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Abstract—Large-scale software systems handle increasingly
larger workloads by implementing highly concurrent and dis-
tributed design patterns. The thread pool pattern uses pools of
pre-existing and reusable threads to limit thread lifecycle over-
head (thread creation and destruction) and resource thrashing
(thread proliferation). However, these advantages are weighed
against performance issues caused by concurrency risks, like
synchronization errors or deadlock, and thread pool-specific
risks, like poorly tuned pool size or thread leakage. Detecting
these performance issues during load testing requires a thorough
understanding of how thread pools behave, yet most performance
analysts have limited knowledge of the system and are flooded
with terabytes of data from load tests. We propose a methodology
to identify threads with performance deviations in thread pools.
Our methodology ranks threads based on the dissimilarity of
their resource usage metrics. A case study on a large-scale in-
dustrial software system shows that our methodology can identify
threads with performance deviations with an average precision
of 100% and an average recall of 76.61%. Our methodology
performs very well when ranking long-lived deviations, such as
memory leaks, but more work is needed to rank short-lived
deviations, such as CPU spikes.

Index Terms—thread-pools; behaviour-based clustering; un-
derstanding ULS systems;

I. INTRODUCTION

The rise of ultra-large-scale (ULS) e-commerce and
telecommunication systems, like Amazon or Facebook, poses
a new challenge for the software maintenance field. ULS sys-
tems require near-perfect up-time and potentially must support
hundreds or even thousands of concurrent connections and
operations. Failures in such systems are more often associated
with an inability to scale to performance demands, than with
feature bugs [1], [2].

To ensure that ULS systems are able to perform according
to the expected workloads, performance analysts have become
key players in the development and maintenance of today’s en-
terprises. Performance analysts are responsible for performing
load tests on systems and monitoring how the systems behave
under realistic workloads. Such load tests allow performance
analysts to determine the maximum operating capacity of a
system, to validate non-functional requirements and to uncover
bottlenecks. A load test typically lasts from several hours to
several days and generates terabytes of performance data and
execution logs [3].

Despite the crucial role of performance analysts, current
research tends to ignore their needs. The current state of the
practice requires significant manual review of the performance
data and execution logs and a high degree of insight into the

system behaviour [2], [4], [5]. Tool support is lacking because
most research techniques require either heavy instrumentation
(disrupting the work-load) or more detailed log entries [2],
[5]–[8] (often unavailable during load tests because collecting
detailed logs impacts the system’s performance). Resource
usage metrics like CPU and memory usage, gathered by
hardware sensors, are often the only feasible data source for
ULS systems, but are very hard to interpret [3], [9].

To focus our discussion, this paper considers performance
deviations in ULS systems that are designed using the thread
pool architectural pattern. The thread pool design pattern is
a common pattern for designing scalable multithreaded and
distributed systems. The thread pool pattern consists of a
fixed number of pre-existing and reusable threads that facilitate
incoming service requests. Thread pools limit thread lifecycle
overhead and can be used to prevent resource thrashing.
Despite their potential for scalability, thread pools are hard
to configure and test because of concurrency risks like syn-
chronization errors and deadlock and thread pool-specific risks
like resource thrashing and thread leakage.

To support analysts in identifying performance deviations in
thread pools, we present an iterative, top-down methodology
for automatically identifying and ranking deviating behaviour
based on resource usage metrics. Our methodology can be
applied with very little understanding of the architecture or
purpose of the software system under test. Our methodology
is based on measuring the level of dissimilarity between the
resource usage metrics of threads or groups of threads, then
ranking the most dissimilar threads or thread groups.

This paper makes two main contributions:
1) We present a top-down methodology for identifying and

ranking the most deviating thread behaviour.
2) We perform a qualitative and quantitative evaluation of

our methodology on a large-scale industrial ULS system.
Our methodology performs very well when ranking long-
lived deviations (e.g., memory leaks), but more work is
required to rank short-lived deviations (e.g. CPU spikes).

The paper is organized as follows: Section II describes the
current challenges to understanding the behaviour of thread
pools. Before Section IV presents our methodology, Section
III provides a motivational example of how it may be applied
in practice. Section V describes the setup of our case study on
a large industrial software system and Section VI presents the
results of our qualitative and quantitative evaluation. Section
VII outlines threats to validity, whereas Section VIII discusses
related work. Finally, Section IX concludes the paper.



