

Using Load Tests To Automatically Compare the Subsystems of a Large Enterprise

System

Haroon Malik, Bram Adams, Ahmed E. Hassan

School of Computing

 Queen’s University

Kingston, Canada

{malik, bram, ahmed}@cs.queensu.ca

Parminder Flora and Gilbert Hamann

Performance Engineering

Research In Motion (RIM)

Waterloo, ON, Canada

Abstract—Enterprise systems are load tested for every added

feature, software updates and periodic maintenance to ensure

that the performance demands on system quality, availability

and responsiveness are met. In current practice, performance

analysts manually analyze load test data to identify the

components that are responsible for performance deviations.

This process is time consuming and error prone due to the

large volume of performance counter data collected during

monitoring, the limited operational knowledge of analyst about

all the subsystem involved and their complex interactions and

the unavailability of up-to-date documentation in the rapidly

evolving enterprise. In this paper, we present an automated

approach based on a robust statistical technique, Principal

Component Analysis (PCA) to identify subsystems that show

performance deviations in load tests. A case study on load test

data of a large enterprise application shows that our approach

do not require any instrumentation or domain knowledge to

operate, scales well to large industrial system, generate few

false positives (89% average precision) and detects

performance deviations among subsystems in limited time.

Keywords-Load test; Signatures; PCA; performance

I. INTRODUCTION

Large scale systems (LSS), such as Google, Facebook,
Amazon and eBay are complex systems composed of many
underlying components. These systems grow rapidly in size
to handle growing traffic, complex services, and business-
critical functionality. This exponential growth increases the
individual component’s complexity and hence, the
integration between the geographically distributed
components. The performance of LSS is periodically
measured to satisfy the high business demands on system
quality, availability and responsiveness.

Load testing remains the most integral part of testing the
performance of the Large Scale Systems (LSS). Load testing
uncovers residual functional and performance problems that
slipped through the conventional functional testing, such as
unit and integration testing. A functional problem results in
processing happening at the wrong place in the wrong order
[4]. A performance problem results in processing taking too
much or too little of important resource. A request that takes
too long may indicate a bottleneck, while a request that
finishes too quickly may indicate truncated processing or
some other performance bug.

Load testing assesses how a system performs under a
given load [1]. Load is defined as the rate at which
transactions are submitted to a system [2]. Load generators
are used to induce load on the system under test [3], i.e.,
imitating thousands of users committing concurrent
transactions to a system, resembling the harsh field
environment. During the course of a load test, the system is
strictly monitored and important sources of data exposed by
the system i.e., performance metrics are collected. These
metrics include numerical measurements related to the
system’s state and performance (e.g., CPU, memory
utilization, network usage etc). These are called performance
counters. After the completion of the load test, performance
analyst select the important performance counters based on
their domain knowledge and experience gained from
previous tests and compare them against the base-line test
[3]. They use various plotting tools manually, to compare
performance counters against a base-line test. If a
performance analyst finds large deviations from base-line
load test, a defect/bug report is filed. The defect/bug report is
assigned to software engineers and experts in the
corresponding subsystem area, i.e., database, web servers,
mail, application, network etc to further investigate and
rectify the performance issue/bug.

Unfortunately, the current practice to analyze load test is
costly, time consuming and error prone [5][3]. The load test
analysis practices have not kept pace with the rapid growth
in size and complexity of the large enterprise systems. In
practice, the dominant tools and techniques to analyze large
distributed systems have remained unchanged for over
twenty years [4]. Performance analysts have to face the
challenge of isolating the required performance information
distributed across thousands of correlated performance
counters along multiple subsystems in limited time.
Furthermore, they have to leverage extensive knowledge
about such large scale systems to identify subsystems
responsible for performance deviations in load tests, as the
formal performance baseline in large and dynamic enterprise
system rarely exist [3] . The paper presents an automated and
effective methodology to help performance analysts to
pinpoint performance deviations among subsystems in LSS
and to facilitate performance analysts to analyze load test.

Figure 1. Performance load testing process

In particular, our methodology helps them to finger-point the
subsystems deviating from their normal performance
behavior (i.e., baseline) in limited time. We make the
following contributions:

C1. We apply statistical methods to reduce the

dimensionality of the observed performance counter

set of every subsystem in ULSS.

C2. We show a nontrivial way to generate a performance

signature for each subsystem in LSS by automating

the ranking of performance counters according to

their importance for load test. Furthermore, we show

how simple pair-wise correlation is used to compute

the divergence between the performance signatures

of two subsystems, eliminating the need of

employing sophisticated mathematical models and

domain intensive knowledge.

C3. We empirically validate our proposed approach

through a large case study on a real-world industrial

software system.
The rest of the paper is organized as follows: Section II

presents the current load test practice and its limitations. We
present our methodology in section III. The section IV
present the performance measures of our methodology
followed by a case study in section V. the section VI presents
the related work. Finally, section VII presents conclusion and
future work.

II. CURRENT PRACTICE

The typical process of load testing involves four phases, as

shown in Figure 1 :

1. Environment setup is the most important phase of load

testing. Most common load test failures occur due to

improper environment setup for a load test. The

environment setup includes installing the application and

the load testing tools possibly on different operating

platforms. Load generators, which emulate user’s

interaction with the system, need to be carefully

configured to match the real workload in field.

2. Load test execution involves starting the components of

the systems under load test, i.e., starting the required

services, hardware resources and tools (load generators

and performance monitors). During the execution of a

load test, the application/system under load is strictly

monitored and performance counters are recorded in

performance logs.

3. Load test analysis involves comparing the results of a

load test against another load test’s result or against pre-

defined thresholds as baselines. Unlike functional and

unit testing, which result in a pass or failure

classification for each test; load testing requires

additional quantitative metrics like response time,

throughput and hardware resource utilizations to

summarize results. The performance analyst selects few

of the important performance counters among the

thousands collected. Based on his experience and the

domain knowledge, performance analyst manually

compares the selected performance counters with those

of past runs to look for evidence of performance

deviation, for example using plots and correlation tests.

