
Studying the impact of dependency network
measures on software quality

Thanh H. D. Nguyen, Bram Adams, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University
Kingston, Ontario, Canada

Email: {thanhnguyen,bram,ahmed}@cs.queensu.ca
Abstract—Dependency network measures capture various

facets of the dependencies among software modules. For example,
betweenness centrality measures how much information flows
through a module compared to the rest of the network. Prior
studies have shown that these measures are good predictors of
post-release failures. However, these studies did not explore the
causes for such good performance and did not provide guidance
for practitioners to avoid future bugs. In this paper, we closely
examine the causes for such performance by replicating prior
studies using data from the Eclipse project. Our study shows
that a small subset of dependency network measures have a large
impact on post-release failure, while other network measures
have a very limited impact. We also analyze the benefit of
bug prediction in reducing testing cost. Finally, we explore the
practical implications of the important network measures.

I. INTRODUCTION

Activities such as unit test or code review require a great
amount of time and effort. Software quality prediction allows
software teams to prioritize these quality improvement activ-
ities. In particular, post-release failure prediction produces a
priority list of high-risk modules that should be reviewed and
tested to effectively catch as many potential bugs as possible.
By testing the higher risk modules first, the team can catch
more potential bugs in a shorter time frame.

Studies on commercial and open source projects have
applied different types of metric to study software quality.
Several studies [1]–[5] have shown that all too often process
metrics, such as history of code changes or bugs reports, are
better indicators of code quality over product metrics [6], [7]
such as lines of code or fan-in.

In recent work, Zimmerman et al. [8] enhanced the per-
formance of product metrics by incorporating metrics that
are based on the dependency graph of a software system.
Although some product metrics such as fan-in and McCabe’s
cyclomatic complexity already quantify some facets of the
dependency structure of a software system, Zimmerman et al.
explored over sixty metrics which were derived using concepts
from the Social Network Analysis (SNA) field. By combining
these SNA metrics with product metrics, Zimmerman et al.
improved the prediction performance by 10% when studying
the post-release failures of the Windows Server 2003 operating
system.

Zimmerman et al.’s results are promising since their tech-
nique is one of the few that have helped improved the
performance of product metrics. Such metrics require minimal

knowledge of the history of a product. Thus they can be used
for newly developed projects and for projects with no access
to a well-archived history. However, a few important questions
remain unanswered:

• RQ1: Do the original findings generalize to other
projects? Recently, Tosun et al. [9] have shown that
these findings do not hold for small projects. We wish to
explore in detail whether these findings holds for Eclipse,
a large open source project.

• RQ2: Are the findings practically significant? Zim-
merman et al. have shown that these metrics lead to
improvement in prediction performance but they did not
explore the practical significance of their findings. A
good understanding of the practical significance would
encourage practitioners to adopt these new types of
metrics.

• RQ3: Why do SNA metrics improve the prediction
performance? Zimmerman et al. did not explore the
rationale for the improved performance when using these
metrics. A good understanding of the rationale would en-
courage practitioners to adopt SNA metrics. Practitioners
are unlikely to adopt black-box like findings, instead they
need to understand the rationale very well and ideally
have it linked to their intuition.

In this paper, we seek to answer these three research
questions by replicating the original study on a large open
source project and performing a detailed analysis of the results
to measure the practical significance of prediction models.

The main contributions of this paper are as follows:
• We confirm prior results on an industrial system using

an open source system. SNA metrics do improve the
prediction performance for quality models.

• We show that, although predicting bugs at the class level
shows lower precision and recall than at the package
level, the class-level predictions are more significant in
practice than the package-level predictions.

• Our analysis shows that the performance of SNA metrics
drops as they become less local. Metrics that capture
the local neighbourhood of a file, i.e., ego network
measures, contribute considerably to understanding the
quality of a software system, more so than global metrics.
These findings confirm the common software engineering
wisdom concerning information hiding.

Fig. 1. Example of dependency network at the package level in Eclipse.

Paper organization. Section II defines the dependency
network and the motivation behind using the SNA measures to
predict post-release failures. We describe our study design in
Section III. Then in RQ1, we describe and discuss the results
of the replication. In RQ2, we study the practical implication
of the prediction results. In RQ3, we describe our explanatory
factor analysis to find which and how dependency network
measures influence the prediction results. The related work is
discussed in Section IV and threats to validity in Section V.
We conclude in Section VI.

II. SNA MEASURES OF DEPENDENCY NETWORK

Figure 1 shows an example of a dependency network.
The dependency networks of a software system are graphs
whose nodes are the system’s modules and whose edges are
dependencies between the modules. Module A depends on
module B if A calls B, A inherits from B, or A refers to
a variable in B.

The use of dependencies for explaining programming er-
rors has been discussed since the late 1970s [10]. Famous
metrics such as Halstead’s [11] or McCabe’s cyclomatic [12]
complexity are based on the dependencies between modules.
However, there are many other network measures such as the
ones used in social network analysis (SNA). Zimmermann
and Nagappan [8] applied SNA measures on the dependency
network and found that the prediction performance is better
than using only the existing product metrics.

In the context of SNA, each module belongs to two types
of network: an ego network and a global network. The ego
network of a module consists of the module itself and every
other modules that depend on it or whom it depends on. When
an engineer modifies a class, he or she is most likely only
concerned about the classes that the class calls or the classes
that might need to call this class. The ego network of the class
captures this view. On the other hand, the global network has
a global scope. It is the network of all modules in the system.

Figure 1 shows the global dependency network of the
packages in Eclipse. We only show the eight packages with
the highest number of dependencies. The ego network for a
package can be constructed by considering only the incoming,
outgoing or a combination of both edges. In our example, the
incoming ego network for jface.viewers consists of itself, ui,
and ui.internal. The outgoing ego network consists of itself,

TABLE I
DESCRIPTION OF EGO NETWORK SNA MEASURES FOR EACH MODULE.

