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ABSTRACT
Studying the evolution of topics (collections of co-occurring
words) in a software project is an emerging technique to
automatically shed light on how the project is changing
over time: which topics are becoming more actively devel-
oped, which ones are dying down, or which topics are lately
more error-prone and hence require more testing. Existing
techniques for modeling the evolution of topics in software
projects suffer from issues of data duplication, i.e., when the
repository contains multiple copies of the same document,
as is the case in source code histories. To address this is-
sue, we propose the Diff model, which applies a topic model
only to the changes of the documents in each version instead
of to the whole document at each version. A comparative
study with a state-of-the-art topic evolution model shows
that the Diff model can detect more distinct topics as well
as more sensitive and accurate topic evolutions, which are
both useful for analyzing source code histories.
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1. INTRODUCTION
Software developers rely on historical software reposito-

ries (e.g., source code, mailing lists, and commit logs) for
understanding their projects and making maintenance de-
cisions. For example, developers look for the main busi-
ness concepts embedded in the source code [20]; they browse
mailing lists to find discussions about collaborative design
decisions [25, 30]; and they read commit logs to see what
has recently changed in the source code [13]. However, since
these repositories are often large and have no explicit orga-
nization, they can be difficult to browse and understand.
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Topic models, such as latent Dirichlet allocation (LDA) [6],
have recently been used to help developers understand their
repositories [1, 2, 7, 13, 15, 18–20, 23, 28]. Topic models are
statistical methods that automatically extract a set of top-
ics from a repository; topics are collections of words that
co-occur frequently in the repository. Each document is as-
signed a small set of topics that describe it; a document
might be assigned topics like“payroll processing”and“mouse
events”. The main benefit is that documents can now be
linked through the topics they contain; all documents con-
taining the topic “payroll processing” can easily be grouped
together, no matter to which physical package they belong.

Topic evolution models, which describe how topics change
over time, also have the potential to help software develop-
ers. For example, topic evolution models can indicate when
particular topics were added, modified, or deleted from the
source code; the “payroll processing” topic was added in ver-
sion 3 and saw additional growth in version 7. Develop-
ers can also learn which topics are becoming more scattered
across the system [8,16]; the“payroll processing”topic is now
in 100 documents, but it began in just two. Since topics are
closely related to concerns and features [2], topic models can
provide a deep understanding of the project’s history that
is difficult to obtain from reading the source code alone.

The state-of-the-art topic evolution model, called the Hall
model [12], was initially designed for corpora that have dif-
ferent properties than source code histories. The Hall model
typically operates on corpora in which each version is com-
pletely different (e.g., conference proceedings) from the pre-
vious. Files in source code histories, however, are typically
incrementally updated between versions (e.g., main.c ver-
sion 34 versus main.c version 35), resulting in partial or
full duplications of files between successive versions. After
applying the Hall model to source code histories, we have
found that this duplication effect causes unintended results
that reduces its effectiveness.

To combat these issues, we propose the Diff model, an ex-
tension to the Hall model that operates only on the changes
between versions of the repository. Through case studies on
simulated data, and the JHotDraw and PostgreSQL projects,
we show that the Diff model is able to produce more distinct
topics and more sensitive and accurate topic evolutions when
applied to source code histories, as compared to the Hall
model. This paper makes the following contributions:
– We present and formalize the Diff model, which alleviates

the data duplication issue.
– We empirically compare the Hall and Diff models through

case studies on simulated data and open-source projects.
The data and results of our work are publicly available [26].



Label Top words Top 3 matching classes
file filter file uri chooser urichoos save filter set jfile open JFileURIChooser, URIUtil, AbstractSaveUnsavedChangesAction
tool bar editor add tool draw action button bar view creat DrawingPanel, ODGDrawingPanel, PertPanel
undoabl edit edit action undo chang undoabl event overrid NonUndoableEdit, CompositeEdit, UndoRedoManager
connect figur figur connector connect start end decor set handl ConnectionStartHandle, ConnectionEndHandle, Connector
bezier path path bezier node index mask point geom pointd CurvedLiner, BezierFigure, ElbowLiner

Table 1: Example topics from JHotDraw source code version 7.5.1.

2. TOPIC MODELS
Topic models are the result of any method that automat-

ically extracts topics from a corpus of text documents [5],
where topics are collections of words that co-occur frequently
in the corpus. Due to the nature of language usage, the
frequently co-occurring words constituting a topic are often
semantically related—for example, one might find the words
{user, account, password, authentication} in one topic, and
{button, click, mouse, drag, drop} in another. Documents
can be structured by the topics they contain, and the entire
corpus can be organized in terms of these discovered topics.

Topic models are a useful tool for exploring and under-
standing the unstructured text found in many software repos-
itories. They have recently been applied to various soft-
ware engineering problems, such as concern location [2, 17,
20], traceability link recovery [1], trend analysis in commit
logs [13], security trend analysis [23], bug localization [19],
bug prediction via new coupling/cohesion metrics [9,18], and
source code evolution [16,28].

LDA is a popular probabilistic topic model [6]. LDA mod-
els each document in a corpus as a multi-membership mix-
ture of K topics, and each topic as a multi-membership mix-
ture of the words in the corpus vocabulary. This means that
each document can contain more than one topic, and each
word in the repository can be part of more than one topic.
Hence, LDA is believed to be able to discover a set of ideas or
themes that well describe the entire software repository [5].

