahmed}@cs.queensu.ca

Abstract—Domain analysis is a crucial step in the development
of product lines and software reuse in general, in which domain
experts try to identify the commonalities and variability between
different products of a particular domain. This identification
is challenging, since it requires significant manual analysis of
requirements, design documents, and source code. In order to
support domain analysts, this paper proposes to use topic mod-
eling techniques to automatically identify common and unique
concepts (topics) from the source code of different software
products in a domain. An empirical case study of 19 projects,
spread across the domains of web browsers and operating systems
(totaling over 39 MLOC), shows that our approach is able to
identify commonalities and variabilities at different levels of
granularity (sub-domain and domain). In addition, we show how
the commonalities are evenly spread across all projects of the
domain.

Keywords-domain analysis, topic modeling, empirical study

I. INTRODUCTION

Domain analysis is the “process by which information used
in developing software systems is identified, captured, and or-
ganized with the purpose of making it reusable when creating
new systems” [29]. Essentially, domain analysis reveals the
commonalities and variability between systems in the domain
under study. For example, in the domain of text editors, major
commonalities are the ability to edit and print text, whereas the
range of supported file formats is a major point of variability.
The ultimate goal of domain analysis is to reuse commonalities
across products, for example as the basis of a software product
family [18], [24], [26], [27] or of a reusable library [7],
whereas variability typically results into value-adding features.

Despite the importance of domain analysis, it is mostly a
manual, labour-intensive task that requires significant domain
expertise [13], [29]. To distill the main domain concepts,
domain experts consult any available data source, such as re-
quirements, design documents and the source code of existing
or competing products (if available) [11]. They then try to
reconcile the distilled concepts amongst each other by building
a unified domain model. Achieving a consensus between all
team members takes dozens of meetings and several months
depending on the scope of the project [2], [17], [18].

Although tool support exists for domain analysis, it either
aims (1) at later stages of the analysis [11], [14], [18], when
analysts want to organize the identified concepts and their
constraints, or (2) at abstracting concepts from one particular

system [9], [32], [39]. Identifying and finding commonalities
or variability across multiple systems in a domain is still work
in progress. Tools have been proposed to automatically cat-
egorize software systems based on their documentation [20],
[36] or source code identifiers [3], [16], [35]. Such approaches
seem promising for commonality analysis, yet they either
are not targeted towards source code, or tend to bias their
categorization towards the larger software projects.

We propose an approach to compare common domain
concepts from the source code of multiple software projects in
a balanced way, using topic modeling. Topics are collections
of words that co-occur frequently in a corpus of documents
(in our case: source code files), and hence are likely related to
the same semantic concept. We apply topic modeling on each
software project separately, then cluster the resulting topics
across all projects in a particular domain. Clusters shared by
multiple projects contain common concepts, whereas clusters
belonging to only one or two projects correspond to variable
concepts. Domain analysts can use the output of our approach
to bootstrap their manual analysis.

This paper makes two primary contributions:
• An automatic approach to apply topic models on several

corpora of varying sizes to identify commonalities and
variability across different systems in a domain.

• A case study of 19 systems across two domains, totaling
over 39 MLOC, showing that our approach provides a
balanced overview of the concepts in a (sub-)domain.

The remainder of this paper is organized as follows. Sec-
tion II motivates our work and discusses related work. Sec-
tion III outlines our approach. Section IV presents our case
study results, followed by a comparison of our balanced ap-
proach to an unbalanced topic mining approach in Section V.
Section VI identifies the threats to the validity of our research,
and Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section motivates our work, provides background on
the topic modeling technique that we use, and discusses related
work.

A. Domain Analysis

In the context of software product families [18], [24], [26],
[27], [29], domain analysis is the first step in a process called



“domain engineering”, which tries to build and document
a generic architecture for a particular domain based on an
extensive set of data available about that domain. The generic
architecture is said to capture the “commonalities” of the mod-
eled domain. Later “application engineering” processes then
reuse this architecture to produce custom software products
that add value by providing elements of variability. Reuse of
commonalities across a product family (theoretically) enables
companies to produce better products in a shorter time frame
at a fraction of the cost, similar to assembly lines of car
manufacturers [10].

Various methodologies exist for domain analysis, all of
which essentially specify the process of how to identify and
capture the commonalities and variability in a domain [4],
[11], [14], [15], [32], [38]. This process primarily is a human
activity, involving the detailed review and comparison of
requirements specifications, design documents, source code,
manuals, contracts, personal communication and any other
available source of data [13], [29]. Given the scale and depth
of the considered domains, significant personal interaction and
management skills are required to arrive at a compromise
between all domain analysts, often after months of meetings
and discussions [2], [17], [18].

Despite the age of the field, scalable tool support for domain
analysis is still an open issue, especially for analyzing com-
monalities and variability within existing software systems,
typically developed by competitors [10], [13], [18]. The DARE
methodology [11] provides partial automation using lexical
techniques to identify important phrases and words in the
domain documents, and to cluster these phrases and words
based on their conceptual similarity. More recent incarnations
of DARE feature source code analysis tools like cflow and
source navigator, yet the source code analysis part of DARE
is still the most time-consuming domain analysis step [39].
Other methodologies use tools for code instrumentation [9],
[32], state machine extraction [14] or management of UML
models [18].

Software architecture recovery and concern mining (also
referred to as feature/concept location [28] or aspect min-
ing [22]) are two areas related to commonality and variability
analysis, but targeted more at supporting software maintenance
and program understanding. Software architecture recovery
extracts a high-level concrete architecture from the source
code of a software system and compares it to a reference
architecture (e.g., [23]). Concern mining (e.g., [30]) identifies
code regions that together form a conceptual unit, for example
the “undo” feature of a text editor or all the code responsible
for reliability. Software architecture recovery and concern
mining are necessary techniques for domain analysis, yet
require additional analysis on top of them to compare the
recovered architecture and concerns of dozens of systems to
each other. Such an analysis is the subject of this paper.