II. THREAD POOLS

The thread pool design pattern is a popular technique for
designing scalable multithreaded and distributed systems [10]–
[13]. A thread pool is a collection of threads that are available
for computational tasks (work items) and that can be recycled.
When a thread completes its current task, it returns to the
thread pool for reuse instead of terminating. Incoming work
items are assigned to available threads in the thread pool or
queued until a thread becomes available. Thread pools actually
are a special case of a resource pool. Other types of resource
pools include pools of memory, pools of database connections
and pools of connections to a backend.

Thread pools are particularly useful in server applications
where work items are typically short-lived and the number of
incoming work items is large. Since creating and destroying a
thread has a significant overhead, systems where work items
do not take much time to process spend as much time creating
and destroying threads as processing work items. The reuse
of threads across work items in a thread pool substantially
reduces the associated overhead. In addition, by using pre-
existing threads, the system becomes more responsive, en-
abling incoming work items to be assigned and executed
almost instantly.

Resources, such as CPU time and memory, are allocated
to threads so they can process their items. Creating too
many threads causes resource thrashing, where the amount
of resources expended to manage the threads increases at
the expense of the resources available to process the work
items. CPU and memory thrashing are important problems,
potentially leading to a significant degradation in system
performance [14]. Thread pools enable explicit control of the
resources allocated to threads via policies on, for example,
the maximum and minimum number and/or lifetime of pooled
threads.

Despite their potential for scalability, thread pools are hard
to configure and test. For example, synchronization errors
might occur when notifications to threads are lost. This can
result in threads remaining idle even if there are work items
on the queue. Worse, thread pools introduce a special kind of
deadlock where all threads in the pool are waiting for a work
item on the queue to be processed, but there are no “available”
threads to process that work item. Poorly configured thread
pools still face the risk of resource thrashing. Finally, thread
leakage occurs when a thread finishes processing its work item,
but fails to return to the pool. Thread leakage results in fewer
threads available to process work items.

A thorough understanding of the behaviour of thread pools
is necessary to address these problems. However, understand-
ing is hindered by the explosion of performance data inherent
to thread pool systems. For example, the subject system in
our case study implements the typical thread pool architecture
for servers, described above. There are 320 threads in our
case study, each of which contains over 60 micro-threads
each. Hence, at the micro-thread level there would be over
20,000 micro-threads during a sixteen hour load test. Five

resource usage metrics are collected every seven seconds,
amounting, at the micro-thread level, to six millions values
collected every hour. Analyzing the evolution of all resource
usage metrics for all micro-threads in multiple execution
runs is unmanageable. Thus, this paper proposes a scalable
methodology for identifying deviations in the performance of
threads in a thread pool.

III. MOTIVATIONAL EXAMPLE

To illustrate how our methodology for understanding the
behaviour of thread pools can be applied, consider the fol-
lowing scenario. After years of competition, a large shipping
company, Quick Shipping, has decided to buy a smaller rival,
Secure Shipping. Secure Shipping had recently developed a
proprietary package tracking system that allows their cus-
tomers to log on from Secure Shipping’s website and review
the package shipping information. Incoming requests are bal-
anced across four machines and each machine implements the
thread pool design pattern to retrieve the requested information
from a database.

However, Quick Shipping is a much bigger company and
now requires the system to handle five times the previous traf-
fic. To scale the system to meet these new requirements, Quick
Shipping must know how the thread pools behave under a five-
fold increase in workload. The performance analysts of Quick
Shipping’s software department monitor the performance of
the system and collect resource usage metrics for each thread
in each thread pool on each machine. Since the system must be
upgraded as soon as possible and very few people are familiar
with this proprietary system, the analysts need a fast way to
analyze the results and understand the system and hence decide
to use our methodology.

Since our methodology is a top-down approach, the analysts
first aggregate each machine’s thread data into one macro-
thread at the machine level, resulting in four abstracted threads.
Our ranking scripts then cluster and visualize the four macro-
threads to identify relevant commonalities and differences
between the four machine’s thread pools. Figure 1 shows the
results in a dendrogram. Such a graph illustrates the arrange-
ment of clusters produced by our methodology’s hierarchical
clustering step.

From Figure 1, the analysts immediately notice two groups
of behaviour: machine4 and the other three machines. To
understand the majority behaviour, the analysts should pick
one of machine1, machine2 or machine3 and look at the
threads in the thread pool of that machine. To understand
deviating thread pool behaviour, possibly indicating a defect or
uncommon business scenario, they should focus their attention
to machine4. Our methodology identifies and ranks deviating
behaviour, however, it is possible that deviating behaviour is
actually the expected behaviour. For example, if a system’s
hard drives are filled during the first hour of a sixteen hour
load test, then the deviating behaviour (the behaviour under
limited hard drive capacity) will be the majority behaviour.



