
Empir Software Eng
DOI 10.1007/s10664-013-9284-6

Management of community contributions
A case study on the Android and Linux software ecosystems

Nicolas Bettenburg · Ahmed E. Hassan ·
Bram Adams · Daniel M. German

© Springer Science+Business Media New York 2013

Abstract In recent years, many companies have realized that collaboration with a
thriving user or developer community is a major factor in creating innovative technol-
ogy driven by market demand. As a result, businesses have sought ways to stimulate
contributions from developers outside their corporate walls, and integrate external
developers into their development process. To support software companies in this
process, this paper presents an empirical study on the contribution management
processes of two major, successful, open source software ecosystems. We contrast a
for-profit (ANDROID) system having a hybrid contribution style, with a not-for-profit
(LINUX kernel) system having an open contribution style. To guide our comparisons,
we base our analysis on a conceptual model of contribution management that we
derived from a total of seven major open-source software systems. A quantitative
comparison based on data mined from the ANDROID code review system and the
LINUX kernel code review mailing lists shows that both projects have significantly
different contribution management styles, suited to their respective market goals, but

Communicated by: Per Runeson

N. Bettenburg (B) · A. E. Hassan
Software and Analysis Lab (SAIL), Queen’s University,
School of Computing Kingston, ON, Canada
e-mail: nicbet@cs.queensu.ca

A. E. Hassan
e-mail: ahmed@cs.queensu.ca

B. Adams
Département de Génie Informatique et Génie Logiciel,
École Polytechnique de Montréal, Montréal, QC, Canada
e-mail: bram.adams@polymtl.ca

D. M. German
Department of Computer Science,
University of Victoria, Victoria, BC, Canada
e-mail: dmg@uvic.ca



Empir Software Eng

with individual advantages and disadvantages that are important for practitioners.
Contribution management is a real-world problem that has received very little
attention from the research community so far. Both studied systems (LINUX and
ANDROID) employ different strategies and techniques for managing contributions,
and both approaches are valuable examples for practitioners. Each approach has
specific advantages and disadvantages that need to be carefully evaluated by practi-
tioners when adopting a contribution management process in practice.

Keywords Software management · Software process · Measurement ·
Contribution management · Open source software · Best practices

1 Introduction

In recent years, open-source as a business model has gained in popularity and
studies have documented benefits and successes of developing commercial software
under an open-soure model (Krishnamurthy 2005). Companies like RedHat, IBM or
Oracle, realize that collaboration with a thriving user and development community
around a software product can increase market share and spawn innovative products
(Hecker 1999). One of the major benefits of an open-source business model is
user-driven innovation. As opposed to traditional, in-house development models,
an open-source model gives the users of a software system the ability to actively
participate in the development of the product, and contribute their own time and
effort on aspects of the product that they find most important.

At the core of innovation are contributions, such as source code, bug fixes, feature
requests, tutorials, artwork, or reviews, received from the community surrounding
a software product. These contributions add to the software product in many
ways, such as adding new functionality, fixing software defects, or completing and
translating documentation.

However, involving a community in the development process may require sig-
nificant changes to a company’s structure and development processes, as both
external and internal contributions need to be accommodated at the same time. This
leads to a number of challenges that might not be obvious at first. For example,
issues such as sharing of code between proprietary parts of the product and the
open source parts, the need for sanitization of external contributions, and even legal
aspects, such as usage of third party libraries, and export control, need to be taken
into consideration by the contribution management process (Hecker 1999).

In addition, past research provides evidence that many open-sourced projects
today struggle with contribution management, resulting in small communities and
slow development progress (Capiluppi et al. 2003). To support practitioners in
moving from traditional, proprietary development models towards an open-source
business model, our work aims to distill best practices and empirical evidence on how
successful, large open-source development projects do contribution management in
practice. Our first research question is thus:

Q1: How do successful open-source software projects manage community contri-
butions? Past literature provides only limited insight into how contribution
management is carried out in practice. In the context of this research question,



Empir Software Eng

we aim to learn about contribution management from documented processes
and practices of 7 major, successful open-source projects, and abstract our
observations into a step-by-step model that covers essential steps in the
management process.
In a systematic approach, we derived a conceptual model of contribution
management that spans f ive steps, from initial inception of a contribution to
the f inal integration of the contribution into the product and delivery to the
end-users.

In order to learn how successful projects do contribution management in practice,
we selected two major open source ecosystems, the LINUX kernel (for the rest of the
paper referenced to as LINUX), and ANDROID, that have put much time and effort
into establishing their contribution management processes. Our case study aims
at (1) evaluating their contribution management processes along three additional
research questions (activity, size, time), and (2) to distill the individual strengths and
weaknesses of two extreme contribution management processes to aid practitioners
in establishing their own contribution management processes. In particular, the three
research questions that we base our quantitative evaluation on are:

Q2: To what extent are community members actively engaged in the development
of the project? We believe that the number and the activity of community
members are a good proxy to measure the success of an open-source software
project. Thus, good contribution management should encourage community
engagement.
We f ind that both projects attract growing communities surrounding their
software products. The more open and voluntarily managed contribution man-
agement of LINUX is especially successful in dealing with a substantial growth in
submitted contributions.

Q3: What is the size of received contributions? We believe that the size of contri-
butions is a valuable proxy for the effort (and also the importance and value)
that went into the contribution. While small contributions do not necessarily
need to be trivial (i.e., a small size contribution can still have tremendous
business value), large and substantial contributions (such as new features, or
complicated bug fixes) are more valuable for a project, than small and trivial
contributions (such as fixing typos in the documentation). Previous research
has shown that in practice contributors tend to submit smaller contributions,
and peer reviews tend to favour smaller changes (Rigby et al. 2008). Good
contribution management should not only encourage larger contributions, but
also be able to handle larger contributions effectively.
We f ind that in contrast to previous research, both systems favour larger sized
contributions. ANDROID’s contribution management process includes tool sup-
port that helps reviewers cope with larger contributions and enables ef fective
cherry-picking of smaller parts out of sizeable contributions.

Q4: Are contributions managed in a timely fashion? Good contribution manage-
ment should be successful in dealing with contributions effectively with respect
to time and effort to avoid contributors feeling ignored or becoming impatient.
We f ind that the timeframe in which external contributors are active in the project
and thus available to respond to feedback on their contributions is limited. As a
result timely processing is important to avoid losing valuable contributions.



Empir Software Eng

We identify the main contributions of our work as:

1. A conceptual model of the contribution management process with the goals to:
(1) methodologically derive an abstraction of the contribution management of
successful, large open source projects from scattered project documentation, and
(2) to provide a common basis for terminology and practices of contribution
management.

2. Descriptive statistics and recommendations to practitioners based on case studies
of two real world instances of contribution management processes and a quanti-
tative assessment of their success.

3. An investigation of successful practices of contribution management with the
goal to support practitioners who aim at establishing effective contribution
management when moving towards an open source business model.

The rest of this paper is organized as follows. We present a conceptual model for
contribution management that we derived from seven major for-profit and not-for-
profit open source systems (Q1) in the first half of Section 2. In the second half of
Section 2, we discuss howANDROID and LINUX realize contribution management
in practice through a case study that follows our conceptual model of contribution
management. In Section 3, we present our quantitative evaluation of contribution
management in LINUX and ANDROID, which follows along the remaining three
research questions (Q2–Q4). In Section 4, we discuss potential threats to the validity
of our study and outline the precautions we have taken to balance these threats. We
proceed with identifying and discussing related work in Section 5, followed by our
concluding remarks in Section 6.

2 How Do Successful Open-Source Software Projects Manage Community
Contributions (Q1)?

2.1 A Conceptual Model of Contribution Management

In order to establish a common ground for studying contribution management
processes with respect to terminology and concepts, we first derive a conceptual
model of contribution management. In the same way that architectural models create
abstractions of actual instances of software implementations and give researchers a
common ground for studies, our conceptual model aims at being a starting point for
establishing common terminology when talking about contribution management.

The model of contribution management presented in this section was derived
through a systematic study of publicly accessible records of processes and practices in
this paper’s subject systems, ANDROID and LINUX, as well as five additional popular
for-profit and not-for-profit open source software systems from different domains.
The seven software systems that we used to derive our conceptual model from are
summarized in Table 1. These seven projects were selected among contemporary,
prominent and important open-source projects, so we could understand how mature
projects do contribution management. All projects have enough public exposure
(press coverage, availability of documentation and discussion lists surrounding the
development and contribution processes) to perform a systematic analysis of the



Empir Software Eng

T
ab

le
1

O
ve

rv
ie

w
of

fo
r-

pr
of

it
(O

P
E

N
SO

L
A

R
IS

,
E

C
L

IP
SE

,
M

yS
Q

L
,

A
N

D
R

O
ID

)
an

d
no

t-
fo

r-
pr

of
it

(F
E

D
O

R
A

,
A

P
A

C
H

E
,

L
IN

U
X

)
op

en
so

ur
ce

pr
oj

ec
ts

st
ud

ie
d

to
ex

tr
ac

ta
co

nc
ep

tu
al

m
od

el
fo

r
co

nt
ri

bu
ti

on
m

an
ag

em
en

t

P
ro

je
ct

L
ed

by
D

om
ai

n
M

od
el

Sy
st

em
si

ze

O
P

E
N

SO
L

A
R

IS
11

1b
C

om
pa

ny
(O

ra
cl

e)
O

S
en

vi
ro

nm
en

t
C

om
m

er
ci

al
pr

od
uc

tf
ea

tu
re

s
ch

er
ry

-p
ic

ke
d

10
M

L
O

C
fr

om
op

en
so

ur
ce

co
de

.
E

C
L

IP
SE

3.
6

F
ou

nd
at

io
n

(E
cl

ip
se

F
ou

nd
at

io
n)

ID
E

an
d

fr
am

ew
or

k
C

om
m

er
ci

al
pr

od
uc

tb
ui

ld
s

on
to

p
of

op
en

17
M

L
O

C
fu

nd
ed

th
ro

ug
h

m
em

be
rs

hi
p

fe
es

so
ur

ce
pr

od
uc

t.
fr

om
in

di
vi

du
al

s
an

d
co

m
pa

ni
es

M
yS

Q
L

5.
5

C
om

pa
ny

(O
ra

cl
e)

D
at

ab
as

e
sy

st
em

Su
pp

or
t,

ce
rt

if
ic

at
io

n
an

d
m

on
th

ly
up

da
te

s
1.

3M
L

O
C

fo
r

en
te

rp
ri

se
s.