4. Report generation includes filing the performance

deviations, if found, based on the personal judgment of

the analyst. In most cases the results filed in a

performance report are verified by an experienced

analyst. Based on the extent of performance deviation

and its relevance to a team responsible for handling the

subsystems i.e., (database, application, web system etc.).
Many challenges and limitations associated with the

current practice of load test analysis remain unsolved:
1. Large number of performance counters: Load tests last

from a couple of hours to several days. They generate
performance logs that can be of several terabytes in size.
Even logging all counters on a typical machine at 1Hz
generates about 86.4 million values in a single week, A
cluster of 12 machines over one week would generate 13
TB of performance counter data per week, assuming a 64
bit representation for each counter value [20]. Analysis of
such large counter logs is still a big challenge in load
tests.

2. Limited time: Performance analysts in LSS have only
limited time to reach and complete diagnostics on
performance counter logs and to make necessary
configuration changes. Load testing is usually the last
step in an already tight and usually delayed release
schedule. Hence, managers are always eager to reduce
the time allocated for performance testing.

3. The risk of error: Load test analysis is error-prone
because of the manual process involved in analyzing
performance counter data in current practice. In practice,
it is impossible for analysts to skim through the huge
volume of performance counters to find the required
information in LSS. Instead, analysts use few key
performance counters known to them from past practices,
performance experts and domain trends as ‘rules of
thumb’ [22]. There is no single person with complete
knowledge of end to end geographically distributed
system activities in LSS [21]. An analyst with good
knowledge of the database server will quickly uncover
important database counters from performance counter
logs however; he may overlook some important web
counters. Applying same the ‘rules of thumb’ on load
tests can mislead performance issues [22].
Due to the above challenges, we believe that the current

practice to perform load test analysis is neither efficient nor
sufficient to uncover performance deviation accurately and
in limited time. Our methodology automatically identifies
the important counters across every subsystem of an LSA to
create robust performance signatures. By mean of simple
correlations between performance signatures, our
methodology can pinpoint performance deviations among
LSS subsystems from a baseline.

Environment

Setup
Load Test

Execution

Load Test

Analysis

Report

Generation

Figure2: The steps involved in proposed methodology

TABLE I. SAMPLE OF OBSERVATIONS BEFORE DATA PREPARATION

 Observations

Var Tot Mis Avail Mini Max Mean Std. Dev

Q 599 0 599 246.18 1946.11 754.654 292.00

R 599 0 599 009.59 0063.46 023.427 011.14

S 0 0 0 000.00 0000.00 000.000 000.00

T 599 2 597 001.00 0117.11 0030.90 018.99

TABLE II. SAMPLE OF OBSERVATIONS AFTER DATA PREPARATION

 Observations

Var Tot Mis Avail Mini Max Mean Std. Dev

Q 599 0 597 -13.37 000.07 0.00 1.00

R 599 0 597 -00.71 006.52 0.00 1.00

T 597 0 597 -1.694 001.46 0.00 1.00

III. THE METHODOLOGY

In this section, we present and discuss our methodology
to help analysts in load test analysis. To address the
limitations listed in section III, our approach eliminates the
need to invest the domain extensive knowledge by
identifying important performance counters for each
subsystem in a load test. Apart from previous effort to
automatically compare load tests [14], the methodology is
refined further to help an analyst to pinpoint performance
deviations in LSS at subsystem level in limited time. Figure2
shows the steps required in our methodology.

A. Data Preparation

The performance logs obtained from a load test do not

suffice for direct analysis by our methodology. The logs

need to be prepared to make them suitable for the statistical

techniques employed by our methodology. The two steps

involved in data preparation are:

1) Data sanitization:
Performance logs need to be filtered from noise i.e.,

missing counter data or empty counter variables. Counter
data is missing when performance monitors fail to record an
instance of a performance counter variable. A counter
variable is completely empty when a resource cannot start
the service. Table 1 shows a sample of our real world
performance counters for a load test before the data
preparation step is applied. Counter variable ‘T’ belongs to
the missing counter data category whereas ‘S’ is an empty
counter variable. A Total of 599 observations were required
for each performance counter variable. Monitoring tool
recorded only 597 observations for performance counter ‘T’.
To deal with this kind of problem (incomplete data) we
employed list wise deletion. If the i

th
 observation for counter

‘T’ is missing, list wise deletion will delete the
corresponding i

th
 observation of all the counter variables.

Partial empty counter variables such as ‘S’ and counter
variables that have more than 2% of the data missing are
removed during sanitization process. TABLE II. shows the
performance counters after data sanitization.

2) Pre-treatment:
Pre-treatment converts the data into a format that is

understood by our data reduction technique, i.e., Principal
Component Analysis (PCA). PCA is a maximum variance
projection method [12]. Performance counters have different
ranges of numerical values; they have different variance.
PCA identifies those variables that have a large data spread
(variance), ignoring variables with low variance [19]. To
eliminate PCA bias towards those variables with a larger
variance, we standardized the performance counters via Unit
Variance scaling (UV scaling), i.e., by dividing the
observations of each counter variable by the variable’s
standard deviation. Each scaled variable then has equal (unit)
variance. TABLE II. shows the variables after pre-treatment.
Each variable has a mean of 0 and Standard deviation of 1.
Scaled performance counter data is then further mean
centered to reduce the risk of collinearity. With mean-
centering, the average value of each performance counter
variable is calculated then subtracted from its respective
counter data.