Fig. 1. Hierarchical cluster dendrogram of machine level abstractions.

Fig. 2. Database access time plots. The points are actual values for machine4
and the line is the average value of the other three machines‘ threads.

To find out what exactly causes the deviating behaviour
in machine4, the analysts now proceed to perform the same
analysis at a lower level, i.e., on the threads of machine4.
From the resulting dendrograms, the analysts identify clusters
of similar behaviour and select one thread as representative
of each cluster. The resource usage metrics of each selected
thread is plotted and from the plot of database access time
(Figure 2) the analysts quickly determine that competition
for access to the database between machine4 and the other
machines is affecting the access time. When the database
access time of machine4 increases, the database access times
of the other machines decrease and vice versa.

Thanks to our iterative, top-down methodology, Quick
Shipping is able to quickly understand the system, pinpoint
problems, fix them and deploy the system to their customers.

IV. METHODOLOGY

We now present in detail our methodology for identifying
and ranking performance deviations in thread pools that we il-
lustrated in the previous section. Figure 3 provides a graphical
overview of our methodology.

A. Performance Data

Our methodology requires the performance data containing
the resource usage metrics of the pooled resources, typically
threads, processes or memory buffers. Increasing the number
of resource usage metrics allows for a more accurate charac-
terization of the behaviour, but it increases the overhead of
performance monitoring and may lead to data redundancy [3],
[9]. Typical resource usage metrics include CPU usage and
the amount of allocated memory.

B. Metric Abstraction

Our methodology is a top-down approach that determines
the level of dissimilarity between different levels of abstracted
metrics. This top-down approach allows us to scale our
methodology to hundreds or thousands of threads by first iden-
tifying dissimilarities at a high-level between few abstractions,
before delving into more concrete details.

Performance analysts should group threads into higher-
level abstractions by aggregating their resource usage metrics
into a single abstracted thread. For example, in a cluster of
machines, all pooled threads executing on one machine (or
within one data centre) could be aggregated into one macro-
abstraction. Our methodology is first applied at this level to
detect deviating machines. Afterwards, a deviating machine
identified during this iteration could then be more thoroughly
examined by repeating our methodology at the level of the
pooled threads of the deviating machine, or groups of pooled
threads. If threads cannot be grouped by space (machines),
they typically can be grouped by time, e.g., all the threads
created in slots of one hour.

C. Distance Calculation Between Covariance Matrices

Once abstractions have been defined for a particular sys-
tem, we can determine the level of dissimilarity between
abstractions. The level of dissimilarity, or distance, between
two abstractions must take into account the differences in the
time-dependent behaviour of the resource usage metrics in
each abstraction. This distance must be robust to noise in the
performance data. For this reason, we use a statistical approach
based on covariance matrices.

The covariance matrix of an abstraction characterizes (1)
the variation of each resource usage metric across time and (2)
the degree to which two metrics vary together. The covariance
matrix for an abstraction is built as follows:

1) The diagonal values, (i, i), contain the statistical variance
σi

2 of metric i. The variance characterizes the spread of
the metric i across time.

2) The off-diagonal values, (i, j), contain the statistical
covariance σij

2 between each pair of metrics i and j. The
covariance characterizes how closely metric i and metric
j vary together.



Fig. 3. Methodology overview.

The covariance matrices factor out time, and thus we can
compare threads with different execution times. For example,
assume that five metrics are measured for threads A and B
and thread A is instrumented 100 times, whereas thread B
is instrumented 1,000 times. The matrix of resource usage
metrics for thread A has dimension 5×100 and the matrix
for thread B has dimension 5×1,000, therefore, element-by-
element comparison is not possible without defining a mapping
scheme. However, the covariance matrix for both threads A
and B has dimension 5×5. Therefore, we can compare load
tests of differing lengths.

To determine the distance between the covariance matrices
of the resource usage metrics for two abstractions, we use a
distance metric proposed by Forstner and Moonen [15]. This
metric for covariance matrices has been used successfully in
the field of computer vision and image analysis to charac-
terize and compare images [16]–[19]. Forstner and Moonen’s
distance metric generates a one-dimensional distance for each
pair of covariance matrices. The smaller the distance value
between two abstractions, the more similar they are. The dis-
tance is based on the geodesic distance between the covariance
matrices; for more technical details we refer to [15].

