
Cross-project Defect Prediction Using a
Connectivity-based Unsupervised Classifier

Feng Zhang1, Quan Zheng1, Ying Zou2, and Ahmed E. Hassan1

1School of Computing, Queen’s University, Canada
2Department of Electrical and Computer Engineering, Queen’s University, Canada

1{feng, quan, ahmed}@cs.queensu.ca, 2ying.zou@queensu.ca

ABSTRACT

Defect prediction on projects with limited historical data
has attracted great interest from both researchers and prac-
titioners. Cross-project defect prediction has been the main
area of progress by reusing classifiers from other projects.
However, existing approaches require some degree of ho-
mogeneity (e.g., a similar distribution of metric values) be-
tween the training projects and the target project. Satisfy-
ing the homogeneity requirement often requires significant
effort (currently a very active area of research).

An unsupervised classifier does not require any training
data, therefore the heterogeneity challenge is no longer an
issue. In this paper, we examine two types of unsupervised
classifiers: a) distance-based classifiers (e.g., k-means); and
b) connectivity-based classifiers. While distance-based un-
supervised classifiers have been previously used in the de-
fect prediction literature with disappointing performance,
connectivity-based classifiers have never been explored be-
fore in our community.

We compare the performance of unsupervised classifiers
versus supervised classifiers using data from 26 projects from
three publicly available datasets (i.e., AEEEM, NASA, and
PROMISE). In the cross-project setting, our proposed con-
nectivity-based classifier (via spectral clustering) ranks as
one of the top classifiers among five widely-used supervised
classifiers (i.e., random forest, naive Bayes, logistic regres-
sion, decision tree, and logistic model tree) and five unsu-
pervised classifiers (i.e., k-means, partition around medoids,
fuzzy C-means, neural-gas, and spectral clustering). In the
within-project setting (i.e., models are built and applied on
the same project), our spectral classifier ranks in the second
tier, while only random forest ranks in the first tier. Hence,
connectivity-based unsupervised classifiers offer a viable so-
lution for cross and within project defect predictions.

CCS Concepts

•Software and its engineering → Software verification
and validation; Software defect analysis;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14 - 22, 2016, Austin, TX, USA

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884839

Target
project

! Heterogeneity

Supervised
classifier

Build
Training
projects

Defect
proneness

Unsupervised
classifier

Figure 1: Illustration of the heterogeneity challenge.

Keywords

defect prediction, heterogeneity, cross-project, unsupervised,
spectral clustering, graph mining

1. INTRODUCTION
A defect is an error in a software system that causes

a system to behave improperly or produce unexpected re-
sults. Fixing defects typically consumes about 80% of the
total budget of a software project [55]. Such cost can be
significantly reduced if defects are fixed in an early stage
[3, 11, 18, 37, 38, 46, 54]. Hence, defect prediction models
are often used to prioritize quality improvement and defect
avoidance efforts.

However, defect prediction is not widely adopted in indus-
try [45, 49, 56]. The barriers include the cost of collecting
up-to-date training data (e.g., defect data) [45, 49, 56, 57],
the low generalizability of prediction models [49], and the
lack of automated tooling for the prediction process [10, 49,
56]. Moreover, many companies lack the needed resources
and technical expertise to prepare data for building defect
prediction models [45]. A typical solution (i.e., cross-project
prediction) is to apply defect prediction models that are
built using data from other training projects using super-
vised classifiers [56, 62].

As illustrated in Figure 1, the major challenge in cross-
project prediction comes from the heterogeneity between the
training projects and the target project [13, 41]. The hetero-
geneity may be caused by diverse development settings (e.g.,
varying user requirements and developer experiences) [8, 32].
It is common that the distribution of metric values of soft-
ware entities (e.g., files or classes) exhibits significant dif-
ferences across projects with varied contexts (e.g., size and
programming language) [64]. Another heterogeneity chal-

lenge in cross-project prediction, as pointed out recently by
Nam and Kim [40], is that different projects may have dif-
ferent sets of metrics all together.

To mitigate such challenges, an unsupervised classifier
could be used. As shown in Figure 1, such classifiers do
not require any training data, and are therefore by nature
free of the challenges that are due to heterogeneity of the
training and target projects. However, distance-based unsu-
pervised classifiers (e.g., k-means) have shown disappointing
performance for within-project defect prediction (e.g., [65]).

In this study, we propose to apply a connectivity-based
unsupervised classifier that is based on spectral clustering
[43, 59]. Unlike distance-based unsupervised classifiers that
partition the data based on Euclidean distance, spectral
clustering considers the connectivity among all entities and
therefore has many advantages [33]. In defect prediction,
the connectivity among software entities can be determined
by their similarity in metric values. Our key intuition for ex-
ploring spectral clustering is that defective entities tend to
cluster around the same neighbourhoods (i.e., clusters), as
observed as well by by Menzies et al. [35] and Bettenburg et
al. [4] in their work on local prediction models.

To evaluate the feasibility of using unsupervised classi-
fiers for cross-project prediction, we perform an experiment
using three publicly available datasets (i.e., AEEEM [14],
NASA [42], and PROMISE [29]) that include 26 projects in
total. Our major findings are presented as follows:

• Unsupervised classifiers underperform supervised clas-
sifiers in general. However, a connectivity-based un-
supervised classifier (i.e., via spectral clustering) can
compete with supervised classifiers.

• In the cross-project setting, our proposed spectral clus-
tering based classifier achieves a median AUC value of
0.71, and ranks as one of the top classifiers.

• In the within-project setting, our spectral clustering
based classifier ranks in the second tier, the same as
three commonly used supervised classifiers (i.e., logis-
tic regression, logistic model tree, and naive Bayes).
The random forest classifier appears in the first rank.

• A deeper investigation confirms our intuition that de-
fective entities have significantly stronger connections
with other defective entities than with clean entities.

As a summary, we propose to tackle cross-project predic-
tions from a different perspective, i.e., using a connectivity-
based unsupervised classifier. Our spectral classifier is rel-
atively simple (the implementation with 17 lines of R code
is provided in Appendix A). Moreover, our spectral classi-
fier is unsupervised, therefore it can be applied on a project
without training data.
Paper organization. Section 2 presents the background
and related work. In Section 3, we describe details of our
spectral classifier. Experimental setup and case study re-
sults are presented in Sections 4 and 5, respectively. Sec-
tion 6 closely examines the defect data in order to better
understand the strong performance of our spectral classi-
fier. The threats to validity of our work are discussed in
Section 7. We conclude the paper and provide insights for
future work in Section 8.

Software
metrics

Unsupervised
clustering

Cluster
1

Cluster
2

Cluster
labeler

Defective

Clean

Unsupervised classifier

Figure 2: A typical process to do defect prediction
using an unsupervised classifier.

2. BACKGROUND AND RELATED WORK
In this section, we first present the related work on cross-

project defect prediction and unsupervised defect predic-
tion. We then describe essential backgrounds on unsuper-
vised classifiers.

2.1 Cross-project Defect Prediction
Prior attempts for cross-project defect prediction often re-

sulted in disappointing performance (e.g., [23, 48, 57, 66]).
The major challenge is the heterogeneous distribution of
metric values between the training projects and the target
project [13, 41].

To reduce the heterogeneity in cross-project defect predic-
tion, there are two major approaches:

(1) Using a model derived from training entities that are
most similar to the entities in the target project (e.g.,
[26, 27, 32, 35, 57]); For instance, He et al. [26, 27] pro-
pose to filter the training set based on distributional
characteristics (e.g., mean and standard deviation) of
both the training and the target sets. Turhan et al.
[57] propose to perform nearest neighbour filtering (NN-
filtering).

(2) Transforming the metrics of both the training projects
and the target project to increase their similarity (e.g.,
[12, 34, 41, 58]). For instance, Ma et al. [34] apply Trans-
fer Naive Bayes (TNB), Nam et al. [41] use Transfer
component analysis (TCA), Chen et al. [12] use double
transfer boosting (DTB) model. Our previous work [62]
proposes a context-aware rank transformation approach
that transforms software metrics based on project con-
texts (e.g., programming language and project size), and
builds a universal defect prediction model that achieves
comparable performance as within-project models.