Measures Description
Descriptive

Size/Ties/Pairs The number of modules, dependencies, unique pairs of
modules occurring in the ego network

Density # ties / # of possible ties
Centrality

X2StepReach # modules that are reachable in two steps / size

ReachEffic X2StepReach normalized by size
Broker # pairs of modules that are not directly connected to each

other in the ego network
nBorker Broker normalized by size
EgoBetween # shortest paths between any two modules in the ego

network / # paths pass through the ego module
nEgoBetween EgoBetween normalized by size

Structural holes
EffSize # modules connected to the ego - average # ties between

those modules
Efficiency EffSize normalized by size
Constraint Extent to which a module is limited in options to reach

other modules in the ego network
Hierarchy Concentration of constraint is in the ego network

TABLE II
DESCRIPTION OF GLOBAL NETWORK SNA MEASURES FOR EACH

MODULE.

Measures Description
Centrality

Degree
(Freeman
cent.)

modules that are directly connected to the module.
This is the simplest centrality measure.

Eigen. cent.
Similar to degree centrality but also considers the
neighbour’s connectivity. Higher when a module is
connected to many highly connected neighbours.

Power Another extension of degree centrality. Similar to
Eigen. cent. but is calculated differently.

Closeness The total length of all shortest paths from the module
to all other modules.

Betweenness
Similar to closeness centrality. Higher when the
module occurs more often in shortest paths between
any two modules in the network.

Information

Similar to closeness centrality. It is the harmonic
mean of the length of all paths leading to the module.
Smaller if the module is connected to many other
modules through many shortest paths.

dwReach

The weighted number of modules that can be reached
from the module. The weight is 1, 1/2, 1/3 for nodes
that are 1, 2, or 3 steps away. Higher when there are
many modules connected to the module via shorter
steps.

Structural holes

EffSize # nodes connected to the module - average # ties
between the nodes.

Efficiency Eff. Size normalized by size of the network.

Constraint Measures the extent to which the module is limited
in options to reach other modules.

Hierachy Concentration of constraint in the global network.

swt.widgets and core.runtime. The undirectional ego network
of jface.viewers consists of itself and all four other packages.

Table I describes the ego network measures, i.e., the mea-
sures expressing structural dependencies in the ego network of
a module. For each module, we can compute each measure for
the three types (in, out, and undirected) of ego network of the
module. When we describe these measures in later sections,
we use In, Out and Un to indicate the type of ego network the
measure was computed on. For example, ReachEff In is the

TABLE III
DESCRIPTION OF COMPLEXITY METRICS [8].

Measures Description
Module-related metrics

GlobalVariables # global variables
Function-related metrics

Lines # executable lines of code
Parameter # arguments
FanIn # other functions who calls this function
FanOut # functions whom this function calls
Complexity # McCabe’s cyclomatic complexity [12]

Object oriented-related metrics
ClassMethods # methods in the class
SubClasses # subclasses of the class
InheritanceDepth Depth of the class in the inheritance tree
ClassCoupling Coupling between this class and other classes

reach efficiency of the incoming ego network. Table II shows
the global network measures. Similar to the ego network, some
measures can be computed using only the incoming, outgoing,
or both type of edges. We indicate this using In, Out, and Un.

Table III shows the traditional complexity metrics that were
used in the original study. The metrics are computed on the
functions of each module. For each module, we take both the
total and the maximum value of its functions’ measures. For
example, if class A contains three functions B, C, and D with
13, 41, and 21 lines of code (LOC) respectively, then the total
LOC of A is 75 and the max LOC of A is 41. We use both
in the prediction. We put Total and Max next to the metric to
indicate which calculation is used.

To avoid repetition, we will refer to the dependency net-
work’s SNA measures as SNA measures or measures in the
rest paper. Similarly, we will use the complexity metrics or
metrics for source complexity metrics. We also use ego mea-
sures for ego network’s SNA measures and global measures
for global network’s SNA measures. More details on SNA
measures can be found in [13].

III. STUDY DESIGN

To answer our research questions from Section I, we first
replicate the original study [8] using the Eclipse project. Using
the replication result, we examine the performance and the
practical implication of the new prediction models. Then, we
explore the prediction model using a hierarchical modelling
technique to identify the high-impact SNA measures.

The level of analysis in our study is different from the orig-
inal study. The modules in the original study are dynamically
linked libraries (DLL). DLLs are shared libraries consisted
of multiple object files on the Windows operating system.
A DLL contains most of the executable code that is called
from the main executable of the application (an .EXE file).
When a failure is fixed inside a DLL a bug report is closed.
The report identifies the DLL in which the bug occurred. This
allows the original authors to link the bug back to the DLL.
The Eclipse project does not have the notion of DLLs since it
is implemented in Java. Java application has classes. Multiple
classes are grouped into packages. We decide to replicate the
study at both the class level and the package level. At the
class level, the modules are classes. At the package level, the
modules are packages.

The original study defined four sets of measures: depen-
dency networks, source code metrics, post-release failures, and
critical modules.

Post-release failures. The data for post-release failures is
available for both the class and package level of Eclipse
versions 2.0, 2.1, and 3.0 [14]. In this study, we will use only
version 2.1 since the size of the data (5271 classes and 367
packages) is small enough for UCINET. UCINET is a 32-bit
application so it cannot handle Eclipse 3.0 large data.

SNA measures. We download the binary release of Eclipse
2.1. We then extract the classes and packages from all of the
plugins in the Eclipse release. Then, we use the Structure101
tool [15] to extract the dependencies such as function calls
or imports connecting the classes and packages. We use the
extracted data to construct dependency networks. Then, we use
UCINET [16] to compute the SNA measures for each module
in the network.

Complexity metrics. We download the source code release
of Eclipse 2.1. We then determine the complexity metrics,
as defined in the original study, of each class and package
using a combination of the Understand tool [17] and some of
the pre-calculated complexity metrics in the PROMISE dataset
[14]. This results have 18 complexity metrics. The only metric
we cannot compute is the CyclicClassCoupling, which is a
patented metric [18].