D. Hierarchical Clustering
Once the distance between each pair of abstractions has

been determined, the abstractions can be clustered to identify
and rank similar and deviating behaviour. We use an agglom-
erative, hierarchical clustering procedure. This procedure starts
with each abstraction in its own cluster and proceeds to find
and merge the closest pair of clusters (in terms of the distance),
until only one cluster (containing everything) is left.

Hierarchical clustering decides which clusters to merge
based on a distance metric between clusters of abstractions. As
the algorithm for merging clusters, we use Ward’s method of
clustering. This treats determining which clusters to merge as
an analysis of variance problem based on minimizing the sum
of squares of the distance between two clusters’ centroids if the
two clusters are merged [20], [21]. Since the distance between
abstractions is a one-dimensional and continuous feature, we
use the Euclidean distance as the distance between clusters.
The Euclidian distance is the most popular distance metric for
continuous features [20].

The likelihood that a cluster in the data is a statistically-valid
cluster is assessed by a p-value (0≤p≤100) [21]. We use the
approximately unbiased (au) p-value, which is computed using
multiscale bootstrap resampling. In this paper, the au p-value
appears to the left of each merge node in the dendrogram [22].

E. Cluster Visualization
Clusters of abstractions are visualized using hierarchical

cluster dendrograms. These are binary tree-like diagrams that
show each stage of the clustering procedure as nested clusters
[20]. The distance between clusters determined in the previous
step becomes the height value on the dendrogram, as shown
in Figure 1.

F. Ranking Clusters
Once the hierarchical cluster dendrograms have been gener-

ated, they are analyzed to identify and rank the most deviating
behaviour. Our ranking algorithm was formalized from our
experiences analyzing dendrograms. We have attempted to
maximize the precision of our ranking algorithm to encourage
tool adoption. Our ranking algorithm requires a recursive
decent into the dendrogram using the following algorithm:
1 r a n k i n g = [ ]
2 rank ( c l u s t ) {
3 /* always consider clusters with one member as deviating, limit the

number of deviating clusters (with more than one member) to
approximately 25% of the dendrogram clusters ∗ /

4 i f ( | c l u s t |==1
or | c l u s t |<( n u m c l u s t e r s /4− s i z e ( r a n k i n g ) ) ) {

5 r a n k i n g =[ r a n k i n g , c l u s t ]
6 r e t u r n
7 }
8
9 s= c l u s t . l e f t // smaller cluster

10 l = c l u s t . r i g h t // larger cluster
11
12 i f ( | c l u s t . l e f t |>| c l u s t . r i g h t | ) {
13 s= c l u s t . r i g h t
14 l = c l u s t . l e f t
15 }
16
17 i f ( ( h e i g h t ( l )−h e i g h t ( s )>=h e i g h t ( c l u s t ) / 4

and h e i g h t ( l )−h e i g h t ( s )>=max he igh t / 1 0 )
o r h e i g h t ( c l u s t )>max he igh t / 3
o r ( p ( c l u s t )<80 and ( h e i g h t ( s )>max he igh t / 4
o r h e i g h t ( l )>max he igh t / 4 ) ) ) {

18 rank ( s )
19 rank ( l )
20 }
21 r e t u r n
22 }

The conditions in line 17 were developed to ensure our
ranking methodology continues to recurse when one of the
following conditions is true:

• The height difference between the small and large clusters
is relatively large

• The height of the cluster is relatively large
• The cluster is not a good fit (p < 80) and the height of

the small or large cluster is relatively large



Using Figure 1 as an example and assuming all p-values
are greater than 80, we have:

1) Starting at the highest level, machine4 vs. machine1/2/3,
the first condition is true (line 17), because the difference
between the height of machine4 and machine1/2/3 is
1.9, which is greater than 25% of the cluster’s height
(2.5×25%=0.63) and 10% of the maximum height (2.5
×10%=0.25). Hence, we recurse into machine4 (line 18)

2) We add machine4 as a deviation (line 5) because it
contains only one member. We now recurse into the other
cluster, machine1/2/3 (line 18)

3) We stop the algorithm, because none of the conditions
are true (line 17)

• The difference between the height of machine2 and
machine1,3 is 0.3, which is greater than the 25% of
the cluster’s height (0.55×25%=0.14) but less than
10% of the maximum height (2.5×10%=0.25).

• The height of the smaller cluster, machine2, 0.55 is
then 25% of the maximum height (2.5×10%=0.25).

• The height of the machine1/2/3 node is less than 33%
of the maximum height (2.5×33%=0.83)

• The p-value is greater than 80.
4) Only the machine4 cluster has been ranked as a deviation.