Another challenge in cross-project defect prediction is that
the set of metrics is often different among projects. Nam and
Kim [40] propose an approach to deal with heterogeneous
sets of metrics between the training projects and the target
project.

2.2 Unsupervised Defect Prediction
Unsupervised defect prediction predicts defect proneness

without requiring access to training data. As illustrated
in Figure 2, a typical process for predicting defects using
an unsupervised classifier has two steps: 1) clustering soft-
ware entities into k clusters (usually two clusters); and 2)
labelling each cluster as a defective or clean cluster. How-
ever, there exists a limited number of studies in the literature

on unsupervised defect prediction. One reason is that un-
supervised classifiers usually underperform supervised ones
(e.g., random forest and logistic regression) in terms of their
predictive power.

An initial attempt to use unsupervised defect classifiers
is by Zhong et al. [65] who apply k-means and neural-gas
clustering in defect prediction. Zhong et al. [65] observe
that a neural-gas classifier outperforms k-means in terms of
predictive power, but runs slower. However, their approach
requires one to specify the expected number of clusters, and
involves experts to determine which cluster contains defec-
tive entities (i.e., label the cluster). Catal et al. [9] pro-
pose to use metric values to label the clusters. Bishnu and
Bhattacherjee [5] propose to apply quad trees to initialize
the cluster centres of k-means clustering. In addition to k-
means clustering based classifiers, Abaei et al. [1] propose
to use self-organizing maps (SOM) and Yang et al. [60] pro-
pose to apply the affinity propagation clustering algorithm.
Recently, Nam and Kim [39] proposed to label the clusters
using thresholds on selected metrics.

2.3 Background on Unsupervised Classifiers
Unsupervised classifiers make use of clustering methods.

Clustering is a common way to explore groups of similar
entities. Frequently applied clustering methods include hi-
erarchical clustering and k-means. Hierarchical clustering
produces clusters based on the structure of a similarity or
dissimilarity matrix. K-means clustering is used to cluster
high-dimensional data that are linearly separable [17].

In recent years, spectral clustering has become one of
the most effective techniques for clustering [43, 59]. Unlike
distance-based classifiers (e.g., k-means clustering) that di-
vide a data set based on Euclidean distance, spectral cluster-
ing partitions a data set based on the connectivity between
its entities. Spectral clustering is performed on a graph con-
sisting of nodes and edges. In the context of defect pre-
diction, each node represents a software entity (e.g., file or
class). Each edge represents the connection between soft-
ware entities, and its weight is measured by the similarity of
metric values between its two ends.

Similarity definition. A widely used similarity is the
dot product between vectors of two nodes i and j [2, 6, 16],
as shown in Equation (1).

wij = xi · xj =

m∑

k=1

aikakj (1)

where xi and xj denote the metric values of software entities
i and j, respectively; aik is the value of the kth metric on the
ith software entity, and m is the total number of metrics.

From the geometric perspective, the similarity wij can be
interpreted as xi ·xj = |xi||xj|cosθij , where |xi| and |xj | are
the norms, and θij is the angle between two vectors. It is
the length of the projection of one vector onto the other unit
vector.

From a correlation perspective, the similarity wij is ba-
sically the unnormalized Pearson correlation coefficient [7]
between nodes i and j. Each element in vector xi represents
a metric value. It is unnormalized, since it makes little sense
to normalize the values across metrics belonging to the same
software entity. The similarity wij can be positive, negative
or zero. A positive value indicates a positive correlation be-
tween two software entities, and a negative value indicates
a negative correlation. A value of zero indicates that there
is no linear correlation. It is meaningless to study the self-

Algorithm 1: Spectral clustering based classifier for de-

fect prediction

Input: A matrix with rows as software entities and
columns as metrics.

Output: A vector of defect proneness of all software
entities.

1: Normalize software metrics using z-score.
2: Construct a weighted adjacency matrix W .
3: Calculate the Laplacian matrix Lsym.
4: Perform the eigendecomposition on Lsym.
5: Select the second smallest eigenvector v1.
6: Perform the bipartition on v1 using zero.
7: Label each cluster as defective or clean.

circle of a software entity, therefore we set the self-similarity
(i.e., all wii) to zero.
Spectral clustering steps. A popular algorithm for

spectral clustering is to minimize the normalized cut [53].
The normalized cut is a disassociation measure to describe
the cost of cutting two partitions in a graph [53]. This al-
gorithm partitions a graph into two subgraphs to gain high
similarity within each subgraph while achieving low similar-
ity across the two subgraphs.

The input for spectral clustering is a weighted adjacency
matrix that stores the similarity between each pair of nodes
in the graph. There are three major steps in the algorithm:

(1) Computing the Laplacian matrix from the weighted ad-
jacency matrix, where the Laplacian matrix is a widely
used matrix representation of a graph in graph theory;

(2) Performing an eigendecomposition on the Laplacian ma-
trix;

(3) Selecting a threshold on the second smallest eigenvector
to obtain the bipartitions of the graph.

3. OUR SPECTRAL CLASSIFIER
In this section, we describe details on our spectral cluster-

ing based classifier (see Algorithm 1). The R implementa-
tion of our spectral classifier consists of 17 lines of code (see
Appendix A).

3.1 Preprocessing Software Metrics
Software metrics have varied scales. Hence, software met-

rics are often normalized before further processing [24, 41,
44]. For instance, Nam et al. [41] find that applying z-score
to normalize software metrics can significantly improve the
predictive power of defect prediction models. The advantage
of z-score is that a normalized software metric has a mean
value of zero and a variance of one.

Our spectral classifier uses the z-score for the normaliza-
tion of each metric. We use yj to denote a vector of values
of the jth metric in a project. Then yj = {a1j , . . . , anj}

T ,
where n is the number of entities in the project, and aij is
the value of the jth metric on the ith software entity. The

vector yj is normalized as ŷj =
yj−ȳj

sj
, where ȳj is the aver-

age value of yj and sj is the standard deviation of yj. This
step corresponds to Line 1 in Algorithm 1.

3.2 Spectral Clustering
We now describe the three steps for spectral clustering.

Step 1. The first step is to calculate the Laplacian matrix
Lsym. The symmetric Laplacian matrix Lsym is derived
from the adjacency matrix W that stores the similarity be-
tween each pair of software entities. The adjacency matrix
W is computed directly from the normalized software met-
rics (i.e., Line 2 in Algorithm 1). In spectral clustering,
there is usually an assumption that all values of the similar-
ity are non-negative [36]. Hence, we set all negative wij to
zero.

The symmetric Laplacian matrix Lsym is calculated us-

ing Lsym = I − D−
1

2WD−
1

2 (i.e., Line 3 in Algorithm 1),
where the matrix I is the unit matrix with size n, the ma-

trix D is a diagonal matrix of row sums of W , and D−
1

2 =

Diag(d
−

1

2

1
, . . . , d

−
1

2
n), where d

−
1

2

i = (
∑n

j=1
wij)

−
1

2 .
Step 2. The second step is to perform the eigendecomposi-
tion on the symmetric Laplacian matrix Lsym (i.e., Line 4
in Algorithm 1). Eigenvalues will always be ordered increas-
ingly [33, 53]. We follow the normalized cut algorithm by
Shi and Malik [53] and use the second smallest eigenvector
for clustering (i.e., Line 5 in Algorithm 1). We use v1 to
denote the second smallest eigenvector of Lsym.
Step 3. The third step is to separate all entities into two
clusters. Shi and Malik [53] propose to apply a particular
threshold, such as zero or median, on the second smallest
eigenvector v1. If the median is used, then 50% of entities
are predicted as defective. Inspecting 50% of entities re-
quires significant effort. Hence, we adopt zero as the thresh-
old value of v1 (i.e., Line 6 in Algorithm 1) to create two
non-overlapped clusters. We use v1i to denote the ith value
of v1, where i ∈ {1, . . . , n}, and n is the total number of
software entities in the given project. The value v1i cor-
responds to the eigenvalue of the ith software entity. All
entities with v1i > 0 create a cluster called Cpos, and all
entities with v1i < 0 create the other cluster called Cneg.
In the following subsection, we describe how to determine
whether cluster Cpos contains defective entities, or cluster
Cneg does.

