
Collecting and Leveraging a Benchmark of Build System
Clones to Aid in Quality Assessments

Shane McIntosh1, Martin Poehlmann2, Elmar Juergens2, Audris Mockus3,
Bram Adams4, Ahmed E. Hassan1, Brigitte Haupt5, and Christian Wagner5

1Queen’s University, Canada; 2CQSE GmbH, Germany; 3Avaya Labs Research, USA;
4Polytechnique Montréal, Canada; 5Munich Re, Germany

1{mcintosh, ahmed}@cs.queensu.ca, 2{poehlmann, juergens}@cqse.eu, 3audris@avaya.com,
4bram.adams@polymtl.ca, 5{bhaupt, cwagner}@munichre.com

ABSTRACT

Build systems specify how sources are transformed into de-
liverables, and hence must be carefully maintained to ensure
that deliverables are assembled correctly. Similar to source
code, build systems tend to grow in complexity unless spec-
ifications are refactored. This paper describes how clone de-
tection can aid in quality assessments that determine if and
where build refactoring effort should be applied. We gauge
cloning rates in build systems by collecting and analyzing
a benchmark comprising 3,872 build systems. Analysis of
the benchmark reveals that: (1) build systems tend to have
higher cloning rates than other software artifacts, (2) recent
build technologies tend to be more prone to cloning, espe-
cially of configuration details like API dependencies, than
older technologies, and (3) build systems that have fewer
clones achieve higher levels of reuse via mechanisms not of-
fered by build technologies. Our findings aided in refactoring
a large industrial build system containing 1.1 million lines.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering

General Terms

Management, Measurement

Keywords

Build systems, clone detection, quality assessments

1. INTRODUCTION
Build systems transform the source code of a software sys-

tem into deliverables. They describe the process by which
software is assembled by orchestrating compilers, preproces-
sors, and other tools, allowing developers to focus on making

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

source code changes. A stable build system is crucial to the
timely delivery of software, boosting team productivity by:
(1) testing code changes for regression by executing auto-
mated tests, (2) generating versions of the software for inte-
gration and feature testing, and (3) automatically packaging
and deploying software with the correct versions of required
libraries, documentation, and data files.

Build systems play a crucial role in contemporary software
development techniques. For example, continuous integra-
tion, i.e., the practice of routinely downloading the latest
source code changes onto dedicated servers to ensure that
the code base is free of compilation and test failures would
not be possible without a robust build system. Furthermore,
the recent practice of continuous delivery [11], where new re-
leases of a software system must be provided within minutes
rather than days or months would not be possible either.

Yet to reap the most benefit, build systems must be care-
fully maintained to ensure that deliverables are assembled
correctly. Since build systems tend to grow in terms of size
and complexity as they age [1, 21], they also tend to become
more difficult to maintain. Indeed, as Munich Re (one of the
world’s leading reinsurers) has shortened development cycles
to yield more frequent releases, maintainers have noticed
that change requests for the build system have increased in
frequency and difficulty. The increased cost of build mainte-
nance motivated management to contact CQSE (a software
quality consultancy group) to investigate the root cause and
propose methods of reducing the cost of build maintenance.

Through assessment of the Munich Re build system, we
note that cloning (i.e., duplication) of build logic contributes
to the increase in change- and error-proneness. Munich Re
maintains roughly 30 custom business information systems
implemented using C#, which share a common build system
that exploits similarities among the applications. However,
over the years, the build system has grown to roughly 1.1
million lines of build logic. Maintenance of the build system
has been subcontracted to an external supplier who has al-
located a team of three developers to the task. Changes to
the build system often need to be repeated in as many as 30
locations. Defects may linger in the build system if changes
are not propagated to all of the required locations.

Despite the perils of build logic cloning, it is not well un-
derstood. Hence, although build maintainers tend to agree
that cloning is problematic, selecting a more maintainable
solution is non-trivial. For example, it is not clear whether
build logic cloning can be avoided, i.e., cloning may be an
innate property of build systems. Moreover, it may be that

certain technologies are more prone to cloning, which would
suggest that migration to a less clone-prone technology could
provide some relief.

In this paper, we set out to better understand build logic
cloning by collecting and analyzing a benchmark comprising
3,872 open source build systems from Apache, GNU, Source-
forge, and Github. Through analysis of the benchmark, we
address five research questions:

(RQ1) How much cloning is typical of build sys-
tems?
Although cloning rates in build systems are typi-
cally higher than those of other software artifacts,
there are build systems with little cloning, indicat-
ing that there are measures one can take to reduce
build logic cloning.

(RQ2) Does technology choice influence cloning in
build systems?
The more recent CMake (C/C++) and Maven (Java)
technologies tend to be more prone to cloning than
the older Autotools (C/C++) and Ant (Java) ones.

(RQ3) Do benchmark-derived cloning thresholds vary
among build technologies?
We use thresholds derived from quantiles in our
benchmark to identify build systems with abnormal
cloning characteristics. Technology-specific thresh-
olds vary most for Java build systems with abnor-
mally low amounts of cloning, and between CMake/-
Autotools and Ant/Maven for build systems with
abnormally high amounts of cloning.

(RQ4) What type of information is typically cloned
in build specifications?
The more recent technologies are more susceptible
to cloning of configuration details like API depen-
dencies, while the older technologies are more sus-
ceptible to cloning of lower-level build logic.

(RQ5) How do build systems with few clones achieve
low clone rates?
Build systems with little cloning leverage reuse mech-
anisms beyond those offered by build technologies
themselves, suggesting that existing reuse mecha-
nisms offered by build technologies are insufficient
for avoiding build logic cloning.

Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 describes build systems and clone
detection in more detail. Section 3 provides details on build
logic cloning at Munich Re. Section 4 describes the design
of our benchmark collection and analysis study. Sections 5
and 6 present our findings with respect to our five research
questions. Section 7 discloses the threats to the validity of
our study. Section 8 surveys related work. Finally, Section 9
draws conclusions.

2. BACKGROUND
In this section, we provide a brief description of build

systems and clone detection.
Build systems. The build process of a software sys-
tem is typically broken down into four phases. First, the
configuration phase selects build tools (e.g., compilers and

linkers) and features (e.g., Windows or Android front-end).
Next, the construction phase translates relevant source code
and data files into deliverables by executing several order-
dependent commands like compilers. The certification phase
follows construction, where deliverables are checked for re-
gression by executing suites of automated tests. Finally, the
packaging phase bundles product documentation, data files,
and deliverables for easy delivery to end users.

