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Abstract—Enterprise systems are load tested for every added 

feature, software updates and periodic maintenance to ensure 

that the performance demands on system quality, availability 

and responsiveness are met. In current practice, performance 

analysts manually analyze load test data to identify the 

components that are responsible for performance deviations. 

This process is time consuming and error prone due to the 

large volume of performance counter data collected during 

monitoring, the limited operational knowledge of analyst about 

all the subsystem involved and their complex interactions and 

the unavailability of up-to-date documentation in the rapidly 

evolving enterprise. In this paper, we present an automated 

approach based on a robust statistical technique, Principal 

Component Analysis (PCA) to identify subsystems that show 

performance deviations in load tests. A case study on load test 

data of a large enterprise application shows that our approach 

do not require any instrumentation or domain knowledge to 

operate, scales well to large industrial system, generate few 

false positives (89% average precision) and detects 

performance deviations among subsystems in limited time.  
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I.  INTRODUCTION  

Large scale systems (LSS), such as Google, Facebook, 
Amazon and eBay are complex systems composed of many 
underlying components. These systems grow rapidly in size 
to handle growing traffic, complex services, and business-
critical functionality. This exponential growth increases the 
individual component’s complexity and hence, the 
integration between the geographically distributed 
components. The performance of LSS is periodically 
measured to satisfy the high business demands on system 
quality, availability and responsiveness.  

Load testing remains the most integral part of testing the 
performance of the Large Scale Systems (LSS). Load testing 
uncovers residual functional and performance problems that 
slipped through the conventional functional testing, such as 
unit and integration testing. A functional problem results in 
processing happening at the wrong place in the wrong order 
[4]. A performance problem results in processing taking too 
much or too little of important resource. A request that takes 
too long may indicate a bottleneck, while a request that 
finishes too quickly may indicate truncated processing or 
some other performance bug. 

Load testing assesses how a system performs under a 
given load [1]. Load is defined as the rate at which 
transactions are submitted to a system [2]. Load generators 
are used to induce load on the system under test [3], i.e., 
imitating thousands of users committing concurrent 
transactions to a system, resembling the harsh field 
environment. During the course of a load test, the system is 
strictly monitored and important sources of data exposed by 
the system i.e., performance metrics are collected. These 
metrics include numerical measurements related to the 
system’s state and performance (e.g., CPU, memory 
utilization, network usage etc). These are called performance 
counters. After the completion of the load test, performance 
analyst select the important performance counters based on 
their domain knowledge and experience gained from 
previous tests and compare them against the base-line test 
[3].  They use various plotting tools manually, to compare 
performance counters against a base-line test. If a 
performance analyst finds large deviations from base-line 
load test, a defect/bug report is filed. The defect/bug report is 
assigned to software engineers and experts in the 
corresponding subsystem area, i.e., database, web servers, 
mail, application, network etc to further investigate and 
rectify the performance issue/bug. 

Unfortunately, the current practice to analyze load test is 
costly, time consuming and error prone [5][3]. The load test 
analysis practices have not kept pace with the rapid growth 
in size and complexity of the large enterprise systems. In 
practice, the dominant tools and techniques to analyze large 
distributed systems have remained unchanged for over 
twenty years [4]. Performance analysts have to face the 
challenge of isolating the required performance information 
distributed across thousands of correlated performance 
counters along multiple subsystems in limited time. 
Furthermore, they have to leverage extensive knowledge 
about such large scale systems to identify subsystems 
responsible for performance deviations in load tests, as the 
formal performance baseline in large and dynamic enterprise 
system rarely exist [3] . The paper presents an automated and 
effective methodology to help performance analysts to 
pinpoint performance deviations among subsystems in LSS 
and to facilitate performance analysts to analyze load test.  

 
 
 



 
 

Figure 1. Performance load testing process 

In particular, our methodology helps them to finger-point the 
subsystems deviating from their normal performance 
behavior (i.e., baseline) in limited time. We make the 
following contributions: 

C1.  We apply statistical methods to reduce the 

dimensionality of the observed performance counter 

set of every subsystem in ULSS. 

C2.    We show a nontrivial way to generate a performance 

signature for each subsystem in LSS by automating 

the ranking of performance counters according to 

their importance for load test. Furthermore, we show 

how simple pair-wise correlation is used to compute 

the divergence between the performance signatures 

of two subsystems, eliminating the need of 

employing sophisticated mathematical models and 

domain intensive knowledge. 

C3. We empirically validate our proposed approach 

through a large case study on a real-world industrial 

software system. 
The rest of the paper is organized as follows: Section II 

presents the current load test practice and its limitations. We 
present our methodology in section III. The section IV 
present the performance measures of our methodology 
followed by a case study in section V. the section VI presents 
the related work. Finally, section VII presents conclusion and 
future work. 