3.3 Labelling Defective Cluster
The last step (i.e., Line 7 in Algorithm 1) of applying the

spectral clustering based classifier in defect prediction is to
label the defective cluster.

We use Cdefective to denote the cluster that contains de-
fective entities only, and use Cclean to represent the cluster
that contains clean entities only.

To determine whether Cpos or Cneg is the defective cluster
Cdefective, we use the following heuristic: For most metrics,
software entities containing defects generally have larger val-
ues than software entities without defects. This heuristic is
based on our field’s extensive empirical observations on the
relationship between software metrics and defect proneness.
For instance, Gaffney [19] find that larger files have a higher
likelihood to experience defects than smaller files. Kitchen-
ham et al. [30] report that more complex files are more likely
to experience defects than files with lower complexity. Sim-
ilar findings are also observed in many other studies (e.g.,
[15, 25, 39]).

With this heuristic in mind, we use the average row sums
of the normalized metrics of each cluster to determine which
cluster is defective. The row sum is the sum of all metric

values of the same entity. We compute the average row sum
of all entities within each cluster (i.e., either Cpos or Cneg).
The cluster with larger average row sum is considered as
the cluster containing defective entities. We label all entities
within this cluster as defective (i.e., Cdefective), and all the
remaining entities as clean (i.e., Cclean).

However, the aforementioned heuristic does not necessar-
ily work for all kinds of metrics. For instance, in the case
where smaller values indicate less chance of defects, the
aforementioned heuristic should be reversed. We suggest
practitioners to derive the appropriate heuristic based on
their set of metrics.

4. EXPERIMENT SETUP
In this section, we present the experimental setup to eval-

uate the performance of our spectral classifier.

4.1 Corpora
We examined data from three commonly studied datasets:

AEEEM [14], NASA [42], and PROMISE [29]. The three
datasets are publicly available and have been used exten-
sively in defect prediction studies (e.g., [20, 22, 35, 41]). A
brief description on each dataset and our selected metrics
are presented as follows.

D1. The AEEEM dataset was prepared by D’Ambros et
al. [14] to compare the performance of different sets of
metrics. Accordingly, the AEEEM dataset contains the
most number of metrics. In particular, it has 61 met-
rics, including product, process, previous-defect met-
rics, and entropy-based metrics.

All projects in the AEEEM dataset have 61 identical
software metrics. We use all 61 metrics in our study.

D2. The NASA dataset was collected by the NASA Met-
rics Data Program. Shepperd et al. [51] observe that
the original NASA dataset contains many repeated and
inconsistent data points, and they clean up the NASA
dataset. In this study, we use the cleaned NASA dataset
that is available in the PROMISE repository.

In the NASA dataset, projects do not share the same
set of metrics. For instance, project KC3 has 39 metrics
while project JM1 has 21 metrics. Since supervised
classifiers require exact the same sets of metrics, we
only select the 20 metrics that are common across all
of the 11 studied NASA projects.

D3. The PROMISE dataset was prepared by Jureczko and
Madeyski [29]. It contains open source Java projects
and has object-oriented metrics.

In the PROMISE dataset, projects do not have the
same set of metrics. Hence, we select the 20 metrics
that are common across all of the 10 studied PROMISE
projects.

In general, the selected projects have diverse size (i.e.,
having 125 to 7,782 instances) and varied percentage of de-
fective entities (i.e., ranging from 2.1% to 63.6%). The sum-
mary of all selected projects is presented in Table 1. More
details about these metrics can be found on the correspond-
ing website of each dataset.

Table 1: An overview of the studied projects.

Dataset Project # of Entities
Defective
(#) (%)

AEEEM

Eclipse JDT Core 997 206 20.7%
Equinox 324 129 39.8%
Apache Lucene 691 64 9.3%
Mylyn 1,862 245 13.2%
Eclipse PDE UI 1,497 209 14.0%

NASA

CM1 327 42 12.8%
JM1 7,782 1,672 21.5%
KC3 194 36 18.6%
MC1 1,988 46 2.3%
MC2 125 44 35.2%
MW1 253 27 10.7%
PC1 705 61 8.7%
PC2 745 16 2.1%
PC3 1,077 134 12.4%
PC4 1,287 177 13.8%
PC5 1,711 471 27.5%

PROMISE

Ant v1.7 745 166 22.3%
Camel v1.6 965 188 19.5%
Ivy v1.4 241 16 6.6%
Jedit v4.0 306 75 24.5%
Log4j v1.0 135 34 25.2%
Lucene v2.4 340 203 59.7%
POI v3.0 442 281 63.6%
Tomcat v6.0 858 77 9.0%
Xalan v2.6 885 411 46.4%
Xerces v1.3 453 69 15.2%

Average 1,036 196 18.9%

4.2 Performance Measure
There are many performance measures, such as precision,

recall, accuracy, F-measure and the Area Under the receiver
operating characteristic Curve (AUC). However, a cut-off
value on the predicted probability of defect proneness is re-
quired when computing precision, recall, accuracy, and F-
measure. The default cut-off is 0.5 which may not be the
best cut-off value in practice [63]. On the other hand, the
AUC value is independent of a cut-off value and is not im-
pacted by the skewness of defect data. Lessmann et al. [31]
and Ghotra et al. [20] suggest to use the AUC value for bet-
ter cross-dataset comparability. Hence, we select the AUC
measure as our performance measure.

When computing the AUC measure, a curve of the false
positive rate is plotted against the true positive rate. Ac-
cordingly, the AUC value measures the probability that a
randomly chosen defective entity ranks higher than a ran-
domly chosen clean entity. An AUC value of 0.5 implies
that a classifier is no better than random guessing. A larger
AUC value indicates a better performance. In particular,
Gorunescu [21] advises the following guideline to interpret
the AUC value: 0.90 to 1.00 as excellent prediction, 0.80 to
0.90 as a good prediction, 0.70 to 0.80 as a fair prediction,
0.60 to 0.70 as a poor prediction, and 0.50 to 0.60 as a failed
prediction.

4.3 Classifiers for Comparison
To find if our spectral classifier is applicable for defect

prediction in a cross-project setting, we compare its perfor-
mance with nine off-the-shelf classifiers. We not only select
supervised classifiers, but also choose distance-based unsu-
pervised classifiers.

For supervised classifiers, we select five classifiers that
have been commonly applied to build defect prediction mod-
els. The five classifiers are random forest (RF), naive Bayes
(NB), logistic regression (LR), decision tree (J48), and lo-
gistic model tree (LMT).

For distance-based unsupervised classifiers, we choose four
classifiers that have been previously used in the defect pre-
diction literature [9, 65]. The four classifiers include k-means
clustering (KM), partition around medoids (PAM), fuzzy C-
means (FCM), and neural-gas (NG). These classifiers are
based on Euclidean distance, therefore employ a different
clustering mechanism than spectral clustering (SC).

4.4 Scott-Knott Test
To compare the performance across the large number of

datasets, we apply the Scott-Knott test [28] using the 95%
confidence level (i.e., α = 0.05). The Scott-Knott test can
overcome the issue of overlapping multiple comparisons that
are obtained from other tests, such as the Mann-Whitney U
test [52]. The Scott-Knott test has been used in defect pre-
diction studies to compare the performance across different
classifiers [20].

The Scott-Knott test recursively ranks the evaluated clas-
sifiers through hierarchical clustering analysis. In each itera-
tion, the Scott-Knott test separates the evaluated classifiers
into two groups based on the performance measure (i.e., the
AUC value). If the two groups have statistically significant
difference in the AUC value, the Scott-Knott test executes
again within each group. If no statistically distinct groups
can be created, the Scott-Knott test terminates [20].

5. CASE STUDY RESULTS
In this section, we present our research questions, along

with our motivation, approach, and findings.

RQ1. How does our spectral classifier perform
in cross-project defect prediction?

Motivation. Unlike supervised classifiers, unsupervised
classifiers do not have to deal with the challenge of hetero-
geneity between the training projects and the target project.
While distance-based classifiers (e.g., k-means clustering)
underperform supervised classifiers, connectivity-based un-
supervised classifiers have not been explored in our com-
munity. Hence, it is of significant interest to investigate if
connectivity-based classifiers (particularly via spectral clus-
tering) can provide comparable performance as supervised
classifiers in the context of cross-project defect prediction.
Approach. To address this question, we need to get the
performance of all studied classifiers for each project. For
each classifier, all entities of the target project are used to
obtain its performance.