Recently, companies such as Google have adopted contin-
uous delivery [11], a development approach that facilitates
rapid distribution of newly produced versions of a software
system. In order to support continuous delivery, build sys-
tems perform an additional deployment phase, where newly
produced versions of a software system are automatically
deployed to testing and production environments.
Clone detection. Clones are duplicated regions in soft-
ware artifacts, typically created by copying and pasting.
Clones tend to hinder maintenance, since changes to an arti-
fact region often need to be performed consistently to all of
its clones. Clone detection tools search for clones in software
artifacts to support the maintenance of software artifacts
that contain clones.

There are various types of clones used in research and
practice [18, 30]. To the best of our knowledge, this is the
first study to explore build logic cloning. Hence, for our
measurements, we focus on Type I clones, i.e., exact copies
ignoring the variations in whitespace and comments, and
leave the exploration of higher level clone types to future
work. We measure the extent of build logic cloning using:

Clone Coverage – The proportion of build logic lines that
are cloned at least once in the build system. Values
range between 0 (i.e., no detected clones) and 1 (i.e.,
each build logic line is cloned at least once).

Blow Up – The degree of inflation in build system size with
respect to a hypothetical build system that does not
contain any clones, i.e., ActualSize

ReduncancyFreeSize
− 1. Hence,

a blow up value of 0 indicates that the system is not
inflated by cloning, while values above 0 indicate the
degree of inflation due to cloning.

3. BUILD LOGIC CLONING IN INDUSTRY
This section provides a motivational example to illustrate

the reasons and impact of excessive build logic cloning.
Clone-based build system design. Most Munich Re
business applications use a shared company-wide build in-
frastructure based on Microsoft Team Foundation Server
(TFS) specified using MSBuild. Each business application
has different build specifications for each build configuration
(e.g., debug and release) and each application release (e.g.,
2013.1 and 2013.2). For example, one business application
has six build specifications representing debug and release
configurations for its 2013.1, 2013.2, and 2013.3 releases.

These MSBuild specifications enhance the default TFS
build process with unit testing, continuous code quality anal-
ysis, and packaging in preparation for automated deploy-
ment to testing, pre-production, and production environ-
ments. Build specifications range between 1,500-8,000 lines
of build logic, with an average size of 3,800. The Munich Re
build system currently contains more than 1.1 million lines
of build logic spread across 295 build specifications.

To add a new release or a new application to the build sys-
tem, the build specifications of a stable application are du-

plicated and customized. In the simplest case, the applica-
tion name, as well as the application-specific directories and
source file lists need to be customized. More complex appli-
cations have unique packaging requirements or need special
interaction with the TFS. Yet, since the core build logic re-
mains unchanged, build specifications are largely the same.
Since new releases and new applications must be added to
the build system regularly, one can easily see how the Mu-
nich Re build system has grown to the size it is today.
Clone-based build system maintenance. The effort
required to maintain the Munich Re build system has steadily
increased over the years. It now requires three full-time em-
ployees whose sole responsibility is to maintain the build
system. These build maintainers are responsible for config-
uring new application releases, adding new applications to
the build system, fixing build system defects, and adding
new build system features.

Even with this dedicated team of build maintainers, de-
fects fixes and new features take a long time to complete.
In fact, due to time pressure, some build system changes
are never completely propagated to all build specifications.
For example, a build maintainer recently added the Contin-
ueOnError flag (which prevents the build from failing) to one
of three specifications that uninstall the same application.
It was not until one week later that the flag was applied to
the second of the three specifications. The flag has not yet
been applied to a third instance.

Prolonged fixes and inconsistent changes are an often-
observed clone-related problem in source code, too [14]. It
is a novel observation, however, that build specifications are
affected by these problems as well.
Shortcomings of the clone-based build system de-
sign. The clone-based build system design has been per-
ceived by build maintainers as one of the fundamental causes
of the build maintenance difficulties at Munich Re. Through
discussions with the build maintainers, they report that:
“You have to alter 15 occurrences [of a defect] and you have
to be really careful not to introduce new [defects]”and“With
over 270 or more versions [of a build specification], the [build
system] is simply not maintainable anymore”.

Indeed, with a minimum clone length of twenty lines, clone
detection results indicate that the Munich Re build system
has a clone coverage of 94.4% and a blow up of 1,023% (clone
detector configuration details are found in Section 4). With
a minimum clone length of five lines, clone coverage and
blow up values increase to 99.1% and 2,335% respectively.
In other words, the Munich Re build system: (1) is over 23
times larger than it would be without cloning, and (2) only
contains roughly 50,000 unique lines of build logic.

Cloning between build specifications has also lead to dead
build features. These features were copied when a specifica-
tion was duplicated, but are not used during the build. This
further inflates maintenance effort and increases the likeli-
hood of introducing defects during maintenance, since one
must first recognize whether a build feature is active or not
before making modifications.

4. BENCHMARK COLLECTION AND

ANALYSIS
In this section, we describe our benchmark collection and

analysis approach. We structure our analysis by addressing
five research questions. We present our rationale for select-

Table 1: Overview of the studied systems.
Ant Maven Autotools CMake Total

Apache 51 56 18 3 128
Github 114 321 521 220 1,176
GNU 15 0 243 12 270

Sourceforge 593 125 1,517 63 2,298

Total 773 502 2,299 298 3,872
w/ Clones 664 484 943 162 2,253
% w/ Clones 86% 96% 41% 54% 58%

ing each research question below.
Deriving baseline values. Intuitively, build logic cloning
at Munich Re appears to be quite high. In order to ground
our intuition empirically, we collect a benchmark of build
logic clones from a large corpus of open source build sys-
tems. Through quantitative analysis of the benchmark, we
address the following three research questions:

(RQ1) How much cloning is typical of build sys-
tems?
Little is known about build logic cloning. Hence, we
are interested in first exploring what typical cloning
rates are within the scope of build systems.

(RQ2) Does technology choice influence cloning in
build systems?
There are numerous build technologies, each with
its own nuances. A better understanding of the in-
fluence that technology choice has on build system
quality metrics like cloning will allow practitioners
to make more informed build technology choices.

(RQ3) Do benchmark-derived cloning thresholds vary
among build technologies?
If technology-specific cloning benchmarks vary con-
siderably, a single technology-independent bench-
mark would set a target that is unreasonably low
for clone-prone technologies, and too lax for clone-
resistant technologies.