II. CURRENT PRACTICE 

The typical process of load testing involves four phases, as 

shown in Figure 1 : 

1. Environment setup is the most important phase of load 

testing. Most common load test failures occur due to 

improper environment setup for a load test. The 

environment setup includes installing the application and 

the load testing tools possibly on different operating 

platforms. Load generators, which emulate user’s 

interaction with the system, need to be carefully 

configured to match the real workload in field. 

2. Load test execution involves starting the components of 

the systems under load test, i.e., starting the required 

services, hardware resources and tools (load generators 

and performance monitors). During the execution of a 

load test, the application/system under load is strictly 

monitored and performance counters are recorded in 

performance logs. 

3. Load test analysis involves comparing the results of a 

load test against another load test’s result or against pre-

defined thresholds as baselines. Unlike functional and 

unit testing, which result in a pass or failure 

classification for each test; load testing requires 

additional quantitative metrics like response time, 

throughput and hardware resource utilizations to 

summarize results. The performance analyst selects few 

of the important performance counters among the 

thousands collected. Based on his experience and the 

domain knowledge, performance analyst manually 

compares the selected performance counters with those 

of past runs to look for evidence of performance 

deviation, for example using plots and correlation tests. 

4. Report generation includes filing the performance 

deviations, if found, based on the personal judgment of 

the analyst. In most cases the results filed in a 

performance report are verified by an experienced 

analyst. Based on the extent of performance deviation 

and its relevance to a team responsible for handling the 

subsystems i.e., (database, application, web system etc.).  
Many challenges and limitations associated with the 

current practice of load test analysis remain unsolved: 
1. Large number of performance counters: Load tests last 

from a couple of hours to several days. They generate 
performance logs that can be of several terabytes in size. 
Even logging  all counters on a typical machine at 1Hz 
generates about 86.4 million values in a single week, A 
cluster of 12 machines over one week would generate 13 
TB of performance counter data per week, assuming a 64 
bit representation for each counter value [20]. Analysis of 
such large counter logs is still a big challenge in load 
tests. 

2.  Limited time:  Performance analysts in LSS have only 
limited time to reach and complete diagnostics on 
performance counter logs and to make necessary 
configuration changes. Load testing is usually the last 
step in an already tight and usually delayed release 
schedule. Hence, managers are always eager to reduce 
the time allocated for performance testing. 

3. The risk of error: Load test analysis is error-prone 
because of the manual process involved in analyzing 
performance counter data in current practice. In practice, 
it is impossible for analysts to skim through the huge 
volume of performance counters to find the required 
information in LSS. Instead, analysts use few key 
performance counters known to them from past practices, 
performance experts and domain trends as ‘rules of 
thumb’ [22]. There is no single person with complete 
knowledge of end to end geographically distributed 
system activities in LSS [21]. An analyst with good 
knowledge of the database server will quickly uncover 
important database counters from performance counter 
logs however; he may overlook some important web 
counters. Applying same the ‘rules of thumb’ on load 
tests can mislead performance issues [22].  
Due to the above challenges, we believe that the current 

practice to perform load test analysis is neither efficient nor 
sufficient to uncover performance deviation accurately and 
in limited time. Our methodology automatically identifies 
the important counters across every subsystem of an LSA to 
create robust performance signatures. By mean of simple 
correlations between performance signatures, our 
methodology can pinpoint performance deviations among 
LSS subsystems from a baseline. 
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Figure2: The steps involved in proposed methodology

TABLE I.  SAMPLE OF OBSERVATIONS BEFORE DATA PREPARATION 

 Observations 

Var Tot Mis Avail Mini Max Mean Std. Dev 

Q 599 0 599 246.18 1946.11 754.654 292.00 

R 599 0 599 009.59 0063.46 023.427 011.14 

S 0 0 0 000.00 0000.00 000.000 000.00 

T 599 2 597 001.00 0117.11 0030.90 018.99 

            

TABLE II.   SAMPLE OF OBSERVATIONS AFTER DATA PREPARATION 

 Observations 

Var Tot Mis Avail Mini Max Mean Std. Dev 

Q 599 0 597 -13.37 000.07 0.00 1.00 

R 599 0 597 -00.71 006.52 0.00 1.00 

T 597 0 597 -1.694 001.46 0.00 1.00 

III. THE METHODOLOGY 

In this section, we present and discuss our methodology 
to help analysts in load test analysis. To address the 
limitations listed in section III, our approach eliminates the 
need to invest the domain extensive knowledge by 
identifying important performance counters for each 
subsystem in a load test. Apart from previous effort to 
automatically compare load tests [14], the methodology is 
refined further to help an analyst to pinpoint performance 
deviations in LSS at subsystem level in limited time. Figure2 
shows the steps required in our methodology.  
 