A
N

D
R

O
ID

2.
3

C
om

pa
ny

(G
oo

gl
e)

E
m

be
dd

ed
de

vi
ce

pl
at

fo
rm

O
pe

ra
te

s
se

pa
ra

te
ly

so
ld

ha
rd

w
ar

e.
73

M
L

O
C

A
P

A
C

H
E

2
F

ou
nd

at
io

n
(A

pa
ch

e
So

ft
w

ar
e

W
eb

se
rv

er
N

ot
-f

or
-p

ro
fi

t
2M

L
O

C
F

ou
nd

at
io

n)
fu

nd
ed

th
ro

ug
h

do
na

ti
on

s
L

IN
U

X
ke

rn
el

In
di

vi
du

al
(L

in
us

T
or

va
ld

s)
O

S
ke

rn
el

N
ot

-f
or

-p
ro

fi
t

14
M

L
O

C
F

E
D

O
R

A
14

F
ou

nd
at

io
n

(F
ed

or
a

P
ro

je
ct

)
O

S
en

vi
ro

nm
en

t
C

om
m

er
ci

al
pr

od
uc

tf
ea

tu
re

s
ch

er
ry

-p
ic

ke
d

20
4M

L
O

C
sp

on
so

re
d

by
C

om
pa

ny
(R

ed
ha

t)
,

fr
om

op
en

so
ur

ce
co

de
.

C
om

m
un

it
y

G
ov

er
ne

d



Empir Software Eng

surrounding documentation to derive a meaningful picture (Charmaz 2006; Strauss
and Corbin 1990). Furthermore, we selected mature projects that are well-
established in the open-source field. We derived system size through public source
code statistics provided by Ohloh,1 where available, and from press releases of the
software systems otherwise.

We derive the conceptual model from publicly available documents about the
seven subject systems, by following an approach known as “Grounded Theory”
(Glaser and Strauss 1967; Strauss and Corbin 1990). Grounded Theory aims at
enabling researchers to perform systematic collection and analysis of qualitative
textual data with the goal to develop a well-grounded theory. The process starts with
a maximally diverse collection of documents and follows three separate steps. The
first step, called “Open Coding”, consists of reading and re-reading all documents
and identifying, naming and categorizing phenomena observed in the qualitative
data. In the second step, called “Axial Coding”, the analyst relates the categories
derived in the first step to each other with the aim of fitting concepts into a basic
frame of generic relationships. Through the third step, called “Selective Coding”,
the analyst distills the core concepts and abstractions of the observations in the
qualitative data.

We start our derivation process on contribution management practices in Open
Source Software (OSS) by first collecting and analyzing the publicly available
documentation for each project, press releases, white papers, community mailing
lists, and websites that document each project, as well as research literature in
the area of open source software engineering. We started our abstraction of a
common model by understanding the workflow that a contribution undergoes in each
project. Some projects, such as ANDROID provide very detailed documentation,2

whereas workflow in other projects is documented less explicitly by the members
of the project themselves and needs to be recovered from more anecdotical sources.
For example, in OPENSOLARIS, we recovered workflow information from multiple
sources, in particular, the community Wiki and development mailing lists. Following
the example of previous research in the area (Asundi and Jayant 2007; Rigby et al.
2008), we then looked for commonalities across all projects and finally divided the
contribution management processes into individual steps that are common across all
projects.

An inherent threat to the validity of such a derivative process is that we can
claim neither completeness, nor absolute correctness of the derived theory. However,
our aim was to derive a first abstraction, which we leveraged from the records and
descriptions of actual implementations of contribution management processes in
practice. This abstraction serves on the one hand as a starting point for discussing
contribution management throughout our study on a scientific basis, and on the
other hand we hope that future research will pick up and incrementally refine this
abstraction with what is known in the field, similar to conceptual models of software
architecture.

Overall, the derived conceptual model consists of five phases that a contribution
undergoes before it can be integrated into the next release of a software product and

1http://www.ohloh.net
2http://source.android.com/source/life-of-a-patch.html

http://www.ohloh.net
http://source.android.com/source/life-of-a-patch.html


Empir Software Eng

Fig. 1 Conceptual model of the collaboration management process

be delivered to the community. In the following subsections, we discuss each phase
in the order of labels presented in Fig. 1, and illustrate each phase with concrete
examples from the software systems that were analyzed.

2.1.1 Phase 1: Conception

Similar to classical software development, prospective contributors with an idea for
a new feature or bug fix often seek early feedback and support from the rest of
the community, as well as the internal development teams, to work out their ideas
into concrete designs. Such discussions usually take place in public project mailing
lists (e.g., OPENSOLARIS, APACHE), issue tracking systems (e.g., ECLIPSE), Wikis
(FEDORA), and/or special purpose discussion forums (MySQL).

The outcome of the conception phase is either a concrete design (usually after
multiple rounds of feedback), or a rejection of the proposed contribution, if the idea
does not align with the project’s or the community’s goals. The conception phase is
not mandatory—in some projects contributors skip this phase altogether and start
with a concrete source code submission that was designed individually.

2.1.2 Phase 2: Submission

Once the design for a contribution has been fleshed out in source code, a contributor
submits the contribution through the submission channels provided by the project.
Since many of these submission come from external contributors (community
members), intellectual property infringements are a substantial concern (German
and Hassan 2009). All seven projects that we studied acknowledge this risk and have
established policies for their submission processes that guarantee traceability of the
submission to the original author.



Empir Software Eng

For example, ECLIPSE, FEDORA, MySQL and APACHE completely disallow contri-
butions through mailing lists, as the identity of the sender can not be verified. Instead,
they require a submission to be carried out formally by opening a new record in their
issue tracking systems.

2.1.3 Phase 3: Contribution Review

After a submission has been submitted for consideration, it will ideally reach senior
members of the project (even though there is no guarantee that this is always the
case, as our data on the LINUX system demonstrates). All seven projects require a
formal peer review to be carried out for every submitted contribution. Contribution
review has the following three goals.

1. Assure Quality. Senior developers may catch early on obvious issues of the
contribution and possible source code errors, and give the contributor a chance
to address these problems.

2. Determine Fit. As community members are often unaware of internal develop-
ment guidelines and policies, the primary goal of the review phase is to determine
the overall fit of the contribution for the project and ensure that contributions
meet the established quality standards.

3. Sanitize Code. Reviewers check contributions for programming guidelines and
standards, inappropriate language, or revise comments intended for internal
viewing only. As part of the sanitization process, developers may also review the
contribution for use of third-party technology, such as usage of external libraries
whose licensing might not align with the project (German and Hassan 2009), as
for example practiced in the ECLIPSE project.

The review phase has three potential outcomes: a contribution is accepted as-is,
a contribution needs to be reworked, or a contribution is rejected. In case there are
concerns with the contribution, reviewers can give feedback to the contributor, who
is then expected to either address any concerns raised, or abandon his contribution.

2.1.4 Phase 4: Verif ication

After a contribution passes the review phase (often after multiple iterations), senior
members of the project team or a project lead need to verify whether a contribution
is complete and free of software errors (e.g., making sure the contribution passes
all regression tests). The verifier is the person who has the final say on whether a
contribution gets accepted or not. If any problems arise during the verification phase,
the verifier(s) can give feedback to the original contributor, who can then resubmit
an updated revision of the contribution (back to Step 2).

Common reasons for contributions being rejected during the verification phase
include software errors, incompatibilities with the most recent version of the project
repository (e.g., they target an out-dated branch of the software that is no longer
actively developed or maintained), or strategic decisions (Wnuk et al. 2009). The
verifier has the ultimate say and can reject contributions that received positive
reviews in the previous phase if he does not see a fit for the contribution in the long
term direction of the project. For example, the contribution correctly implements a
certain feature, yet an alternate version for the same feature is already planned to



Empir Software Eng

be copied from another upstream project that also implemented the same feature
independently.

Since verification is a tedious step, some projects try to automate or outsource this
process. For example, in FEDORA and ECLIPSE testing during the verification phase
is crowd-sourced through nightly builds (daily updated builds that are not meant for
public release), which contain the latest contributions for testing by the community.
In addition, build and testing infrastructures and tools such as HUDSON3 or JENKINS4

are becoming increasingly advanced and enable (semi-)automated verification of
contributions in the context of the existing software.

2.1.5 Phase 5: Integration and Delivery

If a contribution has passed the peer review, is technically sound, and has been
verified, it enters the integration phase. The goal of this phase is to integrate a
contribution, often together with all other contributions that have passed review and
verification, into the software product, and to ultimately deliver it to the community.
Integration of a contribution is often challenging, as the contributed code may stand
in conflict with the source code of other contributions, as well as internal changes.
If integration fails, contributors are often required to adapt their contributions to
remove conflicts and work together with the most recent revision of the development
repository.

Strategies for integration range from an immediate merge into the publicly
available source code repositories, to delivery of contributions as part of a release
schedule, such as daily builds, or official releases (Duvall et al. 2007). For special
contributions, such as critical bug fixes, or high-impact security issues, strategies for
a fast-tracked integration of contributions are valuable for reducing ill-effects.

2.1.6 Intellectual Property (IP) Management

Interestingly, across all projects that we studied, we found only a single instance of
a particular IP management process—in the case of ECLIPSE, a closed-access tool
called IPZILLA5 is used to internally check for IP issues with contributions from
third parties. However, we found a number of “best-practices” documented across
different projects that support the management of Intellectual Property through
keeping track of contributor’s identities by the following means:

1. Login Credentials. For ECLIPSE, FEDORA, MySQL and ANDROID, users need a
valid and active registration in the online system used to facilitate the contribu-
tion process (BUGZILLA, GERRIT). Users are required to provide their name,
email address (and in some cases a postal address) to successfully register in
the system. Contributions are then associated to their unique user id or user
handle in the system. During the registration mechanism of the GERRIT tool in
ANDROID, a user has to explicitly agree to, and sign a CLA (Contributor License
Agreement) with Google that covers the transfer of IP rights for any submitted
contribution.

3http://hudson-ci.org/
4http://jenkins-ci.org/
5https://dev.eclipse.org/ipzilla/

http://hudson-ci.org/
http://jenkins-ci.org/
https://dev.eclipse.org/ipzilla/


Empir Software Eng

2. Formal Registration. For APACHE6 and OPENSOLARIS,7 users are required to
print a special form called the Contributor License Agreement (CLA), sign
it and mail, email, or fax it to a central authority to become registered as a
code contributor. Only contributions from successfully registered individuals are
considered.