B. Performance Counters Normalization

Modern applications provide user to publish custom
performance counters, it is not uncommon to find a same
counter with different names on different systems.
Performance counter data is collected from various
subsystems of LSS during load test. Performance counters
normalization ensures consistency among the performance
counter data for our methodology. E.g. \\Server-
1\app1\service/sec and \\Server-2\application1\service/sec
are two same performance counters, with different counter
name i.e., app1 and application1 and same instance name
i.e., service/sec. Normalization ensures the portability of our
approach across different platform and eliminated the false
performance deviations between the subsystems of two load
tests.

C. Dimension Reduction

We used the robust and scalable statistical technique,
Principal Component Analysis (PCA) to reduce the sheer
volume of performance counters [12]. What PCA does is to
synthesize new variables called ‘Principal Components’
(PC). Every PC is independent and uncorrelated with other
PCs. PCA is maximum variation projection method. To
overcome this, we standardize the performance counters so

Report

Generation

Data Preparation
1. Sanitization

2. Pre-Treatment

Performance

Counters

Normalization

Dimension

Reduction
Principal Component

Analysis

Crafting

Performance

Signature

Extracting

Performance

Deviations

that variance of each counter variable =1.0. TABLE III.
shows the PCA for a real world performance counter log
consisting of 18 performance counter variables. PCA groups
the data of the 18 counter variables into principal
components, each of which explains a particular amount of
variance of the original data. This means the total variance of
our counter data is 18. The first component PC1 has an
eigen-value = 11.431, which means it explains more variance
than a single counter variable, indeed 11.431 times as much
and it accounts for 63.60% of the variability of entire
performance counter data set. The second and third
components have eigen-values 2.74 and 1.720 respectively.
The rest of the components explain less variance than a
single counter variable. To further trim the performance
counter data we use ‘% Cumulative Variability’ in selecting
the number of top_k components. Using ‘% Cumulative
Variability’ of 90% is adequate to explain most of the data
with minimal loss in information [12]. This means, we only
need to take into account the first four PCs as shown in
TABLE III.

TABLE III. PRINCIPAL COMPONENT ANALYSIS (PCA)

PC Eigen-Value Variability (%) Cumulative Variability %)

PC1 11.43 63.506 63.506

PC2 2.47 15.260 78.765

PC3 1.720 9.554 88.319

PC4 0.926 5.143 93.463

⁞ ⁞ ⁞ ⁞

PC12 0.001 0.003 100.00

D. Crafting Performance Signatures

Performance analysts are interested in performance
counters, not in principal components. Table 1 shows that we
have four principal components that can explain over 90% of
the original counter data variability. We now decompose
principal components of a subsystem using the eigenvectors
technique to map the PCs back to counter variables [19].
Each performance counter is given a weight in accordance to
its association with a PC. The larger the weight of a
performance counter, the more it contributes to a PC.

TABLE IV. THE PERFORMANCE SIGNATURE OF A SUBSYSTEM

Rank PC Counter Importance

1 PC1 N 0.974

2 PC1 M 0.972

3 PC1 R 0.966

4 PC1 Q 0.946

5 PC1 P 0.944

6 PC1 E 0.933

7 PC2 I 0.912

We applied the threshold to decide on the important
performance counter variables and discard the rest [14].

The TABLE IV. shows seven performance counter
variables out of 18 performance counters, ranked according
to their importance. Our methodology achieved a 61% data
reduction. These 7 performance counters form the
performance signature of LSS subsystem. The performance
signature acts as a finger-print to the subsystems of LSS and

helps to identify and compare them with other subsystems.
The importance of the performance counters in a signature
hold for the same environment and workload of the test.
However, when an error or unknown change occurs in the
load test environment or in the workload, such as server
replications, background antivirus scan etc, importance of
performance counters for a subsystem shifts, causing the
change in performance signature of the subsystem of LSS.
This change in performance counter signature enables us to
detect performance deviations.

E. Extracting Performance Deviations

One of the goals of our methodology is to help performance

analyst in load test analysis by automatically identifying the

subsystems of LSS that deviate from the baseline. This step

of our methodology measures the correlation between the

performance signatures of a subsystem in the load test with

the corresponding subsystem’s signature of a baseline test.

The prior research has shown that stable relationship

between metrics exists in a well-behaved system [6][7][8].

The relationships are often disturbed when error occurs. We

use spearman’s rank correlation to find the extent of

deviations between performance signatures [23]. A value of

+1 confirms that two performance signatures are identical

and there is no performance deviation between the respective

subsystems .We choose spearman’s rank correlation over

other correlation coefficients such as Pearson product-

momentum, Kendall’s tau and gamma because spearman’s

rank correlation does not require any assumptions about the

frequency distribution of the variables. This is necessary

because load test data contains traces that do not follow

normal distribution of data.

F. Report Generation

To help a load tester examine the performance deviations,

we generate performance deviation report. The report is

generated in dynamic- HTML so testers can easily attach it

to emails that are sent out while investigating a particular

subsystem’s performance deviations. The report contains

visualizations and correlation tables to point out the

divergence between two subsystems.

IV. MEASURING THE PERFORMANCE OF OUR

METHODOLOGY

To evaluate the effectiveness of our approach, we used two

metrics: Precision and Recall. Precision is the ratio between

correctly identified performance deviations and predicted

performance deviations between the same subsystems of

two load tests. Recall is defined as the ratio between the

correctly identified performance deviation and actual

performance deviations in a subsystem. We use Figure 3 as

an example to explain how we can measure the precision

and recall of our methodology. Figure 3 show the

performance counter logs of the database subsystem for the

two load tests. These two load tests are conducted under

constant environment and with the same workload. For both

the load tests, performance counter logs are divided into

equal time intervals, i.e., from t1 to t5. For the load test-2, an

unexpected network link failure occurred between database

and load generator during time interval t3, t4 and t5.