Table 1 shows example topics discovered by LDA from ver-
sion 7.5.1 of the source code of JHotDraw [14], a framework
for creating simple drawing applications. For each topic, the
table shows an automatically-generated two-word topic la-
bel, the top (i.e., highest probable) words for the topic, and
the top three matching Java classes in JHotDraw. The top-
ics span a range of concepts, from opening files to drawing
Bezier paths. The discovered topics intuitively make sense
and the top-matching classes match our expectations—there
seems to be a natural match between the “Bezier path” topic
and the CurvedLinear and BezierFigure classes.

LDA is completely untrained and automatic—no training
data or example topics are required before LDA can discover
these semantic themes. LDA uses word co-occurrences in
documents to automatically discover topics—topics consist
of those words that happen to co-occur frequently through-
out the corpus. LDA then evaluates each document to de-
termine which topics best describe it. These properties of
LDA—ease and power—are likely the reason it has seen re-
cent success in mining unstructured software repositories.

2.1 Source Code Preprocessing
Before LDA (or any topic model) is applied to source code,

several preprocessing steps are generally taken in an effort to
reduce noise and improve the resulting topics: characters re-
lated to the syntax of the programming language (e.g., “&&”,
“->”) are removed; programming language keywords (e.g.,
“if”, “while”) are removed; identifier names are split into

multiple parts based on common naming conventions (e.g.,
“oneTwo”, “one_two”); common English-language stopwords
(e.g., “the”, “it”, “on”) are removed; word stemming is ap-
plied to find the root of each word (e.g., “changing” becomes
“chang”); and in some cases, the vocabulary of the resulting
corpus is further pruned by removing words that occur in
over 80% of the documents or under 2% of the documents.

The main idea behind these steps is to capture the se-
mantics of the developers’ intentions, which are thought to
be encoded within the identifier names and comments in the
source code. The rest of the source code (i.e., special syntax,
language keywords, and stopwords) are just noise and will
not be beneficial to the results of topic models.

2.2 Topic Metrics
The output of LDA can be post-processed to compute

metrics on the discovered topics [2,28]. For example, metrics
can measure the similarities between topics (based on shared
words) and similarities between documents (based on shared
topics). These similarities can help in refactoring, program
understanding, and other maintenance tasks, allowing de-
velopers to browse the source code from a topic (semantic)
view, as opposed to the traditional package (physical) view.

In this paper we focus on the assignment metric of topics,
although the models we study generalize to any metric. The
assignment of a topic is defined as the summation of the
membership of all documents for that topic. The assignment
metric gives a good indication of the total weight or volume
of a topic throughout the repository. For example, if the
topic with top words {parsing grammar rule sentence} has
a higher assignment than the topic with top words {mouse
click right left move}, then we can infer that the repository
has more lines of code about parsing than it does about
mouse events.

3. TOPIC EVOLUTION MODELS
A topic evolution model is a topic model that accounts

for time in some way, allowing the documents to have time-
stamps and the corpus to be versioned. Topic evolution
models are useful for detecting and analyzing how topics
change, or evolve, over the lifetime of a corpus. Some topics
might become more and more present, increasing their over-
all importance. Other topics may die completely, indicating
a marked change in the underlying corpus.

Topic evolution models have several applications in soft-
ware engineering. First, knowing when a topic is first intro-
duced or heavily modified in a repository is useful for pro-
gram understanding, since it reveals the history of important
concepts within the code [16]. Second, measuring the scat-
ter (i.e., amount of spread) or tangle of a topic over time
is useful for refactoring efforts, since it identifies potential
bad code smells [8]. Third, understanding which topics were
modified at a particular version can glean insight into which
features or concerns were modified at that version, which is
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Figure 1: A graphical depiction of the three topic evolution models.

useful for maintenance and re-engineering [13]. Topic evo-
lution models thus allow a higher-level semantic analysis of
software evolution.

Topic evolution models typically involve two steps. In the
first, topics are extracted from the corpus in the usual way
for topic models, based on word co-occurrences in the doc-
uments. In the second, the amount of change to a topic at
each point in time is measured by the topic evolution model,
typically by computing a topic metric (like the assignment
metric described in Section 2.2) on each individual version
and then plotting the metric across all versions.

Many topic evolution models have been proposed [4, 12,
22, 29], but most make assumptions that are too restrictive
for use on software repositories. Thus far in the software
engineering literature, two topic evolution models have been
employed: the Hall model and the Link model. Before we
describe each, it is necessary to introduce some notation.

3.1 Notation
LDA discovers K topics, z1, . . . , zK , where K is an input

to the model. For each topic zi, LDA produces an m-length
word (or term) membership vector φzi that describes the
probability that each word appears in topic zi. (There are m
unique words in the vocabulary of the corpus.) Additionally,
for each document dj in the corpus, j = 1, . . . , n, LDA
produces a K-dimensional topic membership vector θdj that
describes the probability that each topic appears in dj . A
document is a general notion in LDA, and can be any string
of characters, although it is typically defined to be either an
entire source code file or an individual method.

A version V of a corpus is a set of documents {d1, d2, ...}
with the same time-stamp t(V ). The version history H of
a corpus is the set of versions related to the corpus, H =
{V1, V2, . . . , Vv}. We say that dij is the document with index
i in version Vj , and there are |Vj | documents in a particular
version Vj of the corpus.