Supervised classifiers require a training project. All su-
pervised classifiers under study require the exact same set
of metrics between the training and the target projects.
As the three studied datasets (i.e., AEEEM, NASA, and
PROMISE) have different sets of metrics, we make cross-
project defect prediction within the same dataset. For each
target project, we select all other projects from the same
dataset for training. For instance, if the target project is
“Eclipse JDT Core”, then each supervised classifier is used
to build four models using each of the remaining projects
within the same dataset (i.e., “Equinox”, “Apache Lucene”,
“Mylyn”, and “Eclipse PDE UI”), respectively. We compute
the average AUC values of these four models to measure
the performance of the corresponding classifier on the tar-
get project, since it is unknown which model performs the
best on the target project prior to the prediction.

S
C

R
F

F
C

M

L
M

T

N
B

L
R

N
G

K
M

P
A

M

D
T

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AEEEM
A

U
C

S
C

R
F

N
B

L
M

T

F
C

M

P
A

M

L
R

N
G

K
M

D
T

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

NASA

A
U

C

S
C

N
B

R
F

L
M

T

L
R

K
M

N
G

F
C

M

P
A

M

D
T

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

PROMISE

A
U

C

S
C

R
F

N
B

L
M

T

L
R

F
C

M

P
A

M

K
M

N
G

D
T

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

All projects
A

U
C

Figure 3: The boxplots of AUC values of all stud-
ied supervised (blue labels) and unsupervised (red
labels) classifiers (for the abbreviations, see Sec-
tion 4.3). Different colors represents different ranks
(red > yellow > green > blue).

Unsupervised classifiers do not require training projects.
We directly apply the studied unsupervised classifiers on the
target project. When do clustering, we create k clusters.
We set k = 2 for clustering, since this setting yields the
best performance in defect prediction (e.g., [20]). In the
resulting two clusters, one cluster is labelled as defective,
and the other cluster is labelled as clean, using the heuristic
that is described in Section 3.3.

To compare the predictive power among all classifiers, we
apply the Scott-Knott test with the 95% confidence level to
rank all classifiers across projects within the same dataset.
We examine the Scott-Knott ranks per dataset. Further-
more, we perform one large Scott-Knott run where we input
all the AUC values for all the classifiers across all datasets.

Findings. Our spectral classifier achieves good re-
sults for defect prediction in the cross-project set-
ting. In general, our spectral classifier significantly outper-
forms all other unsupervised classifiers, and it has slightly
better performance than the best supervised classifier under
study (i.e., random forest).

Our spectral classifier ranks the first in all the three stud-
ied datasets. The colors in Figure 3 illustrate the ranks of all
classifiers. The boxplots show the distribution of the AUC
values of each classifier under study. Classifiers with box-
plots of the same color are ranked at the same tier. The per-
formances of classifiers in the same tier are not statistically
distinct. Among all supervised and unsupervised classifiers,
only two supervised classifiers (i.e., random forest and lo-
gistic model tree) are in the same ranking tier across all the
three datasets as our spectral classifier.

The exact AUC values of the top four classifiers (i.e., our
spectral classifier, random forest, naive Bayes, and logistic
model tree) on each project are presented in Table 2. In
particular, the median AUC values of the top four classifiers

Table 2: The AUC values of the top four classifiers in
cross-project defect prediction (Bold font highlights
the best performance).

Dataset Project SC RF NB LMT

AEEEM

Eclipse JDT Core 0.83 0.81 0.68 0.75
Equinox 0.81 0.70 0.66 0.71
Apache Lucene 0.79 0.76 0.72 0.70
Mylyn 0.63 0.62 0.53 0.57
Eclipse PDE UI 0.72 0.71 0.65 0.67

NASA

CM1 0.67 0.66 0.66 0.62
JM1 0.66 0.62 0.64 0.60
KC3 0.64 0.65 0.62 0.63
MC1 0.69 0.71 0.66 0.67
MC2 0.68 0.62 0.64 0.59
MW1 0.70 0.67 0.70 0.67
PC1 0.71 0.73 0.70 0.70
PC2 0.78 0.76 0.73 0.79
PC3 0.72 0.70 0.70 0.68
PC4 0.65 0.67 0.63 0.67
PC5 0.71 0.66 0.66 0.63

PROMISE

Ant v1.7 0.79 0.75 0.77 0.75
Camel v1.6 0.62 0.60 0.60 0.61
Ivy v1.4 0.70 0.71 0.68 0.70
Jedit v4.0 0.79 0.74 0.75 0.73
Log4j v1.0 0.82 0.76 0.81 0.74
Lucene v2.4 0.67 0.68 0.69 0.66
POI v3.0 0.82 0.71 0.78 0.69
Tomcat v6.0 0.80 0.78 0.80 0.77
Xalan v2.6 0.54 0.66 0.60 0.62
Xerces v1.3 0.77 0.69 0.70 0.71

Median 0.71 0.70 0.68 0.68

across all projects under study are: 0.71, 0.70, 0.68 and 0.68,
respectively.

We observe that distance-based unsupervised clas-
sifiers (e.g., k-means) do not perform as well as su-
pervised classifiers. The poor performance of these dis-
tance-based classifiers may explain why unsupervised classi-
fiers are not widely applied in defect prediction.

In summary, our results clearly show that applying con-
nectivity-based unsupervised classification is a promising di-
rection to tackle the heterogeneity challenge in cross-project
defect prediction. Our connectivity-based unsupervised clas-
sifier is based on spectral clustering. We suspect that the
success of spectral clustering is because defective entities
are more similar to other defective entities than other clean
entities in terms of the values of their various software met-
rics. Such intuition is supported through recent work by
Menzies et al. [35] and Bettenburg et al. [4] on local defect
prediction models.

✎

✍

☞

✌

Our spectral classifier performs the best among all
studied classifiers that include five supervised and
five unsupervised classifiers. Therefore, applying
the connectivity-based unsupervised classification is a
promising direction to tackle the challenge of heteroge-
neous data in cross-project defect prediction.

RQ2. Does our spectral classifier perform well
in within-project defect prediction?

Motivation. In comparison to a cross-project setting, the
chance of experiencing heterogeneous training and target
data is much lower in a within-project setting. As unsu-
pervised classifiers can save significant effort in defect data
collection, we are interested to find if our connectivity-based

Table 4: The average AUC values of the top five classifiers in both cross-project (CP) and within-project
settings (WP). The column “diff ” shows the difference between cross-project models and within-project
models.

Dataset Project
RF LR SC LMT NB

CP WP diff CP WP diff CP WP diff CP WP diff CP WP diff

AEEEM

Eclipse JDT Core 0.81 0.87 0.06 0.75 0.79 0.04 0.83 0.83 0 0.75 0.82 0.07 0.68 0.74 0.06

Equinox 0.70 0.84 0.14 0.61 0.64 0.03 0.81 0.80 -0.01 0.71 0.79 0.08 0.66 0.72 0.06

Apache Lucene 0.76 0.81 0.05 0.66 0.63 -0.03 0.79 0.79 0 0.70 0.78 0.08 0.72 0.74 0.02

Mylyn 0.62 0.82 0.20 0.56 0.79 0.23 0.63 0.63 0 0.57 0.78 0.21 0.53 0.65 0.12

Eclipse PDE UI 0.71 0.78 0.07 0.66 0.73 0.07 0.72 0.72 0 0.67 0.75 0.08 0.65 0.67 0.02