3. Developer Certificate of Origin. For LINUX, contributions are submitted by
electronic mail. Instead of contributor submitting an individual contributor
licensing agreement (CLA) such as we have seen in 1. and 2., emails are required
to contain a “Sign-Off” field identifying the contributor through a name and
email address pair. The version control system (GIT) tool includes a special
command line option “–signoff” to automatically sign submissions to the code
repository with the credentials that a user has provided in the tool configuration.

4. Firewalling. A common practice across all seven projects is to further restrict
the rights for modification of the main source code repository to a small set of
“committers”. Individuals earn commit rights by demonstrating technical skill
through continued contribution to the project as non-committers (in this case
another committer needs to sponsor their contributions), and by gaining social
reputation, i.e., the more well-known and trusted individuals are by their peers,
the more likely they will be given permissions to change the code directly (Bird
et al. 2007b).

5. Internal Review. Through an interview with ECLIPSE developers we learned that
the ECLIPSE Foundation carries out internal reviews of submission to check for
third-party license conformity. We could not find any such practice documented
for any of the other six projects, but suspect that similar practices are in place
even though they are not explicitly described.

2.1.7 Relationship to Other Socio-Technical Participation Models in OSS

Since the beginning of the Open-Source Software development phenomenon, re-
searchers have sought to understand how and why developers join an open-source
project, and what their properties of participation in the project’s development
process are.

For example, the private-collective model presented by Hippel and Krogh (2003)
conjectured how external users contribute to software projects, in order to solve
their own problems on the one hand, and technical problems that are shared among
the community surrounding the software on the other hand. In their study of major
open source projects, von Hippel and von Krogh find that such external contributors
freely reveal their intellectual property without commercial interests, such as private
returns from selling the software.

In particular, for the APACHE webserver, and the FETCHMAIL email utility, von
Hippel and von Krogh describe how the private-collective paradigm of providing
contributions to a software for a public good impacts the organization and gover-
nance of traditional (commercial) development projects (Hippel and Krogh 2003). In
particular, von Hippel and von Krogh conjecture the existence of governing entities

6http://www.apache.org/licenses/icla.txt The Apache Software Foundation Individual Contributor
License Agreement (CLA).
7http://www.opensolaris.org/os/sun_contributor_agreement The Sun Contributor Agreement (SCA).

http://www.apache.org/licenses/icla.txt
http://www.opensolaris.org/os/sun_contributor_agreement


Empir Software Eng

(team leaders, core-developers) and project resources, which our study confirms and
describes in detail in the next section. For example, we observe in both of our case
study subjects the existence of leadership roles as proposed in the private-collective
model. However, the setup of these leadership roles differs significantly across both
our case study subjects: while the LINUX project is governed in a hierarchical,
pyramid-like fashion of increasing level of authority, with a “benevolent dictator”
at the top and a hierarchy of meritocratically chosen lieutenants below, we find that
the ANDROID project is governed by a two-tier “board of directors” approach, where
the authority is in the hand of Google employees.

While the private-collective model studies open-source participation and con-
tribution from a user incentive-level, the participation model presented by
Sethanandha et al. focuses on understanding how individual pieces of code in the
form of patches are contributed by external users and are handled by the project
(Sethanandha et al. 2010). In contrast to the work by Sethandha et al., the conceptual
model presented in this paper covers a more complete picture of the contribution
process, beyond the submission and handling of patches. In particular, our con-
ceptual model integrates conception, verification and integration phases, which are
crucial parts of the overall management of contributions from users.

2.2 The Contribution Management Model in Practice - A Case Study
on ANDROID and LINUX

To investigate how successful projects perform contribution management in practice,
we picked the LINUX kernel and ANDROID as examples to learn from. This choice
is motivated in particular by (a) LINUX being a prime example of a thriving, long-
lived project, which spearheaded the open source movement and (b) ANDROID
being a for-profit open source project, which is backed by a very successful major
software company (Google). Even though ANDROID is publicly available for free,
the underlying business interest is still for-profit, as the mobile platform allows for
sale of search, advertisements, and mobile apps, and hence the product is treated
like most commercial software. The selection of both projects was based on four key
characteristics:

1. Both projects are especially successful in the open source software domain.
2. Both projects receive a large quantity of contributions from their communities.

These contributions help evolve the product, perform corrective and perfective
maintenance, as well as a multitude of extra services (e.g., creation of graphics,
art, tutorials, or translations), and extend the product halo.

3. Both projects are system software, so we can observe how they compare.
4. One project is for-profit, the other not-for-profit, which might effect the contri-

bution management processes.

2.2.1 Data Collection

For both projects, we carried out a quantitative analysis by analyzing the available
source code repositories, mailing lists discussion repositories, and a qualitative
analysis through inspection of publicly available web documents, and project doc-
umentation. For LINUX, we also took experience reports and previous research
(Mockus et al. 2000; Rigby et al. 2008) into account. For the ANDROID system, we



Empir Software Eng

relied on Google’s publicly-available documentation of processes and practices, as
well as empirical knowledge derived from analysis of the source code and available
data from the GERRIT code review system. We describe below our data collection
steps in more detail.

LINUX LINUX contributions are submitted through the LINUX kernel mailing lists.
There is one global mailing list, and multiple specialized mailing lists for the
different kernel subsystems. To analyze contribution management in LINUX, we first
downloaded and mined the email archives of 131 LINUX kernel mailing lists between
2005 to 2009. We then used the MAILBOXMINER tool (Bettenburg et al. 2009a) to
extract the mailing list data into a separate database that formed the basis for all our
analyses. We carried out this intermediate step since raw mail archives in the form of
mbox files are hard to process (Bettenburg et al. 2009a). The MAILBOXMINER tool
is publicly available8 under the GPLv3 license.

To enable the study of contribution management we developed a custom set of
scripts to detect and extract contributions (which are submitted in LINUX in the
form of patches) in the kernel mailing lists. Our tool is based on a set of regular
expressions, similar to those employed in previous work of the Mining Software
Repositories community (Bettenburg et al. 2008; Bird et al. 2007a). Based on this
data, we extracted metrics on both the mailing lists (number of participants, fre-
quency, volume, etc.), and the actual contributions themselves (size, files modified,
complexity, etc.).

To obtain information on which contributions are accepted, we had to link the
contributions in the emails to the distributed source control system of GIT following
the approach of Bird et al. (2009). In particular, we developed a heuristic, which splits
up a contribution per file that is being changed (this part of a contribution is called
a “patch chunk”), extracts a list of files that are being modified by the contribution,
removes noise such as whitespace, and then calculates a hash string in the form of a
“checksum” of the relative file path and the changed code lines (Jiang et al. 2013).
This is done to uniquely identify patches, as formatting changes widely across email
(i.e., whitespace, line endings, word and line wrap). We follow the same approach
to produce unique hashes for the accepted patches in the main LINUX GIT version
control system. We then match contributions extracted from emails to contributions
that were accepted into the main LINUX repository by comparing their hashes, and
also taking into account the chronological aspects of email and commits (i.e., we do
not link a patch that was accepted into the main repository if an email that contains
a contribution with a matching hash was sent at a later date). Once this mapping
from individual parts of contributions that found their way into the main LINUX
source code repository to contributions that were submitted to the kernel mailing
lists is established, we abstract back up from patch chunks (that describe parts of
contributions) to user contributions.

We manually evaluated the performance of our linking approach on a sample of
3,000 email discussions that contain the identifiers of actual GIT commits, in which the
discussions’ patches were accepted. We measure the performance of our approach by
means of “recall” (i.e., how many of those that we know were linked in reality are

8http://www.github.com/nicbet/MailboxMiner

http://www.github.com/nicbet/MailboxMiner


Empir Software Eng

also being linked by our approach). Upon manual inspection of a random stratified
sampling of 100 emails (both linked and not linked) across all kernel mailing lists,
we found that our approach had a precision of 100 % and a recall of 74.89 %
on this sample. According to statistical sampling theory, this provides us with a
10 % confidence interval around our result at a 95 % confidence level (i.e. we are
95 % sure that the performance achieved with our approach lies between 90 % and
100 % precision). Both measures, precision and recall, provide us with confidence
that the metrics we calculated on LINUX contributions are sufficiently accurate to
obtain meaningful descriptions of the overall population of contributions sent over
the LINUX kernel mailing lists.

Through these analysis steps we were able to recover a) what are the contributions
that get sent over the LINUX mailing lists, b) who are the actors, c) which parts of the
contributions get eventually accepted and d) all the surrounding meta-data such as
dates, times, discussions on the contributions, as well as contribution size. These four
parts of information form the main body of data for our study.

ANDROID The contribution management process of the ANDROID system is man-
aged entirely through a dedicated server application, called GERRIT. GERRIT has
a front-end user interface, which consists of a (client-side) web application running
on Javascript.9 Use of GERRIT is mandatory for any user who wants to submit a
contribution to the ANDROID project. The user designs and carries out code changes
in a local copy of the project repository. When done, the user needs to submit the
entirety of the changes done as a delta to the main project repository. GERRIT, which
sits on top of the distributed version control system GIT, monitors these submission
requests, intercepts the request, puts it on hold and automatically opens a new code
review task. Only when this code review has been approved and verified by a senior
developer (as described in Section 2), does the contribution get sent on to the main
project source code repository for integration.

The code review itself contains a large amount of meta-information surrounding
the contribution management process, such as discussions on the proposed change,
discussions on the source code, actors involved in the contribution and its review, as
well as their votes in favour or against the contribution. In particular, the GERRIT
system is designed to allow multiple people to vote and sign off changes in the
distributed development system, as well as to inspect and comment on the source
code itself.

According to an interview with Shawn Pearce, the lead developer of GERRIT, on
FLOSS weekly,10 the main goal of GERRIT is to provide a more formal and integrated
contribution management system compared to an email-based approach found in
projects like the LINUX kernel.

Since the GERRIT front-end like many other Google Web Toolkit (GWT) ap-
plications runs entirely as a client-side javascript program in the browser, classical
approaches of mining the HTML pages for data (often referred to as “web-scraping”)
do not work. As a workaround, we created a custom mining tool that directly
interfaces with the GERRIT server’s REST services. The publicly-available source

9https://android-review.googlesource.com/
10http://google-opensource.blogspot.ca/2010/05/shawn-pearce-on-floss-weekly.html

https://android-review.googlesource.com/
http://google-opensource.blogspot.ca/2010/05/shawn-pearce-on-floss-weekly.html


Empir Software Eng

code of the GERRIT system provides us with the necessary APIs to make REST calls
to the server, retrieve data in the form of JSON objects and serialize these into Java
Bean classes. We then copy the information contained in the Java Beans into a local
database for further analysis. One advantage of this approach is that the Java Beans
contain much richer data than what is already presented in the web-front end. In
particular associations of entries with unique user ids, date precision and internal
linking of artifacts are some of the highlights that greatly help our later analyses.