Critical modules. In the original study, critical modules
(called escrow binaries) are important DLLs on Windows. The
critical modules are defined by the system experts. Eclipse
developers do not maintain such a list. Instead, we derive the
list of critical classes and packages based on the history of
the project. We mark a class or a package as critical if there
are post-release failures associated with the class or package
in all three versions 2.0, 2.1, and 3.0 of Eclipse. This results
in 74 critical classes and 93 critical packages.

RQ1: DO THE ORIGINAL FINDINGS GENERALIZE TO OTHER
PROJECTS?

In RQ1, we want to find out if the original findings [8]
can be generalized to other projects. We replicate the original
study using data from the Eclipse project. We will verify the
following hypotheses from the original study:

H1: Dependency SNA measures indicate critical
classes/packages that are missed by complexity metrics.

H2: Dependency SNA measures positively correlate with
post-release failures.

H3: Dependency SNA measures can be used to predict post-
release failures at class and package level.

For each hypothesis, we (1) describe our approach, (2) present
the findings, and then (3) analyze the results.

We note that Tosun et al. [9] verified the second part of
H3 using the Eclipse project data. However, their results are
different from ours because they predicted both pre-release
and post-release failures together. The focus of their study
was to improve the prediction performance, whereas we focus
on understanding the prediction. Hence, we only predict post-

TABLE IV
AVERAGE RECALL OF PREDICTING CRITICAL CLASSES AND PACKAGES

USING EACH SNA MEASURE AND COMPLEXITY METRIC. WE ONLY SHOW
THE FIVE MEASURES AND METRICS WITH THE HIGHEST RECALL.

Class Package
SNA measures

Degree in (g) 25.00% Degree un (g) 59.69%
EgoBetween in 25.00% Degree out (g) 59.69%

Pairs in 23.97% Power 51.57%
Size in 23.97% nWeakComp un 48.39%

Brower in 23.81% EgoBetween out 47.69%
Complexity metrics

Lines Total 35.29% Parameters Total 60.36%
Comp. Total 33.33% FanOut Total 60.00%

ClassMethods Max 32.46% Lines Total 59.68%
ClassMethods Max 31.25% Complexity Total 59.32%

FanOut Total 29.71% FanIn Total 58.94%

release failures as in the original study.

H1: Dependency SNA measures indicate critical classes or
packages that are missing by complexity metrics.

Approach. To check if SNA measures can indicate critical
classes or packages missed by complexity metrics (H1), we
use the same analysis as the original study. We randomly
split the data into 2/3 for training and 1/3 for testing. Then,
for each of the SNA measures, we build, train, and test a
logistic regression model that tries to predict probability that
the modules will be critical. We repeat this 50 times. Then,
we select the modules with the highest predicted probability as
critical. The number of modules picked is based on the number
of actual critical modules. For example, for packages, we pick
the 93/3=31 packages with highest probability because there
are 93 critical packages and we use only 1/3 of the packages
for testing.

The recall of a model based on a particular measure
indicates how good the measure is as a predictor for critical
modules. We calculate the recall by dividing the number of
correctly predicted critical modules by the number of actual
critical modules. We perform the same analysis for complexity
metrics. Then, we compute the average recall of the 50 models
for each measure and metric.

Findings. Table IV shows the average recall values for
predicting critical classes and packages using each of the
SNA measures (top) and complexity metrics (bottom). To save
space, we only show the five measures and metrics with the
highest recalls.

Analysis. In the original study, Zimmermann and Nagap-
pan [8] showed that the top SNA measures recall twice as high
as the top complexity metrics. Some of the SNA measures
were able to reach recall values of around 60%, while the
highest recalls for complexity metrics were around 30%. In
our replication on Eclipse classes and packages, we observe
that the top recall of the SNA measures are similar if not
worse than those of the complexity metrics. The top recalls
for SNA measures are 59.69% and 25.00% at the package and
class level respectively. The top recall values for complexity
metrics are 60.36% and 35.29% at the class and package level.

Hence we reject H1.

H2: Dependency SNA measures positively correlate with post-
release failures.

Approach. To test H2, we calculate the Spearman’s rank
coefficient between each SNA measure of a module and post-
release failure of that module. The coefficient shows the
strength of the correlation between the measure and the post-
release failure. We use Spearman because the alternative, Pear-
son, requires that the two variables be normally distributed.
Similar to the original study, we confirm that the Eclipse post-
release failures are also not normally distributed. Hence we use
the Spearman correlation. Both Pearson and Spearman yield
a coefficient between -1 and 1. If the coefficient is -1, there
is a 100% negative correlation between the two variables. If
it is 1, then there is a 100% positive correlation between the
two. 0 means that there is no correlation at all.

Findings. Due to space limitations, we cannot show all
correlations here. However, we calculate the median of the
absolute values of all correlations between the SNA measures
and the number of post-release failures. The median correla-
tion for the classes and packages are 0.1188 and 0.1694. We
note that the medians can only be used for illustration only. It
is not proper to make statistical inferences on these medians.

Analysis. Compared to the median correlation of 0.3195
for the DLLs from the original study, the correlation at
the package level is overall lower. At the class level, the
correlation is even less. The reason behind this is that the
lower the level of analysis, the rarer the post-release failure.
Only 11.99% of classes contain failures (632/5271) while
25.34% of the packages contain failures. When we lift the
level of granularity from the class to the package level, we are
essentially eliminating the classes that do not contain failures
by grouping them with the ones that do. This explains why the
correlation is much lower at the class level than at the package
level. It also implies that prediction at the lower level, while
potentially more valuable, is inherently less accurate than at
the higher level.

In summary, we find that there is positive correlation be-
tween most of the SNA measures and the post-release failures.
So we cannot reject H2. However, the correlation is low
compared to that of the original study.