NASA

CM1 0.66 0.68 0.02 0.61 0.74 0.13 0.67 0.67 0 0.62 0.65 0.03 0.66 0.67 0.01

JM1 0.62 0.67 0.05 0.55 0.69 0.14 0.66 0.66 0 0.60 0.68 0.08 0.64 0.65 0.01

KC3 0.65 0.71 0.06 0.59 0.64 0.05 0.64 0.64 0 0.63 0.63 0 0.62 0.65 0.03

MC1 0.71 0.81 0.10 0.64 0.74 0.10 0.69 0.69 0 0.67 0.58 -0.09 0.66 0.68 0.02

MC2 0.62 0.65 0.03 0.54 0.66 0.12 0.68 0.67 -0.01 0.59 0.67 0.08 0.64 0.66 0.02

MW1 0.67 0.72 0.05 0.59 0.64 0.05 0.70 0.70 0 0.67 0.63 -0.04 0.70 0.71 0.01

PC1 0.73 0.83 0.10 0.68 0.82 0.14 0.71 0.71 0 0.70 0.75 0.05 0.70 0.68 -0.02

PC2 0.76 0.74 -0.02 0.65 0.66 0.01 0.78 0.78 0 0.79 0.53 -0.26 0.73 0.71 -0.02

PC3 0.70 0.78 0.08 0.65 0.81 0.16 0.72 0.72 0 0.68 0.71 0.03 0.70 0.73 0.03

PC4 0.67 0.91 0.24 0.63 0.88 0.25 0.65 0.65 0 0.67 0.88 0.21 0.63 0.74 0.11

PC5 0.66 0.76 0.10 0.60 0.73 0.13 0.71 0.71 0 0.63 0.72 0.09 0.66 0.68 0.02

PROMISE

Ant v1.7 0.75 0.82 0.07 0.74 0.80 0.06 0.79 0.79 0 0.75 0.81 0.06 0.77 0.78 0.01

Camel v1.6 0.60 0.71 0.11 0.61 0.73 0.12 0.62 0.62 0 0.61 0.69 0.08 0.60 0.67 0.07

Ivy v1.4 0.71 0.67 -0.04 0.69 0.55 -0.14 0.70 0.70 0 0.70 0.57 -0.13 0.68 0.64 -0.04

Jedit v4.0 0.74 0.80 0.06 0.72 0.77 0.05 0.79 0.78 -0.01 0.73 0.78 0.05 0.75 0.75 0

Log4j v1.0 0.76 0.80 0.04 0.74 0.69 -0.05 0.82 0.78 -0.04 0.74 0.81 0.07 0.81 0.81 0

Lucene v2.4 0.68 0.77 0.09 0.65 0.75 0.10 0.67 0.66 -0.01 0.66 0.75 0.09 0.69 0.73 0.04

POI v3.0 0.71 0.88 0.17 0.70 0.83 0.13 0.82 0.81 -0.01 0.69 0.83 0.14 0.78 0.82 0.04

Tomcat v6.0 0.78 0.81 0.03 0.75 0.82 0.07 0.80 0.80 0 0.77 0.81 0.04 0.80 0.80 0

Xalan v2.6 0.66 0.85 0.19 0.60 0.81 0.21 0.54 0.54 0 0.62 0.81 0.19 0.60 0.76 0.16

Xerces v1.3 0.69 0.83 0.14 0.72 0.77 0.05 0.77 0.77 0 0.71 0.74 0.03 0.70 0.79 0.09

Median 0.70 0.80 0.07 0.65 0.74 0.09 0.71 0.71 0 0.68 0.75 0.07 0.68 0.72 0.02

Table 3: Ranks of all studied classifiers for within-
project defect prediction based on 1,000 evaluations.

Overall Classifier Median Average Standard
ranks rank rank deviation

1 RF 1 1.42 0.64

2

LR 2 3.19 2.15
SC 3 3.35 1.67
LMT 3 3.42 1.94
NB 3.5 3.54 1.27

3 FCM 6 5.96 1.08

4

PAM 6.5 6.73 1.69
NG 7 6.85 1.67
DT 7 6.89 1.56
KM 7.5 7.35 1.55

unsupervised classifier (i.e., the proposed spectral classifier)
can still compete with supervised classifiers in a within-
project setting.
Approach. To evaluate the performance of supervised clas-
sifiers in a within-project setting, the essential step is to sep-
arate all entities of a project into two sets. One set is for
training a model and the other one is the target set to apply
the model. Both supervised and unsupervised classifiers are
applied on the same target set of entities. The only differ-
ence is that supervised classifiers require an additional step
to build a model from the training set of entities.

To create the training and target sets, we apply a two-fold
cross validation (i.e., a 50:50 random split) that has been
previously applied in the defect prediction literature [39, 47].
For a 50:50 random split, each classifier is evaluated twice:
1) the first half is used as the training data while the other
half is used as the target data; and 2) the second half is used
as the training data while the first half is used as the target
data. To deal with the randomness of sampling, we repeat

the random splits for 500 times (i.e., 500 times of two-fold
cross validation). In total, 1,000 evaluations are performed
for each classifier on each project. To get the performance
of each classifier on each project, we compute the average
AUC value of the total 1,000 evaluations.

To find statistically distinct ranks of all classifiers, we fol-
low the approach of Ghotra et al. [20] and perform a double
Scott-Knott test. The double Scott-Knott test ensures a
robust ranking of all classifiers across projects, regardless
of their exact AUC values. The first Scott-Knott test is
performed on each individual project to rank all classifiers
based on their AUC values for that particular project. The
obtained ranks are used in the second run of the Scott-Knott
test to yield a global ranking of all classifiers across all stud-
ied projects.

Findings. Generally speaking, in a within-project
setting, supervised classifiers outperform unsuper-
vised classifiers. There is only one unsupervised classifier
(i.e., our spectral classifier) among the top five classifiers.

The detailed rankings are presented in Table 3, including
the global ranks of all classifiers across all projects, and the
statistics (i.e., median, average, and standard deviation) of
the ranks of each classifier as obtained in the first Scott-
Knott test on the results of 1,000 evaluations. In particular,
our spectral classifier has a median rank of 3, and is ranked
in the same tier as three widely used classifiers, i.e., logistic
regression, logistic model tree, and naive Bayes.

The actual AUC values of the top five classifiers (i.e., ran-
dom forest, logistic regression, our spectral classifier, logis-
tic model tree, and naive Bayes) on each project are pre-
sented in Table 4. The AUC values in both cross-project and
within-project settings are shown, as well as their difference
(i.e., the AUC value in a within-project setting minus the
AUC value in a cross-project setting).

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Defect Ratio

D
if
fe

re
n

c
e

RF

LR

Ours

LMT

NB

Figure 4: The regression lines of the performance
difference of the top five classifiers between a within-
project setting and a cross-project setting over the
ratio of defects of each project. (The dotted line is
the horizontal base line.)

Our spectral classifier achieves almost the same
predictive power between cross-project and within-
project settings across all projects under study, as
shown in Table 4. The size of the target project in a
within-project setting is only half of that in a cross-project
setting, highlighting that our spectral classifier tends to be
robust when the size of the target project changes.

A within-project model can sometimes significant-
ly underperform a cross-project model, although a
within-project model generally outperforms a cross-
project model. For example, looking at Table 4, and for
project “Ivy v1.4”, the top four supervised classifiers experi-
ence a downgraded performance when changing from a cross-
project setting to a within-project setting. In particular, the
random forest classifier achieves an AUC value of 0.71 in a
cross-project setting, but yields a lower AUC value of 0.67
in a within-project setting. We conjecture that the decrease
in performance when changing to a within-project setting
is caused by the low ratio of defects (i.e., the low percent-
age of defective entities) in the target project. For instance,
project “Ivy v1.4” has a ratio of defects of 6.6% with only
16 defective entities. Similar observations are noted in other
projects, such as “Apache Lucene” and “PC2”.

Supervised classifiers tend to experience a performance
decrease, if the ratio of defects becomes lower. To illustrate
the relationships between the performance of each classifier
and the ratio of defects, we plot regression lines of the per-
formance difference of the top five classifiers over the ratio of
defects in Figure 4. In comparison to supervised classifiers,
our spectral clustering based classifier is more robust across
a varying ratio of defects. One possible reason is that su-
pervised classifiers experience a significant class-imbalance
problem on these projects, while our spectral classifier is
an unsupervised approach, therefore has no issue of class-
imbalance. We conjecture that, for projects with a low ratio
of defects, our spectral clustering based classifier may be
more suitable than the supervised classifiers.