A. Data Preparation 

The performance logs obtained from a load test do not 

suffice for direct analysis by our methodology. The logs 

need to be prepared to make them suitable for the statistical 

techniques employed by our methodology. The two steps 

involved in data preparation are:  

1) Data sanitization:  
Performance logs need to be filtered from noise i.e., 

missing counter data or empty counter variables. Counter 
data is missing when performance monitors fail to record an 
instance of a performance counter variable. A counter 
variable is completely empty when a resource cannot start 
the service. Table 1 shows a sample of our real world 
performance counters for a load test before the data 
preparation step is applied.  Counter variable ‘T’ belongs to 
the missing counter data category whereas ‘S’ is an empty 
counter variable. A Total of 599 observations were required 
for each performance counter variable. Monitoring tool 
recorded only 597 observations for performance counter ‘T’. 
To deal with this kind of problem (incomplete data) we 
employed list wise deletion. If the i

th
 observation for counter 

‘T’ is missing, list wise deletion will delete the 
corresponding i

th
 observation of all the counter variables. 

Partial empty counter variables such as ‘S’ and counter 
variables that have more than 2% of the data missing are 
removed during sanitization process. TABLE II. shows the 
performance counters after data sanitization. 

2) Pre-treatment: 
Pre-treatment converts the data into a format that is 

understood by our data reduction technique, i.e., Principal 
Component Analysis (PCA). PCA is a maximum variance 
projection method [12]. Performance counters have different 
ranges of numerical values; they have different variance.  
PCA identifies those variables that have a large data spread 
(variance), ignoring variables with low variance [19]. To 
eliminate PCA bias towards those variables with a larger 
variance, we standardized the performance counters via Unit 
Variance scaling (UV scaling), i.e., by dividing the 
observations of each counter variable by the variable’s 
standard deviation. Each scaled variable then has equal (unit) 
variance. TABLE II.  shows the variables after pre-treatment. 
Each variable has a mean of 0 and Standard deviation of 1. 
Scaled performance counter data is then further mean 
centered to reduce the risk of collinearity. With mean-
centering, the average value of each performance counter 
variable is calculated then subtracted from its respective 
counter data. 

B. Performance Counters Normalization 

Modern applications provide user to publish custom 
performance counters, it is not uncommon to find a same 
counter with different names on different systems. 
Performance counter data is collected from various 
subsystems of LSS during load test. Performance counters 
normalization ensures consistency among the performance 
counter data for our methodology. E.g. \\Server-
1\app1\service/sec and \\Server-2\application1\service/sec 
are two same performance counters, with different counter 
name i.e., app1 and application1 and same instance name 
i.e., service/sec. Normalization ensures the portability of our 
approach across different platform and eliminated the false 
performance deviations between the subsystems of two load 
tests. 

C. Dimension Reduction 

We used the robust and scalable statistical technique, 
Principal Component Analysis (PCA) to reduce the sheer 
volume of performance counters [12]. What PCA does is to 
synthesize new variables called ‘Principal Components’ 
(PC). Every PC is independent and uncorrelated with other 
PCs. PCA is maximum variation projection method. To 
overcome this, we standardize the performance counters so 
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that variance of each counter variable =1.0. TABLE III. 
shows the PCA for a real world performance counter log 
consisting of 18 performance counter variables. PCA groups 
the data of the 18 counter variables into principal 
components, each of which explains a particular amount of 
variance of the original data. This means the total variance of 
our counter data is 18. The first component PC1 has an 
eigen-value = 11.431, which means it explains more variance 
than a single counter variable, indeed 11.431 times as much 
and  it accounts for 63.60% of the variability of entire 
performance counter data set. The second and third 
components have eigen-values 2.74 and 1.720 respectively.  
The rest of the components explain less variance than a 
single counter variable. To further trim the performance 
counter data we use ‘% Cumulative Variability’ in selecting 
the number of top_k components. Using ‘% Cumulative 
Variability’ of 90% is adequate to explain most of the data 
with minimal loss in information [12]. This means, we only 
need to take into account the first four PCs as shown in 
TABLE III.  

TABLE III.    PRINCIPAL COMPONENT ANALYSIS (PCA)  

PC Eigen-Value Variability (%) Cumulative Variability %)  

PC1 11.43 63.506 63.506 

PC2 2.47 15.260 78.765 

PC3 1.720 9.554 88.319 

PC4 0.926 5.143 93.463 

⁞ ⁞ ⁞ ⁞ 

PC12 0.001 0.003 100.00 

 

D. Crafting Performance Signatures 

Performance analysts are interested in performance 
counters, not in principal components. Table 1 shows that we 
have four principal components that can explain over 90% of 
the original counter data variability. We now decompose 
principal components of a subsystem using the eigenvectors 
technique to map the PCs back to counter variables [19]. 
Each performance counter is given a weight in accordance to 
its association with a PC. The larger the weight of a 
performance counter, the more it contributes to a PC.  

TABLE IV.  THE PERFORMANCE SIGNATURE OF A SUBSYSTEM 

Rank PC Counter Importance 

1 PC1 N 0.974 

2 PC1 M 0.972 

3 PC1 R 0.966 

4 PC1 Q 0.946 

5 PC1 P 0.944 

6 PC1 E 0.933 

7 PC2 I 0.912 

 
We applied the threshold to decide on the important 
performance counter variables and discard the rest [14].  

