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ABSTRACT
Systems software uses conditional compilation to manage cross-
cutting concerns in a very fine-grained and efficient way, but at
the expense of tangled and scattered conditional code. Refactor-
ing of conditional compilation into aspects gets rid of these issues,
but it is not clear yet for which patterns of conditional compila-
tion aspects make sense and whether or not current aspect tech-
nology is able to express these patterns. To investigate these two
problems, this paper presents a graphical “preprocessor blueprint”
model which offers a queryable representation of the syntactical
interaction of conditional compilation and the source code. A case
study on the Parrot VM shows that preprocessor blueprints are able
to express and query for the four commonly known patterns of con-
ditional compilation usage, and that they allow to discover seven
additional important patterns. By correlating each pattern’s poten-
tial for refactoring into advice and each pattern’s evolution of the
number of occurrences, we show that refactoring into advice in the
Parrot VM is a good alternative for three of the eleven patterns,
whereas for the other patterns trade-offs have to be considered be-
tween robustness and fine-grainedness of the advice.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Aspect-oriented programming;
D.2.7 [Distribution, Maintenance, and Enhancement]: Restruc-
turing, reverse engineering, and reengineering; D.3.4 [Processors]:
Preprocessors

General Terms
Documentation, Experimentation, Measurement

1. INTRODUCTION
Systems software like operating systems, compilers, virtual ma-

chines, etc. is typically developed in C or C++, and combines heavy
C preprocessor usage with complex build system trickery to handle
configuration [34]. Conditional compilation and preprocessor flag
primitives are mixed into the source code to tailor the software to
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different platforms and to enable sophisticated selection of features.
This makes these systems hard to understand and maintain [14, 32].

The C preprocessor just manipulates text, and ignores C’s syn-
tax rules. Ernst et al. [12] have measured that on average 4% of
all lines of source code contains conditional compilation directives
which together control 37% of the source code, especially for deal-
ing with program portability. A considerable part of the source
code is coupled directly with the build system for the purpose of
configuration, and, in addition, the preprocessed program can be
one of a multitude of C programs. Hence, the C preprocessor is an
important source of errors and of confusion [14, 32]. Nevertheless,
every C and even C++ [27] programmer has to understand how the
C preprocessor interacts with a system [14].

Many researchers [2, 26, 30, 31] propose to replace conditional
compilation with aspects (AOP) [20], as a conditional region typ-
ically corresponds to a scattered and tangled implementation of a
crosscutting concern like debugging, tracing, platform-dependent
logic, etc. Refactoring such a region into explicit advice with the
region’s condition as the pointcut promises a more semantic and
better maintainable description of the intent of the conditional re-
gions [16], as it makes the base code independent from the pre-
processor and the build system. A conditional region at the start
of a procedure body could e.g. be refactored into before-advice
on the procedure’s execution join point. As the build configuration
is statically known, the aspect weaver can make the woven code
as efficient as the preprocessed code. However, it is not clear yet
whether AOP’s promise of improvement holds for all patterns of
conditional compilation usage, and if so, whether aspect languages
can express these patterns.

There are four patterns of conditional compilation commonly
found in literature [2, 12, 27, 30], but these especially cover straight-
forward use cases. To be able to express other important patterns
which could benefit from refactoring into advice and to check for
their relevance by finding all their occurrences, this paper derives
three requirements for a queryable model of the interaction of source
code and conditional compilation, and proposes a realisation of this
model, named “preprocessor blueprint”. This models how condi-
tional compilation and base constructs are nested and ordered rel-
ative to each other within a given file. In addition, it provides a
declarative means to specify blueprint patterns of conditional com-
pilation usage and to find all occurrences of these patterns.

This paper applies preprocessor blueprints to find out whether or
not the refactoring of conditional compilation patterns into advice
is technically feasible, independent from the semantics [12, 22] or
purpose [16] of the conditional code. Blueprint patterns are used
to express the four commonly found patterns of conditional com-
pilation [2, 12, 27, 30], and to analyse the blueprint model of a
representative piece of systems software, i.e. the Parrot VM (vir-



tual machine) [28], for seven additional patterns. For each pattern,
the possible strategies for refactoring into advice are discussed and
the number of its occurrences in each Parrot VM release is calcu-
lated. This information determines which patterns in the Parrot VM
are the most important and which ones are only temporarily used.
We have found that three of the eleven identified blueprint patterns
directly benefit from refactoring into advice. For the other patterns,
there are important trade-offs to consider. Conditional compilation
often is the best implementation strategy.

This paper makes the following contributions:
• Three requirements for a model of the syntactical interaction

of conditional compilation and the source code are derived
from the four known patterns of conditional compilation, and
from the join point models of aspect languages for C.
• The preprocessor blueprint model realises these three require-

ments, and we show how declarative patterns of conditional
compilation usage can be expressed and queried with it.
• To validate the model’s ability to determine the potential of

refactoring conditional compilation into advice, all releases
of the Parrot VM are queried for the four known patterns, and
seven additional patterns are identified. For each pattern, the
potential for refactoring into advice is analysed.
• The evolution of the distribution of the number of occur-

rences of the eleven patterns is investigated throughout the
Parrot VM release history. This provides insight into the im-
portance of each pattern and their stability over time. With
this information, the potential for refactoring conditional com-
pilation into advice is determined for the Parrot VM.

Section 2 first gives the necessary background on the C prepro-
cessor. Then, Section 3 presents the four commonly known patterns
of conditional compilation, and analyses how they can be refac-
tored into advice. From this, three requirements for a model of
conditional compilation usage are derived (Section 4.1). Preproces-
sor blueprints realise these three requirements and can be queried
declaratively (Section 4.2). In Section 5, blueprints are applied to
the Parrot VM to validate their ability to identify additional patterns
of conditional compilation usage. For each such new pattern, we
analyse whether or not it can be refactored into advice. The evolu-
tion of the number of occurrences of the eleven discussed patterns
is investigated in Section 6 to determine the impact and nature of
each pattern in the Parrot VM. Finally, our results are compared to
related work (Section 7), future work is discussed (Section 8) and
the findings of this paper are summarised (Section 9).