Understanding cloned information. The build system
describes up to five interdependent phases (cf. Section 2).
Build specifications describe how each phase must be per-
formed. It is not clear which of these phases are most sus-
ceptible to cloning. Through qualitative inspection of build
logic clones, we address the following two research questions:

(RQ4) What type of information is typically cloned
in build specifications?
We set out to better understand what phases of the
build process tend to be cloned in each build tech-
nology with the intent to discover if cloning rates
are affected by limitations of the technology itself
or a lack of skill in applying it.

(RQ5) How do build systems with few clones achieve
low clone rates?
We compare clone-prone and clone-resistant build
systems to elucidate differences in cloning practices.

Our approach to extracting and analyzing the build logic
cloning benchmark is structured using the four steps sug-
gested by Mockus for analyzing software repositories [24].
Figure 1 provides an overview of our approach. We describe
each step in the approach below.

(3)

Construct Meaningful

Metrics

File Type
Classification

Sample
Selection

Clone
Detection

Large corpus

of software

systems

(1)

Retrieve

Raw Data

Threshold
Calculation

Random
Sample

Selection

Cloned
Information

Analysis

Abnormal
System

Detection

Apache

GNU

Github

Sourceforge

Selected

Sources

Clone

DB

Ant

Maven

Autotools

CMake

Sampled

Clones

Apache

GNU

Github

Sourceforge

Clone

Thresholds

Filter
Unsuitable
Systems

(2)

Clean and Process

Raw Data Apache

GNU

Github

Sourceforge

Suitable

Systems

(4)

Analyze and

Present Results

Clone Extent
Analysis

Quantile Plots

% systems

M
e

tr
ic

Build Phase

Histogram

Phase

%
 c

lo
n
e
s

C
o
n
f

C
o
n
s
t

C
e
rt

P
k
g

D
e
p
l

Figure 1: Overview of our data extraction and analysis approach.

4.1 Retrieve Raw Data
It is important that our benchmark contains a large sam-

ple of build systems in order to improve confidence in the
conclusions that we draw. Hence, we select a sample of 3,872
build systems from the large corpus of open source systems
of varying size, scope, and domain collected by Mockus [25].
We describe the corpus of build systems used in this study
and explain our extraction and analysis approaches below.
Sample selection. The sample of build systems was ob-
tained from four sources described in Table 1. The Apache
Software Foundation provides organizational, legal, and fi-
nancial support for a broad range of open source software
systems. Savannah (GNU) is the software forge for people
committed to free software. Github and Sourceforge are also
popular software forges.

We select the build systems of Java and C/C++ systems
for our benchmark, since they are among the most broadly
adopted programming languages in our corpus [25]. We fur-
ther narrow our study by selecting the two most frequently
used build technologies for each studied language. In our
corpus, C/C++ systems use GNU Autotools and CMake
most frequently. Similarly, Ant and Maven are used most
frequently to specify Java build systems. We extract the lat-
est version of each software system that meets our selection
criteria from the large corpus.

Figure 2 provides an overview of the benchmark by plot-
ting the number of clones detected against size of the build
system using hexbin plots [4]. Hexbin plots are scatterplots
that represent several data points with hexagon-shaped bins.
The darker the shade of the hexagon, the more data points
that fall within the bin. The plot is logarithmically scaled
in all dimensions to lessen the influence of outliers.

The relationship between number of clones and build sys-
tem size is roughly linear on the log scale and quadratic
on the linear scale. The hexagons in Figure 2 tend to ap-
pear in a positive upward diagonal direction. Similarly, the
hexagons tend to deepen in shade along an upward diagonal
trend in the Java build systems. This suggests that as a
build system grows, so too does its proneness to cloning.

4.2 Clean and Process Raw Data
Prior to addressing our research questions, we must first

ensure the extracted systems are suitable for analysis. This
process is divided into two steps.
File type classification. In our prior work, we catego-
rized files by type semi-automatically [22], however with a
corpus of this scale, manual categorization is infeasible. To
address this, we conservatively identify build files based on

Table 2: The adopted file name conventions for the
studied build technologies.

Technology Conventions

Ant build.xml, build.properties
Maven pom.xml, maven([123])?.xml

Autotools
[Cc]onfigure.(ac|in), ac(local|site).m4,
[Mm]akefile.(am|in), config.h.in

CMake CMakeLists.txt, *.cmake

filename conventions. An overview of the filename conven-
tions that we map to each technology is given in Table 2.
Although our approach may miss some build specifications
that do not follow filename conventions, the approach is
lightweight enough to be applied to all files in the corpus.
Filter unsuitable systems. Software incubators such as
Github and Sourceforge often contain systems that have not
yet reached maturity. Neitsch et al. conjecture that IDE sup-
port for building software is sufficient for small systems [26].
Indeed, Smith suggests that build system maintenance does
not become a problem until a system ages, requiring more
configurability to expand market presence [31]. To reduce
noise in the benchmark, we filter away systems with fewer
than five build specification files or 100 lines of build logic.

4.3 Construct Meaningful Measures
Next, we apply clone detection to the surviving build sys-

tems using ConQAT [6]. Then, metric thresholds are derived
from the benchmark. Finally, a random sample of clones are
selected for detailed analysis.
Clone detection. The ConQAT clone detector reads all
files of a system that match the pattern of the specified build
technology from Table 2 into memory. The detection algo-
rithm is configured to be line-based with varying minimum
clone lengths of 5, 10, 15, and 20 lines. To handle file format-
ting differences, we trim the leading and trailing white space
of each line. We omit empty lines and comments, since they
do not have an impact on the build process. We also omit
closing XML tags, since XML-based build specifications are
more verbose. Although not strictly necessary for our anal-
yses in this paper, controlling for XML verbosity helps to
make XML and non-XML build logic cloning results more
comparable. In this paper, we consider only Type I clones.
For example, when the minimum clone length is set to five,
clones must share at least five consecutive non-empty lines
after applying the normalization described above.

Autotools CMake Ant Maven

10

1000
1

0
0

1
0

0
0

1
0

0
0

0

1
0

0

1
0

0
0

1
0

0
0

0

1
0

0

1
0

0
0

1
0

0
0

0

1
0

0

1
0

0
0

1
0

0
0

0

Lines of Build Logic

N
u
m

b
e
r

o
f
C

lo
n
e
s

1

10

100

Project
Count

Figure 2: Number of clones detected vs. build sys-
tem size (in lines of build logic).