Test-1 t1 t2 t3 t4 t5

Test-2 t1 t2 t3 t4 t5

Figure 3. Performance measure of our methodology.

On careful analysis by performance analysts, both

subsystems are found to be identical in performance except

at time interval t3, t4 , t5. An ideal methodology should only

report the time interval at which the deviations occurred.

We define the number of time intervals when actual

performance deviations occurred as O = 3. We applied our

methodology on the database subsystem of both tests and it

predicted performance deviations between two test at time

intervals t1, t2 and t3. We define the predicted number of time

intervals by our methodology as P = 3. An ideal

methodology will predict the same deviations P as that of

actual deviations occurred, i.e., O in a subsystem. Based on

these definitions we define: Recall = PO/O and Precision =

PO/P. We have defined the prediction and recall for a single

subsystem. To measure the performance of a methodology

for all the subsystems of LSS, i.e., ‘C’ involved in a load

test, we use the following definitions:

Average Recall = 1
C × ��Recall��

C

I��

(3)

Average Precision = 1
C × ��Precision��

C

I��
 (4)

V. CASE STUDY

To evaluate the performance and reliability of our
approach, we conducted a case study on the load test logs of
a large enterprise application. The goal of our case study is to
thoroughly examine the following research questions:

 Q1 How accurate is our methodology to identify the

subsystems of an LSS, which have performance
deviations relative to prior tests?

Q2. Can we save time on the unnecessary load test

completion by early identifying the performance

deviations along different subsystems of a LSS?

Q3. How is the performance of our methodology affected

by different sampling intervals?

A. Environment Setup

The Figure 4 shows our load test environment. The four
subsystems are enclosed within a dotted line. An enterprise

application runs on a cluster and utilizes a database to store
data. The enterprise application uses two web servers to
allow users to share documents, schedule meetings and
access intranet resources between two geographically
separated locations. An internal load generator mimics the
user’s interaction with an enterprise application by
performing simultaneous concurrent transactions, thereby
places load on the database. The external load generators
emulate large volume of traffic that results from the outside
of the intranet to stress web servers. A customized
performance monitoring tool monitors the numeric
measurements related to the system’s state and performance
and records them as performance counter logs.

Figure 4. Components of test environment

Q1 How accurate is our methodology to identify the
subsystems of an LSS, which have performance deviations
relative to prior tests?
Motivation: During the course of the load test, an LSS is
strictly monitored and thousands of performance counters are
recorded. Performance analysts select few of the important
counters based on their domain knowledge and expertise and
compare them with a baseline test or predefined thresholds
[3]. If the performance analyst finds significant deviations in
a load test from the baseline test, analyst further investigates
to find the sub-systems that are the cause of performance
deviations. This is not an easy task, as the performance
engineer needs to drill down thousands of performance
counters distributed across several subsystems to find the
required information. The process of identifying the
performance deviated subsystems in a LSS can take many
days.
Approach: We conducted an experiment to find out how
accurately our approach can help performance analysts to
pinpoint the performance deviated sub-systems in limited
time, with accuracy and without implying domain
knowledge. This experiment uses one baseline load test and
three other load tests. The first load test was a re-run of the
baseline load test. In the second test, we synthetically
induced faults in to the baseline load test’s performance
counter log and in third test, we stressed the system by
pushing 8-times (8X) more load than its expectation. The
baseline load test was conducted by the performance
engineers of a large enterprise. They carefully analyzed the
baseline test to find any performance issues and deviations
that raise the concerns of the LSS stakeholders.

Deviations

Predicted (P)

PO = P ∩ O

Deviations

Occurred (O)

DATA-BASE

Ext. Load

Generator 1

Ext. Load

Generator 2

Internal

Load

Generator

Performance

Logs

Performance Monitoring Tool

Clustered

Application

System
Web Server

(A)

Web Server

(B)

Database

Performance Counters

Figure 5. Comparison with baseline load test

TABLE V. CORRELATION BETWEEN PERFORMANCE SIGNATURES.

 Subsystems

Load Test

Test-A Synthesized 8-X load

Data Base 0.997 0.732 0.826
Web Server-A 1.000 0.701 0.795
Web Server-B 1.000 0.700 0.790
Application 1.000 0.623 0.681

The performance counter log of the baseline load test
contained seven hundred (700) performance counters
belonging to four subsystems. The load test duration for each
test was 8 hours. The performance monitoring tool collected
the performance counter data periodically after ever 15 sec
(sampling interval) and there were 1922 instance (numeric
readings) in total, recorded for each performance counter in
the performance counter log. We applied our methodology
on the performance counter log of the baseline load test and
extracted the performance signatures for the sub-systems.
Our methodology recommended 11 important performance
counters for database subsystem, ranked on the basis of their
importance for the load test. Furthermore, our methodology
recommended 18 important performance counters each, as
performance signatures for the remaining three subsystems.
Thereby, achieving 85% of reductions in the performance
counter log data.
 Test 1: We used the framework of Thakkar et al. to
automate the load test and to ensure the environment remains
constant [10]. We ran the load test under same environment,
workload and duration as baseline load test and call it as
‘Test-A’. The intuition for conducting the load test similar to
that of baseline- load test is to validate our methodology. Our
methodology should craft the same performance signature
for every subsystem as that of the baseline load test.

Test 2: We synthetically injected faults into the
performance counter log of our base-line load test. First we
select 50 % the performance counters of each sub-system.
Second, among the 50% of performance counters selected,
we ensured that 50% of the important performance counters
that contribute toward constructing the signature of a
subsystem are present. Third, we mutated the values of 40%
of the selected performance counter data using out of bag
(OOB) approach [11]. Using OOB, reduce the chance of a
performance counter instance being mutated twice. We did
not generate totally random load test data, because there are
important correlations and associations between counters that

need to be satisfied to obtain realistic load test results. For
example, if the CPU utilization is high for a load,
corresponding performance counter instances for disk IOPS,
memory consumption and queue levels will also have high
instance values reflecting the same observed load.