2. THE C PREPROCESSOR
The C preprocessor is a text processing tool that complements

the C compiler to resolve many shortcomings of C [19] and even of
C++ [27]. The three major constructs it provides, are [12]:
#include textual file inclusion
#define/#undef macro or constant (un)definition
#ifdef conditional compilation

Developers typically use file inclusion to separate declarations
from the implementation modules. A C macro is a syntactic sub-
stitution mechanism for defining syntactic sugar, inline functions,
constants, etc. Each macro occurrence is expanded into its value
by the C preprocessor. A degenerate macro which corresponds to
a constant or is only known to be (un)defined is called a “prepro-
cessor flag” or “constant”, and is used in the logical condition of
a conditional compilation region. Such a region encloses source
code lines which are only compiled if the region’s condition is sat-
isfied. Figure 3 shows a C code example with a conditional region
on lines 2–4. If the THREAD_DEBUG flag is defined, the preproces-
sor retains the code on line 3 and removes lines 2 and 4. Otherwise,

lines 2–4 all disappear. The three major preprocessor constructs are
the primary mechanism for a build system to control the variability
points in C/C++ source code [1, 34].

There exists a clear link between conditional compilation and as-
pects. The THREAD_DEBUG condition on line 2 of Figure 3 e.g.
can be interpreted as a pointcut, the conditional code on line 3 as
advice, and the physical position of the conditional region (i.e. the
start of the pt_transfer_sub procedure body) as the join point
shadow1 [18] at which the advice should match. The major differ-
ence with advice is that a conditional region’s condition is statically
evaluated by the C preprocessor, whereas aspects conceptually are
woven at run-time. However, if aspect weavers statically exploit
the known preprocessor flags, aspects are as efficient as conditional
compilation [1]. Next, we analyse how four commonly found pat-
terns of conditional compilation can be refactored into advice.

3. WELL-KNOWN PATTERNS OF CONDI-
TIONAL COMPILATION

This section presents the four patterns of conditional compilation
which are commonly known [2, 26, 30, 31], with two goals in mind.
First, we want to analyse whether or not they can be refactored into
advice. Second, Section 4.1 derives requirements from them for
a model of syntactical interaction between conditional compilation
and the base code, which can be queried to detect interesting inter-
actions from the perspective of refactoring into aspects.

The four known patterns of conditional compilation usage can
be categorised as “Coarse-grained Conditional Compilation” (Sec-
tion 3.1) or as “Fine-grained Conditional Compilation” (Section 3.2).
For most of them, an example code snippet is given and the poten-
tial for refactoring into advice is discussed. The bold entries in Ta-
ble 1 summarise these patterns’ alternative AOP implementations.

3.1 Coarse-grained Conditional Compilation
Coarse-grained Conditional Compilation patterns make a whole

definition conditional, similar to structural crosscutting concerns.

3.1.1 Multiple Inclusion Protection
Multiple Inclusion Protection is a well-known idiom [12, 27]

in C/C++ header files to ensure that the preprocessor textually in-
cludes a header file at most once in order to avoid duplicate decla-
rations and definitions. The first time the header file is included,
a particular preprocessor flag is defined. From the second time
on, the region’s condition fails because of this defined preprocessor
flag, and hence the region is not included anymore.

This pattern represents a crosscutting meta-concern, i.e. a sup-
port idiom for the preprocessor [19]. It cannot be implemented con-
veniently with source code-level aspects. Instead, the build system
could automatically transform each header file before compilation.
However, this means that the header files are only portable the build
system is ported as well. Trusting on the intelligence of new com-
pilers causes similar problems. Hence, conditional compilation is
the only portable implementation of Multiple Inclusion Protection.

3.1.2 Conditional Definition
The pattern in Figure 1 captures the conditional definition of

type, procedure and macro definitions [12, 30]. It is often used to
decide between alternative versions of a type, procedure or macro.
If a developer does not want debugging output, the trace macro ex-

1For each run-time join point, a corresponding construct in the source code exists
which is executed by the join point at run-time. E.g., an actual procedure call forms
the shadow of a call join point. Shadows are used by compile-time weavers to
statically weave aspects.



1 #ifdef NDEBUG
2 # define TRACE_FM(i, c, m, sub)
3 #else
4 static void
5 debug_trace_find_meth(. . .){
6 . . .
7 }
8 # define TRACE_FM(i, c, m, sub) \
9 debug_trace_find_meth(i, c, m, sub)

10 #endif

Figure 1: Conditional Definition in src/objects.c.

pands to nothing (line 2 of Figure 1). Otherwise (lines 8–9), the
macro calls the procedure on lines 4–7.

The easiest way to decouple the base code from this pattern is
to refactor the conditionally defined code into a separate base code
module [32], and to translate the region’s condition into build sys-
tem logic. However, developers need to have a good understand-
ing of how the build system works and how it interacts with the
source code. Worse, with increasing nesting of conditional regions,
the number of refactored modules increases combinatorially and
the correlation between conditional branches becomes blurred [24,
31]. Hence, refactoring into modules is not always viable.

A second technique uses pointcuts to select whether or not the
weaver should include a type or procedure definition, instead of
making this the responsibility of the build system. Although such
quantified inter-type declaration2 (ITD) exists [21, 30], it is not a
common feature. In addition, there should be pointcut primitives to
access the build configuration [1, 30], i.e. the defined preprocessor
constants and selected source code modules.

A third technique, which does not work for data types, is to ex-
tract the body of a procedure into advice such that around-advice
can redefine the empty procedure based on the build configuration.
However, using a behavioural crosscutting mechanism for a struc-
tural crosscutting concern requires extra boilerplating, and might
introduce run-time and binary size overhead. Fortunately, the con-
ditions in the advice’s pointcut only depend on the static build con-
figuration. To summarise, quantified ITD is a suitable AOP im-
plementation strategy for Conditional Definition, but the others are
either not feasible, or only feasible in certain situations.

3.2 Fine-grained Conditional Compilation
The second class of conditional compilation considers intra-procedure

and intra-type patterns.

3.2.1 Conditional Signature

1 #if (defined __STDC__ || . . .)
2 static int YYID(int i)
3 #else
4 static int YYID(i)
5 int i;
6 #endif
7 {
8 return i;
9 }

Figure 2: Conditional Signature in compilers/.../pirparser.c.

The pattern in Figure 2 selects between an ANSI and K&R [19]
procedure signature [12]. Just like Multiple Inclusion Protection
(Section 3.1.1), Conditional Signature is a crosscutting meta-concern.
It tackles variability across compilers.
2Inter-type declaration adds fields and methods to data structures or classes.