Finally, the evolution E of a metric m of a topic zk
is a time-indexed vector of metric values for that topic:
E(zk,m) = [m(zk, t(V1)),m(zk, t(V2)), ...,m(zk, t(Vv))].

3.2 The Hall Model
The Hall model, proposed by Hall et al. [12] and first used

on software repositories by Linstead et al. [16] and Thomas
et al. [28], is an intuitively simple topic evolution model
that applies LDA to all versions of all documents at once
(see Figure 1(a)). Thus, LDA is executed only once on all
|V1|+ . . .+ |Vv| documents at the same time.

During the post-processing phase, the topic metrics are
computed by first isolating all documents in a particular
version. For example, the assignment of a topic za at version
Vj is computed as the summation of the topic’s memberships

Min. Med. Mean Max.
JHotDraw

% files changed per version <0.1 33.8 35.9 89.5
% words changed per changed file <0.1 0.1 0.2 35.2

PostgreSQL
% files changed per version <0.1 6.3 15.9 73.8
% words changed per changed file <0.1 0.1 0.2 17.7

Table 2: Change characteristics of JHotDraw and
PostgreSQL.

across all documents in Vj :

A(za, Vj) =

|Vj |∑
i=1

θdij [a]. (1)

This intuitive and simple application of LDA to all ver-
sions makes the Hall model attractive for use on many datasets.

3.3 The Link Model
The Link model, proposed by Mei et al. [22] and first used

on software repositories by Hindle et al. [13], takes a differ-
ent approach than the Hall model. The Link model applies
LDA to each version of the repository separately, followed
by a post-processing phase to link topics across versions (see
Figure 1(b)). Once the topics are linked, the topic evolu-
tions can be computed in the same way as in the Hall model
(Equation 1).

If there are v versions of the corpus, then LDA is executed
v times on an average of 1

v
∗(|V1|+. . .+|Vv|) documents each

time. The post-processing phase must iteratively link topics
found in Vi to the topics found in Vi−1. This process inher-
ently involves the use of similarity thresholds to determine
whether two topics are similar enough to be called the same,
since LDA is a probabilistic process and it is not guaranteed
to find the exact same topics in different versions of a cor-
pus. As a result, at each successive version, some topics are
successfully linked while some topics are not, causing past
topics to “die” and new topics to be “born”. Additionally, it
is difficult to allow for gaps in the lifetime of a topic—a death
at version Vi and then a rebirth at Vj for some j > i+ 1.

For these reasons, we leave the evaluation of the Link
model to future work, and instead focus the comparison of
our proposed model against the more popular Hall model.

4. THE DIFF MODEL
We now motivate and present a new topic evolution model,

called the Diff model.

4.1 Motivation for the Diff Model
Traditional topic evolution models were designed for cor-

pora in which the documents are unique across time. This is



true, for example, for conference proceedings—it is not the
case that an article one year is only slightly updated and
republished the next year. Instead, each article (i.e., the
specific combination of words within an article) is unique
across time. However, source code repositories are typically
updated incrementally, with each version making only small
changes to the previous. Therefore, we would expect to see
significant overlap in the data (i.e., word co-occurrences)
between versions.

To quantify the change characteristics in historical source
code repositories, we looked at two open source systems,
JHotDraw [14] and PostgreSQL [24]. For JHotDraw, we an-
alyzed the source code changes over 13 releases (versions
5.2.0–7.5.1) and for PostgreSQL, we analyzed the source
code changes over 46 releases (versions 7.0.0–8.3.5). Ta-
ble 2 summarizes our findings, and we make two important
observations.

1. Most files are not altered between versions. On av-
erage, between 16% (PostgreSQL) and 36% (JHotDraw) of
the source code files experienced some change between ver-
sions, measured by the number of files that had any change
activity (i.e., lines added, removed, or modified). In other
words, on average at least 64% (JHotDraw) and up to 84%
(PostgreSQL) of the source code files are exact duplicates
from release to release. These unaltered documents will ob-
viously have the same word co-occurrences as their previous
versions, since no changes were made.

2. Most changes are very small. For the average file
that experienced a change between versions, only 0.1% (both
PostgreSQL and JHotDraw) of its words actually changed,
measured as the number of changed words over the num-
ber of total words in the file. Almost all of a file’s content
remains unaltered, and hence the word co-occurrences will
largely be the same.

We hypothesize that the above observations affect the re-
sults obtained by the Hall model. Recall that the Hall model
applies LDA to all versions of all files. Since we know that
most files are not changed at all between versions, and even
the files that are changed are not changed by much, we can
conclude that the word co-occurrences that LDA operates
on will be skewed in the direction of the duplicated files.

To illustrate this, Figure 2 shows a simple example. The
repository on the left is a normal repository (e.g., conference
proceedings) with two unique documents. LDA will discover
a topic from the most commonly co-occurring words, in this
case {a, b}. This is the preferable behavior of LDA. The
repository on the right has four versions of two unchanging
documents. In this case, LDA will discover two topics ({a,
b, c} and {a, b, d}), instead of discovering one topic ({a, b})
as it would have if it were only applied to the first version
of the two documents. We call this the duplication effect,
which occurs (to varying degrees) any time LDA is run on
two or more near copies of a document.