H3: Dependency SNA measures can be used to predict post-
release failures at class and package level.

This hypothesis can be broken down into two sub-
hypotheses:

• H3.1: SNA measures of a module can be used to predict
the number of post release failures of the module.

• H3.2: SNA measures can be used to classify a specific
module as high-risk or error-prone which means that the
module has at least one failure.

The original study [8] found that a combination of SNA
measures and complexity metrics can be used to predict
the number of post-release failures (H3.1) and to predict
error-prone modules (H3.2) for each DLL better than using

●

SNA MET S+M

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Rsquare

●

SNA MET S+M

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Adj Rsquare

●
●

●

SNA MET S+M
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Pearson

SNA MET S+M

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Spearman

●

●

●●

SNA MET S+M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision

●●

SNA MET S+M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Fig. 2. H3.1 (Rsquare, Adj. Rsquare, Pearson, Spearman) and H3.2
(Precision, Recall) results for Eclipse at class level. The box plot shows the
results of running the prediction on 50 random splits.

the complexity metrics alone. In H3.1, the original authors
observed that the Spearman correlation between the predicted
and actual number of post-release failures increases 10% when
SNA measures are used together with complexity metrics
instead of using the complexity metrics alone. In H3.2, There
was a 10% increase in recall with comparable precision. The
original authors concluded that SNA measure can be used to
predict post-release failures.

Approach. To test H3.1 on the Eclipse data, we build
linear regression models to predict the number of post-release
failures. For H3.2 we build logistic regression models to
predict the error-proneness of specific classes and packages.
We build the models using the same method as presented in
the original study. Similar to H1, we train the models using
2/3 randomly selected classes or packages and test them on
the rest of the data. We ran the models on 50 different random
splits. Because of the skewness of the data, as discovered in
H1, we take the log of all measures and metrics. We also log
take the log of post-release failures.

We report the test results as in the original study. For
H3.1, we report the performance of the prediction model
using four indicators: the Rsquare, Adjusted Rsquare, Pearson
correlation, and Spearman correlation. Rsquare indicates how
good the linear model fits the training data. Adjusted Rsquare
has the same meaning as Rsquare but also takes into account
the number of variables in the model. The higher the Rsquare

●

SNA MET S+M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rsquare

●

SNA MET S+M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adj Rsquare
SNA MET S+M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pearson

SNA MET S+M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spearman
SNA MET S+M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision
SNA MET S+M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Fig. 3. H3.1 (Rsquare, Adj. Rsquare, Pearson, Spearman) and H3.2
(Precision, Recall) results for Eclipse at package level. The box plot shows
the results of running the prediction on 50 random splits.

and the Adjusted Rsquare, the better the fit. The Spearman and
Pearson correlation coefficients show how good our prediction
is. They show the correlation between the predicted and
the actual number of post-release failures. The higher the
correlation, the better the prediction. Since the data is not
normally distributed, Spearman is more accurate than Pearson.

For H3.2, we build logistic regression models that predict
the error-prone classes or packages. The models classify the
module as error-prone if the probability that the module has
at least one post-release failure is more than 50%. Similar to
the original study, we report the Precision and Recall of the
prediction on 50 random splits. The higher the Precision and
Recall, the better the prediction. We note that the models in
H3.2 are similar to the models in H1. However, the logistic
models in H1 use each SNA measure individually. The logistic
models in H3.2 use all SNA measures together. In addition,
the models in H1 predict critical modules while the ones in
H3.2 predict the existence of post-release failures.

As in the original study, we employ Principal Component
Analysis (PCA) to remove collinearity in the data before
using the data for prediction. When building linear models,
researchers use independent variables, i.e., complexity metrics
and SNA measures, to predict the dependent variable, i.e.,
post-release failures. However, if the independent variables are
highly correlated, the prediction power of the model will be
compromised. This is particularly true for prediction models

in software engineering. For example, the number of LOC in
a class will be highly correlated to the number of functions
in that class. PCA is a common technique to eliminate this
problem.

PCA combines all independent variables into principal
components (PCs). We use the PCs to predict the post-release
failures instead of the independent variables themselves. The
PCs are ranked by the variance of the independent variables
that they contain. The higher the variance captured by the PCs,
the better the PCs represent the variables. If we use all the
PCs, we will have 100% of the data variance. However, most
studies would choose the first few PCs that are accountable
for certain percentage of the variance to reduce the amount
of variables used in the model. For example, when we build
a model using only the SNA measures, the first five PCs are
accountable for 66.6%, 13.0%, 9.93%, 3.61%, and 2.2% of the
variance respectively. If we use the first five PCs, the model
will contain 96.19% of all independent variables’ variance.
The original study used 95% as the threshold. We use the
same threshold in our replication.

Findings. We present the results in Figure 2 for the classes
and Figure 3 for the packages. Each box plot corresponds
to each of the six indicators over the 50 runs. The first
four (Rsquare, Adjusted Rsquare, Pearson, and Spearman) are
for the linear model that predicts the number of post-release
failures. The last two (Precision and Recall) are for the logistic
model that predicts the error-proneness. For each box plot,
the first column, SNA, is the result of only using the SNA
measures. The second column, MET, is the result of only using
the complexity metrics. The last column shows the result when
we use both the SNA measures and the complexity metrics.
We label this column S+M.

For H3.1, the Spearman correlation between the predicted
and actual number of post-release failures improves by around
4.86% and 10.29% for the class and package level respectively
when the SNA measures are used with the complexity metrics
compared to using the complexity metrics alone. As for
H3.2, the precisions improve by 30% and 25.2% at class and
package level respectively. The recalls improve by 4.41% and
25.34%. All improvements are statistically significant using
the Wilcoxon rank test at the 0.05 confidence level.