A possible implementation technique is to make the build system
transform each procedure signature before compilation, but this
again causes portability problems. Contrary to Multiple Inclusion
Protection, the variants of a procedure definition can be refactored
into separate modules or introduced by quantified ITD, but these
approaches duplicate source code. Conditional compilation is the
best implementation strategy for Conditional Signature.

3.2.2 Simple Conditional Compilation

1 PMC* pt_transfer_sub(. . .){
2 #if THREAD_DEBUG
3 PIO_eprintf(s,. . .);
4 #endif
5 return make_local_copy(d, s, sub);
6 }

Figure 3: Simple Conditional Compilation in src/thread.c.

1 PMC* pt_transfer_sub(Parrot_Interp d,
2 Parrot_Interp s,PMC *sub){
3 return make_local_copy(d, s, sub);
4 }
5

6 void debug_transfer(Parrot_Interp S, PMC* Sub)
7 before Jp:
8 execution(Jp,‘‘pt_transfer_sub’’)
9 && args(Jp,[_,S,Sub])

10 && thread_debug(_){
11 PIO_eprintf(S, "copying over subroutine [%Ss]\n",
12 Parrot_full_sub_name(S, Sub));
13 }

Figure 4: Aspect implementation of Figure 3.

Simple Conditional Compilation contains one conditional block
at the start and/or end of a procedure or data type. Reynolds et
al. [30] found that 45% of configuration-dependent code in pro-
cedure bodies (24% of all conditional code) and 52% of struct
fields definitions adhere to this pattern. Figure 3 gives an example
of a conditional region at the beginning of a procedure body.

Intuitively, Simple Conditional Compilation can be replaced by
before-, after- or around-advice on the execution of the
procedure, or quantified ITD [30]. Figure 4 shows a before-
advice for Figure 3 in the Aspicere AOP language for C [1]. The
conditional code has moved from the base code (lines 1–4) to the
advice body on lines 11–12. The advice’s pointcut (lines 8–10)
is expressed in terms of the build configuration (thread_debug
on line 10) of Figure 3 (THREAD_DEBUG on line 2), which is com-
municated to Aspicere’s weaver right before weaving starts. Hence,
the build system is now coupled to the advice instead of to the base
code. As the build configuration is completely known statically, the
weaver can eliminate run-time checks in the woven code.

An important issue with the refactoring into advice is that the
state used by the non-conditional part of a procedure body (d, s
and sub on line 5 of Figure 3) should be accessible to the advice
as join point context. This is not always easy, as it might comprise
local variables. A second important issue is that the precedence of
the refactored advices or the introduction of struct fields is hard
to get right in case of multiple conditional regions or nesting. The
original preprocessor code can deal better with this. Hence, there is
no clear-cut AOP implementation technique for Simple Conditional
Compilation. This wraps up the analysis of the four commonly
known patterns of conditional compilation.



4. PREPROCESSOR BLUEPRINTS
This section derives three requirements for a model of syntac-

tical patterns of conditional compilation usage, and presents the
design (Section 4.2) and implementation (Section 4.3) of prepro-
cessor blueprints, which realise these requirements. Preprocessor
blueprints provide a declarative, graphical way to document and
query conditional compilation usage. As such, this model supports
the analysis of refactoring conditional compilation into aspects.

4.1 Requirements
To analyse the syntactical interaction of conditional compilation

and normal source code, a relatively simple model of conditional
compilation suffices. Existing models of preprocessor usage are too
complex because they try to encompass all preprocessor constructs
in whichever way they interact with a program. This is necessary
for refactoring environments [5, 13, 17, 27, 37] or compilers [36],
but this paper only focuses on conditional compilation. Moreover,
some models treat the normal C code as text [13, 36]. This is un-
desirable as well, because we are interested in the specific interac-
tion of conditional compilation with procedure and type definitions,
procedure calls, global variable access, etc., as the patterns in Sec-
tion 3 have shown. These observations suggest that a simple model
of conditional compilation and source code suffices.

Furthermore, it does not make sense to spend excessive atten-
tion to “undisciplined” preprocessor usage which breaks C’s syn-
tax rules, as they intuitively are less likely to be refactorable into
advice, and they do not occur that often in practice either. Ernst et
al. [12] e.g. point out that roughly two thirds of preprocessor usage
corresponds to simple, disciplined patterns, Vittek [37] notes that
“usually #if directives do not break the structure of source code”
and Baxter et al. [5] even claim that “The reaction of most staff to
this kind of trick is first, horror, and then second, to insist on re-
moving the trick from the source”. Hence, this suggests that too
fine-grained interaction patterns can be disregarded by our model.

Based on these observations and the patterns of Section 3, three
requirements for a model of the syntactical patterns of conditional
compilation usage were derived and are discussed below:

1. The model should focus on conditional regions, procedure
and data definitions, procedure calls and global variable ac-
cess. The uninteresting (“opaque”) statements should not
be interpretable individually, but instead coalesced into an
“opaque” sequence of program statements.

2. The model should explicitly depict the nesting of model el-
ements in conditional regions or procedure/data definitions,
and for each nesting relation it should show how the nested
model elements are ordered relative to each other.

3. The model should be complemented by a declarative pattern
matching facility to find all occurrences of a particular con-
ditional compilation usage pattern.

4.1.1 Focus on Interesting Statements
Depending on the join point model of an aspect language, some

program statements are more interesting than others. Aspect lan-
guages [1] for C/C++ fancy procedure call and execution join points,
global variable access join points, ITD of data fields and definitions,
and ITD of procedure definitions. The shadows of these join points
correspond to procedure and type definitions, files, procedure calls
and global variable references. A language with statement-level
join points [11] would also be interested in assignments, pointer
dereferences or even macro expansions. However, no aspect lan-
guage for C/C++ supports this yet, the patterns of Section 3 do not
need this, and robust pointcuts are hard to define. Hence, our model
should only focus on the few interesting statements.

Still, the uninteresting program statements must not be dismissed.
As these do not have a corresponding join point, they make it hard
to write a robust pointcut for conditional regions. Hence, the model
should record the presence of these seemingly uninteresting (“opaque”)
sequences of statements and their position relative to the non-opaque
statements. Any uninteresting AST node should be replaced by an
opaque statement, and subsequent opaque statements should be co-
alesced. This is similar to Krone et al. [22], who abstract source
code statements into blocks of consecutive lines of code.

To summarise, a model of the syntactical interaction of condi-
tional compilation and the source code should focus on the program
statements which correspond to join points in the used aspect lan-
guage, and keep track of the presence of uninteresting statements.