B. Topic Modeling

This paper proposes and evaluates an automatic technique,
based on topic modeling, to bootstrap commonality analysis.

Topic modeling techniques like LDA [5] (Latent Dirichlet
Allocation) analyze a document or set of documents (a corpus)
to produce a probabilistic model of word clusters (topics) that
group semantically related words. This clustering is typically
computed based on the co-occurrence of words in each doc-
ument. In addition to the topics, i.e., groups of words, topic
modeling also yields for each document the memberships of
each topic, i.e., the percentage of the functionality of the
document described by the topic.

Topic modeling traditionally has been used for the analysis
of written language, and has been shown to increase under-
standing of a corpus by generating a semantical overview.
Such overviews have proven useful for indexing, classifying,
and characterizing documents [25]. The last decade, topic
modeling techniques have been gaining traction in the field
of software engineering research, for example to find the
underlying architecture of a software system [37], to locate
software features [28], and to analyze the evolution of a
software system [33], [34].

The most closely related application of topic modeling to
this paper is the automatic categorization of software systems
as being for example a “development tool” or “implement-
ing hashmap functionality” [3], [16], [20], [35], [36]. These
techniques essentially combine topic modeling with clustering
of the topics to identify the dominating commonalities (main
categories) between up to thousands of software systems. In
other words, these techniques only focus on a small subset
of all common topics, and disregard most of the variability
between topics. In contrast, domain analysts need to consider
all commonalities and variability across a set of software
systems.

III. TOPIC MODEL-BASED DOMAIN ANALYSIS

This section describes our topic model-based approach
for domain analysis. This approach enables domain analysts
to study the commonalities and differences across different
groups of applications, at various levels of granularity. Figure 1
provides an overview of the approach.

Our approach first pre-processes the source code of the
analyzed software systems to extract meaningful words. Each
project’s extracted words are then analyzed by a separate LDA
process, followed by post-processing of the resulting topics to
identify the topics’ most frequently occurring words. Finally,
the topics are clustered at varying levels of granularity (sub-
domain or domain). The resulting clusters can be analyzed by
domain experts to drive their detailed manual analysis. The
following subsections discuss each step of our approach in
detail.

A. Source Code Pre-processing

Prior to performing LDA topic analysis on a particular
version of a project, the source code must first be preprocessed.
Traditionally, unwanted words and punctuation are removed to
eliminate frequently occurring words that contain no semantic
meaning with respect to the code’s functionality [19], [37].
This removal comprises the following steps:

2



Projects Studied
A. Source Code
Pre-processing

Pre-processed Source Code Source TopicsSource Code

project 1
project 2
project 3

...
project n

cluster 1
cluster 2
cluster 3

...

cluster n

Topic Clusters

p1

p2

p3

preprocessed p1

preprocessed p2

preprocessed p3

p1 topics

p3 topics

p2 topics

B. Topic Modeling
C. Topic Post-processing

D. Topic Clustering
E. Cluster Labeling

F. Changing
Level of
Analysis

Fig. 1. An overview of our approach.

1) Removal of language-specific words. This step is
the only programming language-specific step of our
approach. Although the study in this paper focuses on
C and C++ software systems, supporting a different
language only requires compiling a different list of
reserved words. Examples of the C/C++ reserved words
that we removed are template, typename, class,
friend, private and this.

2) Removal of comments. Similar to the software cate-
gorization work [3], [16], this paper only uses source
code as input data. It is well-known that, contrary
to code comments, source code is quite a low-level
artifact [24], [29], yet many software systems are only
poorly commented or have outdated comments. Hence,
in this paper we consider the worst case scenario that no
comments are available in order to obtain a lower bound
on the performance of our approach. In future work, we
plan to consider higher-level artifacts like source code
comments and design documents.

3) Breakdown/splitting of identifiers. For example,
myVariableName would be split into my,
variable, and name.

B. Topic Modeling

Prior work has shown that topic modeling techniques like
LDA are biased towards corpora with a larger size [34].
In our case, this would mean that the resulting topics are
primarily derived from the larger projects, since they dominate
the documents of smaller projects in sheer size. In fact,
all software categorization techniques that we discussed in
Section II-B apply LDA or a similar topic modeling technique
to all software projects at once. This makes sense in their
context, since software categories correspond by definition to
the dominant groups of commonalities between projects. In
the remainder of this paper, we refer to these approaches as
“unbalanced” approaches.

In the context of our work, unbalanced approaches make
sense for prioritizing topics (e.g., to decide which commonal-
ities to analyze first), but not for an initial, unbiased analysis
of commonalities and differences across all projects. For this
reason, we use a “balanced” approach that first applies the
LDA topic analysis technique to each project’s pre-processed

data independently, followed by a global clustering across the
extracted topics of all projects. This clustering treats the topics
of all projects as equal, regardless of project size. This allows
us to identify common topics of smaller projects, or even
crucial differences between larger and smaller products in the
domain under study.

For our LDA analysis, we use the open source Mallet
tool [21]. Mallet is run with an optimizing interval of 10 to
find the parameters that maximize the log-likelihood function
of the dataset under analysis. We configured Mallet to produce
a set of 20 topic clusters with 20 words per cluster, but this
is by no means the only possible configuration.

Two separate output files are generated, i.e., one file with
the list of words belonging to each topic and one file with
topic proportions (topic memberships) per source code file. For
example, the first file of the TinyOS subject system contains:

...

3 addr ip sock tcp tcplib tun frag udp ... udp

4 avr page ds addr bits poll disk ... lock

5 msg net deluge addr id data dhv dip ... packet

...