Threshold calculation. Thresholds are used to identify
entities with metric values that warrant further investiga-
tion. For example, build specifications with a blow up value
above two may be worth inspection. Yet it is non-trivial
to select effective thresholds that pinpoint abnormal entities
while retaining low false positive and false negative rates.
There are various threshold derivation techniques that can
gauge a variable with unknown properties empirically. In or-
der to address RQ3, we adopt the quantile-based technique
suggested by Alves et al. [2], since (as they point out) other
threshold derivation techniques (such as deviation analysis)
often make invalid assumptions about the dataset (e.g., nor-
mally distributed), or require carefully tuned input param-
eters (e.g., number of clusters for clustering techniques).

Alves et al. suggest that values that fall above the 70th,
80th, and 90th percentiles are abnormal to a moderately high,
high, and very high degree respectively. We extend this
concept by arguing that values that fall below the 30th, 20th,
and 10th percentiles are abnormal to a moderately low, low,
and very low degree respectively. Values that appear at
quantile boundaries are considered thresholds.
Random sample selection. To address RQ4, we need
to select a representative sample of clones of each studied
technology for deeper analysis. We randomly select a sample
of clones large enough to achieve a 95% confidence level.

4.4 Analyze and Present Results
Finally, we use the derived thresholds to detect and ana-

lyze build systems with abnormal amounts of cloning.
Clone extent analysis. We use quantile plots to indicate
whether the amount of cloning in a system is abnormal.
These plots show the cumulative proportion of systems that
have clone coverage and blow up metrics below a given value.
Abnormal system detection. To better understand
good and bad cloning practices, we analyze the most and
the least clone-prone systems. We first identify common
cloning pitfalls of the most clone-prone systems. Then, we
analyze the least clone-prone systems to understand how
these pitfalls can be avoided.
Cloned information analysis. We manually analyze
the information cloned in a random sample of clones for
each studied technology (RQ4), and all of the clones in the
highly clone-prone build systems (RQ5). To address RQ4,
we assess each clone to determine which of the five build
phases (cf. Section 2) are impacted.

The configuration phase can be broken down into three
subcategories. Dependency probing checks for the existence
of an appropriate version of a third-party dependency (e.g.,
build tools, APIs). Dependency resolution probes for, down-
loads, and deploys third-party dependencies in a local cache

in preparation for use in later build phases. Tool configura-
tion selects the necessary options to prepare tools for use in
later build phases (e.g., compiler flags).

The construction phase is comprised of two subcategories.
Build either describes: (1) internal source dependencies (e.g.,
foo.o should be compiled before linking it into foo.so), or
(2) how input files are translated into output files (e.g., gcc
should be executed on foo.c to produce foo.o). Filesystem
logic handles the creation of output directories, or imple-
ments so-called“clean”targets that remove intermediate and
output files to force the build system to start from scratch.

The certification phase is most often comprised of Unit
testing logic that configures, compiles, or executes unit tests.
Similarly, Packaging logic describes how deliverables should
be bundled together for end user consumption.

The deployment phase not only comprises Installation logic
that describes how deliverables are deployed on a target ma-
chine, but also Execution logic that describes how deployed
deliverables should be executed in testing environments.

5. DERIVING BASELINE VALUES
In order to ground our intuition about the extent of build

cloning empirically, we perform a quantitative analysis of
the benchmark. In this section, we present the results of
this analysis with respect to RQ1-RQ3.

(RQ1) How much cloning is typical of build sys-
tems?

In order to address RQ1, we analyze the distributions of
clone coverage and blow up in the benchmark using boxplots.
In general, build logic clones tend to be small. Fig-
ure 3 shows that clone coverage and blow up values decrease
drastically when the minimum clone length is set to ten or
higher, indicating that many of build specification clones
cover five to nine lines. This is consistent with clones in
other software artifacts, where short clones are also more
frequent than long ones [13, 15].

Manual analysis of randomly selected clones with a mini-
mum length five reveals few false positives. Hence, to sim-
plify the remaining analyses, we only discuss the results with
respect to a minimum length of five.
Cloning is much more prevalent in Java build sys-
tems than other software artifacts. Prior work shows
that large software systems are expected to contain 7%-23%
duplicated code [3, 17, 19], with rare cases reaching 59% [8].
Requirements documents have an average clone coverage of
13.6%, with one reported case of 71.6% [13]. Conversely,
our benchmark values indicate that a clone coverage of 50%
occurs rather frequently for Java build systems. Figure 3a
shows that the studied Maven build systems have a median
clone coverage ranging between 47%-50%. While Ant build
systems have medians below 50%, the top of the box (indi-
cating the 75th percentile) extends beyond 50% for Github,
GNU, and Sourceforge build systems, indicating that more
than one quarter of Ant build systems have clone coverage
values that exceed 50%.
On the other hand, cloning in C/C++ build systems
is less prevalent. Figure 3c shows that the median clone
coverage for Autotools build systems only exceeds 0 in the
Apache organization, indicating that half of the studied Au-
totools build systems in the Github, GNU, and Sourceforge
organizations do not contain any clones. In fact, Table 1

Apache Github GNU Sourceforge

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

0.00

0.25

0.50

0.75

1.00

Ant Maven Ant Maven Ant Ant Maven

C
lo

n
e

 C
o
ve

ra
g

e

Minimum
Length

5

10

15

20

(a) Clone coverage (Java)

Apache Github GNU Sourceforge

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

0.0

0.5

1.0

Ant Maven Ant Maven Ant Ant Maven

B
lo

w
 U

p

Minimum
Length

5

10

15

20

(b) Blow up (Java)

Apache Github GNU Sourceforge

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0.0

0.2

0.4

0.6

Autotools CMake Autotools CMake Autotools CMake Autotools CMake

C
lo

n
e

 C
o
ve

ra
g

e

Minimum
Length

5

10

15

20

(c) Clone coverage (C/C++)

Apache Github GNU Sourceforge

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

0.0

0.1

0.2

0.3

0.4

0.5

Autotools CMake Autotools CMake Autotools CMake Autotools CMake

B
lo

w
 U

p

Minimum
Length

5

10

15

20

(d) Blow up (C/C++)

Figure 3: Cloning metrics gathered from the studied systems. Note: scales differ among the plots.

shows that while 86%-96% of the studied Java build systems
contain clones, only 41%-54% of C/C++ build systems do.
Furthermore, Figure 3c shows that 75th percentile of C/C++
build systems does not exceed 30% clone coverage.

While the magnitude of the observed C/C++ build clone
coverage values pale in comparison to the observed Java
ones, there are still many C/C++ build systems that have
plenty of clones. For example, Figure 3c shows that 25% of
Autotools build systems in Apache have a clone coverage be-
tween 27%-66%. In addition, 25% of CMake build systems
in Sourceforge have a clone coverage between 21%-48%.