Overall, we obtained a snapshot of all the publicly visible contributions to the
ANDROID project that were recorded through the GERRIT system from the start of
the project, until July 2010. Our dataset contains 6,326 contributions from 739 active
accounts that were contributed over the course of 16 months, starting from the initial
open-source release of the ANDROID project. The GERRIT dataset contains:

(a) the source code of the individual contributions
(b) multiple versions of each contribution in the cases they needed to be revised
(c) discussions surrounding the contributions’ source code (on a line-level)
(d) discussions surrounding the contribution management process including review

and integration
(e) all votes that led to a decision on each
(f) meta-data such as dates, times, unique user ids, dependencies and other trace-

ability links to related artifacts and repositories contribution granularity)

A manual inspection of a random sample of 100 entries suggests that the data GERRIT
provides is both complete and clean, i.e., the “raw” data has all meta-data attached
that we needed for this study, and no further cleaning or pre-processing steps were
necessary.

2.2.2 Case Study on ANDROID and LINUX

In the following, we present commonalities and dissimilarities of the contribution
management processes implemented in both projects. This presentation follows
along the five phases of contribution management that we presented in our concep-
tual model (Section 2).

The analysis presented in this section forms the basis for our quantitative study
of the contribution management processes of LINUX and ANDROID in the following
section and highlights best practices in both projects.

Phase 1: Conception Both ANDROID and LINUX provide mailing lists for the con-
ception and discussion of new ideas. The main difference with respect to contribution
management is the traceability of a contribution from initial conception to final
implementation. As ANDROID uses different technologies for conception (mailing
lists) and all other phases (the GERRIT tool), the conception phase is separated from
the remaining contribution management process, resulting in weak traceability.

LINUX on the other hand uses the same email discussion for both, conception, as
well as review, thus enabling practitioners to follow a contribution from the initial
idea to the final encoding in source code. The practices in LINUX have evolved
historically: LINUX has been under development for almost 20 years and even though
processes and technologies were adapted along the way (i.e., using different Version
Control Systems to manage the project’s source code repositories), the social process
has mostly stayed the same.



Empir Software Eng

ANDROID embraces modern web technologies (as opposed to LINUX), which are
rooted in a more mature Web with advanced technologies that were not available
20 years ago and which have shaped how modern communities engage with online
tools.

�

�

�

�

If traceability of contributions from initial conception of an idea to f inal
implementation is a concern (e.g., for documentation or legal purposes),
practitioners need to reconsider the usage of disjunct technologies in
their contribution management process. One possible solution is the use
of discussion forums that provide links in the form of unique discussion
thread identif iers, which are referenced during any of the later phases of
contribution management.

Phase 2: Submission

Submission Channels: Contributions to ANDROID are submitted to the project’s
master version control system through a special purpose tool provided by the project.
During the submission process a new peer review task is automatically opened in the
GERRIT system that blocks the contribution from being delivered into the master
version control system until a full peer review has been carried out.

In contrast, LINUX uses mailing lists for the submission of contributions. These
mailing lists act as a repository that is detached from the version control system. Con-
tributions are propagated to the version control system later on, once a contribution
has been accepted in the peer review process of the submission.

Intellectual Property Management: In LINUX, community contributions are sub-
mitted through email and must contain a “signed-off” record that acts as a substitute
for an electronic signature, to confirm with intellectual property regulations.

Intellectual property is made explicit in ANDROID, as contributors can only submit
their contribution after they provide personal information by registering an account
in the GERRIT system and signing a Contributor License Agreement (CLA) in the
process.

�

�

�

	

If management believes that intellectual property management poses a
risk, restricting submissions to registered users may be preferable.

Phase 3: Review

Pending Review Notification: In ANDROID, each contribution triggers an auto-
mated notification to the project leaders and the appointed reviewers of the subsys-
tem for which the contribution was submitted. This process is automated and handled
by the GERRIT system. Reviewers can then access the new contribution through the
web interface and make their thoughts known through either attaching a message
to the general discussion of a contribution, or commenting directly on specific lines



Empir Software Eng

in the contribution’s source code. Either action triggers in return an automated
notification to the original author of the contribution, as well as the other reviewers.

Peer review in LINUX is organized less formally. In addition to a project-wide
mailing list for overall discussion, there exist many subsystem-specific mailing lists.
Contributors are encouraged to submit their contributions through the correspond-
ing mailing list of the subsystem that their contribution targets. However, function-
ally this is not much different from queues in GERRIT. Every community member
subscribed to the subsystem mailing list sees new entries and can act on them as she
sees fit. If a community member voluntarily decides to carry out a peer review, they
can do so freely and at any time by sending their review as a reply to the correspond-
ing email discussion.

�

�

�

�

Voluntarily managed peer review based on email is characterized by a
signif icant amount of time that may pass before a volunteer provides
f irst feedback (ref. Section 4-RQ1), and the risk that a contribution be
completely ignored, when no volunteer steps up for review. An explicit
notif ication-based strategy, such as the one employed by ANDROID,
helps raise awareness of new contributions that require the attention of
reviewers, and makes sure that every contribution is reviewed.

Judgement of contributions: In ANDROID, contributions are judged formally
through positive and negative votes, cast by reviewers and verifiers. Only contri-
butions that have at least one vote for acceptance (a +2 vote) can move on to
verification. In particular, reviewers in ANDROID can cast a +1 vote to indicate that
the contribution should be accepted, and a −1 vote to indicate that the contribution
should be rejected. Senior members, i.e., verifiers, then assess the votes of the
reviewers and decide on acceptance of the contribution (they cast a +2 vote), or
rejection (they cast a −2 vote).

The judgement of contributions in LINUX is less formal. Contributions are either
abandoned, if the community showed not enough interest (with respect to follow
up emails on the original submission); rejected, if a project leader decides that there
were too many concerns raised by the community; revised, if there were only minor
concerns that could be corrected easily; or accepted as is. In contrast to ANDROID,
acceptance of a contribution in LINUX is implicit: a contributor knows whether
his contribution was accepted, when the maintainer of a subsystem accepts the
contribution in his own copy of the master version control system. In case of revision,
updated versions of the contribution are commonly submitted to the same email
thread.




�

�



If assessment of contributions by multiple reviewers is a concern, a
voting-based approach, as employed by ANDROID, provides trans-
parency and documents the decision making process. Such a voting-
based approach might be preferable over a hierarchical approach, like
the one employed by LINUX, where decisions can be overthrown at any
time by individuals at a higher level in the project hierarchy.



Empir Software Eng

Phase 4: Verif ication In ANDROID, verifiers, who are often senior (Google) en-
gineers, who have been appointed by the leaders responsible for the individual
ANDROID subsystems, merge the contribution into a local snapshot of the latest
version of the code base, and manually test the contribution for correctness and
functionality. If problems occur, the verifiers give feedback to the original contrib-
utor, who can then resubmit an updated revision that addresses these problems.
If verification succeeds, the contribution is accepted to ANDROID’s development
branch by the subsystem’s lead reviewer or maintainer.

In LINUX, verification of the contribution takes place through developers and
beta testers of the experimental branch. Feedback is provided to the original con-
tributor through separate mailing lists that are dedicated to this testing purpose. If
problems occur during this phase, contributions are put on hold until the issues are
resolved.

�

�

�

�

If workload on in-house developers is a concern, outsourcing of review
and verif ication ef fort to the community can help reduce overall work-
load on senior developers. However, this comes at the cost of giving up
control over the f inal quality assurance, and can lead to even longer
processing of contributions.

Phase 5: Integration In ANDROID, integration of contributions takes place as soon
as they have been successfully verified. Project leads can initiate an automated
integration process through the web interface of the code review system. If this
automated merge is successful, the contribution is delivered to the community the
next time they synchronize their local environments with the project directory.

Integration of contributions into the next release in LINUX is handled through a
semi-automatic approach: contributions are manually integrated by developers, by
moving them through development repositories until they finally reach the main de-
velopment branch (Jiang et al. 2013). However, to have a chance for being integrated
in the upcoming version, a contribution has to be at least accepted during the merge
window of the upcoming release. But even then, contributions can fail to make it,
for example if the contribution is too risky to introduce at once or other features
suddenly get higher priority. Linus Torvalds has the final say (“benevolent dictator”)
(Crowston and Howison 2005) and can overrule all previous recommendations to
reject contributions that do not fit with the strategic direction of LINUX.

We observe that in both systems some dedicated developers have the role of
decision makers, who can ultimately deny the integration of a contribution into the
master repository. ANDROID’s integration strategy is much more immediate than
the strategy selected by LINUX, and delivers accepted contributions to the rest of the
community without delay.

�

�

�

�

We observe that both LINUX and ANDROID make use of semi-
automated tools, which sit on top of the master source code repository,
and of fer immediate integration of contributions and delivery, as well as
feedback to the contributor, in case the integration process fails.



Empir Software Eng

3 Quantitative Assessment of Contribution Management
in ANDROID and LINUX (Q2–Q4)

In the second part of this paper, we present a quantitative assessment of the
contribution management processes of ANDROID and the LINUX kernel. For this,
we follow along our remaining three research questions:

Q2: To what extent are community members actively engaged in the development
of the project?

Q3: What is the size of received contributions?
Q4: Are contributions managed in a timely fashion?

For each research question, we first present a motivating discussion, and then con-
trast our findings on the contribution management of both projects along individual
characteristics. We highlight our main findings and lessons learned during quantita-
tive and qualitative analysis steps in boxes towards the end of each part. Throughout
our quantitative study, we describe our findings through descriptive statistics. In
particular, we are using the arithmetic average (mean) as a default measure of
centrality. However, some of the data we report on is not normally distributed, i.e.,
data such as the lifespan of community members is heavily skewed with long tails.
In these cases, the mean would in turn be a skewed and thus inappropriate measure
of centrality. In these cases we report the median, rather than the mean to present a
more accurate descriptive statistic suitable for skewed distributions.