18 sim cc current log channel time ... link

In each topic, the words are ranked from most to least
important, starting at the left side of each cluster. The second
file maps the files to the topics that they describe. It contains
the topic memberships per source code file. For example, in
the TinyOS system:

...

/tinyos/packet.h A 0.75 B 0.23 C 0.02 ... 0 0.0

/tinyos/HplAt45db.h X 0.63 Y 0.37 Z 0.0 ... 0 0.0

...

For packet.h, the primary topic is topic A with a 75%
membership. The second most important topic for this file is
topic B with a 23% membership. For HplAt45db.h, the most
important topic is topic X with a 63% membership. The second
most important topic for HplAt45db.h is topic Y at 37%.

C. Topic Post-processing

After the LDA analysis, the topic clusters need to be pruned.
We find that in most cases only the top 5 words contribute
significantly to each topic (based on the topic membership

3



percentages). To reduce the complexity of our approach and
to make the next step of our approach easier, only the top
5 words are selected from the original 20. We then assign
weights to the top 5 words, with the highest weight awarded
to the most significant word, and decreasing weight as the
importance of the words declines.

D. Topic Clustering

To perform the actual analysis of commonalities and vari-
ability between the different software projects, we now cluster
all project-specific topics together using the standard K-means
clustering algorithm. K-means is a robust, iterative clustering
algorithm that tries to find the natural K cluster centres in a
group of n topics by minimizing the distance between each
topic to the centre of the cluster it belongs to.

We first need to convert the rankings of the 5 words in
each topic into vectors of dimension U, with U the number of
unique words across all topics considered during the cluster-
ing. Then, we use the open source Weka tool [12] to cluster the
topics based on the distance between the vectors. The actual
value of K depends on the desired granularity in the study.
Increasing the number of clusters sacrifices topic cohesion for
granularity and vice versa. We choose 20 clusters, since that
is the number traditionally used by topic modeling techniques.

We define the “spread” of a topic cluster as the percentage
of all considered software systems that cover the topic cluster.
This percentage indicates the degree of commonality between
the projects for a particular topic cluster. High spread indicates
that a particular topic cluster is common throughout a domain.
Low spread indicates variability.

E. Cluster Labeling

To clarify the semantics of the clusters, we synthesize a
textual label that summarizes all the words in a cluster. For
this, we rank the words of each cluster by summing the ranks
of the words in each of the cluster’s constituent topics. In
cases where succinct labels cannot be determined based on the
top words, online project documentation was used by one of
the authors to check the validity of the corresponding cluster,
and, if valid, to assign a more meaningful label. In practice,
interpretation of the topic labels is also the first task domain
analysts perform.

For example, for one of the operating systems that we
studied (FreeDOS), we obtained the label “pddt, ddt,
drive, bpb”. These words appear to be local variables or
function arguments, without relevance to the larger scope of
the project. However, the project documentation revealed that
these words represent the FreeDOS initial kernel disk, yielding
a more meaningful label for the topic cluster.

F. Changing Level of Analysis

Up until now, we did not specify the sets of projects for
which we generate and cluster topics. As a matter of fact,
comparisons can be made at different levels of granularity,
ranging from “all text editors that are a clone of GNU Emacs”,
over “all console-based text editors” to “all text editors”.

We refer to the highest level of granularity in a particular
context as the “domain level”, and to the other levels as a
“sub-domain level”. One could even compare systems across
domains [3], [16], [20], [35], [36], although project-specific
naming conventions potentially reduce the effectiveness of
LDA at this level [20].

We typically follow a bottom-up approach, starting with for
example a sub-domain level where we cluster the projects’
topics and assign labels to each cluster. To proceed to the
domain level, we repeat the analysis with the topics of all
systems in all considered sub-domains. This approach is
repeated all the way up to coarser-grained levels.

At each level, the resulting labeled clusters and their map-
ping to individual projects’ topics (and source code) enables
domain experts to bootstrap their analysis of commonalities
and variability of products in a particular (sub-)domain. Since
topic clusters group multiple topics of multiple projects, the
experts can proceed by manually investigating the major topics
in each cluster, maybe deciding to repeat our approach with
other thresholds to obtain more or finer-grained topics.

IV. CASE STUDY

We performed an exploratory empirical study to qualita-
tively evaluate our methodology on 19 C/C++ projects in
two separate domains. The operating system (OS) domain,
illustrated in Figure 2, is divided into three sub-domains:
embedded real-time operating systems (RTOS), monolithic
kernels and cloud-based operating systems. The only cloud
operating system in our study is Google’s Chromium OS, due
to a lack of available candidates. The web browsing domain
is divided into two sub-domains: GUI-based and text-based
browsers.

Table I documents all of the software systems investigated
in our case study. For each system, it lists the project name, the
analyzed version of the software, the domain of the system, the
number of C/C++ files parsed, the number of analyzed C/C++
source lines of code (SLOC, calculated using SLOCCount [8]),
as well as the number of tokens extracted from each system.
The systems cover a wide range of sizes. Although most of
the operating systems are older than the web browsers, the
Chromium and Firefox browsers have a similar size as some
of the larger operating systems.

Our study performs our methodology at the sub-domain and
domain levels. We show the corresponding topic clusters at
each level, together with the following attributes:

1) The topic cluster’s label.
2) The spread of the topic cluster.
3) The cluster size, i.e., the percentage of all topics in

the investigated (sub-)domain that belong to the topic
cluster. This will be used as a measure of the size or
importance of each cluster. A high cluster size indicates
a topic cluster with many topics.

4) An ordered list of the top words in each topic cluster.
Some clusters contain no meaningful information, only arbi-

trary code fragments. For example, the “eric, progname,
perror, ...” cluster collected from Ultrix (monolithic

4



TABLE I
SOURCE CODE ATTRIBUTES OF THE SOFTWARE SYSTEMS USED IN THE EMPIRICAL STUDY.