4.2 Diff Model Description
In order to address the data duplication effect found in

source code histories, we propose a simple but effective topic
evolution model, the Diff model. The key idea is that the
Diff model prepends a diff step to the Hall model to isolate
the changes between successive versions of each document.
This diff step effectively removes all duplication and leaves
only the changed portion of the document, hence ridding
the corpus of the duplication effect. The Diff model can
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Figure 2: On the left, a repository without duplica-
tion (2 unique files, 3 words each) yields a preferable
topic. On the right, a repository with duplication (2
files, 4 unchanged versions each) yields confounded
topics (should only be a single topic {a, b}).

be thought of as an extension to the Hall model, since the
models are largely the same. However, as we will show in this
paper, the diff step is critical when applying topic evolution
models to software repositories with duplication.

Figure 1(c) depicts the Diff model process. For each source
code document dij in the system, we first compute the edits
between successive versions Vj and Vj′ (j′ = j+1) using the
GNU diff file comparison tool [10]. diff classifies each edit
as an add or delete, depending on whether the edit resulted
in more or fewer lines of code, respectively. If an existing
line is modified, it is considered by diff to be deleted and
then added again. For each version of each document, we
create two delta documents, δaij′ and δdij′ . We place all the
added lines between dij and dij′ into δaij′ and all the deleted

lines into δdij′ . We use the notation |δaij′ | to represent the
number of words in δaij′ .

We must handle two special cases: 1) When we encounter
a new document di at version Vj (either because j = 1 or di is
a new document), we classify the entire document as added
words, and thus we add the entire document to the delta
document δaij ; and 2) when a document di is removed at
version Vj , we classify the entire document as deleted words,
and thus add the entire document to the delta document δdij .

Next, we apply LDA to the entire set of delta documents,
resulting in a set of extracted topics and membership values
for each delta document.

Finally, we post-process the output of LDA to compute
the membership values of the original documents at each
point in time. The corresponding θdij vector of a document
di at version Vj is defined recursively as

θdij =
θd

iĵ

∣∣∣diĵ∣∣∣+ θδaij

∣∣∣δaij∣∣∣∣∣∣diĵ∣∣∣+
∣∣∣δaij∣∣∣ − ϕ

 θd
iĵ

∣∣∣diĵ∣∣∣− θδdij ∣∣∣δdij∣∣∣∣∣∣diĵ∣∣∣− ∣∣∣δdij∣∣∣
 (2)

where ϕ() is the normalizing function and ĵ = j − 1 is the
index of the previous version of document di. n() accounts
for the scenario when more words matching a given topic
were subtracted than were in the previous version of the
document for that topic (e.g., subtracting 20 words about
topic A when the previous version only had 10 words about
topic A), which is unlikely but possible because LDA is a
probabilistic process.



The intuition behind Equation 2 is that for each version of
a document, we adjust the θ vector by adding the lines of the
δa document and subtracting the lines of the δd document,
thus arriving at a representative state of the document at
each version. This cumulative definition is necessary since
we only model the changes at each version, but we want to
know the θ vector for the entire document at each version.

4.3 On The Origin of the Diff Model
The Diff model was originally motivated by our own ex-

periences and struggles when applying the Hall model to
source code histories. In a previous study, we applied the
Hall model to the source code history of JHotDraw to study
its evolutions of topics [28]. At the time, the Hall model
was the known standard for such a task, and we found the
results to be acceptable.

In a subsequent study, we applied the Hall model to a
repository with significantly more versions than JHotDraw,
and hence, more duplication. Understanding the topic evo-
lutions in this case proved to be difficult, and we felt there
was something wrong with the topics and evolutions. After
considerable investigation, we hypothesized the cause of the
problem to be the duplication effect, and the Diff model was
created to address this issue.

We note that the Diff model can be viewed as an exten-
sion to the Hall model, for two primary reasons. First, after
the diff step, the Hall and Diff models perform equivalent
actions on the data. Second, when applied to a traditional
corpus with no duplication (i.e., a history of conference pro-
ceedings), the diff step will have no effect—it will essentially
be a noop. Thus, as we will show, the Diff model improves
the results of Hall on repositories that have duplication; on
all other repositories, the two models are equivalent.

5. EMPIRICAL EVALUATION
We now perform an empirical evaluation of the Diff and

Hall models. As was described in Section 4.1, we hypothesize
that when the Hall model is applied to a repository with
duplication, it will generate imperfect topics that confound
multiple concepts. On the other hand, the Diff model will
create more distinct topics that stand on their own and thus
allow the documents to be described more naturally. In fact,
producing distinct topics is known to be a desirable property
for topic models [3].

In addition, because the topics discovered by the Diff
model are more distinct and better describe the documents,
we hypothesize that the resulting topic evolutions will more
accurately describe the changes to the repository.

We now formulate the research hypotheses that we focus
on in this section.

Hypothesis 1. The removal of data duplication will result
in more distinct topics.

Hypothesis 2. More distinct topics will allow the discovery
of more sensitive evolutions.

Hypothesis 3. More distinct topics will allow the discovery
of more accurate evolutions.

We test our first two hypotheses by conducting case stud-
ies on two real-world open source systems (Section 5.1),
and we build a simulated project, whose properties are well-
known, to test our third hypothesis (Section 5.2).

5.1 Evaluation on Real-World Systems
Our goal in this section is to determine whether there is

a difference between the Hall and Diff models in the dis-
tinctness of the discovered topics and the sensitivity of the
discovered topic evolutions.