4.1.2 Nesting and Ordering of Model Elements
The second requirement emphasises nesting and ordering as the

primary relations between the model’s elements. This follows from
the concept of conditional compilation as well as from the pat-
terns in Section 3. First, a conditional region is either enclosed
completely by another conditional region, or not at all (“inclu-
sion dependence” [12]). Second, the main difference between the
two coarse-grained (Section 3.1) and fine-grained patterns (Sec-
tion 5.3.5) is that the former enclose high-level program statements,
whereas the latter are nested within a procedure body. Hence, nest-
ing is a defining characteristic of conditional compilation.

To reason about patterns of conditional compilation usage, the
ordering of the model elements relative to each other is crucial.
For Simple Conditional Compilation (Section 3.2.2) e.g., it does
matter whether a conditional region appears at the start or end of
a definition, or is preceded by an opaque piece of code. Hence,
nesting and ordering should both be represented.

4.1.3 Declarative Pattern Matching Facility
To determine the impact of a pattern of conditional compilation,

a declarative pattern matching facility is needed. Most tools hard-
code a set of patterns [30], or only provide an imperative way to
specify and detect occurrences of patterns. PCp3 [4, 12] e.g. is an
extensible C preprocessor based on callbacks. Occurrences of indi-
vidual preprocessor constructs are easy to handle, but detection of
sequences (second requirement) requires the developer to manually
implement a state machine. In addition, knowledge about Pcp3’s
internals is needed to write the callbacks. A declarative approach
is able to circumvent these limitations.

Mennie et al. [27] do have a fact base representation of the source
code, but do not use it to find the occurrences of patterns of con-
ditional compilation usage. As such, they are limited to simple
patterns of conditional compilation usage (e.g. regions with “1”
or “0” as condition). A declarative querying approach enables to
express and query for more complex interactions.

4.2 Preprocessor Blueprint Model
This section presents the preprocessor blueprint model, which

realises the three requirements of Section 4.1. To illustrate the ex-
pressiveness of the model, we use it to express the four patterns
discussed in Section 3. Afterwards, the next section shows how
the preprocessor blueprints enable to express and query for seven
additional, more complex patterns of conditional compilation.

4.2.1 Focus on Interesting statements
Figure 5 shows example code adapted from the Parrot VM and

the corresponding blueprint model. This is a tree-like graph with
six different kinds of nodes and two kinds of edges.

As dictated by the first requirement, preprocessor blueprints have



1 void Parrot_setenv(. . . name,. . . value){
2 #ifdef SETENV
3 my_setenv(name, value, 1);
4 #else
5 int name_len=strlen(name);
6 int val_len=strlen(value);
7 char* envs=glob_env;
8 if(envs==NULL){
9 return;

10 }
11 strcpy(envs,name);
12 strcpy(envs+name_len,"=");
13 strcpy(envs+name_len + 1,value);
14 putenv(envs);
15 #endif
16 }
17

18 #ifdef LINUX
19 extern int Parrot_signbit(double x){
20 union{
21 double d;
22 int i[2];
23 } u;
24 u.d = x;
25 # ifdef BIG
26 return u.i[0] < 0;
27 # else
28 return u.i[1] < 0;
29 # endif
30 }
31 # endif

env.c:1:16

env.c:53:67

strlen

LINUX env.c:19:30

SET
ENV

strcpy

putenv

strlen

strcpy

strcpy

u

BIG

function 
definition

cond. 
region

call
opaquedata

def. global var.
access

+

-

+

+

-

-

+

glob.c:14

LEGEND

Figure 5: Beginning of an example source file (“env.c”) adapted from Parrot VM 0.6.2 (a), and its corresponding blueprint (b).

nodes for procedure definitions (rectangle), data definitions (tri-
angle), procedure calls (ellipse), global variable access (hexagon)
and conditional regions (diamond). Opaque code fragments are
abstracted into a black dot. Procedure and data definitions are la-
beled by the file they are part of and the start and end line numbers.
Procedure calls and global variable accesses are labeled by the pro-
cedure definition or global variable they are referring to, or just by
the name of a system procedure or of a function pointer variable.
Conditional nodes are labeled with their condition.

4.2.2 Nesting and Ordering of Model Elements
The two kinds of edges implement nesting and ordering between

a blueprint’s nodes. Procedure and data definitions, and conditional
regions can be the source node of a (plain) nesting edge, but never
a leaf node. Procedure calls, global variable access and opaque
nodes can only be leaf nodes. A conditional node has at most two
outgoing nesting edges. An edge starting from the top of such a
node represents a positive conditional check, i.e. #ifdef or the
#else-clause of an #ifndef condition, whereas an edge from
the bottom is just the opposite. Nested regions and regions with
multiple branches are modeled by nesting diamond nodes. Nesting
edges provide a crisp overview of nesting in a blueprint.

The dashed lines model the ordering between sibling model ele-
ments. The upper elements lexically appear first to make the order-
ing of elements relative to each other intuitively clear.

4.2.3 Declarative Pattern Matching Facility
The preprocessor blueprint pattern matching facility is best de-

scribed by means of examples. Figure 6a, Figure 6b, Figure 6e and

Figure 6f contain declarative patterns that correspond to the four
patterns of conditional compilation usage of Section 3. These pat-
terns contain the same kinds of nodes as the preprocessor blueprint
model, enhanced by those shown in the legend of Figure 6.

The additional nodes are illustrated on Figure 6a and Figure 6b.
The former matches a conditional region at the file-level which in-
cludes zero or more model elements (star node), whereas the latter
picks out regions which enclose at least one procedure or data def-
inition (trapeze node). The pattern of Figure 6a is said to be in
“absolute mode”, because it has to match exactly with the whole
preprocessor blueprint (one source file), similar to the use of ˆ and
$ in regular expressions. On the other hand, the pattern of Fig-
ure 6b can match anywhere inside a blueprint, i.e. it is in “relative
mode”. Graphically, the outer left node of a relative mode pattern
like Figure 6b has a dashed edge through it, whereas the same node
in an absolute mode pattern (just Figure 6a) does not.

A nesting edge which starts from the middle of a conditional
node matches any conditional check, whether it is positive or nega-
tive. Because patterns frequently have to check for the occurrence
of either a procedure or data definition, there is a dedicated trapeze
node for this. Similarly, a rounded rectangle denotes either a pro-
cedure call or global variable access.