System Version Sub-Domain C/C++
Files

C/C++
SLOC

Parsed
Tokens

FreeRTOS 6.1.0 Embedded RTOS 3,075 615,456 898,910
TinyOS 2.1.1 Embedded RTOS 649 59,995 85,794
Inferno 3e Embedded RTOS 1,654 479,193 495,216
eCos 3.0 Embedded RTOS 4,141 945,371 2,286,171
FreeBSD 8.1 Monolithic OS 24,726 7,960,207 20,475,256
OpenBSD 4.8 Monolithic OS 16,840 4,047,191 8,567,978
Minix 3.1.1 Monolithic OS 431 66,930 184,846
Unix v7 Monolithic OS 991 137,034 183,424
Linux 2.6.0 Monolithic OS 12,424 3,805,097 9,498,413
Haiku OS R1/Alpha2 Monolithic OS 24,734 5,475,559 12,643,109
FreeDOS 1.1 Monolithic OS 5,893 411,850 146,795
OpenSolaris 2009-06 Monolithic OS 22,474 8,268,300 18,527,066
Ultrix 11 Monolithic OS 2,339 421,248 576,047
Chromium OS r66904 Cloud OS 13,251 2,393,061 6,925,789
Chromium 4.0.222.12 GUI Browser 7,192 1,427,210 4,572,548
Firefox 3.0 GUI Browser 9,428 2,415,448 7,238,830
Konqueror 4.5.2 GUI Browser 224 31,831 115,147
Lynx 2.8.7 Text Browser 217 129,263 296,818
Links 0.9.8 Text Browser 42 23,612 63,945

Total: 150,725 39,113,856 93,782,102

Inter-domain

Domain

Sub-domain

Project

Fig. 2. Hierarchical organization of the operating system and web browser domains in Table I.

OS) contains a developer’s name as the top word. Since
such implementation-specific clusters tend to disappear when
considering a whole (sub-)domain, we did not filter these
topics out up-front.

Except for Table II, we only show the top 10 topic clusters
at each level to avoid drowning the reader with results, and
for each topic we only report the most salient words. The
complete results can be found online [1]. We now discuss our
results for each level to determine whether our approach works
in practice.

A. Sub-domain Level

The sub-domain level consists of systems with similar goals
and analogous functionality. The sub-domains investigated for
the OS domain are embedded RTOS systems, monolithic op-
erating systems and one cloud operating system. The browser
domain covered text-based and GUI-based browsers.

Embedded RTOS

For this first sub-domain, Table II also provides a breakdown
of the spread in the RTOS sub-domain, in addition to spread
and cluster size. Similar tables were generated for all results
(even at the project-level), but were not included because of
space restrictions [1].

From the results in Table II, we see that embedded RTOS
systems primarily deal with low-level hardware, network com-
munication and timing. Examples of low-level hardware con-
cepts are the architecture definitions/specifics and hardware
controller clusters. Topic clusters networking primitives, micro
ip tcp/ip stack, ethernet transmission and ethernet controller
belong to network communication. Finally, topics microcon-
troller interrupts, scheduling, clock and task scheduling cor-
respond to timing. Note that some clusters, like architecture
definitions and architecture specifics should actually be merged
into one.

5



TABLE II
EMBEDDED REAL-TIME OS AT SUB-DOMAIN LEVEL.

Topic Label Spread
(%)

Cluster Size
(%) eCos FreeRTOS Inferno TinyOS Top Words

architectural specifics 100 46.3 11 7 4 15 mcf, addr, reg
snmp 50 3.8 0 1 0 2 msg, snmp, addr
flash filesystem 50 2.5 1 0 0 1 gr, rf, jffs
networking primitives 50 2.5 1 1 0 0 ip, tim, addr
hardware controllers 50 2.5 0 1 1 0 avr, big, lcd, res
micro ip
tcp/ip stack 50 2.5 0 1 1 0 fp, uip, fs, ip

ethernet transmission 50 2.5 1 1 0 0 eth, rx, tx, phy
security 50 2.5 1 1 0 0 ercd, flag, sadb, key
constants 50 2.5 1 1 0 0 xf, xff, xfe, xd
serial interface 50 2.5 1 0 0 1 serial, packet, cyg
microcontroller
interrupts 50 2.5 0 2 0 0 reg, pio, mci

scheduling 50 1.3 0 0 1 0 dp, cp, min
constants 50 1.3 1 0 0 0 xf, xc, xe, xb
plan9 types 25 13.8 0 0 11 0 bp, ftl, tkt, uart
architecture definitions 25 3.8 0 3 0 0 bit, io, byte, mask
error control 25 2.5 2 0 0 0 err, test
inferno vlrt runtime 25 1.3 0 0 1 0 lo, vlong, rv
clock 25 1.3 0 0 0 1 config, tda, mhz
task scheduling 25 1.3 0 1 0 0 task, port, queue
ethernet controller 25 1.3 0 0 1 0 ctlr, ether, port

Total: 4
systems

80
topics

20
clusters

20
clusters

20
clusters

20
clusters —

Table II also shows the results of the topic breakdown.
For example, clusters like flash filesystem and serial interface
are shared between eCos and TinyOS, while FreeRTOS and
Inferno share the micro ip tcp/ip stack cluster. Some clusters
map to only one project, such as Plan 9 types in Inferno (which
is a derivative of the Plan 9 OS), and the task scheduling
cluster of FreeRTOS.

Half of the clusters are shared between at most half of the
projects (median spread of 50%). This is especially due to
the first cluster, which combines almost half of the topics
across all sub-domain projects. Hence, there are substantial
commonalities between the four systems. To identify these,
it suffices to examine the topics that are clustered together
into the architecture specifics cluster. Those topics correspond
to basic concepts like low-level IO and memory management,
inter-process communication and DMA handling.