☛

✡

✟

✠

In a within-project setting, our spectral classifier ranks
in the second tier with only random forest ranking in
the first tier. However, our spectral classifier may be
more suitable for projects with heavily imbalanced (i.e.,
very low percentage of defective entities) defect data.

6. WHY DOES IT WORK?
In this section, we present an in-depth analysis to under-

stand why our spectral classifier, which is a connectivity-
based classifier, achieves good results in defect prediction.
As aforementioned, spectral clustering separates all entities
in a project based on the connections among entities. We
conjecture that software entities may reside within two “so-
cial network”-like communities: 1) one community is formu-
lated by defective entities; and 2) the other one is established
by clean entities.

6.1 Essential Definitions
Community definition. We define a community as a set

of members (i.e., software entities) that have much stronger
connections with each other than with members from other
communities. A connection is basically an edge in a graph,
as mentioned in Section 2.3. We define an edge between
entities i and j using Equation (2).

eij = 1(wij) (2)

where 1(wij) = 1 if wij > 0, and 1(wij) = 0 otherwise.
As described in Section 2.3, wij represents the similarity

or the correlation between entities i and j. Hence, eij equals
to 1, if there is a positive correlation between entities i and
j. We denote the set of all edges as E, then E = {eij}.

We construct the community as follows. For each project,
we partition the entities into two sets based on their defect
proneness. We use Vd to denote the set of actual defective
entities, and Vc to denote the set of actual clean entities.
A software entity can be either defective or clean. Hence,
there is no overlap between Vd and Vc, and the union of Vd

and Vc contains all entities within the same project.
Connectivity measurement. We define degdd, the to-

tal degree of all defective entities, using Equation (3). We
define degdd, the total degree of all clean entities, using
Equation (4). Similarly, we define degcd, the total number
of edges between each pair of defective and clean entities,
using Equation (5).

deg
dd =

∑

i∈Vd

∑

j∈Vd

eij , j 6= i (3)

deg
cc =

∑

i∈Vc

∑

j∈Vc

eij , j 6= i (4)

deg
cd =

∑

i∈Vc

∑

j∈Vd

eij (5)

To measure the connectivity among entities within Vd or
Vc, or between Vd and Vc, we further define the ratio of edges
(i.e., connections) as follows.

φ
dd =

degdd

|Vd|(|Vd| − 1)
(6)

φ
cc =

degcc

|Vc|(|Vc| − 1)
(7)

φ
cd =

degcd

|Vc||Vd|
(8)

To illustrate the computation, we present an example in
Figure 5. There are three defective and four clean entities.
Each defective entity has connections to all other two defec-
tive entities. Hence, degdd = 2+2+2 = 6 and φdd = 6

3×2
=

1.000. Similarly, we can get degcc = 2 + 2 + 2 + 2 = 8 and

Clean entities Defective entities

φcc = 8

4×3

φdd = 6

3×2

φcd = 2

4×3

Figure 5: Illustrating example of computing the ra-
tio of edges (i.e., φdd, φcc, φcd).

φcc = 8

4×3
= 0.667, and degcd = 2 and φcd = 2

4×3
= 0.167.

6.2 Hypotheses
For each project, we compute the ratios φdd, φcc, and

φcd based on the actual defect proneness. To compare the
connectivity among entities across all projects under study,
we test the following hypotheses:
H01: there is no difference in the ratios of connections from
defective entities to other defective entities (φdd) and clean
entities φcd.
H02: there is no difference in the ratios of connections from
clean entities to other clean entities (φcc) and defective en-
tities φcd.

Hypotheses H01 and H02 are two sided and paired, since
each project has three unique values: φdd, φcc, and φcd. To
test the hypotheses, we apply paired Mann-Whitney U test
using the 95% confidence level (i.e., α < 0.05). We further
compute the Cliff’s δ [50] as the effect size to quantify the
difference. Both the Mann-Whitney U test and the Cliff’s δ
are non-parametric statistical methods, and do not require
a particular distribution of assessed variables. An effect size
is large, if Cliff’s |δ| ≥ 0.474 [50].

6.3 Empirical Findings
We observe that in general the connections between

defective and clean entities are weaker than the con-
nection among defective entities and the connections
among clean entities. Table 5 presents the detailed val-
ues of our three measures (i.e., φcc, φcd, and φdd) for each
project. For instance, in project “Eclipse JDT Core”, the
ratio of connections among defective entities φdd = 0.564.
The ratio of connections among clean entities φcc = 0.614.
These two ratios are significantly greater than the ratio of
connections between clean and defective entities which is
φcd = 0.365.

Defective entities have significantly stronger connections
with other defective entities than with clean entities. The p-
value of the Mann-Whitney U test is is 4.20e-05, when com-
paring the ratios φdd and φcd across all projects. The differ-
ence is large, as the corresponding Cliff’s |δ| is 0.654>0.474.
Similarly, clean entities have significantly stronger connec-

tions with other clean entities than with defective entities
(i.e., the p-value of the Mann-Whitney U test is 8.55e-06).
The difference is also large, as Cliff’s |δ| is 0.769>0.474.
As a summary, our observation indicates that either defec-

tive or clean entities are similar in terms of metric values, but

Table 5: The values of φcc, φcd, and φdd for each
project. (Bold font highlights the minimum value
per row).

Dataset Project φcc φcd φdd

AEEEM

Eclipse JDT Core 0.614 0.365 0.564
Equinox 0.694 0.443 0.470
Apache Lucene 0.554 0.374 0.556
Mylyn 0.575 0.442 0.489
Eclipse PDE UI 0.576 0.426 0.512

NASA

CM1 0.616 0.497 0.502
JM1 0.628 0.515 0.519
KC3 0.585 0.498 0.477
MC1 0.572 0.437 0.540
MC2 0.646 0.495 0.496
MW1 0.551 0.439 0.546
PC1 0.594 0.470 0.556
PC2 0.594 0.442 0.602
PC3 0.586 0.450 0.593
PC4 0.583 0.489 0.577
PC5 0.714 0.574 0.588

PROMISE

Ant v1.7 0.522 0.398 0.606
Camel v1.6 0.487 0.455 0.481
Ivy v1.4 0.482 0.417 0.508
Jedit v4.0 0.504 0.402 0.536
Log4j v1.0 0.538 0.368 0.535
Lucene v2.4 0.542 0.438 0.459
POI v3.0 0.605 0.390 0.537
Tomcat v6.0 0.485 0.380 0.630
Xalan v2.6 0.540 0.439 0.438
Xerces v1.3 0.488 0.394 0.504

Median 0.576 0.439 0.536

defective and clean entities are less likely to experience sim-
ilar metric values. In other words, there roughly exist two
communities based on defect proneness. Entities within the
same community have stronger connections than cross com-
munities. This may be the reason as to why the proposed
connectivity-based unsupervised classifier (i.e., our spectral
classifier) achieves empirically good results in defect predic-
tion.
☛

✡

✟

✠

There roughly exist two communities of entities: a
defective community and a clean community of enti-
ties. Within-community connections are significantly
stronger than cross-community connections.

7. THREATS TO VALIDITY
In this section, we describe the threats to validity of our

study under common guidelines by Yin [61].
Threats to conclusion validity concern the relation be-

tween the treatment and the outcome. The major threat is
that we only compare our approach with off-the-shelf clas-
sifiers. Future work should explore state-of-the-art cross
project defect classifiers. Unfortunately the implementation
of such specialized classifiers are rarely available and often
require a considerable amount of setup – making them hard
for practitioners to easily adopt. Hence we chose to compare
against commonly used and readily available classifiers.

Threats to internal validity concern our selection of
subject systems and analysis methods. We select 26 projects
that have been commonly used in the defect prediction lit-
erature. These projects are from different domains, include
both open source and industrial projects, and have differ-
ent sets of metrics. However, evaluating our approach on a

large scale of projects is always desirable. Nevertheless our
findings raise a very poignant point about the importance of
exploring connectivity-based unsupervised classifiers in fu-
ture defection prediction research. Moreover, the simplicity
of our approach makes exploring it in future studies as a
very lightweight and simple step to perform.

Threats to external validity concern the possibility to
generalize our results. Our approach only requires software
metrics that can be computed in a standard way by publicly
available tools. However, only metrics that are collected in
the three data sets are applied in our experiments. Replica-
tion studies using different sets of metrics may prove fruitful.