Test 3: We conducted the load test with same workload
mix as of baseline load test but increased its intensity 8
times. We illustrate what we mean by workload mix and
increasing its intensity. For example, the load of an e-
commerce website would contain information such as:
browsing (40%) with a min/average/max rate of 5/10/20
requests/sec, and purchasing (40%) with a min/average/max
rate of 2/3/5 requests/sec. In our experiment we keep the
workload mix (browsing (40%) and purchasing (40%))
constant, however varied its intensity i.e., rate (request/sec).
our institution was to deviate the behavior of load test from
baseline load test by stressing its sub-subsystem; subjecting
them to load beyond their design constraints.

Findings: our methodology achieved 85% performance
counter data reduction. The Figure 5 shows and compares
the signature plots between baseline test and other three tests.
The TABLE V. provides rank correlations to calculate the
performance deviations between the signatures. The ‘Test-
A’, which is a replica of the baseline test, has a near perfect
signature match for every subsystem with the baseline- test,
as shown in Figure 5. The subsystems of ‘Test-A’ have high
correlation with the baseline test. The database performance
signatures of ‘Test-A’ differs from the baseline- test by
spearman’s rank correlation coefficient of 0.003. This
difference is so small that it can be attributed to experimental
measurement error. Our methodology did not suggested any
performance deviations between ‘Test-A’ and baseline test at
the sub-system level, yielding a precision and recall of
100%. For test-2, where we synthetically injected faults and
for test-3, where we stressed the system by pushing 8 times
more load then its expectation, our methodology suggested
performance deviations from the baseline test for all four-
subsystems.

TABLE VI. CORRELATIONS AT VARIOUS TIME INTERVALS

Time-(Observations) Database

30-mins (120) 1
15-mins (60) 1
10-mins (40) 0.9893
5-mins (20) 0.8255

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10 11

Database

Base Line Test
Test-A
Synthesized Test
8X- Load

1 3 5 7 9 11 13 15 17

Web Server-A

1 3 5 7 9 11 13 15 17

Web Server-B

1 3 5 7 9 11 13 15 17

Application System

C
o

u
n

te
r

Im
p

o
rt

a
n

ce

Performance Counters

Figure 6. Effect of time interval on our methodology

The subsystem signature plots of test 2 and test 3 load tests
in Figure 5 clearly indicate them different form the
signatures of respective subsystems of baseline load test. The
TABLE V. also indicates significant deviations between the
sub-systems of both tests from baseline. This shows the
consistency of our methodology to identify sub-systems that
deviate from their performance baselines.

Q2. Can we save time on the unnecessary load test
completion by early identifying the performance deviations
along different subsystems of a LSS?
Motivation: There are two motivations for this research
question. First, performance testing is usually done as the
last step in an already tight and usually delayed release
schedule. Hence, managers are always eager to reduce the
time allocated for performance testing. Software analysts are
required to conduct many load tests, which typically span
over few hours to days. In is not uncommon for analyst to
find out after the completion of the test that it failed due to
unexpected circumstances. This includes mis-configurations
and various unpredicted background activities, such as disk
scrubs, RAID reconstructions, anti-virus scans, and data
replication [15]. Once problems are addressed, the test needs
to start from scratch. A lot of precious time is wasted, in
many cases the performance analysts have to compromise on
the number of tests they need to run to gain statistical
confidence in the results in limited time. The idea of test
reduction has been researched thoroughly in the functional
testing area [16][17]. However, this idea has not been
explored much for load testing. A detailed discussion on how
to reduce the testing time by improving experimental design
technique and careful planning of test to avoid mistakes is
presented in [18]. However, to the best of our knowledge,
when the load test is set in motion, there exists no automated
and proactive technique that can guide and report analyst in
real-time about the performance deviations that occurs
during the load test run. So that, performance analyst can

stop the test at that point of time where performance
deviation occurred, fix the issue if it can be fixed and run the
load test again, rather waiting for days to let the load test
finish and get surprises at cost of time.
Approach: we want our methodology to report the
deviations of subsystem’s performance from baseline as soon
as it occurs in a running load test. One way to overcome the
situation is to frequently compare the performance signatures
obtained from the periodic samples of the performance
counter logs as they become available from a running load
test and compare them with the baseline. To detect a
performance deviations among subsystems such as caused by
resource failure, e.g., ethernet link failure, disk failure etc,
sample of performance counter logs are required as soon as
they become available from running load test. However, if
performance analysts are interested to detect performance
deviations resulting from resource saturations that usually
evolve over time, e.g., cache pollution and memory leaks,
aggressively sampling at smaller time interval of
performance counter log is not required. We don’t want
performance analyst to apply our methodology very
generously by sampling the performance counter log at large
interval thereby, missing performance bugs. We now explain
what we mean by this. We used a statistical technique, PCA
towards constructing signatures from the performance
counter logs. Unlike statistical techniques, PCA is not highly
sensitive to minute changes in data and is a maximum
variance projection method [19]. This means PCA takes into
account the counter’s majority data value to calculate its
importance for the load test, giving less weight to counter
data in minority. For example, one thousand observations are
recorded for a performance counter (CPU Utilization) of a
subsystem by a monitoring tool in a load test. All the
performance counter values are stabilized at 40% to 50% of
the CPU utilization. Among thousand observations recorded,
only one observation has 80% of the CPU utilization. For
such a small difference, our methodology will mark the
subsystems of both the load and baseline test analogous.
However, if there is one observation among 10 observations
collected, our methodology will report the performance
deviation between the subsystems. To find out how much
our methodology can be relaxed in constructing performance
signatures such that it never misses to pinpoint the
performance deviations among LSS sub-systems,

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10 11

Database
(30-mins)

Base-Line Test

Load Test

1 2 3 4 5 6 7 8 9 10 11

Database

(15-mins)

1 2 3 4 5 6 7 8 9 10 11

Database
(10-mins)

1 2 3 4 5 6 7 8 9 10 11

Database

(5-mins)

Our methodology helps performance analysts to

identify sub-systems with performance deviations

relative to prior tests in limited time. Our methodology

can achieve 85% reduction in performance counter

data.