Monolithic OS
Table III shows the top 10 results for the monolithic OS

sub-domain. The results clearly differ from those of the em-
bedded RTOS domain, since the focus shifts towards higher-
level memory management, (peripheral) device controller, and
various filesystem topic clusters, as well as an emerging topic
cluster for authentication. These are the components one might
expect from a modern monolithic operating system [6].

An important difference between monolithic systems and
embedded RTOS is that the topic clusters of various projects

overlap less, i.e., this sub-domain has a median spread of
33.3% (for the top 20 clusters) compared to 50% for RTOS
projects. In other words, there is more variability between
these systems, which is not surprising given that this sub-
domain contains more than twice as many software systems.
Still, five clusters contain highly common concepts across at
least 50% of the systems.

The distribution of cluster size is similar for both sub-
domains, i.e., the first cluster (architectural specifics, shared
by 8 projects) again dominates the other topics, together with
the error control cluster (17.8% of all topics). The mapping
from clusters to the topics of individual projects tells us that
the architectural specifics cluster comprises low-level memory
management, network/serial communication, file system inode
management, SCSI device support and inter-process commu-
nication, whereas the error control cluster combines various
logging and return value handling topics.

Cloud-Based OS
The last OS sub-domain that we investigate are cloud-based

OSes, which only consist of a beta-release of the Chromium
OS. Since we only investigate a single system, each cluster is
actually one topic, as shown in Table IV.

The Chromium OS results indicate a major shift towards
web-based integration with a browser front-end, as is expected
from a cloud OS prototype. Topics like video and audio
streaming, tabbed browsing, and webkit indicate heavy use of

6



TABLE III
MONOLITHIC-BASED OS (TOP 10) AT SUB-DOMAIN LEVEL.

Topic Label Spread
(%)

Cluster
Size (%) Top Words

architectural
specifics 88.9 40.6 size, port, dev, pci

tcp/ip stack 77.8 8.9 ip, addr, dev, pdp
constants 66.7 3.3 xa, xf, xc, xff, xe
error control 55.6 17.8 error, register, cp
device
controller

55.6 2.7 tx, ieee, rx, mac,
priv

libdisasm 44.4 5.6 lp, op, reg, insn
peripheral
devices

44.4 3.9 acpi, status, device,
stp

filesystem
directory
structure

44.4 2.7 node, path, cmd,
entry

filesystem 44.4 2.2 file, entry, size,
archive

teletype &
digital signal
processing

33.3 2.8 tty, dsp, irq

Total: 9
systems

180
topics —

TABLE IV
CLOUD OS AT SUB-DOMAIN LEVEL.

Topic Label Spread
(%)

Cluster
Size (%) Top Words

url 100 5 url, id, entry
audio & video
streaming 100 5 stream, video, au-

dio
security
authentication

100 5 key, ssl, cert
tabbed
browsing 100 5 view, tab, browser

filesystem 100 5 file, path, base,
dir

browser
extension

100 5 extension, service
architecture
specifics 100 5 operand, register,

reg

http request 100 5 request, cache,
http

gui layout 100 5 rect, width, win-
dow

webkit 100 5 web, kit, plugin

Total: 1
system

20
topics —

web interaction. We also see more traditional OS topics such
as the architecture specifics, filesystem, and registers topics.

GUI-Based Browsers
Similar to the findings of the OS sub-domain study, the

browser sub-domains expose important commonalities and
variability between different projects. First, we studied GUI-
based browsers. The results of the GUI-based study are
displayed in Table V.

TABLE V
GUI-BASED BROWSERS (TOP 10) AT SUB-DOMAIN LEVEL.

Topic Label Spread
(%)

Cluster
Size (%) Top Words

browser
concepts 100 38.3 entry, sqlite, png

gui events 100 10.0 event, view, win-
dow, frame

gui elements 66.7 8.3 item, box, dlg, dia-
log

gtk ui
framework

66.7 5.0 gtk, view, window,
action

browser
concepts 66.7 3.3 bookmark, node,

action, menu
xml 33.3 5.0 xml, xslt, ctxt

page layout 33.3 5.0 frame, node, ele-
ment

fonts 33.3 3.3 ft, face, glyph
qt ui
framework

33.3 3.3 qstring, qwidget,
parent, window

tabbing 33.3 1.7 tab, current, slot

Total: 3
systems

60
topics —

The dominant topic clusters correspond to GUI, rendering
and authentication concepts. Similar to the OS sub-domains,
the top cluster bundles the majority of topics (here 38.3%).
This time, the top cluster combines various typical browser
concepts, mapping to individual project topics like buffer
handling, address handling, network socket management, per-
sistence (e.g., the sqlite database functionality of Firefox and
Chromium), rendering and caching.

Of the top 20 clusters, 5 are shared between at least 2 of the
3 projects (2 between all projects), comprising 65% of all top-
ics. Those clusters contain the majority of commonality in the
GUI-based browser sub-domain. The other 15 clusters contain
variability. For example, topic clusters for the webkit engine
and tabbing are specific to Chromium. Similarly, clusters like
xml and page layout are also specific to 1 project.

Text-Based Browsers
The last sub-domain that we study is that of text-based

browsers (Table VI). Given their niche market, neither of
the two browsers can rely on standard libraries for HTML
processing and rendering. As such, most of the topic clusters
are related to those concepts. The only commonalities between
both browsers are the handling of http connections, support for
HTML standards (documentation standard) and input handling
from the terminal (gnu gettext).