3.1 Are Community Members Actively Engaged in the Development
of the Project? (Q2)

The profound value of a community surrounding a software product for open source
business models is captured in two principles: Reed’s “law of the pack” and Bass’
“diffusion model” (Bass 1969; Reed 2001). Based on Reed’s law, we conjecture
that the size of the community surrounding a software product (often referred to as
“product halo”), is an indicator of the project’s success and business value. A similar
concept is captured in Bass’ diffusion model, which states that “As more people
get involved in a community, participation begets more participation”. However, the
different contribution management strategies employed by LINUX and ANDROID
might have an effect on the extent to which the community is engaged in the
development process.

To answer this research question, we measured the overall amount of contributors
in ANDROID and LINUX, as well as the overall time during which contributors
actively participated in the development of the software product. We use these
measures as a proxy to judge whether both projects are successful in engaging and
motivating external developers to take part in a collaborative process surrounding
the software products.

In the following, we refer to the state of LINUX during the year 2005 (the earliest
data after the most recent switch of their contribution management process) as
LINUX 05 and to the state of LINUX during the year 2009 (the same time period
for which we collected ANDROID data) as LINUX 09. We split the LINUX dataset into
two parts to make comparisons between LINUX and ANDROID fairer. In particular,
LINUX 05 describes the first year of LINUX’ current contribution management



Empir Software Eng

Table 2 Results of quantitative analysis of community activity in ANDROID and LINUX

Metric ANDROID LINUX

2005 2009

Number of community members 739 2,300 4,901
Number of reviewers 408 1,680 3,503
Number of contributors 526 771 2,482
Number of contributors with multiple submissions 203 475 1,792
Number of contributors with multiple submissions 151 445 1,666

who had at least one rejection
Number of contributors who had a single submission 37 208 405

that was rejected
Number of contributors who returned to submit 38.5 % 61.6 % 72.19 %

more contributions

process, and similarly, the ANDROID dataset describes ANDROID’s first year of
contribution management. For both datasets, we collected data up to the following of
the reported year, and for counting returning contributors in particular have followed
through to that point (e.g., for ANDROID, we report on data until January, but looked
until July to see if those commits’ developers sent anything later on).

Part 1: Size of the Community We present the size of the community surrounding
the development of ANDROID and LINUX in Table 2 and Fig. 2, as counted from the
unique authors and reviewers of contributions in the datasets that we collected from
the LINUX kernel mailing lists and the GERRIT code review system. We measured
a total of 739 active community members in ANDROID, of which 408 have carried
out peer reviews and 526 submitted contributions. For LINUX 05, we measured a
total of 2,300 active community members, of which 1,680 have carried out peer
reviews and 771 submitted contributions. For LINUX 09, we measured a total of 4,893
active community members, of which 3,503 have carried out peer reviews and 2,482
submitted contributions.

From a management point of view, returning contributors are more valuable
than first-time contributors, since they are already familiar with the project, coding

Fig. 2 Comparison of community size in ANDROID, LINUX 05 and LINUX 09



Empir Software Eng

policies and processes. In ANDROID, 38.5 % of contributors returned to submit
more contributions. In LINUX 05 and LINUX 09, these returning contributors rate
is much higher: 61.6 % in 2005 and 72.19 % in 2009. Overall, LINUX was successful
in increasing the returning contributor rate by 10.6 % over the course of four years.

Overall, we observe that both projects are able to attract sizeable and growing
communities with 38 % (Android) to 62 % (Linux) of community members con-
tributing multiple times.

Part 2: Lifespan of Community Members We measured the activity of community
members as the time span between the date of their first activity (contribution,
message, review, or comment) until the date of their last recorded activity. We leave
out those community members for which only a single activity was recorded and
ignore any possible hiatus between periods of activity (i.e., a contributor’s period of
activity begins with the date of submission of that contributor’s first submission, and
ends with the date of the last recorded submission).

We find that the median period of activity of community members in ANDROID
is 65 days. In LINUX 05, community members have a median period of activity of
24 days, whereas in LINUX 09, the median activity is 57 days.

To get an idea of the potential impact of the lifetime of community members on
contribution management, we carried out a manual inspection of all ANDROID con-
tributions that were submitted by one-time contributors. We found that 19.51 % of
these contributions were abandoned because contributors were no longer available
to process the feedback given by reviewers, as reviewers took longer than two months
(= 60 days) to give feedback on the contribution. The remaining 80 % of abandoned
contributions were due to a variety of reasons, such as:

– the contributor implemented functionality that was already implemented in-
house, but in the non-public development branch. As the development branch is
not publicly available, the contributor was not aware of this duplication. (48.7 %)

– the contributor implemented functionality that was already implemented by
another contributor at the same time. (7.3 %)

– the contribution conflicted with the master source code repository beyond
feasible repair. (4.8 %)

– the contribution was submitted to the wrong subsystem. (7.3 %)
– the contribution was deemed incomplete or of too low quality. (36.6 %)

As a result, we conjecture that an effective contribution management process
needs to be aware of the time span in which community members are active and
available for feedback and carrying out possible changes to their initial contribution.
When first feedback is given to contributors after they have already left the project,
contributions often end up in an unfinished state and are ultimately abandoned,
thus wasting precious time of both contributors and reviewers that could have been
directed elsewhere.

3.2 How Large are Received Contributions? (Q3)

One of the major benefits when moving towards an open source business model
is free, outsourced development, contributed by the community. However, past



Empir Software Eng

research has reported that on the one hand contributors often submit small, insub-
stantial contributions (Weissgerber et al. 2008), and on the other hand peer review
processes also tend to favor small changes (Rigby et al. 2008) as they are easier to
work with. However, we believe that many companies prefer large contributions
that are split into smaller chunks, as individual chunks are easier to review and
processing of the entire contribution can be distributed, and thus be carried out more
efficiently.

Approach To answer this research question, we first measure the size of ANDROID
and LINUX contributions, as well as the number of files modified by contributions.
We then split up contribution size for accepted and rejected contributions to examine
whether acceptance is biased towards larger or smaller contributions (or in other
words: whether larger or smaller contributions are favoured).

Since it is hard to distinguish modifications of source code lines from added and
removed lines, we define the size of a contribution as the sum of the added and
removed lines in the patch output of ANDROID and LINUX contributions (Rigby et al.
2008). As a result, our measurements basically consider the sum of actual added lines,
actual removed lines and twice the number of modified lines.

Part 1: Contribution Size and Spread The median size of contributions in ANDROID
is 16 lines, with 75 % of the contributions smaller than 57 lines. In LINUX 05, the
median size is 36 lines (75 % of the contributions smaller than 187 lines), compared
to a median size of 38 lines for LINUX 09 (75 % of the contributions smaller than
207 lines). For both projects we observe that the average contribution is relatively
small, but occasionally, very large contributions are received (i.e., observed in the
long tails of distributions in Fig. 3).

To give a point of reference, we counted the size of files in lines of code (LOC) for
two specific versions of both projects that fall into the timeframe of our analysis. We
find that the average number of lines of code in files of LINUX kernel version 2.6.17 is
21.46 LOC; and the average numbers of lines of code in files of the ANDROID version
2.2 ecosystem is 41.0 LOC.

We observe that while 50 % of the ANDROID contributions change a single file
(75 % are spread across less than 4 files), we find that 50 % of contributions in both,
LINUX 05 and LINUX 09, are spread across 2 files (75 % across less than 7 files).
We present box-plots of the spread (the number of files changed by a contribution)
in Fig. 4.

Overall, we note that both projects received substantial contributions from the
community. Even though the integrated contribution management system used by
the ANDROID project (GERRIT) offers visualizations of submissions on file and line
level to developers, the manual reviewing approach in LINUX appears to be able to
effectively cope with submissions that are more than twice as large, and spread across
double the number of files.

Part 2: Acceptance Bias To analyze the relation of contribution size to submis-
sion acceptance, we classified all contributions to both projects into two groups
(ACCEPTED, and REJECTED) and carried out a statistical analysis of the resulting
distributions (Fig. 3). The median size of accepted contributions is 16 lines of code
for ANDROID, compared to 11 lines of code for rejected contributions. Similar



Empir Software Eng

Outcome of Peer Review
REJECT ACCEPT

ANDROID

Outcome of Peer Review
REJECT ACCEPT

LINUX'05

Outcome of Peer Review
REJECT ACCEPT

LINUX'09

S
iz

e 
of

 C
on

tr
ib

ut
io

ns
 in

 lo
g(

LO
C

)
S

iz
e 

of
 C

on
tr

ib
ut

io
ns

 in
 lo

g(
LO

C
)

S
iz

e 
of

 C
on

tr
ib

ut
io

ns
 in

 lo
g(

LO
C

)

Fig. 3 Size of contributions (in log(Lines of Code)) with respect to final review outcome

differences exist for LINUX 05 (52 lines of code for accepted vs. 27 lines of code
for rejected submissions) and LINUX 09 (71 lines of code for accepted vs. 23 lines for
rejected submissions).

We performed a non-parametric t-test (Mann–Whitney–Wilcoxon) on each
dataset independently, and reject our null-hypothesis H0, “There is no dif ference
in size between accepted and rejected contributions”, at p < 0.001, or in other words,
the difference in contribution size between accepted and rejected contributions is
statistically significant.

Overall, we find that for both projects, accepted submissions are between 1.6 and
3.0 times larger than rejected submissions. This stands in contrast to previous re-
search in the area, which has demonstrated that smaller contributions are favored in
peer reviews (Rigby et al. 2008). Our data shows that decisions on the final outcome
of acceptance or rejection of community contributions in LINUX and ANDROID
follow opposite patterns.



Empir Software Eng

Fig. 4 Spread of contributions (in log(number of files changed)) with respect to final review outcome

We observe that both projects received substantial contributions from the commu-
nity. In both projects we observed a statistically significant acceptance bias towards
larger contributions.

3.3 Are Contributions Managed in a Timely Fashion? (Q4)

A good contribution management process needs to be able to manage contributions
in a timely fashion to avoid potential negative impacts on the development process.
As examples to motivate this research question consider the following scenarios.

(1) A contributor might become neglected through an overly long wait for his
contribution to be addressed and leave the community.



Empir Software Eng

(2) An internal development team might spend effort on the same task that has
already been contributed by the community (and is still awaiting review).

Approach To answer this research question, we analyzed the delays introduced
to the contribution management process through the review phase. We did not
consider design discussions, as conception and maturing of ideas into source code
submissions happen independently and cannot actively be influenced (apart maybe
from moderating discussions). We neither considered verification nor integration,
as both projects follow very different approaches that we cannot directly compare
(as opposed to the review phase). In literature, peer reviews have been demonstrated
to require significant scheduling and inspection effort from developers (Johnson
1998; Porter et al. 1998; Rigby et al. 2008), and are hence a major factor for the
overall turnaround time of a contribution.