The TABLE IV. shows seven performance counter 
variables out of 18 performance counters, ranked according 
to their importance. Our methodology achieved a 61% data 
reduction. These 7 performance counters form the 
performance signature of LSS subsystem. The performance 
signature acts as a finger-print to the subsystems of LSS and 

helps to identify and compare them with other subsystems. 
The importance of the performance counters in a signature 
hold for the same environment and workload of the test. 
However, when an error or unknown change occurs in the 
load test environment or in the workload, such as server 
replications, background antivirus scan etc, importance of 
performance counters for a subsystem shifts, causing the 
change in performance signature of the subsystem of LSS. 
This change in performance counter signature enables us to 
detect performance deviations. 

E. Extracting Performance Deviations 

One of the goals of our methodology is to help performance 

analyst in load test analysis by automatically identifying the 

subsystems of LSS that deviate from the baseline. This step 

of our methodology measures the correlation between the 

performance signatures of a subsystem in the load test with 

the corresponding subsystem’s signature of a baseline test. 

The prior research has shown that stable relationship 

between metrics exists in a well-behaved system [6][7][8]. 

The relationships are often disturbed when error occurs. We 

use spearman’s rank correlation to find the extent of 

deviations between performance signatures [23].  A value of 

+1 confirms that two performance signatures are identical 

and there is no performance deviation between the respective 

subsystems .We choose spearman’s rank correlation over 

other correlation coefficients such as Pearson product-

momentum, Kendall’s tau and gamma because spearman’s 

rank correlation does not require any assumptions about the 

frequency distribution of the variables. This is necessary 

because load test data contains traces that do not follow 

normal distribution of data. 

F. Report Generation 

To help a load tester examine the performance deviations, 

we generate performance deviation report. The report is 

generated in dynamic- HTML so testers can easily attach it 

to emails that are sent out while investigating a particular 

subsystem’s performance deviations. The report contains 

visualizations and correlation tables to point out the 

divergence between two subsystems. 

IV. MEASURING THE PERFORMANCE OF OUR 

METHODOLOGY  

To evaluate the effectiveness of our approach, we used two 

metrics: Precision and Recall. Precision is the ratio between 

correctly identified performance deviations and predicted 

performance deviations between the same subsystems of 

two load tests. Recall is defined as the ratio between the 

correctly identified performance deviation and actual 

performance deviations in a subsystem. We use Figure 3 as 

an example to explain how we can measure the precision 

and recall of our methodology. Figure 3 show the 

performance counter logs of the database subsystem for the 

two load tests. These two load tests are conducted under 

constant environment and with the same workload. For both 

the load tests, performance counter logs are divided into 



equal time intervals, i.e., from t1 to t5. For the load test-2, an 

unexpected network link failure occurred between database 

and load generator during time interval t3, t4 and t5. 

 

 

 

 

Test-1 t1 t2 t3 t4 t5 

Test-2 t1 t2 t3 t4 t5 

  

 
 

 

Figure 3. Performance measure of our methodology. 

On careful analysis by performance analysts, both 

subsystems are found to be identical in performance except 

at time interval t3, t4 , t5. An ideal methodology should only 

report the time interval at which the deviations occurred. 

We define the number of time intervals when actual 

performance deviations occurred as O = 3. We applied our 

methodology on the database subsystem of both tests and it 

predicted performance deviations between two test at time 

intervals t1, t2 and t3. We define the predicted number of time 

intervals by our methodology as P = 3.  An ideal 

methodology will predict the same deviations P as that of 

actual deviations occurred, i.e., O in a subsystem. Based on 

these definitions we define:  Recall = PO/O and Precision = 

PO/P. We have defined the prediction and recall for a single 

subsystem.  To measure the performance of a methodology 

for all the subsystems of LSS, i.e., ‘C’ involved in a load 

test, we use the following definitions: 

Average Recall = 1
C × ��Recall��

C

I��
 

 

(3) 

 

Average Precision = 1
C × ��Precision��

C

I��
 (4) 

V. CASE STUDY 

To evaluate the performance and reliability of our 
approach, we conducted a case study on the load test logs of 
a large enterprise application. The goal of our case study is to 
thoroughly examine the following research questions: 

 
 Q1 How accurate is our methodology to identify the 

subsystems of an LSS, which have performance 
deviations relative to prior tests? 

Q2. Can we save time on the unnecessary load test 

completion by early identifying the performance 

deviations along different subsystems of a LSS? 

Q3. How is the performance of our methodology affected 

by different sampling intervals? 