Although only 3 of the 20 topic clusters are shared between
the two projects, these clusters amount to 50% of all topics.
For example, the top cluster covers caching, URL handling,
cookies and (SSL) connection management. In addition, many
1-system clusters are ultimately similar topics that did not get
coalesced by the K-means clustering algorithm. For example,
the html and html table clusters of Links and the htlist cluster
of Lynx clearly should be merged. We believe that incorpo-

7



TABLE VI
TEXT-BASED BROWSERS (TOP 10) AT SUB-DOMAIN LEVEL.

Topic Label Spread
(%)

Cluster
Size (%) Top Words

http
connection

100 37.5 link, cookie, con-
nection, cache

document
standard

100 7.5 text, html, items

gnu gettext 100 5.0 hk, gettext, sys,
html

host
information

50 5.0 free, entry, host,
status

terminal 50 5.0 term, terminal, ev

gui concepts 50 5.0 dlg, bookmark,
menu

html 50 2.5 html, format, attr

content 50 2.5 charset, context,
uc, xf

doc type 50 2.5 header, doc, size,
buf

htlist 50 2.5 htlist, list, lex

Total: 2
systems

40
topics —

rating more project data (e.g., comments and documentation)
would be able to avoid this topic aliasing problem.

Summary of Findings
Our study of sub-domain topic clustering shows that our

balanced approach is able to identify topic clusters with highly
varying spread and cluster size. A small number of clusters
contains the majority of the commonality.

B. Domain Level

The domain level consists of systems that achieve similar
goals, but may vary greatly in functionality. We analyze the
OS domain by clustering the topic clusters of the embedded
real-time, monolithic and cloud operating system sub-domains.
The browser domain consists of the GUI-based and text-based
browser sub-domains.

OS Domain
Table VII shows the results for the OS domain. The clusters

span a wide range of concepts, such as ip networking sub-
system, architectural specifics and peripheral device support.
Only 4 clusters (spread across more than 80% of all domain
topics) cover at least half of the projects. The top cluster
contains basic functionality essential to any operating system,
such as low-level device management, low-level memory man-
agement and low-level IO.

Furthermore, half of the clusters cover at most 3 projects
(median of 21.4%). For example, Debian binutils is only
employed by Haiku and FreeBSD, whereas berkeley bind
is used by both BSD distributions and OpenSolaris. Given
the wider range of systems, the lower spread is expected.
Our approach exposes interesting variability in design choices
of the corresponding operating system teams, which can be
further explored by the domain analysts.

TABLE VII
OS DOMAIN (TOP 10) AT DOMAIN LEVEL.

Topic Label Spread
(%)

Cluster
Size (%) Top Words

architectural
specifics 100.0 52.9

reg, port, addr,
regs, len, pci,
serial, state

tcp/ip
networking 71.4 17.9 ip, addr, client,

smb, sctp
device
control

57.1 7.1 dev, acpi, ieee, tx,
pci, rx, card

compilation
environment

50.0 5.4 op, tree, line, uart,
reg, pkt

distributed
filesystem 35.7 2.1 msg, snmp, raid,

obj, node
low-level
descriptions 28.6 2.1 fcb, hpgs, sft

scheduling 28.6 1.8 dp, cp, register, min
file parsing 28.6 1.4 fp, tok, fs, ptr, buf
authentication 21.4 1.1 krb, arp, ldap

posix threading 21.4 1.1 pthread, buffer,
data, client

Total: 14
systems

280
topics —

Browser Domain
Table VIII shows that the two browser sub-domains are

highly related. This is evident by observing that the top two
topics have 100% spread. In particular, window layout and
data contents are universal amongst all browsers, whereas
html parser and threading cover at least 4 of the 5 browsers.
Those topic clusters cover topics such as HTML rendering,
cookie support, caching, (SSL) connection management, font
management and bookmarks. Half of the clusters cover at least
two projects (median of 40%). We also see clusters emerging
from a specific sub-domain, such as the history cluster of the
GUI-based sub-domain.

Summary of Findings
The results of the domain-level study indicate that topic

clustering is successful at identifying similar topics within a
domain, topics that are specific to sub-domains and topics that
are specific to individual systems. Contrary to the sub-domain
level, clusters at the domain-level are spread across smaller
subsets of projects. Similar to the sub-domain level, the top
cluster groups the major commonalities between projects.

V. DISCUSSION

In Section III-B, we discussed the conceptual differences
between a balanced application of LDA and an unbalanced
application [3], [16], [20], [35], [36]. The former treats all
systems’ topics as equal, whereas the latter favours topics
of larger systems [34]. In this section, we show that these
differences indeed matter in practice.

We repeated our domain-level commonality analysis using
an unbalanced approach. We applied LDA once on the ag-

8



TABLE VIII
WEB BROWSER DOMAIN (TOP 10) AT DOMAIN LEVEL.

Topic Label Spread
(%)

Cluster
Size (%) Top Words

window
layout 100 44.0

view, window,
event, widget,
terminal, tab

data
contents

100 8.0
data, entry, cache,
link, format, size,
attr

html parser 80 7.0 frame, context,
style, web, html

threading 80 5.0 thread, signal, gl
gui window
components 60 7.0 dialog, box, item,

config, menu, font
xml 60 5.0 xml, xslt, ctxt, to-

ken
filesystem 60 3.0 file, path, home

page layout 40 3.0 item, module, side-
bar, url

html links 40 3.0 anchor, entry, path,
htanchor, dir

text-based
components 40 2.0 text, items, line,

term, htext

Total: 5
systems

100
topics —

TABLE IX
(UN)BALANCED COMMONALITY ANALYSIS AT DOMAIN LEVEL.

median spread entropy
balanced unbalanced balanced unbalanced

OS 21.4% 21.4% 0.99 0.71
browser 40.0% 40.0% 0.98 0.43

gregated source code of all operating systems and once on
all web browser systems. Then, we mapped the topics back
to the software systems in which they occur. For this, we
calculated each project’s membership in a particular topic,
i.e., the percentage of the project’s files containing the topic
relative to the total number of files in the domain containing
the topic. We mapped a project to a topic if its membership in
the topic was at least 10%. This threshold reduces the impact
of statistical noise in the LDA results.