C
o

u
n

te
r

Im
p

o
rt

a
n

ce

TABLE VII. PERFORMANCE OF OUR METHODOLOGY

Test Run Database Web Server -1 Web Server- 2 Application System Average

Min Obs Samples Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

30 120 4 0.50 1.00 0.50 1.00 0.30 1.00 0.25 1.00 0.325 1.000

15 60 8 0.62 1.00 0.62 1.0 0.62 1.0 0.50 1.0 0.590 1.000

10 40 12 1.00 0.90 1.00 0.9 1.00 0.9 0.9 0.69 0.975 0.847

5 20 24 1.00 0.70 1.00 0.7 1.00 0.8 1.00 0.66 1.000 0.715

All - 0.78 0.90 0.78 0.90 0.73 0.92 0.66 0.83 0.738 0.890

we conducted an experiment based on the two load tests
using the same environment as shown in Figure 4. Each load
test spanned over two hours and performance monitoring
tool was set to capture performance counter data after every
15 seconds. Total of 480 observations were recorded for
each performance counter. We marked the first load test as
our baseline load test. During the mid of the second load test,
i.e., after 60 minutes, we slowed down the CPU of the
database server for 15 seconds by using a CPU stress tool
[31]. We stressed the database CPU for such short period of
time as we were interested to find out the maximum time
period within which minimum performance deviations can
detect by our methodology. The slowing down of the CPU
increased the CPU utilization of database server to 100%.
After the completion of the load tests, we used their
performance counter logs and applied our methodology to
find out the performance deviation among subsystems. Our
methodology reported both test to be analogous.
We started to reduce the performance counter data of both
test by roughly 12%, i.e., 10 minutes. We removed the 5
minutes, roughly (6%) of performance counter data from the
start and from the end of the performance counters log. We
kept reducing the performance counter log by 12% until out
methodology reported the performance deviation between
the subsystems of two load tests.
Findings: The Figure 6 shows that our methodology can
identify deviation between two tests for sample collected
within 10 minutes span. According to Figure 6, sampling
interval larger than 10 minutes or 40 observations may lead
to miss minute deviation between the subsystems. The values
reported in TABLE VI. are the spearman’s rank correlations
between the performance signatures of database and
corresponding subsystem in baseline load test. The values
show that smaller the sampling time interval for performance
counter log, better the extent of deviation measure. We
conducted experiments on other subsystems and found the
results to be consistent. We can conclude that frequently
sampling the performance log of a running load test by our
methodology helps performance analyst to detect early
performance deviations among LSS subsystems. Thereby,
saving time that is required to finish the load test, before they
can be repeated.

Q3. How is the performance of our methodology affected by
different sampling intervals?
 Motivations: A methodology with low recall is not useful
because it fails to identify the real faults. A methodology that
produces results with high recall and low precision is not
useful either because it floods performance analysts with too
many false positives. An ideal methodology should predict a
minimal and correct set of faults/deviations in a system. In
practice, however, there is a tension between having high
recall and high precision [32][33]. Maximizing the precision
of a methodology often means that potential faults are being
thrown out, which decreases its recall. We want to evaluate
the performance of our methodology using the definitions of
precession and recall in section VI.
Approach: We conducted and experiment that consisted of
two load test with identical environment and workload. Both
load tests spanned over two hours. The monitoring was set to
capture the performance counters every 15 seconds. The first
load test, ‘Load test-1’ is taken as a baseline test. During the
course of ‘Load-test-2’, we stopped the load generators ten
times, repeatedly after every ten minutes for the duration of
15 seconds. After the completion of the load tests, we took
the performance counter logs and applied our methodology
on them for various time intervals, i.e., 30, 15, 10 and 5
minutes as shown in TABLE VII. The time interval is the
duration, during which performance counter data is collected
for a running test. For 2 hours of test, a 30 minutes time
interval means that our methodology can construct 4
performance counter signatures based on the performance
counter data collected for every 30 minutes of the load test.
Findings: The TABLE VII. shows the performance of the
four subsystems in terms of precision and recall, as shown in
Figure 4. The Average column in TABLE VII. shows the
average performance of the complete load test. The Test Run
column shows the length of the time interval during which
the performance of our methodology is measured. The
samples column indicates the number of samples that can be
obtained in 2 hours of test based on the length of time
interval. As we have injected the faults in the `Load test -2`
after every 9 minutes by, the first sample of 30 minutes
contains three faults. The second and third sample also
contains three faults. The fourth segment has one only 1 fault
bringing the total faults to ten. We applied our methodology
on all four samples of the database subsystem of ‘Load Test-
1’ to construct the performance signatures and compare them
against the respective baseline subsystems. Our methodology
only found the deviations between the performance
signatures of sample 1 and sample 4 from the baseline. We

Our methodology helps to reduce the unnecessary load

test completion time by detecting early performance

deviations in subsystems and reporting them in real-

time to performance analyst.

expected our methodology to find the performance deviation
among all the four segments of performance counter logs.
According to the definitions of precision and recall in section
IV, PO=2, O=4 and P= 2. Therefore, the recall is 0.50 and
precision is 1.0. Our methodology has a high precession for
30 minutes time interval. However, the average recall is
0.325, which is very low. Applying our methodology at
smaller time interval or smaller set of observation improves
its performance.
We get a perfect recall of 1.0 at 5 minutes time interval but
our methodology does report some false positive deviations.
The reason for reduction in precision at such small time
interval is due to fact that with little data (small sample size),
PCA sensitivity towards minute changes increase. Our
methodology performs well at a 10 minutes time interval,
with nice balance of both recall and precision.