Threats to reliability validity concern the possibility of
replicating this study. All the three studied data sets are
publicly available. Moreover, the R implementation of our
approach is provided in Appendix A.

8. CONCLUSION
As new or small projects do not have sufficient training

data, cross-project defect prediction has attracted great in-
terest from both researchers and practitioners (e.g., [26, 27,
32, 34, 35, 41, 57, 58]). The major challenge in cross-project
defect prediction is the heterogeneity between the training
projects and the target project (e.g., different distributions
of metric values [13, 41] and different sets of metrics [40]).

This study brings a new insight to tackle this challenge
using connectivity-based unsupervised classifiers. Unsuper-
vised classifiers do not require any training data, and there-
fore have no issue of heterogeneity. Apart from distance-
based unsupervised classifiers (e.g., k-means clustering), the
connectivity-based unsupervised classifiers assume that de-
fective entities tend to cluster around the same area, a sim-
ilar intuition as the recent work on local prediction models
by Menzies et al. [35] and Bettenburg et al. [4].

To evaluate the performance of our proposed spectral clas-
sifier, we perform experiments using 26 projects from three
publicly available datasets (i.e., AEEEM [14], NASA [42],
and PROMISE [29]). The results show that the proposed
connectivity-based unsupervised classifier (i.e., our spectral
classifier) achieves impressive performance in a cross-project
setting. Specifically, our spectral classifier ranks as one of
the top classifiers among five supervised classifiers (e.g., ran-
dom forest) and five unsupervised classifiers (e.g., k-means).
In a within-project setting, our spectral classifier ranks in
the second tier, the same as three widely used supervised
classifiers (e.g., logistic regression, logistic model tree, and
naive Bayes) with random forest as the only classifier in the
first tier.

As a summary, our contributions are as follows:

• Demonstrating that connectivity-based unsu-
pervised classification (particularly via spectral
clustering) performs well in a cross-project set-
ting. Our experiments show that our connectivity-
based unsupervised classifier (via spectral clustering)
can achieve similar or better performance than several
commonly used supervised and unsupervised classi-
fiers. We believe that unsupervised classification holds
great promise in defect prediction, especially in a cross-
project setting and for highly skewed within-project
settings.

• Demonstrating the existence of two (defective
and clean) separated communities of software

entities based on the connectivity between the
entities in each community. We believe that this
observation highlights the importance for the software
engineering research community to explore more ad-
vanced techniques for unsupervised defect prediction
instead of current strong reliance on supervised classi-
fiers.

APPENDIX

A. R IMPLEMENTATION OF OUR SPEC-

TRAL CLASSIFIER
In Listing 1, we present the R implementation of our spec-

tral classifier.

Listing 1: R implementation of our approach.
1 spectral_clustering_based_classifier <- function(A) {
2 # Normalize software metrics.
3 normA = apply(A, 2, function(x){(x-mean(x))/sd(x)})
4 # Construct the weighted adjacency matrix W.
5 W = normA %*% t(normA)
6 # Set all negative values to zero.
7 W[W<0] = 0
8 # Set the self -similarity to zero.
9 W = W - diag(diag(W))

10 # Construct the symmetric Laplacian matrix Lsym.
11 Dnsqrt = diag(1/sqrt(rowSums(W)))
12 I = diag(rep(1, nrow(W)))
13 Lsym = I - Dnsqrt %*% W %*% Dnsqrt
14 # Perform the eigendecomposition.
15 ret_egn = eigen(Lsym , symmetric=TRUE)
16 # Pick up the second smallest eigenvector.
17 v1 = Dnsqrt %*% ret_egn$vectors[, nrow(W) -1]
18 v1 = v1 / sqrt(sum(v1^2))
19 # Divide the data set into two clusters.
20 defect_proneness = (v1 >0)
21 # Label the defective and clean clusters.
22 rs = rowSums(normA)
23 if(mean(rs[v1 >0])<mean(rs[v1 <0]))
24 defect_proneness = (v1 <0)
25 # Return the defect proneness.
26 defect_proneness
27 }

References
[1] G. Abaei, Z. Rezaei, and A. Selamat. Fault prediction by uti-

lizing self-organizing Map and Threshold. In 2013 IEEE In-
ternational Conference on Control System, Computing and
Engineering, pages 465–470. IEEE, Nov. 2013.

[2] C. C. Aggarwal, editor. Data Classification: Algorithms and
Applications. CRC Press, 2014.

[3] O. F. Arar and K. Ayan. Software defect prediction us-
ing cost-sensitive neural network. Applied Soft Computing,
33:263–277, Aug. 2015.

[4] N. Bettenburg, M. Nagappan, and A. E. Hassan. Think lo-
cally, act globally: Improving defect and effort prediction
models. In Proceedings of the 9th IEEE Working Confer-
ence on Mining Software Repositories, MSR ’12, pages 60–
69, June 2012.

[5] P. Bishnu and V. Bhattacherjee. Software fault predic-
tion using quad tree-based k-means clustering algorithm.
IEEE Transactions on Knowledge and Data Engineering,
24(6):1146–1150, June 2012.

[6] P. Blanchard and D. Volchenkov. Mathematical Analysis of
Urban Spatial Networks. Springer Berlin Heidelberg, Heidel-
berg, Germany, 2009.

[7] S. P. Borgatti and M. G. Everett. Models of core/periphery
structures. Social Networks, 21(4):375 – 395, 2000.

[8] L. C. Briand, W. L. Melo, and J. Wüst. Assessing the appli-
cability of fault-proneness models across object-oriented soft-
ware projects. IEEE Transactions on Software Engineering,
28(7):706–720, July 2002.

[9] C. Catal, U. Sevim, and B. Diri. Metrics-driven software
quality prediction without prior fault data. In S.-I. Ao and
L. Gelman, editors, Electronic Engineering and Computing
Technology, volume 60 of Lecture Notes in Electrical Engi-
neering, pages 189–199. Springer Netherlands, 2010.

[10] C. Catal, U. Sevim, and B. Diri. Practical development
of an Eclipse-based software fault prediction tool using
Naive Bayes algorithm. Expert Systems with Applications,
38(3):2347–2353, Mar. 2011.

[11] E. Ceylan, F. Kutlubay, and A. Bener. Software De-
fect Identification Using Machine Learning Techniques. In
32nd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO’06), pages 240–
247. IEEE, 2006.

[12] L. Chen, B. Fang, Z. Shang, and Y. Tang. Negative sam-
ples reduction in cross-company software defects prediction.
Information and Software Technology, 62:67–77, June 2015.

[13] A. Cruz and K. Ochimizu. Towards logistic regression models
for predicting fault-prone code across software projects. In
Proceedings of the 3rd International Symposium on Empiri-
cal Software Engineering and Measurement, pages 460–463,
Oct. 2009.

[14] M. D’Ambros, M. Lanza, and R. Robbes. An extensive com-
parison of bug prediction approaches. In Proceedings of the
7th IEEE Working Conference on Mining Software Reposi-
tories, pages 31–41. IEEE CS Press, May 2010.

[15] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect
prediction approaches: a benchmark and an extensive com-
parison. Empirical Software Engineering, 17(4-5):531–577,
Aug. 2012.

[16] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic analysis.
Journal of the American Society for Information Science,
41(6):391–407, 1990.

[17] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: Spec-
tral clustering and normalized cuts. In Proceedings of the
Tenth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 551–556. ACM,
2004.

[18] M. Fagan. Design and code inspections to reduce errors in
program development. IBM Systems Journal, 38(2.3):258–
287, 1999.

[19] J. E. Gaffney. Estimating the number of faults in code.
IEEE Transactions on Software Engineering, SE-10(4):459–
464, July 1984.

[20] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the im-
pact of classification techniques on the performance of defect
prediction models. In Proceedings of the 37th IEEE Interna-
tional Conference on Software Engineering, volume 1, pages
789–800, May 2015.

[21] F. Gorunescu. Data mining concepts, models and techniques.
Springer, Berlin, 2011.