While conceptually there is a “return for rework” phase, i.e., when a contribution
is flawed, the contributor might be asked to update the contribution according to
the review board’s comments and re-submit, these are not marked as such explicitly
in the data (neither for ANDROID, nor for LINUX). We did not find a reliable way
to automatically distinguish a return-for-rework state, and furthermore we observed
a broad set of reasons for submissions of updated patches within the same thread.
However, we capture the idea of “first feedback” to the author, which is a superset
of return-for-rework.

We looked at the temporal properties of the peer review phase from two different
angles: after submission, contributors are mostly interested in the time it takes to get
initial feedback on their contribution, whereas the reviewers and project leads are
mostly interested in the total time it takes to carry out the peer review phase.

For each project, we first recorded for each contribution the submission date, the
time in hours until a first response was recorded, and the overall time in hours until
reviewers announced their final decision. If there was never a response recorded
in the data, we ignored that contribution for this experiment. We then fit a linear
regression model (Dobson 2002) (e.g., shown as a solid line in Fig. 5) to observe
overall trends, and a LOESS polynomial regression model (Cleveland and Devlin
1988) (e.g., shown as a dotted line in Fig. 5). The choice of fitting a LOESS curve
to the data enables us to observe local trends in the data, such as seasonal shifts that
would otherwise be missed by a linear model, which tells us the general direction—or
trend of the data.

Part 1: Time Until First Response For ANDROID, we find that the average time until
initial feedback is given decreased by a factor of 3.55, from 221.91 h (approximately
nine days) for contributions submitted in March, 2009 to 62.37 h (approximately two
and a half days) for contributions submitted in March, 2010. In contrast, we find that
for LINUX, the average time until initial feedback increased by a factor of 1.37, from
37.63 h (one and a half days) in 2005 to 51.40 h (about two days) in 2009.

Part 2: Overall Time Taken for Peer Review In LINUX, the average time needed to
complete the review phase increased by 7.2 % from 183.80 h (approx. seven and a
half days) in 2005, to 197.90 h (approx. eight days) in 2009. In contrast, we find that
for ANDROID, the average time to complete the review phase decreased signif icantly
from 522.20 h (about 21 days) in March 2009 to 80.34 h (about 3 days) in March 2010.
As we discuss in the following, this decrease is largely due to two effects: first, the



Empir Software Eng

Fig. 5 Time until a first
response for a submission is
received during the review
phase

(a) ANDROID

(b) LINUX 05

(c) LINUX 09

practice of performing clean-up before a release of ANDROID, and second, active
efforts in decreasing feedback delays.

In addition, we investigate the relation between overall review time and outcome
through kernel-density analysis (Rosenblatt 1956). The plots derived from this
analysis are presented in Fig. 6.



Empir Software Eng

Fig. 6 The overall time taken
to reach a decision differs
significantly across projects

(a) ANDROID

(b) LINUX 05

(c) LINUX 09

Our kernel density plots are estimates of the probability density functions of the
random variables connected with acceptance or rejection of contributions. The actual
values of the y-axis in these cases depict the probability of the random variable
attaining the value at the corresponding point on the x-axis. Within this context,
kernel density plots should be viewed as very precise histograms. The big advantage
is that histograms can appear greatly different depending on the number of bins



Empir Software Eng

an analyst specifies and easily over or under-sample the data at hand, while kernel
density estimates automatically derive an optimal bandwidth.

Our observations show that reviewers in ANDROID are fast in deciding whether
to accept a contribution, but take much more time to reject a submission (Fig. 6a).
Most considerably, we observe the opposite for LINUX. From 2005 to 2009, decisions
on whether to reject a contribution take up increasingly less time, and decisions about
accepting a contribution take up increasingly more time (Fig. 6b and c).

In LINUX, we observe that contributions are rejected quickly, yet a decision for ac-
ceptance takes considerably more time. In ANDROID, we observe that contributions
are accepted quickly but a final decision towards rejection takes much longer.

Discussion of Parts 1 and 2 A possible explanation for the observed increase in
overall review time, as well as feedback time from LINUX 05 to LINUX 09, might be
a decreased ratio of reviewers to contributions, as well as an increased submission
volume per contributor.

To study this hypothesis, we categorized community members into two classes,
contributors and reviewers. We consider a community member as a contributor,
if our data contains at least one submission from this member. We consider a
community member as a reviewer, if our data contains at least one peer review
activity from this member. Since members can assume both roles at the same time,
we account for this overlap by assuming that contributors will not review their own
contributions (this is a strong assumption that might not hold true in reality, but it
makes counting more feasible).

For LINUX 05, we measured the number of reviewers of community contributions
and the number of contributors from our dataset and find that for each contributor,
there are 2.17 reviewers, and that every contributor submits an average of 12 contri-
butions (median: 2). Similarly, for LINUX 09 we find that for each contributor there
are 1.41 reviewers, and that each contributor submits an average of 28.68 submissions
(median: 4).

While the increase of feedback delay in LINUX can be explained by an increase
in per-contributor submissions on the one hand, as well as a reduction of available
reviewers per contribution, we found no such evidence for ANDROID.

However, a plot of the raw data of response times for ANDROID presented in Fig. 7
reveals a series of triangular patterns. These patterns indicate the early struggles of
the ANDROID project to give timely feedback: before June 2010, the established
practice was to batch-process all contributions in the system around the time of a
major release (October 2009 for ANDROID Eclair 2.0 and May 2010 for ANDROID
Froyo (2.2)).

The recorded feedback times lie on an almost perfect slope that meets the x-Axis
at the major release dates. This practice led to a variety of problems, such as
abandoned contributions due to a lack of interactivity between senior members who
judged contributions and the contributors (who had already moved on and were no
longer actively engaged in the project). In June 2010, Jean-Baptiste Queru, one of
the lead developers of ANDROID announced a radical change of the review process,
as documented on the ANDROID development blog11

11http://android-developers.blogspot.com/2010/06/froyo-code-drop.html

http://android-developers.blogspot.com/2010/06/froyo-code-drop.html


Empir Software Eng

Fig. 7 The time until a contributor is given first feedback on a submission in ANDROID

“We’re now responding to [ANDROID] platform contributions faster, with most
changes currently getting looked at within a few business days of being uploaded,
and few changes staying inactive for more than a few weeks at a time. We’re trying
to review early and review often. [...] I hope that the speedy process will lead to
more interactivity during the code reviews.”

Upon further analysis of the ANDROID dataset, we observed that distributions of
the review times are biased towards rejection (ref. Fig. 8). A common practice in
ANDROID is to perform clean-up of the GERRIT system right before a software
release. As part of that clean-up phase, contributions that have been open for a
long time and that are not actively pursued, e.g., a reviewer has been waiting for the
contributor to submit an updated version of the patch for an extended period of time,
are closed with a rejected status.

Even though we observe a three-fold increase in response time in LINUX, the
results of our analysis show that the impact on overall review time is relatively
small (ca. 7 %). This finding suggests that, while the self-managed appointment of
reviewers in LINUX is suited for absorbing a large increase in submission volume
without causing an overall increase in review times, initial feedback suffers. One
possible explanation could be that a large increase in contribution volume also
increases the amount of email messages community members receive, and thus more
choice when picking contributions for review.

The ANDROID project switched from a periodical batch-processing of contribu-
tions around the time of major releases to a process that allows for early feedback and
frequent reviews. This change in process was purposely done to increase interactivity
between senior developers and contributors during the review phase of the contri-
bution management process. Through the case study on LINUX, we documented the
need of contribution management processes to account for increases in submission



Empir Software Eng

Fig. 8 Feedback and review time in ANDROID by final decision outcome

volume and community size to avoid delays. This is especially important to avoid
losing valuable contributions due to contributors having only a short timespan in
which they are active and available for feedback.

4 Threats to Validity

In the following we discuss the limitations of our study and the applicability of the
results derived through our approach. For this purpose we discuss our work along
four types of possible threats to validity (Yin 2009). In particular, these are: construct
validity, internal validity, external validity and reliability.

4.1 Construct Validity

Threats to construct validity relate to evaluating the meaningfulness of the measure-
ments used in our study and whether these measurements quantify what we want
them to.

Our study contains a detailed case study of contribution management in ANDROID
and LINUX. Within that case study, we quantify key characteristics of contribution
management, along three dimensions, in particular, each dimension corresponds to
a particular research question.

Within each dimension (activity of the community, size of contributions, timely
management of contributions), we selected multiple measures that highlight the



Empir Software Eng

studied dimension from different angles. Our quantitative assessments are based
on descriptive statistics about the distributions of the collected data samples. When
comparing findings across both projects, we support these comparisons through
statistical hypothesis testing.

Time-span and trend data is studied through fitting of two regression models, first
a linear regression model to observe the overall trends of the data in the studied time
periods, and second a polynomial regression model to account for possible seasonal
variation in our data, i.e., to counter bias introduced by software release cycles and
software development processes in both projects.

In all cases where we performed multiple statistical significance tests, we used
the Bonferroni correction (Rice 1995) to avoid the spurious discovery of significant
results due to multiple repeated tests.

With respect to the conceptual model of contribution management presented in
the context of research question 1, threats to construct validity concern the extent
to that our observations match reality. The conceptual model was systematically
derived from multiple significant open-source software projects. All seven projects
that were analyzed showed significant commonalities of managing contributions in a
series of steps. Our conceptual model generalizes these steps into five distinct phases
that contributions undergo in each project, before they become part of the software
and are made available to the general public.

Within each of these phases however, there may exist processes and practices that
are specific to a particular project. Our work presents two instances of the conceptual
model which documents these processes and practices for two major open-source
systems, LINUX and ANDROID. While we cannot claim completeness of the model
(i.e., perfectly fitting the contribution management process of every open-source
project in existence), we see our model as a first starting point for documenting and
formalizing contribution management, in the same vein as architectural models have
been derived and refined in the area of Software Architecture research.

4.2 Internal Validity

Threats to internal validity relate to the concern that there may be other plausible
hypotheses explaining our f indings.

We have carried out a detailed case study on how two related open source systems,
ANDROID and LINUX do contribution management in practice. While ANDROID and
the LINUX kernel share many similarities, for example drivers, device support, and
core operating-system functionality that is added to the systems—we could argue that
to some extent ANDROID contains LINUX. Even though both projects share similar
roots, mindsets, tools, processes and domain, we believe that a comparison, such as
carried out in our case study, is worthwhile and insightful. Our main goal is to study
the management of contributions, rather than technical aspects or implementation
details of the OS software.