Figure 6e and Figure 6f show two more complex, fine-grained
patterns. The former selects those patterns where code of a par-
ticular procedure initially is nested inside two branches of a con-
ditional compilation, and later appears independently again. This
corresponds to a Conditional Signature pattern (Section 3.2.1), i.e.
only the procedure’s signature depends on the build configuration.
The procedure definition nodes are labeled identically (p) to en-



(a) Multiple Inclusion Pro-
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(b) Conditional Defini-
tion
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(c) Partitioned

1

+
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(e) Conditional Signa-
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(i) Scattered
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>0

(k) General Fine-grained

Figure 6: Declarative blueprint patterns for all discussed patterns of conditional compilation usage.

force that all of them correspond to parts of the same procedure.
Figure 6f selects definitions with as first construct a conditional re-
gion. This is the before case of Simple Conditional Compilation.

As already mentioned, the scope of pattern matching in a blueprint
model is determined by the pattern’s mode (relative or absolute). A
pattern in relative mode is not only matched on the top-level of a
file, but also at all lower (nested) levels. This is necessary to de-
tect combinations of patterns, e.g. a Conditional Definition in a file
with Multiple Inclusion Protection, or Simple Conditional Compi-
lation inside a Conditional Definition. The influence of nesting on
refactoring into advice is that the advice’s pointcut is conjuncted
with an extra build configuration-dependent check.

To summarise, preprocessor blueprints can declaratively express
Section 3’s patterns of conditional compilation usage. After a dis-

cussion of a prototype implementation, Section 5 shows additional
patterns of conditional compilation we discovered in a case study.

4.3 Implementation
We built a prototype implementation (“R3V3RS3”3) for the blueprint

model and pattern matching facility, based on a robust C parser
and regular expression matching. The source code first is pretty-
printed using “uncrustify” [35] and stripped from comments and
blank lines by “cloc” [8], in order to improve the results of later
phases. The pretty-printed version is then parsed by Fetch [15].
This is a reverse-engineering tool chain based on robust C/C++ fact
extraction [10] and a lightweight parser. Its output is a graph in the
Rigi Standard Format (RSF) that describes the program AST and

3Pronounced as “reverse”.



preprocessor usage. We use Prolog and Perl scripts to generate a
textual representation of preprocessor blueprints from the RSF file.

The textual representation of the preprocessor blueprints can be
queried for occurrences of specific patterns of conditional compi-
lation via Perl regular expressions which are generated from the
graphical blueprint patterns. R3V3RS3 finds all occurrences of a
pattern in a preprocessor blueprint, and removes these patterns from
the blueprint if desired. Patterns in relative mode are applied to all
levels of nesting in the blueprint. R3V3RS3 gives as output the
number of occurrences of each pattern as well as the filtered pre-
processor blueprint. The next section uses R3V3RS3 to discover
additional patterns of conditional compilation usage.

5. PARROT VM CASE STUDY
To validate the preprocessor blueprints’ ability to express and

query for all occurrences of a conditional compilation pattern, we
have applied R3V3RS3 to the Parrot VM [28]. This is a relatively
young, open source VM, with a well thought-out development pro-
cess [29]. Its preprocessor usage is based on best practices, so our
measurements correspond to a best-case scenario from the perspec-
tive of aspect refactoring, i.e. an upper bound on the potential for
refactoring into advice. Experiments on systems with excessive
preprocessor (ab)use is considered future work. The next section
presents the case study approach, followed by a discussion of seven
new patterns of conditional compilation usage discovered with the
preprocessor blueprint model.

5.1 Approach
We have studied the Parrot VM in two steps. First, the prepro-

cessor blueprints for the last known version of the Parrot VM were
analysed to discover the number of occurrences of the four pat-
terns of syntactical interaction discussed in Section 3. We then
iteratively used R3V3RS3’s ability to filter occurrences of matched
patterns out of a blueprint in order to visually spot interesting pat-
terns in the remaining blueprint, specify them as a blueprint pattern
and re-apply R3V3RS3. For each pattern, possible implementa-
tion strategies were analysed. These are summarised in Table 1 and
explained in the next sections. By carefully choosing the order of
matching the patterns, we avoided that general patterns incidentally
would match more specific patterns. The newly identified patterns
are categorised similar to Section 3, whereas conditional compila-
tion usage which is either hard or not useful to refactor into advice
is grouped under “Ad Hoc Pattern”s (Section 5.4). In future pattern
mining efforts, the set of collected conditional compilation patterns
can be used to filter out known patterns in advance.

The second step in our approach analyses across all public re-
leases of the Parrot VM4 the evolution of the number of occur-
rences of the patterns detected in the first step for the last Parrot
VM version. This gives insight into the importance of the identi-
fied patterns of conditional compilation in practice as well as into
the stability of the patterns over time. If we combine the former
with the results of Table 1, this tells us whether or not the patterns
which are easy to refactor into advice are also the most important
ones in practice. The stability of the patterns over time teaches us
which patterns remain important over time and which ones are only
used temporarily. Those patterns are not important to refactor into
aspects. The next sections present the results of the first step in the
case study. Section 6 discusses the second step.

4We dropped the five versions between half of May, 2007 and half of December, 2007
because of technical issues.

5.2 Coarse-grained Conditional Compilation
In addition to the two patterns of Section 3.1, two additional pat-

terns of Coarse-grained Conditional Compilation were found.

5.2.1 Partitioned Conditional Compilation

1 . . . fetch_iv_le(INTVAL w){
2 #if !PARROT_BIGENDIAN
3 return w;
4 #else
5 # if INTVAL_SIZE == 4
6 return (w << 24) | ((w & 0xff00) << 8) |
7 ((w & 0xff0000) >> 8) | (w >> 24);
8 # else
9 INTVAL r;

10

11 r = w << 56;
12 . . .
13 return r;
14 # endif
15 #endif
16 }

Figure 7: Partitioned Conditional Compilation in src/byte-
order.c.

Partitioned Conditional Compilation encloses a procedure’s body
instead of its definition (Figure 7). Typically, there are two condi-
tional branches, but each of them may contain further nested re-
gions. A blueprint pattern for Partitioned Conditional Compilation
with two branches (the most common case) is shown on Figure 6c.

A similar refactoring approach can be used as for Conditional
Definition, with an important difference. Instead of deciding whether
or not a procedure definition should be compiled, the definition is
always included, but with a different body depending on the build
configuration. around-advice on an empty definition is a perfect
fit for this pattern. Because the build configuration is statically
known, the aspect weaver can optimise away any run-time over-
head. Alternatively, quantified ITD is possible, but this requires
a separate ITD construct for every branch in the procedure body.
Note that the Parrot VM contains a number of procedures with Par-
titioned Conditional Compilation that are almost identical, except
for the fact that the logical conditions are inverted. This is a perfect
case for advice which can be bound to multiple pointcuts.