Analysis. H3.1. Our results show that the SNA measures
improve the prediction of the number of post-release failures
at both class and package level. In the original study, at the
library level, the Spearman correlations increase for about
10%. In our replication, the improvement is lower classes
(4.86%) but comparable for packages (10.29%). Hence, we
cannot reject that SNA measures are suitable to predict the
number post-release failures for packages. At the class level,
the improvement is very low.

H3.2. For predicting the error-prone modules, we cannot
reject the result of the original study at both the class and
package level of Eclipse. The precision improves by 30%
and 25.2% respectively. The recall improves by 4.41% and
25.34%. This is very similar to H3.1. However, the recall at
the class level is very low.

TABLE V
SUMMARY OF THE RESULTS FROM THE ORIGINAL STUDY [8], AND FOR

ECLIPSE PACKAGES AND CLASSES FROM OUR REPLICATION.

DLL Pack. File
H1 SNA measures can predict critical
modules that are missed by complexity
metrics

Twice
recall

Worse
recall

Worse
recall

H2 Average correlation between the
SNA measures and the number of post-
release failure*

28.45% 15.42% 9.44%

H3.1 Improves in # failures prediction
when SNA measures are used with com-
plexity metrics**

+10% +10.29% +4.86%

Actual Spearman correlation between
predict and actual failures***

∼60% 55.23% 29.58%

H3.2 Improves in predicting error-prone
binary when SNA measures are used
with complexity metrics in precision and
recall**

+∼0%
+∼10%

+25.2%
+25.34%

+30%
+4.41%

Actual precision and recall*** ∼70%
∼70%

73.19%
74.75%

68.83%
9.96%

(*) The average shown is the median of all correlations for illustration
purpose only. It is not proper to statistically compare or make inference
on these averages. (**) At 99% confident using Wilcoxon rank test.
(***) We report the median values of all 50 random splits.

Summary of the replication

We summarize the replication results in Table V. We reject
H1. We observe that the recall values when using the SNA
measures are equivalent or worse than the recall values when
using the complexity metrics. Thus, SNA measures miss more
critical classes and packages than the complexity metrics.
However, we note that Eclipse does not have a list of critical
modules. We will discuss this threat to validity in Section V.
For H2, we cannot reject that there is statistically significant
correlation between the SNA measures and the number of post-
release failures at both the class and package level. We also
cannot reject H3, although the class level prediction results
are very low.

RQ2: ARE THE FINDINGS PRACTICALLY SIGNIFICANT?

In the original study, the prediction recall and precision are
very high for DLLs when SNA measures are used. Because
the Eclipse project does not have artefacts similar to libraries,
we replicate the study at lower levels: the package and the
class level. We find that for H1 in RQ1, predicting critical
modules is much less accurate at the class level than at the
package level. We also find that the correlation between the
metrics and measures and the number of post-release failures,
in H2, is lower at the class level than at the package level. The
correlations are both lower compared to the original study. In
H3, it is clear that the prediction results are much worse at the
class level than at the package level. A trend emerges from
our replication: failure prediction at finer level of granularity
is worse than at higher level granularity.

A. Practical significance of class vs package level prediction

Our first question is, given the low recall and precision at
the class level, is the prediction at the package level more
practical?

To understand how useful the prediction would be, we adapt
the evaluation technique proposed by Mende and Koschke [19]

0 20 40 60 80 100

0
20

40
60

80
10

0

% line of codes reviewed

%
 b

ug
s

ca
ug

ht

Type

CLAS
PACK
P−OPT
C−OPT

Fig. 4. Cumulative lift chart of the potential number of bugs discovered using
the prediction at the class level (CLAS) and at the package level (PACK). We
show the best case scenario for the class level (C-OPT) and the package level
(P-OPT) for comparison. The prediction models here use both the new SNA
measures and the traditional complexity metrics to predict post-release failure.

0 20 40 60 80 100

0
20

40
60

80
10

0

% line of codes reviewed

%
 b

ug
s

ca
ug

ht

Type

S+M
SNA
MET
OPT
RAN
LOC

Fig. 5. Cumulative lift chart of the potential number of bugs discovered using
different types of variable at the class level. The improvements by using S+M
compared to using only the MET or the LOC are presented in Table VI.

to analyse the amount of effort needed over the practical
overhead involved in of fixing bugs. We calculate the number
of potential bugs found using the prediction at the class and
the package level. We plot the result using a cumulative lift
chart in Figure 4. The x-axis is the percentage of LOC that
has to be reviewed. On the y-axis is the percentage of bugs
discovered. The lines show the potential number of bugs that
can be discovered by reviewing the corresponding LOC using

TABLE VI
PRACTICAL IMPROVEMENT WHEN SNA MEASURES ARE USED (S+M)

COMPARED TO USING ONLY THE EXISTING COMPLEXITY METRICS (MET)
OR THE LOC (LOC).

% bugs caught
% code S+M MET Diff LOC Diff

10 8.64 5.56 3.09 6.17 2.47
20 17.90 16.05 1.85 17.28 0.62
30 32.10 25.93 6.17 29.63 2.47
40 43.21 38.89 4.32 38.89 4.32
50 58.02 49.38 8.64 47.53 10.49
60 65.43 58.02 7.40 56.17 9.26
70 76.54 62.96 13.58 61.79 14.81
80 81.48 72.84 8.64 74.07 7.41
90 91.36 86.42 4.94 82.10 9.26

prediction. We show the result for the class level (CLAS) and
for the package level (PACK). Those two results are the best
of the 50 random splits in H3.2. Figure 4 simulates the policy
of testing higher risk modules first. We records the actual
number of bugs, that we could have discovered, and the LOC
of the module as we go along. Obviously, the smaller the
percentage of LOC needed to discover a higher percentage of
bugs, the better. The P-OPT line shows the optimal scenario at
the package level. This is the best-case scenario when we are
able to predict with 100% accuracy. In this case, we simulate
testing the package with the highest number of actual failure
first. The C-OPT is the optimal solution at the class level.

