
A Lightweight Approach to Uncover Technical Information in Unstructured Data

Nicolas Bettenburg, Bram Adams, Ahmed E. Hassan
Software Analysis and Intelligence Lab

Queen’s University
Kingston, Ontario, Canada

Email: {nicbet,bram,ahmed}@cs.queensu.ca

Michel Smidt
Dept. of Computer Science

University of Bremen
Bremen, Germany

Email: michel@informatik.uni-bremen.de

Abstract—Developer communication through email, chat, or
issue report comments consists mostly of largely unstructured
data, i.e., natural language text, mixed with technical informa-
tion such as project-specific jargon, abbreviations, source code
patches, stack traces and identifiers. These technical artifacts
represent a valuable source of knowledge on the technical
part of the system, with a wide range of applications from
establishing traceability links to creating project-specific vo-
cabularies. However, the free-style delimiters between natural
language and technical content make the mining of technical
artifacts challenging. As a first step towards a general-purpose
technique to extracting all kinds of technical information
from unstructured data, we present a lightweight approach
to untangle technical artifacts and natural language text. Our
approach is based on existing spell checking tools, which are
well-understood, fast, readily available across platforms and
impartial to different kinds of technical artifacts. Through a
handcrafted benchmark, we demonstrate that our approach
is able to successfully uncover a wide range of technical
information in unstructured data.

Keywords-text mining, language analysis, unstructured data,
technical information.

I. INTRODUCTION

Every software system has a unique history of design
decisions, software changes, as well as development and
maintenance effort. This history is captured throughout the
development process in the variety of repositories used to
store data during the collaborative development process. As
this data contains the knowledge and rationale behind the
evolution of a software system, it is valuable for many differ-
ent fields, in particular program comprehension, and hence
should be made available to practitioners and researchers
alike.

However, much of the information surrounding the devel-
opment process comes in the form of unstructured data [1],
which is conceptually different from the sources of struc-
tured data that researchers have used in previous research.
Structured data (e.g., source code) is well-defined and can
be readily parsed and understood by computer machinery.
Unstructured data (e.g., developer communication, issue
reports, documentation, email or meeting notes [2]), consists
of a mixture of natural language text and technical informa-
tion, such as code fragments, abbreviations, references to
objects in the source code, file names, logging information

Build ID: M20070212-1330

Steps To Reproduce:
1. Create a plugin for eclipse that includes a key binding for "M1+S" (ie. Alt+S)
 where S is any letter that is used as a mnemonic in one of the top level
 menus. Since eclipse uses "S" as the mnemonic for Help > &Software Updates,
 "S" is sufficient.
2. Launch the plugin as part of Eclipse IDE
3. Press Alt+H to bring down the Help menu (to go along with our example in #1)
 BUG: Notice "Software Updates" is missing its mnemonic.

More information:
The code after "if (callback.isAcceleratorInUse(SWT.ALT | character))" inside
Eclipse's MenuManager.java removes the mnemonic, but it seems like Eclipse
should be checking "isAcceleratorInUse" only for top level menumanagers like
File,Edit,...,Help, etc. :

 /* (non-Javadoc)
 * @see org.eclipse.jface.action.IContributionItem#update(java.lang.String)
 */
public void update(String property) {
IContributionItem items[] = getItems();

for (int i = 0; i < items.length; i++) {
items[i].update(property);
}
[...]
}

Any status on this bug?

I'd consider any contributions for M6 (API) or M7 (non-API) [...]

A 3.5 fix would be to make that behaviour optional in MenuManager with API and
off by default early in 3.5, and to have the WorkbenchActionBuilder contributed
MenuManagers and actionSets/editorActions contributed MenuManagers turn it on
(if I can find MenuManagers in the correct place).

I'd like us to work with the SWT team to make sure we understand what the
correct platform behavior is, and make sure that we aren't getting in the way
of that. The current behavior (i.e. turning off mnemonics) seems odd to me, in
general. If we're going to fix this, we should fix it properly.

Figure 1. Examples of technical information uncovered by a prototype
implementation of the approach proposed in this paper. (Eclipse Platform
Bug #208626).

or project-specific terms. As such, mining unstructured data
is challenging: it is meant for the exchange of information
between humans, rather than automated processing using
computer machinery. Figure 1 presents an example of tech-
nical information commonly found in unstructured data.

Recent approaches for discovering technical information
in unstructured data [3]–[5] have focussed on recognizing
and extracting only particular types of technical information,
such as class names [3], stack traces, or patches [5]. In order
to resolve the inherent ambiguities between natural language
text and technical information, these approaches are highly
specialized and tailored towards their specific use cases, and
limited in their scope. Furthermore, many kinds of technical
information (e.g, project-specific jargon or abbreviations)
cannot be extracted by any of the existing techniques.