A. Environment Setup 

The Figure 4 shows our load test environment. The four 
subsystems are enclosed within a dotted line. An enterprise 

application runs on a cluster and utilizes a database to store 
data. The enterprise application uses two web servers to 
allow users to share documents, schedule meetings and 
access intranet resources between two geographically 
separated locations. An internal load generator mimics the 
user’s interaction with an enterprise application by 
performing simultaneous concurrent transactions, thereby 
places load on the database.  The external load generators 
emulate large volume of traffic that results from the outside 
of the intranet to stress web servers. A customized 
performance monitoring tool monitors the numeric 
measurements related to the system’s state and performance 
and records them as performance counter logs. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Components of test environment 

Q1 How accurate is our methodology to identify the 
subsystems of an LSS, which have performance deviations 
relative to prior tests? 
Motivation: During the course of the load test, an LSS is 
strictly monitored and thousands of performance counters are 
recorded. Performance analysts select few of the important 
counters based on their domain knowledge and expertise and 
compare them with a baseline test or predefined thresholds 
[3]. If the performance analyst finds significant deviations in 
a load test from the baseline test, analyst further investigates 
to find the sub-systems that are the cause of performance 
deviations. This is not an easy task, as the performance 
engineer needs to drill down thousands of performance 
counters distributed across several subsystems to find the 
required information. The process of identifying the 
performance deviated subsystems in a LSS can take many 
days. 
Approach: We conducted an experiment to find out how 
accurately our approach can help performance analysts to 
pinpoint the performance deviated sub-systems in limited 
time, with accuracy and without implying domain 
knowledge. This experiment uses one baseline load test and 
three other load tests. The first load test was a re-run of the 
baseline load test. In the second test, we synthetically 
induced faults in to the baseline load test’s performance 
counter log and in third test, we stressed the system by 
pushing 8-times (8X) more load than its expectation. The 
baseline load test was conducted by the performance 
engineers of a large enterprise. They carefully analyzed the 
baseline test to find any performance issues and deviations 
that raise the concerns of the LSS stakeholders.  
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Figure 5. Comparison with baseline load test  

TABLE V.  CORRELATION BETWEEN PERFORMANCE SIGNATURES. 

 Subsystems 

Load Test 

Test-A  Synthesized  8-X load 

Data Base 0.997 0.732 0.826 
Web Server-A 1.000 0.701 0.795 
Web Server-B 1.000 0.700 0.790 
Application 1.000 0.623 0.681 

 
The performance counter log of the baseline load test 
contained seven hundred (700) performance counters 
belonging to four subsystems. The load test duration for each 
test was 8 hours. The performance monitoring tool collected 
the performance counter data periodically after ever 15 sec 
(sampling interval) and there were 1922 instance (numeric 
readings) in total, recorded for each performance counter in 
the performance counter log.  We applied our methodology 
on the performance counter log of the baseline load test and 
extracted the performance signatures for the sub-systems. 
Our methodology recommended 11 important performance 
counters for database subsystem, ranked on the basis of their 
importance for the load test. Furthermore, our methodology 
recommended 18 important performance counters each, as 
performance signatures for the remaining three subsystems. 
Thereby, achieving 85% of reductions in the performance 
counter log data. 
  Test 1: We used the framework of Thakkar et al. to 
automate the load test and to ensure the environment remains 
constant [10]. We ran the load test under same environment, 
workload and duration as baseline load test and call it as 
‘Test-A’. The intuition for conducting the load test similar to 
that of baseline- load test is to validate our methodology. Our 
methodology should craft the same performance signature 
for every subsystem as that of the baseline load test.  

Test 2: We synthetically injected faults into the 
performance counter log of our base-line load test. First we 
select 50 % the performance counters of each sub-system. 
Second, among the 50% of performance counters selected, 
we ensured that 50% of the important performance counters 
that contribute toward constructing the signature of a 
subsystem are present. Third, we mutated the values of 40% 
of the selected performance counter data using out of bag 
(OOB) approach [11]. Using OOB, reduce the chance of a 
performance counter instance being mutated twice. We did 
not generate totally random load test data, because there are 
important correlations and associations between counters that 

need to be satisfied to obtain realistic load test results. For 
example, if the CPU utilization is high for a load, 
corresponding performance counter instances for disk IOPS, 
memory consumption and queue levels will also have high 
instance values reflecting the same observed load.   

Test 3: We conducted the load test with same workload 
mix as of baseline load test but increased its intensity 8 
times. We illustrate what we mean by workload mix and 
increasing its intensity. For example, the load of an e-
commerce website would contain information such as: 
browsing (40%) with a min/average/max rate of 5/10/20 
requests/sec, and purchasing (40%) with a min/average/max 
rate of 2/3/5 requests/sec. In our experiment we keep the 
workload mix (browsing (40%) and purchasing (40%)) 
constant, however varied its intensity i.e., rate (request/sec). 
our institution was to deviate the behavior of load test from 
baseline load test by stressing its sub-subsystem; subjecting 
them to load beyond their design constraints.  