The first observation we can make is that the class level
has much more potential to save practitioners effort than the
package level. The C-OPT scenario only requires half the LOC
to find all bugs compared to the P-OPT scenario (Figure 4).
To discover all the bugs at the package level, the developers
still have to inspect close to 80% of code in the best-case
scenario compared to less than 40% at the class level. This
is because a package contains a lot of code. If there is just
one potential bug in a package, the developers have to inspect
the entire package. At the class level, they would be able to
focus on just the one class that contains the potential bug.
This means that prediction at finer level of granularity brings
more practical value than at higher levels i.e. package. In fact,
this result shows that predicting failures at higher levels is not
practically useful.

The second observation we can make is that, even with
very low precision and recall, the class level prediction is
more effective. This comes as a surprise because the recall
and precision are 9.96% and 68.83% for classes compared
to 74.75% and 73.19% for packages (see RQ1). These lower
figures intuitively tell practitioners that the prediction is not
useful at the class level. However, if we observe how higher
the CLAS line is compared to the PACK line, we can see that
for any given percentage of LOC that the team can inspect,
the actual number of bugs discovered is almost always higher
at the class level. This also suggests that future investigations
should concentrate at improving the prediction at the class
level, given the potential benefit in practice. Similar observa-
tion where noted by Mendes et al. [19] on basic prediction
models.

B. Practical significance at the class level

Our second question is, concretely, how many more bugs
are we catching with the aid of the new SNA metrics compared
to only using the existing complexity metrics. We know from
H3.2 that recall improves by 4.41% and precision improves
by 30%. But what does it mean in practice?

Figure 5 shows the cumulative lift chart of the potential
number of bugs caught using different types of variable in the
prediction at the class level. This chart is similar to the one in
Figure 4. The MET line shows the prediction that uses only
the complexity metrics. The SNA line shows the prediction
that uses only the SNA measures. The S+M line shows the
prediction using both. These prediction models are the same
as the ones used in H3 (see Figure 2 and 3). We also show
the best case scenario OPT. This is the case where we can
predict the post-release failure at 100% accuracy. The RAN
line shows the random prediction. In this scenario, the team
would randomly pick classes for reviewing or testing. The
LOC line shows the prediction by inspecting the class with
highest LOC first.

We can observe that the S+M line is higher than the MET
line. This means that when the new SNA measures are used
(S+M), the percentage of potential bugs caught increases com-
pared to only using the existing complexity metrics (MET).
We show the differences in Table VI. We can see that the
improvement is about 1.85% to 13.58% more bugs caught. So
applying the new prediction models will allow practitioners
to discover about 1.85% to 13.58% more bugs compared to
using traditional metrics.

RQ3: WHY DO SNA METRICS IMPROVE THE PREDICTION
PERFORMANCE?

At this point, we know that, when used together with tradi-
tional metrics, the SNA measures help improve the prediction.
We also show improvements’ practical significant. The only
question left is why do SNA metrics improve the prediction
performance?

Let us consider the complexity metrics and the SNA mea-
sures as four groups of variables. The first group, cm.size,
contains the complexity metrics that are related to the size of
the class such as GlobalVariables or Parameters. The second
group, cm.dep, are the complexity metrics that are related
to dependencies of a class such as FanIn or FanOut. The
third and fourth group are the new ego network, ego, and
global network, global, measures. As opposed to the size-
related complexity metrics, the dependency-related metrics,
cm.dep, consider the dependencies of the class. However, they
only consider the relationship between the class itself and the
surrounding classes. The ego measures, on the other hand, also
consider the relationship among the neighbouring classes. The
global measures take into account not only the neighbouring
classes but also all the classes in the system. As we go from
cm.size and cm.dep to ego and global, the influence on the
variables goes from highly local to a global perspective. Our
question is, where is the most useful knowledge about bug
prediction lies: ego, i.e. local, or global networks. To answer

TABLE VII
VIF OF THE VARIABLES AFTER ITERATIVELY FILTERING THE TOP

VARIABLE WITH HIGHEST VIF GREATER THAN 2.5.

Variable VIF Variable VIF
cm.size X2StepReach out 2.16

GlobalVariables Total 2.23 ReachEffic out 2.03
Parameters Max 1.24 nBroker out 1.43

ClassMethods Max 2.41 nEgoBetween out 1.47
cm.dep Hierarchy out 1.55

Complexity Max 1.68 nWeakComp un 1.89
SubClasses Total 1.11 nEgoBetween un 1.66

InheritanceDepth Max 1.25 global
FanIn Max 2.31 Eigenvector 2.43

ego Fragmentation 1.11
Density in 1.83 Efficiency 2.18

nWeakComp in 2.12 Hierarchy 1.97
X2StepReach in 2.03 inCloseness 1.40

ReachEffic in 1.55 outCloseness 1.40
Hierarchy in 1.63

4.4%0% 7.0%

9.7%

8.1%

10%

10%

null +cm.size +cm.dep

+ego

+global

+global

+ego

Fig. 6. Hierarchical modelling of the four groups of variables: cm.size - size-
related complexity metrics, cm.dep - dependency-related complexity metrics,
ego - ego measures, global - global measures. The numbers shown are the
deviance explained ratio for each model.

this question, we use the same hierarchical modelling approach
as in [4] to analyse the contribution of each group.

However, we first have to filter out variables with high
degree of multicollinearity among the 19 complexity metrics
and 64 SNA measures. In H3, filtering is unnecessary because
the PCA alleviates multicollinearity. However, identifying the
important variables is hard if they are distributed inside the
PCs. So we have to run the RQ3 models without PCA. Thus
we need to filter out the variables with high collinearity. A
common indicator of multicollinearity is the Variable Inflation
Factor (VIF). According to Allison [20], variables that have
VIF greater than 2.5 are considered problematic. So we
iteratively remove the variables with the highest VIF until the
model does not contain any variable with VIF greater than 2.5.
After this process, we are left with 3 cm.size, 4 cm.dep, 12
ego and 6 global variables. We report the VIF of the remaining
25 variables in Table VII.