In order to compare possible bias of the balanced and
unbalanced domain-level analyses, we measure (1) the number
of projects across which topics/clusters are spread, and (2)
the fairness (uniformity) of the distribution of topic/clusters
across projects. For the former, we calculate the median
spread of the unbalanced topics/clusters, similar to what we
did in Section IV. For the fairness, we measure the topic
entropy [31] of each domain-level analysis, which is defined as(

−1
log10(N)

)∑N
i=1 pi.log10(pi) with N the number of software

systems in a domain. The topic probability pi for a project i

is defined as
(

ti∑N

j=1
tj

)
, with ti the number of topics for

which project i has a membership larger than 10%. If all
projects cover the same number of topics (i.e., ti = tj ,∀i, j),

then pi = 1/N and the entropy becomes 1. If all topics are
concentrated in 1 project k, then pk = 1 (pi = 0,∀i 6= k) and
the entropy becomes 0. In other words, the higher the fairness
with which topics are spread across projects, the higher the
entropy. As an alternative to entropy, one could also use related
metrics like the Gini coefficient.

Table IX shows the resulting median spread and entropy
values for the balanced and unbalanced commonality analyses
of the operating system and web browser domains. A first
observation is that the balanced and unbalanced analyses in
each domain have identical values for median spread. Half of
the operating systems clusters are spread across at least 21.4%
of the projects (3 projects), whereas half of the web browser
clusters are spread across at least 40% (2 projects).

However, we note that the entropies for our balanced ap-
proach are practically 1, i.e., total fairness, whereas the entropy
for the unbalanced analyses of the OS and (especially) the
browser domains are substantially lower. Closer investigation
learns that the unbalanced browser analysis considers topics of
only 2 out of the 5 systems (Firefox and Chromium), favouring
GUI- and JavaScript-related topics. Similarly, the unbalanced
operating system analysis only considers topics of 9 out of
the 14 projects (TinyOS, Inferno, Minix, Unix and Ultrix are
ignored), with a strong bias towards the monolithic operating
systems (largest sub-domain). Only one topic (“interface”) is
Chromium-related.

This discussion shows that the differences between a bal-
anced and unbalanced commonality analysis matter. Practi-
tioners that want to prioritize common and variable concepts
based on popularity in a domain should use the unbalanced
approach. Yet, practitioners that want to extract all common
or variable concepts in a domain, regardless of project size,
should consider a balanced approach.

VI. THREATS TO VALIDITY

Although source code comments and documentation carry
more semantic information, our case study only considered
source code as input to obtain a lower bound on the per-
formance of our balanced approach. Our results show a
strong overlap between software projects in most of our (sub-
)domain studies. In addition, additional data sources can be
incorporated easily into our approach, since LDA is geared
towards natural language data and only our pre-processing
stage is source code- and programming language-specific.

Our case study only explores open source software systems.
Further analysis is required on proprietary systems to validate
our findings. We have some confidence that our findings
would hold, since two of our operating system subjects, i.e.,
OpenSolaris and Haiku, both originate from a proprietary
system (Solaris and BeOS, respectively). Furthermore, our
results depend on human interpretation. To deal with this
threat, two of the authors independently interpreted the results
for the various (sub-)domains.

Finally, the thresholds for LDA, K-means clustering, and
the mapping between topics and projects (Section V) were
chosen based on previous work and experience. More thorough

9



experimentation is needed to determine optimal values for
these thresholds, possibly customized for each subject system.

VII. CONCLUSION

We presented an approach for commonality and variability
analysis across multiple software projects at different levels
of granularity (sub-domain or domain). By applying topic
analysis on each project in isolation, then clustering the topics
of all projects at various levels of granularity, our approach
balances the contributions of each project in the analysis.

A large-scale case study on 19 C/C++ operating systems
and web browsers shows that our methodology is indeed able
to identify (sub-)domain-wide commonalities and variability.
We found that a minority of topic clusters groups the majority
of common topics. By mapping the clusters to the individual
project topics, we were able to analyze the major commonali-
ties between the different projects. In addition, we showed how
our balanced approach behaves conceptually different from
unbalanced topic modeling approaches.

Our results are promising as they can help domain analysts
in their largely manual analysis of a particular domain. We are
currently exploiting additional data sources like source code
comments and documentation to enrich our topic models.

REFERENCES

[1] http://sail.cs.queensu.ca/publications/pubs/scam2011data.zip, June 2011.
[2] M. Ardis, P. Dudak, L. Dor, W.-j. Leu, L. Nakatani, B. Olsen, and

P. Pontrelli, “Domain engineered configuration control,” in Proc. of the
1st conf. on Software Product Lines (SPLC), Denver, CO, USA, 2000,
pp. 479–493.

[3] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya, “A theory
of aspects as latent topics,” in Proc. of the 23rd ACM SIGPLAN conf.
on Object-oriented programming systems languages and applications
(OOPSLA), 2008, pp. 543–562.

[4] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, and J.-M. DeBaud, “Pulse: a methodology to develop software
product lines,” in Proc. of the 1999 symp. on Software reusability (SSR),
LA, CA, USA, 1999, pp. 122–131.

[5] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” The Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[6] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a case study:
its extracted software architecture,” in Proc. of the 21st Intl. Conference
on Software Engineering (ICSE), LA, CA, USA, 1999, pp. 555–563.

[7] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and variability in
software engineering,” IEEE Softw., vol. 15, pp. 37–45, Nov. 1998.