5.1.1 Studied Systems
We applied both models to the source code histories of two

open source systems: JHotDraw [14] and PostgreSQL [24].
JHotDraw is a medium-sized drawing framework implemented
in Java and has been the subject of many previous studies.
PostgreSQL is a large database management system and is
chosen due to its extensive documentation.

Our JHotDraw dataset consists of 13 releases (versions
5.2.0–7.5.1). The latest release contains 613 files totaling
84K source lines of code (SLOC). Our PostgreSQL dataset is
comprised of 46 release versions (versions 7.0.0–8.3.5). The
latest release contains 844 files totaling 501K SLOC.

5.1.2 Study Setup
We preprocessed the source code of each system using the

steps described in Section 2.1. Namely, we isolated iden-
tifier names and comments from the source code, discard-
ing special syntax, programming language keywords, and
English language stopwords. We split identifiers, stemmed
each word, and pruned the vocabulary so that overly com-
mon (>80%) or overly rare (<2%) words are removed.

For JHotDraw, the preprocessing resulted in a total of
2.3M words (964 of which are unique) in 5,833 documents,
totaling 29MB of data on disk. For PostgreSQL, the prepro-
cessing resulted in 40M words (2867 of which are unique) in
29,559 documents, totaling 299MB on disk.

For the actual LDA computation, we used MALLET ver-
sion 2.0.6 [21]. We ran for 10,000 sampling iterations, the
first 1,000 of which were used for parameter optimization [11].
The scenarios were executed on a machine running Ubuntu
9.10 with a 2.8GHz 16-core CPU and 64Gb of main memory.
We modeled JHotDraw with K = 45 topics and PostgreSQL
with K = 100 topics. We chose more topics for PostgreSQL
because it has a larger, more complex code base.

5.1.3 Evaluation Measures
A change event in a topic evolution is an increase (spike),

decrease (drop), or no change in a metric value (stay) be-
tween successive versions. We classify a change event as a
spike or drop if there is at least a 20% increase or decrease in
metric value compared to the previous version, and as a stay
otherwise. Formally, for a metric m of topic zk at version

Vi, the change c =
m(zk,Vi)−m(zk,Vi−1)

m(zk,Vi−1)
is classified as

Event(m, zk, Vi) =


spike if c ≥ 0.2, or if m(zk, Vi−1) = 0

and m(zk, Vi) > 0;
drop if c ≤ −0.2;
stay otherwise.

(3)

A distinct topic is one that stands on its own—it is not
similar to any other discovered topics. We define the topic
distinctness of a topic zi as the mean KL divergence be-
tween the word membership vectors of zi and zj , ∀j 6= i:

TD(φzi ) =
1

K − 1

K∑
j=1,j 6=i

KL(φzi , φzj ). (4)



Hall Diff p-value
JHotDraw

Mean topic distinctness 3.72 4.43 <0.001
Spikes per version 9.58 15.17 <0.001

PostgreSQL
Mean topic distinctness 2.56 3.64 <0.001
Spikes per version 2.58 4.49 <0.001

Table 3: Results of our case studies on JHotDraw
and PostgreSQL.

Diff topic 63: acl role privileg mode oid grant owner roleid
Diff topic 40: stmt creat comment defel command defnam
Hall topic 68: oid stmt tupl comment owner rel creat acl list

Table 4: The “ACL” and “commands” topics from
Diff, and the“ACL-commands”topic from Hall. The
words in Diff topic 63 are emphasized and the words
in Diff topic 40 are underlined in the Hall topic 68.

A higher TD measure indicates that a topic is more distinct.
We use the TD measure to test Hypothesis 1.

We define the evolution sensitivity of an evolution E(zi)
as the mean number of detected spikes per version of the
system:

ES(E(zi)) =
|{Detected spikes and drops in E(zk)}|

(v − 1)
. (5)

If a detected evolution has more spikes and drops, then we
say it is more sensitive than an evolution with fewer spikes
and drops. We use the evolution sensitivity measure to test
Hypothesis 2. To ensure that the detected spikes are not
false positives, we manually investigate topic evolutions in a
controlled environment in Section 5.2.

5.1.4 Results
To illustrate the kind of evolutions that are discovered by

the two models, Figures 3(a)–3(c) show three discovered evo-
lutions. Figures 3(a) and 3(c) show examples of evolutions
that were similar between the two models for JHotDraw and
PostgreSQL, respectively. In these cases, the topics them-
selves contained similar words and thus their evolutions fol-
lowed similar paths. Figure 3(b) shows example evolutions
from JHotDraw that were different between the two models,
despite the topics being similar.

After computing our evaluation measures on the resulting
topics and evolutions, we make the following two observa-
tions.

Observation 1. The Diff model produces more distinct
topics than the Hall model, supporting Hypothesis 1.

Table 3 shows the topic distinction measures for the two
models for both JHotDraw and PostgreSQL (Equation 4).
In both systems, the Diff model produces significantly more
distinct topics, supporting our first research hypothesis.