Figure 6 shows the deviance explained percentage for each
prediction model that we build hierarchically with the four
groups of variables. This is the ratio between the deviance
explained (DevEx) by the variable in the model and the
deviance of a null model. The higher the DevEx, the better the
model explains the independent variable (post-release failure).
The DevEx for the model without any predictor is 0. When we
add the cm.size variables, the DevEx increases to 4.5%. This
means that the size-related complexity metrics explain about
4.5% of the post-release failures. When we add the cm.dep
variables to the model, the DevEx jumps to 7%. That is a

2.5% increase in explanation power. At this point, we first
try to add the ego variables, then the global variables into
the model (the upper path). We can observe that the DevEx
increases by 2.7% when we add the ego measures and only
0.3% when we add the global measures. On the lower path,
we first add the global variables, then the ego network. We
can see that the DevEx only increases 1.1% for the global
measures. But when we add the ego measures, the DevEx
increases by 1.9%. The first conclusion here is that the SNA
measures add as much explanation power, 3%, to the model as
the dependency-related complexity metrics, 2.7%. The second
result is that the ego measures explain most of the deviance
brought in by the SNA measures. The global measures do not
add much to the data as shown in the upper path. The lower
path confirms this. We note that the low deviance explained is
expected due to the rarity of the predicted event. The change
of buggy class is about 12%. This low deviance still leads to
practically significant predictive performance.

Our next question is which of the ego measures contribute
the most to the prediction and what do that mean in practice.
We perform analysis of variance (ANOVA) on each prediction
model with all measures and metrics, i.e., the last one on
the upper path of 6. ANOVA computes an F-test on each
of the coefficients. The F-test shows whether a coefficient is
statistically significantly different from zero. A zero or near
zero coefficient in a linear model means that the variable does
not effect the outcome of the prediction. Over all 50 random
splits, ANOVA shows that only nWeakComp in, X2StepReach
in, and nEgoBetween out are statistically significant at p<0.05.
The coefficients for the three measures are all positive. They
are the top contributors to the prediction model.

To demonstrate the meaning of nWeakComp in,
X2StepReach in, and nEgoBetween out, we plot two
examples of class dependency ego networks in Figure 7.

nWeakComp in is the number of unconnected components
in the incoming ego network. The higher this number is, the
higher the risk. What this says is that if many classes depend
on the ego class and the classes are not connected to each
other then the ego class has more risk of failure. We show
an example in Figure 7(a). We believe this is an extension
of FanIn. Popular interpretation of FanIn is that when many
classes depend on a single class, there is a single point of
failure. This increase the change of failure. nWeakComp adds
to this interpretation that if all the dependent classes are
completely independent for each other, then the risk of failure
is higher than when they are interdependent. This is likely an
indication that general library classes have higher chances of
having bugs in them since they must serve a large number
classes with varying expectations and goals.

X2StepReach in is the percentage of nodes in the global
network that are indirectly connected to the ego class via its in-
coming connections within two steps. The higher the number,
the higher the risk. We believe that this is another endorsement
of the information hiding principle. If the software design
allows proper encapsulation, the dependency graph should be
deep and narrow [21]. In this case, the X2StepReach should be

(a) Incoming ego network of
ant.core.AntCorePreference. Post-
release failure = 3. nWeakComp in
= 6.

(b) Out ego network of
ant.view.elements.ProjectNode.
Post-release failure = 3.
nEgoBetween out = 2.78.

Fig. 7. Examples of class level ego networks.

low. On the other hand, when every class is calling every other
class, the X2StepReach is high. What this means in practice is
that teams should pay attention when a class’s X2StepReach is
high. This may indicate that the design is deteriorating which
may lead to post-release failures.

nEgoBetween out is the ratio of the number of all possible
paths between the ego class’s neighbours over the number of
paths that pass through the ego. This measure is normalized
by the size of the outgoing ego network. An example of a
class with high nEgoBetween out is shown in Figure 7(b). We
believe that this is another example of design deterioration.
Very much like the example shown, the nEgoBetween out is
usually high when one of the neighbouring classes is highly
depended on by rest of the ego’s neighbours which the ego is
depended on. In Figure 7(b), the class on the left of the ego
is an example of this situation since the ego class depends on
many classes that also depend on this class. Our prediction
models indicate that when this happens, the ego class is high-
risk.

In summary, we find that among the new SNA measures, the
ego measures are the most important factors. Within the ego
measures, we find that nWeakComp in, X2StepReach in, and
nEgoBetween out are the top three measures. We suggest the
rationale behind each measure which are linked to common
intuition in software practice.

IV. RELATED WORK

The importance of verifying software engineering studies
through replication has been emphasized in literature since
the late 1980s by Basili et al. [22]. Daly et al. [23] replicated
the famous Korson experiments [24] and found that modular
code might not be a benefit to maintenance contrary to popular
belief. This kind of outcome of a replication study motivates
us to conduct a full replication of the original study [8] as
presented in RQ1.

Research on software metrics has been a very active re-
search topic since the original work by Halstead in the late
1970s [11]. In 1988, Cote et al. [25] surveyed the literature
on software metrics and found more than 100 metrics. In
recent years, with the new technologies in mining software

repositories, researchers are able to study more about the
relationship between software metrics and quality. Nagappan
et al. [6], [7] used code complexity metrics, such as the ones
in Table III, to predict post-release failure. More recent studies
used process metrics such as the number of code commits [2]
or even developer social structures [3]–[5] to predict quality.