As a first step towards a lightweight, general-purpose ap-
proach to uncovering technical information in unstructured
data, this work presents an approach that makes use of state-
of-the-art tools for checking and correcting the spelling and
grammar of electronically written texts. Technical informa-
tion is conceptually different from natural language text: it
often consists of words that are not part of standard language
dictionaries, violate grammatical conventions, and do not
respect morphological language rules. These characteristics
render modern spellcheckers ideal candidates for lightweight

classifiers of natural language.
Through a case study on unstructured data from mailing

list and issue report repositories of two open-source projects,
we demonstrate the capability of our approach to uncover
technical information inside unstructured data, while at the
same time being resistant to reporting actual spelling or
grammar mistakes.

The rest of this paper is organized as follows. Section
2 presents an overview of related work and background.
Section 3 presents our approach from both a conceptual
and an actual implementation perspective. In Section 4,
we present the evaluation of our approach through a hand
crafted benchmark on developer email and issue report dis-
cussions. We conclude our work and present future research
opportunities in Section 5.

II. BACKGROUND AND RELATED WORK

Past research has been concerned with the extraction
of technical information from software repositories, to as-
sist program comprehension [6], [7], understand histori-
cal changes [8]–[10] and predict future changes [11], and
to measure and analyze different dimensions of historic
software development to help practitioners make informed
decisions in the future, and predict software errors [12]–[14].

Fischer et al. and Sliwerski et al. were among the first to
use technical information (issue report identifiers) embedded
in the natural language text descriptions of changes in
commit messages, to link software changes to defects [13],
[15]. Mockus et al. show that the text describing a change
recorded through commit messages is essential for under-
standing the rationale behind changes and emphasizes the
importance of natural language documentation for practi-
tioners and researchers alike.

Recent research concerned with information in unstruc-
tured data has mostly focussed on establishing traceability
links [3], [16], [17] between source code and documentation
surrounding the development process, summarizing commu-
nication [2], [18], and bug triage [19].

The most closely related work to this paper is the work on
techniques to uncover source code entities in e-mails [20],
and classifying text into source code and natural language
text on a line-level granularity [3]. Bettenburg et al. pre-
sented the use of island parsing and specialized heuristics
based on regular expressions to extract structural information
from bug reports [5].

Our work is different from past research in the area, in that
we aim to uncover technical information in unstructured data
by using spell checkers as a lightweight classification-proxy
to determine which parts of the text are natural language text
and which parts are not. Our approach aims at being general
enough to be readily available for any kind of input beyond
commit messages, bug reports or e-mail. Furthermore, our
approach does not focus on a particular type of technical
information, such as bug report identifiers or source code

entities, but rather to return information in unstructured data
that is not considered natural language text. Such a general
set of technical information has the advantage that it can be
easily pruned later on, by applying further heuristics to retain
only a particular kind of technical information of interest.

III. APPROACH

In the following, we present our approach from both a
conceptual perspective and the concrete perspective of our
working prototype.

Conceptual Approach

In this paper, we propose to use existing spellchecking
tools to untangle natural language text and technical infor-
mation from unstructured data. Many of today’s state of the
art techniques for spellchecking use morphological language
analysis, which describes the identification and description
of the smallest linguistic units that carry a semantic meaning,
called morphemes. As such, morphemes are different from
the concept of a single word: one or more morphemes
composed form a word. For example, the English word “un-
bearable”, is composed of three morphemes, “un”, “bear”,
and “able”. This kind of analysis is able to effectively cope
with compound words, inflection and other peculiarities of
natural language, while at the same time being sensitive
to text (technical information) that does not adhere to the
morphological rules.

For the purpose of our study, we define technical infor-
mation as those parts of unstructured data that is not natural
language text. This definition includes, but is not restricted
to: source code, file names, technical terms, project-specific
jargon, source code entities (such as classes or identifier
names), or abbreviations.

Concrete Approach

In order to uncover technical information, we first trans-
form the input text in a stream of tokens by splitting the
input text whenever we encounter one or more whitespace
characters, or punctation followed by a whitespace (sentence
delimiters). This is a common approach for morphological
language analysis of Western text, where words are delimited
by whitespace. If we were to apply our method to Chinese or
Japanese input text, we would need to modify tokenization
accordingly.

After thorough testing of 15 open-source spellchecking
tools, we select the following three popular tools for fur-
ther study. Hunspell is an open-source spellchecking
and morphological language analysis framework, which has
found extensive use in the OpenOffice and Mozilla
application suites. Jazzy is based on the double metaphone
phonetic language analysis algorithm [21], which transforms
words into phoneme codes and compares these to a user-
defined dictionary. JOrtho performs spell checking by

comparing a given input word to large word dictionaries
compiled from the Wiktionary1 project.