To illustrate this, consider the following example from the
case study on PostgreSQL. The lockcmds.c document is re-
sponsible for taking a lock command from the user, checking
the access control list (ACL) to see if the user has permis-
sions, and performing a lock on a table if the user does have
permissions. Thus, the document contains the concepts of
“commands” and “access control lists”. In the Diff model,
this document is matched to two topics: topic 63 (with

membership .25), which describes access control lists, and
topic 40 (with membership .58), which describes commands.
Under the Hall model, lockcmds.c is assigned to only one
topic, topic 68 (with membership 0.93), which confounds the
locking and commands concepts into a single topic. Table 4
shows theses topics and highlights the similarity between
Hall’s topic 68 and the two Diff topics, 63 and 40. The Hall
topic 68 is less distinct, with a topic distinctness of 2.49,
compared to the relatively distinct Diff topic distinctnesses
of 3.46 (topic 40) and 3.49 (topic 63).

Observation 2. The Diff model is more sensitive to de-
tecting changes in the data than the Hall model, supporting
Hypothesis 2.

Table 3 shows the results of evolution sensitivity for the
two models for both JHotDraw and PostgreSQL, measured
as the mean number of detected spikes per version (Equa-
tion 5). In both systems, the Diff model detects significantly
more spikes than the Hall model. This finding supports our
second hypothesis and is in part a result of Observation 1:
since the topics in the Diff model are more distinct, new
documents will be matched to more topics, and thus there
will be more spikes in the evolution. On the other hand, the
Hall model finds less distinct topics (i.e., each topic has mul-
tiple concepts confounded), and new documents will tend to
be matched to fewer topics, resulting in fewer spikes in the
evolution.

To illustrate this difference, consider again the lockcmds.c
file from PostgreSQL, which was first added to the system at
version V12 along with a group of similar files. Figure 3(d)
shows the evolutions produced by the Diff and Hall models
that match the lockcmds.c file. Under the Diff model, two
topics received spikes between version V11 and V12, which
were the topics for ACLs and commands. Under the Hall
model, however, only a single topic received a spike, which
was the confounded ACL and commands topic.

5.2 Evaluation on Simulated Data
We now test Hypothesis 3 by quantifying the accuracy of

each model when applied to source code histories—whether
each model is able to detect source code changes correctly
and completely. Hypothesis 2 concluded that the Diff model
created more sensitive topic evolutions, but it might be the
case that the model is overly sensitive, discovering false-
positive change events. To investigate this possibility, we
must assess the accuracy of the discovered change events.

Since there is no public dataset for evaluating the accu-
racy of topic evolution models, we perform a controlled ex-
periment on a manually-created simulated software project.
We have created two simple scenarios with a representa-
tive variety of source code changes so that we could exactly
determine whether the evolutions extracted by the models
were accurate— that is, whether the change events detected
by each model correspond to the actual changes that we
introduced in the source code (precision) and whether the
detected evolutions contained all the changes that we intro-
duced in the source code (recall).

5.2.1 Data Generation
We built the simulated software project by starting with

the backend.access (version 8.2.1) subsystem of PostgreSQL.
The backend.access subsystem contains 58 source code files
and 8 subdirectories, and is responsible for implementing
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(a) Similar evolutions: the “menu icon” topic.
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(b) Dissimilar evolutions: the “color gradient” topic.
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(c) Similar evolutions: the “multi xact” topic.
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Figure 3: Sample topic evolutions from the case studies on JHotDraw ((a), (b)) and PostgreSQL ((c), (d)).
In all plots, the dashed black line (with circles as points) shows the evolution discovered by the Hall model
while the solid blue line (with crosses as points) shows the evolution discovered by the Diff model.

functionalities such as hash tables, transactions, and NBTrees.
We chose this subsystem due to its medium size and clear
functionality definitions.

We created two simulated scenarios as follows. First, we
made ten duplicates of all 58 source code files in the back-

end.access to create ten (unchanged) versions of the pack-
age. We called these versions (V1–V10) the baseline scenario.

The first scenario modifies the baseline scenario by intro-
ducing three documents from the unrelated timezone sub-
system at version V5, then removing all three documents at
version V6. Thus, there are 58 files in versions V1–V4, 61 files
in version V5, and again 58 files in versions V6–V10. This sce-
nario simulates two typical actions: the introduction of new
functionality and the removal of existing functionality.

The second scenario starts with the documents of the first
scenario and makes the following two additions: 1) Eight
documents from the unrelated ecpg subsystem were inserted
in versions V9 and V10. The first half of each document
was inserted in version V9, while the second half of each
document was inserted at version V10. 2) Five documents
from the unrelated backend.regex subsystem were inserted
in version V1, they remained (unchanged) in versions V2 and
V3, and were removed at version V4.

5.2.2 Study Setup
We preprocessed the source code of each system under

study using the steps described in Section 2.1 in the same
way as we did for the real-world systems (Section 5.1.2).

For Scenario 1, the preprocessing resulted in a total of
1.2M words (3629 of which are unique) in 583 documents,
totaling 9MB of data on disk. For Scenario 2, the prepro-
cessing resulted in a total of 1.2M words (3666 of which are
unique) in 614 documents, totaling 9MB on disk.

For the actual LDA computation, we used the same setup
as in Section 5.1.2, with the exception that we modeled each
simulated scenario using K = 20 topics.

5.2.3 Evaluation Measures
To quantify the accuracy of each model, we calculate pre-

cision and recall. The precision of a model describes how
many of the discovered change events were correct. We com-
pute the precision of an evolution E(zk) as

P (E(zk)) =
|{Correct events in E(zk)}|

|{All discovered events in E(zk)}|
. (6)

We are able to determine which discovered change events
are correct since we have manually created the changes in
the simulated project. For example, we expect to see a spike
at version V5 in the evolution relating to the timezone sub-
package, since we first added the timezone documents at
V5.