Java build systems often have 50% clone coverage, rates
that have only been observed in extreme cases when study-
ing other software artifacts. While cloning in C/C++
build systems is less pervasive, there are still several sys-
tems that have a substantial number of clones.

(RQ2) Does technology choice influence cloning
in build systems?

To address RQ2, we compare the distributions of Figure 3.
For Java systems, cloning is more prominent when
using the more recent Maven technology than Ant.
Figures 3a and 3b show that Maven build systems tend to
have higher clone coverage and blow up values than Ant ones
do. Mann-Whitney U-tests (an alternative to the Student
t-test with greater resiliency to non-normal distributions)
confirm that the differences in clone coverage and blow up
are statistically significant (p < 0.01) in Apache, Github,
and Sourceforge. Table 1 shows that none of the studied
GNU systems use Maven, so no comparison can be made.
For C/C++ systems, cloning is more prominent when
using the more recent CMake build technology than
Autotools. Although Figure 2 indicates that there are
more clones in Autotools than CMake build systems, clone
coverage and blow up statistics tend to favour CMake. First,

Figure 3c shows that clones tend to cover more CMake lines
than Autotools ones do. Second, Figure 3d shows that
CMake clones tend to inflate build systems more than Auto-
tools clones do. Indeed, with a minimum clone length of five,
the median clone coverage and blow up of CMake exceeds
that of Autotools in Github, GNU, and Sourceforge.

Mann-Whitney U-tests confirm that the differences in clone
coverage and blow up are statistically significant (p < 0.01)
in GNU and Sourceforge, however they cannot confirm a
statistically significant difference in Github (p = 0.06). Fur-
thermore, although the median for Autotools build systems
exceeds that of CMake in Apache, Table 1 shows that our
sample of three CMake systems in Apache is too small for
statistical comparisons. In general, CMake build systems
tend to be covered and inflated more by cloning than Auto-
tools ones are.

The more recent CMake (C/C++) and Maven (Java)
build technologies tend to be more prone to cloning than
the older Autotools (C/C++) and Ant (Java) ones are.

(RQ3) Do benchmark-derived cloning thresh-
olds vary among build technologies?

To address RQ3, Figure 4 shows the clone coverage and
blow up quantile plots derived from our benchmark. We dis-
cuss the differences in thresholds for the studied Java and
C/C++ technologies below.
Maven build systems have much higher thresholds
for low values than Ant ones do. Complementing our
RQ2 findings, Figure 4 shows that normal cloning rates in
Maven are higher than those of Ant. In fact, Figure 4a shows
that Maven build systems with a clone coverage below 52%,
47%, or 39% are considered moderately low to very low in
our benchmark. On the other hand, Ant build systems with
a clone coverage of 36%, 25%, or 15% are considered low.
Similarly, Figure 4b shows that blow up values of 56%, 45%,

●

●

●

●

●

●

0.39

0.47
0.52

0.70
0.75

0.82

0.00 0.00
0.04

0.22

0.30

0.47

0.15

0.25

0.36

0.68

0.77

0.84

0.00 0.00 0.00

0.18

0.26

0.39

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Proportion of Systems

C
lo

n
e
 C

o
ve

ra
g
e

Abnormality

Very high

High

Moderately high

Normal

Moderately low

Low

Very low

Technology

● Ant

Autotools

CMake

Maven

(a) Clone coverage

●

●

●

●

●

●

0.33
0.45

0.56

1.08 1.27
1.71

0.00 0.00

0.02

0.16
0.23

0.47

0.09

0.18
0.28

0.98
1.38

2.02

0.00 0.00 0.00

0.12

0.19

0.34

0.1

10.0

0.00 0.25 0.50 0.75 1.00

Proportion of Systems

B
lo

w
 U

p
 (

lo
g
 s

c
a
le

)

Abnormality

Very high

High

Moderately high

Normal

Moderately low

Low

Very low

Technology

● Ant

Autotools

CMake

Maven

(b) Blow up

Figure 4: Quantile plots of system-level cloning metrics.

and 33% are also considered low for Maven build systems,
while values of 28%, 18%, and 9% are considered low for Ant
build systems. In other words, clone coverage and blow up
values up to and exceeding the 30th percentile of Ant would
still be beneath the 10th percentile of Maven build systems.

On the other hand, there is very little difference between
the low thresholds of C/C++ build systems. Figure 4 shows
that the CMake and Autotools clone coverage and blow up
thresholds differ at most by four percentage points.
High thresholds are similar between Ant and Maven,
and between Autotools and CMake. Figure 4a shows
that the high clone coverage thresholds for Java build sys-
tems differ by two percentage points at the 70th, 80th, and
90th percentiles. C/C++ systems differ by four to eight per-
centage points.

Similarly, Figure 4b shows that blow up thresholds at the
70th, 80th, and 90th percentiles of the C/C++ build systems
differ by four to seven percentage points. However, blow up
thresholds of the studied Java build systems cover a broader
range of 10 to 31 percentage points. The largest difference
in blow up thresholds for Java build systems (31 percentage
points) is at the 90th percentile, and is likely due to extreme
blow up values in outlier systems.
Munich Re build system is indeed unusual. Regard-
less of the technology, clone coverage or blow up values of
the same magnitude as Munich Re are not observed beneath
the 90th percentile. Hence, our intuition about the Munich
Re build system is empirically confirmed by the benchmark.

Technology-specific thresholds vary most for Java build
systems with abnormally low amounts of cloning, and
between CMake/Autotools and Ant/Maven for build sys-
tems with abnormally high amounts of cloning.

6. UNDERSTANDING CLONED INFORMA-

TION
While our quantitative analysis of Section 5 can be used to

identify build systems with abnormal amounts of cloning, it
does not help us to understand how cloning can be avoided
(without migrating to a different technology). To address
this, we perform a qualitative inspection of build logic clones.
In this section, we present the results of this analysis with
respect to RQ4 and RQ5.

Table 3: Clones pertaining each subcategories.
Phase totals are not the sum of each subcategory
because a clone may pertain to many subcategories.