Findings: our methodology achieved 85% performance 
counter data reduction. The Figure 5 shows and compares 
the signature plots between baseline test and other three tests. 
The TABLE V. provides rank correlations to calculate the 
performance deviations between the signatures.  The ‘Test-
A’, which is a replica of the baseline test, has a near perfect 
signature match for every subsystem with the baseline- test, 
as shown in Figure 5. The subsystems of ‘Test-A’ have high 
correlation with the baseline test. The database performance 
signatures of ‘Test-A’ differs from the baseline- test by 
spearman’s rank correlation coefficient of 0.003. This 
difference is so small that it can be attributed to experimental 
measurement error.  Our methodology did not suggested any 
performance deviations between ‘Test-A’ and baseline test at 
the sub-system level, yielding a precision and recall of 
100%. For test-2, where we synthetically injected faults and 
for test-3, where we stressed the system by pushing 8 times 
more load then its expectation, our methodology suggested 
performance deviations from the baseline test for all four- 
subsystems.    
 

TABLE VI.  CORRELATIONS AT VARIOUS TIME INTERVALS 

Time-(Observations) Database 

30-mins (120) 1 
15-mins ( 60) 1 
10-mins (40) 0.9893 
5-mins (20) 0.8255 
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Figure 6. Effect of time interval on our methodology  

The subsystem signature plots of test 2 and test 3 load tests 
in Figure 5 clearly indicate them different form the 
signatures of respective subsystems of baseline load test. The 
TABLE V.  also indicates significant deviations between the 
sub-systems of both tests from baseline. This shows the 
consistency of our methodology to identify sub-systems that 
deviate from their performance baselines. 
 
 
 
 
 
 
 
 
Q2. Can we save time on the unnecessary load test 
completion by early identifying the performance deviations 
along different subsystems of a LSS? 
Motivation: There are two motivations for this research 
question. First, performance testing is usually done as the 
last step in an already tight and usually delayed release 
schedule. Hence, managers are always eager to reduce the 
time allocated for performance testing. Software analysts are 
required to conduct many load tests, which typically span 
over few hours to days. In is not uncommon for analyst to 
find out after the completion of the test that it failed due to 
unexpected circumstances. This includes mis-configurations 
and various unpredicted background activities, such as disk 
scrubs, RAID reconstructions, anti-virus scans, and data 
replication [15]. Once problems are addressed, the test needs 
to start from scratch. A lot of precious time is wasted, in 
many cases the performance analysts have to compromise on 
the number of tests they need to run to gain statistical 
confidence in the results in limited time. The idea of test 
reduction has been researched thoroughly in the functional 
testing area [16][17]. However, this idea has not been 
explored much for load testing. A detailed discussion on how 
to reduce the testing time by improving experimental design 
technique and careful planning of test to avoid mistakes is 
presented in [18]. However, to the best of our knowledge, 
when the load test is set in motion, there exists no automated 
and proactive technique that can guide and report analyst in 
real-time about the performance deviations that occurs 
during the load test run. So that, performance analyst can 

stop the test at that point of time where performance 
deviation occurred, fix the issue if it can be fixed and run the 
load test again, rather waiting for days to let the load test 
finish and get surprises at cost of time.  
Approach: we want our methodology to report the 
deviations of subsystem’s performance from baseline as soon 
as it occurs in a running load test. One way to overcome the 
situation is to frequently compare the performance signatures 
obtained from the periodic samples of the performance 
counter logs as they become available from a running load 
test and compare them with the baseline. To detect a 
performance deviations among subsystems such as caused by 
resource failure, e.g., ethernet link failure, disk failure etc, 
sample of performance counter logs are required as soon as 
they become available from running load test. However, if 
performance analysts are interested to detect performance 
deviations resulting from resource saturations that usually 
evolve over time, e.g., cache pollution and memory leaks, 
aggressively sampling at smaller time interval of 
performance counter log is not required. We don’t want 
performance analyst to apply our methodology very 
generously by sampling the performance counter log at large 
interval thereby, missing performance bugs. We now explain 
what we mean by this. We used a statistical technique, PCA 
towards constructing signatures from the performance 
counter logs. Unlike statistical techniques, PCA is not highly 
sensitive to minute changes in data and is a maximum 
variance projection method [19]. This means PCA takes into 
account the counter’s majority data value to calculate its 
importance for the load test, giving less weight to counter 
data in minority. For example, one thousand observations are 
recorded for a performance counter (CPU Utilization) of a 
subsystem by a monitoring tool in a load test. All the 
performance counter values are stabilized at 40% to 50% of 
the CPU utilization. Among thousand observations recorded, 
only one observation has 80% of the CPU utilization. For 
such a small difference, our methodology will mark the 
subsystems of both the load and baseline test analogous. 
However, if there is one observation among 10 observations 
collected, our methodology will report the performance 
deviation between the subsystems. To find out how much 
our methodology can be relaxed in constructing performance 
signatures such that it never misses to pinpoint the 
performance deviations among LSS sub-systems, 
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Our methodology helps performance analysts to 

identify sub-systems with performance deviations 

relative to prior tests in limited time. Our methodology 

can achieve 85% reduction in performance counter 

data.  
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TABLE VII.  PERFORMANCE OF OUR METHODOLOGY