The recall of a model describes how many of the truth
events were discovered by the model. We compute the recall
of an evolution E(zk) as

R(E(zk)) =
|{Correct events in E(zk)}|

|{Truth events}|
. (7)

We are able to determine which truth events exist because
we manually created the truth events in the source code.

5.2.4 Results
Scenario 1 (Single Change): This scenario contains 10
unchanging versions of 58 documents, with the exception
that three documents from the unrelated timezone subsys-
tem were inserted at version V5, and removed at version V6.
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(a) The timezone topic evolutions in Scenario 1.
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(b) The timezone topic evolutions in Scenario 2.
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(c) The regex topic evolutions in Scenario 2.
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(d) The ecpg topic evolutions in Scenario 2.

Figure 4: Sample topic evolutions for the simulated scenarios. In all plots, the dashed black line (with circles
as points) shows the evolution discovered by the Hall model, while the solid blue line (with crosses as points)
shows the evolution discovered by the Diff model.

Expectations: We expect to see a spike in a timezone

related topic at version 5, a drop at version 6, and no change
in assignment to any other topic at any other time.

Results: Figure 4(a) shows the discovered topic evolutions
for the timezone related topics. (Appendix A shows the
actual topics.) In this scenario, the Diff model creates a
topic just for these timezone documents—the evolution has
a value of 0 at all versions except at version V5, where it
spikes to an assignment value of around 3.0, then drops again
at version V6. Indeed, all three of the timezone documents
have high memberships in this topic, and low memberships
in all other topics. Likewise, no documents besides the three
timezone documents have a non-zero membership in this
topic.

The Hall model, on the other hand, does not create a
topic solely for the timezone documents. Instead, the Hall
model assigns the three timezone documents to an existing
topic that already had a non-zero assignment value from
other, unrelated documents. This topic spikes and drops at
versions V5 and V6, respectively. In this case, we say that the
discovered evolution is incorrect, because the change events
are discovered in a topic that is not related to the timezone
documents.

Table 5 lists the precision and recall measures for Sce-
nario 1 across all topics. In this scenario, there is only one
truth spike and one truth drop. Since the Hall model found
two incorrect events and no correct events, it achieves a pre-
cision and recall measure of 0.0. The Diff model, on the
other hand, correctly discovered the truth spike and drop
without spurious events, achieving precision and recall val-
ues of 1.0. In all cases, the Diff model achieves higher recall
and precision measures, and Hypothesis 3 is supported.

Scenario 2 (Multiple Changes): This scenario is the
same as Scenario 2 except that eight documents from the

Hall Diff
Simulated Project - Scenario 1 (Single Change)
Spikes P = 0.0, R = 0.0 P = 1.0, R = 1.0
Drops P = 0.0, R = 0.0 P = 1.0, R = 1.0

Simulated Project - Scenario 2 (Multiple Changes)
Spikes P = .60, R = 1.0 P = .75, R = 1.0
Drops P = .66, R = 1.0 P = .66, R = 1.0

Table 5: Precision (P) and recall (R) results of the
experiments on the simulated data.

ecpg subsystem are added at version V9 and five documents
from the backend.regex subsystem are present (and un-
changing) in versions V1–V3.

Expectations: We expect to see a spike for the timezone

related topic at version V5, followed by a drop at version V6.
We also expect to see a spike for the ecpg related topic at
version V9 and a drop in the backend.regex related topic at
version V4.

Results: Figures 4(b)–4(d) show the discovered topic evo-
lutions for the three subpackages involved in the scenario.
(Appendix A shows the actual topics.) The Hall evolutions
in the three figures are actually showing the same topic,
because only a single topic was created to house the time-

zone, ecpg, and backend.regex related documents. While
the three figures show that the expected events were indeed
discovered by the Hall method (i.e., a drop at version V4, a
spike and drop at version V5 and V6, and a spike at version
V9), the topic itself confounds three separate concepts and
hence is not easy to interpret (further supporting Hypothesis
1).

The Diff model, on the other hand, captured all three
subpackages in their own distinct topics, each having the
expected change events.

Table 5 shows the precision and recall results. In this
case, since the Hall model created a new topic for the newly



introduced documents, and captured all of the expected
change events correctly, we say that all of the evolutions
in Figures 4(b)–4(d) are correct. However, other topic evo-
lutions discovered spurious change events, causing the preci-
sion score to be less than 1. The Diff model also discovered
a few spurious change events (including the drop shown at
version V4 in Figure 4(d)), and also receives a precision score
less than 1. Even still, Hypothesis 3 is supported because
the Diff model outperforms the Hall model.

5.3 Further Evaluation of Accuracy
Our case studies on real-world systems have confirmed our

first two hypotheses: the Diff model results in more distinct,
understandable topics, and it is more sensitive for detecting
the changes in a source code repository. Furthermore, our
study on a simple, manually-created simulated project pro-
vides support for our third hypothesis—that the Diff model
produces evolutions that are more accurate.