We want to note that the scope of our study is not the technical aspects (or even
content) of the individual contributions, but how contributions are managed in prac-
tice. With that respect, LINUX has switched to their current contribution management
practices at about the same time as the development in ANDROID started. From
documentation (e.g., the interview with Shawn Pearce referenced in our paper) we
observed that ANDROID had looked closely at how LINUX manages contributions,



Empir Software Eng

and they consciously decided to pursue a different approach of contribution man-
agement that better suits their business.

Within our detailed case study on contribution management, we quantify and
compare key characteristics of LINUX and ANDROID. Our quantitative findings and
resulting hypotheses regarding the cause of these findings were followed up by
detailed manual and qualitative study of the underlying data, to balance the threats
for internal validity of our study.

4.3 External Validity

The assessment of threats to external validity evaluates to which extent generalization
from the results of our study are possible.

In this study, we propose a conceptual model of contribution management.
This model is an abstraction of the (commonalities in) contribution management
processes of seven major open source projects. In the same way that architectural
models create abstractions of actual instances of software implementations, our goal
is to give researchers a common ground for conversation about, and further study of
contribution management.

While the conceptual contribution management model was derived from only a
tiny fraction of open source projects in existence, we still argue that generalizability
of the model is high. The conceptual model was derived through a systematic
approach, known as “Grounded Theory” (Glaser and Strauss 1967; Strauss and
Corbin 1990), of publicly accessible records of processes and practices of seven
projects contemporary, prominent and important open-source projects.

While we can claim neither completeness, nor absolute correctness of the derived
model, our abstraction serves as a starting point for an abstraction of contribution
management on a scientific basis, and we hope that future research will lead to
incremental refinements of this abstraction, similar to conceptual models of software
architecture.

Our detailed case study on LINUX and ANDROID, illustrates real instantiations
of contribution management in practice, and details key characteristics along three
dimensions. Due to the nature of this study, our observations are bound to the two
studied systems, and unlikely to generalize to the broad spectrum of open source
projects in existence. However, we report on a variety of practices that are found
in many open source projects, such as “cherry-picking”, i.e., selecting only small
parts of a contribution for inclusion into the project, and outline problems, for
example, the re-implementation of functionality by multiple contributors at the same
time. As such our case study stands as a report of examples in “best-practices” and
potential “pitfalls” in two large and mature open source systems, which are likely to
be applicable across a broader range of domains and other open source projects.

4.4 Reliability

The assessment of threats to the reliability of our study evaluates the degree to which
someone analyzing the data presented in this work would reach the same results or
conclusions.

We believe that the reliability of our study is very high. Our conceptual model of
contribution management is derived from publicly available documentation and data



Empir Software Eng

of seven large open-source software systems. Furthermore, our case studies on how
the LINUX kernel and ANDROID OS projects carry out contribution management in
practice rely on data mined from publicly available data repositories (email archives
in the case of LINUX, and GERRIT data in the case of ANDROID). The methods used
to collect that data are described in detail in Section 2, and have also been used in
previous research, e.g., the work by Jiang et al. (2013).

5 Related Work

The work presented in this paper is related to a variety of previous studies on open
source development processes, which we discuss in the following.

5.1 Community-Driven Evolution Through Code Contributions

In their work “The Cathedral and the Bazaar”, Raymond (2001) discussed core ideas
behind the success of the open source movement. Raymond’s main observations are
formulated as Linus’ law, i.e., the more people reviewing a piece of code, the more
bugs can be found, and on the motivation of developers to add the features they are
interested in.

While our work does not attempt to prove or disprove Linus’ law, we have studied
two systems that strongly support and encourage user-driven evolution, but are
substantially different in the way they treat user contributions and merge them into
their own code-bases. For instance, in ANDROID, contributions do need to align
with the strategic goals of the leaders for the module these contributions target, a
community interest in a feature alone is not sufficient for inclusion.

For example, ANDROID community contribution #11758 was rejected despite
large community interest (in ANDROID, users can “star” a proposed contribution
if they are enthusiastic about having that feature added) for the contributed feature,
in particular one reviewer of the contribution12 notes:

“It might have 40 stars but you have to weigh in the cost of adding a rather
obscure/technical UI preference for *everybody* for the benef it of a few.”

5.2 Community-Driven Development as a Business Model

Both Hecker (1999), and Krishnamurthy (2005) provided a comprehensive overview
and analysis of modern open source business models. While Hecker outlined poten-
tial pitfalls that businesses have to be aware of when moving towards these models,
Krishnamurty described key factors for the success of open source business models.

In particular, Hecker et al.’s work (Hecker 1999) puts a large emphasis on
the importance of the community in the open source business model. Our work
extends on previous knowledge through our qualitative study on how two major and
successful open source projects handle business concerns like intellectual property
management, peer review, and the potential risk of meaningless contributions.

12https://android-review.googlesource.com/#/c/11758/

https://android-review.googlesource.com/#/c/11758/


Empir Software Eng

5.3 Community-Contribution Management

Mockus et al. (2002) investigated email archives and source code repositories of the
APACHE and Mozilla projects, to quantify the development processes and compare
them to commercial systems. They found that APACHE has a democratic contribution
management process, consisting of a core group of developers with voting power and
CVS access, and a contributor community of 400 developers. In addition, Mockus
et al. identified Mozilla as having a “hybrid” process, since it was spawned from the
commercial Netscape project.

Furthermore, Mockus et al. conjectured that “it would be worth experimenting,
in a commercial environment, with OSS-style open work assignments”. Our work
extends on this notion through the systematically derived coneptual model of contri-
bution management, as well as our qualitative and quantitative investigation of two
concrete instances of that conceptual model.

Rigby et al. (2008) investigated peer review practices in the APACHE project,
and compared these to practices observed in a commercial system. They found that
small, independent, complete contributions are most successful, and that the group
of actual reviewers in a system is much smaller than potentially is achievable. The
work by Rigby et al. focused on the time component of reviewing large and small
contributions, while our work investigates acceptance bias.

Capiluppi et al. (2003) studied the demography of open source systems, and found
that few projects are capable of attracting a sizeable community of developers.
In particular, Capiluppi et al. found that 57 % of the projects consist of 1 or
two developers, with only 15 % having 10 or more developers, leading to slow
development progress. In addition, Capiluppi et al. remarked that larger projects
typically have 1 co-ordinator for every 4 developers. In contrast to their work, we
find that for both LINUX and ANDROID there is a significantly higher ration of co-
ordinators to developers.

Weissgerber et al. (2008) studied patch contributions in two open source systems,
and found that 40 % of the contributions are accepted. Contrary to our findings, they
find that smaller patches have a higher probability of being accepted.

Crowston and Howison (2005) examined 120 open source project teams, and
found that their organization ranges from dictatorship-like projects to highly de-
centralized structures. Our work presents two instances of organizatorial structure:
LINUX as a hierarchy of individuals with increasing power over the ultimate decisions
connected with community contributions, and ANDROID, as a decentralized, vote-
based structure.

Within the same vein of the work presented in this study, Sethanandha et al. (2010)
proposed a framework for the management of open source patch contributions which
they derived from 10 major open source projects. While the work of Sethanandha
et al. focussed more on the handling of patches and their application against the code
base, our work paints a more general picture of contribution management, which
spans from inception to integration of a contribution. In addition, we carry out a
detailed case study on two open source ecosystems to investigate how the process is
implemented in practice.



Empir Software Eng

6 Conclusions

Contribution management is a real-world problem that has received very little
attention from the research community so far. Even though many potential issues
with accepting contributions from external developers (i.e., developers who are not
part of an in-house development team) into a software project have been outlined
in literature, little is known on how these issues are tackled in practice. While
deriving a conceptual model of contribution management from seven major open
source projects, we found that even though projects seem to follow a common set
of steps—from the original inception of a contribution to the final integration into
the project codebase—the different contribution management practices are manifold
and diverse, often tailored towards the specific needs of a project.

Even though both studied systems (LINUX and ANDROID) employ different
strategies and techniques for managing contributions, our results show that both
approaches are valuable examples for practitioners. However, each approach has
specific advantages and disadvantages that need to be carefully evaluated by practi-
tioners when adopting either contribution management process in practice. While a
more open contribution management process, such as the one employed by LINUX,
reduces the overall management effort by giving control over the process to a self-
organized community. Disadvantages of such self-organized and community driven
contribution management include weaker intellectual property management, and the
risk of missed contributions. A more controlled contribution management system,
such as the one employed by ANDROID overcomes these advantages, at the cost of
an increased management effort that, depending on the size of the community, might
burn out the reviewers, since they are forced to review changes and follow up on
eventual revisions.

The findings of our quantitative assessment of the contribution management
processes of both projects, makes a case for the importance of timely feedback and
decisions to avoid losing valuable contributions. In contrast to LINUX, where even
a more than three times increase of feedback delay does not seem to be a cause for
alarm, we found that ANDROID makes active efforts to decrease feedback times, with
the goal to foster increased interactivity with the community. In summary of our case
study we make the following observations:

1. Contributions to both systems are larger than the average file sizes measured in
Lines of Code, and are often implemented across multiple different files.

2. In both studied systems, accepted contributions are on average 3 times larger
than rejected contributions, indicating a strong acceptance bias towards more
substantial contributions.

3. From the quantitative part of our case study we observed that contributions often
(over 50 % in ANDROID) propose changes that have already been put in place—
either by other contributors or by the development team in the private code
branches. Methods to raise awareness of contribution development efforts in
order to prevent duplicated and thus wasted effort might provide an interesting
subject for future research in contribution management systems.

4. The ratio of number of reviewers to contributors, as well as the number of
contributions and frequency of contributions from individual contributors from
the community are factors that impact both the time until a first feedback is
given to contributors, and the time until a final decision is made on contributions



Empir Software Eng

(as to accept or reject). We observed evidence in the ANDROID project that
keeping both time spans low is an active effort, in order to keep contributors
actively engaged.

5. The overall time of management for contributions plays an important role since
contributors are available for feedback for only a limited time. If the contribution
management process is too slow, feedback and requests addressed to the original
contributors will be lost—and so is the potentially worthwhile contribution.

As a last observation, we want to note that contrary to past belief (Rigby et al.
2008), we have found that while successful contribution management can not only
effectively deal with large contributions, both studied projects favour them over
smaller contributions. We aim at investigating this observation in more detail in
future research.