V. CASE STUDY SETUP

To validate our methodology for identifying performance
deviations of threads in a thread pool, we perform a study
on a large-scale industrial software system. In particular,
we first qualitatively evaluate our methodology by manually
comparing the resource usage metrics of threads identified as
deviating to those of other threads. Second, we quantitatively
evaluate our methodology by calculating precision and recall
values when applying our methodology to a load test with syn-
thetically injected deviations, a common practice for verifying
such work. This section discusses our case study set-up and
how we evaluate the results of our methodology.
A. Subject System

Our case study uses the performance data of an industrial
ultra-large-scale system in the e-commerce domain. For con-
fidentiality reasons, we cannot disclose the specific details of
the system architecture, however the system follows a typical
thread pool architecture. Although the threads of the thread
pool manage their own micro-threads, we ignore this lower
level of micro-threads because these metrics are unavailable.

The performance data used in our case study was generated
during load tests performed on the system. The test cases of
these load tests are representative of typical usage scenarios.
Performance data for a sixteen hour load test was available.
B. Performance Data

The performance data used in this case study consists of
five resource usage metrics collected for each active thread
and shown in Table I. The metrics are sampled approximately
every 7 seconds. Every instrumentation point has a tag for the
thread ID, a tag for the time of instrumentation and a value
for each resource usage metric.

Fig. 4. Top-down approach for analyzing load tests. In our particular case
study, abstractions are either a load test (T), a wave (W) or a thread (P).

TABLE I
RESOURCE USAGE METRICS COLLECTED FOR EACH THREAD

CPU Percentage of CPU time in use
VirtualBytes Amount of virtual address space in use
PrivateBytes Amount of private (non-shared) memory in use
Handles Number of open file handles
MicroThreads Number of allocated micro-threads

C. Metric Abstraction

When determining a suitable abstraction of threads, we ob-
serve that the load test has a unique internal pattern of load test
generation to simulate workload spikes. Approximately every
two hours the system is “spiked” with a large number of work
items. The thread pool contains forty threads and each thread
is assigned to process one work item. The remaining work
items remained queued until threads become available. After
approximately two hours, the threads complete processing the
work items in the queue and the system is “spiked” again.
With the exception of the threads cut short at the end of the
load test, the lifetimes of the threads are roughly identical.
We call a group of threads that are assigned work items at a
similar time a “wave.” Waves allow for a convenient method
of dividing the data set into more manageable subsets based on
the start time of threads. Figure 4 shows how our methodology
is applied top-down on the load test. We label waves with W
and the wave number, the first wave to be created in a load
test is W1. Each wave lasts for approximately 2 hours and 5
minutes; the sixteen hour load test has 8 waves.

D. Covariance Matrices

We implemented Forstner and Moonen’s metric for covari-
ance matrices as specified in the original paper using R, a
software environment for statistical computing [15], [23]. Our
implementation takes as input the annotated resource usage
file, constructs the covariance matrix for each abstraction, then
calculates the distance between the covariance matrices of each
pair of abstractions. The output from this stage is a distance
matrix with the distances between each pair of abstractions.

E. Hierarchical Clustering

We use pvclust, an R package for hierarchical clustering,
to cluster the abstractions [22], [24]. Pvclust uses an ag-
glomerative, hierarchical clustering algorithm using a specified
distance metric and clustering method.

The input to this stage is the distance matrix calculated in
the previous step. The output is a dendrogram, like the one in
Figure 1, which contains the height of each abstraction and
the au p-value to the left of each node.



F. Ranking Clusters

The ranking of clusters is based on the dendrogram pro-
duced in the previous step. We use the ranking algorithm
described in Section IV.F.

G. Qualitative Evaluation

Our first evaluation analyzes the resource usage metric plots
of the waves and threads of the sixteen hour load test, T1,
to evaluate whether the threads that have been flagged as
deviating would also be recognized by humans. We generate
these plots by:

1) Selecting the abstractions to visualize based on our
methodology’s ranking.

2) Normalizing the time scale so that the first measurement
of each abstraction shifts to time zero. This is necessary,
because abstractions do not have the same start time.

3) Undersampling the metrics by averaging every two min-
utes to remove single-point anomalies and noise.

4) Plotting the undersampled metrics.
5) Plotting additional details, such as the average and stan-

dard deviation, as needed.
The first author of this paper analyzed all flagged abstractions
(waves or threads) of the load test. If a flagged abstraction’s
plots looked similar to those of other abstractions, we count
this as a false positive. Similarly, if the plots of an abstraction
that was not flagged does not look similar to those of other
abstractions, we count this as a false negative.