5.2.2 Semi-partitioned Conditional Compilation
Semi-partitioned Conditional Compilation is similar to Partitioned

Conditional Compilation, except that the procedure body’s last line,
typically a return statement, is not conditional. This is expressed by
the pattern on Figure 6d. The lower star node is labeled with “1” to
enforce that there is only one final statement in the procedure body.
Although this statement could just as well be a nested conditional
region, we have identified that in practice all occurrences of this
pattern in the Parrot VM have only one statement at the end.

The unconditional final statement can be distributed over the
conditional blocks to enable the AOP solutions for Partitioned Con-
ditional Compilation, with the same benefits and problems. Alter-
natively, the conditional logic could be refactored into before-
advice. However, this requires that the state which is referenced by
the final statement can be accessed and manipulated by the before-
advice. This could be a local variable declared by the conditional
regions. It is not clear how the before-advices for each condi-
tional branch should access this state in a clean way.

To summarise, except for Multiple Inclusion Protection, the four
discussed patterns of Coarse-grained Conditional Compilation pat-
terns in principle can be refactored into build system-controlled



Table 1: Summary of the possible AOP refactorings of the four well-known (in bold) and seven newly identified patterns of conditional
compilation usage. A +/- means that the technique clearly works/fails, whereas other entries have trade-offs to be considered.
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source modules, quantified ITD and/or around/before-advice.
Each has its benefits and drawbacks, however, and conditional com-
pilation sometimes is the best implementation choice.

5.3 Fine-grained Conditional Compilation
We have found five additional patterns of Fine-Grained Condi-

tional Compilation on top of those of Section 3.2.

5.3.1 Simple Return

1 static opcode_t fetch_op_be_4(. . .){
2 . . .
3 #if PARROT_BIGENDIAN
4 # if OPCODE_T_SIZE == 8
5 return u.o >> 32;
6 # else
7 return u.o;
8 # endif
9 #else

10 # if OPCODE_T_SIZE == 8
11 return (opcode_t)(fetch_iv_le((INTVAL)u.o)
12 & 0xffffffff);
13 # else
14 return (opcode_t) fetch_iv_le((INTVAL)u.o);
15 # endif
16 #endif
17 }

Figure 8: Simple Return in src/packfile/pf_items.c.

Simple Return is the first special case of Simple Conditional
Compilation. It captures a nested conditional block at the end of
a procedure which controls the procedure’s return value (Figure 8).
The corresponding blueprint pattern on Figure 6g is slightly more
general, as it also matches Simple Return occurrences with only
two conditional branches instead of four.

To implement this pattern in advice, one branch has to be cho-
sen as the base code, whereas all other ones should be refactored
into advice. This approach breaks the symmetry and correlation

between the branches. Hence, understanding the code becomes
harder. Just as for Simple Conditional Compilation, the right state
should be accessible as join point context. An elegant, robust ad-
vice implementation of the Simple Return pattern is hard to achieve.

5.3.2 Simple Declaration

1 void* parrot_pic_opcode(PARROT_INTERP, INTVAL op){
2 const int core = interp->run_core;
3 #ifdef HAVE_COMPUTED_GOTO
4 op_lib_t *cg_lib;
5 #endif
6

7 if(core == PARROT_SWITCH_CORE ||
8 core == PARROT_SWITCH_JIT_CORE)
9 return (void*) op;

10 #ifdef HAVE_COMPUTED_GOTO
11 cg_lib = PARROT_CORE_CGP_OPLIB_INIT(1);
12 return ((void**)cg_lib->op_func_table)[op];
13 #else
14 return NULL;
15 #endif
16 }

Figure 9: Simple Declaration in src/pic.c.

This second special case of Simple Conditional Compilation cor-
responds to a conditional block at the end of a procedure, with de-
pendencies on local variables of a block earlier on in the procedure
body (Figure 9). This reduces to Simple Conditional Compilation
if the variables are only used inside the second block, as is the case
for Figure 9. Figure 6h expresses this pattern. The “c” label en-
forces that the two conditional blocks have the same condition.

The corresponding advice implementation in Figure 10 is an ex-
ample of a refactoring which introduces run-time overhead. Line 17
has to check for a null pointer at run-time in order to distinguish be-
tween the return statements on lines 6 and 8, when the incoming Op
argument of parrot_pic_opcode is not NULL. Refactoring of
the base application [26] is needed to enable a more efficient advice



1 void* parrot_pic_opcode(PARROT_INTERP, INTVAL op){
2 const int core = interp->run_core;
3

4 if(core == PARROT_SWITCH_CORE ||
5 core == PARROT_SWITCH_JIT_CORE)
6 return (void*) op;
7

8 return NULL;
9 }

10

11 void* computed_goto(INTVAL Op) after Jp
12 returning (void** Tmp):
13 execution(Jp,‘‘parrot_pic_opcode’’)
14 && args(Jp,[_,Op])
15 && have_computed_goto(_){
16 op_lib_t* cg_lib;
17 if(Op&&(!(*Tmp))){
18 cg_lib = PARROT_CORE_CGP_OPLIB_INIT(1);
19 *Tmp= ((void**)cg_lib->op_func_table)[Op];
20 }
21 }

Figure 10: Aspect implementation of Figure 9.

refactoring of the Simple Declaration pattern. Figure 9 shows that
the fine-grainedness and efficiency of the preprocessor sometimes
cannot be matched by alternative implementations.

5.3.3 Scattered Conditional Compilation

1 void Parrot_STM_waitlist_wait(Parrot_Interp interp){
2 struct waitlist_thread_data *thr;
3 thr = get_thread(interp);
4 LOCK(thr->signal_mutex);
5 #if WAITLIST_DEBUG
6 fprintf(stderr, "%p: got lock, waiting...\n",
7 interp);
8 #endif
9 while (!thr->signaled_p) {

10 pt_thread_wait_with(interp, &thr->signal_mutex);
11 #if WAITLIST_DEBUG
12 fprintf(stderr, "%p: woke up\n", interp);
13 #endif
14 }
15 UNLOCK(thr->signal_mutex);
16 #if WAITLIST_DEBUG
17 fprintf(stderr, "%p: done waiting.\n", interp);
18 #endif
19 }

Figure 11: Scattered Conditional Compilation in src/stm/wait-
list.c.