For future work, we aim to extend the conceptual model by studying additional
open source projects, and their contribution management practices. In particular, we
plan to extend our contribution management model with the pull-request process
popularized by GIT providers such as GitHub and BitBucket. Furthermore, we plan
to carry out an in-depth investigation of the key factors that influence attraction
and retention of community members. Third, we plan to study the impact of the
different decision practices in LINUX and ANDROID on project planning and feature
integration.

Acknowledgements We would like to thank Richard Ellis for kindly providing us access to the
LINUX kernel mailing list MBOX files. We would also like to thank the anonymous reviewers of
the earlier version of this paper for their valuable feedback and comments.

References

Asundi J, Jayant R (2007) Patch review processes in open source software development com-
munities: a comparative case study. In: HICSS ’07: Proceedings of the 40th annual Hawaii
international conference on system sciences. IEEE Computer Society, Washington, p. 166c.
doi:10.1109/HICSS.2007.426

Bass FM (1969) A new product growth for model consumer durables. Manag Sci 15(5):215–227
Bettenburg N, Premraj R, Zimmermann T, Kim S (2008) Extracting structural information from

bug reports. In: MSR ’08: proceedings of the 2008 international working conference on mining
software repositories. ACM, pp 27–30

Bettenburg N, Shihab E, Hassan AE (2009a) An empirical study on the risks of using off-the-shelf
techniques for processing mailing list data. In: Proc. of the 25th IEEE intl. conf. on software
maintenance (ICSM), Edmonton, Canada, pp 539–542

Bird C, Gourley A, Devanbu P (2007a) Detecting patch submission and acceptance in oss projects.
In: MSR ’07: proceedings of the fourth international workshop on mining software repositories.
IEEE Computer Society, Washington, p 26. doi:10.1109/MSR.2007.6

Bird C, Gourley A, Devanbu P, Swaminathan A, Hsu G (2007b) Open borders? Immigration in
open source projects. In: Proceedings of the fourth international workshop on mining software
repositories, MSR ’07. IEEE Computer Society, Washington, p 6. doi:10.1109/MSR.2007.23

Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009) The promises and
perils of mining git. In: MSR ’09: proceedings of the 2009 6th IEEE international working
conference on mining software repositories. IEEE Computer Society, Washington, pp 1–10.
doi:10.1109/MSR.2009.5069475

Capiluppi A, Lago P, Morisio M (2003) Characteristics of open source projects. In: CSMR ’03:
proceedings of the seventh European conference on software maintenance and reengineering.
IEEE Computer Society, Washington, p 317

http://dx.doi.org/10.1109/HICSS.2007.426
http://dx.doi.org/10.1109/MSR.2007.6
http://dx.doi.org/10.1109/MSR.2007.23
http://dx.doi.org/10.1109/MSR.2009.5069475


Empir Software Eng

Charmaz K (2006) Constructing grounded theory: a practical guide through qualitative analy-
sis. Constructing grounded theory. SAGE Publications. http://books.google.ca/books?id=
v1qP1KbXz1AC

Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by
local fitting. J Am Stat Assoc 83(403):596–610

Crowston K, Howison J (2005) The social structure of free and open source software development.
First Monday 10(2)

Dobson AJ (2002) An introduction to generalized linear models, 2nd edn. Chapman and Hall/CRC,
Boston

Duvall P, Matyas SM, Glover A (2007) Continuous integration: improving software quality and
reducing risk (The Addison-Wesley signature series). Addison-Wesley Professional, Reading

German DM, Hassan AE (2009) License integration patterns: addressing license mismatches in
component-based development. In: Proc. 31st int. conf. on soft. eng. ICSE, pp 188–198

Glaser BG, Strauss AL (1967) The discovery of grounded theory: strategies for qualitative research.
Aldine

Hecker F (1999) Setting up shop: the business of open-source software. IEEE Softw 16(1):45–51
Hippel EV, Krogh GV (2003) Open source software and the “private-collective” innovation model:

issues for organization science. Organ Sci 14(2):209–223. doi:10.1287/orsc.14.2.209.14992
Jiang Y, Adams B, German DM (2013) Will my patch make it? and how fast?—case study on

the linux kernel. In: Proceedings of the 10th IEEE working conference on mining software
repositories (MSR), San Francisco, CA, pp 101–110

Johnson PM (1998) Reengineering inspection. Commun ACM 41(2):49–52. doi:10.1145/269012.
269020

Krishnamurthy S (2005) An analysis of open source business models. In: Perspectives on free and
open source software (making sense of the Bazaar). MIT Press, Cambridge, pp 279–296

Mockus A, Fielding RT, Herbsleb J (2000) A case study of open source software development:
the apache server. In: ICSE ’00: proceedings of the 22nd international conference on software
engineering. ACM, New York, pp 263–272. doi:10.1145/337180.337209

Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development:
apache and mozilla. ACM Trans Softw Eng Methodol 11(3):309–346. doi:10.1145/567793.567795

Porter A, Siy H, Mockus A, Votta L (1998) Understanding the sources of variation in software
inspections. ACM Trans Softw Eng Methodol 7(1):41–79. doi:10.1145/268411.268421

Raymond ES (2001) The cathedral and the bazaar: musings on Linux and open source by an
accidental revolutionary. O’Reilly & Associates, Inc., Sebastopol, CA

Reed DP (2001) The law of the pack. Harvard Business Review
Rice J (1995) Mathematical statistics and data analysis. Statistics series. Duxbury Press.

http://books.google.ca/books?id=bIkQAQAAIAAJ
Rigby PC, German DM, Storey MA (2008) Open source software peer review practices: a case study

of the apache server. In: ICSE ’08: proceedings of the 30th international conference on software
engineering. ACM, New York, pp 541–550. doi:10.1145/1368088.1368162

Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math
Stat 27(3):832–837

Sethanandha BD, Massey B, Jones W (2010) Managing open source contributions for software
project sustainability. In: Proceedings of the 2010 Portland international conference on man-
agement of engineering & amp; technology (PICMET 2010), Bangkok, Thailand

Strauss A, Corbin J (1990) Basics of qualitative research: grounded theory procedures and tech-
niques. Sage Publications

Weissgerber P, Neu D, Diehl S (2008) Small patches get in! In: MSR ’08: proceedings of the
2008 international working conference on mining software repositories. ACM, pp 67–76.
doi:10.1145/1370750.1370767

Wnuk K, Regnell B, Karlsson L (2009) What happened to our features? Visualization and under-
standing of scope change dynamics in a large-scale industrial setting. In: 17th IEEE international
requirements engineering conference, 2009, RE’09. IEEE, pp 89–98

Yin R (2009) Case study research: design and methods. Applied social research methods. SAGE
Publications. http://books.google.nl/books?id=FzawIAdilHkC

http://books.google.ca/books?id=v1qP1KbXz1AC
http://books.google.ca/books?id=v1qP1KbXz1AC
http://dx.doi.org/10.1287/orsc.14.2.209.14992
http://doi.acm.org/10.1145/269012.269020
http://doi.acm.org/10.1145/269012.269020
http://doi.acm.org/10.1145/337180.337209
http://doi.acm.org/10.1145/567793.567795
http://doi.acm.org/10.1145/268411.268421
http://books.google.ca/books?id=bIkQAQAAIAAJ
http://doi.acm.org/10.1145/1368088.1368162
http://doi.acm.org/10.1145/1370750.1370767
http://books.google.nl/books?id=FzawIAdilHkC


Empir Software Eng

Nicolas Bettenburg is a PhD candidate at Queen’s University (Canada) under the supervision of
Dr. Ahmed E. Hassan. His research interests are in mining unstructured information from software
repositories with a focus on relating developer communication and collaboration to software quality.
In the past, he has co-organized various conference tracks and has been a co-organizer of the Mining
Unstructured Data workshop since 2010.

Ahmed E. Hassan is the NSERC/BlackBerry Software Engineering Chair at the School of
Computing in Queen’s University. Dr. Hassan spearheaded the organization and creation of the
Mining Software Repositories (MSR) conference and its research community. He serves on the
editorial board of the IEEE Transactions on Software Engineering, Springer Journal of Empirical
Software Engineering, and Springer Journal of Computing. Early tools and techniques developed
by Dr. Hassan’s team are already integrated into products used by millions of users worldwide. Dr.
Hassan industrial experience includes helping architect the Blackberry wireless platform at RIM,
and working for IBM Research at the Almaden Research Lab and the Computer Research Lab at
Nortel Networks. Dr. Hassan is the named inventor of patents at several jurisdictions around the
world including the United States, Europe, India, Canada, and Japan.



Empir Software Eng

Bram Adams is an assistant professor at the École Polytechnique de Montréal, where he heads the
MCIS lab on Maintenance, Construction and Intelligence of Software (http://mcis.polymtl.ca). He
obtained his PhD at Ghent University (Belgium). His research interests include software release
engineering in general, and software integration, software build systems, software modularity and
software maintenance in particular. His work has been published at premier venues like ICSE,
FSE, ASE, MSR and ICSM, as well as in major journals like TSE, EMSE, IST and JSS. Bram has
beem program co-chair of the ERA-track at the 2013 IEEE International Conference on Software
Maintenance (ICSM) and of the 2013 International Working Conference on Source Code Analysis
and Manipulation (SCAM), and he was one of the organizers of the 1st International Workshop on
Release Engineering (RELENG 2013), see http://releng.polymtl.ca.

Daniel M. German is assistant professor in the Department of Computer Science at the University
of Victoria. His main areas of research are software evolution, open source software development
and intellectual property.

http://mcis.polymtl.ca
http://releng.polymtl.ca

	Management of community contributions
	Abstract
	Introduction
	How Do Successful Open-Source Software Projects Manage Community Contributions (Q1)?
	A Conceptual Model of Contribution Management
	Phase 1: Conception
	Phase 2: Submission
	Phase 3: Contribution Review
	Phase 4: Verification
	Phase 5: Integration and Delivery
	Intellectual Property (IP) Management
	Relationship to Other Socio-Technical Participation Models in OSS

	The Contribution Management Model in Practice - A Case Study on ANDROID and LINUX
	Data Collection
	Case Study on ANDROID and LINUX


	Quantitative Assessment of Contribution Management in ANDROID and LINUX (Q2--Q4)
	Are Community Members Actively Engaged in the Development of the Project? (Q2)
	How Large are Received Contributions? (Q3)
	Are Contributions Managed in a Timely Fashion? (Q4)

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Related Work
	Community-Driven Evolution Through Code Contributions
	Community-Driven Development as a Business Model
	Community-Contribution Management

	Conclusions
	References