H. Quantitative Evaluation

Our second evaluation validates our methodology’s ability to
identify and rank deviations by synthetically injecting typical
symptoms of performance deviations into the performance
data. Based on previous work and discussions with experts
of the subject system, we identified three important types of
deviations, CPU spikes, memory leaks and IO leaks [2], [25].
We inject these deviations using the following methodology:

1) We manually examined the resource usage metric plots
of a sixteen hour load test and identified a group of
twelve threads that exhibit very similar behaviour. We
then collected these threads into a pool of “good” threads.

2) We created a pool of twelve “bad” threads by taking each
thread from the “good” pool and injecting one of the
following deviations into them at a random time:

• CPU spike - the value of the CPU ramps up during
a random time period (1-3 minutes) to a randomly
selected maximum (50%-150% CPU usage), then
ramps back down;

• Memory leak - from a random start time to the end of
the thread’s lifetime the amount of allocated virtual
memory ramps up to a randomly selected maximum
(between 150%-300% of the previous maximum);

• IO leak - from a random start time to the end of
the thread’s lifetime the number of open file handles
ramps up to a randomly selected maximum (between

125%-200% of the previous maximum). An IO leak
simulates a thread failing to close files it has opened.

3) We then generated the validation performance data by
composing threads from the “good” and “bad” thread
pools in a structure similar to Figure 4. We created
tests with 8 waves and 10 threads per wave. To inject a
deviation into a wave we randomly select a thread from
the “bad” pool that contains a random type of deviation
(e.g., a wave with one injected deviation would have
nine threads from the “good” pool and one thread from
the “bad” pool). The number and pattern of deviations
injected depends upon the focus of the validation:

• To verify our methodology’s ability to identify and
rank waves with performance deviations, we ran-
domly injected 2-4 deviations into 0-3 waves. The
lower bound of 0 waves prevents us from relying on
the fact that there will be at least one deviating wave
in the test. The upper bound of 3 waves enforces
our assumption that the majority behaviour is the
expected behaviour;

• To verify our methodology’s ability to identify and
rank threads (inside waves) with performance devi-
ations, we generated performance data by randomly
injecting 0-3 deviations into each wave. We chose
these bounds for the same reason as outlined above.

4) We then applied our methodology and evaluated our
ranking using the precision, recall and k-recall metrics.

5) We repeated Steps 3-4 ten times and calculated the
average performance across all ten tests.

The precision and recall metrics that we use depend upon the
focus of the validation. To verify our methodology at the wave
level, we use the following metrics:

precisionw = # correctly ranked waves
# ranked waves

recallw = # correctly ranked waves
# waves with deviations

k − recallw = # deviating threads in top k ranked waves
# deviating threads in K

where K is the number of deviations in the top k waves with
the highest number of deviating threads.

To verify our methodology at the thread level, we use the
following metrics:

precisiont =
# correctly ranked threads

# ranked threads

recaltl =
# correctly ranked threads
# threads with deviations

k − precisiont = # deviating threads in top k ranked threads
k

To quantify how well our methodology is able to identify
deviations, we use precision and recall metrics and to quantify
how well our methodology is able to rank deviations we use
the k-precision and k-recall metrics. The closer to 1 these
metrics are, the better.



Fig. 5. Dendrogram of the waves of T1. T1W1 is the first wave of this load
test and T1W8 is the last wave.

VI. CASE STUDY RESULTS

A. Qualitative Evaluation

Using the approach described in Section V.G, we check that
the abstractions (waves and threads) identified and ranked as
deviating (or common) actually exhibit deviating (or common)
behaviour in their resource usage metrics.

Figure 5 shows the dendrogram at the wave level. From
Figure 5, we can identify and rank the most deviating waves
as follows:

• T1W1
• T1W8
• T1W2/3/4/5/6/7
We visualize the resource metrics of T1 to verify if T1W1

and T1W8 indeed display deviating behaviour compared to
the other waves. The deviations in W1 and W8 are likely
caused by ramp-up and ramp-down in the system. Figure 6
shows one such resource metric visualization for the amount
of virtual memory allocated. We can see that T1W1 (solid line)
deviates the most because of a large spike at the beginning and
because the values are higher than T1W5 (dashed line), which
was selected to represent the W2/3/4/5/6/7. T1W8 (dotted line)
is deviating because its values rise slower than the average
and the lifetime of T1W8 is shorter than that of the other
waves (load test was cut short). We find the same patterns
when examining the resource usage metric plots for amount
of allocated private memory and number of open file handles.
For confidentiality reasons, we have replaced the actual values
by the percentage of the maximum observed value.