Clone Counts Ant Maven Autotools CMake

All clones 56,521 71,543 23,723 3,746
Sample size (95% ± 5%) 382 382 378 349

Phase Subcategory Ant Maven Autotools CMake

C
o
n
fi
g
. Deps. Probing 3% 0% 1% 8%

Deps. Resolution 1% 54% 0% 4%
Tool Configuration 29% 32% 21% 32%

Phase Total 32% 79% 22% 40%

C
o
n
s
. Build 47% 16% 48% 65%

Filesystem 32% 1% 19% 1%
Phase Total 64% 17% 56% 66%

Cert. Unit Testing 12% 4% 13% 11%

Pkg. Packaging 25% 21% 21% 2%

D
e
p
l. Installation 8% 1% 9% 7%

Execution 3% 0% 0% 0%
Phase Total 11% 1% 9% 7%

(RQ4) What type of information is typically
cloned in build specifications?

In order to address RQ4, we need to analyze a represen-
tative sample of clones in each studied technology. As the
total number of clones is very large, and there was no au-
tomatic means of determining the build phase of the clone,
we sampled the clones for manual inspection. To obtain the
proportion estimates that are within 5% bounds of the ac-
tual proportion with 95% confidence level, we use the sample

size calculation of s = z
2
p(1−p)

0.052
, where p is the proportion

we want to estimate and z = 1.96. Since we did not know
the proportion in advance, we use p = 0.5. We, further,
correct for the finite population of clones to obtain 382 Ant,
382 Maven, 379 Autotools, and 349 CMake clones. Table 3
shows the proportion of randomly selected clones that are
associated with each build subcategory.
Cloning focus shifts from construction to configura-
tion in Maven. Table 3 shows that the majority of Ant
clones impact the construction phase (64%). 47% of clones
are associated with the build category and 32% with the
filesystem category. The next most frequently cloned phase
(configuration) appears in half as many clones (32%).

Many of these construction clones replicate entire Ant tar-
gets that create or delete temporary output directories or
compile Java source code. Since a single invocation of the
Java compiler will automatically resolve dependencies be-
tween input source files [7], Ant targets that compile Java
code often invoke the Java compiler specifying all impacted

Java files as inputs using wildcards. Hence, the compile tar-
get is generic, and often cloned in several Ant specifications.

While construction accounts for many of the clones in Ant
build systems (64%), most Maven clones impact configura-
tion (79%). The next most frequently cloned phase (pack-
aging) appears in less than a third as many clones (21%).

We observed that many of the Maven clones replicate
third-party dependency lists or plugin configuration among
subsystems. While this ensures that each subsystem can be
built independently of the others, it imposes a heavy load on
maintainers, who will need to update several pom.xml files
in order to modify third-party dependency lists or update
plugin configurations.
Construction is the most heavily cloned build phase
in C/C++ build systems. Table 3 shows that the
build subcategory represents 48% and 65% of Autotools and
CMake clones respectively. The filesystem category is also
detected in 19% of Autotools and 1% of CMake clones. All
in all, the construction phase accounts for 56% of Autotools
clones and 66% of CMake clones.

While the Autotools construction phase is most frequently
cloned (56%), Table 3 shows that packaging details are also
cloned often (21%). Yet packaging details are rarely cloned
in CMake (2%). Many of these Autotools packaging clones
have to do with repetition of data file lists among subsys-
tems. Since Autotools build specifications generate recursive
make build systems, variables are not shared among subsys-
tems [23]. Although Autotools offers developers an include

directive, we have observed that rather than place shared
variables in a header-like file, developers often clone vari-
ables that have a shared scope. Similar to Maven, where
dependency lists and plugin configuration were replicated,
developers likely duplicate shared variables to facilitate sub-
system independence. However, this makes system-wide
changes more difficult.

Conversely, we observe that CMake packaging details are
rarely cloned. We observe that developers leverage built-
in CPack functionality of CMake [20], where packaging de-
tails are typically specified in a single location: CPackCon-

fig.cmake. This eliminates the need to replicate packaging
details in subsystem specifications.
There are more configuration clones in the more
recent build technologies. Table 3 shows that there
are more than twice as many configuration clones in Maven
build systems (79%) than Ant ones (32%). Similarly, there
are almost twice as many configuration clones in CMake
(40%) than there are in Autotools (22%). In Section 5, we
report that these more recent technologies are more prone
to cloning (RQ2). The shift of cloning tendencies towards
configuration likely contributes to the inflated cloning values
we observe in the more recent technologies.

Configuration details are cloned more often in the more
recent CMake and Maven build technologies. For Java
build systems, Maven clones favour the configuration
phase, while Ant clones (and clones in C/C++ builds)
favour construction. CMake packaging support (CPack)
helps to reduce cloning in the packaging phase.

(RQ5) How do build systems with few clones
achieve low clone rates?

To address RQ5, we analyze clones in the systems with the
lowest and highest cloning rates for each studied technology.

<!-- Define references to files containing common targets -->
<!DOCTYPE project [

<!ENTITY modules -common SYSTEM "../ modules -common.ent">
]>

...
<project name="bea" default="all">

<!-- Include the file containing common targets. -->
&modules -common;

</project >

Listing 1: Using XML entity expansion to import
common build code in the Keel system.

Much Java build cloning can be avoided by exploit-
ing the underlying XML representation. We observe
that entire files are duplicated in the Ant and Maven systems
with the highest clone coverage. In these cases, development
teams duplicate existing build specifications to rapidly de-
velop new subsystems. However, developers have referred
to maintaining such build systems fraught with clones as
a “nightmare” (cf. Section 3). Defect fixes or updates to
dependency lists, tool configuration, and packaging details
must be carefully replicated among the clones to ensure that
builds continue to assemble deliverables correctly.

On the other hand, we have observed that in addition to
abstraction mechanisms provided by Ant and Maven (e.g.,
the include and import tasks), XML-based build systems
avoid cloning by leveraging the underlying XML represen-
tation. In prior work, we note that the JBoss build sys-
tem leverages XML entity expansion in Ant to implement a
framework-driven build system referred to as“buildmagic”[21].
Indeed, Listing 1 shows how one can use XML entity expan-
sion to avoid duplicating shared build code in subsystem
build specifications. We also find that the Ant test suite in-
cludes regression tests to ensure that entity expansion con-
tinues to work, suggesting that it is not a workaround, but
instead is intentionally supported functionality.
Many C/C++ build logic clones can be avoided by
duplicating templates automatically when building.
Many of the studied C/C++ systems provide development
APIs. As such, they ship examples of how to use vari-
ous API functionality with their deliverables. These exam-
ples include accompanying build specifications. However,
in the C/C++ systems with the highest clone coverage, we
find that many of these example build specifications are file
clones of each other, which poses maintainability problems.

One of the studied systems with a low clone coverage
avoids these clones by duplicating and specializing template
build specification automatically using shell scripts during
the construction phase. Using this approach, cloning shared
build code in example build specifications can be avoided.