Next, we run the spellchecker on each token and flag it,
depending on wether the spellchecker reported a spelling
error or not. Since our goal is to find technical text, rather
than spelling mistakes, we iterated over each flagged token
in a second pass, executing three different, simple heuristics.
If at least one heuristic holds on a flagged token, we mark the
token as belonging to the domain of technical information.
The heuristics we use are described in the following.
H1: Camel Case

We consider the following four cases of camel case
to be indicators of technical text: (1) the standard
case CamelCase is often used for type names and
references to source code entities; (2) the interior
case camelCase is often used for identifier names;
(3) capital letters at the end CamelCASE, and (4)
all capital letters CAMELCASE, are often used in
abbreviations. We implemented this heuristic with a
simple pattern matching using the following regular
expressions:
(\b([A-Z_][a-z_0-9]*)+[A-Z_0-9][a-z_0-9]+

([A-Z_0-9][a-z_0-9]*)*\b)
(\b([a-z_][a-z_0-9]*)+([A-Z_0-9][a-z_0-9]*)+\b)
(\b([A-Z_][A-Z_0-9]+)\b)
(\b(([A-Z_][a-z_0-9]*)+([A-Z_0-9]+))\b)

H2: Programming Language Keywords
We compiled a comprehensive list of reserved key-
words for the JAVA, C, C++, C#, Pascal, Delphi,
Perl, PHP, Bash, HTML and JavaScript languages. If
a token is flagged as a spelling mistake, but matches
one of the keywords in this list, it is highly likely to
be part of a source code.

H3: Special Characters
Natural language words usually do not contain spe-
cial characters within their word boundaries. When a
token is flagged as a spelling mistake, we count the
number of non-alphanumeric characters in the token
and consider it as technical text, if we find more than
two special characters.

IV. EVALUATION

We evaluate the ability of each of the three selected
spellchecking frameworks to untangle natural language text
and technical information from unstructured data through a
hand-crafted benchmark. We performed a random sampling
of 20 issue reports from the ECLIPSE project and 20
email discussions from the PostgreSQL developer mailing
list, containing source code, stack traces, patches and other
technical entities. The size of this random sample describes
our results across the overall population at a confidence
interval of 15%. We annotated technical information in each
document by hand, using a graphical tool written for this
purpose.

1http://wiktionary.org

Tool Precision Recall

JOrtho 88.01% 64.31%
Jazzy 84.16% 68.30%
Hunspell 86.40% 68.34%

Table I
RESULTS OF BENCHMARK

The tool allows the user to select a portion of the text
inside a text viewer and annotate it as technical text. When
the user then activates a particular spellchecking framework,
the portion of the text will be annotated with different
colours depending on whether the spellchecker flagged a
portion of the text which was previously not annotated (false
positives, FP), which was annotated but not flagged by the
spellchecker (false negatives, FN), and which was flagged,
as well as previously annotated (true positives, TP).

We then measure the average precision and recall of
each spellchecker Si across all documents in the benchmark.
These measures are defined as

Precision(Si) =
|TPSi

|
|TPSi

+FPSi
|

Recall(Si) =
|TPSi

|
|TPSi

+FNSi
|

The results of our manual benchmark are presented in
Table I. Overall, we found all three spellcheckers to perform
well, with a precision between 84.16% and 88.01%, and
a recall between 64.31% and 68.34%. The most common
error across all tested spellcheckers with respect to precision
were spelling mistakes that were not distinguishable from
technical text, such as “found.We”, or “another(no one
else would)” resembling package names or method calls.
The rather moderate recall can be mainly attributed to the
resemblance of many technical items to natural language
text, for example source code identifiers are often words
present in English dictionaries, e.g., “Task”.

In addition to our fine-grained performance analysis, we
conducted an experiment to compare the use of technical
information uncovered by our approach for a more spe-
cialized task, presented by Bacchelli et al., i.e., extracting
source code from email [3]. As the latter approach operates
on a line-level granularity, we augmented our spellchecking-
based technique to consider a line of text as source-code, if
more than seventy percent of text in that line was flagged
as technical information by our approach. We applied both
approaches to the same data set of 40 documents (20
issue reports and 20 developer emails) used in our previous
evaluation. The baseline for this experiment was established

