
Industrial Case Study on Supporting the Comprehension of System Behaviour
Under Load

Mark D. Syer, Bram Adams and Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University, Canada
{mdsyer, bram, ahmed}@cs.queensu.ca

Abstract—Large-scale software systems achieve concurrency
on enormous scales using a number of different design patterns.
Many of these design patterns are based on pools of pre-existing
and reusable threads that facilitate incoming service requests.
Thread pools limit thread lifecycle overhead (thread creation
and destruction) and resource thrashing (thread proliferation).
Despite their potential for scalability, thread pools are hard to
configure and test because of concurrency risks like synchro-
nization errors and dead lock, and thread pool-specific risks
like resource thrashing and thread leakage. Addressing these
challenges requires a thorough understanding of the behaviour
of the threads in the thread pool. We argue for a methodology
to automatically identify and rank deviations in the behaviour
of threads based on resource usage.

Keywords-thread-pools; behaviour-based clustering; under-
standing ULS systems;

I. INTRODUCTION

Program understanding is one of the most important
aspects in maintaining and evolving software systems [26].
Performance analysts need to understand the system to
optimize it, quality assurance analysts need to understand the
system to fix it and developers need to understand the system
to upgrade it. The current state-of-the-practice of program
understanding is on static understanding, based on source
code and documentation, and dynamic understanding using
simple use cases [1].

However, understanding how Ultra-Large-Scale (ULS)
systems behave under a load is difficult because current
methods typically require significant manual review of the
performance data and execution logs and a high degree of
program comprehension of the system [2]. This is especially
problematic in high demand systems such as e-commerce
and telecommunications systems, which may potentially
support hundreds or thousands of concurrent connections
and operations. Case studies of these types of systems
have shown that failures are more often associated with an
inability to scale to meet demands, leading to performance
degradation, than with feature bugs [7].

Many techniques exist to produce the data necessary to
understand a ULS system under a load: instrumentation and
reuse of system data, such as execution logs and metrics
[2]–[5]. However, instrumentation has a high overhead, so
program comprehension based on logs or metrics is the

most practical [6]. Logging during execution may be sparse
so metrics like CPU and memory usage are often the
only feasible data source, however metrics are very hard
to interpret [6]. Hence, performance analysts perform an
increasingly important function within the software devel-
opment lifecycle.

ULS systems are designed using a variety of architec-
tural styles and design patterns. One popular architecture is
the thread pool pattern that uses pre-existing and reusable
threads to service incoming requests. This architectural
pattern allows the system to scale very well by facilitating
both concurrent and distributed processing. This poster-
paper argues for a scalable methodology to help performance
analysts understand the behaviour of ULS systems that
implement thread pools.

II. POSTER OUTLINE

Our poster will present:
• An overview of the challenges in understanding ULS

software systems.

• A discussion of thread pools as a common design
pattern in large software systems.

• Our methodology to support the comprehension of
system behaviour under load.

• A case study on a large scale industrial software system
showing how our methodology can

– detect key phases in the lifetime of an executing
system

– detect and flag deviations from the common
behaviour

• An overview of our on-going work in the area.

REFERENCES

[1] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen,
and R. Koschke, “A systematic survey of program comprehen-
sion through dynamic analysis,” Trans. Software Engineering,
vol. 35, no. 5, pp. 684–702, Sep. 2009.



[2] Z. M. Jiang, A. Hassan, G. Hamann, and P. Flora, “Automated
performance analysis of load tests,” in Proc. 25th Int. Conf.
Software Maintenance (ICSM), Sep. 2009, pp. 125–134.

[3] M. Ernst, A. Czeisler, W. Griswold, and D. Notkin, “Quickly
detecting relevant program invariants,” in Proc. 22nd Int. Conf.
Software Engineering (ICSE), Jun. 2000, pp. 449–458.

[4] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the content
of large traces to facilitate the understanding of the behaviour
of a software system,” in Proc. 14th Int. Conf. Program
Comprehension (ICPC), Jun. 2006, pp. 181–190.

[5] H. Pirzadeh, A. Agarwal, and A. Hamou-Lhadj, “An approach
for detecting execution phases of a system for the purpose
of program comprehension,” in Proc. 8th Int. Conf. Software
Engineering Research, Management and Applications (SERA),
May 2010, pp. 207–214.

[6] H. Malik, Z. M. Jiang, B. Adams, A. E. Hassan, P. Flora, and
G. Hamann, “Automatic comparison of load tests to support
the performance analysis of large enterprise systems,” in Proc.
14th European Conf. Software Maintenance and Reengineering
(CSMR), Mar. 2010, pp. 222–231.

[7] E. Weyuker and F. Vokolos, “Experience with performance
testing of software systems: issues, an approach, and case
study,” Trans. Software Engineering, vol. 26, no. 12, pp. 1147–
1156, Dec. 2000.