XML entity expansion can be used to avoid cloning shared
build code in Java build systems. Cloning of build logic
shipped with API usage examples can be avoided by au-
tomatically deriving specifications at build-time.

7. THREATS TO VALIDITY
We now discuss the threats to the validity of our analysis.

Construct validity. Our clone detection tool is config-
ured to only detect Type I (exact) clones. Since we do not
detect Type II, III, or IV clones, our cloning results should
be interpreted as lower bounds rather than exact values.
Internal validity. We assume that large values of cloning
metrics suggest maintenance problems illustrated in our Mu-

nich Re example. Yet, recent research suggests that despite
the inherent maintainability issues, cloning may not always
be harmful [16, 27]. Nonetheless, we find that developers
complain about maintainability problems in heavily cloned
build systems, suggesting that excessive cloning makes build
system maintenance more difficult. Furthermore, our prior
work shows that unintentional inconsistent changes do occur
in large industrial systems [14].
Reliability validity. We conservatively detect build spec-
ifications using filename conventions. Although our classifi-
cation tool is lightweight enough to iterate over all files in
our large corpus, we may miss files that are build-related
that do not conform to filename conventions.
External validity. Although our benchmark covers a
large corpus of 3,872 systems, a limited number of open
source organizations are covered. As such, our results may
not generalize to other open source or even proprietary build
systems. However, since any build system needs to imple-
ment the phases outlined in Section 2, we believe that our
benchmark is a sound starting point. We plan to extend our
benchmark to include proprietary systems in future work.

There are hundreds of build technologies and of these, we
only include four in our benchmark. Our findings are en-
tirely bound to the studied technologies. However, it is our
experience that the technologies that we have selected are
quite popular in open source communities and are frequently
used in industry. Furthermore, Ant shares many similarities
with MSBuild. Specifications for both technologies are ex-
pressed using abstract targets and tasks specified in an XML
format. Hence, we suspect that the characteristics of cloning
we observed in Ant will also appear in MSBuild systems. We
plan to inspect this suspicion by expanding the scope of our
benchmark to include MSBuild in future work.

8. RELATED WORK
In this section, we discuss the related work with respect

to clone detection and build maintenance.
Clone detection. Clone detection for source code is a
mature research area. A plethora of detection tools have
been suggested and many studies have been investigated the
impact of code clones on software maintenance. Compre-
hensive surveys of prior work on clone detection have been
published by Koschke [18] and Roy et al. [29, 30].

Yet, as Robles et al. emphasize, a software system com-
prises artifacts other than source code that also require re-
search [28]. Our prior work highlights research areas for
clone detection beyond source code [12]. While researchers
have recently extended clone detection research to other soft-
ware artifacts, such as requirements specifications [13], mod-
els [5], and test cases [9], to the best of our knowledge, this
work is the first to analyze clones in build systems.
Build maintenance. Recent research has shown that
build system maintenance imposes a non-trivial “tax” on
software development [10, 22]. Indeed, our prior work shows
that source code and build system tend to co-evolve, i.e.,
changes in the source code often induce changes in the build
system and vice versa [1, 21]. Indeed, Neitsch et al. find
that abstractions tend to “leak” between source code and
build system [26]. Suvorov et al. find that when the main-
tenance of the build system grows unwieldy, development
teams take on large (and costly) build refactoring and mi-
gration projects [32]. This paper analyzes build logic cloning
in a benchmark of open source build systems. This bench-

mark is intended to help identify if and where developers
should focus build refactoring effort.

9. CONCLUSIONS
Build systems play a crucial role in software development.

They tend to grow in terms of complexity as a software
project ages [1, 21]. When build system complexity grows
unwieldy, build maintenance becomes difficult, and develop-
ment teams refactor build systems to restore order.

In order to determine if and where build refactoring should
be applied, CQSE performs quality assessments of build sys-
tems. In this paper, we discuss how a benchmark of build
logic clones can empirically ground metrics used in these as-
sessments. Through analysis of the benchmark, we make
the following observations:

• 50% clone coverage rates, which have only been recorded
in rare cases in other software artifacts [8], frequently
occur in Java build systems.

• The more recent CMake and Maven build technologies
tend to be more prone to cloning, especially of config-
uration details like API dependencies, than the older
Autotools and Ant technologies respectively.

• While build logic cloning can be difficult to avoid, it
is not a necessity, i.e., we have observed build systems
with little cloning using each studied technology.

• Templating and inclusion mechanisms beyond those
provided by build technologies are employed to reduce
build logic cloning, suggesting that the mechanisms
provided by build technologies are insufficient.

Future work. While we have seen the shortcomings of a
clone-based build system design at Munich Re, we do not
know to what extent it can be generalized. For example, it
could be that different types of build specification informa-
tion have differences in change-proneness. Clones in some
areas (e.g. construction) could be more problematic than
in others (e.g. configuration). Analysis of the evolution of
clones in build systems could help to further our knowledge.
Refactoring to reduce cloning at Munich Re. The
benchmark-derived thresholds confirm that the clone-based
build system design at Munich Re is unusual. Munich Re
has decided to restructure the build system. To facilitate
this, we are creating reusable build logic components that
can be shared among build specifications (without cloning).

The analysis we performed in this paper helped us in de-
signing the solution. First, to work around the limitations of
the MSBuild abstraction mechanisms, we adopt a practice
that we observed in C/C++ build systems, where common
build logic is stored in a template that is copied and spe-
cialized automatically during an initial phase in the build
process. Second, similar to Maven build systems, our so-
lution divides the core build logic that drives the different
build phases into individual plugins that enable automated
testing, packaging, and deployment.

However, the new build solution also requires a more struc-
tured change process. Since changes to shared build compo-
nents affect all build specifications that rely on them, they
must be more carefully maintained than the prior clone-
based solution was. To this end, Munich Re has created a
dedicated test bed in which build component changes can

be evaluated before they are deployed to production builds.
Furthermore, we are creating a dashboard that displays nightly
clone detection results as an early-warning system against
proliferation of cloning in the new build system.

10. ACKNOWLEDGMENTS
This research was partially supported by the Natural Sci-

ences and Engineering Research Council of Canada (NSERC)
and the German Federal Ministry of Education and Research
(BMBF), grant “EvoCon, 01IS12034A”.

11. REFERENCES

[1] B. Adams, K. D. Schutter, H. Tromp, and W. D.
Meuter. The Evolution of the Linux Build System. Elec-
tronic Communications of the ECEASST, 8, 2008.