V. THREATS TO VALIDITY

The main threat to validity of an external replication study
like this one is construct validity. The goal of an external
replication is to run the same analyses on a different dataset.
If the data is not compatible it is hard to verify the validity of
the replication data. For example, in the original study, critical
DLLs used in H1 are determined by the developers through
their experience. Because the Eclipse project does not define
critical classes or packages, we have to build a list of critical
modules based on the history of the project. This definition
may not include all the critical classes or packages. Thus H1
might not be a valid replication. Also, since one of the metrics
is patented, we cannot compute the metric for our replication.
Unfortunately, we have no way of countering this threat.

We filter variables with high multicollinearity in RQ3.
Otherwise, the prediction models will be very inaccurate and
interpreting the models will be difficult. At the end of RQ3, we
identify nWeakComp in, X2StepReach in, and nEgoBetween
out as the three most important factors. However, variables that
is highly correlated with the three factors have already been
filtered out. To counter this threat, we check the correlations
between the three variables and others. We found that for
X2StepReach in, the only highly correlated variable (Spearman
>0.7) is the same measures for undirectional ego network. For
nEgoBetween out, it is the non normalized version. So they are
not threats because the practical implication of these variables
are the same. However, nWeakComp in is highly correlated
with nBroker in. So we add nBroker in into the model an rerun
ANOVA. The result shows that nBroker in is not significant.
Thus it is not a problem either.

VI. CONCLUSION

In this study, we want to understand the roles of dependency
network from SNA in prediction of post-release failures.
We replicate the original study [8] using the Eclipse open
source project. By studying the effort involved, we determine
that bug prediction is more useful at the class level than at
higher level. Using the models in the replication, we also
find three SNA measures that have the highest impact on the
prediction models. We linked the meaning of these measures
to information hiding.

Our study suggests several possible research topics for
future research. For instance, a different replication at the
class level on a different project should verify if the three top
SNA measures are still the most important ones and whether
they still improve the failure prediction results. One should
also investigate the benefits of predicting failures at a lower
level than class, i.e., function level. However, this requires bug
information at function level which is hard to collect.

REFERENCES

[1] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in Proc. of the 27th inter. conf. on Soft. Engi.
St. Louis, MO, USA: ACM, 2005, pp. 284–292.

[2] ——, “Using software dependencies and churn metrics to predict field
failures: An empirical case study,” in Proc. of the 1st inter. symp. on
Empirical Soft. Engi. and Measurement. IEEE Computer Society, 2007,
pp. 364–373.

[3] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,”
in Proc. of the 31st inter. conf. on Soft. Engi. Vancouver, BC: IEEE
Computer Society, 2009.

[4] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software
dependencies, work dependencies, and their impact on failures,” IEEE
Trans. Softw. Eng., vol. 35, no. 6, pp. 864–878, 2009.

[5] N. Bettenburg and A. E. Hassan, “Studying the impact of social
structures on software quality,” in Proc. of the 18th inter. conf. on
Program Comprehension. San Francisco, California, United States:
IEEE Computer Society Press, 2010, p. to be appeared.

[6] N. Nagappan, L. Williams, M. Vouk, and J. Osborne, “Early estimation
of software quality using in-process testing metrics: a controlled case
study,” in Proc. of the third workshop on Soft. quality. St. Louis,
Missouri: ACM, 2005.

[7] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proc. of the 28th inter. conf. on Soft. Engi.
Shanghai, China: ACM, 2006, pp. 452–461.

[8] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proc. of the 30th inter. conf. on
Soft. Engi. Leipzig, Germany: ACM, 2008, pp. 531–540.

[9] A. Tosun, B. Turhan, and A. Bener, “Validation of network measures
as indicators of defective modules in software systems,” in Proc. of the
5th inter. conf. on Predictor Models in Soft. Engi. Vancouver, British
Columbia, Canada: ACM, 2009.

[10] S. Henry and D. Kafura, “Software structure metrics based on informa-
tion flow,” IEEE Trans. Softw. Eng., vol. 7, no. 5, pp. 510–518, 1981.

[11] M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc., 1977.

[12] T. J. McCabe, “A complexity measure,” in Proc. of the 2nd inter. conf.
on Soft. Engi. San Francisco, California, United States: IEEE Computer
Society Press, 1976.

[13] R. A. Hanneman and M. Riddle, “Introduction to social network meth-
ods,” 2005, published in digital form at http://faculty.ucr.edu/ hanneman/.

[14] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proc. of the 3rd inter. workshop on Predictor Models in
Soft. Engi. IEEE Computer Society, 2007.

[15] Headway Software, “Structure101,” 2009.
[16] Analytic Technologies, “Ucinet 6: Social network analysis software,”

2007.
[17] Scientific Toolworks Inc., “Understand,” 1996.
[18] N. Nagappan and T. Bhat, “Technologies for code failure proneness

estimation,” Patent, April 26, 2007.
[19] T. Mende and R. Koschke, “Revisiting the evaluation of defect prediction

models,” in Proc. of the 5th inter. conf. on Predictor Models in Soft. Engi.
Vancouver, British Columbia, Canada: ACM, 2009, 1540448 1-10.

[20] P. D. Allison, Multiple regression: A primer. Thousand Oaks, CA: Pine
Forge Press, 1999.

[21] K. J. Lieberherr and I. M. Holland, “Assuring good style for object-
oriented programs,” Software, IEEE, vol. 6, no. 5, pp. 38–48, 1989.

[22] V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in
software engineering,” IEEE Trans. Softw. Eng., vol. 12, no. 7, pp. 733–
743, 1986.

[23] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, “An external
replication of a korson experiment,” Empirical Foundations of Computer
Science, Tech. Rep., 1994.

[24] T. D. Korson and V. K. Vaishnavi, “An empirical study of the effects of
modularity on program modifiability,” in First workshop on Empirical
studies of programmers. Washington, D.C., United States: Ablex
Publishing Corp., 1986, pp. 168–186.

[25] V. Cote, P. Bourque, S. Oligny, and N. Rivard, “Software metrics: an
overview of recent results,” J. Syst. Softw., vol. 8, no. 2, pp. 121–131,
1988.