[22] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson.
The misuse of the nasa metrics data program data sets for
automated software defect prediction. In Proceedings of the
15th Annual Conference on Evaluation Assessment in Soft-
ware Engineering (EASE 2011), pages 96–103, April 2011.

[23] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A
systematic literature review on fault prediction performance
in software engineering. IEEE Transactions on Software En-
gineering, 38(6):1276–1304, Nov. 2012.

[24] J. Han, M. Kamber, and J. Pei. Data Mining: concepts and
techniques. Morgan Kaufmann, Boston, 3 edition, 2012.

[25] A. E. Hassan. Predicting faults using the complexity of code
changes. In Proceedings of the 31st IEEE International Con-
ference on Software Engineering, pages 78 –88, 2009.

[26] Z. He, F. Peters, T. Menzies, and Y. Yang. Learning from
open-source projects: An empirical study on defect predic-
tion. In ACM / IEEE International Symposium on Empir-
ical Software Engineering and Measurement, pages 45–54,
Oct. 2013.

[27] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang. An inves-
tigation on the feasibility of cross-project defect prediction.
Automated Software Engineering, 19(2):167–199, June 2012.

[28] E. G. Jelihovschi, J. C. Faria, and I. B. Allaman. Scot-
tknott: A package for performing the scott-knott clustering
algorithm in r. Trends in Applied and Computational Math-
ematics, 15(1):3–17, 2014.

[29] M. Jureczko and L. Madeyski. Towards identifying software
project clusters with regard to defect prediction. In Pro-
ceedings of the 6th International Conference on Predictive
Models in Software Engineering, pages 9:1–9:10, 2010.

[30] B. Kitchenham, L. Pickard, and S. Linkman. An evalua-
tion of some design metrics. Software Engineering Journal,
5(1):50–58, Jan 1990.

[31] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Bench-
marking classification models for software defect prediction:
A proposed framework and novel findings. IEEE Transac-
tions on Software Engineering (TSE), 34(4):485–496, 2008.

[32] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou. Sample-based
software defect prediction with active and semi-supervised
learning. Automated Software Engineering, 19(2):201–230,
June 2012.

[33] U. Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17(4):395–416, Dec. 2007.

[34] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer learning for
cross-company software defect prediction. Information and
Software Technology, 54(3):248–256, Mar. 2012.

[35] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and
D. Cok. Local vs. global models for effort estimation and de-
fect prediction. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineer-
ing, ASE ’11, pages 343–351. IEEE Computer Society, 2011.

[36] B. Mohar. The laplacian spectrum of graphs. In Graph
Theory, Combinatorics, and Applications, pages 871–898.
Wiley, 1991.

[37] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction. In Proceedings of the 30th International
Conference on Software Engineering, pages 181–190. ACM,
May 2008.

[38] R. Mullen and S. Gokhale. Software Defect Rediscoveries: A
Discrete Lognormal Model. In Proceedings of the 16th IEEE
International Symposium on Software Reliability Engineer-
ing, pages 203–212. IEEE, 2005.

[39] J. Nam and S. Kim. Clami: Defect prediction on unlabeled
datasets. In Proceedings of the 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE
’15, 2015.

[40] J. Nam and S. Kim. Heterogeneous defect prediction. In Pro-
ceedings of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE ’15, 2015.

[41] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In
Proceedings of the 2013 International Conference on Soft-
ware Engineering, pages 382–391. IEEE Press, 2013.

[42] NASA. Metrics Data Program. http://openscience.us/repo/
defect/mccabehalsted, 2015. [Online; accessed 25-August-
2015].

[43] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clus-
tering: Analysis and an algorithm. In Advances in Neural
Information Processing Systems, pages 849–856. MIT Press,
2001.

[44] M. Ohlsson and P. Runeson. Experience from replicating
empirical studies on prediction models. Proceedings of the
8th IEEE Symposium on Software Metrics, pages 217–226,
2002.

[45] T. Ostrand and E. Weyuker. On the automation of software
fault prediction. In Testing: Academic and Industrial Con-
ference - Practice And Research Techniques, 2006. TAIC
PART 2006. Proceedings, pages 41–48, Aug. 2006.

[46] L. Pelayo and S. Dick. Applying novel resampling strate-
gies to software defect prediction. In Annual Conference of
the North American Fuzzy Information processing Society,
NAFIPS ’07, pages 69–72, June 2007.

[47] M. Pinzger, N. Nagappan, and B. Murphy. Can developer-
module networks predict failures? In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, SIGSOFT ’08/FSE-16, pages 2–12,
New York, NY, USA, 2008. ACM.

[48] R. Premraj and K. Herzig. Network versus code metrics
to predict defects: A replication study. In 2011 Interna-
tional Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 215–224, 2011.

[49] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and
W. Meding. The Adoption of Machine Learning Techniques
for Software Defect Prediction: An Initial Industrial Val-
idation. Knowledge-based Software Engineering, JCKBSE
2014, 466:270–285, 2014.

[50] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek.
Appropriate statistics for ordinal level data: Should we really
be using t-test and cohen’s d for evaluating group differences
on the nsse and other surveys? In Annual Meeting of the
Florida Association of Institutional Research, pages 1–33,
Feb. 2006.

[51] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data qual-
ity: Some comments on the nasa software defect datasets.
IEEE Transactions on Software Engineering, 39(9):1208–
1215, Sept 2013.

[52] D. J. Sheskin. Handbook of Parametric and Nonparamet-
ric Statistical Procedures, Fourth Edition. Chapman & Hal-
l/CRC, Jan. 2007.

[53] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, Aug. 2000.

[54] F. Shull, V. Basili, B. Boehm, A. Brown, P. Costa, M. Lind-
vall, D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz. What
we have learned about fighting defects. In Proceedings of the
8th IEEE Symposium on Software Metrics, pages 249–258,
2002.

[55] G. Tassey. The economic impacts of inadequate infrastruc-
ture for software testing. Technical Report Planning Report
02-3, National Institute of Standards and Technology, May
2002.

[56] A. Tosun, A. Bener, B. Turhan, and T. Menzies. Practi-
cal considerations in deploying statistical methods for de-
fect prediction: A case study within the Turkish telecommu-
nications industry. Information and Software Technology,
52(11):1242–1257, Nov. 2010.

[57] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano.
On the relative value of cross-company and within-company
data for defect prediction. Empirical Software Engineering,
14(5):540–578, Oct. 2009.

[58] S. Watanabe, H. Kaiya, and K. Kaijiri. Adapting a fault
prediction model to allow inter languagereuse. In Proceedings
of the 4th International Workshop on Predictor Models in
Software Engineering, PROMISE ’08, pages 19–24. ACM,
2008.

[59] A. R. Webb and K. D. Copsey. Statistical Pattern Recogni-
tion, Third Edition. John Wiley & Sons, Inc., 2011.

[60] B. Yang, Q. Yin, S. Xu, and P. Guo. Software quality pre-
diction using affinity propagation algorithm. In Proceedings
of the 2008 IEEE International Joint Conference on Neural
Networks. IJCNN 2008, pages 1891–1896, June 2008.

[61] R. K. Yin. Case Study Research: Design and Methods -
Third Edition. SAGE Publications, 3 edition, 2002.

[62] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou. Towards
building a universal defect prediction model. In Proceedings
of the 11th Working Conference on Mining Software Repos-
itories, MSR ’14, pages 41–50, Piscataway, NJ, USA, 2014.
IEEE Press.

[63] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou. Towards
building a universal defect prediction model with rank trans-
formed predictors. Empirical Software Engineering, pages
1–39, 2015.

[64] F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan.
How does context affect the distribution of software main-
tainability metrics? In Proceedings of the 29th IEEE Inter-
national Conference on Software Maintainability, ICSM ’13,
pages 350 – 359, 2013.

[65] S. Zhong, T. Khoshgoftaar, and N. Seliya. Unsupervised
learning for expert-based software quality estimation. In
Proceedings of the 8th IEEE International Symposium on
High Assurance Systems Engineering, pages 149–155, Mar.
2004.

[66] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy. Cross-project defect prediction: a large scale
experiment on data vs. domain vs. process. In Proceedings
of the the 7th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, ESEC/FSE ’09,
pages 91–100, New York, NY, USA, 2009. ACM.