The Scattered Conditional Compilation pattern (Figure 11) ex-
presses that procedures within a file contain conditional blocks with
the same condition and highly similar code. These blocks are typ-
ically also scattered across multiple files, and hence should be an
ideal target for aspects. The blueprint pattern on Figure 6i looks for
scattered blocks in one file at a time by requiring that at least two
conditional regions with the same condition occur in one file. This
is weaker than enforcing that the code inside the conditional regions
is similar and that the pattern occurs across files, but in practice is a
good approximation. The pattern is applied as one of the last ones
to avoid incorrect matches of instances of more specific patterns.

There are a number of issues when trying to refactor Scattered
Conditional Compilation into advice. First, the conditional regions
are often attached to arbitrary statements, which are not necessarily

principled join points [26]. Second, Scattered Conditional Com-
pilation instances are quite heterogeneous (differences in strings,
variables, etc.), which complicates advice reuse [6]. Annotations in
the base code might be able to cover small changes between blocks,
but eventually aspect languages with generic advice are needed [1].

5.3.4 Invasive Conditional Compilation
This pattern is similar to Simple Conditional Compilation, but

captures conditional regions which appear in the middle of a proce-
dure body before, after or around a procedure call or global
variable access (rounded rectangle on Figure 6j). Invasive Condi-
tional Compilation can be modeled as traditional advice on call
join points. Invasive Conditional Compilation could be extended to
macro expansion join points, if the aspect language supports these.

5.3.5 General Fine-grained Conditional Compilation
In general, the preprocessor facilitates fine-grained (de)selection

of statements or even parts of tokens, such as the inclusion of case-
entries of a conditional switch structure, or conditional regions
at arbitrary spots within a procedure or data definition. Figure 6k
shows a pattern for this that consists of sequences of conditional
and unconditional C code. As this pattern is the most general one
we have defined, it is the final pattern to apply.

Because statement-level join points [11] are harder to quantify
and maintain in a robust fashion than the original conditional com-
pilation, only a subset of the General Fine-grained pattern is worth-
while to implement using aspects. This subset can be increased by
exposing additional call join points in the base program [26],
e.g. by refactoring the statement immediately before or after a
block into a procedure. However, as files often contain multiple
unique conditional blocks, aspectisation may result into many non-
reusable advices. Hence, there is no unique way to decouple the
base code from General Fine-grained Conditional Compilation.

5.4 Ad Hoc Patterns
The remaining occurrences of conditional compilation after ap-

plying the patterns of Figure 6 are ad hoc patterns like conditional
inclusion of procedure declarations and header files, or conditional
definitions of macros. Personal experience tells us that these are
highly specialised and irregular. As such, there is no robust alter-
native implementation for them, nor is there a simple pattern to
identify them. Fortunately, the second step of our case study shows
that their importance in the Parrot VM diminishes over time.

6. HISTORIC ANALYSIS OF PARROT VM
For the second step of the case study, the evolution of the number

of source code files of the Parrot VM was calculated using “SLOC-
Count” [38], and for each pattern the total number of matches was
recorded. Figure 12 shows how the number of files more than
doubled across the Parrot VM releases, whereas the percentage of
source files containing Ad Hoc patterns stays below five percent
and even drops to less than one percent. Finding out the actual rea-
sons for this decrease is future work, but it indicates that the eleven
patterns of Coarse- and Fine-grained Conditional Compilation ex-
plain the conditional compilation usage of more than ninety-nine
percent of the source code files. This is promising, as the instances
of these patterns can be found automatically with the R3V3RS3
infrastructure. In addition, Figure 12 confirms that the Parrot VM
uses conditional compilation in a disciplined way.

Figure 13 plots the average number of occurrences per file of
nine of the discussed patterns of conditional compilation. The Sim-
ple and Simple Return patterns remain more or less 0.1 and are
elided for clarity. The evolution of most patterns fluctuates, with
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Figure 12: The evolution of the number of files and the percent-
age of files containing Ad Hoc Patterns for the Parrot VM.

the Invasive and Scattering patterns losing, and Semi-partitioned
gaining importance. Conditional Definition is by far the most wide-
spread pattern in the Parrot VM, followed by Multiple Inclusion,
General Fine-grained (especially in procedures), Invasive, Parti-
tioned, Simple and Simple Return. The relatively high profile of
General Fine-grained (and Multiple Inclusion Protection) is bad
news for the refactoring of conditional compilation into aspects,
as it is hard to refactor into advice. This acknowledges the intuitive
idea that the preprocessor is typically used for tangled concerns
rather than scattered ones. Fortunately, Conditional Signature grad-
ually diminishes in importance. Conditional Definition, Simple,
Invasive and Partitioned conditional compilation can be refactored
into advice, and there are possibilities for General Fine-grained and
Simple Return as well, but under certain trade-offs (Table 1).

As we consider the Parrot VM to be an “optimal” case from
the perspective of conditional compilation usage, our findings sug-
gest that conditional compilation remains the preferred implemen-
tation technique for crosscutting concerns in C/C++ systems, de-
spite its problems. Verifying this claim on other systems first re-
quires finding all occurrences of the conditional compilation pat-
terns summarised in Table 1, followed by an analysis of the evolu-
tion of the number of pattern occurrences in a system to determine
whether that system would really benefit from a refactoring into
advice. Both activities are explicitly supported by the preprocessor
blueprint model, as this paper has shown.

7. RELATED WORK
This paper complements recent work on comparing conditional

compilation- and aspect-based software product lines [16]. Whereas
we consider the potential aspectisation of conditional compilation
on its own, i.e. independent from the particular application or pur-
pose of the conditional code, the cited work estimates the benefits
of refactoring in the specific context of product line features and
constraints. Similar remarks hold for related work in the areas of
understanding of preprocessor usage and refactoring of preproces-
sor code into aspects, which we discuss in the remainder of this
section. Note, however, that there are also quite some similarities
with the detection of design patterns (e.g. [3]).

7.1 Understanding Preprocessor Usage
Ernst et al. [12] and Krone et al. [22] categorise conditional re-

gions based on the semantics of the preprocessor symbols in their
condition. E.g., a region guarded by the DEBUG symbol is inter-
preted as a debugging region. The categorisation of Mennie et
al. [27] is not based on the meaning of the preprocessor symbols

in a region’s condition, but on the semantics of the conditional
patterns, like e.g. Multiple Inclusion Protection and Conditional
Definition. We instead focus on the syntactical interaction of con-
ditional compilation with the source code, i.e. a region guarded by
the DEBUG flag is treated differently depending on whether it oc-
curs at the start or at the end of a procedure body. The three ways
of categorisation are complementary, however.