through the same benchmark annotation tool used in our
previous evaluation. In terms of precision, our approach was
able to classify 89.27% of lines correctly as source code,
compared to 66.13% percent of lines correctly classified
by the state-of-the-art technique. In terms of recall, our
approach was able to recognize 86.46% of all source code
lines correctly, compared to 69.37% of source code lines rec-
ognized by the state-of-the-art technique. All performance
differences are statistically significant at p < 0.001. Overall,
we were able to improve on the best existing technique by
23.14% (precision) and 16.09% (recall) respectively.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a lightweight approach to
finding technical information in unstructured data, as a
first step to making technical information readily available
for researchers and practitioners. The evaluation of our
approach demonstrates that readily available spellchecking
tools, when paired with additional lightweight heuristics,
are able to successfully untangle technical information and
natural language text. In future work, we plan to study the
use of additional heuristics to increase recall and carry out
a more detailed evaluation on different kinds of technical
information through an extended benchmark.

REFERENCES

[1] N. Bettenburg and B. Adams, “Workshop on mining unstruc-
tured data (mud) because ”mining unstructured data is like
fishing in muddy waters”!” Reverse Engineering, Working
Conference on, vol. 0, pp. 277–278, 2010.

[2] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the use of
internet relay chat (irc) meetings by developers of the gnome
gtk+ project,” in Proceedings of the 2009 6th IEEE Interna-
tional Working Conference on Mining Software Repositories.
IEEE Computer Society, 2009, pp. 107–110.

[3] A. Bacchelli, M. D’Ambros, and M. Lanza, “Extracting
source code from e-mails,” in Proceedings of the 2010 IEEE
18th International Conference on Program Comprehension.
IEEE Computer Society, 2010, pp. 24–33.

[4] D. Cubranic and G. C. Murphy, “Automatic bug triage using
text categorization.” in SEKE 2004: Proceedings of the Six-
teenth International Conference on Software Engineering &
Knowledge Engineering, 2004, pp. 92–97.

[5] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim,
“Extracting structural information from bug reports,” in MSR
’08: Proceedings of the Fifth International Workshop on
Mining Software Repositories, May 2008.

[6] H. Malik, I. Chowdhury, H.-M. Tsou, Z. M. Jiang, and
A. E. Hassan, “Understanding the rationale for updating a
function’s comment,” in ICSM ’08: Proc. of the 24th IEEE
International Conf. on Software Maintenance, 2008, pp. 167–
176.

[7] E. Nurvitadhi, W. W. Leung, and C. Cook, “Do class com-
ments aid java program understanding?” Frontiers in Educa-
tion, 2003. FIE 2003. 33rd Annual, vol. 1, pp. T3C–13–T3C–
17, 2003.

[8] T. Zimmermann and P. Weißgerber, “Preprocessing cvs data
for fine-grained analysis,” Proc. International Workshop on
Mining Software Repositories . . . , 2004.

[9] A. Mockus and L. G. Votta, “Identifying reasons for software
change using historic databases,” 2000, pp. 120–130.

[10] A. E. Hassan and R. C. Holt, “Studying the evolution of
software systems using evolutionary code extractors,” in IW-
PSE ’04: Proc. of the Principles of Software Evolution, 7th
International Workshop. IEEE Computer Society, 2004, pp.
76–81.

[11] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl,
“Mining version histories to guide software changes,” Soft-
ware Engineering, 2005.

[12] A. Zeller, “Learning from software,” ISEC ’08: Proceedings
of the 1st conference on India software engineering confer-
ence, 2008.

[13] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do
Changes Induce Fixes?” in Proceedings of the Second Inter-
national Workshop on Mining Software Repositories, 2005,
pp. 24–28.

[14] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to
predict component failures,” 2006, pp. 452–461.

[15] M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating
bug report data for feature tracking,” Reverse Engineering,
Jan 2003.

[16] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo, “Recovering traceability links between code and
documentation,” IEEE Trans. Softw. Eng., vol. 28, pp. 970–
983, 2002.

[17] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing,”
in Proceedings of the 25th International Conference on Soft-
ware Engineering, ser. ICSE ’03. IEEE Computer Society,
2003, pp. 125–135.

[18] A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s hot and
what’s not: Windowed developer topic analysis,” Software
Maintenance, IEEE International Conference on, vol. 0, pp.
339–348, 2009.

[19] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proceedings of the 28th international conference on
Software engineering, ser. ICSE ’06. ACM, 2006, pp. 361–
370.

[20] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and
source code artifacts,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume
1, ser. ICSE ’10. ACM, 2010, pp. 375–384.

[21] L. Philips, “The double metaphone search algorithm,” C/C++
Users J., vol. 18, pp. 38–43, June 2000. [Online]. Available:
http://portal.acm.org/citation.cfm?id=349124.349132