VI. RELATED WORK

The related work falls in to two areas:

Dimension Reduction:

We direct the readers to the detailed related work on

dimension reduction [14].

Automatic Performance Monitoring and Analysis of

Enterprise Systems:

 How to automate performance monitoring and analysis of

an enterprise system is not a new problem. Since past five

years, several tools and techniques have been proposed by

various researchers. Huck and Malony proposed a

performance data mining frame work for large-scale parallel

computing. The framework tries to manage data complexity

by using techniques such as clustering and dimensionality

reduction [24]. This data mining framework utilizes random

liner projection and PCA to reduce performance data. The

framework only reduces the performance data to Principal

component but doesn’t achieve fine grain analysis like our

proposed methodology by decomposing the PCs to reveal

the performance counters. Sandeep, et al. work is closest to

ours [15]. They employed principal feature analysis (PFA)

to achieve data reduction. The main difference between their

approach and ours is that they utilized machine learning to

distil the large counter set in to smaller set to describe the

workload. Also, their work is partially automated and

requires continuous training to produce accurate results.

Cohen et al.[22] develop application signatures based on the

various system metrics (like CPU, memory). Jiang, et al

automated the performance analysis of load test [3]. Unlike

our work they relied on execution logs. Few researches have

exploited static dependency models to capture the dynamic

complexity of large systems [25][26][27][28]. They use

these dependency models describing the relationship among

the hardware and software components in the systems.

These dependency models are used to determine which

components might be responsible for the symptoms of the

given problem. The first major limitations of traditional

dependency model is the difficulty of generating and

maintain and accurate model of a constantly evolving large

system. Their second limitation is that they typically only

model a logical system, and do not distinguish among

replicated components. Whereas, in a large enterprise

system, there will be many replicated components.

Pinpoint and Magpie track communication dependencies

with aim of isolating the root cause of misbehavior; they

require instrumentation of the application to tab client

requests [29][30]. Whereas, our methodology, do not

require any instrumentation of the system. Magpie

characterizes transaction resource footprints in fine details

but requires that the application logic be meticulously

encoded in “event Schema”. Unlike Magpie, our

methodology does not require any system knowledge. Pip

aims to infer casual paths and require and explicit

specification of the expected behavior of a system [4].

Whereas, our methodology, do not require such explicit

specifications of the expected behavior. It relies heavily on

statistical methods to automatically extract the expected

behavior for baseline tests.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented our methodology to identify
performance deviations between the components of LSS.
Our methodology uses Principal Component Analysis, a
statistical technique to reduce large volume of performance
counter data. Furthermore, our methodology identifies and
ranks performance counters for each component based on its
importance for the load test. The importance of performance
counters hold for the normal behavior of system under load.
The importance of the performance counters changes for
respective components of a system if any error or deviation
for normal behavior occurs. A large case study on a real-
world industrial software system provides empirical
evidence on the ability of our methodology to uncover the
performance deviation between two load tests in limited
time, without implying any domain knowledge.

Currently, our methodology identifies the time interval in
which performance deviations occurs during the load test. In
future we plan to employ sliding windows to identify the
deviations in subsystems as they occur during the load test.
In the future, we plan to compare the performance of our
methodology with that of other techniques such as Naïve-
bays classifier and factor analysis to yield further
improvement in constructing effective performance
signatures. We also want to strengthen our methodology by
taking in to account the effect of deviations that a subsystem
has one other as a “carry over” effect. This will help

The performance of our methodology is time

dependent. Over large time intervals, our methodology

achieves high precision. Applying our methodology at

small time interval yields high recall.

performance analyst to perform root-cause analysis on the
performance issues in LSS

ACKNOWLEDGMENTS

We are grateful to Research In Motion (RIM) for providing

access to the enterprise applications used in our case study.

The findings and opinions expressed in this paper are those

of the authors and do not necessarily represent or reflect

those of RIM and/or its subsidiaries and affiliates.

Moreover, our results do not in any way reflect the quality

of RIM’s software products.

REFERENCES

[1] Beizer. B., “Software System Testing and Quality Assurance”’ Van

Nostrand Reinhold, March 1984.

[2] Avritzer. A., Larson. B., “Load testing software using deterministic
state testing”, In Proceedings of the ACM SIGSOFT international
symposium on Software, 1993.

[3] Jiang, Z. M., Hassan, A. E., Hamann, G., Flora, P., Automated
Performance Analysis of Load Tests. In Proceedings of the 25th IEEE
International Conference on Software Maintenance (ICSM) 2009,
Edmonton, Canada, September 20-26, 2009.

[4] Reynolds, P., Killian, C., Wiener, J. L., Mogul, J. C., Shah, M. A.,
and Vahdat, A. 2006. Pip: detecting the unexpected in distributed
systems. In Proceedings of the 3rd Conference on Networked Systems

Design & Implementation - Volume 3 (San Jose, CA, May 08 - 10,
2006). USENIX Association, Berkeley, CA, 9-9

[5] M, Jiang., Munawar, M.A., Reidemeister, T.; Ward, P.A.S.,
"Automatic fault detection and diagnosis in complex software
systems by information-theoretic monitoring," Dependable Systems &

Networks, 2009. DSN '09. IEEE/IFIP International Conference on ,
vol., no., pp.285-294, June 29 2009-July 2 2009

[6] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira. Tracking probabilistic
correlation of monitoring data for fault detection in complex systems.
In DSN, pages 259–268, 2006.