[8] David Wheeler, “SLOCCount,” http://www.dwheeler.com/sloccount/.
[9] S. Ferber, J. Haag, and J. Savolainen, “Feature interaction and depen-

dencies: Modeling features for reengineering a legacy product line,” in
Proc. of the 2nd Intl. Conf. on Software Product Lines (SPLC), 2002,
pp. 235–256.

[10] W. B. Frakes and K. Kang, “Software reuse research: Status and future,”
IEEE Trans. Softw. Eng., vol. 31, pp. 529–536, July 2005.

[11] W. B. Frakes, R. Prieto-Dı́az, and C. Fox, “DARE: Domain analysis and
reuse environment,” Ann. Softw. Eng., vol. 5, pp. 125–141, Jan. 1998.

[12] G. Holmes, A. Donkin, and I. Witten, “Weka: A machine learning
workbench,” in Proc. of the 1994 2nd Australian and New Zealand
Conf. on Intelligent Information Systems (ANZIIS), 1994, pp. 357–361.

[13] I. John and J. Dörr, “Extracting product line model elements from user
documentation,” Fraunhofer IESE, Tech. Rep. 112.03/E, Oct. 2003.

[14] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (foda) – feasibility study,” Carnegie
Mellon, SEI, Tech. Rep. CMU/SEI-90-TR-21, Nov. 1990.

[15] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented project line
engineering,” IEEE Softw., vol. 19, pp. 58–65, July 2002.

[16] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “Mudablue: An
automatic categorization system for open source repositories,” in Proc.
of the 11th Asia-Pacific Software Engineering Conf. (APSEC), Busan,
Korea, 2004, pp. 184–193.

[17] K. Lee, K. C. Kang, E. Koh, W. Chae, B. Kim, and B. W. Choi,
“Domain-oriented engineering of elevator control software: a product
line practice,” in Proc. of the 1st conf. on Software product lines (SPLC),
Denver, CO, USA, 2000, pp. 3–22.

[18] F. J. v. d. Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering.
Springer-Verlag New York, Inc., 2007.

[19] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
concepts from code with probabilistic topic models,” in Proc. of the
22nd IEEE/ACM intl. conf. on Automated Software Engineering (ASE),
2007, pp. 461–464.

[20] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An information retrieval
approach for automatically constructing software libraries,” IEEE Trans.
Softw. Eng., vol. 17, pp. 800–813, Aug. 1991.

[21] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[22] K. Mens, A. Kellens, and J. Krinke, “Pitfalls in aspect mining,” in
Proc. of the 2008 15th Working Conf. on Reverse Engineering (WCRE),
Antwerp, Belgium, 2008, pp. 113–122.

[23] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
bridging the gap between source and high-level models,” in Proc. of
the 3rd ACM SIGSOFT symp. on Foundations of Software Engineering
(FSE), Washington, D.C., USA, 1995, pp. 18–28.

[24] J. M. Neighbors, “Software construction using components,” Ph.D.
dissertation, University of California, Irvine, 1980.

[25] D. Newman and S. Block, “Probabilistic topic decomposition of an
18th century American newspaper,” Journal of the American Society
for Information Science and Techn., vol. 57, no. 6, pp. 753–767, 2006.

[26] D. L. Parnas, “On the design and development of program families,”
IEEE Trans. Softw. Eng., vol. 2, pp. 1–9, Jan. 1976.

[27] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., 2005.

[28] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval,” IEEE Trans. Softw. Eng.,
vol. 33, pp. 420–432, June 2007.

[29] R. Prieto-Dı́az, “Domain analysis: an introduction,” SIGSOFT Softw.
Eng. Notes, vol. 15, pp. 47–54, April 1990.

[30] M. P. Robillard and G. C. Murphy, “Concern graphs: finding and
describing concerns using structural program dependencies,” in Proc.
of Intl. Conf. on Software Engineering (ICSE), May 2002, pp. 406–416.

[31] C. E. Shannon, “Prediction and entropy of printed english,” Bell System
Technical Journal, vol. 3, pp. 53–64, 1951.

[32] M. A. Simos, “Organization domain modeling (odm): formalizing the
core domain modeling life cycle,” in Proc. of the 1995 Symp. on Software
reusability (SSR), Seattle, WA, USA, 1995, pp. 196–205.

[33] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Validating
the use of topic models for software evolution,” in Proc. of the 10th
IEEE Intl. Working Conf. on Source Code Analysis and Manipulation
(SCAM), Timişoara, Romania, 2010, pp. 55–64.

[34] ——, “Modeling the evolution of topics in historical software repos-
itories,” in Proc. of the 8th IEEE Working Conf. on Mining Software
Repositories (MSR), Waikiki, HI, USA, May 2011, pp. 173–182.

[35] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent dirichlet alloca-
tion for automatic categorization of software,” in Proc. of the 6th IEEE
Intl. Working Conf. on Mining Software Repositories (MSR). IEEE,
2009, pp. 163–166.

[36] S. Ugurel, R. Krovetz, and C. L. Giles, “What’s the code?: automatic
classification of source code archives,” in Proc. of the 8th ACM SIGKDD
intl. conf. on Knowledge Discovery and Data mining (KDD), Edmonton,
AB, Canada, 2002, pp. 632–638.

[37] P. van der Spek, S. Klusener, and P. van de Laar, “Towards recovering
architectural concepts using latent semantic indexing,” in Proc. of the
12th European Conf. on Software Maintenance and Reengineering
(CSMR), 2008, pp. 253–257.

[38] D. M. Weiss and C. T. R. Lai, Software product-line engineering:
a family-based software development process. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[39] O. Yilmaz and W. B. Frakes, “A case study of using domain engineering
for the conflation algorithms domain,” in Proc. of the 11th Intl. Conf.
on Software Reuse (ICSR), Falls Church, VA, USA, 2009, pp. 86–94.

10