The dendrogram in Figure 5 can be used to guide further
analysis in two ways:

• We can recommend that the most deviating behaviour be
thoroughly examined. In this case, analysts should focus
on T1W1, then T1W8.

• Alternatively, we can recommend that the largest clusters
be examined because it represents the common behaviour.

Fig. 6. Plot of resource metric VirtualBytes. T1W1 is plotted in a solid line,
T1W8 in a dotted line and T1W5 in a dashed line.

We explored T1W1, T1W8 and the common behaviour, but
due to space constraints we only discuss T1W1 in detail.

We explore the T1W1 wave and the resulting dendrogram in
Figure 7. From Figure 7, we can identify and rank the threads
with the most deviating behaviour to be clusters A and B.

To verify if clusters A and B display deviating behaviour,
we visualize the resource metrics of representative threads
of cluster A, cluster B and the remaining threads of wave
T1W1. We analyzed the resource metric visualizations for each
resource, but due to space constraints we only show one such
resource metric visualization, i.e., the number of micro-threads
allocated to each thread.

From Figure 8, we can see that thread 12452 (dashed line),
which was selected as the representative thread of cluster B, is
deviating the most because of a large spike at the beginning,
high variability in the values throughout the load test, with
a drop in values towards the end. For similar reasons, thread
7740 (solid line), which has been chosen as a representative
of cluster A, deviates from the common behaviour, because
it has a large spike at the beginning, high variability in the
values (although not as much as thread 12452) and a small
drop in values towards the end.

The qualitative evaluation of our methodology has shown
that our methodology is able to identify deviating resource
usage trends, such as faster/slower growth and higher volatility,
at the level of waves and threads.

B. Quantitative Evaluation

Using the approach described in Section V.H, we injected
CPU spikes, memory leaks and IO leaks into a pool of “good”
threads to quantitatively evaluate the precision and recall of
our technique at the wave and thread levels.

We perform this evaluation on ten synthesized tests of eight
waves and present the evaluation metrics for each test in
Table II. Our methodology has very high precision, recall,



Fig. 7. Dendrogram of T1W1. This is the lowest level in our top-down approach.

Fig. 8. Plot of resource metric Threads. Thread 7740 (cluster A) is plotted
in a solid line, thread 12452 (cluster B) in a dashed line and thread 22132
(remaining threads) in a dotted line.

2-recall and 3-recall values. Most of the times, our method-
ology produces high 1-recall values, however, there are some
outlying low 1-recall values.

We explored the cause of these low 1-recall values and
determined that ties between two clustered waves is the cause.
This issue can be clearly seen in Figure 9. Currently there is no
method of recommending Wave7 over Wave8 given Figure 9
and our ranking algorithm (lines 4-5 in our pseudo-code in
Section IV.F). A possible approach to address this issue might

TABLE II
WAVE LEVEL RANKING

Test Precision Recall 1-recall 2-recall 3-recall
1 100% 100% 50% 100% 100%
2 100% 100% 100% 100% 100%
3 100% 100% 66.67% 83.33% 100%
4 100% 100% 100% 100% 100%
5 100% 100% 100% 100% 100%
6 100% 100% 100% 100% 100%
7 100% 100% 50% 100% 100%
8 100% 100% 100% 100% 100%
9 100% 100% 100% 83.33% 100%
10 100% 100% 85.71% 96.55% 100%
Average 100% 100% 86.67% 96.67% 100%

be to compare the average values of each resource usage
metric of the tied waves to the remainder of the waves. For
example, in Figure 9 we would compare the average value
of each resource usage metric in Wave7 and Wave8 to the
average value of each resource usage metric in Wave1-Wave6.
Therefore, we could recommend Wave7 over Wave8 based on
which wave has the greater difference between the average
values of its resource usage metrics and the average values of
the resource usage metrics of Wave1-Wave6.

Table III summarizes the results of our evaluation performed
at the thread level. We perform this evaluation on ten syn-
thesized tests of eight waves containing ten threads each and
calculate the average precision and recall values over all eighty
waves. Table III also breaks down the average precision and
recall values across the different types of injected deviations.