Test Run Database Web Server -1  Web Server- 2 Application System Average  

Min Obs Samples Recall  Precision Recall Precision Recall Precision Recall Precision Recall Precision 

30 120 4 0.50 1.00 0.50 1.00 0.30 1.00 0.25 1.00 0.325 1.000 

15 60 8 0.62 1.00 0.62 1.0 0.62 1.0 0.50 1.0 0.590 1.000 

10 40 12 1.00 0.90 1.00 0.9 1.00 0.9 0.9 0.69 0.975 0.847 

5 20 24 1.00 0.70 1.00 0.7 1.00 0.8 1.00 0.66 1.000 0.715 

All - 0.78 0.90 0.78 0.90 0.73 0.92 0.66 0.83 0.738 0.890 

  
we conducted an experiment based on the two load tests 
using the same environment as shown in Figure 4. Each load 
test spanned over two hours and performance monitoring 
tool was set to capture performance counter data after every 
15 seconds. Total of 480 observations were recorded for 
each performance counter. We marked the first load test as 
our baseline load test. During the mid of the second load test, 
i.e., after 60 minutes, we slowed down the CPU of the 
database server for 15 seconds by using a CPU stress tool 
[31]. We stressed the database CPU for such short period of 
time as we were interested to find out the maximum time 
period within which minimum performance deviations can 
detect by our methodology. The slowing down of the CPU 
increased the CPU utilization of database server to 100%. 
After the completion of the load tests, we used their 
performance counter logs and applied our methodology to 
find out the performance deviation among subsystems. Our 
methodology reported both test to be analogous.  
We started to reduce the performance counter data of both 
test by roughly 12%, i.e., 10 minutes.  We removed the 5 
minutes, roughly (6%) of performance counter data from the 
start and from the end of the performance counters log. We 
kept reducing the performance counter log by 12% until out 
methodology reported the performance deviation between 
the subsystems of two load tests.  
Findings: The Figure 6 shows that our methodology can 
identify deviation between two tests for sample collected 
within 10 minutes span. According to Figure 6, sampling 
interval larger than 10 minutes or 40 observations may lead 
to miss minute deviation between the subsystems. The values 
reported in TABLE VI. are the spearman’s rank correlations 
between the performance signatures of database and 
corresponding subsystem in baseline load test. The values 
show that smaller the sampling time interval for performance 
counter log, better the extent of deviation measure. We 
conducted experiments on other subsystems and found the 
results to be consistent. We can conclude that frequently 
sampling the performance log of a running load test by our 
methodology helps performance analyst to detect early 
performance deviations among LSS subsystems. Thereby, 
saving time that is required to finish the load test, before they 
can be repeated.  
 
 
 
 
 
 

 
Q3. How is the performance of our methodology affected by 
different sampling intervals? 
 Motivations:  A methodology with low recall is not useful 
because it fails to identify the real faults. A methodology that 
produces results with high recall and low precision is not 
useful either because it floods performance analysts with too 
many false positives. An ideal methodology should predict a 
minimal and correct set of faults/deviations in a system. In 
practice, however, there is a tension between having high 
recall and high precision [32][33]. Maximizing the precision 
of a methodology often means that potential faults are being 
thrown out, which decreases its recall.  We want to evaluate 
the performance of our methodology using the definitions of 
precession and recall in section VI. 
Approach: We conducted and experiment that consisted of 
two load test with identical environment and workload. Both 
load tests spanned over two hours. The monitoring was set to 
capture the performance counters every 15 seconds. The first 
load test, ‘Load test-1’ is taken as a baseline test. During the 
course of ‘Load-test-2’, we stopped the load generators ten 
times, repeatedly after every ten minutes for the duration of 
15 seconds. After the completion of the load tests, we took 
the performance counter logs and applied our methodology 
on them for various time intervals, i.e., 30, 15, 10 and 5 
minutes as shown in TABLE VII. The time interval is the 
duration, during which performance counter data is collected 
for a running test. For 2 hours of test, a 30 minutes time 
interval means that our methodology can construct 4 
performance counter signatures based on the performance 
counter data collected for every 30 minutes of the load test. 
Findings: The TABLE VII. shows the performance of the 
four subsystems in terms of precision and recall, as shown in 
Figure 4. The Average column in TABLE VII.  shows the 
average performance of the complete load test.  The Test Run 
column shows the length of the time interval during which 
the performance of our methodology is measured. The 
samples column indicates the number of samples that can be 
obtained in 2 hours of test based on the length of time 
interval.  As we have injected the faults in the `Load test -2` 
after every 9 minutes by, the first sample of 30 minutes 
contains three faults. The second and third sample also 
contains three faults. The fourth segment has one only 1 fault 
bringing the total faults to ten.  We applied our methodology 
on all four samples of the database subsystem of ‘Load Test-
1’ to construct the performance signatures and compare them 
against the respective baseline subsystems. Our methodology 
only found the deviations between the performance 
signatures of sample 1 and sample 4 from the baseline. We 