Krone et al. [22] visualise for each code region all preprocessor
flags which affect it. They can e.g. determine the coupling of build
configurations by deducing which flags are implied by others. Un-
fortunately, the visualisation is overloaded, and cannot be queried.
Second, the link between a preprocessor flag and its negation are
not conserved, nor the sequential order of conditional regions.

In general, tool support for understanding and refactoring pre-
processor usage faces important technical hurdles [5, 17, 23, 25,
33, 37]. A preprocessor-aware parser [13, 36] is needed as well
as a way to determine the conditions under which code regions are
active [24]. R3V3RS3 takes these challenges into account.

7.2 Refactoring into Aspects
The second category of related work concerns the refactoring of

preprocessor usage into aspects. Bruntink et al. [6, 7] and Lohmann
et al. [26] refactor preprocessor-aware code into aspects. Incon-
sistent macro usage precludes automatic refactoring and requires
considerably generic advice [6]. Lohmann et al. [26] have found
that preparatory refactoring of the base code and/or support for
statement-level join points [11] are needed to ensure the presence
of the right join points. The C-CLR environment [31] supports
refactoring by hiding unused conditional code for one build config-
uration and by mining for aspects using clone detection techniques.
The latter only takes into account the current build configuration.

Various researchers [2, 26, 30, 31] have investigated the refactor-
ing of preprocessor code, especially conditional compilation, into
aspects. Previously [2], we have sketched a two-phase process for
refactoring into aspects. This approach depends on the outcome
of four trade-offs. First, reuse opportunities for the refactored ad-
vice depend on the preprocessor’s favour of tangled, one-off adap-
tations (“heterogeneous concerns” [9]). Second, the preprocessor’s
fine-grainedness asks for statement-level join points [11, 26], but
these lead to fragile pointcuts. Third, the ease of aspect refactoring
is determined by the developers’ discipline regarding preprocessor
usage. Fourth, the preprocessor has desirable properties that are
not shared by aspects, such as the absence of run-time penalties
and weaving logic in the resulting binary.

The fourth trade-off has become less critical because of advances
in aspect weaver optimisations. The first three trade-offs are a dif-
ferent matter. To determine their impact on the viability of the
proposed two-phase mining process [2], the syntactical interaction
between the preprocessor and the source code has to be analysed,
which is the focus of this paper. Preprocessor blueprints provide
support to reason about these three trade-offs for aspect mining.

Independently from our work, Reynolds et al. [30] have refac-
tored Linux kernel extensions into aspects. They have found that
45% of the configuration-dependent code in procedure definitions
and 52% of the conditional fields in data structures are easy to
model using before/after-advice or field introductions respec-
tively (Simple Conditional Compilation). Nearly 10% of all proce-
dures are Conditional Definitions. Reynolds et al. acknowledge the
need to prepare the source code to expose the right join points [26].

The work of Reynolds et al. [30] differs from our work in sev-
eral ways. First, preprocessor blueprints form an explicit model of
conditional compilation usage which can be queried for any declar-
atively specified pattern. Reynolds et al. on the other hand have



0.001!

0.01!

0.1!

1!

10!

0
1
/0

9
/0

1
!

0
1
/0

3
/0

2
!

0
1
/0

9
/0

2
!

0
1
/0

3
/0

3
!

0
1
/0

9
/0

3
!

0
1
/0

3
/0

4
!

0
1
/0

9
/0

4
!

0
1
/0

3
/0

5
!

0
1
/0

9
/0

5
!

0
1
/0

3
/0

6
!

0
1
/0

9
/0

6
!

0
1
/0

3
/0

7
!

0
1
/0

9
/0

7
!

0
1
/0

3
/0

8
!

#
p

a
tt

e
rn

s
/fi

le
 (

1
0
lo

g
)!

inclusion!

cond def!

part!

semi-part!

cond-sign!

simple decl!

scattering!

invasive!

gen fine!

Figure 13: Overview of the average number of pattern occurrences per file across all nesting levels for the analysed releases of Parrot
VM. Simple and Simple Return are not shown, as they remain 0.1 throughout.

hard-coded their patterns. Second, our pattern matching approach
has enabled us to find occurrences of more complex patterns. Third,
we have studied a different subject system (VM instead of operat-
ing system), with other development guidelines in place. Our ap-
proach confirms the findings of Reynolds et al. [30], and enhances
them with additional patterns of conditional compilation usage and
a historic analysis of the patterns’ popularity.

8. FUTURE WORK
We are applying R3V3RS3 to other systems to further validate

the identified patterns of interaction between the preprocessor and
the source code, and to detect additional patterns. Despite R3V3RS3,
this is time-consuming because one needs to find a system with a
good development history and study the evolution of the number
of pattern occurrences across its development history. The Linux
system is one of our targets, as this enables us to validate the pat-
terns suggested by Figure 12 and to compare our results to those
of Reynolds et al. [30]. Finally, we are investigating in more de-
tail why the percentage of Ad Hoc Patterns in the Parrot VM drops
significantly, and what kind of patterns are typically temporary.

9. CONCLUSION
This paper has presented three requirements for a model of the

syntactical interaction of source code and conditional compilation,
and a realisation of these requirements: preprocessor blueprints.
This is an abstract model of the nesting and ordering between pro-
gram statements which correspond to join point shadows or opaque
(uninteresting) pieces of code, and it can be queried via a declara-
tive pattern facility. These patterns can express the four commonly
known patterns of conditional compilation usage, as well as seven
additional patterns we have discovered in the Parrot VM. For each
of the patterns, the potential for refactoring into advice is discussed.

By analysing the evolution of the number of occurrences of each
pattern in the Parrot VM, we were able to conclude that the eleven
patterns capture conditional compilation usage in up to ninety-nine
percent of the source files of Parrot VM, and that two of the six

most popular patterns are hard to refactor into advice. As the Par-
rot VM can be considered as a best case scenario from the perspec-
tive of refactoring into advice and given the trade-offs derived for
most of the discussed aspect implementations, conditional compila-
tion often still is the preferred implementation technique to manage
variability in C/C++ systems, despite the tangling and scattering.
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