Our methodology was able to identify 100% of the memory
and IO leaks, but none of the CPU spikes, leading to an



Fig. 9. Problem of tie breaking during ranking.

average recall of 76.61%. Similarly, the k-precision values are
impacted by the inability to detect CPU spikes. We believe that
this is because CPU spikes manifest themselves in a relatively
small portion of the data set and, therefore, have much less
impact on the values of the covariance matrix. We intend
to address this issue by applying our methodology using a
small moving window over the data set and aggregating the
rankings produced in each window. Therefore, within these
smaller windows, CPU spikes would manifest themselves in
a larger proportion of the data set.

TABLE III
AVERAGE THREAD LEVEL RANKING ACROSS ALL TESTS

Average Precision 100%
Precision (CPU Spikes) 100%
Precision (Memory Leaks) 100%
Precision (IO Leaks) 100%
Average Recall 76.61%
Recall (CPU Spikes) 0%
Recall (Memory Leaks) 100%
Recall (IO Leaks) 100%
1-precision 91.52%
2-precision 87.13%
3-precision 76.61%

VII. THREATS TO VALIDITY

The proposed methodology was evaluated against a single
industrial software system. Our results may not generalize to
other industrial or open-source software systems. We intend to
address this by evaluating our methodology against additional
industrial and open-source software systems. Yet, access to
high-quality performance data is not straightforward.

The proposed methodology was evaluated using a fixed
selection of resource usage metrics. Our results may not
generalize to other performance metrics. This paper does not
explore the limit on the number of resource usage metrics
required to perform our analysis.

Our methodology was evaluated against a small subset of
performance deviation symptoms (i.e., CPU spikes, memory
leaks and IO leaks) using a small pool of “good” and “bad”
threads. Our results may not generalize to other performance
deviation symptoms, such as disk IO spikes or declining net-
work throughput. In addition, our methodology was evaluated
using a small, fixed pool of “good” and “bad” threads.

VIII. RELATED WORK

This paper presents a methodology for understanding the
resource usage of the threads in a thread pool. Although our
methodology is a kind of dynamic program analysis, most
of the existing work on dynamic analysis focuses on the
functional behaviour of a system instead of on its performance,
except for some work on visualizing threads [26], [27]. An
excellent survey can be found in [28]. In practice, the closest
area of research to our work is the area of load test analysis.

Most of the work in the area of load testing has focused on
the automatic generation of load test cases [29]–[31]. Recently,
load test researchers have noted the difficulties of detecting
performance problems in load tests and have proposed the
use of execution logs of load tests to automatically identify
functional and performance problems [2], [5]. Jiang et al. mine
these logs to determine the dominant (expected) behaviour of
the system and to flag anomalies from the dominant behaviour.
Their technique is able to flag <0.01% of the execution log
lines for closer analysis [30]. Our paper uses only the resource
usage metrics and not the execution logs, to determine which
threads have deviating behaviour.

Other work in load test analysis has focused on automati-
cally identifying the most important resource usage metrics
and comparing those across multiple load tests to identify
changes to a system’s performance [3], [9]. Using their
technique, Malik et al. are able to reduce the size of the
performance data by 88%. Our methodology uses all of the
resource usage metrics, but applies a top-down, lighter-weight
technique (covariance matrices) than the variable reduction
technique used by Malik et al.

Other work in automated performance monitoring has devel-
oped system signatures based on resource usage metrics that
can be used to detect changes to the performance of a system
as it evolves over time [32], [33]. These techniques require
a baseline model of the system’s performance to characterize
changes resulting from software evolution. Our methodology
is able to identify and rank deviating behaviour without the
use of a baseline.

IX. CONCLUSIONS

This paper has presented a methodology for automatically
identifying deviating behaviour in ULS systems. In particular,
we focused on identifying and ranking the most deviating
thread behaviour of a thread-pool based system using resource
usage metrics. Our methodology is an iterative, top-down
process that identifies deviating behaviour based on the level of
dissimilarity between threads or groups of threads, then ranks
the most dissimilar threads or thread groups. Qualitative and



quantitative evaluation of our methodology on an industrial
software system shows that we are able to accurately identify
and rank the most deviating thread behaviour with high
precision and recall. We are also able to identify the effects
of ramp-up and ramp-down that company experts have also
acknowledged.

Our methodology performs well when ranking long-lived
deviations, such as memory leaks. However, to address our
methodology’s inability to detect short-lived deviations (such
as CPU spikes), we are working on adapting our methodology
to a small, moving window across the data set. We believe that
considering smaller portions of the data set will allow identi-
fication of these short-lived deviations. We are also interested
in applying our methodology to performance problems outside
thread pools.
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