Our methodology helps to reduce the unnecessary load 

test completion time by detecting early performance 

deviations in subsystems and reporting them in real-

time to performance analyst. 



expected our methodology to find the performance deviation 
among all the four segments of performance counter logs. 
According to the definitions of precision and recall in section 
IV, PO=2, O=4 and P= 2. Therefore, the recall is 0.50 and 
precision is 1.0. Our methodology has a high precession for 
30 minutes time interval. However, the average recall is 
0.325, which is very low. Applying our methodology at 
smaller time interval or smaller set of observation improves 
its performance.  
We get a perfect recall of 1.0 at 5 minutes time interval but 
our methodology does report some false positive deviations. 
The reason for reduction in precision at such small time 
interval is due to fact that with little data (small sample size), 
PCA sensitivity towards minute changes increase. Our 
methodology performs well at a 10 minutes time interval, 
with nice balance of both recall and precision. 
 
 
 
 
 
 
 

VI. RELATED WORK 

The related work falls in to two areas: 

 

Dimension Reduction:  

We direct the readers to the detailed related work on 

dimension reduction [14]. 

 

Automatic Performance Monitoring and Analysis of 

Enterprise Systems: 

 How to automate performance monitoring and analysis of 

an enterprise system is not a new problem. Since past five 

years, several tools and techniques have been proposed by 

various researchers. Huck and Malony proposed a 

performance data mining frame work for large-scale parallel 

computing. The framework tries to manage data complexity 

by using techniques such as clustering and dimensionality 

reduction [24]. This data mining framework utilizes random 

liner projection and PCA to reduce performance data. The 

framework only reduces the performance data to Principal 

component but doesn’t achieve fine grain analysis like our 

proposed methodology by decomposing the PCs to reveal 

the performance counters. Sandeep, et al. work is closest to 

ours [15]. They employed principal feature analysis (PFA) 

to achieve data reduction. The main difference between their 

approach and ours is that they utilized machine learning to 

distil the large counter set in to smaller set to describe the 

workload. Also, their work is partially automated and 

requires continuous training to produce accurate results.  

Cohen et al.[22] develop application signatures based on the 

various system metrics (like CPU, memory). Jiang, et al 

automated the performance analysis of load test [3]. Unlike 

our work they relied on execution logs. Few researches have 

exploited static dependency models to capture the dynamic 

complexity of large systems [25][26][27][28]. They use 

these dependency models describing the relationship among 

the hardware and software components in the systems.  

These dependency models are used to determine which 

components might be responsible for the symptoms of the 

given problem. The first major limitations of traditional 

dependency model is the difficulty of generating and 

maintain and accurate model of a constantly evolving large 

system. Their second limitation is that they typically only 

model a logical system, and do not distinguish among 

replicated components. Whereas, in a large enterprise 

system, there will be many replicated components.  

Pinpoint and Magpie track communication dependencies 

with aim of isolating the root cause of misbehavior; they 

require instrumentation of the application to tab client 

requests [29][30]. Whereas, our methodology, do not 

require any instrumentation of the system. Magpie 

characterizes transaction resource footprints in fine details 

but requires that the application logic be meticulously 

encoded in “event Schema”. Unlike Magpie, our 

methodology does not require any system knowledge. Pip 

aims to infer casual paths and require and explicit 

specification of the expected behavior of a system [4]. 

Whereas, our methodology, do not require such explicit 

specifications of the expected behavior. It relies heavily on 

statistical methods to automatically extract the expected 

behavior for baseline tests. 
 

VII. CONCLUSION AND FUTURE WORK 

In this paper we presented our methodology to identify 
performance deviations between the components of LSS. 
Our methodology uses Principal Component Analysis, a 
statistical technique to reduce large volume of performance 
counter data. Furthermore, our methodology identifies and 
ranks performance counters for each component based on its 
importance for the load test. The importance of performance 
counters hold for the normal behavior of system under load. 
The importance of the performance counters changes for 
respective components of a system if any error or deviation 
for normal behavior occurs. A large case study on a real-
world industrial software system provides empirical 
evidence on the ability of our methodology to uncover the 
performance deviation between two load tests in limited 
time, without implying any domain knowledge. 

Currently, our methodology identifies the time interval in 
which performance deviations occurs during the load test. In 
future we plan to employ sliding windows to identify the 
deviations in subsystems as they occur during the load test.  
In the future, we plan to compare the performance of our 
methodology with that of other techniques such as Naïve-
bays classifier and factor analysis to yield further 
improvement in constructing effective performance 
signatures. We also want to strengthen our methodology by 
taking in to account the effect of deviations that a subsystem 
has one other as a “carry over” effect.  This will help 

The performance of our methodology is time 

dependent. Over large time intervals, our methodology 

achieves high precision. Applying our methodology at 

small time interval yields high recall. 
 



performance analyst to perform root-cause analysis on the 
performance issues in LSS 
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