[2] T. L. Alves, C. Ypma, and J. Visser. Deriving Metric
Thresholds from Benchmark Data. In Proc. of the 26th
Int’l Conf. on Software Maintenance (ICSM), pages 1–
10, 2010.

[3] B. S. Baker. On Finding Duplication and Near-
Duplication in Large Software Systems. In Proc. of the
2nd Working Conf. on Reverse Engineering (WCRE),
pages 86–95, 1995.

[4] D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S.
Littlefield. Scatterplot Matrix Techniques for Large
N. Journal of the American Statistical Association,
82(398):424–436, 1987.

[5] F. Deissenboeck, B. Hummel, E. Juergens, B. Schaetz,
S. Wagner, J.-F. Girard, and S. Teuchert. Clone De-
tection in Automotive Model-Based Development. In
Proc. of the 30th Int’l Conf. on Software Engineering
(ICSE), pages 603–612, 2008.

[6] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner,
B. M. y Parareda, and M. Pizka. Tool Support for
Continuous Quality Control. IEEE Software, 25(5):60–
67, 2008.

[7] M. Dmitriev. Language-Specific Make Technology for
the Java Programming Language. In Proc. of the
17th Conf. on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA), pages 373–385,
2002.

[8] S. Ducasse, M. Rieger, and S. Demeyer. A Language In-
dependent Approach for Detecting Duplicated Code. In
Proc. of the 15th Int’l Conf. on Software Maintenance
(ICSM), pages 109–118, 1999.

[9] B. Hauptmann, M. Junker, S. Eder, E. Juergens, and
R. Vaas. Can clone detection support test comprehen-
sion? In Proc. of the 20th Int’l Conf. on Program Com-
prehension (ICPC), pages 209–218, 2012.

[10] L. Hochstein and Y. Jiao. The cost of the build tax in
scientific software. In Proc. of the 5th Int’l Symposium
on Empirical Software Engineering and Measurement
(ESEM), pages 384–387, 2011.

[11] J. Humble and D. Farley. Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment
Automation. Addison-Wesley, 2010.

[12] E. Juergens. Research in cloning beyond code: a first
roadmap. In Proc. of the 5th Int’l Workshop on Soft-
ware Clones (IWSC), pages 67–68, 2011.

[13] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel,
B. Schaetz, S. Wagner, C. Domann, and J. Streit. Can
Clone Detection Support Quality Assessments of Re-
quirements Specifications? In Proc. of the 32nd Int’l
Conf. on Software Engineering (ICSE), volume 2, pages
79–88, 2010.

[14] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wag-
ner. Do Code Clones Matter? In Proc. of the 31st Int’l

Conf. on Software Engineering (ICSE), pages 485–495,
2009.

[15] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder:
A Multilinguistic Token-Based Code Clone Detection
System for Large Scale Source Code. Transactions on
Software Engineering (TSE), 27(7):654–670, 2002.

[16] C. J. Kasper and M. W. Godfrey. “Cloning consid-
ered harmful” considered harmful: patterns of cloning
in software. Empirical Software Engineering, 13(6):645–
692, 2008.

[17] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler,
and M. Bernstein. Pattern Matching for Clone and
Concept Detection. Automated Software Engineering,
3(1-2):77–108, 1996.

[18] R. Koschke. Survey of research on software clones. In
Duplication, Redundancy, and Similarity in Software.
Dagstuhl Seminar Proceedings, 2007.

[19] B. Laguë, D. Proulx, E. M. Merlo, J. Mayrand, and
J. Hudepohl. Assessing the Benefits of Incorporating
Function Clone Detection in a Development Process. In
Proc. of the 13th Int’l Conf. on Software Maintenance
(ICSM), pages 314–321, 1997.

[20] K. Martin and B. Hoffman. Mastering CMake, 5th Edi-
tion. Kitware Inc., Clifton Park, NY, USA, 2009.

[21] S. McIntosh, B. Adams, and A. E. Hassan. The evo-
lution of Java build systems. Empirical Software Engi-
neering, 17(4-5):578–608, 2012.

[22] S. McIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei,
and A. E. Hassan. An Empirical Study of Build Main-
tenance Effort. In Proc. of the 33rd Int’l Conf. on Soft-
ware Engineering (ICSE), pages 141–150, 2011.

[23] P. Miller. Recursive make considered harmful. In Aus-
tralian Unix User Group Newsletter, volume 19, pages
14–25, 1998.

[24] A. Mockus. Software support tools and experimental
work. In Proc. of the Int’l Conf. on Empirical Software
Engineering Issues: Critical Assessment and Future Di-
rections, pages 91–99, 2007.

[25] A. Mockus. Amassing and indexing a large sample of
version control systems: Towards the census of public
source code history. In Proc. of the 6th Working Conf.
on Mining Software Repositories (MSR), pages 11–20,
2009.

[26] A. Neitsch, K. Wong, and M. W. Godfrey. Build System
Issues in Multilanguage Software. In Proc. of the 28th
Int’l Conf. on Software Maintenance (ICSM), pages
140–149, 2012.

[27] F. Rahman, C. Bird, and P. Devanbu. Clones: what
is that smell? Empirical Software Engineering, 17(4-
5):503–530, 2012.

[28] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo.
Beyond Source Code: The Importance of Other Arti-
facts in Software Development (A Case Study). Journal
of Systems and Software (JSS), 79(9):1233–1248, 2006.

[29] C. Roy, J. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and tools:
A qualitative approach. Science of Computer Program-
ming, 2009.

[30] C. K. Roy and J. R. Cordy. A survey on software clone
detection research. Technical Report 541, Queen’s Uni-
versity at Kingston, 2007.

[31] P. Smith. Software Build Systems: Principles and Ex-
perience. Addison-Wesley, 1st edition, March 2011.

[32] R. Suvorov, M. Nagappan, A. E. Hassan, Y. Zou, and
B. Adams. An Empirical Study of Build System Migra-
tions in Practice: Case Studies on KDE and the Linux
Kernel. In Proc. of the 28th Int’l Conf. on Software
Maintenance (ICSM), pages 160–169, 2012.

	Introduction
	Background
	Build Logic Cloning in Industry
	Benchmark Collection and Analysis
	Retrieve Raw Data
	Clean and Process Raw Data
	Construct Meaningful Measures
	Analyze and Present Results

	Deriving Baseline Values
	Understanding Cloned Information
	Threats to Validity
	Related Work
	Conclusions
	Acknowledgments
	REFERENCES