These initial results, based on mathematical metrics and
simulated data, are encouraging. We plan to further test
our hypotheses by conducting a user study to determine
the usefulness of the models for practitioners. We have al-
ready performed an initial user study to this effect, where
the first author blindly rated events (spikes and drops) in
the topic evolutions of JHotDraw and PostgreSQL against
project documentation to determine whether the events were
justified [27]. The results of this initial study were positive,
with precision scores of 92% for the Diff model, compared to
69% for the Hall model. We are currently preparing a larger
scale user study to confirm these findings.

6. LIMITATIONS
Parameter Choices. During our studies, we had to choose
values for several model parameters, including the number
of topics (K); the delta threshold for classifying an event as
a spike or drop; the number of sampling iterations to run
in LDA; and the pruning parameters for preprocessing the
source code histories. Our choices are somewhat subjective,
as there is no standard way to determine optimal values.
However, we used the same parameter values in both the
Hall and Diff models, providing an opportunity for an equal
comparison.

Generality of Results. Although we studied two real-
world systems from different domains, of different sizes, and
implemented in different programming languages, we cannot
necessarily generalize our results to all other systems. First,
the systems we studied were both open source, and there-
fore we cannot generalize our results to proprietary systems
developed in the industry. Second, both studied systems
follow established variable naming schemes and often use
descriptive comments where possible, which permit mean-
ingful topics to be discovered. In projects that do not follow
standard naming schemes or have consistent commenting
practices, topic models might not be effective tools.

7. CONCLUSION
Topic evolution models have the potential to help soft-

ware developers understand the histories and trends of their
software repositories in a new and deep way. However, tra-
ditional topic evolution models were designed for versioned
corpora whose documents are never duplicated, such as con-

ference proceedings and newspaper articles. We have found
that source code histories deviate from this norm: in some
cases, 99% of the source code files in a new version are un-
modified copies from the previous version. This duplication
effect alters the results of topic models.

These characteristics of software repositories motivated us
to propose a new topic evolution model, which is a simple
but powerful extension to the Hall model. Our model oper-
ates only on the changes between versions of the repository,
effectively eliminating the duplication effect. We evaluated
the Diff model through case studies on two real-world soft-
ware systems, JHotDraw and PostgreSQL, as well as a sim-
ulated software project that is well-understood. We found
that the Diff model produces significantly more distinct top-
ics, which are preferable to the confounded topics found by
the Hall model. We also found that the more distinct topics
allowed more sensitive and accurate evolutions to be dis-
covered, which better model the changes in a source code
history.

These encouraging results motivate us to consider addi-
tional case studies (simulated and real) to confirm the re-
sults seen here, as well as evaluate the Diff model against
the Link model.
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APPENDIX
A. SELECTED TOPICS

Scenario 1: Diff: Topic 7
Label seq search
Words time year case continu const offset type rule hentri
Docs scheck.c, strftime.c, localtime.c

Scenario 1: Hall: Topic 17
Label normal transact
Words transact clog xid accum entri statu subtran commit da-

tum
Docs reloptions.c, transam.c, ginbulk.c

Scenario 2: Diff: Topic 2
Label offset posix section
Words time case year continu type tmp offset const result
Docs scheck.c, strftime.c, localtime.c

Scenario 2: Hall: Topic 9
Label ecpglog ecpgget
Words var case chr state struct break reg end assert
Docs scheck.c, strftime.c, localtime.c

Scenario 2: Diff: Topic 5
Label case sql
Words case sqlca ecpg break connect ecpgt var lineno pval
Docs error.c, data.c, descriptor.c

Scenario 2: Diff: Topic 14
Label scan consist fine
Words chr state reg assert end var struct begin subr
Docs regexec.c, regcomp.c, rege_dfa.c

JHotDraw: Diff: Topic 6
Label icon icon
Words icon descriptor bean properti event gen method color set
Docs JAttributeSliderBeanInfo, ODGPropertiesPanelBeanInfo,

AbstractToolBarBeanInfo

JHotDraw: Diff: Topic 12
Label color color
Words color gradient space index compon rgb model system min
Docs ColorSystem, HSLRGBColorSystem, HSLRYBColorSystem

JHotDraw: Hall: Topic 23
Label icon icon
Words icon descriptor bean properti event gen method color set
Docs JAttributeTextAreaBeanInfo, JDisclosureToolBarBean-

Info, JLifeFormattedTexAreaBeanInfo

JHotDraw: Hall: Topic 5
Label stop color
Words color gradient space paint focu fraction stop arrai linear
Docs LinearGradientPaintContext, MultipleGradientPaintCon-

text, MultipleGradientPaint

JHotDraw: Hall: Topic 14
Label color chooser
Words color compon slider index icon model space system rgb
Docs AbstractHarmonicRule, HSLRGBColorSystem, HSLRYBCol-

orSystem

PostgreSQL: Diff: Topic 37
Label multi xact
Words page multi xact clog share lock offset ctl xid
Docs slru.c, clog.c, varsup.c

PostgreSQL: Diff: Topic 63
Label acl acl
Words acl role privileg priv mode oid user grant aclcheck
Docs acl.c, aclchk.c, superuser.c

PostgreSQL: Hall: Topic 5
Label arg lappend
Words constraint stmt column list tabl attr index pstate type
Docs analyze.c, tablecmds.c, tupdesc.c

PostgreSQL: Hall: Topic 68
Label gettext noop
Words guc gettext pgc val config conf variabl noop sourc
Docs guc.c, variable.c, guc-file.c