[7] G. Jiang, H. Chen, and K. Yoshihira. Modeling and tracking of
transaction flow dynamics for fault detection in complex systems.
IEEE Trans. on Dependable and Secure Computing, 3(4):312–326,
2006.

[8] M. A. Munawar and P. A. Ward. Adaptive monitoring in enterprise
software systems. In SysML, June 2006.

[9] Jiang, M., Munawar, M. A., Reidemeister, T., and Ward, P. A. 2008.
Information-theoretic modeling for tracking the health of complex
software systems. In Proceedings of the 2008 Conference of the

Center For Advanced Studies on Collaborative Research: Meeting of

Minds (Ontario, Canada, October 27 - 30, 2008). CASCON '08.
ACM, New York, NY, 236-247

[10] Thakkar, D., Hassan, A. E., Hamann, G., and Flora, P. 2008. A
framework for measurement based performance modeling. In
Proceedings of the 7th international Workshop on Software and
Performance (Princeton, NJ, USA, June 23 - 26, 2008). WOSP '08.
ACM, New York, NY, 55-66.

[11] Malik, H.; Chowdhury, I.; Hsiao-Ming Tsou; Zhen Ming Jiang;
Hassan, A.E., "Understanding the rationale for updating a function’s
comment," Software Maintenance, 2008. ICSM 2008. IEEE

International Conference on , vol., no., pp.167-176, Sept. 28 2008-
Oct. 4 2008

[12] Jolliffe IT., “Principal Component Analysis”, Second Edition. New
York, Springer-Verlag; (Springer Series in Statistics), 2002.

[13] Ringberg, H., Soule, A., Rexford, J., Diot, C., “Sensitivity of PCA for
traffic anomaly detection”, In ACM SIGMETRICS,San Diego, CA,
USA, 2007.

[14] Malik, H., Jiang, Z. M., Bram, A, Hassan, A. E., “Automatic
Comparison of Load Tests to Support the Performance Analysis of
Large Enterpirse Systems”, The European Conference on Software
Maintenance and Reengineering, CSMR 2010, Mar 15-18, In press.

[15] Sandeep, S. Ratna; Swapna, M.; Niranjan, Thirumale; Susarla, Sai &
Nandi, Siddhartha: CLUEBOX: A Performance Log Analyzer for
Automated Troubleshooting. USENIX Association (2008) .

[16] Xie, T., Marinov, D., and Notkin, D. 2004. Rostra: A Framework for
Detecting Redundant Object-Oriented Unit Tests. In Proceedings of

the 19th IEEE international Conference on Automated Software

Engineering (September 20 - 24, 2004). Automated Software
Engineering. IEEE Computer Society, Washington, DC, 196-205.

[17] Rothermel, G. and Harrold, M. J. 1997. A safe, efficient regression
test selection technique. ACM Trans. Softw. Eng. Methodol. 6, 2 (Apr.
1997), 173-210.

[18] Jain R. 1992. The art of computer systems performance analysis. John
Wiley.

[19] Jolliffe IT., “Principal Component Analysis”, Second Edition. New
York, Springer-Verlag; (Springer Series in Statistics), 2002.

[20] M.W. Knop, J.M. Schopf and P.A. Dinda, “Windows performance
monitoring and data reduction using watch tower”, Workshop on Self-
Healing, Adaptive and self-MANaged Systems (SHAMAN), 2002.

[21] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating instrumentation data to system states: A building block
for automated diagnosis and control. In Proc. 6th USENIX OSDI,San
Francisco, CA, Dec. 2004.

[22] Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., and Fox,
A. 2005. Capturing, indexing, clustering, and retrieving system
history. In Proceedings of the Twentieth ACM Symposium on

Operating Systems Principles (Brighton, United Kingdom, October
23 - 26, 2005). SOSP '05. ACM, New York, NY, 105-118

[23] Rosner B., Fundamentals of Biostatistics, 4th Edition, Duxbury Press,
Belmont, California, USA, 1995.

[24] Huck, K.A. and Malony, A.D., "PerfExplorer: A Performance Data
Mining Framework For Large-Scale Parallel Computing,"
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005
Conference, vol., no., pp. 41-41, 2005.

[25] A. Brown. and D. Patterson., An Active Approach to Characterizing
Dynamic Dependencies for Problem Determination in a Distributed
Environment. In Seventh IFIP/IEEE International Symposium on
Integrated Network Management, Seattle, WA, May 2001.

[26] J. Choi, M. Choi, and S. Lee. An Alarm Correlation and Fault
Identification Scheme Based on OSI Managed Object Classes. In

IEEE International Conference on Communications, Vancouver, BC,
Canada, 1999.

[27] B. Gruschke. A New Approach for Event Correlation basedon
Dependency Graphs. In 5th Workshop of the OpenView University
Association: OVUA’98, Rennes, France, April 1998.

[28] A. Yemini and S. Kliger. High Speed and Robust Event Correlation.
IEEE Communication Magazine, 34(5):82–90, May 1996.

[29] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modelling. In OSDI, 2004.

[30] Chen, M.Y.; Kiciman, E.; Fratkin, E.; Fox, A.; Brewer, E., "Pinpoint:
problem determination in large, dynamic Internet services,"
Dependable Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on , vol., no., pp. 595-604, 2002

[31] Stress Tool: http://www.oldskool.org/pc/throttle, Downloaded:
December 2009.

[32] Malik, H. Hassan, A.E., "Supporting software evolution using
adaptive change propagation heuristics," Software Maintenance,

2008. ICSM 2008. IEEE International Conference on , vol., no.,
pp.177-186, Sept. 28 2008-Oct. 4 2008

[33] Hassan, A. E. and Holt, R. C. 2004. Predicting Change Propagation in
Software Systems. In Proceedings of the 20th IEEE international
Conference on Software Maintenance (September 11 - 14, 2004).
ICSM. IEEE Computer Society, Washington, DC, 284-293.

